[Title 40 CFR ]
[Code of Federal Regulations (annual edition) - July 1, 1998 Edition]
[From the U.S. Government Printing Office]


          40



          Protection of Environment



[[Page i]]

          PART 60

                         Revised as of July 1, 1998

          CONTAINING
          A CODIFICATION OF DOCUMENTS
          OF GENERAL APPLICABILITY
          AND FUTURE EFFECT

          AS OF JULY 1, 1998
          With Ancillaries
          Published by
          the Office of the Federal Register
          National Archives and Records
          Administration

          as a Special Edition of
          the Federal Register



[[Page ii]]

                                      




                     U.S. GOVERNMENT PRINTING OFFICE
                            WASHINGTON : 1998



               For sale by U.S. Government Printing Office
 Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328



[[Page iii]]




                            Table of Contents



                                                                    Page
  Explanation.................................................       v

  Title 40:
      Chapter I--Environmental Protection Agency..............       3
  Finding Aids:
      Material Approved for Incorporation by Reference........    1095
      Table of CFR Titles and Chapters........................    1101
      Alphabetical List of Agencies Appearing in the CFR......    1119
      Table of OMB Control Numbers............................    1129
      List of CFR Sections Affected...........................    1149



[[Page iv]]


      


                     ----------------------------

                     Cite this Code:  CFR
                     To cite the regulations in 
                       this volume use title, 
                       part and section number. 
                       Thus,  40 CFR 60.1 refers 
                       to title 40, part 60, 
                       section 1.

                     ----------------------------

[[Page v]]



                               EXPLANATION

    The Code of Federal Regulations is a codification of the general and 
permanent rules published in the Federal Register by the Executive 
departments and agencies of the Federal Government. The Code is divided 
into 50 titles which represent broad areas subject to Federal 
regulation. Each title is divided into chapters which usually bear the 
name of the issuing agency. Each chapter is further subdivided into 
parts covering specific regulatory areas.
    Each volume of the Code is revised at least once each calendar year 
and issued on a quarterly basis approximately as follows:

Title 1 through Title 16.................................as of January 1
Title 17 through Title 27..................................as of April 1
Title 28 through Title 41...................................as of July 1
Title 42 through Title 50................................as of October 1
    The appropriate revision date is printed on the cover of each 
volume.

LEGAL STATUS

    The contents of the Federal Register are required to be judicially 
noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie 
evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

    The Code of Federal Regulations is kept up to date by the individual 
issues of the Federal Register. These two publications must be used 
together to determine the latest version of any given rule.
    To determine whether a Code volume has been amended since its 
revision date (in this case, July 1, 1998), consult the ``List of CFR 
Sections Affected (LSA),'' which is issued monthly, and the ``Cumulative 
List of Parts Affected,'' which appears in the Reader Aids section of 
the daily Federal Register. These two lists will identify the Federal 
Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

    Each volume of the Code contains amendments published in the Federal 
Register since the last revision of that volume of the Code. Source 
citations for the regulations are referred to by volume number and page 
number of the Federal Register and date of publication. Publication 
dates and effective dates are usually not the same and care must be 
exercised by the user in determining the actual effective date. In 
instances where the effective date is beyond the cut-off date for the 
Code a note has been inserted to reflect the future effective date. In 
those instances where a regulation published in the Federal Register 
states a date certain for expiration, an appropriate note will be 
inserted following the text.

OMB CONTROL NUMBERS

    The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires 
Federal agencies to display an OMB control number with their information 
collection request.

[[Page vi]]

Many agencies have begun publishing numerous OMB control numbers as 
amendments to existing regulations in the CFR. These OMB numbers are 
placed as close as possible to the applicable recordkeeping or reporting 
requirements.

OBSOLETE PROVISIONS

    Provisions that become obsolete before the revision date stated on 
the cover of each volume are not carried. Code users may find the text 
of provisions in effect on a given date in the past by using the 
appropriate numerical list of sections affected. For the period before 
January 1, 1986, consult either the List of CFR Sections Affected, 1949-
1963, 1964-1972, or 1973-1985, published in seven separate volumes. For 
the period beginning January 1, 1986, a ``List of CFR Sections 
Affected'' is published at the end of each CFR volume.

INCORPORATION BY REFERENCE

    What is incorporation by reference? Incorporation by reference was 
established by statute and allows Federal agencies to meet the 
requirement to publish regulations in the Federal Register by referring 
to materials already published elsewhere. For an incorporation to be 
valid, the Director of the Federal Register must approve it. The legal 
effect of incorporation by reference is that the material is treated as 
if it were published in full in the Federal Register (5 U.S.C. 552(a)). 
This material, like any other properly issued regulation, has the force 
of law.
    What is a proper incorporation by reference? The Director of the 
Federal Register will approve an incorporation by reference only when 
the requirements of 1 CFR part 51 are met. Some of the elements on which 
approval is based are:
    (a) The incorporation will substantially reduce the volume of 
material published in the Federal Register.
    (b) The matter incorporated is in fact available to the extent 
necessary to afford fairness and uniformity in the administrative 
process.
    (c) The incorporating document is drafted and submitted for 
publication in accordance with 1 CFR part 51.
    Properly approved incorporations by reference in this volume are 
listed in the Finding Aids at the end of this volume.
    What if the material incorporated by reference cannot be found? If 
you have any problem locating or obtaining a copy of material listed in 
the Finding Aids of this volume as an approved incorporation by 
reference, please contact the agency that issued the regulation 
containing that incorporation. If, after contacting the agency, you find 
the material is not available, please notify the Director of the Federal 
Register, National Archives and Records Administration, Washington DC 
20408, or call (202) 523-4534.

CFR INDEXES AND TABULAR GUIDES

    A subject index to the Code of Federal Regulations is contained in a 
separate volume, revised annually as of January 1, entitled CFR Index 
and Finding Aids. This volume contains the Parallel Table of Statutory 
Authorities and Agency Rules (Table I), and Acts Requiring Publication 
in the Federal Register (Table II). A list of CFR titles, chapters, and 
parts and an alphabetical list of agencies publishing in the CFR are 
also included in this volume.
    An index to the text of ``Title 3--The President'' is carried within 
that volume.
    The Federal Register Index is issued monthly in cumulative form. 
This index is based on a consolidation of the ``Contents'' entries in 
the daily Federal Register.

[[Page vii]]

    A List of CFR Sections Affected (LSA) is published monthly, keyed to 
the revision dates of the 50 CFR titles.

REPUBLICATION OF MATERIAL

    There are no restrictions on the republication of material appearing 
in the Code of Federal Regulations.

INQUIRIES

    For a legal interpretation or explanation of any regulation in this 
volume, contact the issuing agency. The issuing agency's name appears at 
the top of odd-numbered pages.
    For inquiries concerning CFR reference assistance, call 202-523-5227 
or write to the Director, Office of the Federal Register, National 
Archives and Records Administration, Washington, DC 20408.

SALES

    The Government Printing Office (GPO) processes all sales and 
distribution of the CFR. For payment by credit card, call 202-512-1800, 
M-F, 8 a.m. to 4 p.m. e.s.t. or fax your order to 202-512-2233, 24 hours 
a day. For payment by check, write to the Superintendent of Documents, 
Attn: New Orders, P.O. Box 371954, Pittsburgh, PA 15250-7954. For GPO 
Customer Service call 202-512-1803.

ELECTRONIC SERVICES

    The full text of the Code of Federal Regulations, The United States 
Government Manual, the Federal Register, Public Laws, Weekly Compilation 
of Presidential Documents and the Privacy Act Compilation are available 
in electronic format at www.access.gpo.gov/nara (``GPO Access''). For 
more information, contact Electronic Information Dissemination Services, 
U.S. Government Printing Office. Phone 202-512-1530, or 888-293-6498 
(toll-free). E-mail, gpoaccess@gpo.gov.
    The Office of the Federal Register also offers a free service on the 
National Archives and Records Administration's (NARA) World Wide Web 
site for public law numbers, Federal Register finding aids, and related 
information. Connect to NARA's web site at www.nara.gov/fedreg. The NARA 
site also contains links to GPO Access.

                              Raymond A. Mosley,
                                    Director,
                          Office of the Federal Register.

July 1, 1998.



[[Page ix]]



                               THIS TITLE

    Title 40--Protection of Environment is composed of twenty-three 
volumes. The parts in these volumes are arranged in the following order: 
parts 1-49, parts 50-51, parts 52.01-52.1018, part 52.1019-end, parts 
53-59, part 60, parts 61-62, part 63, parts 64-71, parts 72-80, parts 
81-85, part 86, parts 87-135, parts 136-149, parts 150-189, parts 190-
259, parts 260-265, parts 266-299, parts 300-399, parts 400-424, parts 
425-699, parts 700-789, and part 790 to end. The contents of these 
volumes represent all current regulations codified under this title of 
the CFR as of July 1, 1998.

    Chapter I--Environmental Protection Agency appears in all twenty-two 
volumes. A Pesticide Tolerance Commodity/Chemical Index appears in parts 
150-189. A Toxic Substances Chemical--CAS Number Index appears in parts 
700-789 and part 790 to end. Redesignation Tables appear in the volumes 
containing parts 50-51, parts 150-189, and parts 700-789. Regulations 
issued by the Council on Environmental Quality appear in the volume 
containing part 790 to end.

    The OMB control numbers for title 40 appear in Sec. 9.1 of this 
chapter. For the convenience of the user, Sec. 9.1 appears in the 
Finding Aids section of the volumes containing part 50 to the end.

    For this volume, Gregory R. Walton was Chief Editor. The Code of 
Federal Regulations publication program is under the direction of 
Frances D. McDonald, assisted by Alomha S. Morris.

[[Page x]]





[[Page 1]]



                   TITLE 40--PROTECTION OF ENVIRONMENT




                      (This book contains part 60)

  --------------------------------------------------------------------
                                                                    Part

chapter i--Environmental Protection Agency (Continued)......          60

[[Page 3]]



               CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY




  --------------------------------------------------------------------

                 SUBCHAPTER C--AIR PROGRAMS (CONTINUED)
Part                                                                Page
60              Standards of performance for new stationary 
                    sources.................................           5


  Editorial Note:  Subchapter C--Air programs is contained in volumes 40 
CFR parts 50-51, part 52.01-52.1018, part 52.1019-End, 53-59, part 60, 
parts 61-62, part 63, parts 64-71, parts 72-80, parts 81-85, part 86, 
and parts 87-135.

[[Page 5]]



                 SUBCHAPTER C--AIR PROGRAMS (CONTINUED)





PART 60--STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES--Table of Contents




                      Subpart A--General Provisions

Sec.
60.1  Applicability.
60.2  Definitions.
60.3  Units and abbreviations.
60.4  Address.
60.5  Determination of construction or modification.
60.6  Review of plans.
60.7  Notification and record keeping.
60.8  Performance tests.
60.9  Availability of information.
60.10  State authority.
60.11  Compliance with standards and maintenance requirements.
60.12  Circumvention.
60.13  Monitoring requirements.
60.14  Modification.
60.15  Reconstruction.
60.16  Priority list.
60.17  Incorporations by reference.
60.18  General control device requirements.
60.19  General notification and reporting requirements.

    Subpart B--Adoption and Submittal of State Plans for Designated 
                               Facilities

60.20  Applicability.
60.21  Definitions.
60.22  Publication of guideline documents, emission guidelines, and 
          final compliance times.
60.23  Adoption and submittal of State plans; public hearings.
60.24  Emission standards and compliance schedules.
60.25  Emission inventories, source surveillance, reports.
60.26  Legal authority.
60.27  Actions by the Administrator.
60.28  Plan revisions by the State.
60.29  Plan revisions by the Administrator.

           Subpart C--Emission Guidelines and Compliance Times

60.30  Scope.
60.31  Definitions.

                         Subpart Ca  [Reserved]

60.30a  Scope.
60.31a  Definitions.
60.32a  Designated facilities.
60.33a  Emission guidelines for municipal waste combustor metals.
60.34a  Emission guidelines for municipal waste combustor organics.
60.35a  Emission guidelines for municipal waste combustor acid gases.
60.36a  Emission guidelines for municipal waste combustor operating 
          practices, training, and municipal waste combustor operator 
          certification.
60.37a  [Reserved]
60.38a  Compliance and performance testing and compliance times.
60.39a  Reporting and recordkeeping guidelines.

    Subpart Cb--Emissions Guidelines and Compliance Times for Large 
 Municipal Waste Combustors That Are Constructed on or Before September 
                                20, 1994

60.30b  Scope.
60.31b  Definitions.
60.32b  Designated facilities.
60.33b  Emission guidelines for municipal waste combustor metals, acid 
          gases, organics, and nitrogen oxides.
60.34b  Emission guidelines for municipal waste combustor operating 
          practices.
60.35b  Emission guidelines for municipal waste combustor operator 
          training and certification.
60.36b  Emission guidelines for municipal waste combustor fugitive ash 
          emissions.
60.37b  Emission guidelines for air curtain incinerators.
60.38b  Compliance and performance testing.
60.39b  Reporting and recordkeeping guidelines and compliance schedules.

Subpart Cc--Emission Guidelines and Compliance Times for Municipal Solid 
                             Waste Landfills

60.30c  Scope.
60.31c  Definitions.
60.32c  Designated facilities.
60.33c  Emission guidelines for municipal solid waste landfill 
          emissions.
60.34c  Test methods and procedures.
60.35c  Reporting and recordkeeping guidelines.
60.36c  Compliance times.

Subpart Cd--Emissions Guidelines and Compliance Times for Sulfuric Acid 
                            Production Units

60.30d  Designated facilities.
60.31d  Emissions guidelines.
60.32d  Compliance times.

[[Page 6]]

   Subpart Ce--Emission Guidelines and Compliance Times for Hospital/
                  Medical/Infectious Waste Incinerators

60.30e  Scope.
60.31e  Definitions.
60.32e  Designated facilities.
60.33e  Emission guidelines.
60.34e  Operator training and qualification guidelines.
60.35e  Waste management guidelines.
60.36e  Inspection guidelines.
60.37e  Compliance, performance testing, and monitoring guidelines.
60.38e  Reporting and recordkeeping guidelines.
60.39e  Compliance times.

  Table 1 to Subpart Ce--Emission Limits for Small, Medium, and Large 
                                  HMIWI

 Table 2 to Subpart Ce--Emission Limits for Small HMIWI which meet the 
                      criteria under Sec. 60.33e(b)

    Subpart D--Standards of Performance for Fossil-Fuel-Fired Steam 
  Generators for Which Construction is Commenced After August 17, 1971

60.40  Applicability and designation of affected facility.
60.41  Definitions.
60.42  Standard for particulate matter.
60.43  Standard for sulfur dioxide.
60.44  Standard for nitrogen oxides.
60.45  Emission and fuel monitoring.
60.46  Test methods and procedures.

    Subpart Da--Standards of Performance for Electric Utility Steam 
Generating Units for Which Construction is Commenced After September 18, 
                                  1978

60.40a  Applicability and designation of affected facility.
60.41a  Definitions.
60.42a  Standard for particulate matter.
60.43a  Standard for sulfur dioxide.
60.44a  Standard for nitrogen oxides.
60.45a  Commercial demonstration permit.
60.46a  Compliance provisions.
60.47a  Emission monitoring.
60.48a  Compliance determination procedures and methods.
60.49a  Reporting requirements.

     Subpart Db--Standards of Performance for Industrial-Commercial-
                  Institutional Steam Generating Units

60.40b  Applicability and delegation of authority.
60.41b  Definitions.
60.42b  Standard for sulfur dioxide.
60.43b  Standard for particulate matter.
60.44b  Standard for nitrogen oxides.
60.45b  Compliance and performance test methods and procedures for 
          sulfur dioxide.
60.46b  Compliance and performance test methods and procedures for 
          particulate matter and nitrogen oxides.
60.47b  Emission monitoring for sulfur dioxide.
60.48b  Emission monitoring for particulate matter and nitrogen oxides.
60.49b  Reporting and recordkeeping requirements.

  Subpart Dc--Standards of Performance for Small Industrial-Commercial-
                  Institutional Steam Generating Units

60.40c  Applicability and delegation of authority.
60.41c  Definitions.
60.42c  Standard for sulfur dioxide.
60.43c  Standard for particulate matter.
60.44c  Compliance and performance test methods and procedures for 
          sulfur dioxide.
60.45c  Compliance and performance test methods and procedures for 
          particulate matter.
60.46c  Emission monitoring for sulfur dioxide.
60.47c  Emission monitoring for particulate matter.
60.48c  Reporting and recordkeeping requirements.

          Subpart E--Standards of Performance for Incinerators

60.50  Applicability and designation of affected facility.
60.51  Definitions.
60.52  Standard for particulate matter.
60.53  Monitoring of operations.
60.54  Test methods and procedures.

Subpart Ea--Standards of Performance for Municipal Waste Combustors for 
Which Construction is Commenced After December 20, 1989 and on or Before 
                           September 20, 1994

60.50a  Applicability and delegation of authority.
60.51a  Definitions.
60.52a  Standard for municipal waste combustor metals.
60.53a  Standard for municipal waste combustor organics.
60.54a  Standard for municipal waste combustor acid gases.
60.55a  Standard for nitrogen oxides.
60.56a  Standard for municipal waste combustor operating practices.
60.57a  [Reserved]
60.58a  Compliance and performance testing.
60.59a  Reporting and recordkeeping requirements.

[[Page 7]]

     Subpart Eb--Standards of Performance for Large Municipal Waste 
Combustors for Which Construction is Commenced After September 20, 1994 
or for Which Modification or Reconstruction is Commenced After June 19, 
                                  1996

60.50b  Applicability and delegation of authority.
60.51b  Definitions.
60.52b  Standards for municipal waste combustor metals, acid gases, 
          organics, and nitrogen oxides.
60.53b  Standards for municipal waste combustor operating practices.
60.54b  Standards for municipal waste combustor operator training and 
          certification.
60.55b  Standards for municipal waste combustor fugitive ash emissions.
60.56b  Standards for air curtain incinerators.
60.57b  Siting requirements.
60.58b  Compliance and performance testing.
60.59b  Reporting and recordkeeping requirements.

  Subpart Ec--Standards of Performance for Hospital/Medical/Infectious 
 Waste Incinerators for Which Construction is Commenced After June 20, 
                                  1996

60.50c  Applicability and delegation of authority.
60.51c  Definitions.
60.52c  Emission limits.
60.53c  Operator training and qualification requirements.
60.54c  Siting requirements.
60.55c  Waste management plan.
60.56c  Compliance and performance testing.
60.57c  Monitoring requirements.
60.58c  Reporting and recordkeeping requirements.

  Table 1 to Subpart Ec--Emission Limits for Small, Medium, and Large 
                                  HMIWI

            Table 2 to Subpart Ec--Toxic Equivalency Factors

Table 3 to Subpart Ec--Operating Parameters to be Monitored and Minimum 
                  Measurement and Recording Frequencies

     Subpart F--Standards of Performance for Portland Cement Plants

60.60  Applicability and designation of affected facility.
60.61  Definitions.
60.62  Standard for particulate matter.
60.63  Monitoring of operations.
60.64  Test methods and procedures.
60.65  Recordkeeping and reporting requirements.
60.66  Delegation of authority.

       Subpart G--Standards of Performance for Nitric Acid Plants

60.70  Applicability and designation of affected facility.
60.71  Definitions.
60.72  Standard for nitrogen oxides.
60.73  Emission monitoring.
60.74  Test methods and procedures.

      Subpart H--Standards of Performance for Sulfuric Acid Plants

60.80  Applicability and designation of affected facility.
60.81  Definitions.
60.82  Standard for sulfur dioxide.
60.83  Standard for acid mist.
60.84  Emission monitoring.
60.85  Test methods and procedures.

   Subpart I--Standards of Performance for Hot Mix Asphalt Facilities

60.90  Applicability and designation of affected facility.
60.91  Definitions.
60.92  Standard for particulate matter.
60.93  Test methods and procedures.

      Subpart J--Standards of Performance for Petroleum Refineries

60.100  Applicability, designation of affected facility, and 
          reconstruction.
60.101  Definitions.
60.102  Standard for particulate matter.
60.103  Standard for carbon monoxide.
60.104  Standards for sulfur oxides.
60.105  Monitoring of emissions and operations.
60.106  Test methods and procedures.
60.107  Reporting and recordkeeping requirements.
60.108  Performance test and compliance provisions.
60.109  Delegation of authority.

 Subpart K--Standards of Performance for Storage Vessels for Petroleum 
    Liquids for Which Construction, Reconstruction, or Modification 
        Commenced After June 11, 1973, and Prior to May 19, 1978

60.110  Applicability and designation of affected facility.
60.111  Definitions.
60.112  Standard for volatile organic compounds (VOC).
60.113  Monitoring of operations.

[[Page 8]]

 Subpart Ka--Standards of Performance for Storage Vessels for Petroleum 
    Liquids for Which Construction, Reconstruction, or Modification 
        Commenced After May 18, 1978, and Prior to July 23, 1984

60.110a  Applicability and designation of affected facility.
60.111a  Definitions.
60.112a  Standard for volatile organic compounds (VOC).
60.113a  Testing and procedures.
60.114a  Alternative means of emission limitation.
60.115a  Monitoring of operations.

Subpart Kb--Standards of Performance for Volatile Organic Liquid Storage 
     Vessels (Including Petroleum Liquid Storage Vessels) for Which 
 Construction, Reconstruction, or Modification Commenced After July 23, 
                                  1984

60.110b  Applicability and designation of affected facility.
60.111b  Definitions.
60.112b  Standard for volatile organic compounds (VOC).
60.113b  Testing and procedures.
60.114b  Alternative means of emission limitation.
60.115b  Reporting and recordkeeping requirements.
60.116b  Monitoring of operations.
60.117b  Delegation of authority.

     Subpart L--Standards of Performance for Secondary Lead Smelters

60.120  Applicability and designation of affected facility.
60.121  Definitions.
60.122  Standard for particulate matter.
60.123  Test methods and procedures.

   Subpart M--Standards of Performance for Secondary Brass and Bronze 
                            Production Plants

60.130  Applicability and designation of affected facility.
60.131  Definitions.
60.132  Standard for particulate matter.
60.133  Test methods and procedures.

  Subpart N--Standards of Performance for Primary Emissions from Basic 
Oxygen Process Furnances for Which Construction is Commenced After June 
                                11, 1973

60.140  Applicability and designation of affected facility.
60.141  Definitions.
60.142  Standard for particulate matter.
60.143  Monitoring of operations.
60.144  Test methods and procedures.

Subpart Na--Standards of Performance for Secondary Emissions from Basic 
    Oxygen Process Steelmaking Facilities for Which Construction is 
                    Commenced After January 20, 1983

60.140a  Applicability and designation of affected facilities.
60.141a  Definitions.
60.142a  Standards for particulate matter.
60.143a  Monitoring of operations.
60.144a  Test methods and procedures.
60.145a  Compliance provisions.

     Subpart O--Standards of Performance for Sewage Treatment Plants

60.150  Applicability and designation of affected facility.
60.151  Definitions.
60.152  Standard for particulate matter.
60.153  Monitoring of operations.
60.154  Test methods and procedures.
60.155  Reporting.
60.156  Delegation of authority.

     Subpart P--Standards of Performance for Primary Copper Smelters

60.160  Applicability and designation of affected facility.
60.161  Definitions.
60.162  Standard for particulate matter.
60.163  Standard for sulfur dioxide.
60.164  Standard for visible emissions.
60.165  Monitoring of operations.
60.166  Test methods and procedures.

      Subpart Q--Standards of Performance for Primary Zinc Smelters

60.170  Applicability and designation of affected facility.
60.171  Definitions.
60.172  Standard for particulate matter.
60.173  Standard for sulfur dioxide.
60.174  Standard for visible emissions.
60.175  Monitoring of operations.
60.176  Test methods and procedures.

      Subpart R--Standards of Performance for Primary Lead Smelters

60.180  Applicability and designation of affected facility.
60.181  Definitions.
60.182  Standard for particulate matter.
60.183  Standard for sulfur dioxide.
60.184  Standard for visible emissions.
60.185  Monitoring of operations.
60.186  Test methods and procedures.

   Subpart S--Standards of Performance for Primary Aluminum Reduction 
                                 Plants

60.190  Applicability and designation of affected facility.

[[Page 9]]

60.191  Definitions.
60.192  Standard for fluorides.
60.193  Standard for visible emissions.
60.194  Monitoring of operations.
60.195  Test methods and procedures.

    Subpart T--Standards of Performance for the Phosphate Fertilizer 
              Industry: Wet-Process Phosphoric Acid Plants

60.200  Applicability and designation of affected facility.
60.201  Definitions.
60.202  Standard for fluorides.
60.203  Monitoring of operations.
60.204  Test methods and procedures.

    Subpart U--Standards of Performance for the Phosphate Fertilizer 
                  Industry: Superphosphoric Acid Plants

60.210  Applicability and designation of affected facility.
60.211  Definitions.
60.212  Standard for fluorides.
60.213  Monitoring of operations.
60.214  Test methods and procedures.

    Subpart V--Standards of Performance for the Phosphate Fertilizer 
                  Industry: Diammonium Phosphate Plants

60.220  Applicability and designation of affected facility.
60.221  Definitions.
60.222  Standard for fluorides.
60.223  Monitoring of operations.
60.224  Test methods and procedures.

    Subpart W--Standards of Performance for the Phosphate Fertilizer 
                 Industry: Triple Superphosphate Plants

60.230  Applicability and designation of affected facility.
60.231  Definitions.
60.232  Standard for fluorides.
60.233  Monitoring of operations.
60.234  Test methods and procedures.

    Subpart X--Standards of Performance for the Phosphate Fertilizer 
       Industry: Granular Triple Superphosphate Storage Facilities

60.240  Applicability and designation of affected facility.
60.241  Definitions.
60.242  Standard for fluorides.
60.243  Monitoring of operations.
60.244  Test methods and procedures.

     Subpart Y--Standards of Performance for Coal Preparation Plants

60.250  Applicability and designation of affected facility.
60.251  Definitions.
60.252  Standards for particulate matter.
60.253  Monitoring of operations.
60.254  Test methods and procedures.

Subpart Z--Standards of Performance for Ferroalloy Production Facilities

60.260  Applicability and designation of affected facility.
60.261  Definitions.
60.262  Standard for particulate matter.
60.263  Standard for carbon monoxide.
60.264  Emission monitoring.
60.265  Monitoring of operations.
60.266  Test methods and procedures.

  Subpart AA--Standards of Performance for Steel Plants: Electric Arc 
Furnaces Constructed After October 21, 1974 and On or Before August 17, 
                                  1983

60.270  Applicability and designation of affected facility.
60.271  Definitions.
60.272  Standard for particulate matter.
60.273  Emission monitoring.
60.274  Monitoring of operations.
60.275  Test methods and procedures.
60.276  Recordkeeping and reporting requirements.

  Subpart AAa--Standards of Performance for Steel Plants: Electric Arc 
  Furnaces and Argon-Oxygen Decarburization Vessels Constructed After 
                             August 7, 1983

60.270a  Applicability and designation of affected facility.
60.271a  Definitions.
60.272a  Standard for particulate matter.
60.273a  Emission monitoring.
60.274a  Monitoring of operations.
60.275a  Test methods and procedures.
60.276a  Recordkeeping and reporting requirements.

        Subpart BB--Standards of Performance for Kraft Pulp Mills

60.280  Applicability and designation of affected facility.
60.281  Definitions.
60.282  Standard for particulate matter.
60.283  Standard for total reduced sulfur (TRS).
60.284  Monitoring of emissions and operations.
60.285  Test methods and procedures.

   Subpart CC--Standards of Performance for Glass Manufacturing Plants

60.290  Applicability and designation of affected facility.
60.291  Definitions.
60.292  Standards for particulate matter.

[[Page 10]]

60.293  Standards for particulate matter from glass melting furnace with 
          modified-processes.
60.294--60.295  [Reserved]
60.296  Test methods and procedures.

        Subpart DD--Standards of Performance for Grain Elevators

60.300  Applicability and designation of affected facility.
60.301  Definitions.
60.302  Standard for particulate matter.
60.303  Test methods and procedures.
60.304  Modifications.

   Subpart EE--Standards of Performance for Surface Coating of Metal 
                                Furniture

60.310  Applicability and designation of affected facility.
60.311  Definitions and symbols.
60.312  Standard for volatile organic compounds (VOC).
60.313  Performance tests and compliance provisions.
60.314  Monitoring of emissions and operations.
60.315  Reporting and recordkeeping requirements.
60.316  Test methods and procedures.

                         Subpart FF  [Reserved]

    Subpart GG--Standards of Performance for Stationary Gas Turbines

60.330  Applicability and designation of affected facility.
60.331  Definitions.
60.332  Standard for nitrogen oxides.
60.333  Standard for sulfur dioxide.
60.334  Monitoring of operations.
60.335  Test methods and procedures.

   Subpart HH--Standards of Performance for Lime Manufacturing Plants

60.340  Applicability and designation of affected facility.
60.341  Definitions.
60.342  Standard for particulate matter.
60.343  Monitoring of emissions and operations.
60.344  Test methods and procedures.

Subpart KK--Standards of Performance for Lead-Acid Battery Manufacturing 
                                 Plants

60.370  Applicability and designation of affected facility.
60.371  Definitions.
60.372  Standards for lead.
60.373  Monitoring of emissions and operations.
60.374  Test methods and procedures.

  Subpart LL--Standards of Performance for Metallic Mineral Processing 
                                 Plants

60.380  Applicability and designation of affected facility.
60.381  Definitions.
60.382  Standard for particulate matter.
60.383  Reconstruction.
60.384  Monitoring of operations.
60.385  Recordkeeping and reporting requirements.
60.386  Test methods and procedures.

Subpart MM--Standards of Performance for Automobile and Light Duty Truck 
                       Surface Coating Operations

60.390  Applicability and designation of affected facility.
60.391  Definitions.
60.392  Standards for volatile organic compounds.
60.393  Performance test and compliance provisions.
60.394  Monitoring of emissions and operations.
60.395  Reporting and recordkeeping requirements.
60.396  Reference methods and procedures.
60.397  Modifications.
60.398  Innovative technology waivers.

     Subpart NN--Standards of Performance for Phosphate Rock Plants

60.400  Applicability and designation of affected facility.
60.401  Definitions.
60.402  Standard for particulate matter.
60.403  Monitoring of emissions and operations.
60.404  Test methods and procedures.

  Subpart PP--Standards of Performance for Ammonium Sulfate Manufacture

60.420  Applicability and designation of affected facility.
60.421  Definitions.
60.422  Standards for particulate matter.
60.423  Monitoring of operations.
60.424  Test methods and procedures.

  Subpart QQ--Standards of Performance for the Graphic Arts Industry: 
                    Publication Rotogravure Printing

60.430  Applicability and designation of affected facility.
60.431  Definitions and notations.
60.432  Standard for volatile organic compounds.
60.433  Performance test and compliance provisions.
60.434  Monitoring of operations and recordkeeping.
60.435  Test methods and procedures.

[[Page 11]]

  Subpart RR--Standards of Performance for Pressure Sensitive Tape and 
                    Label Surface Coating Operations

60.440  Applicability and designation of affected facility.
60.441  Definitions and symbols.
60.442  Standard for volatile organic compounds.
60.443  Compliance provisions.
60.444  Performance test procedures.
60.445  Monitoring of operations and recordkeeping.
60.446  Test methods and procedures.
60.447  Reporting requirements.

  Subpart SS--Standards of Performance for Industrial Surface Coating: 
                            Large Appliances

60.450  Applicability and designation of affected facility.
60.451  Definitions.
60.452  Standard for volatile organic compounds.
60.453  Performance test and compliance provisions.
60.454  Monitoring of emissions and operations.
60.455  Reporting and recordkeeping requirements.
60.456  Test methods and procedures.

   Subpart TT--Standards of Performance for Metal Coil Surface Coating

60.460  Applicability and designation of affected facility.
60.461  Definitions.
60.462  Standards for volatile organic compounds.
60.463  Performance test and compliance provisions.
60.464  Monitoring of emissions and operations.
60.465  Reporting and recordkeeping requirements.
60.466  Test methods and procedures.

Subpart UU--Standards of Performance for Asphalt Processing and Asphalt 
                           Roofing Manufacture

60.470  Applicability and designation of affected facilities.
60.471  Definitions.
60.472  Standards for particulate matter.
60.473  Monitoring of operations.
60.474  Test methods and procedures.

 Subpart VV--Standards of Performance for Equipment Leaks of VOC in the 
           Synthetic Organic Chemicals Manufacturing Industry

60.480  Applicability and designation of affected facility.
60.481  Definitions.
60.482-1  Standards: General.
60.482-2  Standards: Pumps in light liquid service.
60.482-3  Standards: Compressors.
60.482-4  Standards: Pressure relief devices in gas/vapor service.
60.482-5  Standards: Sampling connection systems.
60.482-6  Standards: Open-ended valves or lines.
60.482-7  Standards: Valves in gas/vapor service and in light liquid 
          service.
60.482-8  Standards: Pumps and valves in heavy liquid service, pressure 
          relief devices in light liquid or heavy liquid service, and 
          flanges and other connectors.
60.482-9  Standards: Delay of repair.
60.482-10  Standards: Closed vent systems and control devices.
60.483-1  Alternative standards for valves--allowable percentage of 
          valves leaking.
60.483-2  Alternative standards for valves--skip period leak detection 
          and repair.
60.484  Equivalence of means of emission limitation.
60.485  Test methods and procedures.
60.486  Recordkeeping requirements.
60.487  Reporting requirements.
60.488  Reconstruction.
60.489  List of chemicals produced by affected facilities.

   Subpart WW--Standards of Performance for the Beverage Can Surface 
                            Coating Industry

60.490  Applicability and designation of affected facility.
60.491  Definitions.
60.492  Standards for volatile organic compounds.
60.493  Performance test and compliance provisions.
60.494  Monitoring of emissions and operations.
60.495  Reporting and recordkeeping requirements.
60.496  Test methods and procedures.

    Subpart XX--Standards of Performance for Bulk Gasoline Terminals

60.500  Applicability and designation of affected facility.
60.501  Definitions.
60.502  Standards for Volatile Organic Compound (VOC) emissions from 
          bulk gasoline terminals.
60.503  Test methods and procedures.
60.504  [Reserved]
60.505  Reporting and recordkeeping.
60.506  Reconstruction.

[[Page 12]]

 Subpart AAA--Standards of Performance for New Residential Wood Heaters

60.530  Applicability and designation of affected facility.
60.531  Definitions.
60.532  Standards for particulate matter.
60.533  Compliance and certification.
60.534  Test methods and procedures.
60.535  Laboratory accreditation.
60.536  Permanent label, temporary label, and owner's manual.
60.537  Reporting and recordkeeping.
60.538  Prohibitions.
60.539  Hearing and appeal procedures.
60.539a  Delegation of authority.
60.539b  General provisions exclusions.

Subpart BBB--Standards of Performance for the Rubber Tire Manufacturing 
                                Industry

60.540  Applicability and designation of affected facilities.
60.541  Definitions.
60.542  Standards for volatile organic compounds.
60.542a  Alternate standard for volatile organic compounds.
60.543  Performance test and compliance provisions.
60.544  Monitoring of operations.
60.545  Recordkeeping requirements.
60.546  Reporting requirements.
60.547  Test methods and procedures.
60.548  Delegation of authority.

                         Subpart CCC  [Reserved]

  Subpart DDD--Standards of Performance for Volatile Organic Compound 
         (VOC) Emissions from the Polymer Manufacturing Industry

60.560  Applicability and designation of affected facilities.
60.561  Definitions.
60.562-1  Standards: Process emissions.
60.562-2  Standards: Equipment leaks of VOC.
60.563  Monitoring requirements.
60.564  Test methods and procedures.
60.565  Reporting and recordkeeping requirements.
60.566  Delegation of authority.

                         Subpart EEE  [Reserved]

 Subpart FFF--Standards of Performance for Flexible Vinyl and Urethane 
                          Coating and Printing

60.580  Applicability and designation of affected facility.
60.581  Definitions and symbols.
60.582  Standard for volatile organic compounds.
60.583  Test methods and procedures.
60.584  Monitoring of operations and recordkeeping requirements.
60.585  Reporting requirements.

  Subpart GGG--Standards of Performance for Equipment Leaks of VOC in 
                          Petroleum Refineries

60.590  Applicability and designation of affected facility.
60.591  Definitions.
60.592  Standards.
60.593  Exceptions.

  Subpart HHH--Standards of Performance for Synthetic Fiber Production 
                               Facilities

60.600  Applicability and designation of affected facility.
60.601  Definitions.
60.602  Standard for volatile organic compounds.
60.603  Performance test and compliance provisions.
60.604  Reporting requirements.

  Subpart III--Standards of Performance for Volatile Organic Compound 
   (VOC) Emissions From the Synthetic Organic Chemical Manufacturing 
              Industry (SOCMI) Air Oxidation Unit Processes

60.610  Applicability and designation of affected facility.
60.611  Definitions.
60.612  Standards.
60.613  Monitoring of emissions and operations.
60.614  Test methods and procedures.
60.615  Reporting and recordkeeping requirements.
60.616  Reconstruction.
60.617  Chemicals affected by subpart III.
60.618  Delegation of authority.

    Subpart JJJ--Standards of Performance for Petroleum Dry Cleaners

60.620  Applicability and designation of affected facility.
60.621  Definitions.
60.622  Standards for volatile organic compounds.
60.623  Equivalent equipment and procedures.
60.624  Test methods and procedures.
60.625  Recordkeeping requirements.

 Subpart KKK--Standards of Performance for Equipment Leaks of VOC From 
                  Onshore Natural Gas Processing Plants

60.630  Applicability and designation of affected facility.
60.631  Definitions.
60.632  Standards.
60.633  Exceptions.

[[Page 13]]

60.634  Alternative means of emission limitation.
60.635  Recordkeeping requirements.
60.636  Reporting requirements.

     Subpart LLL--Standards of Performance for Onshore Natural Gas 
                  Processing: SO2 Emissions

60.640  Applicability and designation of affected facilities.
60.641  Definitions.
60.642  Standards for sulfur dioxide.
60.643  Compliance provisions.
60.644  Test methods and procedures.
60.645  [Reserved]
60.646  Monitoring of emissions and operations.
60.647  Recordkeeping and reporting requirements.
60.648  Optional procedure for measuring hydrogen sulfide in acid gas--
          Tutwiler Procedure.

                         Subpart MMM  [Reserved]

  Subpart NNN--Standards of Performance for Volatile Organic Compound 
 (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry 
                     (SOCMI) Distillation Operations

60.660  Applicability and designation of affected facility.
60.661  Definitions.
60.662  Standards.
60.663  Monitoring of emissions and operations.
60.664  Test methods and procedures.
60.665  Reporting and recordkeeping requirements.
60.666  Reconstruction.
60.667  Chemicals affected by subpart NNN.
60.668  Delegation of authority.

Subpart OOO--Standards of Performance for Nonmetallic Mineral Processing 
                                 Plants

60.670  Applicability and designation of affected facility.
60.671  Definitions.
60.672  Standard for particulate matter.
60.673  Reconstruction.
60.674  Monitoring of operations.
60.675  Test methods and procedures.
60.676  Reporting and recordkeeping.

  Subpart PPP--Standard of Performance for Wool Fiberglass Insulation 
                          Manufacturing Plants

60.680  Applicability and designation of affected facility.
60.681  Definitions.
60.682  Standard for particulate matter.
60.683  Monitoring of operations.
60.684  Recordkeeping and reporting requirements.
60.685  Test methods and procedures.

 Subpart QQQ--Standards of Performance for VOC Emissions From Petroleum 
                       Refinery Wastewater Systems

60.690  Applicability and designation of affected facility.
60.691  Definitions.
60.692-1  Standards: General.
60.692-2  Standards: Individual drain systems.
60.692-3  Standards: Oil-water separators.
60.692-4  Standards: Aggregate facility.
60.692-5  Standards: Closed vent systems and control devices.
60.692-6  Standards: Delay of repair.
60.692-7  Standards: Delay of compliance.
60.693-1  Alternative standards for individual drain systems.
60.693-2  Alternative standards for oil-water separators.
60.694  Permission to use alternative means of emission limitation.
60.695  Monitoring of operations.
60.696  Performance test methods and procedures and compliance 
          provisions.
60.697  Recordkeeping requirements.
60.698  Reporting requirements.
60.699  Delegation of authority.

  Subpart RRR--Standards of Performance for Volatile Organic Compound 
Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) 
                            Reactor Processes

60.700  Applicability and designation of affected facility.
60.701  Definitions.
60.702  Standards.
60.703  Monitoring of emissions and operations.
60.704  Test methods and procedures.
60.705  Reporting and recordkeeping requirements.
60.706  Reconstruction.
60.707  Chemicals affected by subpart RRR.
60.708  Delegation of authority.

    Subpart SSS--Standards of Performance for Magnetic Tape Coating 
                               Facilities

60.710  Applicability and designation of affected facility.
60.711  Definitions, symbols, and cross-reference tables.
60.712  Standards for volatile organic compounds.
60.713  Compliance provisions.
60.714  Installation of monitoring devices and recordkeeping.
60.715  Test methods and procedures.
60.716  Permission to use alternative means of emission limitation.

[[Page 14]]

60.717  Reporting and monitoring requirements.
60.718  Delegation of authority.

 Subpart TTT--Standards of Performance for Industrial Surface Coating: 
         Surface Coating of Plastic Parts for Business Machines

60.720  Applicability and designation of affected facility.
60.721  Definitions.
60.722  Standards for volatile organic compounds.
60.723  Performance test and compliance provisions.
60.724  Reporting and recordkeeping requirements.
60.725  Test methods and procedures.
60.726  Delegation of authority.

   Subpart UUU--Standards of Performance for Calciners and Dryers in 
                           Mineral Industries

60.730  Applicability and designation of affected facility.
60.731  Definitions.
60.732  Standards for particulate matter.
60.733  Reconstruction.
60.734  Monitoring of emissions and operations.
60.735  Recordkeeping and reporting requirements.
60.736  Test methods and procedures.
60.737  Delegation of authority.

     Subpart VVV--Standards of Performance for Polymeric Coating of 
                    Supporting Substrates Facilities

60.740  Applicability and designation of affected facility.
60.741  Definitions, symbols, and cross-reference tables.
60.742  Standards for violatile organic compounds.
60.743  Compliance provisions.
60.744  Monitoring requirements.
60.745  Test methods and procedures.
60.746  Permission to use alternative means of emission limitation.
60.747  Reporting and recordkeeping requirements.
60.748  Delegation of authority.

    Subpart WWW--Standards of Performance for Municipal Solid Waste 
                                Landfills

60.750  Applicability, designation of affected facility, and delegation 
          of authority.
60.751  Definitions.
60.752  Standards for air emissions from municipal solid waste 
          landfills.
60.753  Operational standards for collection and control systems.
60.754  Test methods and procedures.
60.755  Compliance provisions.
60.756  Monitoring of operations.
60.757  Reporting requirements.
60.758  Recordkeeping requirements.
60.759  Specifications for active collection systems.

Appendix A to Part 60--Test Methods
Appendix B to Part 60--Performance Specifications
Appendix C to Part 60--Determination of Emission Rate Change
Appendix D to Part 60--Required Emission Inventory Information
Appendix E to Part 60  [Reserved]
Appendix F to Part 60--Quality Assurance Procedures
Appendix G to Part 60--Provisions for an Alternative Method of 
          Demonstrating Compliance With 40 CFR 60.43 for the Newton 
          Power Station of Central Illinois Public Service Company
Appendix H to Part 60  [Reserved]
Appendix I to Part 60--Removable Label and Owner's Manual

    Authority: 42 U.S.C. 7401, 7411, 7413, 7414, 7416, 7429, 7601 and 
7602.

    Source: 36 FR 24877, Dec. 23, 1971, unless otherwise noted.



                      Subpart A--General Provisions



Sec. 60.1  Applicability.

    (a) Except as provided in subparts B and C, the provisions of this 
part apply to the owner or operator of any stationary source which 
contains an affected facility, the construction or modification of which 
is commenced after the date of publication in this part of any standard 
(or, if earlier, the date of publication of any proposed standard) 
applicable to that facility.
    (b) Any new or revised standard of performance promulgated pursuant 
to section 111(b) of the Act shall apply to the owner or operator of any 
stationary source which contains an affected facility, the construction 
or modification of which is commenced after the date of publication in 
this part of such new or revised standard (or, if earlier, the date of 
publication of any proposed standard) applicable to that facility.
    (c) In addition to complying with the provisions of this part, the 
owner or operator of an affected facility may be required to obtain an 
operating permit issued to stationary sources by an authorized State air 
pollution control agency or by the Administrator of the U.S. 
Environmental Protection Agency (EPA) pursuant to Title V of the Clean

[[Page 15]]

Air Act (Act) as amended November 15, 1990 (42 U.S.C. 7661). For more 
information about obtaining an operating permit see part 70 of this 
chapter.
    (d) Site-specific standard for Merck 
& Co., Inc.'s Stonewall Plant in Elkton, Virginia. (1) This 
paragraph applies only to the pharmaceutical manufacturing facility, 
commonly referred to as the Stonewall Plant, located at Route 340 South, 
in Elkton, Virginia (``site'').
    (2) Except for compliance with 40 CFR 60.49b(u), the site shall have 
the option of either complying directly with the requirements of this 
part, or reducing the site-wide emissions caps in accordance with the 
procedures set forth in a permit issued pursuant to 40 CFR 52.2454. If 
the site chooses the option of reducing the site-wide emissions caps in 
accordance with the procedures set forth in such permit, the 
requirements of such permit shall apply in lieu of the otherwise 
applicable requirements of this part.
    (3) Notwithstanding the provisions of paragraph (d)(2) of this 
section, for any provisions of this part except for Subpart Kb, the 
owner/operator of the site shall comply with the applicable provisions 
of this part if the Administrator determines that compliance with the 
provisions of this part is necessary for achieving the objectives of the 
regulation and the Administrator notifies the site in accordance with 
the provisions of the permit issued pursuant to 40 CFR 52.2454.
[40 FR 53346, Nov. 17, 1975, as amended at 55 FR 51382, Dec. 13, 1990; 
59 FR 12427, Mar. 16, 1994; 62 FR 52641, Oct. 8, 1997]



Sec. 60.2  Definitions.

    The terms used in this part are defined in the Act or in this 
section as follows:
    Act means the Clean Air Act (42 U.S.C. 7401 et seq.)
    Administrator means the Administrator of the Environmental 
Protection Agency or his authorized representative.
    Affected facility means, with reference to a stationary source, any 
apparatus to which a standard is applicable.
    Alternative method means any method of sampling and analyzing for an 
air pollutant which is not a reference or equivalent method but which 
has been demonstrated to the Administrator's satisfaction to, in 
specific cases, produce results adequate for his determination of 
compliance.
    Approved permit program means a State permit program approved by the 
Administrator as meeting the requirements of part 70 of this chapter or 
a Federal permit program established in this chapter pursuant to Title V 
of the Act (42 U.S.C. 7661).
    Capital expenditure means an expenditure for a physical or 
operational change to an existing facility which exceeds the product of 
the applicable ``annual asset guideline repair allowance percentage'' 
specified in the latest edition of Internal Revenue Service (IRS) 
Publication 534 and the existing facility's basis, as defined by section 
1012 of the Internal Revenue Code. However, the total expenditure for a 
physical or operational change to an existing facility must not be 
reduced by any ``excluded additions'' as defined in IRS Publication 534, 
as would be done for tax purposes.
    Clean coal technology demonstration project means a project using 
funds appropriated under the heading `Department of Energy-Clean Coal 
Technology', up to a total amount of $2,500,000,000 for commercial 
demonstrations of clean coal technology, or similar projects funded 
through appropriations for the Environmental Protection Agency.
    Commenced means, with respect to the definition of new source in 
section 111(a)(2) of the Act, that an owner or operator has undertaken a 
continuous program of construction or modification or that an owner or 
operator has entered into a contractual obligation to undertake and 
complete, within a reasonable time, a continuous program of construction 
or modification.
    Construction means fabrication, erection, or installation of an 
affected facility.
    Continuous monitoring system means the total equipment, required 
under the emission monitoring sections in applicable subparts, used to 
sample and condition (if applicable), to analyze, and to provide a 
permanent record of emissions or process parameters.
    Electric utility steam generating unit means any steam electric 
generating

[[Page 16]]

unit that is constructed for the purpose of supplying more than one-
third of its potential electric output capacity and more than 25 MW 
electrical output to any utility power distribution system for sale. Any 
steam supplied to a steam distribution system for the purpose of 
providing steam to a steam-electric generator that would produce 
electrical energy for sale is also considered in determining the 
electrical energy output capacity of the affected facility.
    Equivalent method means any method of sampling and analyzing for an 
air pollutant which has been demonstrated to the Administrator's 
satisfaction to have a consistent and quantitatively known relationship 
to the reference method, under specified conditions.
    Excess Emissions and Monitoring Systems Performance Report is a 
report that must be submitted periodically by a source in order to 
provide data on its compliance with stated emission limits and operating 
parameters, and on the performance of its monitoring systems.
    Existing facility means, with reference to a stationary source, any 
apparatus of the type for which a standard is promulgated in this part, 
and the construction or modification of which was commenced before the 
date of proposal of that standard; or any apparatus which could be 
altered in such a way as to be of that type.
    Isokinetic sampling means sampling in which the linear velocity of 
the gas entering the sampling nozzle is equal to that of the undisturbed 
gas stream at the sample point.
    Issuance of a part 70 permit will occur, if the State is the 
permitting authority, in accordance with the requirements of part 70 of 
this chapter and the applicable, approved State permit program. When the 
EPA is the permitting authority, issuance of a Title V permit occurs 
immediately after the EPA takes final action on the final permit.
    Malfunction means any sudden, infrequent, and not reasonably 
preventable failure of air pollution control equipment, process 
equipment, or a process to operate in a normal or usual manner. Failures 
that are caused in part by poor maintenance or careless operation are 
not malfunctions.
    Modification means any physical change in, or change in the method 
of operation of, an existing facility which increases the amount of any 
air pollutant (to which a standard applies) emitted into the atmosphere 
by that facility or which results in the emission of any air pollutant 
(to which a standard applies) into the atmosphere not previously 
emitted.
    Monitoring device means the total equipment, required under the 
monitoring of operations sections in applicable subparts, used to 
measure and record (if applicable) process parameters.
    Nitrogen oxides means all oxides of nitrogen except nitrous oxide, 
as measured by test methods set forth in this part.
    One-hour period means any 60-minute period commencing on the hour.
    Opacity means the degree to which emissions reduce the transmission 
of light and obscure the view of an object in the background.
    Owner or operator means any person who owns, leases, operates, 
controls, or supervises an affected facility or a stationary source of 
which an affected facility is a part.
    Part 70 permit means any permit issued, renewed, or revised pursuant 
to part 70 of this chapter.
    Particulate matter means any finely divided solid or liquid 
material, other than uncombined water, as measured by the reference 
methods specified under each applicable subpart, or an equivalent or 
alternative method.
    Permit program means a comprehensive State operating permit system 
established pursuant to title V of the Act (42 U.S.C. 7661) and 
regulations codified in part 70 of this chapter and applicable State 
regulations, or a comprehensive Federal operating permit system 
established pursuant to title V of the Act and regulations codified in 
this chapter.
    Permitting authority means:
    (1) The State air pollution control agency, local agency, other 
State agency, or other agency authorized by the Administrator to carry 
out a permit program under part 70 of this chapter; or

[[Page 17]]

    (2) The Administrator, in the case of EPA-implemented permit 
programs under title V of the Act (42 U.S.C. 7661).
    Proportional sampling means sampling at a rate that produces a 
constant ratio of sampling rate to stack gas flow rate.
    Reactivation of a very clean coal-fired electric utility steam 
generating unit means any physical change or change in the method of 
operation associated with the commencement of commercial operations by a 
coal-fired utility unit after a period of discontinued operation where 
the unit:
    (1) Has not been in operation for the two-year period prior to the 
enactment of the Clean Air Act Amendments of 1990, and the emissions 
from such unit continue to be carried in the permitting authority's 
emissions inventory at the time of enactment;
    (2) Was equipped prior to shut-down with a continuous system of 
emissions control that achieves a removal efficiency for sulfur dioxide 
of no less than 85 percent and a removal efficiency for particulates of 
no less than 98 percent;
    (3) Is equipped with low-NOx burners prior to the time of 
commencement of operations following reactivation; and
    (4) Is otherwise in compliance with the requirements of the Clean 
Air Act.
    Reference method means any method of sampling and analyzing for an 
air pollutant as specified in the applicable subpart.
    Repowering means replacement of an existing coal-fired boiler with 
one of the following clean coal technologies: atmospheric or pressurized 
fluidized bed combustion, integrated gasification combined cycle, 
magnetohydrodynamics, direct and indirect coal-fired turbines, 
integrated gasification fuel cells, or as determined by the 
Administrator, in consultation with the Secretary of Energy, a 
derivative of one or more of these technologies, and any other 
technology capable of controlling multiple combustion emissions 
simultaneously with improved boiler or generation efficiency and with 
significantly greater waste reduction relative to the performance of 
technology in widespread commercial use as of November 15, 1990. 
Repowering shall also include any oil and/or gas-fired unit which has 
been awarded clean coal technology demonstration funding as of January 
1, 1991, by the Department of Energy.
    Run means the net period of time during which an emission sample is 
collected. Unless otherwise specified, a run may be either intermittent 
or continuous within the limits of good engineering practice.
    Shutdown means the cessation of operation of an affected facility 
for any purpose.
    Six-minute period means any one of the 10 equal parts of a one-hour 
period.
    Standard means a standard of performance proposed or promulgated 
under this part.
    Standard conditions means a temperature of 293 K (68F) and a 
pressure of 101.3 kilopascals (29.92 in Hg).
    Startup means the setting in operation of an affected facility for 
any purpose.
    State means all non-Federal authorities, including local agencies, 
interstate associations, and State-wide programs, that have delegated 
authority to implement: (1) The provisions of this part; and/or (2) the 
permit program established under part 70 of this chapter. The term State 
shall have its conventional meaning where clear from the context.
    Stationary source means any building, structure, facility, or 
installation which emits or may emit any air pollutant.
    Title V permit means any permit issued, renewed, or revised pursuant 
to Federal or State regulations established to implement title V of the 
Act (42 U.S.C. 7661). A title V permit issued by a State permitting 
authority is called a part 70 permit in this part.
    Volatile Organic Compound means any organic compound which 
participates in atmospheric photochemical reactions; or which is 
measured by a reference method, an equivalent method, an alternative 
method, or which is determined by procedures specified under any 
subpart.
[44 FR 55173, Sept. 25, 1979, as amended at 45 FR 5617, Jan. 23, 1980; 
45 FR 85415, Dec. 24, 1980; 54 FR 6662, Feb. 14, 1989; 55 FR 51382, Dec. 
13, 1990; 57 FR 32338, July 21, 1992; 59 FR 12427, Mar. 16, 1994]

[[Page 18]]



Sec. 60.3  Units and abbreviations.

    Used in this part are abbreviations and symbols of units of measure. 
These are defined as follows:
    (a) System International (SI) units of measure:

A--ampere
g--gram
Hz--hertz
J--joule
K--degree Kelvin
kg--kilogram
m--meter
m 3--cubic meter
mg--milligram--10- 3 gram
mm--millimeter--10- 3 meter
Mg--megagram--10 6 gram
mol--mole
N--newton
ng--nanogram--10- 9 gram
nm--nanometer--10- 9 meter
Pa--pascal
s--second
V--volt
W--watt
--ohm
 g--microgram--10- 6 gram

    (b) Other units of measure:

Btu--British thermal unit
+C--degree Celsius (centigrade)
cal--calorie
cfm--cubic feet per minute
cu ft--cubic feet
dcf--dry cubic feet
dcm--dry cubic meter
dscf--dry cubic feet at standard conditions
dscm--dry cubic meter at standard conditions
eq--equivalent
+F--degree Fahrenheit
ft--feet
gal--gallon
gr--grain
g-eq--gram equivalent
hr--hour
in--inch
k--1,000
l--liter
lpm--liter per minute
lb--pound
meq--milliequivalent
min--minute
ml--milliliter
mol. wt.--molecular weight
ppb--parts per billion
ppm--parts per million
psia--pounds per square inch absolute
psig--pounds per square inch gage
+R--degree Rankine
scf--cubic feet at standard conditions
scfh--cubic feet per hour at standard conditions
scm--cubic meter at standard conditions
sec--second
sq ft--square feet
std--at standard conditions

    (c) Chemical nomenclature:

CdS--cadmium sulfide
CO--carbon monoxide
CO2--carbon dioxide
HCl--hydrochloric acid
Hg--mercury
H2O--water
H2S--hydrogen sulfide
H2SO4--sulfuric acid
N2--nitrogen
NO--nitric oxide
NO2--nitrogen dioxide
NOx--nitrogen oxides
O2--oxygen
SO2--sulfur dioxide
SO3--sulfur trioxide
SOx--sulfur oxides

    (d) Miscellaneous:

A.S.T.M.--American Society for Testing and Materials
[42 FR 37000, July 19, 1977; 42 FR 38178, July 27, 1977]



Sec. 60.4  Address.

    (a) All requests, reports, applications, submittals, and other 
communications to the Administrator pursuant to this part shall be 
submitted in duplicate to the appropriate Regional Office of the U.S. 
Environmental Protection Agency to the attention of the Director of the 
Division indicated in the following list of EPA Regional Offices.

Region I (Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island, Vermont), Director, Air Management Division, U.S. Environmental 
Protection Agency, John F. Kennedy Federal Building, Boston, MA 02203.
Region II (New Jersey, New York, Puerto Rico, Virgin Islands), Director, 
Air and Waste Management Division, U.S. Environmental Protection Agency, 
Federal Office Building, 26 Federal Plaza (Foley Square), New York, NY 
10278.
Region III (Delaware, District of Columbia, Maryland, Pennsylvania, 
Virginia, West Virginia), Director, Air and Waste Management Division, 
U.S. Environmental Protection Agency, Curtis Building, Sixth and Walnut 
Streets, Philadelphia, PA 19106.
Region IV (Alabama, Florida, Georgia, Kentucky, Mississippi, North 
Carolina, South Carolina, Tennessee), Director, Air and Waste Management 
Division, U.S. Environmental Protection Agency, 345 Courtland Street, 
NE., Atlanta, GA 30365.
Region V (Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin), 
Director, Air and

[[Page 19]]

Radiation Division, U.S. Environmental Protection Agency, 77 West 
Jackson Boulevard, Chicago, IL 60604-3590.
Region VI (Arkansas, Louisiana, New Mexico, Oklahoma, Texas); Director; 
Air, Pesticides, and Toxics Division; U.S. Environmental Protection 
Agency, 1445 Ross Avenue, Dallas, TX 75202.
Region VII (Iowa, Kansas, Missouri, Nebraska), Director, Air and Toxics 
Division, U.S. Environmental Protection Agency, 726 Minnesota Avenue, 
Kansas City, KS 66101.
Region VIII (Colorado, Montana, North Dakota, South Dakota, Utah, 
Wyoming), Director, Air and Waste Management Division, U.S. 
Environmental Protection Agency, 1860 Lincoln Street, Denver, CO 80295.
Region IX (American Samoa, Arizona, California, Guam, Hawaii, Nevada), 
Director, Air and Waste Management Division, U.S. Environmental 
Protection Agency, 215 Fremont Street, San Francisco, CA 94105.
Region X (Alaska, Oregon, Idaho, Washington), Director, Air and Waste 
Management Division, U.S. Environmental Protection Agency, 1200 Sixth 
Avenue, Seattle, WA 98101.

    (b) Section 111(c) directs the Administrator to delegate to each 
State, when appropriate, the authority to implement and enforce 
standards of performance for new stationary sources located in such 
State. All information required to be submitted to EPA under paragraph 
(a) of this section, must also be submitted to the appropriate State 
Agency of any State to which this authority has been delegated 
(provided, that each specific delegation may except sources from a 
certain Federal or State reporting requirement). The appropriate mailing 
address for those States whose delegation request has been approved is 
as follows:

    (A) [Reserved]
    (B) State of Alabama, Air Pollution Control Division, Air Pollution 
Control Commission, 645 S. McDonough Street, Montgomery, AL 36104.
    (C) State of Alaska, Department of Environmental Conservation, Pouch 
O, Juneau, AK 99811.
    (D) Arizona:
Arizona Department of Health Services, 1740 West Adams Street, Phoenix, 
AZ 85007.
Maricopa County Department of Health Services, Bureau of Air Pollution 
Control, 1825 East Roosevelt Street, Phoenix, AZ 85006.
Pima County Health Department, Air Quality Control District, 151 West 
Congress, Tucson, AZ 85701.
Pima County Air Pollution Control District, 151 West Congress Street, 
Tucson, AZ 85701.

(1) The following table lists the specific source and pollutant 
categories that have been delegated to the air pollution control 
agencies in Arizona. A star (*) is used to indicate each category that 
has been delegated.

[[Page 20]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.000


[[Page 21]]


[GRAPHIC] [TIFF OMITTED] TC01JN92.001

    (E) State of Arkansas: Chief, Division of Air Pollution Control, 
Arkansas Department of Pollution Control and Ecology, 8001 National 
Drive, P.O. Box 9583, Little Rock, AR 72209.
    (F) California:
Amador County Air Pollution Control District, P.O. Box 430, 810 Court 
Street, Jackson, CA 95642
Bay Area Air Pollution Control District, 939 Ellis Street, San 
Francisco, CA 94109.
Butte County Air Pollution Control District, P.O. Box 1229, 316 Nelson 
Avenue, Oroville, CA 95965
Calaveras County Air Pollution Control District, Government Center, El 
Dorado Road, San Andreas, CA 95249
Colusa County Air Pollution Control District, 751 Fremont Street, 
Colusa, CA 95952
El Dorado Air Pollution Control District, 330 Fair Lane, Placerville, CA 
95667
Fresno County Air Pollution Control District, 1221 Fulton Mall, Fresno, 
CA 93721
Glenn County Air Pollution Control District, P.O. Box 351, 720 North 
Colusa Street, Willows, CA 95988
Great Basin Unified Air Pollution Control District, 157 Short Street, 
Suite 6, Bishop, CA 93514
Imperial County Air Pollution Control District, County Services 
Building, 939 West Main Street, El Centro, CA 92243
Kern County Air Pollution Control District, 1601 H Street, Suite 250, 
Bakersfield, CA 93301
Kings County Air Pollution Control District, 330 Campus Drive, Hanford, 
CA 93230
Lake County Air Pollution Control District, 255 North Forbes Street, 
Lakeport, CA 95453
Lassen County Air Pollution Control District, 175 Russell Avenue, 
Susanville, CA 96130
Madera County Air Pollution Control District, 135 W. Yosemite Avenue, 
Madera, CA 93637.
Mariposa County Air Pollution Control District, Box 5, Mariposa, CA 
95338
Mendocino County Air Pollution Control District, County Courthouse, 
Ukiah, CA 95482.
Merced County Air Pollution Control District, P.O. Box 471, 240 East 
15th Street, Merced, CA 95340
Modoc County Air Pollution Control District, 202 West 4th Street, 
Alturas, CA 96101
Monterey Bay Unified Air Pollution Control, 1164 Monroe Street, Suite 
10, Salinas, CA 93906
Nevada County Air Pollution Control District, H.E.W. Complex, Nevada 
City, CA 95959
North Coast Unified Air Quality Management District, 5630 South 
Broadway, Eureka, CA 95501
Northern Sonoma County Air Pollution Control District, 134 ``A'' Avenue, 
Auburn, CA 95448
Placer County Air Pollution Control District, 11491 ``B'' Avenue, 
Auburn, CA 95603
Plumas County Air Pollution Control District, P.O. Box 480, Quincy, CA 
95971
Sacramento County Air Pollution Control District, 3701 Branch Center 
Road, Sacramento, CA 95827.

[[Page 22]]

San Bernardino County Air Pollution Control District, 15579-8th, 
Victorville, CA 92392
San Diego County Air Pollution Control District, 9150 Chesapeake Drive, 
San Diego, CA 92123.
San Joaquin County Air Pollution Control District, 1601 E. Hazelton 
Street (P.O. Box 2009) Stockton, CA 95201.
San Luis Obispo County Air Pollution Control District, P.O. Box 637, San 
Luis Obispo, CA 93406
Santa Barbara County Air Pollution Control District, 315 Camino del 
Rimedio, Santa Barbara, CA 93110
Shasta County Air Pollution Control District, 2650 Hospital Lane, 
Redding, CA 96001
Sierra County Air Pollution Control District, P.O. Box 286, Downieville, 
CA 95936
Siskiyou County Air Pollution Control District, 525 South Foothill 
Drive, Yreka, CA 96097
South Coast Air Quality Management District, 9150 Flair Drive, El Monte, 
CA 91731
Stanislaus County Air Pollution Control District, 1030 Scenic Drive, 
Modesto, CA 95350
Sutter County Air Pollution Control District, Sutter County Office 
Building, 142 Garden Highway, Yuba City, CA 95991
Tehama County Air Pollution Control District, P.O. Box 38, 1760 Walnut 
Street, Red Bluff, CA 96080
Tulare County Air Pollution Control District, County Civic Center, 
Visalia, CA 93277
Tuolumne County Air Pollution Control District, 9 North Washington 
Street, Sonora, CA 95370
Ventura County Air Pollution Control District, 800 South Victoria 
Avenue, Ventura, CA 93009
Yolo-Solano Air Pollution Control District, P.O. Box 1006, 323 First 
Street, 5, Woodland, CA 95695

(1) The following table lists the specific source and pollutant 
categories that have been delegated to the air pollution control 
agencies in California. A star (*) is used to indicate each category 
that has been delegated.

[[Page 23]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.002


[[Page 24]]


[GRAPHIC] [TIFF OMITTED] TC01JN92.003

    (G) State of Colorado, Department of Health, Air Pollution Control 
Division, 4210 East 11th Avenue, Denver, CO 80220.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragraph (c) of this section.
    (H) State of Connecticut, Bureau of Air Management, Department of 
Environmental Protection, State Office Building, 165 Capitol Avenue, 
Hartford, CT 06106.
    (I) State of Delaware, Delaware Department of Natural Resources and 
Environmental Control, 89 Kings Highway, P.O. Box 1401, Dover, DE 19901
    (J) District of Columbia, Department of Consumer and Regulatory 
Affairs, 5000 Overlook Avenue SW., Washington DC 20032.
    (K) Bureau of Air Quality Management, Department of Environmental 
Regulation, Twin Towers Office Building, 2600 Blair Stone Road, 
Tallahassee, FL 32301.
    (L) State of Georgia, Environmental Protection Division, Department 
of Natural Resources, 270 Washington Street, SW., Atlanta, GA 30334.
    (M) Hawaii Department of Health, 1250 Punchbowl Street, Honolulu, HI 
96813

[[Page 25]]

Hawaii Department of Health (mailing address), Post Office Box 3378, 
Honolulu, HI 96801
    (N) State of Idaho, Department of Health and Welfare, Statehouse, 
Boise, ID 83701.
    (O) State of Illinois, Bureau of Air, Division of Air Pollution 
Control, Illinois Environmental Protection Agency, 2200 Churchill Road, 
Springfield, IL 62794-9276.
    (P) State of Indiana, Indiana Department of Environmental 
Management, 100 North Senate Avenue, P.O. Box 6015, Indianapolis, 
Indiana 46206-6015.
    (Q) State of Iowa: Iowa Department of Natural Resources, 
Environmental Protection Division, Henry A. Wallace Building, 900 East 
Grand, Des Moines, IO 50319.
    (R) State of Kansas: Kansas Department of Health and Environment, 
Bureau of Air Quality and Radiation Control, Forbes Field, Topeka, KS 
66620.
    (S) Division of Air Pollution Control, Department for Natural 
Resources and Environmental Protection, U.S. 127, Frankfort, KY 40601.
    (T) State of Louisiana: Program Administrator, Air Quality Division, 
Louisiana Department of Environmental Quality, P.O. Box 44096, Baton 
Rouge, LA 70804.
    (U) State of Maine, Bureau of Air Quality Control, Department of 
Environmental Protection, State House, Station No. 17, Augusta, ME 
04333.
    (V) State of Maryland: Bureau of Air Quality and Noise Control, 
Maryland State Department of Health and Mental Hygiene, 201 West Preston 
Street, Baltimore, MD 21201.
    (W) Commonwealth of Massachusetts, Division of Air Quality Control, 
Department of Environmental Protection, One Winter Street, 7th floor, 
Boston, MA 02108.
    (X) State of Michigan, Air Quality Division, Michigan Department of 
Environmental Quality, P.O. Box 30260, Lansing, Michigan 48909.
    (Y) Minnesota Pollution Control Agency, Division of Air Quality, 520 
Lafayette Road, St. Paul, MN 55155.
    (Z) Bureau of Pollution Control, Department of Natural Resources, 
P.O. Box 10385, Jackson, MS 39209.
    (AA) State of Missouri: Missouri Department of Natural Resources, 
Division of Environmental Quality, P.O. Box 176, Jefferson City, MO 
65102.
    (BB) State of Montana, Department of Health and Environmental 
Services, Air Quality Bureau, Cogswell Building, Helena, MT 59601.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragraph (c) of this section.
    (CC) State of Nebraska, Nebraska Department of Environmental 
Control, P.O. Box 94877, State House Station, Lincoln, NE 68509.
Lincoln-Lancaster County Health Department, Division of Environmental 
Health, 2200 St. Marys Avenue, Lincoln, NE 68502

    (DD) Nevada:
Nevada Department of Conservation and Natural Resources, Division of 
Environmental Protection, 201 South Fall Street, Carson City, NV 89710.
Clark County County District Health Department, Air Pollution Control 
Division, 625 Shadow Lane, Las Vegas, NV 89106.
Washoe County District Health Department, Division of Environmental 
Protection, 10 Kirman Avenue, Reno, NV 89502.

(1) The following table lists the specific source and pollutant 
categories that have been delegated to the air pollution control 
agencies in Nevada. A star (*) is used to indicate each category that 
has been delegated.

[[Page 26]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.004


[[Page 27]]


[GRAPHIC] [TIFF OMITTED] TC01JN92.005

    (EE) State of New Hampshire, Air Resources Division, Department of 
Environmental Services, 64 North Main Street, Caller Box 2033, Concord, 
NH 03302-2033.
    (FF) State of New Jersey: New Jersey Department of Environmental 
Protection, Division of Environmental Quality, Enforcement Element, John 
Fitch Plaza, CN-027, Trenton, NJ 08625.
    (1) The following table lists the specific source and pollutant 
categories that have been delegated to the states in Region II. The (X) 
symbol is used to indicate each category that has been delegated.

 
----------------------------------------------------------------------------------------------------------------
                                                                           State
                        Subpart          -----------------------------------------------------------------------
                                             New Jersey         New York         Puerto Rico     Virgin Islands
----------------------------------------------------------------------------------------------------------------
D             Fossil-Fuel Fired Steam     X...............  X...............  X...............  X
               Generators for Which
               Construction Commenced
               After August 17, 1971
               (Steam Generators and
               Lignite Fired Steam
               Generators).
Da            Electric Utility Steam      X...............                    X...............
               Generating Units for
               Which Construction
               Commenced After September
               18, 1978.
Db            Industrial-Commercial-      X...............  X...............  X...............  X
               Institutional Steam
               Generating Units.
E             Incinerators..............  X...............  X...............  X...............  X
F             Portland Cement Plants....  X...............  X...............  X...............  X
G             Nitric Acid Plants........  X...............  X...............  X...............  X
H             Sulfuric Acid Plants......  X...............  X...............  X...............  X
I             Asphalt Concrete Plants...  X...............  X...............  X...............  X
J             Petroleum Refineries--(All  X...............  X...............  X...............  X
               Categories).
K             Storage Vessels for         X...............  X...............  X...............  X
               Petroleum Liquids
               Constructed After June
               11, 1973, and prior to
               May 19, 1978.
Ka            Storage Vessels for         X...............  X...............  X...............
               Petroleum Liquids
               Constructed After May 18,
               1978.
L             Secondary Lead Smelters...  X...............  X...............  X...............  X
M             Secondary Brass and Bronze  X...............  X...............  X...............  X
               Ingot Production Plants.
N             Iron and Steel Plants.....  X...............  X...............  X...............  X
O             Sewage Treatment Plants...  X...............  X...............  X...............  X
P             Primary Copper Smelters...  X...............  X...............  X...............  X
Q             Primary Zinc Smelters.....  X...............  X...............  X...............  X
R             Primary Lead Smelters.....  X...............  X...............  X...............  X

[[Page 28]]

 
S             Primary Aluminum Reduction  X...............  X...............  X...............  X
               Plants.
T             Phosphate Fertilizer        X...............  X...............  X...............  X
               Industry: Wet Process
               Phosphoric Acid Plants.
U             Phosphate Fertilizer        X...............  X...............  X...............  X
               Industry: Superphosphoric
               Acid Plants.
V             Phosphate Fertilizer        X...............  X...............  X...............  X
               Industry: Diammonium
               Phosphate Plants.
W             Phosphate Fertilizer        X...............  X...............  X...............  X
               Industry: Triple
               Superphosphate Plants.
X             Phosphate Fertilizer        X...............  X...............  X...............  X
               Industry: Granular Triple
               Superphosphate.
Y             Coal Preparation Plants...  X...............  X...............  X...............  X
Z             Ferroally Production        X...............  X...............  X...............  X
               Facilities.
AA            Steel Plants: Electric Arc  X...............  X...............  X...............  X
               Furnaces.
AAa           Electric Arc Furnaces and   X...............  X...............  X...............  ................
               Argon-Oxygen
               Decarburization Vessels
               in Steel Plants.
BB            Kraft Pulp Mills..........  X...............  X...............  X...............  ................
CC            Glass Manufacturing Plants  X...............  X...............  X...............  ................
DD            Grain Elevators...........  X...............  X...............  X...............  ................
EE            Surface Coating of Metal    X...............  X...............  X...............  ................
               Furniture.
GG            Stationary Gas Turbines...  X...............  X...............  X...............  ................
HH            Lime Plants...............  X...............  X...............  X...............  ................
KK            Lead Acid Battery           X...............  X...............                    ................
               Manufacturing Plants.
LL            Metallic Mineral            X...............  X...............  X...............  ................
               Processing Plants.
MM            Automobile and Light-Duty   X...............  X...............    ..............  ................
               Truck Surface Coating
               Operations.
NN            Phosphate Rock Plants.....  X...............  X...............
PP            Ammonium Sulfate            X...............  X...............
               Manufacturing Plants.
QQ            Graphic Art Industry        X...............  X...............  X...............  X
               Publication Rotogravure
               Printing.
RR            Pressure Sensitive Tape     X...............  X...............  X...............  ................
               and Label Surface Coating
               Operations.
SS            Industrial Surface          X...............  X...............  X...............  ................
               Coating: Large Appliances.
TT            Metal Coil Surface Coating  X...............  X...............  X...............  ................
UU            Asphalt Processing and      X...............  X...............  X...............  ................
               Asphalt Roofing
               Manufacture.
VV            Equipment Leaks of          X...............                    X...............  ................
               Volatile Organic
               Compounds in Synthetic
               Organic Chemical
               Manufacturing Industry.
WW            Beverage Can Surface        X...............  X...............  X...............  ................
               Coating Industry.
XX            Bulk Gasoline Terminals...  X...............  X...............  X...............  ................
FFF           Flexible Vinyl and          X...............  X...............  X...............  ................
               Urethane Coating and
               Printing.
GGG           Equipment Leaks of VOC in   X...............                    X...............
               Petroleum Refineries.
HHH           Synthetic Fiber Production  X...............                    X...............
               Facilities.
JJJ           Petroleum Dry Clearners...  X...............  X...............  X...............  ................
KKK           Equipment Leaks of VOC
               from Onshore Natural Gas
               Processing Plants.
LLL           Onshore Natural Gas                           X...............
               Processing Plants; SO2
               Emissions.
OOO           Nonmetallic Mineral                           X...............  X...............  ................
               Processing Plants.
PPP           Wool Fiberglass Insulation                    X...............  X...............  ................
               Manufacturing Plants.
----------------------------------------------------------------------------------------------------------------

    (GG) State of New Mexico: Director, New Mexico Environmental 
Improvement Division, Health and Environment Department, 1190 St. 
Francis Drive, Santa Fe, NM 87503.
    (i) The City of Albuquerque and Bernalillo County: Director, The 
Albuquerque Environmental Health Department, The City of Albuquerque, 
P.O. Box 1293, Albuquerque, NM 87103.
    (HH) New York: New York State Department of Environmental 
Conservation, 50 Wolf Road Albany, New York 12233, attention: Division 
of Air Resources.
    (II) North Carolina Environmental Management Commission, Department 
of Natural and Economic Resources, Division of Environmental Management, 
P.O. Box 27687, Raleigh, NC 27611. Attention: Air Quality Section.
    (JJ) State of North Dakota, State Department of Health and 
Consolidated Laboratories, Division of Environmental Engineering, State 
Capitol, Bismarck, ND 58505.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragraph (c) of this section.
    (KK) State of Ohio:
    (i) Medina, Summit and Portage Counties; Director, Akron Regional 
Air Quality Management District, 177 South Broadway, Akron, OH 44308.
    (ii) Stark County: Air Pollution Control Division, 420 Market Avenue 
North, Canton, Ohio 44702-3335.
    (iii) Butler, Clermont, Hamilton, and Warren Counties: Air Program 
Manager, Hamilton County Department of Environmental Services, 1632 
Central Parkway, Cincinnati, Ohio 45210.
    (iv) Cuyahoga County: Commissioner, Department of Public Health 
& Welfare, Division of Air Pollution Control, 1925 Saint Clair, Cleveland, Ohio 44114.

    (v) Belmont, Carroll, Columbiana, Harrison, Jefferson, and Monroe 
Counties: Director, North Ohio Valley Air Authority

[[Page 29]]

(NOVAA), 814 Adams Street, Steubenville, OH 43952.
    (vi) Clark, Darke, Greene, Miami, Montgomery, and Preble Counties: 
Director, Regional Air Pollution Control Agency (RAPCA) 451 West Third 
Street, Dayton, Ohio 45402.
    (vii) Lucas County and the City of Rossford (in Wood County): 
Director, Toledo Environmental Services Agency, 26 Main Street, Toledo, 
OH 43605.
    (viii) Adams, Brown, Lawrence, and Scioto Counties; Engineer-
Director, Air Division, Portsmouth City Health Department, 740 Second 
Street, Portsmouth, OH 45662.
    (ix) Allen, Ashland, Auglaize, Crawford, Defiance, Erie, Fulton, 
Hancock, Hardin, Henry, Huron, Marion, Mercer, Ottawa, Paulding, Putnam, 
Richland, Sandusky, Seneca, Van Wert, Williams, Wood (except City of 
Rossford), and Wyandot Counties: Ohio Environmental Protection Agency, 
Northwest District Office, Air Pollution Control, 347 Dunbridge Rd., 
Bowling Green, Ohio 43402.
    (x) Ashtabula, Holmes, Lorain, and Wayne Counties: Ohio 
Environmental Protection Agency, Northeast District Office, Air 
Pollution Unit, 2110 East Aurora Road, Twinsburg, OH 44087.
    (xi) Athens, Coshocton, Gallia, Guernsey, Hocking, Jackson, Meigs, 
Morgan, Muskingum, Noble, Perry, Pike, Ross, Tuscarawas, Vinton, and 
Washington Counties: Ohio Environmental Protection Agency, Southeast 
District Office, Air Pollution Unit, 2195 Front Street, Logan, OH 43138.
    (xii) Champaign, Clinton, Highland, Logan, and Shelby Counties: Ohio 
Environmental Protection Agency, Southwest District Office, Air 
Pollution Unit, 401 East Fifth Street, Dayton, Ohio 45402-2911.
    (xiii) Delaware, Fairfield, Fayette, Franklin, Knox, Licking, 
Madison, Morrow, Pickaway, and Union Counties: Ohio Environmental 
Protection Agency, Central District Office, Air Pollution Control, 3232 
Alum Creek Drive, Columbus, Ohio, 43207-3417.
    (xiv) Geauga and Lake Counties: Lake County General Health District, 
Air Pollution Control, 105 Main Street, Painesville, OH 44077.
    (xv) Mahoning and Trumbull Counties: Mahoning-Trumbull Air Pollution 
Control Agency, 9 West Front Street, Youngstown, OH 44503.

    (LL) State of Oklahoma, Oklahoma State Department of Health, Air 
Quality Service, P.O. Box 53551, Oklahoma City, OK 73152.
    (i) Oklahoma City and County: Director, Oklahoma City-County Health 
Department, 921 Northeast 23rd Street, Oklahoma City, OK 73105.
    (ii) Tulsa County: Tulsa City-County Health Department, 4616 East 
Fifteenth Street, Tulsa, OK 74112.
    (MM) State of Oregon, Department of Environmental Quality, Yeon 
Building, 522 S.W. Fifth, Portland, OR 97204.
    (i)--(viii) [Reserved]
    (ix) Lane Regional Air Pollution Authority, 225 North Fifth, Suite 
501, Springfield, OR 97477.
    (NN) (a) City of Philadelphia: Philadelphia Department of Public 
Health, Air Management Services, 500 S. Broad Street, Philadelphia, PA 
19146.
    (b) Commonwealth of Pennsylvania: Department of Environmental 
Resources, Post Office Box 2063, Harrisburg, PA 17120.
    (c) Allegheny County: Allegheny County Health Department, Bureau of 
Air Pollution Control, 301 Thirty-ninth Street, Pittsburgh, PA 15201.
    (OO) State of Rhode Island, Division of Air and Hazardous Materials, 
Department of Environmental Management, 291 Promenade Street, 
Providence, RI 02908.
    (PP) State of South Carolina, Office of Environmental Quality 
Control, Department of Health and Environmental Control, 2600 Bull 
Street, Columbia, SC 29201.
    (QQ) State of South Dakota, Department of Water and Natural 
Resources, Office of Air Quality and Solid Waste, Joe Foss Building, 523 
East Capitol, Pierre, SD 57501-3181.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragragh (c) of this section.
    (RR) Division of Air Pollution Control, Tennessee Department of 
Public Health, 256 Capitol Hill Building, Nashville, TN 37219.

Knox County Department of Air Pollution, City/County Building, Room 
L222, 400 Main Avenue, Knoxville, TN 37902.
Air Pollution Control Bureau, Metropolitan Health Department, 311 23rd 
Avenue North, Nashville, TN 37203.
    (SS) State of Texas, Texas Air Control Board, 6330 Highway 290 East, 
Austin, TX 78723.
    (TT) State of Utah, Department of Health, Bureau of Air Quality, 288 
North 1460 West, P.O. Box 16690, Salt Lake City, UT 84113--0690.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragraph (c) of this section.
    (UU) State of Vermont, Air Pollution Control Division, Agency of 
Natural Resources, Building 3 South, 103 South Main Street, Waterbury, 
VT 05676.
    (VV) Commonwealth of Virginia, Virginia State Air Pollution Control 
Board, Room 1106, Ninth Street Office Building, Richmond, VA 23219.
    (WW)(i) Washington: Washington Department of Ecology, Post Office 
Box 47600, Olympia, WA 98504.
    (ii) Benton-Franklin Counties Clean Air Authority (BFCCAA), 650 
George Washington Way, Richland, WA 99352.

[[Page 30]]

    (iii) Northwest Air Pollution Authority (NWAPA), 302 Pine Street, 
#207, Mt. Vernon, WA 98273-3852.
    (iv) Olympic Air Pollution Control Authority (OAPCA), 909 Sleater-
Kinney Rd. SE - Suite 1, Lacey, WA 98503.
    (v) Puget Sound Air Pollution Control Authority (PSAPCA), 110 Union 
Street, Suite 500, Seattle, WA 98101.
    (vi) Southwest Air Pollution Control Authority (SWAPCA), 1308 N.E. 
134th Street, Suite D, Vancouver, WA 98685-2747.
    (vii) Spokane County Air Pollution Control Authority (SCAPCA), West 
1101 College Avenue, Health Building, Room 403, Spokane, WA 99201.
    (viii) [Reserved]
    (ix) The following is a table indicating the delegation status of 
the New Source Performance Standards for the State of Washington.

[[Page 31]]



                                      Delegation of Authority--New Source Performance Standards State of Washington
--------------------------------------------------------------------------------------------------------------------------------------------------------
           Subpart                      Description               WDOE 1      BFCCAA 2     NWAPCA 3     OAPCA 4      PSAPCA 5     SWAPCA 6     SCAPCA 7
--------------------------------------------------------------------------------------------------------------------------------------------------------
A...........................  General Provisions.............     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
D...........................  Fossil-Fuel-Fired Steam             01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Generators.
Da..........................  Electric Utility Steam              01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Generating Units.
Db..........................  Industrial-Commercial-              01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Institutional Steam Generating
                               Units.
Dc..........................  Small Industrial-Commercial-        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Institutional Steam Generating
                               Units.
E...........................  Incinerators...................     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
Ea..........................  Municipal Waste Combustion.....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
F...........................  Portland Cement Plants.........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
G...........................  Nitric Acid Plants.............     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
H...........................  Sulfuric Acid Plants...........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
I...........................  Asphalt Concrete Plants........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
J...........................  Petroleum Refineries...........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
K...........................  Petroleum Liquid Storage            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Vessels 6/11/73-5/19/78.
Ka..........................  Petroleum Liquid Storage            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Vessels After 5/18/78-7/23/84.
Kb..........................  Volatile Organic Liquid Storage     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Vessels After 7/23/84.
L...........................  Secondary Lead Smelters........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
M...........................  Brass & Bronze Ingot Production     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plants.
N...........................  Iron & Steel Plants      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               BOPF Particulate.
Na..........................  Iron & Steel Plants      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               BOPF, Hot Metal & Skimming
                               Stations.
O...........................  Sewage Treatment Plants........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
P...........................  Primary Copper Smelters........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
Q...........................  Primary Zinc Smelters..........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
R...........................  Primary Lead Smelters..........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
S...........................  Primary Aluminum Reduction          01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plants.
T...........................  Wet Process Phosphoric Acid         01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plants.
U...........................  Superphosphoric Acid Plants....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
V...........................  Diammonium Phosphate Plants....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
W...........................  Triple Superphosphate Plants...     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
X...........................  Granular Triple Superphosphate      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Storage Facilities.
Y...........................  Coal Preparation Plants........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
Z...........................  Ferroalloy Production               01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Facilities.
AA..........................  Steel Plant Electric Arc            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Furnaces 10/21/74-8/17/83.
AAa.........................  Steel Plant Electric Arc            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Furnaces & Argon-Oxygen
                               Decarburization Vessels after
                               8/7/83.
BB..........................  Kraft Pulp Mills...............     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
CC..........................  Glass Manufacturing Plants.....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
DD..........................  Grain Elevators................     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
EE..........................  Surface Coating of Metal            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Furniture.
GG..........................  Stationary Gas Turbines........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
HH..........................  Lime Manufacturing Plants......     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
KK..........................  Lead-Acid Battery Manufacturing     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plant.
LL..........................  Metallic Mineral Processing         01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plants.
MM..........................  Automobile & Light Duty Truck       01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Surface Coating Operations.
NN..........................  Phosphate Rock Plants..........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
PP..........................  Ammonium Sulfate Manufacture...     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
QQ..........................  Graphic Arts Industry:              01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Publication Rotogravure
                               Printing.

[[Page 32]]

 
RR..........................  Pressure Sensitive Tape & Label     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Surface Coating Operations.
SS..........................  Industrial Surface Coating:         01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Large Appliances.
TT..........................  Metal Coil Surface Coating.....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
UU..........................  Asphalt Processing & Asphalt        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Roofing Manufacturer.
VV..........................  SOCMI Equipment Leaks (VOC)....     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
WW..........................  Beverage Can Surface Coating        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Operations.
XX..........................  Bulk Gasoline Terminals........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
AAA.........................  Residential Wood Heaters.......     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
BBB.........................  Rubber Tire Manufacturing......     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
DDD.........................  Polymer Manufacturing Industry      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               (VOC).
FFF.........................  Flexible Vinyl and Urethane         01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Coating and Printing.
GGG.........................  Equipment Leaks of VOC in           01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Petroleum Refineries.
HHH.........................  Synthetic Fiber Production          01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Facilities.
III.........................  VOC Emissions from SOCMI Air        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Oxidation Unit Processes.
JJJ.........................  Petroleum Dry Cleaners.........     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
KKK.........................  VOC Emissions from Onshore          01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Natural Gas Production.
LLL.........................  Onshore Natural Gas Production      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               (SO2).
NNN.........................  VOC Emissions from SOCMI            01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Distillation Facilities.
OOO.........................  Nonmetallic Mineral Processing      01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Plants.
PPP.........................  Wool Fiberglass Insulation          01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Manufacturing Plants.
QQQ.........................  VOC Emissions from Petroleum        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Refinery Wastewater Systems.
SSS.........................  Magnetic Tape Coating               01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Facilities.
TTT.........................  Surface Coating of Plastic          01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Parts for Business Machines.
UUU.........................  Calciners & Dryers In Mineral       01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93
                               Industries.
VVV.........................  Polymeric Coating of Support        01/01/93     01/01/93     01/01/93     01/01/93     01/01/93     01/01/93    01/01/93
                               Substrates Facilities.
--------------------------------------------------------------------------------------------------------------------------------------------------------
1 WDOE--State of Washington Department of Ecology.
2 BFCCAA--Benton Franklin Counties Clean Air Authority.
3 NWAPCA--Northwest Air Pollution Control Authority.
4 OAPCA--Olympic Air Pollution Control Authority.
5 PSAPCA--Puget Sound Air Pollution Control Agency.
6 SWAPCA--Southwest Air Pollution Control Authority.
7 SCAPCA--Spokane County Air Pollution Control Authority.

[[Page 33]]

 

    (XX) State of West Virginia: Air Pollution Control Commission, 1558 
Washington Street East, Charleston, WV 25311.
    (YY) Wisconsin--Wisconsin Department of Natural Resources, P.O. Box 
7921, Madison, WI 53707.
    (ZZ) State of Wyoming, Department of Environmental Quality, Air 
Quality Division, Herschler Building, 122 West 25th Street, Cheyenne, WY 
82002.

    Editorial Note: For a table listing Region VIII's NSPS delegation 
status, see paragraph (c) of this section.
    (AAA) Territory of Guam: Guam Environmental Protection Agency, Post 
Office Box 2999, Agana, Guam 96910.
    (1) The following table lists the specific source and pollutant 
categories that have been delegated to the air pollution control agency 
in Guam. A star (*) is used to indicate each category that has been 
delegated.

[[Page 34]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.006


[[Page 35]]


[GRAPHIC] [TIFF OMITTED] TC01JN92.007

    (BBB) Commonwealth of Puerto Rico: Commonwealth of Puerto Rico 
Environmental Quality Board, P.O. Box 11488, Santurce, PR 00910,  
Attention: Air Quality Area Director (see table under 
Sec. 60.4(b)(FF)(1)).
    (CCC) U.S. Virgin Islands: U.S. Virgin Islands Department of 
Conservation and Cultural Affairs, P.O. Box 578, Charlotte Amalie, St. 
Thomas, VI 00801.
    (c) The following is a table indicating the delegation status of New 
Source Performance Standards for Region VIII.

                              Delegation Status of New Source Performance Standards
                                            [(NSPS) for Region VIII]
----------------------------------------------------------------------------------------------------------------
                    Subpart                         CO       MT\1\      ND\1\      SD\1\      UT\1\        WY
----------------------------------------------------------------------------------------------------------------
A--General Provisions.........................        (*)        (*)        (*)        (*)        (*)        (*)
D--Fossil Fuel Fired Steam Generators.........        (*)        (*)        (*)        (*)        (*)        (*)
Da--Electric Utility Steam Generators.........        (*)        (*)        (*)        (*)        (*)        (*)
Db--Industrial-Commercial--Institutional Steam
 Generators...................................        (*)        (*)        (*)        (*)        (*)        (*)
Dc--Industrial-Commercial--Institutional Steam
 Generators...................................        (*)        (*)        (*)        (*)        (*)
E--Incinerators...............................        (*)        (*)        (*)        (*)        (*)        (*)
Ea--Municipal Waste Combustors................        (*)        (*)        (*)        (*)        (*)        (*)
F--Portland Cement Plants.....................        (*)        (*)        (*)        (*)        (*)        (*)
G--Nitric Acid Plants.........................        (*)        (*)        (*)                   (*)        (*)
H--Sulfuric Acid Plants.......................        (*)        (*)        (*)                   (*)        (*)
I--Asphalt Concrete Plants....................        (*)        (*)        (*)        (*)        (*)        (*)
J--Petroleum Refineries.......................        (*)        (*)        (*)                   (*)        (*)
K--Petroleum Storage Vessels (after 6/11/73 &
 prior to.....................................
  5/19/78)....................................        (*)        (*)        (*)        (*)        (*)        (*)
Ka--Petroleum Storage Vessels (after 5/18/78 &
 prior to.....................................
  7/23/84)....................................        (*)        (*)        (*)        (*)        (*)        (*)
Kb--Petroleum Storage Vessels (after 7/23/84).        (*)        (*)        (*)        (*)        (*)        (*)
L--Secondary Lead Smelters....................        (*)        (*)        (*)                   (*)        (*)
M--Secondary Brass & Bronze Production Plants.        (*)        (*)        (*)                   (*)        (*)
N--Primary Emissions from Basic Oxygen Process
 Furnaces (after 6/11/73).....................        (*)        (*)        (*)                   (*)        (*)
Na--Secondary Emissions from Basic Oxygen
 Process Furnaces (after 1/20/83).............        (*)        (*)        (*)                   (*)        (*)
O--Sewage Treatment Plants....................        (*)        (*)        (*)        (*)        (*)        (*)
P--Primary Copper Smelters....................        (*)        (*)        (*)                   (*)        (*)
Q--Primary Zinc Smelters......................        (*)        (*)        (*)                   (*)        (*)

[[Page 36]]

 
R--Primary Lead Smelters......................        (*)        (*)        (*)                   (*)        (*)
S--Primary Aluminum Reduction Plants..........        (*)        (*)        (*)                   (*)        (*)
T--Phosphate Fertilizer Industry: Wet Process
 Phosphoric Plants............................        (*)        (*)        (*)                   (*)        (*)
U--Phosphate Fertilizer Industry:
 Superphosphoric Acid Plants..................        (*)        (*)        (*)                   (*)        (*)
V--Phosphate Fertilizer Industry: Diammonium
 Phosphate Plants.............................        (*)        (*)        (*)                   (*)        (*)
W--Phosphate Fertilizer Industry: Triple
 Superphosphate Plants........................        (*)        (*)        (*)                   (*)        (*)
X--Phosphate Fertilizer Industry: Granular
 Triple Superphosphate Storage Facilities.....        (*)        (*)        (*)                   (*)        (*)
Y--Coal Preparation Plants....................        (*)        (*)        (*)        (*)        (*)        (*)
Z--Ferroalloy Production Facilities...........        (*)        (*)        (*)                   (*)        (*)
AA--Steel Plants: Electric Arc Furnaces (10/21/
 74-8/17/83)..................................        (*)        (*)        (*)                   (*)        (*)
AAa--Steel Plants: Electric Arc Furnaces and
 Argon-Oxygen Decarburization Vessels (after 8/
 7/83)........................................        (*)        (*)        (*)                   (*)        (*)
BB--Kraft Pulp Mills..........................        (*)        (*)        (*)                   (*)        (*)
CC--Glass Manufacturing Plants................        (*)        (*)        (*)                   (*)        (*)
DD--Grain Elevator............................        (*)        (*)        (*)        (*)        (*)        (*)
EE--Surface Coating of Metal Furniture........        (*)        (*)        (*)                   (*)        (*)
GG--Stationary Gas Turbines...................        (*)        (*)        (*)        (*)        (*)        (*)
HH--Lime Manufacturing Plants.................        (*)        (*)        (*)        (*)        (*)        (*)
KK--Lead-Acid Battery Manufacturing Plants....        (*)        (*)        (*)                   (*)        (*)
LL--Metallic Mineral Processing Plants........        (*)        (*)        (*)        (*)        (*)        (*)
MM--Automobile & Light Duty Truck Surface
 Coating Operations...........................        (*)        (*)        (*)                   (*)        (*)
NN--Phosphate Rock Plants.....................        (*)        (*)        (*)                   (*)        (*)
PP--Ammonium Sulfate Manufacturing............        (*)        (*)        (*)                   (*)        (*)
QQ--Graphic Arts Industry: Publication
 Rotogravure Printing.........................        (*)        (*)        (*)        (*)        (*)        (*)
RR--Pressure Sensitive Tape & Label Surface
 Coating......................................        (*)        (*)        (*)        (*)        (*)        (*)
SS--Industrial Surface Coating: Large
 Applications.................................        (*)        (*)        (*)                   (*)        (*)
TT--Metal Coil Surface Coating................        (*)        (*)        (*)                   (*)        (*)
UU--Asphalt Processing & Asphalt Roofing
 Manufacture..................................        (*)        (*)        (*)                   (*)        (*)
VV--Synthetic Organic Chemicals Manufacturing:
 Equipment Leaks of VOC.......................        (*)        (*)        (*)        (*)        (*)        (*)
WW--Beverage Can Surface Coating Industry.....        (*)        (*)        (*)                   (*)        (*)
XX--Bulk Gasoline Terminals...................        (*)        (*)        (*)        (*)        (*)        (*)
AAA--Residential Wood Heaters.................        (*)        (*)        (*)        (*)        (*)        (*)
BBB--Rubber Tires.............................        (*)        (*)        (*)                   (*)        (*)
DDD--VOC Emissions from Polymer Manufacturing
 Industry.....................................        (*)        (*)        (*)                   (*)        (*)
FFF--Flexible Vinyl & Urethane Coating &
 Printing.....................................        (*)        (*)        (*)                   (*)        (*)
GGG--Equipment Leaks of VOC in Petroleum
 Refineries...................................        (*)        (*)        (*)                   (*)        (*)
HHH--Synthetic Fiber Production...............        (*)        (*)        (*)                   (*)        (*)
III--VOC Emissions from the Synthetic Organic
 Chemical Manufacturing Industry Air Oxidation
 Unit Processes...............................                   (*)        (*)                   (*)        (*)
JJJ--Petroleum Dry Cleaners...................        (*)        (*)        (*)        (*)        (*)        (*)
KKK--Equipment Leaks of VOC from Onshore
 Natural Gas Processing Plants................        (*)        (*)        (*)                   (*)        (*)
LLL--Onshore Natural Gas Processing: SO2
 Emissions....................................        (*)        (*)        (*)                   (*)        (*)
NNN--VOC Emissions from the Synthetic Organic
 Chemical Manufacturing Industry Distillation
 Operations...................................        (*)        (*)        (*)        (*)        (*)        (*)
OOO--Nonmetallic Mineral Processing Plants....        (*)        (*)        (*)        (*)        (*)        (*)
PPP--Wool Fiberglass Insulation Manufacturing
 Plants.......................................        (*)        (*)        (*)                   (*)        (*)
QQQ--VOC Emissions from Petroleum Refinery
 Wastewater Systems...........................        (*)        (*)        (*)                   (*)        (*)
RRR--VOC Emissions from Synthetic Organic
 Chemical Manufacturing Industry (SOCMI)
 Reactor Processes............................        (*)                   (*)                   (*)
SSS--Magnetic Tape Industry...................        (*)        (*)        (*)        (*)        (*)        (*)
TTT--Plastic Parts for Business Machine
 Coatings.....................................        (*)        (*)        (*)                   (*)        (*)
UUU--Calciners and Dryers in Mineral
 Industries...................................        (*)                   (*)                   (*)
VVV--Polymeric Coating of Supporting
 Substrates...................................        (*)        (*)        (*)                   (*)        (*)

[[Page 37]]

 
WWW--Municipal Solid Waste Landfills..........                                                    (*)
----------------------------------------------------------------------------------------------------------------
(*) Indicates approval of state regulation.
\1\ Indicates approval of New Source Performance Standards as part of the State Implementation Plan (SIP).

    Editorial Note: For Federal Register citations affecting Sec. 60.4 
see the List of CFR Sections Affected appearing in the Finding Aids 
section of this volume.
[40 FR 18169, Apr. 25, 1975]



Sec. 60.5  Determination of construction or modification.

    (a) When requested to do so by an owner or operator, the 
Administrator will make a determination of whether action taken or 
intended to be taken by such owner or operator constitutes construction 
(including reconstruction) or modification or the commencement thereof 
within the meaning of this part.
    (b) The Administrator will respond to any request for a 
determination under paragraph (a) of this section within 30 days of 
receipt of such request.
[40 FR 58418, Dec. 16, 1975]



Sec. 60.6  Review of plans.

    (a) When requested to do so by an owner or operator, the 
Administrator will review plans for construction or modification for the 
purpose of providing technical advice to the owner or operator.
    (b)(1) A separate request shall be submitted for each construction 
or modification project.
    (2) Each request shall identify the location of such project, and be 
accompanied by technical information describing the proposed nature, 
size, design, and method of operation of each affected facility involved 
in such project, including information on any equipment to be used for 
measurement or control of emissions.
    (c) Neither a request for plans review nor advice furnished by the 
Administrator in response to such request shall (1) relieve an owner or 
operator of legal responsibility for compliance with any provision of 
this part or of any applicable State or local requirement, or (2) 
prevent the Administrator from implementing or enforcing any provision 
of this part or taking any other action authorized by the Act.
[36 FR 24877, Dec. 23, 1971, as amended at 39 FR 9314, Mar. 8, 1974]



Sec. 60.7  Notification and record keeping.

    (a) Any owner or operator subject to the provisions of this part 
shall furnish the Administrator written notification as follows:
    (1) A notification of the date construction (or reconstruction as 
defined under Sec. 60.15) of an affected facility is commenced 
postmarked no later than 30 days after such date. This requirement shall 
not apply in the case of mass-produced facilities which are purchased in 
completed form.
    (2) A notification of the anticipated date of initial startup of an 
affected facility postmarked not more than 60 days nor less than 30 days 
prior to such date.
    (3) A notification of the actual date of initial startup of an 
affected facility postmarked within 15 days after such date.
    (4) A notification of any physical or operational change to an 
existing facility which may increase the emission rate of any air 
pollutant to which a standard applies, unless that change is 
specifically exempted under an applicable subpart or in Sec. 60.14(e). 
This notice shall be postmarked 60 days or as soon as practicable before 
the change is commenced and shall include information describing the 
precise nature of the change, present and proposed emission control 
systems, productive capacity of the facility before and after the 
change, and the expected completion date of the change. The 
Administrator may request additional relevant information subsequent to 
this notice.
    (5) A notification of the date upon which demonstration of the 
continuous

[[Page 38]]

monitoring system performance commences in accordance with 
Sec. 60.13(c). Notification shall be postmarked not less than 30 days 
prior to such date.
    (6) A notification of the anticipated date for conducting the 
opacity observations required by Sec. 60.11(e)(1) of this part. The 
notification shall also include, if appropriate, a request for the 
Administrator to provide a visible emissions reader during a performance 
test. The notification shall be postmarked not less than 30 days prior 
to such date.
    (7) A notification that continuous opacity monitoring system data 
results will be used to determine compliance with the applicable opacity 
standard during a performance test required by Sec. 60.8 in lieu of 
Method 9 observation data as allowed by Sec. 60.11(e)(5) of this part. 
This notification shall be postmarked not less than 30 days prior to the 
date of the performance test.
    (b) Any owner or operator subject to the provisions of this part 
shall maintain records of the occurrence and duration of any startup, 
shutdown, or malfunction in the operation of an affected facility; any 
malfunction of the air pollution control equipment; or any periods 
during which a continuous monitoring system or monitoring device is 
inoperative.
    (c) Each owner or operator required to install a continuous 
monitoring system (CMS) or monitoring device shall submit an excess 
emissions and monitoring systems performance report (excess emissions 
are defined in applicable subparts) and/or a summary report form (see 
paragraph (d) of this section) to the Administrator semiannually, except 
when: more frequent reporting is specifically required by an applicable 
subpart; or the CMS data are to be used directly for compliance 
determination, in which case quarterly reports shall be submitted; or 
the Administrator, on a case-by-case basis, determines that more 
frequent reporting is necessary to accurately assess the compliance 
status of the source. All reports shall be postmarked by the 30th day 
following the end of each calendar half (or quarter, as appropriate). 
Written reports of excess emissions shall include the following 
information:
    (1) The magnitude of excess emissions computed in accordance with 
Sec. 60.13(h), any conversion factor(s) used, and the date and time of 
commencement and completion of each time period of excess emissions. The 
process operating time during the reporting period.
    (2) Specific identification of each period of excess emissions that 
occurs during startups, shutdowns, and malfunctions of the affected 
facility. The nature and cause of any malfunction (if known), the 
corrective action taken or preventative measures adopted.
    (3) The date and time identifying each period during which the 
continuous monitoring system was inoperative except for zero and span 
checks and the nature of the system repairs or adjustments.
    (4) When no excess emissions have occurred or the continuous 
monitoring system(s) have not been inoperative, repaired, or adjusted, 
such information shall be stated in the report.
    (d) The summary report form shall contain the information and be in 
the format shown in figure 1 unless otherwise specified by the 
Administrator. One summary report form shall be submitted for each 
pollutant monitored at each affected facility.
    (1) If the total duration of excess emissions for the reporting 
period is less than 1 percent of the total operating time for the 
reporting period and CMS downtime for the reporting period is less than 
5 percent of the total operating time for the reporting period, only the 
summary report form shall be submitted and the excess emission report 
described in Sec. 60.7(c) need not be submitted unless requested by the 
Administrator.
    (2) If the total duration of excess emissions for the reporting 
period is 1 percent or greater of the total operating time for the 
reporting period or the total CMS downtime for the reporting period is 5 
percent or greater of the total operating time for the reporting period, 
the summary report form and the excess emission report described in 
Sec. 60.7(c) shall both be submitted.

[[Page 39]]

   Figure 1--Summary Report--Gaseous and Opacity Excess Emission and 
                      Monitoring System Performance

Pollutant (Circle One--SO2/NOX/TRS/H2S/
          CO/Opacity)
Reporting period dates: From __________ to __________
Company:
 Emission Limitation____________________________________________________
Address:
 Monitor Manufacturer and Model No._____________________________________
 Date of Latest CMS Certification or Audit______________________________
Process Unit(s) Description:
 Total source operating time in reporting period \1\____________________

 
------------------------------------------------------------------------
                                            CMS performance
  Emission data summary \1\                   summary \1\
------------------------------------------------------------------------
1. Duration of excess                    1. CMS downtime in
 emissions in reporting                   reporting period due
 period due to:                           to:
  a. Startup/shutdown........  ........    a. Monitor           ........
                                          equipment
                                          malfunctions.
  b. Control equipment         ........    b. Non-Monitor       ........
   problems.                              equipment
                                          malfunctions.
  c. Process problems........  ........    c. Quality           ........
                                          assurance
                                          calibration.
  d. Other known causes......  ........    d. Other known       ........
                                          causes.
  e. Unknown causes..........  ........    e. Unknown causes..  ........
2. Total duration of excess    ........  2. Total CMS Downtime  ........
 emission.
3. Total duration of excess       % \2\  3. [Total CMS             % \2\
 emissions  x  (100) [Total               Downtime]  x  (100)
 source operating time].                  [Total source
                                          operating time].
------------------------------------------------------------------------
\1\ For opacity, record all times in minutes. For gases, record all
  times in hours.
\2\ For the reporting period: If the total duration of excess emissions
  is 1 percent or greater of the total operating time or the total CMS
  downtime is 5 percent or greater of the total operating time, both the
  summary report form and the excess emission report described in Sec.
  60.7(c) shall be submitted.

    On a separate page, describe any changes since last quarter in CMS, 
process or controls. I certify that the information contained in this 
report is true, accurate, and complete.

 _______________________________________________________________________
Name

 _______________________________________________________________________
Signature

 _______________________________________________________________________
Title

 _______________________________________________________________________
Date

    (e)(1) Notwithstanding the frequency of reporting requirements 
specified in paragraph (c) of this section, an owner or operator who is 
required by an applicable subpart to submit excess emissions and 
monitoring systems performance reports (and summary reports) on a 
quarterly (or more frequent) basis may reduce the frequency of reporting 
for that standard to semiannual if the following conditions are met:
    (i) For 1 full year (e.g., 4 quarterly or 12 monthly reporting 
periods) the affected facility's excess emissions and monitoring systems 
reports submitted to comply with a standard under this part continually 
demonstrate that the facility is in compliance with the applicable 
standard;
    (ii) The owner or operator continues to comply with all 
recordkeeping and monitoring requirements specified in this subpart and 
the applicable standard; and
    (iii) The Administrator does not object to a reduced frequency of 
reporting for the affected facility, as provided in paragraph (e)(2) of 
this section.
    (2) The frequency of reporting of excess emissions and monitoring 
systems performance (and summary) reports may be reduced only after the 
owner or operator notifies the Administrator in writing of his or her 
intention to make such a change and the Administrator does not object to 
the intended change. In deciding whether to approve a reduced frequency 
of reporting, the Administrator may review information concerning the 
source's entire previous performance history during the required 
recordkeeping period prior to the intended change, including performance 
test results, monitoring data, and evaluations of an owner or operator's 
conformance with operation and maintenance requirements. Such 
information may be used by the Administrator to make a judgment about 
the source's potential for noncompliance in the future. If the 
Administrator disapproves the owner or operator's request to reduce the 
frequency of reporting, the Administrator will notify the owner or 
operator in writing within 45 days after receiving notice of the owner 
or operator's intention. The notification from the Administrator to the 
owner or operator will specify the grounds on which the disapproval is

[[Page 40]]

based. In the absence of a notice of disapproval within 45 days, 
approval is automatically granted.
    (3) As soon as monitoring data indicate that the affected facility 
is not in compliance with any emission limitation or operating parameter 
specified in the applicable standard, the frequency of reporting shall 
revert to the frequency specified in the applicable standard, and the 
owner or operator shall submit an excess emissions and monitoring 
systems performance report (and summary report, if required) at the next 
appropriate reporting period following the noncomplying event. After 
demonstrating compliance with the applicable standard for another full 
year, the owner or operator may again request approval from the 
Administrator to reduce the frequency of reporting for that standard as 
provided for in paragraphs (e)(1) and (e)(2) of this section.
    (f) Any owner or operator subject to the provisions of this part 
shall maintain a file of all measurements, including continuous 
monitoring system, monitoring device, and performance testing 
measurements; all continuous monitoring system performance evaluations; 
all continuous monitoring system or monitoring device calibration 
checks; adjustments and maintenance performed on these systems or 
devices; and all other information required by this part recorded in a 
permanent form suitable for inspection. The file shall be retained for 
at least two years following the date of such measurements, maintenance, 
reports, and records.
    (g) If notification substantially similar to that in paragraph (a) 
of this section is required by any other State or local agency, sending 
the Administrator a copy of that notification will satisfy the 
requirements of paragraph (a) of this section.
    (h) Individual subparts of this part may include specific provisions 
which clarify or make inapplicable the provisions set forth in this 
section.
[36 FR 24877, Dec. 28, 1971, as amended at 40 FR 46254, Oct. 6, 1975; 40 
FR 58418, Dec. 16, 1975; 45 FR 5617, Jan. 23, 1980; 48 FR 48335, Oct. 
18, 1983; 50 FR 53113, Dec. 27, 1985; 52 FR 9781, Mar. 26, 1987; 55 FR 
51382, Dec. 13, 1990; 59 FR 12428, Mar. 16, 1994; 59 FR 47265, Sep. 15, 
1994]



Sec. 60.8  Performance tests.

    (a) Within 60 days after achieving the maximum production rate at 
which the affected facility will be operated, but not later than 180 
days after initial startup of such facility and at such other times as 
may be required by the Administrator under section 114 of the Act, the 
owner or operator of such facility shall conduct performance test(s) and 
furnish the Administrator a written report of the results of such 
performance test(s).
    (b) Performance tests shall be conducted and data reduced in 
accordance with the test methods and procedures contained in each 
applicable subpart unless the Administrator (1) specifies or approves, 
in specific cases, the use of a reference method with minor changes in 
methodology, (2) approves the use of an equivalent method, (3) approves 
the use of an alternative method the results of which he has determined 
to be adequate for indicating whether a specific source is in 
compliance, (4) waives the requirement for performance tests because the 
owner or operator of a source has demonstrated by other means to the 
Administrator's satisfaction that the affected facility is in compliance 
with the standard, or (5) approves shorter sampling times and smaller 
sample volumes when necessitated by process variables or other factors. 
Nothing in this paragraph shall be construed to abrogate the 
Administrator's authority to require testing under section 114 of the 
Act.
    (c) Performance tests shall be conducted under such conditions as 
the Administrator shall specify to the plant operator based on 
representative performance of the affected facility. The owner or 
operator shall make available to the Administrator such records as may 
be necessary to determine the conditions of the performance tests. 
Operations during periods of startup, shutdown, and malfunction shall 
not constitute representative conditions for the purpose of a 
performance test nor shall emissions in excess of the level of the 
applicable emission limit during periods of startup, shutdown, and 
malfunction be considered a violation of the applicable emission limit 
unless otherwise specified in the applicable standard.

[[Page 41]]

    (d) The owner or operator of an affected facility shall provide the 
Administrator at least 30 days prior notice of any performance test, 
except as specified under other subparts, to afford the Administrator 
the opportunity to have an observer present.
    (e) The owner or operator of an affected facility shall provide, or 
cause to be provided, performance testing facilities as follows:
    (1) Sampling ports adequate for test methods applicable to such 
facility. This includes (i) constructing the air pollution control 
system such that volumetric flow rates and pollutant emission rates can 
be accurately determined by applicable test methods and procedures and 
(ii) providing a stack or duct free of cyclonic flow during performance 
tests, as demonstrated by applicable test methods and procedures.
    (2) Safe sampling platform(s).
    (3) Safe access to sampling platform(s).
    (4) Utilities for sampling and testing equipment.
    (f) Unless otherwise specified in the applicable subpart, each 
performance test shall consist of three separate runs using the 
applicable test method. Each run shall be conducted for the time and 
under the conditions specified in the applicable standard. For the 
purpose of determining compliance with an applicable standard, the 
arithmetic means of results of the three runs shall apply. In the event 
that a sample is accidentally lost or conditions occur in which one of 
the three runs must be discontinued because of forced shutdown, failure 
of an irreplaceable portion of the sample train, extreme meteorological 
conditions, or other circumstances, beyond the owner or operator's 
control, compliance may, upon the Administrator's approval, be 
determined using the arithmetic mean of the results of the two other 
runs.
[36 FR 24877, Dec. 23, 1971, as amended at 39 FR 9314, Mar. 8, 1974; 42 
FR 57126, Nov. 1, 1977; 44 FR 33612, June 11, 1979; 54 FR 6662, Feb. 14, 
1989; 54 FR 21344, May 17, 1989]



Sec. 60.9  Availability of information.

    The availability to the public of information provided to, or 
otherwise obtained by, the Administrator under this part shall be 
governed by part 2 of this chapter. (Information submitted voluntarily 
to the Administrator for the purposes of Secs. 60.5 and 60.6 is governed 
by Secs. 2.201 through 2.213 of this chapter and not by Sec. 2.301 of 
this chapter.)



Sec. 60.10  State authority.

    The provisions of this part shall not be construed in any manner to 
preclude any State or political subdivision thereof from:
    (a) Adopting and enforcing any emission standard or limitation 
applicable to an affected facility, provided that such emission standard 
or limitation is not less stringent than the standard applicable to such 
facility.
    (b) Requiring the owner or operator of an affected facility to 
obtain permits, licenses, or approvals prior to initiating construction, 
modification, or operation of such facility.



Sec. 60.11  Compliance with standards and maintenance requirements.

    (a) Compliance with standards in this part, other than opacity 
standards, shall be determined in accordance with performance tests 
established by Sec. 60.8, unless otherwise specified in the applicable 
standard.
    (b) Compliance with opacity standards in this part shall be 
determined by conducting observations in accordance with Reference 
Method 9 in appendix A of this part, any alternative method that is 
approved by the Administrator, or as provided in paragraph (e)(5) of 
this section. For purposes of determining initial compliance, the 
minimum total time of observations shall be 3 hours (30 6-minute 
averages) for the performance test or other set of observations (meaning 
those fugitive-type emission sources subject only to an opacity 
standard).
    (c) The opacity standards set forth in this part shall apply at all 
times except during periods of startup, shutdown, malfunction, and as 
otherwise provided in the applicable standard.
    (d) At all times, including periods of startup, shutdown, and 
malfunction, owners and operators shall, to the extent practicable, 
maintain and operate any affected facility including associated air 
pollution control equipment in

[[Page 42]]

a manner consistent with good air pollution control practice for 
minimizing emissions. Determination of whether acceptable operating and 
maintenance procedures are being used will be based on information 
available to the Administrator which may include, but is not limited to, 
monitoring results, opacity observations, review of operating and 
maintenance procedures, and inspection of the source.
    (e)(1) For the purpose of demonstrating initial compliance, opacity 
observations shall be conducted concurrently with the initial 
performance test required in Sec. 60.8 unless one of the following 
conditions apply. If no performance test under Sec. 60.8 is required, 
then opacity observations shall be conducted within 60 days after 
achieving the maximum production rate at which the affected facility 
will be operated but no later than 180 days after initial startup of the 
facility. If visibility or other conditions prevent the opacity 
observations from being conducted concurrently with the initial 
performance test required under Sec. 60.8, the source owner or operator 
shall reschedule the opacity observations as soon after the initial 
performance test as possible, but not later than 30 days thereafter, and 
shall advise the Administrator of the rescheduled date. In these cases, 
the 30-day prior notification to the Administrator required in 
Sec. 60.7(a)(6) shall be waived. The rescheduled opacity observations 
shall be conducted (to the extent possible) under the same operating 
conditions that existed during the initial performance test conducted 
under Sec. 60.8. The visible emissions observer shall determine whether 
visibility or other conditions prevent the opacity observations from 
being made concurrently with the initial performance test in accordance 
with procedures contained in Reference Method 9 of appendix B of this 
part. Opacity readings of portions of plumes which contain condensed, 
uncombined water vapor shall not be used for purposes of determing 
compliance with opacity standards. The owner or operator of an affected 
facility shall make available, upon request by the Administrator, such 
records as may be necessary to determine the conditions under which the 
visual observations were made and shall provide evidence indicating 
proof of current visible observer emission certification. Except as 
provided in paragraph (e)(5) of this section, the results of continuous 
monitoring by transmissometer which indicate that the opacity at the 
time visual observations were made was not in excess of the standard are 
probative but not conclusive evidence of the actual opacity of an 
emission, provided that the source shall meet the burden of proving that 
the instrument used meets (at the time of the alleged violation) 
Performance Specification 1 in appendix B of this part, has been 
properly maintained and (at the time of the alleged violation) that the 
resulting data have not been altered in any way.
    (2) Except as provided in paragraph (e)(3) of this section, the 
owner or operator of an affected facility to which an opacity standard 
in this part applies shall conduct opacity observations in accordance 
with paragraph (b) of this section, shall record the opacity of 
emissions, and shall report to the Administrator the opacity results 
along with the results of the initial performance test required under 
Sec. 60.8. The inability of an owner or operator to secure a visible 
emissions observer shall not be considered a reason for not conducting 
the opacity observations concurrent with the initial performance test.
    (3) The owner or operator of an affected facility to which an 
opacity standard in this part applies may request the Administrator to 
determine and to record the opacity of emissions from the affected 
facility during the initial performance test and at such times as may be 
required. The owner or operator of the affected facility shall report 
the opacity results. Any request to the Administrator to determine and 
to record the opacity of emissions from an affected facility shall be 
included in the notification required in Sec. 60.7(a)(6). If, for some 
reason, the Administrator cannot determine and record the opacity of 
emissions from the affected facility during the performance test, then 
the provisions of paragraph (e)(1) of this section shall apply.
    (4) An owner or operator of an affected facility using a continuous 
opacity monitor (transmissometer) shall

[[Page 43]]

record the monitoring data produced during the initial performance test 
required by Sec. 60.8 and shall furnish the Administrator a written 
report of the monitoring results along with Method 9 and Sec. 60.8 
performance test results.
    (5) An owner or operator of an affected facility subject to an 
opacity standard may submit, for compliance purposes, continuous opacity 
monitoring system (COMS) data results produced during any performance 
test required under Sec. 60.8 in lieu of Method 9 observation data. If 
an owner or operator elects to submit COMS data for compliance with the 
opacity standard, he shall notify the Administrator of that decision, in 
writing, at least 30 days before any performance test required under 
Sec. 60.8 is conducted. Once the owner or operator of an affected 
facility has notified the Administrator to that effect, the COMS data 
results will be used to determine opacity compliance during subsequent 
tests required under Sec. 60.8 until the owner or operator notifies the 
Administrator, in writing, to the contrary. For the purpose of 
determining compliance with the opacity standard during a performance 
test required under Sec. 60.8 using COMS data, the minimum total time of 
COMS data collection shall be averages of all 6-minute continuous 
periods within the duration of the mass emission performance test. 
Results of the COMS opacity determinations shall be submitted along with 
the results of the performance test required under Sec. 60.8. The owner 
or operator of an affected facility using a COMS for compliance purposes 
is responsible for demonstrating that the COMS meets the requirements 
specified in Sec. 60.13(c) of this part, that the COMS has been properly 
maintained and operated, and that the resulting data have not been 
altered in any way. If COMS data results are submitted for compliance 
with the opacity standard for a period of time during which Method 9 
data indicates noncompliance, the Method 9 data will be used to 
determine opacity compliance.
    (6) Upon receipt from an owner or operator of the written reports of 
the results of the performance tests required by Sec. 60.8, the opacity 
observation results and observer certification required by 
Sec. 60.11(e)(1), and the COMS results, if applicable, the Administrator 
will make a finding concerning compliance with opacity and other 
applicable standards. If COMS data results are used to comply with an 
opacity standard, only those results are required to be submitted along 
with the performance test results required by Sec. 60.8. If the 
Administrator finds that an affected facility is in compliance with all 
applicable standards for which performance tests are conducted in 
accordance with Sec. 60.8 of this part but during the time such 
performance tests are being conducted fails to meet any applicable 
opacity standard, he shall notify the owner or operator and advise him 
that he may petition the Administrator within 10 days of receipt of 
notification to make appropriate adjustment to the opacity standard for 
the affected facility.
    (7) The Administrator will grant such a petition upon a 
demonstration by the owner or operator that the affected facility and 
associated air pollution control equipment was operated and maintained 
in a manner to minimize the opacity of emissions during the performance 
tests; that the performance tests were performed under the conditions 
established by the Administrator; and that the affected facility and 
associated air pollution control equipment were incapable of being 
adjusted or operated to meet the applicable opacity standard.
    (8) The Administrator will establish an opacity standard for the 
affected facility meeting the above requirements at a level at which the 
source will be able, as indicated by the performance and opacity tests, 
to meet the opacity standard at all times during which the source is 
meeting the mass or concentration emission standard. The Administrator 
will promulgate the new opacity standard in the Federal Register.
    (f) Special provisions set forth under an applicable subpart shall 
supersede any conflicting provisions in paragraphs (a) through (e) of 
this section.
    (g) For the purpose of submitting compliance certifications or 
establishing whether or not a person has violated or is in violation of 
any standard in this part, nothing in this part shall

[[Page 44]]

preclude the use, including the exclusive use, of any credible evidence 
or information, relevant to whether a source would have been in 
compliance with applicable requirements if the appropriate performance 
or compliance test or procedure had been performed.
[38 FR 28565, Oct. 15, 1973, as amended at 39 FR 39873, Nov. 12, 1974; 
43 FR 8800, Mar. 3, 1978; 45 FR 23379, Apr. 4, 1980; 48 FR 48335, Oct. 
18, 1983; 50 FR 53113, Dec. 27, 1985; 51 FR 1790, Jan. 15, 1986; 52 FR 
9781, Mar. 26, 1987; 62 FR 8328, Feb. 24, 1997]



Sec. 60.12  Circumvention.

    No owner or operator subject to the provisions of this part shall 
build, erect, install, or use any article, machine, equipment or 
process, the use of which conceals an emission which would otherwise 
constitute a violation of an applicable standard. Such concealment 
includes, but is not limited to, the use of gaseous diluents to achieve 
compliance with an opacity standard or with a standard which is based on 
the concentration of a pollutant in the gases discharged to the 
atmosphere.
[39 FR 9314, Mar. 8, 1974]



Sec. 60.13  Monitoring requirements.

    (a) For the purposes of this section, all continuous monitoring 
systems required under applicable subparts shall be subject to the 
provisions of this section upon promulgation of performance 
specifications for continuous monitoring systems under appendix B to 
this part and, if the continuous monitoring system is used to 
demonstrate compliance with emission limits on a continuous basis, 
appendix F to this part, unless otherwise specified in an applicable 
subpart or by the Administrator. Appendix F is applicable December 4, 
1987.
    (b) All continuous monitoring systems and monitoring devices shall 
be installed and operational prior to conducting performance tests under 
Sec. 60.8. Verification of operational status shall, as a minimum, 
include completion of the manufacturer's written requirements or 
recommendations for installation, operation, and calibration of the 
device.
    (c) If the owner or operator of an affected facility elects to 
submit continous opacity monitoring system (COMS) data for compliance 
with the opacity standard as provided under Sec. 60.11(e)(5), he shall 
conduct a performance evaluation of the COMS as specified in Performance 
Specification 1, appendix B, of this part before the performance test 
required under Sec. 60.8 is conducted. Otherwise, the owner or operator 
of an affected facility shall conduct a performance evaluation of the 
COMS or continuous emission monitoring system (CEMS) during any 
performance test required under Sec. 60.8 or within 30 days thereafter 
in accordance with the applicable performance specification in appendix 
B of this part, The owner or operator of an affected facility shall 
conduct COMS or CEMS performance evaluations at such other times as may 
be required by the Administrator under section 114 of the Act.
    (1) The owner or operator of an affected facility using a COMS to 
determine opacity compliance during any performance test required under 
Sec. 60.8 and as described in Sec. 60.11(e)(5) shall furnish the 
Administrator two or, upon request, more copies of a written report of 
the results of the COMS performance evaluation described in paragraph 
(c) of this section at least 10 days before the performance test 
required under Sec. 60.8 is conducted.
    (2) Except as provided in paragraph (c)(1) of this section, the 
owner or operator of an affected facility shall furnish the 
Administrator within 60 days of completion two or, upon request, more 
copies of a written report of the results of the performance evaluation.
    (d)(1) Owners and operators of all continuous emission monitoring 
systems installed in accordance with the provisions of this part shall 
check the zero (or low-level value between 0 and 20 percent of span 
value) and span (50 to 100 percent of span value) calibration drifts at 
least once daily in accordance with a written procedure. The zero and 
span shall, as a minimum, be adjusted whenever the 24-hour zero drift or 
24-hour span drift exceeds two times the limits of the applicable 
performance specifications in appendix B. The system must allow the 
amount of excess zero and span drift measured at

[[Page 45]]

the 24-hour interval checks to be recorded and quantified, whenever 
specified. For continuous monitoring systems measuring opacity of 
emissions, the optical surfaces exposed to the effluent gases shall be 
cleaned prior to performing the zero and span drift adjustments except 
that for systems using automatic zero adjustments. The optical surfaces 
shall be cleaned when the cumulative automatic zero compensation exceeds 
4 percent opacity.
    (2) Unless otherwise approved by the Administrator, the following 
procedures shall be followed for continuous monitoring systems measuring 
opacity of emissions. Minimum procedures shall include a method for 
producing a simulated zero opacity condition and an upscale (span) 
opacity condition using a certified neutral density filter or other 
related technique to produce a known obscuration of the light beam. Such 
procedures shall provide a system check of the analyzer internal optical 
surfaces and all electronic circuitry including the lamp and 
photodetector assembly.
    (e) Except for system breakdowns, repairs, calibration checks, and 
zero and span adjustments required under paragraph (d) of this section, 
all continuous monitoring systems shall be in continuous operation and 
shall meet minimum frequency of operation requirements as follows:
    (1) All continuous monitoring systems referenced by paragraph (c) of 
this section for measuring opacity of emissions shall complete a minimum 
of one cycle of sampling and analyzing for each successive 10-second 
period and one cycle of data recording for each successive 6-minute 
period.
    (2) All continuous monitoring systems referenced by paragraph (c) of 
this section for measuring emissions, except opacity, shall complete a 
minimum of one cycle of operation (sampling, analyzing, and data 
recording) for each successive 15-minute period.
    (f) All continuous monitoring systems or monitoring devices shall be 
installed such that representative measurements of emissions or process 
parameters from the affected facility are obtained. Additional 
procedures for location of continuous monitoring systems contained in 
the applicable Performance Specifications of appendix B of this part 
shall be used.
    (g) When the effluents from a single affected facility or two or 
more affected facilities subject to the same emission standards are 
combined before being released to the atmosphere, the owner or operator 
may install applicable continuous monitoring systems on each effluent or 
on the combined effluent. When the affected facilities are not subject 
to the same emission standards, separate continuous monitoring systems 
shall be installed on each effluent. When the effluent from one affected 
facility is released to the atmosphere through more than one point, the 
owner or operator shall install an applicable continuous monitoring 
system on each separate effluent unless the installation of fewer 
systems is approved by the Administrator. When more than one continuous 
monitoring system is used to measure the emissions from one affected 
facility (e.g., multiple breechings, multiple outlets), the owner or 
operator shall report the results as required from each continuous 
monitoring system.
    (h) Owners or operators of all continuous monitoring systems for 
measurement of opacity shall reduce all data to 6-minute averages and 
for continuous monitoring systems other than opacity to 1-hour averages 
for time periods as defined in Sec. 60.2. Six-minute opacity averages 
shall be calculated from 36 or more data points equally spaced over each 
6-minute period. For continuous monitoring systems other than opacity, 
1-hour averages shall be computed from four or more data points equally 
spaced over each 1-hour period. Data recorder during periods of 
continuous monitoring system breakdowns, repairs, calibration checks, 
and zero and span adjustments shall not be included in the data averages 
computed under this paragraph. An arithmetic or integrated average of 
all data may be used. The data may be recorded in reduced or nonreduced 
form (e.g., ppm pollutant and percent O2 or ng/J of 
pollutant). All excess emissions shall be converted into units of the 
standard using the applicable conversion procedures specified in 
subparts. After conversion into units of the standard, the data may be

[[Page 46]]

rounded to the same number of significant digits as used in the 
applicable subparts to specify the emission limit (e.g., rounded to the 
nearest 1 percent opacity).
    (i) After receipt and consideration of written application, the 
Administrator may approve alternatives to any monitoring procedures or 
requirements of this part including, but not limited to the following:
    (1) Alternative monitoring requirements when installation of a 
continuous monitoring system or monitoring device specified by this part 
would not provide accurate measurements due to liquid water or other 
interferences caused by substances with the effluent gases.
    (2) Alternative monitoring requirements when the affected facility 
is infrequently operated.
    (3) Alternative monitoring requirements to accommodate continuous 
monitoring systems that require additional measurements to correct for 
stack moisture conditions.
    (4) Alternative locations for installing continuous monitoring 
systems or monitoring devices when the owner or operator can demonstrate 
that installation at alternate locations will enable accurate and 
representative measurements.
    (5) Alternative methods of converting pollutant concentration 
measurements to units of the standards.
    (6) Alternative procedures for performing daily checks of zero and 
span drift that do not involve use of span gases or test cells.
    (7) Alternatives to the A.S.T.M. test methods or sampling procedures 
specified by any subpart.
    (8) Alternative continuous monitoring systems that do not meet the 
design or performance requirements in Performance Specification 1, 
appendix B, but adequately demonstrate a definite and consistent 
relationship between its measurements and the measurements of opacity by 
a system complying with the requirements in Performance Specification 1. 
The Administrator may require that such demonstration be performed for 
each affected facility.
    (9) Alternative monitoring requirements when the effluent from a 
single affected facility or the combined effluent from two or more 
affected facilities are released to the atmosphere through more than one 
point.
    (j) An alternative to the relative accuracy test specified in 
Performance Specification 2 of appendix B may be requested as follows:
    (1) An alternative to the reference method tests for determining 
relative accuracy is available for sources with emission rates 
demonstrated to be less than 50 percent of the applicable standard. A 
source owner or operator may petition the Administrator to waive the 
relative accuracy test in section 7 of Performance Specification 2 and 
substitute the procedures in section 10 if the results of a performance 
test conducted according to the requirements in Sec. 60.8 of this 
subpart or other tests performed following the criteria in Sec. 60.8 
demonstrate that the emission rate of the pollutant of interest in the 
units of the applicable standard is less than 50 percent of the 
applicable standard. For sources subject to standards expressed as 
control efficiency levels, a source owner or operator may petition the 
Administrator to waive the relative accuracy test and substitute the 
procedures in section 10 of Performance Specification 2 if the control 
device exhaust emission rate is less than 50 percent of the level needed 
to meet the control efficiency requirement. The alternative procedures 
do not apply if the continuous emission monitoring system is used to 
determine compliance continuously with the applicable standard. The 
petition to waive the relative accuracy test shall include a detailed 
description of the procedures to be applied. Included shall be location 
and procedure for conducting the alternative, the concentration or 
response levels of the alternative RA materials, and the other equipment 
checks included in the alternative procedure. The Administrator will 
review the petition for completeness and applicability. The 
determination to grant a waiver will depend on the intended use of the 
CEMS data (e.g., data collection purposes other than NSPS) and may 
require specifications more stringent than in Performance Specification 
2 (e.g., the applicable emission limit is more stringent than NSPS).

[[Page 47]]

    (2) The waiver of a CEMS relative accuracy test will be reviewed and 
may be rescinded at such time following successful completion of the 
alternative RA procedure that the CEMS data indicate the source 
emissions approaching the level of the applicable standard. The 
criterion for reviewing the waiver is the collection of CEMS data 
showing that emissions have exceeded 70 percent of the applicable 
standard for seven, consecutive, averaging periods as specified by the 
applicable regulation(s). For sources subject to standards expressed as 
control efficiency levels, the criterion for reviewing the waiver is the 
collection of CEMS data showing that exhaust emissions have exceeded 70 
percent of the level needed to meet the control efficiency requirement 
for seven, consecutive, averaging periods as specified by the applicable 
regulation(s) [e.g., Sec. 60.45(g) (2) and (3), Sec. 60.73(e), and 
Sec. 60.84(e)]. It is the responsibility of the source operator to 
maintain records and determine the level of emissions relative to the 
criterion on the waiver of relative accuracy testing. If this criterion 
is exceeded, the owner or operator must notify the Administrator within 
10 days of such occurrence and include a description of the nature and 
cause of the increasing emissions. The Administrator will review the 
notification and may rescind the waiver and require the owner or 
operator to conduct a relative accuracy test of the CEMS as specified in 
section 7 of Performance Specification 2.
[40 FR 46255, Oct. 6, 1975; 40 FR 59205, Dec. 22, 1975, as amended at 41 
FR 35185, Aug. 20, 1976; 48 FR 13326, Mar. 30, 1983; 48 FR 23610, May 
25, 1983; 48 FR 32986, July 20, 1983; 52 FR 9782, Mar. 26, 1987; 52 FR 
17555, May 11, 1987; 52 FR 21007, June 4, 1987]



Sec. 60.14  Modification.

    (a) Except as provided under paragraphs (e) and (f) of this section, 
any physical or operational change to an existing facility which results 
in an increase in the emission rate to the atmosphere of any pollutant 
to which a standard applies shall be considered a modification within 
the meaning of section 111 of the Act. Upon modification, an existing 
facility shall become an affected facility for each pollutant to which a 
standard applies and for which there is an increase in the emission rate 
to the atmosphere.
    (b) Emission rate shall be expressed as kg/hr of any pollutant 
discharged into the atmosphere for which a standard is applicable. The 
Administrator shall use the following to determine emission rate:
    (1) Emission factors as specified in the latest issue of 
``Compilation of Air Pollutant Emission Factors,'' EPA Publication No. 
AP-42, or other emission factors determined by the Administrator to be 
superior to AP-42 emission factors, in cases where utilization of 
emission factors demonstrate that the emission level resulting from the 
physical or operational change will either clearly increase or clearly 
not increase.
    (2) Material balances, continuous monitor data, or manual emission 
tests in cases where utilization of emission factors as referenced in 
paragraph (b)(1) of this section does not demonstrate to the 
Administrator's satisfaction whether the emission level resulting from 
the physical or operational change will either clearly increase or 
clearly not increase, or where an owner or operator demonstrates to the 
Administrator's satisfaction that there are reasonable grounds to 
dispute the result obtained by the Administrator utilizing emission 
factors as referenced in paragraph (b)(1) of this section. When the 
emission rate is based on results from manual emission tests or 
continuous monitoring systems, the procedures specified in appendix C of 
this part shall be used to determine whether an increase in emission 
rate has occurred. Tests shall be conducted under such conditions as the 
Administrator shall specify to the owner or operator based on 
representative performance of the facility. At least three valid test 
runs must be conducted before and at least three after the physical or 
operational change. All operating parameters which may affect emissions 
must be held constant to the maximum feasible degree for all test runs.
    (c) The addition of an affected facility to a stationary source as 
an expansion to that source or as a replacement for an existing facility 
shall not by

[[Page 48]]

itself bring within the applicability of this part any other facility 
within that source.
    (d) [Reserved]
    (e) The following shall not, by themselves, be considered 
modifications under this part:
    (1) Maintenance, repair, and replacement which the Administrator 
determines to be routine for a source category, subject to the 
provisions of paragraph (c) of this section and Sec. 60.15.
    (2) An increase in production rate of an existing facility, if that 
increase can be accomplished without a capital expenditure on that 
facility.
    (3) An increase in the hours of operation.
    (4) Use of an alternative fuel or raw material if, prior to the date 
any standard under this part becomes applicable to that source type, as 
provided by Sec. 60.1, the existing facility was designed to accommodate 
that alternative use. A facility shall be considered to be designed to 
accommodate an alternative fuel or raw material if that use could be 
accomplished under the facility's construction specifications as amended 
prior to the change. Conversion to coal required for energy 
considerations, as specified in section 111(a)(8) of the Act, shall not 
be considered a modification.
    (5) The addition or use of any system or device whose primary 
function is the reduction of air pollutants, except when an emission 
control system is removed or is replaced by a system which the 
Administrator determines to be less environmentally beneficial.
    (6) The relocation or change in ownership of an existing facility.
    (f) Special provisions set forth under an applicable subpart of this 
part shall supersede any conflicting provisions of this section.
    (g) Within 180 days of the completion of any physical or operational 
change subject to the control measures specified in paragraph (a) of 
this section, compliance with all applicable standards must be achieved.
    (h) No physical change, or change in the method of operation, at an 
existing electric utility steam generating unit shall be treated as a 
modification for the purposes of this section provided that such change 
does not increase the maximum hourly emissions of any pollutant 
regulated under this section above the maximum hourly emissions 
achievable at that unit during the 5 years prior to the change.
    (i) Repowering projects that are awarded funding from the Department 
of Energy as permanent clean coal technology demonstration projects (or 
similar projects funded by EPA) are exempt from the requirements of this 
section provided that such change does not increase the maximum hourly 
emissions of any pollutant regulated under this section above the 
maximum hourly emissions achievable at that unit during the five years 
prior to the change.
    (j)(1) Repowering projects that qualify for an extension under 
section 409(b) of the Clean Air Act are exempt from the requirements of 
this section, provided that such change does not increase the actual 
hourly emissions of any pollutant regulated under this section above the 
actual hourly emissions achievable at that unit during the 5 years prior 
to the change.
    (2) This exemption shall not apply to any new unit that:
    (i) Is designated as a replacement for an existing unit;
    (ii) Qualifies under section 409(b) of the Clean Air Act for an 
extension of an emission limitation compliance date under section 405 of 
the Clean Air Act; and
    (iii) Is located at a different site than the existing unit.
    (k) The installation, operation, cessation, or removal of a 
temporary clean coal technology demonstration project is exempt from the 
requirements of this section. A temporary clean coal control technology 
demonstration project, for the purposes of this section is a clean coal 
technology demonstration project that is operated for a period of 5 
years or less, and which complies with the State implementation plan for 
the State in which the project is located and other requirements 
necessary to attain and maintain the national ambient air quality 
standards during the project and after it is terminated.

[[Page 49]]

    (l) The reactivation of a very clean coal-fired electric utility 
steam generating unit is exempt from the requirements of this section.
[40 FR 58419, Dec. 16, 1975, amended at 43 FR 34347, Aug. 3, 1978; 45 FR 
5617, Jan. 23, 1980; 57 FR 32339, July 21, 1992]



Sec. 60.15  Reconstruction.

    (a) An existing facility, upon reconstruction, becomes an affected 
facility, irrespective of any change in emission rate.
    (b) ``Reconstruction'' means the replacement of components of an 
existing facility to such an extent that:
    (1) The fixed capital cost of the new components exceeds 50 percent 
of the fixed capital cost that would be required to construct a 
comparable entirely new facility, and
    (2) It is technologically and economically feasible to meet the 
applicable standards set forth in this part.
    (c) ``Fixed capital cost'' means the capital needed to provide all 
the depreciable components.
    (d) If an owner or operator of an existing facility proposes to 
replace components, and the fixed capital cost of the new components 
exceeds 50 percent of the fixed capital cost that would be required to 
construct a comparable entirely new facility, he shall notify the 
Administrator of the proposed replacements. The notice must be 
postmarked 60 days (or as soon as practicable) before construction of 
the replacements is commenced and must include the following 
information:
    (1) Name and address of the owner or operator.
    (2) The location of the existing facility.
    (3) A brief description of the existing facility and the components 
which are to be replaced.
    (4) A description of the existing air pollution control equipment 
and the proposed air pollution control equipment.
    (5) An estimate of the fixed capital cost of the replacements and of 
constructing a comparable entirely new facility.
    (6) The estimated life of the existing facility after the 
replacements.
    (7) A discussion of any economic or technical limitations the 
facility may have in complying with the applicable standards of 
performance after the proposed replacements.
    (e) The Administrator will determine, within 30 days of the receipt 
of the notice required by paragraph (d) of this section and any 
additional information he may reasonably require, whether the proposed 
replacement constitutes reconstruction.
    (f) The Administrator's determination under paragraph (e) shall be 
based on:
    (1) The fixed capital cost of the replacements in comparison to the 
fixed capital cost that would be required to construct a comparable 
entirely new facility;
    (2) The estimated life of the facility after the replacements 
compared to the life of a comparable entirely new facility;
    (3) The extent to which the components being replaced cause or 
contribute to the emissions from the facility; and
    (4) Any economic or technical limitations on compliance with 
applicable standards of performance which are inherent in the proposed 
replacements.
    (g) Individual subparts of this part may include specific provisions 
which refine and delimit the concept of reconstruction set forth in this 
section.
[40 FR 58420, Dec. 16, 1975]



Sec. 60.16  Priority list.

                   Prioritized Major Source Categories
------------------------------------------------------------------------
      Priority Number \1\                    Source Category
------------------------------------------------------------------------
1.                              Synthetic Organic Chemical Manufacturing
                                 Industry (SOCMI) and Volatile Organic
                                 Liquid Storage Vessels and Handling
                                 Equipment
                                (a) SOCMI unit processes
                                (b) Volatile organic liquid (VOL)
                                 storage vessels and handling equipment
                                (c) SOCMI fugitive sources
                                (d) SOCMI secondary sources
2.                              Industrial Surface Coating: Cans
3.                              Petroleum Refineries: Fugitive Sources
4.                              Industrial Surface Coating: Paper
5.                              Dry Cleaning
                                (a) Perchloroethylene
                                (b) Petroleum solvent
6.                              Graphic Arts
7.                              Polymers and Resins: Acrylic Resins
8.                              Mineral Wool (Deleted)
9.                              Stationary Internal Combustion Engines
10.                             Industrial Surface Coating: Fabric
11.                             Industrial-Commercial-Institutional
                                 Steam Generating Units.

[[Page 50]]

 
12.                             Incineration: Non-Municipal (Deleted)
13.                             Non-Metallic Mineral Processing
14.                             Metallic Mineral Processing
15.                             Secondary Copper (Deleted)
16.                             Phosphate Rock Preparation
17.                             Foundries: Steel and Gray Iron
18.                             Polymers and Resins: Polyethylene
19.                             Charcoal Production
20.                             Synthetic Rubber
                                (a) Tire manufacture
                                (b) SBR production
21.                             Vegetable Oil
22.                             Industrial Surface Coating: Metal Coil
23.                             Petroleum Transportation and Marketing
24.                             By-Product Coke Ovens
25.                             Synthetic Fibers
26.                             Plywood Manufacture
27.                             Industrial Surface Coating: Automobiles
28.                             Industrial Surface Coating: Large
                                 Appliances
29.                             Crude Oil and Natural Gas Production
30.                             Secondary Aluminum
31.                             Potash (Deleted)
32.                             Lightweight Aggregate Industry: Clay,
                                 Shale, and Slate \2\
33.                             Glass
34.                             Gypsum
35.                             Sodium Carbonate
36.                             Secondary Zinc (Deleted)
37.                             Polymers and Resins: Phenolic
38.                             Polymers and Resins: Urea-Melamine
39.                             Ammonia (Deleted)
40.                             Polymers and Resins: Polystyrene
41.                             Polymers and Resins: ABS-SAN Resins
42.                             Fiberglass
43.                             Polymers and Resins: Polypropylene
44.                             Textile Processing
45.                             Asphalt Processing and Asphalt Roofing
                                 Manufacture
46.                             Brick and Related Clay Products
47.                             Ceramic Clay Manufacturing (Deleted)
48.                             Ammonium Nitrate Fertilizer
49.                             Castable Refractories (Deleted)
50.                             Borax and Boric Acid (Deleted)
51.                             Polymers and Resins: Polyester Resins
52.                             Ammonium Sulfate
53.                             Starch
54.                             Perlite
55.                             Phosphoric Acid: Thermal Process
                                 (Deleted)
56.                             Uranium Refining
57.                             Animal Feed Defluorination (Deleted)
58.                             Urea (for fertilizer and polymers)
59.                             Detergent (Deleted)
 
                         Other Source Categories
 
Lead acid battery manufacture \3\
Organic solvent cleaning \3\
Industrial surface coating: metal furniture \3\
Stationary gas turbines \4\
Municipal solid waste landfills \4\
------------------------------------------------------------------------
\1\ Low numbers have highest priority, e.g., No. 1 is high priority, No.
  59 is low priority.
\2\ Formerly titled ``Sintering: Clay and Fly Ash''.
\3\ Minor source category, but included on list since an NSPS is being
  developed for that source category.
\4\ Not prioritized, since an NSPS for this major source category has
  already been promulgated.

[47 FR 951, Jan. 8, 1982, as amended at 47 FR 31876, July 23, 1982; 51 
FR 42796, Nov. 25, 1986; 52 FR 11428, Apr. 8, 1987; 61 FR 9919, Mar. 12, 
1996]



Sec. 60.17  Incorporations by reference.

    The materials listed below are incorporated by reference in the 
corresponding sections noted. These incorporations by reference were 
approved by the Director of the Federal Register on the date listed. 
These materials are incorporated as they exist on the date of the 
approval, and a notice of any change in these materials will be 
published in the Federal Register. The materials are available for 
purchase at the corresponding address noted below, and all are available 
for inspection at the Office of the Federal Register, 800 North Capitol 
Street, NW., suite 700, Washington, DC and at the Library (MD-35), U.S. 
EPA, Research Triangle Park, NC.
    (a) The following materials are available for purchase from at least 
one of the following addresses: American Society for Testing and 
Materials (ASTM), 1916 Race Street, Philadelphia, Pennsylvania 19103; or 
the University Microfilms International, 300 North Zeeb Road, Ann Arbor, 
MI 48106.

    (1) ASTM D388-77, Standard Specification for Classification of Coals 
by Rank, incorporation by reference (IBR) approved for Secs. 60.41(f); 
60.45(f)(4)(i), (ii), (vi); 60.41a; 60.41b; 60.41c; 60.25(b), (c).
    (2) ASTM D3178-73, Standard Test Methods for Carbon and Hydrogen in 
the Analysis Sample of Coal and Coke, IBR approved January 27, 1983 for 
Sec. 60.45(f)(5)(i).
    (3) ASTM D3176-74, Standard Method for Ultimate Analysis of Coal and 
Coke, IBR approved January 27, 1983, for Sec. 60.45(f)(5)(i); appendix A 
to part 60, Method 19.
    (4) ASTM D1137-53 (Reapproved 1975), Standard Method for Analysis of 
Natural Gases and Related Types of Gaseous Mixtures by the Mass 
Spectrometer, IBR approved January 27, 1983 for Sec. 60.45(f)(5)(i).
    (5) ASTM D1945-64 (Reapproved 1976), Standard Method for Analysis of 
Natural Gas by Gas Chromatography, IBR approved January 27, 1983 for 
Sec. 60.45(f)(5)(i).
    (6) ASTM D1946-77, Standard Method for Analysis of Reformed Gas by 
Gas Chromatography, IBR approved for Secs. 60.45(f)(5)(i), 
60.18(c)(3)(i), 60.18(f), 60.614(d)(2)(ii), 60.614(d)(4), 
60.664(d)(2)(ii), 60.664(d)(4), 60.564(f), 60.704(d)(2)(ii) and 
60.704(d)(4).
    (7) ASTM D2015-77, Standard Test Method for Gross Calorific Value of 
Solid Fuel by the Adiabatic Bomb Calorimeter, IBR approved

[[Page 51]]

January 27, 1983 for Sec. 60.45(f)(5)(ii); Sec. 60.46(g); appendix A to 
part 60, Method 19.
    (8) ASTM D1826-77, Standard Test Method for Calorific Value of Gases 
in Natural Gas Range by Continuous Recording Calorimeter, IBR approved 
January 27, 1983, for Secs. 60.45(f)(5)(ii); 60.46(g); 60.296(f); 
appendix A to part 60, Method 19.
    (9) ASTM D240-76, Standard Test Method for Heat of Combustion of 
Liquid Hydrocarbon Fuels by Bomb Calorimeter, IBR approved January 27, 
1983, for Sec. 60.46(g); 60.296(f); appendix A to part 60, Method 19.
    (10) ASTM D396-78, Standard Specification for Fuel Oils, IBR 
approved for Secs. 60.40b; 60.41b; 60.41c; 60.111(b); 60.111a(b).
    (11) ASTM D2880-78, Standard Specification for Gas Turbine Fuel 
Oils, IBR approved January 27, 1983 for Secs. 60.111(b), 60.111a(b), 
60.335(b)(2).
    (12) ASTM D975-78, Standard Specification for Diesel Fuel Oils, IBR 
approved January 27, 1983 for Secs. 60.111(b), 60.111a(b).
    (13) ASTM D323-82, Test Method for Vapor Pressure of Petroleum 
Products (Reid Method), IBR approved April 8, 1987 for Secs. 60.111(1), 
60.111a(g), 60.111b(g), and 60.116b(f)(2)(ii).
    (14) ASTM A99-76, Standard Specification for Ferromanganese, IBR 
approved January 27, 1983 for Sec. 60.261.
    (15) ASTM A483-64 (Reapproved 1974), Standard Specification for 
Silicomanganese, IBR approved January 27, 1983 for Sec. 60.261.
    (16) ASTM A101-73, Standard Specification for Ferrochromium, IBR 
approved January 27, 1983 for Sec. 60.261.
    (17) ASTM A100-69 (Reapproved 1974), Standard Specification for 
Ferrosilicon, IBR approved January 27, 1983 for Sec. 60.261.
    (18) ASTM A482-76, Standard Specification for Ferrochromesilicon, 
IBR approved January 27, 1983 for Sec. 60.261.
    (19) ASTM A495-76, Standard Specification for Calcium-Silicon and 
Calcium Manganese-Silicon, IBR approved January 27, 1983 for 
Sec. 60.261.
    (20) ASTM D 1072-80, Standard Method for Total Sulfur in Fuel Gases, 
IBR approved July 31, 1984 for Sec. 60.335(b)(2).
    (21) ASTM D2986-71 (Reapproved 1978), Standard Method for Evaluation 
of Air, Assay Media by the Monodisperse DOP (Dioctyl Phthalate) Smoke 
Test, IBR approved January 27, 1983 for appendix A to part 60, Method 5, 
par. 3.1.1; Method 12, par. 4.1.1; Method 17, par. 3.1.1.
    (22) ASTM D 1193-77, Standard Specification for Reagent Water, for 
appendix A to part 60, Method 6, par. 3.1.1; Method 7, par. 3.2.2; 
Method 7C, par. 3.1.1; Method 7D, par. 3.1.1; Method 8, par. 3.1.3; 
Method 12, par. 4.1.3; Method 25D, par. 3.2.2.4; Method 26A, par. 3.1.1; 
Method 29, pars. 4.2.2., 4.4.2., and 4.5.6.; Method 14A, par. 7.1.
    (23) [Reserved]
    (24) ASTM D2234-76, Standard Methods for Collection of a Gross 
Sample of Coal, IBR approved January 27, 1983, for appendix A to part 
60, Method 19.
    (25) ASTM D3173-73, Standard Test Method for Moisture in the 
Analysis Sample of Coal and Coke, IBR approved January 27, 1983, for 
appendix A to part 60, Method 19.
    (26) ASTM D3177-75, Standard Test Methods for Total Sulfur in the 
Analysis Sample of Coal and Coke, IBR approved January 27, 1983, for 
appendix A to part 60, Method 19.
    (27) ASTM D2013-72, Standard Method of Preparing Coal Samples for 
Analysis, IBR approved January 27, 1983, for appendix A to part 60, 
Method 19.
    (28) ASTM D270-65 (Reapproved 1975), Standard Method of Sampling 
Petroleum and Petroleum Products, IBR approved January 27, 1983, for 
appendix A to part 60, Method 19.
    (29) ASTM D737-85, Standard Test Method for Air Permeability of 
Textile Fabrics, IBR approved January 27, 1983 for Sec. 61.23(a).
    (30) ASTM D1475-60 (Reapproved 1980), Standard Test Method for 
Density of Paint, Varnish, Lacquer, and Related Products, IBR approved 
January 27, 1983 for Sec. 60.435(d)(1), appendix A to part 60, Method 
24, par. 2.1, and Method 24A, par. 2.2.
    (31) ASTM D2369-81, Standard Test Method for Volatile Content of 
Coatings, IBR approved January 27, 1983 for appendix A to part 60, 
Method 24.
    (32) ASTM D3792-79, Standard Method for Water Content of Water-
Reducible Paints by Direct Injection Into a Gas Chromatograph, IBR 
approved January 27, 1983 for appendix A to part 60, Method 24, par. 
2.3.
    (33) ASTM D4017-81, Standard Test Method for Water in Paints and 
Paint Materials by the Karl Fischer Titration Method, IBR approved 
January 27, 1983 for appendix A to part 60, Method 24, par. 2.4.
    (34) ASTM E169-63 (Reapproved 1977), General Techniques of 
Ultraviolet Quantitative Analysis, IBR approved for Sec. 60.485(d), 
Sec. 60.593(b), and Sec. 60.632(f).
    (35) ASTM E168-67 (Reapproved 1977), General Techniques of Infrared 
Quantitative Analysis, IBR approved for Sec. 60.485(d), Sec. 60.593(b), 
and Sec. 60.632(f).
    (36) ASTM E260-73, General Gas Chromatography Procedures, IBR 
approved for Sec. 60.485(d), Sec. 60.593(b), and Sec. 60.632(f).
    (37) ASTM D2879-83, Test Method for Vapor Pressure--Temperature 
Relationship and Initial Decomposition Temperature of Liquids by 
Isoteniscope, IBR approved April 8, 1987 for Secs. 60.485(e), 
60.111b(f)(3), 60.116b(e)(3)(ii), and 60.116b(f)(2)(i).
    (38) ASTM D2382-76, Heat of Combustion of Hydrocarbon Fuels by Bomb 
Calorimeter [High-Precision Method], IBR approved for Secs. 60.18(f), 
60.485(g), 60.614(d)(4), 60.664(d)(4), and 60.564(f), and 60.704(d)(4).

[[Page 52]]

    (39) ASTM D2504-67 (Reapproved 1977), Noncondensable Gases in 
C3 and Lighter Hydrocarbon Products by Gas Chromatography, 
IBR approved for Sec. 60.485(g).
    (40) ASTM D86-78, Distillation of Petroleum Products, IBR approved 
for Sec. 60.593(d), Sec. 60.633(h), and Sec. 60.562-2(d).
    (41) [Reserved]
    (42) ASTM D 3031-81, Standard Test Method for Total Sulfur in 
Natural Gas by Hydrogenation, IBR approved July 31, 1984 for 
Sec. 60.335(b)(2).
    (43) ASTM D 4084-82, Standard Method for Analysis of Hydrogen 
Sulfide in Gaseous Fuels (Lead Acetate Reaction Rate Method), IBR 
approved July 31, 1984 for Sec. 60.335(b)(2).
    (44) ASTM D 3246-81, Standard Method for Sulfur in Petroleum Gas by 
Oxidative Microcoulometry, IBR approved July 31, 1984 for 
Sec. 60.335(b)(2).
    (45) ASTM D2584-68, Standard Test Method for Ignition Loss of Cured 
Reinforced Resins, IBR approved February 25, 1985 for Sec. 60.685(e).
    (46) ASTM D3431-80, Standard Test Method for Trace Nitrogen in 
Liquid Petroleum Hydrocarbons (Microcoulometric Method), IBR approved 
November 25, 1986, for appendix A to part 60, Method 19.
    (47) ASTM D129-64 (reapproved 1978), Standard Test Method for Sulfur 
in Petroleum Products (General Bomb Method), IBR approved for appendix A 
to part 60, Method 19.
    (48) ASTM D1552-83, Standard Test Method for Sulfur in Petroleum 
Products (High Temperature Method), IBR approved for appendix A to part 
60, Method 19.
    (49) ASTM D1835-86, Standard Specification for Liquefied Petroleum 
(LP) Gases, to be approved for Sec. 60.41b.
    (50) ASTM D1835-86, Standard Specification for Liquefied Petroleum 
(LP) Gases, IBR approved for Secs. 60.41b; 60.41c.
    (51) ASTM D4057-81, Standard Practice for Manual Sampling of 
Petroleum and Petroleum Products, IBR approved for appendix A to part 
60, Method 19.
    (52) ASTM D4239-85, Standard Test Methods for Sulfur in the Analysis 
Sample of Coal and Coke Using High Temperature Tube Furnace Combustion 
Methods, IBR approved for appendix A to part 60, Method 19.
    (53) ASTM D2016-74 (Reapproved 1983), Standard Test Methods for 
Moisture Content of Wood * * * for appendix A, Method 28.
    (54) ASTM D4442-84, Standard Test Methods for Direct Moisture 
Content Measurement in Wood and Wood-base Materials * * * for appendix 
A, Method 28.
    (55)  [Reserved]
    (56) ASTM D129-64 (Reapproved 1978), Standard Test Method for Sulfur 
in Petroleum Products (General Bomb Method), IBR approved August 17, 
1989, for Sec. 60.106(j)(2).
    (57) ASTM D1552-83, Standard Test Method for Sulfur in Petroleum 
Products (High-Temperature Method), IBR approved August 17, 1989, for 
Sec. 60.106(j)(2).
    (58) ASTM D2622-87, Standard Test Method for Sulfur in Petroleum 
Products by X-Ray Spectrometry, IBR approved August 17, 1989, for 
Sec. 60.106(j)(2).
    (59) ASTM D1266-87, Standard Test Method for Sulfur in Petroleum 
Products (Lamp Method), IBR approved August 17, 1989, for 
Sec. 60.106(j)(2).
    (60) ASTM D2908-74, Standard Practice for Measuring Volatile Organic 
Matter in Water by Aqueous-Injection Gas Chromatography, IBR approved 
for Sec. 60.564(j).
    (61) ASTM D3370-76, Standard Practices for Sampling Water, IBR 
approved for Sec. 60.564(j).
    (62) ASTM D4457-85 Test Method for Determination of Dichloromethane 
and 1,1,1-Trichloroethane in Paints and Coatings by Direct Injection 
into a Gas Chromatograph, IBR approved for appendix A, Method 24.
    (63) ASTM D 5403-93 Standard Test Methods for Volatile Content of 
Radiation Curable Materials. IBR approved September 11, 1995 for Method 
24 of Appendix A.

    (b) The following material is available for purchase from the 
Association of Official Analytical Chemists, 1111 North 19th Street, 
Suite 210, Arlington, VA 22209.

    (1) AOAC Method 9, Official Methods of Analysis of the Association 
of Official Analytical Chemists, 11th edition, 1970, pp. 11-12, IBR 
approved January 27, 1983 for Secs. 60.204(d)(2), 60.214(d)(2), 
60.224(d)(2), 60.234(d)(2).

    (c) The following material is available for purchase from the 
American Petroleum Institute, 1220 L Street NW., Washington, DC 20005.

    (1) API Publication 2517, Evaporation Loss from External Floating 
Roof Tanks, Second Edition, February 1980, IBR approved January 27, 
1983, for Secs. 60.111(i), 60.111a(f), 60.111a(f)(1) and 
60.116b(e)(2)(i).

    (d) The following material is available for purchase from the 
Technical Association of the Pulp and Paper Industry (TAPPI), Dunwoody 
Park, Atlanta, GA 30341.

    (1) TAPPI Method T624 os-68, IBR approved January 27, 1983 for 
Sec. 60.285(d)(4).

    (e) The following material is available for purchase from the Water 
Pollution Control Federation (WPCF), 2626 Pennsylvania Avenue NW., 
Washington, DC 20037.

    (1) Method 209A, Total Residue Dried at 103-105 + C, in 
Standard Methods for the Examination of Water and Wastewater, 15th

[[Page 53]]

Edition, 1980, IBR approved February 25, 1985 for Sec. 60.683(b).

    (f) The following material is available for purchase from the 
following address: Underwriter's Laboratories, Inc. (UL), 333 Pfingsten 
Road, Northbrook, IL 60062.

    (1) UL 103, Sixth Edition revised as of September 3, 1986, Standard 
for Chimneys, Factory-built, Residential Type and Building Heating 
Appliance.

    (g) The following material is available for purchase from the 
following address: West Coast Lumber Inspection Bureau, 6980 SW. Barnes 
Road, Portland, OR 97223.

    (1) West Coast Lumber Standard Grading Rules No. 16, pages 5-21 and 
90 and 91, September 3, 1970, revised 1984.

    (h) The following material is available for purchase from the 
American Society of Mechanical Engineers (ASME), 345 East 47th Street, 
New York, NY 10017.

    (1) ASME QRO-1-1994, Standard for the Qualification and 
Certification of Resource Recovery Facility Operators, IBR approved for 
Secs. 60.56a, 60.54b(a), and 60.54b(b).
    (2) ASME PTC 4.1-1964 (Reaffirmed 1991), Power Test Codes: Test Code 
for Steam Generating Units (with 1968 and 1969 Addenda), IBR approved 
for Secs. 60.46b, 60.58a(h)(6)(ii), and 60.58b(i)(6)(ii).
    (3) ASME Interim Supplement 19.5 on Instruments and Apparatus: 
Application, Part II of Fluid Meters, 6th Edition (1971), IBR approved 
for Secs. 60.58a(h)(6)(ii) and 60.58b(i)(6)(ii).

    (i) Test Methods for Evaluating Solid Waste, Physical/Chemical 
Methods,'' EPA Publication SW-846 Third Edition (November 1986), as 
amended by Updates I (July, 1992), II (September 1994), IIA (August, 
1993), and IIB (January, 1995). Test Method are incorporated by 
reference for appendix A to part 60, Method 29, pars. 2.2.1; 2.3.1; 2.5; 
3.3.12.1; 3.3.12.2; 3.3.13; 3.3.14; 5.4.3; 6.2; 6.3; 7.2.1; 7.2.3; and 
Table 29-2. The Third Edition of SW-846 and Updates I, II, IIA, and IIB 
(document number 955-001-00000-1) are available from the Superintendent 
of Documents, U.S. Government Printing Office, Washington, DC 20402, 
(202) 512-1800. Copies may be obtained from the Library of the U.S. 
Environmental Protection Agency, 401 M Street, SW., Washington, DC 
20460.
    (j) Standard Methods for the Examination of Water and Wastewater, 
16th edition, 1985. Method 303F Determination of Mercury by the Cold 
Vapor Technique. This document may be obtained from the American Public 
Health Association, 1015 18th Street, NW., Washington, DC 20036, and is 
incorporated by reference for Method 29, pars 5.4.3; 6.3; and 7.2.3 of 
appendix A to part 60.
    (k) This material is available for purchase from the American 
Hospital Association (AHA) Service, Inc., Post Office Box 92683, 
Chicago, Illinois 60675-2683. You may inspect a copy at EPA's Air and 
Radiation Docket and Information Center (Docket A-91-61, Item IV-J-124), 
Room M-1500, 401 M Street SW., Washington, DC.

    (1) An Ounce of Prevention: Waste Reduction Strategies for Health 
Care Facilities. American Society for Health Care Environmental Services 
of the American Hospital Association. Chicago, Illinois. 1993. AHA 
Catalog No. 057007. ISBN 0-87258-673-5. IBR approved for Sec. 60.35e and 
Sec. 60.55c.

    (l) This material is available for purchase from the National 
Technical Information Services, 5285 Port Royal Road, Springfield, 
Virginia 22161. You may inspect a copy at EPA's Air and Radiation Docket 
and Information Center (Docket A-91-61, Item IV-J-125), Room M-1500, 401 
M Street SW., Washington, DC.

    (1) OMB Bulletin No. 93-17: Revised Statistical Definitions for 
Metropolitan Areas. Office of Management and Budget, June 30, 1993. NTIS 
No. PB 93-192-664. IBR approved for Sec. 60.31e.

[48 FR 3735, Jan. 27, 1983]

    Editorial Note: For Federal Register citations affecting Sec. 60.17, 
see the List of CFR Sections Affected in the Finding Aids section of 
this volume.



Sec. 60.18  General control device requirements.

    (a) Introduction. This section contains requirements for control 
devices used to comply with applicable subparts of parts 60 and 61. The 
requirements are placed here for administrative convenience and only 
apply to facilities covered by subparts referring to this section.

[[Page 54]]

    (b) Flares. Paragraphs (c) through (f) apply to flares.
    (c)(1) Flares shall be designed for and operated with no visible 
emissions as determined by the methods specified in paragraph (f), 
except for periods not to exceed a total of 5 minutes during any 2 
consecutive hours.
    (2) Flares shall be operated with a flame present at all times, as 
determined by the methods specified in paragraph (f).
    (3) An owner/operator has the choice of adhering to either the heat 
content specifications in paragraph (c)(3)(ii) of this section and the 
maximum tip velocity specifications in paragraph (c)(4) of this section, 
or adhering to the requirements in paragraph (c)(3)(i) of this section.
    (i)(A) Flares shall be used that have a diameter of 3 inches or 
greater, are nonassisted, have a hydrogen content of 8.0 percent (by 
volume), or greater, and are designed for and operated with an exit 
velocity less than 37.2 m/sec (122 ft/sec) and less than the velocity, 
Vmax, as determined by the following equation:

Vmax=(XH2-K1)* K2

Where:
Vmax=Maximum permitted velocity, m/sec.
K1=Constant, 6.0 volume-percent hydrogen.
K2=Constant, 3.9(m/sec)/volume-percent hydrogen.
XH2=The volume-percent of hydrogen, on a wet basis, as 
calculated by using the American Society for Testing and Materials 
(ASTM) Method D1946-77. (Incorporated by reference as specified in 
Sec. 60.17).

    (B) The actual exit velocity of a flare shall be determined by the 
method specified in paragraph (f)(4) of this section.
    (ii) Flares shall be used only with the net heating value of the gas 
being combusted being 11.2 MJ/scm (300 Btu/scf) or greater if the flare 
is steam-assisted or air-assisted; or with the net heating value of the 
gas being combusted being 7.45 MJ/scm (200 Btu/scf) or greater if the 
flare is nonassisted. The net heating value of the gas being combusted 
shall be determined by the methods specified in paragraph (f)(3) of this 
section.
    (4)(i) Steam-assisted and nonassisted flares shall be designed for 
and operated with an exit velocity, as determined by the methods 
specified in paragraph (f)(4) of this section, less than 18.3 m/sec (60 
ft/sec), except as provided in paragraphs (c)(4) (ii) and (iii) of this 
section.
    (ii) Steam-assisted and nonassisted flares designed for and operated 
with an exit velocity, as determined by the methods specified in 
paragraph (f)(4), equal to or greater than 18.3 m/sec (60 ft/sec) but 
less than 122 m/sec (400 ft/sec) are allowed if the net heating value of 
the gas being combusted is greater than 37.3 MJ/scm (1,000 Btu/scf).
    (iii) Steam-assisted and nonassisted flares designed for and 
operated with an exit velocity, as determined by the methods specified 
in paragraph (f)(4), less than the velocity, Vmax, as 
determined by the method specified in paragraph (f)(5), and less than 
122 m/sec (400 ft/sec) are allowed.
    (5) Air-assisted flares shall be designed and operated with an exit 
velocity less than the velocity, Vmax, as determined by the 
method specified in paragraph (f)(6).
    (6) Flares used to comply with this section shall be steam-assisted, 
air-assisted, or nonassisted.
    (d) Owners or operators of flares used to comply with the provisions 
of this subpart shall monitor these control devices to ensure that they 
are operated and maintained in conformance with their designs. 
Applicable subparts will provide provisions stating how owners or 
operators of flares shall monitor these control devices.
    (e) Flares used to comply with provisions of this subpart shall be 
operated at all times when emissions may be vented to them.
    (f)(1) Reference Method 22 shall be used to determine the compliance 
of flares with the visible emission provisions of this subpart. The 
observation period is 2 hours and shall be used according to Method 22.
    (2) The presence of a flare pilot flame shall be monitored using a 
thermocouple or any other equivalent device to detect the presence of a 
flame.
    (3) The net heating value of the gas being combusted in a flare 
shall be calculated using the following equation:

[[Page 55]]

[GRAPHIC] [TIFF OMITTED] TC01JN92.008


where:

HT=Net heating value of the sample, MJ/scm; where the net 
          enthalpy per mole of offgas is based on combustion at 25 
          +C and 760 mm Hg, but the standard temperature for 
          determining the volume corresponding to one mole is 20 
          +C;
          [GRAPHIC] [TIFF OMITTED] TC01JN92.009
          
Ci=Concentration of sample component i in ppm on a wet basis, 
          as measured for organics by Reference Method 18 and measured 
          for hydrogen and carbon monoxide by ASTM D1946-77 
          (Incorporated by reference as specified in Sec. 60.17); and
Hi=Net heat of combustion of sample component i, kcal/g mole 
          at 25 +C and 760 mm Hg. The heats of combustion may 
          be determined using ASTM D2382-76 (incorporated by reference 
          as specified in Sec. 60.17) if published values are not 
          available or cannot be calculated.

    (4) The actual exit velocity of a flare shall be determined by 
dividing the volumetric flowrate (in units of standard temperature and 
pressure), as determined by Reference Methods 2, 2A, 2C, or 2D as 
appropriate; by the unobstructed (free) cross sectional area of the 
flare tip.
    (5) The maximum permitted velocity, Vmax, for flares 
complying with paragraph (c)(4)(iii) shall be determined by the 
following equation.
Log10 (Vmax)=(HT+28.8)/31.7

Vmax=Maximum permitted velocity, M/sec
28.8=Constant
31.7=Constant
HT=The net heating value as determined in paragraph (f)(3).

    (6) The maximum permitted velocity, Vmax, for air-
assisted flares shall be determined by the following equation.
Vmax=8.706+0.7084 (HT)

Vmax=Maximum permitted velocity, m/sec
8.706=Constant
0.7084=Constant
HT=The net heating value as determined in paragraph (f)(3).
[51 FR 2701, Jan. 21, 1986, as amended at 63 FR 24444, May 4, 1998]



Sec. 60.19  General notification and reporting requirements.

    (a) For the purposes of this part, time periods specified in days 
shall be measured in calendar days, even if the word ``calendar'' is 
absent, unless otherwise specified in an applicable requirement.
    (b) For the purposes of this part, if an explicit postmark deadline 
is not specified in an applicable requirement for the submittal of a 
notification, application, report, or other written communication to the 
Administrator, the owner or operator shall postmark the submittal on or 
before the number of days specified in the applicable requirement. For 
example, if a notification must be submitted 15 days before a particular 
event is scheduled to take place, the notification shall be postmarked 
on or before 15 days preceding the event; likewise, if a notification 
must be submitted 15 days after a particular event takes place, the 
notification shall be delivered or postmarked on or before 15 days 
following the end of the event. The use of reliable non-Government mail 
carriers that provide indications of verifiable delivery of information 
required to be submitted to the Administrator, similar to the postmark 
provided by the U.S. Postal Service, or alternative means of delivery 
agreed to by the permitting authority, is acceptable.
    (c) Notwithstanding time periods or postmark deadlines specified in 
this part for the submittal of information to the Administrator by an 
owner or operator, or the review of such information by the 
Administrator, such

[[Page 56]]

time periods or deadlines may be changed by mutual agreement between the 
owner or operator and the Administrator. Procedures governing the 
implementation of this provision are specified in paragraph (f) of this 
section.
    (d) If an owner or operator of an affected facility in a State with 
delegated authority is required to submit periodic reports under this 
part to the State, and if the State has an established timeline for the 
submission of periodic reports that is consistent with the reporting 
frequency(ies) specified for such facility under this part, the owner or 
operator may change the dates by which periodic reports under this part 
shall be submitted (without changing the frequency of reporting) to be 
consistent with the State's schedule by mutual agreement between the 
owner or operator and the State. The allowance in the previous sentence 
applies in each State beginning 1 year after the affected facility is 
required to be in compliance with the applicable subpart in this part. 
Procedures governing the implementation of this provision are specified 
in paragraph (f) of this section.
    (e) If an owner or operator supervises one or more stationary 
sources affected by standards set under this part and standards set 
under part 61, part 63, or both such parts of this chapter, he/she may 
arrange by mutual agreement between the owner or operator and the 
Administrator (or the State with an approved permit program) a common 
schedule on which periodic reports required by each applicable standard 
shall be submitted throughout the year. The allowance in the previous 
sentence applies in each State beginning 1 year after the stationary 
source is required to be in compliance with the applicable subpart in 
this part, or 1 year after the stationary source is required to be in 
compliance with the applicable 40 CFR part 61 or part 63 of this chapter 
standard, whichever is latest. Procedures governing the implementation 
of this provision are specified in paragraph (f) of this section.
    (f)(1)(i) Until an adjustment of a time period or postmark deadline 
has been approved by the Administrator under paragraphs (f)(2) and 
(f)(3) of this section, the owner or operator of an affected facility 
remains strictly subject to the requirements of this part.
    (ii) An owner or operator shall request the adjustment provided for 
in paragraphs (f)(2) and (f)(3) of this section each time he or she 
wishes to change an applicable time period or postmark deadline 
specified in this part.
    (2) Notwithstanding time periods or postmark deadlines specified in 
this part for the submittal of information to the Administrator by an 
owner or operator, or the review of such information by the 
Administrator, such time periods or deadlines may be changed by mutual 
agreement between the owner or operator and the Administrator. An owner 
or operator who wishes to request a change in a time period or postmark 
deadline for a particular requirement shall request the adjustment in 
writing as soon as practicable before the subject activity is required 
to take place. The owner or operator shall include in the request 
whatever information he or she considers useful to convince the 
Administrator that an adjustment is warranted.
    (3) If, in the Administrator's judgment, an owner or operator's 
request for an adjustment to a particular time period or postmark 
deadline is warranted, the Administrator will approve the adjustment. 
The Administrator will notify the owner or operator in writing of 
approval or disapproval of the request for an adjustment within 15 
calendar days of receiving sufficient information to evaluate the 
request.
    (4) If the Administrator is unable to meet a specified deadline, he 
or she will notify the owner or operator of any significant delay and 
inform the owner or operator of the amended schedule.
[59 FR 12428, Mar. 16, 1994]



    Subpart B--Adoption and Submittal of State Plans for Designated 
                               Facilities

    Source: 40 FR 53346, Nov. 17, 1975, unless otherwise noted.

[[Page 57]]



Sec. 60.20  Applicability.

    The provisions of this subpart apply to States upon publication of a 
final guideline document under Sec. 60.22(a).



Sec. 60.21  Definitions.

    Terms used but not defined in this subpart shall have the meaning 
given them in the Act and in subpart A:
    (a) Designated pollutant means any air pollutant, emissions of which 
are subject to a standard of performance for new stationary sources but 
for which air quality criteria have not been issued, and which is not 
included on a list published under section 108(a) or section 
112(b)(1)(A) of the Act.
    (b) Designated facility means any existing facility (see 
Sec. 60.2(aa)) which emits a designated pollutant and which would be 
subject to a standard of performance for that pollutant if the existing 
facility were an affected facility (see Sec. 60.2(e)).
    (c) Plan means a plan under section 111(d) of the Act which 
establishes emission standards for designated pollutants from designated 
facilities and provides for the implementation and enforcement of such 
emission standards.
    (d) Applicable plan means the plan, or most recent revision thereof, 
which has been approved under Sec. 60.27(b) or promulgated under 
Sec. 60.27(d).
    (e) Emission guideline means a guideline set forth in subpart C of 
this part, or in a final guideline document published under 
Sec. 60.22(a), which reflects the degree of emission reduction 
achievable through the application of the best system of emission 
reduction which (taking into account the cost of such reduction) the 
Administrator has determined has been adequately demonstrated for 
designated facilities.
    (f) Emission standard means a legally enforceable regulation setting 
forth an allowable rate of emissions into the atmosphere, or prescribing 
equipment specifications for control of air pollution emissions.
    (g) Compliance schedule means a legally enforceable schedule 
specifying a date or dates by which a source or category of sources must 
comply with specific emission standards contained in a plan or with any 
increments of progress to achieve such compliance.
    (h) Increments of progress means steps to achieve compliance which 
must be taken by an owner or operator of a designated facility, 
including:
    (1) Submittal of a final control plan for the designated facility to 
the appropriate air pollution control agency;
    (2) Awarding of contracts for emission control systems or for 
process modifications, or issuance of orders for the purchase of 
component parts to accomplish emission control or process modification;
    (3) Initiation of on-site construction or installation of emission 
control equipment or process change;
    (4) Completion of on-site construction or installation of emission 
control equipment or process change; and
    (5) Final compliance.
    (i) Region means an air quality control region designated under 
section 107 of the Act and described in part 81 of this chapter.
    (j) Local agency means any local governmental agency.



Sec. 60.22  Publication of guideline documents, emission guidelines, and final compliance times.

    (a) Concurrently upon or after proposal of standards of performance 
for the control of a designated pollutant from affected facilities, the 
Administrator will publish a draft guideline document containing 
information pertinent to control of the designated pollutant form 
designated facilities. Notice of the availability of the draft guideline 
document will be published in the Federal Register and public comments 
on its contents will be invited. After consideration of public comments 
and upon or after promulgation of standards of performance for control 
of a designated pollutant from affected facilities, a final guideline 
document will be published and notice of its availability will be 
published in the Federal Register.
    (b) Guideline documents published under this section will provide 
information for the development of State plans, such as:
    (1) Information concerning known or suspected endangerment of public 
health or welfare caused, or contributed to, by the designated 
pollutant.

[[Page 58]]

    (2) A description of systems of emission reduction which, in the 
judgment of the Administrator, have been adequately demonstrated.
    (3) Information on the degree of emission reduction which is 
achievable with each system, together with information on the costs and 
environmental effects of applying each system to designated facilities.
    (4) Incremental periods of time normally expected to be necessary 
for the design, installation, and startup of identified control systems.
    (5) An emission guideline that reflects the application of the best 
system of emission reduction (considering the cost of such reduction) 
that has been adequately demonstrated for designated facilities, and the 
time within which compliance with emission standards of equivalent 
stringency can be achieved. The Administrator will specify different 
emission guidelines or compliance times or both for different sizes, 
types, and classes of designated facilities when costs of control, 
physical limitations, geographical location, or similar factors make 
subcategorization appropriate. (6) Such other available information as 
the Administrator determines may contribute to the formulation of State 
plans.
    (c) Except as provided in paragraph (d)(1) of this section, the 
emission guidelines and compliance times referred to in paragraph (b)(5) 
of this section will be proposed for comment upon publication of the 
draft guideline document, and after consideration of comments will be 
promulgated in subpart C of this part with such modifications as may be 
appropriate.
    (d)(1) If the Administrator determines that a designated pollutant 
may cause or contribute to endangerment of public welfare, but that 
adverse effects on public health have not been demonstrated, he will 
include the determination in the draft guideline document and in the 
Federal Register notice of its availability. Except as provided in 
paragraph (d)(2) of this section, paragraph (c) of this section shall be 
inapplicable in such cases.
    (2) If the Administrator determines at any time on the basis of new 
information that a prior determination under paragraph (d)(1) of this 
section is incorrect or no longer correct, he will publish notice of the 
determination in the Federal Register, revise the guideline document as 
necessary under paragraph (a) of this section, and propose and 
promulgate emission guidelines and compliance times under paragraph (c) 
of this section.
[40 FR 53346, Nov. 17, 1975, as amended at 54 FR 52189, Dec. 20, 1989]



Sec. 60.23  Adoption and submittal of State plans; public hearings.

    (a)(1) Unless otherwise specified in the applicable subpart, within 
9 months after notice of the availability of a final guideline document 
is published under Sec. 60.22(a), each State shall adopt and submit to 
the Administrator, in accordance with Sec. 60.4 of subpart A of this 
part, a plan for the control of the designated pollutant to which the 
guideline document applies.
    (2) Within nine months after notice of the availability of a final 
revised guideline document is published as provided in Sec. 60.22(d)(2), 
each State shall adopt and submit to the Administrator any plan revision 
necessary to meet the requirements of this subpart.
    (b) If no designated facility is located within a State, the State 
shall submit a letter of certification to that effect to the 
Administrator within the time specified in paragraph (a) of this 
section. Such certification shall exempt the State from the requirements 
of this subpart for that designated pollutant.
    (c)(1) Except as provided in paragraphs (c)(2) and (c)(3) of this 
section, the State shall, prior to the adoption of any plan or revision 
thereof, conduct one or more public hearings within the State on such 
plan or plan revision.
    (2) No hearing shall be required for any change to an increment of 
progress in an approved compliance schedule unless the change is likely 
to cause the facility to be unable to comply with the final compliance 
date in the schedule.
    (3) No hearing shall be required on an emission standard in effect 
prior to the effective date of this subpart if it was adopted after a 
public hearing and is at least as stringent as the corresponding 
emission guideline specified in the applicable guideline document 
published under Sec. 60.22(a).

[[Page 59]]

    (d) Any hearing required by paragraph (c) of this section shall be 
held only after reasonable notice. Notice shall be given at least 30 
days prior to the date of such hearing and shall include:
    (1) Notification to the public by prominently advertising the date, 
time, and place of such hearing in each region affected;
    (2) Availability, at the time of public announcement, of each 
proposed plan or revision thereof for public inspection in at least one 
location in each region to which it will apply;
    (3) Notification to the Administrator;
    (4) Notification to each local air pollution control agency in each 
region to which the plan or revision will apply; and
    (5) In the case of an interstate region, notification to any other 
State included in the region.
    (e) The State shall prepare and retain, for a minimum of 2 years, a 
record of each hearing for inspection by any interested party. The 
record shall contain, as a minimum, a list of witnesses together with 
the text of each presentation.
    (f) The State shall submit with the plan or revision:
    (1) Certification that each hearing required by paragraph (c) of 
this section was held in accordance with the notice required by 
paragraph (d) of this section; and
    (2) A list of witnesses and their organizational affiliations, if 
any, appearing at the hearing and a brief written summary of each 
presentation or written submission.
    (g) Upon written application by a State agency (through the 
appropriate Regional Office), the Administrator may approve State 
procedures designed to insure public participation in the matters for 
which hearings are required and public notification of the opportunity 
to participate if, in the judgment of the Administrator, the procedures, 
although different from the requirements of this subpart, in fact 
provide for adequate notice to and participation of the public. The 
Administrator may impose such conditions on his approval as he deems 
necessary. Procedures approved under this section shall be deemed to 
satisfy the requirements of this subpart regarding procedures for public 
hearings.
[40 FR 53346, Nov. 17, 1975, as amended at 60 FR 65414, Dec. 19, 1995]



Sec. 60.24  Emission standards and compliance schedules.

    (a) Each plan shall include emission standards and compliance 
schedules.
    (b)(1) Emission standards shall prescribe allowable rates of 
emissions except when it is clearly impracticable. Such cases will be 
identified in the guideline documents issued under Sec. 60.22. Where 
emission standards prescribing equipment specifications are established, 
the plan shall, to the degree possible, set forth the emission 
reductions achievable by implementation of such specifications, and may 
permit compliance by the use of equipment determined by the State to be 
equivalent to that prescribed.
    (2) Test methods and procedures for determining compliance with the 
emission standards shall be specified in the plan. Methods other than 
those specified in appendix A to this part may be specified in the plan 
if shown to be equivalent or alternative methods as defined in Sec. 60.2 
(t) and (u).
    (3) Emission standards shall apply to all designated facilities 
within the State. A plan may contain emission standards adopted by local 
jurisdictions provided that the standards are enforceable by the State.
    (c) Except as provided in paragraph (f) of this section, where the 
Administrator has determined that a designated pollutant may cause or 
contribute to endangerment of public health, emission standards shall be 
no less stringent than the corresponding emission guideline(s) specified 
in subpart C of this part, and final compliance shall be required as 
expeditiously as practicable but no later than the compliance times 
specified in subpart C of this part.
    (d) Where the Administrator has determined that a designated 
pollutant may cause or contribute to endangerment of public welfare but 
that adverse effects on public health have not been demonstrated, States 
may balance the emission guidelines,

[[Page 60]]

compliance times, and other information provided in the applicable 
guideline document against other factors of public concern in 
establishing emission standards, compliance schedules, and variances. 
Appropriate consideration shall be given to the factors specified in 
Sec. 60.22(b) and to information presented at the public hearing(s) 
conducted under Sec. 60.23(c).
    (e)(1) Any compliance schedule extending more than 12 months from 
the date required for submittal of the plan shall include legally 
enforceable increments of progress to achieve compliance for each 
designated facility or category of facilities. Increments of progress 
shall include, where practicable, each increment of progress specified 
in Sec. 60.21(h) and shall include such additional increments of 
progress as may be necessary to permit close and effective supervision 
of progress toward final compliance.
    (2) A plan may provide that compliance schedules for individual 
sources or categories of sources will be formulated after plan 
submittal. Any such schedule shall be the subject of a public hearing 
held according to Sec. 60.23 and shall be submitted to the Administrator 
within 60 days after the date of adoption of the schedule but in no case 
later than the date prescribed for submittal of the first semiannual 
report required by Sec. 60.25(e).
    (f) Unless otherwise specified in the applicable subpart on a case-
by-case basis for particular designated facilities or classes of 
facilities, States may provide for the application of less stringent 
emissions standards or longer compliance schedules than those otherwise 
required by paragraph (c) of this section, provided that the State 
demonstrates with respect to each such facility (or class of 
facilities):
    (1) Unreasonable cost of control resulting from plant age, location, 
or basic process design;
    (2) Physical impossibility of installing necessary control 
equipment; or
    (3) Other factors specific to the facility (or class of facilities) 
that make application of a less stringent standard or final compliance 
time significantly more reasonable.
    (g) Nothing in this subpart shall be construed to preclude any State 
or political subdivision thereof from adopting or enforcing (1) emission 
standards more stringent than emission guidelines specified in subpart C 
of this part or in applicable guideline documents or (2) compliance 
schedules requiring final compliance at earlier times than those 
specified in subpart C or in applicable guideline documents.
[40 FR 53346, Nov. 17, 1975, as amended at 60 FR 65414, Dec. 19, 1995]



Sec. 60.25  Emission inventories, source surveillance, reports.

    (a) Each plan shall include an inventory of all designated 
facilities, including emission data for the designated pollutants and 
information related to emissions as specified in appendix D to this 
part. Such data shall be summarized in the plan, and emission rates of 
designated pollutants from designated facilities shall be correlated 
with applicable emission standards. As used in this subpart, 
``correlated'' means presented in such a manner as to show the 
relationship between measured or estimated amounts of emissions and the 
amounts of such emissions allowable under applicable emission standards.
    (b) Each plan shall provide for monitoring the status of compliance 
with applicable emission standards. Each plan shall, as a minimum, 
provide for:
    (1) Legally enforceable procedures for requiring owners or operators 
of designated facilities to maintain records and periodically report to 
the State information on the nature and amount of emissions from such 
facilities, and/or such other information as may be necessary to enable 
the State to determine whether such facilities are in compliance with 
applicable portions of the plan.
    (2) Periodic inspection and, when applicable, testing of designated 
facilities.
    (c) Each plan shall provide that information obtained by the State 
under paragraph (b) of this section shall be correlated with applicable 
emission standards (see Sec. 60.25(a)) and made available to the general 
public.
    (d) The provisions referred to in paragraphs (b) and (c) of this 
section shall be specifically identified. Copies of such provisions 
shall be submitted with the plan unless:

[[Page 61]]

    (1) They have been approved as portions of a preceding plan 
submitted under this subpart or as portions of an implementation plan 
submitted under section 110 of the Act, and
    (2) The State demonstrates:
    (i) That the provisions are applicable to the designated 
pollutant(s) for which the plan is submitted, and
    (ii) That the requirements of Sec. 60.26 are met.
    (e) The State shall submit reports on progress in plan enforcement 
to the Administrator on an annual (calendar year) basis, commencing with 
the first full report period after approval of a plan or after 
promulgation of a plan by the Administrator. Information required under 
this paragraph must be included in the annual report required by 
Sec. 51.321 of this chapter.
    (f) Each progress report shall include:
    (1) Enforcement actions initiated against designated facilities 
during the reporting period, under any emission standard or compliance 
schedule of the plan.
    (2) Identification of the achievement of any increment of progress 
required by the applicable plan during the reporting period.
    (3) Identification of designated facilities that have ceased 
operation during the reporting period.
    (4) Submission of emission inventory data as described in paragraph 
(a) of this section for designated facilities that were not in operation 
at the time of plan development but began operation during the reporting 
period.
    (5) Submission of additional data as necessary to update the 
information submitted under paragraph (a) of this section or in previous 
progress reports.
    (6) Submission of copies of technical reports on all performance 
testing on designated facilities conducted under paragraph (b)(2) of 
this section, complete with concurrently recorded process data.
[40 FR 53346, Nov. 17, 1975, as amended at 44 FR 65071, Nov. 9, 1979]



Sec. 60.26  Legal authority.

    (a) Each plan shall show that the State has legal authority to carry 
out the plan, including authority to:
    (1) Adopt emission standards and compliance schedules applicable to 
designated facilities.
    (2) Enforce applicable laws, regulations, standards, and compliance 
schedules, and seek injunctive relief.
    (3) Obtain information necessary to determine whether designated 
facilities are in compliance with applicable laws, regulations, 
standards, and compliance schedules, including authority to require 
recordkeeping and to make inspections and conduct tests of designated 
facilities.
    (4) Require owners or operators of designated facilities to install, 
maintain, and use emission monitoring devices and to make periodic 
reports to the State on the nature and amounts of emissions from such 
facilities; also authority for the State to make such data available to 
the public as reported and as correlated with applicable emission 
standards.
    (b) The provisions of law or regulations which the State determines 
provide the authorities required by this section shall be specifically 
identified. Copies of such laws or regulations shall be submitted with 
the plan unless:
    (1) They have been approved as portions of a preceding plan 
submitted under this subpart or as portions of an implementation plan 
submitted under section 110 of the Act, and
    (2) The State demonstrates that the laws or regulations are 
applicable to the designated pollutant(s) for which the plan is 
submitted.
    (c) The plan shall show that the legal authorities specified in this 
section are available to the State at the time of submission of the 
plan. Legal authority adequate to meet the requirements of paragraphs 
(a)(3) and (4) of this section may be delegated to the State under 
section 114 of the Act.
    (d) A State governmental agency other than the State air pollution 
control agency may be assigned responsibility for carrying out a portion 
of a plan if the plan demonstrates to the Administrator's satisfaction 
that the State governmental agency has the legal authority necessary to 
carry out that portion of the plan.
    (e) The State may authorize a local agency to carry out a plan, or 
portion

[[Page 62]]

thereof, within the local agency's jurisdiction if the plan demonstrates 
to the Administrator's satisfaction that the local agency has the legal 
authority necessary to implement the plan or portion thereof, and that 
the authorization does not relieve the State of responsibility under the 
Act for carrying out the plan or portion thereof.



Sec. 60.27  Actions by the Administrator.

    (a) The Administrator may, whenever he determines necessary, extend 
the period for submission of any plan or plan revision or portion 
thereof.
    (b) After receipt of a plan or plan revision, the Administrator will 
propose the plan or revision for approval or disapproval. The 
Administrator will, within four months after the date required for 
submission of a plan or plan revision, approve or disapprove such plan 
or revision or each portion thereof.
    (c) The Administrator will, after consideration of any State hearing 
record, promptly prepare and publish proposed regulations setting forth 
a plan, or portion thereof, for a State if:
    (1) The State fails to submit a plan within the time prescribed;
    (2) The State fails to submit a plan revision required by 
Sec. 60.23(a)(2) within the time prescribed; or
    (3) The Administrator disapproves the State plan or plan revision or 
any portion thereof, as unsatisfactory because the requirements of this 
subpart have not been met.
    (d) The Administrator will, within six months after the date 
required for submission of a plan or plan revision, promulgate the 
regulations proposed under paragraph (c) of this section with such 
modifications as may be appropriate unless, prior to such promulgation, 
the State has adopted and submitted a plan or plan revision which the 
Administrator determines to be approvable.
    (e)(1) Except as provided in paragraph (e)(2) of this section, 
regulations proposed and promulgated by the Administrator under this 
section will prescribe emission standards of the same stringency as the 
corresponding emission guideline(s) specified in the final guideline 
document published under Sec. 60.22(a) and will require final compliance 
with such standards as expeditiously as practicable but no later than 
the times specified in the guideline document.
    (2) Upon application by the owner or operator of a designated 
facility to which regulations proposed and promulgated under this 
section will apply, the Administrator may provide for the application of 
less stringent emission standards or longer compliance schedules than 
those otherwise required by this section in accordance with the criteria 
specified in Sec. 60.24(f).
    (f) If a State failed to hold a public hearing as required by 
Sec. 60.23(c), the Administrator will provide opportunity for a hearing 
within the State prior to promulgation of a plan under paragraph (d) of 
this section.



Sec. 60.28  Plan revisions by the State.

    (a) Plan revisions which have the effect of delaying compliance with 
applicable emission standards or increments of progress or of 
establishing less stringent emission standards shall be submitted to the 
Administrator within 60 days after adoption in accordance with the 
procedures and requirements applicable to development and submission of 
the original plan.
    (b) More stringent emission standards, or orders which have the 
effect of accelerating compliance, may be submitted to the Administrator 
as plan revisions in accordance with the procedures and requirements 
applicable to development and submission of the original plan.
    (c) A revision of a plan, or any portion thereof, shall not be 
considered part of an applicable plan until approved by the 
Administrator in accordance with this subpart.



Sec. 60.29  Plan revisions by the Administrator.

    After notice and opportunity for public hearing in each affected 
State, the Administrator may revise any provision of an applicable plan 
if:
    (a) The provision was promulgated by the Administrator, and
    (b) The plan, as revised, will be consistent with the Act and with 
the requirements of this subpart.

[[Page 63]]



           Subpart C--Emission Guidelines and Compliance Times



Sec. 60.30  Scope.

    The following subparts contain emission guidelines and compliance 
times for the control of certain designated pollutants in accordance 
with section 111(d) and section 129 of the Clean Air Act and subpart B 
of this part.
    (a) Subpart Ca--[Reserved]
    (b) Subpart Cb--Municipal Waste Combustors.
    (c) Subpart Cc--Municipal Solid Waste Landfills.
    (d) Subpart Cd--Sulfuric Acid Production Plants.
    (e) Subpart Ce--Hospital/Medical/Infectious Waste Incinerators.
[62 FR 48379, Sept. 15, 1997]



Sec. 60.31  Definitions.

    Terms used but not defined in this subpart have the meaning given 
them in the Act and in subparts A and B of this part.
[42 FR 55797, Oct. 18, 1977]



                         Subpart Ca  [Reserved]



    Subpart Cb--Emissions Guidelines and Compliance Times for Large 
 Municipal Waste Combustors That are Constructed on or Before September 
                                20, 1994

    Source: 60 FR 65415, Dec. 19, 1995, unless otherwise noted.



Sec. 60.30b  Scope.

    This subpart contains emission guidelines and compliance schedules 
for the control of certain designated pollutants from certain municipal 
waste combustors in accordance with section 111(d) and section 129 of 
the Clean Air Act and subpart B of this part. The provisions in these 
emission guidelines supersede the provisions of Sec. 60.24(f) of subpart 
B of this part.



Sec. 60.31b  Definitions.

    Terms used but not defined in this subpart have the meaning given 
them in the Clean Air Act and subparts A, B, and Eb of this part.
    Municipal waste combustor plant means one or more designated 
facilities (as defined in Sec. 60.32b) at the same location.
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 
1997]



Sec. 60.32b  Designated facilities.

    (a) The designated facility to which these guidelines apply is each 
municipal waste combustor unit with a combustion capacity greater than 
250 tons per day of municipal solid waste for which construction was 
commenced on or before September 20, 1994.
    (b) Any municipal waste combustion unit that is capable of 
combusting more than 250 tons per day of municipal solid waste and is 
subject to a federally enforceable permit limiting the maximum amount of 
municipal solid waste that may be combusted in the unit to less than or 
equal to 11 tons per day is not subject to this subpart if the owner or 
operator:
    (1) Notifies the EPA Administrator of an exemption claim,
    (2) Provides a copy of the federally enforceable permit that limits 
the firing of municipal solid waste to less than 11 tons per day, and
    (3) Keeps records of the amount of municipal solid waste fired on a 
daily basis.
    (c) Physical or operational changes made to an existing municipal 
waste combustor unit primarily for the purpose of complying with 
emission guidelines under this subpart are not considered in determining 
whether the unit is a modified or reconstructed facility under subpart 
Ea or subpart Eb of this part.
    (d) A qualifying small power production facility, as defined in 
section 3(17)(C) of the Federal Power Act (16 U.S.C. 796(17)(C)), that 
burns homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy is 
not subject to this subpart if the owner or operator of the facility 
notifies the EPA Administrator of this exemption and provides data 
documenting that the facility qualifies for this exemption.

[[Page 64]]

    (e) A qualifying cogeneration facility, as defined in section 
3(18)(B) of the Federal Power Act (16 U.S.C. 796(18)(B)), that burns 
homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy and 
steam or forms of useful energy (such as heat) that are used for 
industrial, commercial, heating, or cooling purposes, is not subject to 
this subpart if the owner or operator of the facility notifies the EPA 
Administrator of this exemption and provides data documenting that the 
facility qualifies for this exemption.
    (f) Any unit combusting a single-item waste stream of tires is not 
subject to this subpart if the owner or operator of the unit:
    (1) Notifies the EPA Administrator of an exemption claim, and
    (2) Provides data documenting that the unit qualifies for this 
exemption.
    (g) Any unit required to have a permit under section 3005 of the 
Solid Waste Disposal Act is not subject to this subpart.
    (h) Any materials recovery facility (including primary or secondary 
smelters) that combusts waste for the primary purpose of recovering 
metals is not subject to this subpart.
    (i) Any cofired combustor, as defined under Sec. 60.51b of subpart 
Eb of this part, that meets the capacity specifications in paragraph (a) 
of this section is not subject to this subpart if the owner or operator 
of the cofired combustor:
    (1) Notifies the EPA Administrator of an exemption claim,
    (2) Provides a copy of the federally enforceable permit (specified 
in the definition of cofired combustor in this section), and
    (3) Keeps a record on a calendar quarter basis of the weight of 
municipal solid waste combusted at the cofired combustor and the weight 
of all other fuels combusted at the cofired combustor.
    (j) Air curtain incinerators, as defined under Sec. 60.51b of 
subpart Eb of this part, that meet the capacity specifications in 
paragraph (a) of this section, and that combust a fuel stream composed 
of 100 percent yard waste are exempt from all provisions of this subpart 
except the opacity standard under Sec. 60.37b, the testing procedures 
under Sec. 60.38b, and the reporting and recordkeeping provisions under 
Sec. 60.39b.
    (k) Air curtain incinerators that meet the capacity specifications 
in paragraph (a) of this section and that combust municipal solid waste 
other than yard waste are subject to all provisions of this subpart.
    (l) Pyrolysis/combustion units that are an integrated part of a 
plastics/rubber recycling unit (as defined in Sec. 60.51b) are not 
subject to this subpart if the owner or operator of the plastics/rubber 
recycling unit keeps records of the weight of plastics, rubber, and/or 
rubber tires processed on a calendar quarter basis; the weight of 
chemical plant feedstocks and petroleum refinery feedstocks produced and 
marketed on a calendar quarter basis; and the name and address of the 
purchaser of the feedstocks. The combustion of gasoline, diesel fuel, 
jet fuel, fuel oils, residual oil, refinery gas, petroleum coke, 
liquified petroleum gas, propane, or butane produced by chemical plants 
or petroleum refineries that use feedstocks produced by plastics/rubber 
recycling units are not subject to this subpart.
    (m) Cement kilns firing municipal solid waste are not subject to 
this subpart.
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 
1997]



Sec. 60.33b  Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    (a) The emission limits for municipal waste combustor metals are 
specified in paragraphs (a)(1) through (a)(3) of this section.
    (1) For approval, a State plan shall include emission limits for 
particulate matter and opacity at least as protective as the emission 
limits for particulate matter and opacity specified in paragraphs 
(a)(1)(i) through (a)(1)(iii) of this section.
    (i) The emission limit for particulate matter contained in the gases 
discharged to the atmosphere from a designated facility is 27 milligrams 
per dry standard cubic meter, corrected to 7 percent oxygen.
    (ii) [Reserved]

[[Page 65]]

    (iii) The emission limit for opacity exhibited by the gases 
discharged to the atmosphere from a designated facility is 10 percent 
(6-minute average).
    (2) For approval, a State plan shall include emission limits for 
cadmium and lead at least as protective as the emission limits for 
cadmium and lead specified in paragraphs (a)(2)(i) through (a)(2)(iv) of 
this section.
    (i) The emission limit for cadmium contained in the gases discharged 
to the atmosphere from a designated facility is 0.040 milligrams per dry 
standard cubic meter, corrected to 7 percent oxygen.
    (ii) [Reserved]
    (iii) The emission limit for lead contained in the gases discharged 
to the atmosphere from a designated facility is 0.49 milligrams per dry 
standard cubic meter, corrected to 7 percent oxygen.
    (iv) [Reserved]
    (3) For approval, a State plan shall include emission limits for 
mercury at least as protective as the emission limits specified in this 
paragraph. The emission limit for mercury contained in the gases 
discharged to the atmosphere from a designated facility is 0.080 
milligrams per dry standard cubic meter or 15 percent of the potential 
mercury emission concentration (85-percent reduction by weight), 
corrected to 7 percent oxygen, whichever is less stringent.
    (4) For approval, a State plan shall be submitted by August 25, 1998 
and shall include an emission limit for lead at least as protective as 
the emission limit for lead specified in this paragraph. The emission 
limit for lead contained in the gases discharged to the atmosphere from 
a designated facility is 0.44 milligrams per dry standard cubic meter, 
corrected to 7 percent oxygen.
    (b) The emission limits for municipal waste combustor acid gases, 
expressed as sulfur dioxide and hydrogen chloride, are specified in 
paragraphs (b)(1) and (b)(2) of this section.
    (1) For approval, a State plan shall include emission limits for 
sulfur dioxide at least as protective as the emission limits for sulfur 
dioxide specified in paragraphs (b)(1)(i) and (b)(1)(ii) of this 
section.
    (i) The emission limit for sulfur dioxide contained in the gases 
discharged to the atmosphere from a designated facility is 31 parts per 
million by volume or 25 percent of the potential sulfur dioxide emission 
concentration (75-percent reduction by weight or volume), corrected to 7 
percent oxygen (dry basis), whichever is less stringent. Compliance with 
this emission limit is based on a 24-hour daily geometric mean.
    (ii) [Reserved]
    (2) For approval, a State plan shall include emission limits for 
hydrogen chloride at least as protective as the emission limits for 
hydrogen chloride specified in paragraphs (b)(2)(i) and (b)(2)(ii) of 
this section.
    (i) The emission limit for hydrogen chloride contained in the gases 
discharged to the atmosphere from a designated facility is 31 parts per 
million by volume or 5 percent of the potential hydrogen chloride 
emission concentration (95-percent reduction by weight or volume), 
corrected to 7 percent oxygen (dry basis), whichever is less stringent.
    (ii) [Reserved]
    (3) For approval, a State plan shall be submitted by August 25, 1998 
and shall include emission limits for sulfur dioxide and hydrogen 
chloride at least as protective as the emission limits specified in 
paragraphs (b)(3)(i) and (b)(3)(ii) of this section.
    (i) The emission limit for sulfur dioxide contained in the gases 
discharged to the atmosphere from a designated facility is 29 parts per 
million by volume or 25 percent of the potential sulfur dioxide emission 
concentration (75-percent reduction by weight or volume), corrected to 7 
percent oxygen (dry basis), whichever is less stringent. Compliance with 
this emission limit is based on a 24-hour daily geometric mean.
    (ii) The emission limit for hydrogen chloride contained in the gases 
discharged to the atmosphere from a designated facility is 29 parts per 
million by volume or 5 percent of the potential hydrogen chloride 
emission concentration (95-percent reduction by weight or volume), 
corrected to 7 percent oxygen (dry basis), whichever is less stringent.
    (c) The emission limits for municipal waste combustor organics, 
expressed as

[[Page 66]]

total mass dioxins/furans, are specified in paragraphs (c)(1) and (c)(2) 
of this section.
    (1) For approval, a State plan shall include an emission limit for 
dioxins/furans contained in the gases discharged to the atmosphere from 
a designated facility at least as protective as the emission limit for 
dioxins/furans specified in either paragraph (c)(1)(i) or (c)(1)(ii) of 
this section, as applicable.
    (i) The emission limit for designated facilities that employ an 
electrostatic precipitator-based emission control system is 60 nanograms 
per dry standard cubic meter (total mass), corrected to 7 percent 
oxygen.
    (ii) The emission limit for designated facilities that do not employ 
an electrostatic precipitator-based emission control system is 30 
nanograms per dry standard cubic meter (total mass), corrected to 7 
percent oxygen.
    (2) [Reserved]
    (d) For approval, a State plan shall include emission limits for 
nitrogen oxides at least as protective as the emission limits listed in 
table 1 of this subpart for designated facilities. Table 1 provides 
emission limits for the nitrogen oxides concentration level for each 
type of designated facility.

     Table 1--Nitrogen Oxides Guidelines for Designated Facilities
------------------------------------------------------------------------
                                                              Nitrogen
                                                               oxides
                                                              emission
           Municipal waste combustor technology             limit (parts
                                                             per million
                                                            by volume) a
------------------------------------------------------------------------
Mass burn waterwall.......................................          205
Mass burn rotary waterwall................................          250
Refuse-derived fuel combustor.............................          250
Fluidized bed combustor...................................          240
Mass burn refractory combustors...........................     no limit
------------------------------------------------------------------------
a Corrected to 7 percent oxygen, dry basis.

    (1) A State plan may allow nitrogen oxides emissions averaging as 
specified in paragraphs (d)(1)(i) through (d)(1)(v) of this section.
    (i) The owner or operator of a municipal waste combustor plant may 
elect to implement a nitrogen oxides emissions averaging plan for the 
designated facilities that are located at that plant and that are 
subject to subpart Cb, except as specified in paragraphs (d)(1)(i)(A) 
and (d)(1)(i)(B) of this section.
    (A) Municipal waste combustor units subject to subpart Ea or Eb 
cannot be included in the emissions averaging plan.
    (B) Mass burn refractory municipal waste combustor units and other 
municipal waste combustor technologies not listed in paragraph 
(d)(1)(iii) of this section may not be included in the emissions 
averaging plan.
    (ii) The designated facilities included in the nitrogen oxides 
emissions averaging plan must be identified in the initial compliance 
report specified in Sec. 60.59b(f) or in the annual report specified in 
Sec. 60.59b(g), as applicable, prior to implementing the averaging plan. 
The designated facilities being included in the averaging plan may be 
redesignated each calendar year. Partial year redesignation is allowable 
with State approval.
    (iii) To implement the emissions averaging plan, the average daily 
(24-hour) nitrogen oxides emission concentration level for gases 
discharged from the designated facilities being included in the 
emissions averaging plan must be no greater than the levels specified in 
table 2 of this subpart. Table 2 provides emission limits for the 
nitrogen oxides concentration level for each type of designated 
facility.

   Table 2--Nitrogen Oxides Limits For Existing Designated Facilities
 Included in an Emissions Averaging Plan at a Municpial Waste Combustor
                                 Planta
------------------------------------------------------------------------
                                                              Nitrogen
                                                               oxides
                                                              emission
           Municipal waste combustor technology             limit (parts
                                                             per million
                                                             by volume)b
------------------------------------------------------------------------
Mass burn waterwall.......................................          185
Mass burn rotary waterwall................................          220
Refuse-derived fuel combustor.............................          230
Fluidized bed combustor...................................          220
------------------------------------------------------------------------
a Mass burn refractory municipal waste combustors and other MWC
  technologies not listed above may not be included in an emissions
  averaging plan.
b Corrected to 7 percent oxygen, dry basis.

    (iv) Under the emissions averaging plan, the average daily nitrogen 
oxides emissions specified in paragraph (d)(1)(iii) of this section 
shall be calculated using equation (1). Designated facilities that are 
offline shall not be included in calculating the average daily nitrogen 
oxides emission level.

[[Page 67]]

[GRAPHIC] [TIFF OMITTED] TR19DE95.000


where:

NOX 24-hr=24-hr daily average nitrogen oxides emission 
concentration level for the emissions averaging plan (parts per million 
by volume corrected to 7 percent oxygen).
NOX i-hr=24-hr daily average nitrogen oxides emission 
concentration level for designated facility i (parts per million by 
volume, corrected to 7 percent oxygen), calculated according to the 
procedures in Sec. 60.58b(h) of this subpart.
Si=maximum demonstrated municipal waste combustor unit load 
for designated facility i (pounds per hour steam or feedwater flow as 
determined in the most recent dioxin/furan performance test).
h=total number of designated facilities being included in the daily 
emissions average.

    (v) For any day in which any designated facility included in the 
emissions averaging plan is offline, the owner or operator of the 
municipal waste combustor plant must demonstrate compliance according to 
either paragraph (d)(1)(v)(A) of this section or both paragraphs 
(d)(1)(v)(B) and (d)(1)(v)(C) of this section.
    (A) Compliance with the applicable limits specified in table 2 of 
this subpart shall be demonstrated using the averaging procedure 
specified in paragraph (d)(1)(iv) of this section for the designated 
facilities that are online.
    (B) For each of the designated facilities included in the emissions 
averaging plan, the nitrogen oxides emissions on a daily average basis 
shall be calculated and shall be equal to or less than the maximum daily 
nitrogen oxides emission level achieved by that designated facility on 
any of the days during which the emissions averaging plan was achieved 
with all designated facilities online during the most recent calendar 
quarter. The requirements of this paragraph do not apply during the 
first quarter of operation under the emissions averaging plan.
    (C) The average nitrogen oxides emissions (kilograms per day) 
calculated according to paragraph (d)(1)(v)(C)(2) of this section shall 
not exceed the average nitrogen oxides emissions (kilograms per day) 
calculated according to paragraph (d)(1)(v)(C)(1) of this section.
    (1) For all days during which the emissions averaging plan was 
implemented and achieved and during which all designated facilities were 
online, the average nitrogen oxides emissions shall be calculated. The 
average nitrogen oxides emissions (kilograms per day) shall be 
calculated on a calendar year basis according to paragraphs 
(d)(1)(v)(C)(1)(i) through (d)(1)(v)(C)(1)(iii) of this section.
    (i) For each designated facility included in the emissions averaging 
plan, the daily amount of nitrogen oxides emitted (kilograms per day) 
shall be calculated based on the hourly nitrogen oxides data required 
under Sec. 60.38b(a) and specified under Sec. 60.58b(h)(5) of subpart Eb 
of this part, the flue gas flow rate determined using table 19-1 of EPA 
Reference Method 19 or a State-approved method, and the hourly average 
steam or feedwater flow rate.
    (ii) The daily total nitrogen oxides emissions shall be calculated 
as the sum of the daily nitrogen oxides emissions from each designated 
facility calculated under paragraph (d)(1)(v)(C)(1)(i) of this section.
    (iii) The average nitrogen oxides emissions (kilograms per day) on a 
calendar year basis shall be calculated as the sum of all daily total 
nitrogen oxides emissions calculated under paragraph (d)(1)(v)(C)(1)(ii) 
of this section divided by the number of calendar days for which a daily 
total was calculated.
    (2) For all days during which one or more of the designated 
facilities under the emissions averaging plan was offline, the average 
nitrogen oxides emissions shall be calculated. The average nitrogen 
oxides emissions (kilograms per day) shall be calculated on a calendar 
year basis according to paragraphs (d)(1)(v)(C)(2)(i) through 
(d)(1)(v)(C)(2)(iii) of this section.
    (i) For each designated facility included in the emissions averaging 
plan,

[[Page 68]]

the daily amount of nitrogen oxides emitted (kilograms per day) shall be 
calculated based on the hourly nitrogen oxides data required under 
Sec. 60.38b(a) and specified under Sec. 60.58b(h)(5) of subpart Eb of 
this part, the flue gas flow rate determined using table 19-1 of EPA 
Reference Method 19 or a State-approved method, and the hourly average 
steam or feedwater flow rate.
    (ii) The daily total nitrogen oxides emissions shall be calculated 
as the sum of the daily nitrogen oxides emissions from each designated 
facility calculated under paragraph (d)(1)(v)(C)(2)(i) of this section.
    (iii) The average nitrogen oxides emissions (kilograms per day) on a 
calendar year basis shall be calculated as the sum of all daily total 
nitrogen oxides emissions calculated under paragraph (d)(1)(v)(C)(2)(ii) 
of this section divided by the number of calendar days for which a daily 
total was calculated.
    (2) A State plan may establish a program to allow owners or 
operators of municipal waste combustor plants to engage in trading of 
nitrogen oxides emission credits. A trading program must be approved by 
the Administrator before implementation.
    (3) For approval, a State plan shall be submitted by August 25, 1998 
and shall include emission limits for nitrogen oxides from fluidized bed 
combustors at least as protective as the emission limits listed in 
paragraphs (d)(3)(i) and (d)(3)(ii) of this section.
    (i) The emission limit for nitrogen oxides contained in the gases 
discharged to the atmosphere from a designated facility that is a 
fluidized bed combustor is 180 parts per million by volume, corrected to 
7 percent oxygen.
    (ii) If a State plan allows nitrogen oxides emissions averaging as 
specified in paragraphs (d)(1)(i) through (d)(1)(v) of this section, the 
emission limit for nitrogen oxides contained in the gases discharged to 
the atmosphere from a designated facility that is a fluidized bed 
combustor is 165 parts per million by volume, corrected to 7 percent 
oxygen.
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 
1997]



Sec. 60.34b  Emission guidelines for municipal waste combustor operating practices.

    (a) For approval, a State plan shall include emission limits for 
carbon monoxide at least as protective as the emission limits for carbon 
monoxide listed in table 3 of this subpart. Table 3 provides emission 
limits for the carbon monoxide concentration level for each type of 
designated facility.

        Table 3.--Municipal Waste Combustor Operating Guidelines
------------------------------------------------------------------------
                                                   Carbon
                                                  monoxide
                                                 emissions
     Municipal waste combustor technology          level      Averaging
                                                 (parts per  time (hrs)b
                                                 million by
                                                  volume)a
------------------------------------------------------------------------
Mass burn waterwall...........................          100            4
Mass burn refractory..........................          100            4
Mass burn rotary refractory...................          100           24
Mass burn rotary waterwall....................          250           24
Modular starved air...........................           50            4
Modular excess air............................           50            4
Refuse-derived fuel stoker....................          200           24
Buddling fluidized bed combustor..............          100            4
Circulating fluidized bed combustor...........          100            4
Pulverized coal/refuse-derived fuel mixed fuel-
 fired combustor..............................          150            4
Spreader stoker coal/refuse-derived fuel mixed
 fuel-fired combustor.........................          200           24
------------------------------------------------------------------------
a Measured at the combustor outlet in conjunction with a measurement of
  oxygen concentration, corrected to 7 percent oxygen, dry basis.
  Calculated as an arithmetic average.
b Averaging times are 4-hour or 24-hour block averages.

[[Page 69]]

 

    (b) For approval, a State plan shall include requirements for 
municipal waste combustor operating practices at least as protective as 
those requirements listed in Sec. 60.53b(b) and (c) of subpart Eb of 
this part.
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 
1997]



Sec. 60.35b  Emission guidelines for municipal waste combustor operator training and certification.

    For approval, a State plan shall include requirements for designated 
facilities for municipal waste combustor operator training and 
certification at least as protective as those requirements listed in 
Sec. 60.54b of subpart Eb of this part. The State plan shall require 
compliance with these requirements according to the schedule specified 
in Sec. 60.39b(c)(4).
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, Aug. 25, 1997]



Sec. 60.36b  Emission guidelines for municipal waste combustor fugitive ash emissions.

    For approval, a State plan shall include requirements for municipal 
waste combustor fugitive ash emissions at least as protective as those 
requirements listed in Sec. 60.55b of subpart Eb of this part.



Sec. 60.37b  Emission guidelines for air curtain incinerators.

    For approval, a State plan shall include emission limits for opacity 
for air curtain incinerators at least as protective as those listed in 
Sec. 60.56b of subpart Eb of this part.



Sec. 60.38b  Compliance and performance testing.

    (a) For approval, a State plan shall include the performance testing 
methods listed in Sec. 60.58b of subpart Eb of this part, as applicable, 
except as provided for under Sec. 60.24(b)(2) of subpart B of this part 
and paragraphs (b) and (c) of this section.
    (b) For approval, a State plan shall include for designated 
facilities the alternative performance testing schedule for dioxins/
furans specified in Sec. 60.58b(g)(5)(iii) of subpart Eb of this part, 
as applicable, for those designated facilities that achieve a dioxin/
furan emission level less than or equal to 15 nanograms per dry standard 
cubic meter total mass, corrected to 7 percent oxygen.
    (c) [Reserved]
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, Aug. 25, 1997]



Sec. 60.39b  Reporting and recordkeeping guidelines and compliance schedules.

    (a) For approval, a State plan shall include the reporting and 
recordkeeping provisions listed in Sec. 60.59b of subpart Eb of this 
part, as applicable, except for the siting requirements under 
Sec. 60.59b(a), (b)(5), and (d)(11) of subpart Eb of this part.
    (b) Not later than December 19, 1996, each State in which a 
designated facility is located shall submit to the EPA Administrator a 
plan to implement and enforce all provisions of this subpart except 
those specified under Sec. 60.33b (a)(4), (b)(3), and (d)(3). The 
compliance schedule specified in this paragraph is in accordance with 
section 129(b)(2) of the Act and supersedes the compliance schedule 
provided in Sec. 60.23(a)(1) of subpart B of this part.
    (c) For approval, a State plan shall include the compliance 
schedules specified in paragraphs (c)(1) through (c)(5) of this section.
    (1) A State plan shall allow designated facilities to comply with 
all requirements of a State plan (or close) within 1 year after approval 
of the State plan, except as provided by paragraph (c)(1)(i) and 
(c)(1)(ii) of this section.
    (i) A State plan that allows designated facilities more than 1 year 
but less than 3 years following the date of issuance of a revised 
construction or operation permit, if a permit modification is required, 
or more than 1 year but less than 3 years following approval of the 
State plan, if a permit modification is not required, shall include 
measurable and enforceable incremental steps of progress toward 
compliance. Suggested measurable and enforceable activities are 
specified in paragraphs (c)(1)(i)(A) through (c)(1)(i)(J) of this 
section.

[[Page 70]]

    (A) Date for obtaining services of an architectural and engineering 
firm regarding the air pollution control device(s);
    (B) Date for obtaining design drawings of the air pollution control 
device(s);
    (C) Date for submittal of permit modifications, if necessary;
    (D) Date for submittal of the final control plan to the 
Administrator. [Sec. 60.21 (h)(1) of subpart B of this part.];
    (E) Date for ordering the air pollution control device(s);
    (F) Date for obtaining the major components of the air pollution 
control device(s);
    (G) Date for initiation of site preparation for installation of the 
air pollution control device(s);
    (H) Date for initiation of installation of the air pollution control 
device(s);
    (I) Date for initial startup of the air pollution control device(s); 
and
    (J) Date for initial performance test(s) of the air pollution 
control device(s).
    (ii) A State plan that allows designated facilities more than 1 year 
but up to 3 years after State plan approval to close shall require a 
closure agreement. The closure agreement must include the date of plant 
closure.
    (2) If the State plan requirements for a designated facility include 
a compliance schedule longer than 1 year after approval of the State 
plan in accordance with paragraph (c)(1)(i) or (c)(1)(ii) of this 
section, the State plan submittal (for approval) shall include 
performance test results for dioxin/furan emissions for each designated 
facility that has a compliance schedule longer than 1 year following the 
approval of the State plan, and the performance test results shall have 
been conducted during or after 1990. The performance test shall be 
conducted according to the procedures in Sec. 60.38b.
    (3) [Reserved]
    (4) A State plan shall require compliance with the municipal waste 
combustor operator training and certification requirements under 
Sec. 60.35b according to the schedule specified in paragraphs (c)(4)(i) 
through (c)(4)(iii) of this section.
    (i) [Reserved]
    (ii) For designated facilities, the State plan shall require 
compliance with the municipal waste combustor operator training and 
certification requirements specified under Sec. 60.54b (a) through (c) 
of subpart Eb of this part by the date 6 months after the date of 
startup or 12 months after State plan approval, whichever is later.
    (iii) For designated facilities, the State plan shall require 
compliance with the requirements specified in Sec. 60.54b (d), (f), and 
(g) of subpart Eb of this part no later than 6 months after startup or 
12 months after State plan approval, whichever is later.
    (A) The requirement specified in Sec. 60.54b(d) of subpart Eb of 
this part does not apply to chief facility operators, shift supervisors, 
and control room operators who have obtained full certification from the 
American Society of Mechanical Engineers on or before the date of State 
plan approval.
    (B) The owner or operator of a designated facility may request that 
the EPA Administrator waive the requirement specified in Sec. 60.54b(d) 
of subpart Eb of this part for chief facility operators, shift 
supervisors, and control room operators who have obtained provisional 
certification from the American Society of Mechanical Engineers on or 
before the date of State plan approval.
    (C) The initial training requirements specified in Sec. 60.54b(f)(1) 
of subpart Eb of this part shall be completed no later than the date 
specified in paragraph (c)(4)(iii)(C)(1), (c)(4)(iii)(C)(2), or 
(c)(4)(iii)(C)(3), of this section whichever is later.
    (1) The date 6 months after the date of startup of the affected 
facility;
    (2) Twelve months after State plan approval; or
    (3) The date prior to the day when the person assumes 
responsibilities affecting municipal waste combustor unit operation.
    (5) A State plan shall require all designated facilities for which 
construction, modification, or reconstruction is commenced after June 
26, 1987 to comply with the emission limit for mercury specified in 
Sec. 60.33b(a)(3) and the

[[Page 71]]

emission limit for dioxins/furans specified in Sec. 60.33b(c)(1) within 
1 year following issuance of a revised construction or operation permit, 
if a permit modification is required, or within 1 year following 
approval of the State plan, whichever is later.
    (d) In the event no plan for implementing the emission guidelines is 
approved by EPA, all designated facilities meeting the applicability 
requirements under Sec. 60.32b shall be in compliance with all of the 
guidelines, except those specified under Sec. 60.33b (a)(4), (b)(3), and 
(d)(3), no later than December 19, 2000.
    (e) Not later than August 25, 1998, each State in which a designated 
facility is operating shall submit to the EPA Administrator a plan to 
implement and enforce all provisions of this subpart specified in 
Sec. 60.33b (a)(4), (b)(3), and (d)(3).
    (f) In the event no plan for implementing the emission guidelines is 
approved by EPA, all designated facilities meeting the applicability 
requirements under Sec. 60.32b shall be in compliance with all of the 
guidelines, including those specified under Sec. 60.33b (a)(4), (b)(3), 
and (d)(3), no later than August 26, 2002.
[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 
1997]



Subpart Cc--Emission Guidelines and Compliance Times for Municipal Solid 
                             Waste Landfills

    Source: 61 FR 9919, Mar. 12, 1996, unless otherwise noted.



Sec. 60.30c  Scope.

    This subpart contains emission guidelines and compliance times for 
the control of certain designated pollutants from certain designated 
municipal solid waste landfills in accordance with section 111(d) of the 
Act and subpart B.



Sec. 60.31c  Definitions.

    Terms used but not defined in this subpart have the meaning given 
them in the Act and in subparts A, B, and WWW of this part.
    Municipal solid waste landfill or MSW landfill means an entire 
disposal facility in a contiguous geographical space where household 
waste is placed in or on land. An MSW landfill may also receive other 
types of RCRA Subtitle D wastes such as commercial solid waste, 
nonhazardous sludge, conditionally exempt small quantity generator 
waste, and industrial solid waste. Portions of an MSW landfill may be 
separated by access roads. An MSW landfill may be publicly or privately 
owned. An MSW landfill may be a new MSW landfill, an existing MSW 
landfill or a lateral expansion.



Sec. 60.32c  Designated facilities.

    (a) The designated facility to which the guidelines apply is each 
existing MSW landfill for which construction, reconstruction or 
modification was commenced before May 30, 1991.
    (b) Physical or operational changes made to an existing MSW landfill 
solely to comply with an emission guideline are not considered a 
modification or reconstruction and would not subject an existing MSW 
landfill to the requirements of subpart WWW [see Sec. 60.750 of Subpart 
WWW].
    (c) For purposes of obtaining an operating permit under title V of 
the Act, the owner or operator of a MSW landfill subject to this subpart 
with a design capacity less than 2.5 million megagrams or 2.5 million 
cubic meters is not subject to the requirement to obtain an operating 
permit for the landfill under part 70 or 71 of this chapter, unless the 
landfill is otherwise subject to either part 70 or 71. For purposes of 
submitting a timely application for an operating permit under part 70 or 
71, the owner or operator of a MSW landfill subject to this subpart with 
a design capacity greater than or equal to 2.5 million megagrams and 2.5 
million cubic meters on the effective date of EPA approval of the 
State's program under section 111(d) of the Act, and not otherwise 
subject to either part 70 or 71, becomes subject to the requirements of 
Secs. 70.5(a)(1)(i) or 71.5(a)(1)(i) of this chapter 90 days after the 
effective date of such 111(d) program approval, even if the design 
capacity report is submitted earlier.

[[Page 72]]

    (d) When a MSW landfill subject to this subpart is closed, the owner 
or operator is no longer subject to the requirement to maintain an 
operating permit under part 70 or 71 of this chapter for the landfill if 
the landfill is not otherwise subject to the requirements of either part 
70 or 71 and if either of the following conditions are met.
    (1) The landfill was never subject to the requirement for a control 
system under Sec. 60.33c(c) of this subpart; or
    (2) The owner or operator meets the conditions for control system 
removal specified in Sec. 60.752(b)(2)(v) of subpart WWW.
[61 FR 9919, Mar. 12, 1996, as amended at 63 FR 32750, June 16, 1998]

    Effective Date Note:  At 63 FR 32750, June 16, 1998, Sec. 60.32c was 
amended by adding paragraphs (c) and (d), effective Aug. 17, 1998.



Sec. 60.33c  Emission guidelines for municipal solid waste landfill emissions.

    (a) For approval, a State plan shall include control of MSW landfill 
emissions at each MSW landfill meeting the following three conditions:
    (1) The landfill has accepted waste at any time since November 8, 
1987, or has additional design capacity available for future waste 
deposition;
    (2) The landfill has a design capacity greater than or equal to 2.5 
million megagrams and 2.5 million cubic meters. The landfill may 
calculate design capacity in either megagrams or cubic meters for 
comparison with the exemption values. Any density conversions shall be 
documented and submitted with the report; and
    (3) The landfill has a nonmethane organic compound emission rate of 
50 megagrams per year or more.
    (b) For approval, a State plan shall include the installation of a 
collection and control system meeting the conditions provided in 
Sec. 60.752(b)(2)(ii) of this part at each MSW landfill meeting the 
conditions in paragraph (a) of this section. The State plan shall 
include a process for State review and approval of the site-specific 
design plans for the gas collection and control system(s).
    (c) For approval, a State plan shall include provisions for the 
control of collected MSW landfill emissions through the use of control 
devices meeting the requirements of paragraph (c)(1), (2), or (3) of 
this section, except as provided in Sec. 60.24.
    (1) An open flare designed and operated in accordance with the 
parameters established in Sec. 60.18; or
    (2) A control system designed and operated to reduce NMOC by 98 
weight percent; or
    (3) An enclosed combustor designed and operated to reduce the outlet 
NMOC concentration to 20 parts per million as hexane by volume, dry 
basis at 3 percent oxygen, or less.
[61 FR 9919, Mar. 12, 1996, as amended at 63 FR 32750, June 16, 1998]

    Effective Date Note:  At 63 FR 32750, June 16, 1998, Sec. 60.33c was 
amended in paragraph (a)(2) by removing the phrase ``2.5 million 
megagrams or 2.5 million cubic meters'' and inserting the phrase ``2.5 
million megagrams and 2.5 million cubic meters'', effective Aug. 17, 
1998.



Sec. 60.34c  Test methods and procedures.

    For approval, a State plan shall include provisions for: the 
calculation of the landfill NMOC emission rate listed in Sec. 60.754, as 
applicable, to determine whether the landfill meets the condition in 
Sec. 60.33c(a)(3); the operational standards in Sec. 60.753; the 
compliance provisions in Sec. 60.755; and the monitoring provisions in 
Sec. 60.756.



Sec. 60.35c  Reporting and recordkeeping guidelines.

    For approval, a State plan shall include the recordkeeping and 
reporting provisions listed in Secs. 60.757 and 60.758, as applicable, 
except as provided under Sec. 60.24.



Sec. 60.36c  Compliance times.

    (a) Except as provided for under paragraph (b) of this section, 
planning, awarding of contracts, and installation of MSW landfill air 
emission collection and control equipment capable of meeting the 
emission guidelines established under Sec. 60.33c shall be accomplished 
within 30 months after the date the initial NMOC emission rate report 
shows NMOC emissions equal or exceed 50 megagrams per year.
    (b) For each existing MSW landfill meeting the conditions in 
Sec. 60.33c(a)(1) and Sec. 60.33c(a)(2) whose NMOC emission rate is less 
than 50 megagrams per year

[[Page 73]]

on the effective date of the State emission standard, installation of 
collection and control systems capable of meeting emission guidelines in 
Sec. 60.33c shall be accomplished within 30 months of the date when the 
condition in Sec. 60.33c(a)(3) is met (i.e., the date of the first 
annual nonmethane organic compounds emission rate which equals or 
exceeds 50 megagrams per year).
[61 FR 9919, Mar. 12, 1996, as amended at 63 FR 32750, June 16, 1998]

    Effective Date Note:  At 63 FR 32750, June 16, 1998, Sec. 60.36c was 
amended by revising paragraph (a), effective Aug. 17, 1998. For the 
convenience of the user, the superseded text is set forth as follows:

Sec. 60.36c  Compliance times.

    (a) Except as provided for under paragraph (b) of this section, 
planning, awarding of contracts, and installation of MSW landfill air 
emission collection and control equipment capable of meeting the 
emission guidelines established under Sec. 60.33c shall be accomplished 
within 30 months after the effective date of a State emission standard 
for MSW landfills.

                                * * * * *



Subpart Cd--Emissions Guidelines and Compliance Times for Sulfuric Acid 
                            Production Units

    Source: 60 FR 65414, Dec. 19, 1995, unless otherwise noted.



Sec. 60.30d  Designated facilities.

    Sulfuric acid production units. The designated facility to which 
Secs. 60.31d and 60.32d apply is each existing ``sulfuric acid 
production unit'' as defined in Sec. 60.81(a) of subpart H of this part.



Sec. 60.31d  Emissions guidelines.

    Sulfuric acid production units. The emission guideline for 
designated facilities is 0.25 grams sulfuric acid mist (as measured by 
EPA Reference Method 8 of appendix A of this part) per kilogram (0.5 
pounds per ton) of sulfuric acid produced, the production being 
expressed as 100 percent sulfuric acid.



Sec. 60.32d  Compliance times.

    Sulfuric acid production units. Planning, awarding of contracts, and 
installation of equipment capable of attaining the level of the emission 
guideline established under Sec. 60.31d can be accomplished within 17 
months after the effective date of a State emission standard for 
sulfuric acid mist.



   Subpart Ce--Emission Guidelines and Compliance Times for Hospital/
                  Medical/Infectious Waste Incinerators

    Source:  62 FR 48379, Sept. 15, 1997, unless otherwise noted.



Sec. 60.30e  Scope.

    This subpart contains emission guidelines and compliance times for 
the control of certain designated pollutants from hospital/medical/
infectious waste incinerator(s) (HMIWI) in accordance with sections 111 
and 129 of the Clean Air Act and subpart B of this part. The provisions 
in these emission guidelines supersede the provisions of Sec. 60.24(f) 
of subpart B of this part.



Sec. 60.31e  Definitions.

    Terms used but not defined in this subpart have the meaning given 
them in the Clean Air Act and in subparts A, B, and Ec of this part.
    Standard Metropolitan Statistical Area or SMSA means any areas 
listed in OMB Bulletin No. 93-17 entitled ``Revised Statistical 
Definitions for Metropolitan Areas'' dated June 30, 1993 (incorporated 
by reference, see Sec. 60.17).



Sec. 60.32e  Designated facilities.

    (a) Except as provided in paragraphs (b) through (h) of this 
section, the designated facility to which the guidelines apply is each 
individual HMIWI for which construction was commenced on or before June 
20, 1996.
    (b) A combustor is not subject to this subpart during periods when 
only pathological waste, low-level radioactive waste, and/or 
chemotherapeutic waste (all defined in Sec. 60.51c) is burned, provided 
the owner or operator of the combustor:
    (1) Notifies the Administrator of an exemption claim; and
    (2) Keeps records on a calendar quarter basis of the periods of time 
when

[[Page 74]]

only pathological waste, low-level radioactive waste, and/or 
chemotherapeutic waste is burned.
    (c) Any co-fired combustor (defined in Sec. 60.51c) is not subject 
to this subpart if the owner or operator of the co-fired combustor:
    (1) Notifies the Administrator of an exemption claim;
    (2) Provides an estimate of the relative weight of hospital waste, 
medical/infectious waste, and other fuels and/or wastes to be combusted; 
and
    (3) Keeps records on a calendar quarter basis of the weight of 
hospital waste and medical/infectious waste combusted, and the weight of 
all other fuels and wastes combusted at the co-fired combustor.
    (d) Any combustor required to have a permit under Section 3005 of 
the Solid Waste Disposal Act is not subject to this subpart.
    (e) Any combustor which meets the applicability requirements under 
subpart Cb, Ea, or Eb of this part (standards or guidelines for certain 
municipal waste combustors) is not subject to this subpart.
    (f) Any pyrolysis unit (defined in Sec. 60.51c) is not subject to 
this subpart.
    (g) Cement kilns firing hospital waste and/or medical/infectious 
waste are not subject to this subpart.
    (h) Physical or operational changes made to an existing HMIWI unit 
solely for the purpose of complying with emission guidelines under this 
subpart are not considered a modification and do not result in an 
existing HMIWI unit becoming subject to the provisions of subpart Ec 
(see Sec. 60.50c).
    (i) Beginning September 15, 2000, or on the effective date of an EPA 
approved operating permit program under Clean Air Act title V and the 
implementing regulations under 40 CFR part 70 in the State in which the 
unit is located, whichever date is later, designated facilities subject 
to this subpart shall operate pursuant to a permit issued under the EPA-
approved operating permit program.



Sec. 60.33e  Emission guidelines.

    (a) For approval, a State plan shall include the requirements for 
emission limits at least as protective as those requirements listed in 
Table 1 of this subpart, except as provided for in paragraph (b) of this 
section.
    (b) For approval, a State plan shall include the requirements for 
emission limits at least as protective as those requirements listed in 
Table 2 of this subpart for any small HMIWI which is located more than 
50 miles from the boundary of the nearest Standard Metropolitan 
Statistical Area (defined in Sec. 60.31e) and which burns less than 
2,000 pounds per week of hospital waste and medical/infectious waste. 
The 2,000 lb/week limitation does not apply during performance tests.
    (c) For approval, a State plan shall include the requirements for 
stack opacity at least as protective as Sec. 60.52c(b) of subpart Ec of 
this part.



Sec. 60.34e  Operator training and qualification guidelines.

    For approval, a State plan shall include the requirements for 
operator training and qualification at least as protective as those 
requirements listed in Sec. 60.53c of subpart Ec of this part. The State 
plan shall require compliance with these requirements according to the 
schedule specified in Sec. 60.39e(e).



Sec. 60.35e  Waste management guidelines.

    For approval, a State plan shall include the requirements for a 
waste management plan at least as protective as those requirements 
listed in Sec. 60.55c of subpart Ec of this part.



Sec. 60.36e  Inspection guidelines.

    (a) For approval, a State plan shall require that each small HMIWI 
subject to the emission limits under Sec. 60.33e(b) undergo an initial 
equipment inspection that is at least as protective as the following 
within 1 year following approval of the State plan:
    (1) At a minimum, an inspection shall include the following:
    (i) Inspect all burners, pilot assemblies, and pilot sensing devices 
for proper operation; clean pilot flame sensor, as necessary;
    (ii) Ensure proper adjustment of primary and secondary chamber 
combustion air, and adjust as necessary;
    (iii) Inspect hinges and door latches, and lubricate as necessary;

[[Page 75]]

    (iv) Inspect dampers, fans, and blowers for proper operation;
    (v) Inspect HMIWI door and door gaskets for proper sealing;
    (vi) Inspect motors for proper operation;
    (vii) Inspect primary chamber refractory lining; clean and repair/
replace lining as necessary;
    (viii) Inspect incinerator shell for corrosion and/or hot spots;
    (ix) Inspect secondary/tertiary chamber and stack, clean as 
necessary;
    (x) Inspect mechanical loader, including limit switches, for proper 
operation, if applicable;
    (xi) Visually inspect waste bed (grates), and repair/seal, as 
appropriate;
    (xii) For the burn cycle that follows the inspection, document that 
the incinerator is operating properly and make any necessary 
adjustments;
    (xiii) Inspect air pollution control device(s) for proper operation, 
if applicable;
    (xiv) Inspect waste heat boiler systems to ensure proper operation, 
if applicable;
    (xv) Inspect bypass stack components;
    (xvi) Ensure proper calibration of thermocouples, sorbent feed 
systems and any other monitoring equipment; and
    (xvii) Generally observe that the equipment is maintained in good 
operating condition.
    (2) Within 10 operating days following an equipment inspection all 
necessary repairs shall be completed unless the owner or operator 
obtains written approval from the State agency establishing a date 
whereby all necessary repairs of the designated facility shall be 
completed.
    (b) For approval, a State plan shall require that each small HMIWI 
subject to the emission limits under Sec. 60.33e(b) undergo an equipment 
inspection annually (no more than 12 months following the previous 
annual equipment inspection), as outlined in paragraphs (a)(1) and 
(a)(2) of this section.



Sec. 60.37e  Compliance, performance testing, and monitoring guidelines.

    (a) Except as provided in paragraph (b) of this section, for 
approval, a State plan shall include the requirements for compliance and 
performance testing listed in Sec. 60.56c of subpart Ec of this part, 
excluding the fugitive emissions testing requirements under 
Sec. 60.56c(b)(12) and (c)(3).
    (b) For approval, a State plan shall require any small HMIWI subject 
to the emission limits under Sec. 60.33e(b) to meet the following 
compliance and performance testing requirements:
    (1) Conduct the performance testing requirements in Sec. 60.56c(a), 
(b)(1) through (b)(9), (b)(11) (Hg only), and (c)(1) of subpart Ec of 
this part. The 2,000 lb/week limitation under Sec. 60.33e(b) does not 
apply during performance tests.
    (2) Establish maximum charge rate and minimum secondary chamber 
temperature as site-specific operating parameters during the initial 
performance test to determine compliance with applicable emission 
limits.
    (3) Following the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, ensure that the designated facility does not operate above 
the maximum charge rate or below the minimum secondary chamber 
temperature measured as 3-hour rolling averages (calculated each hour as 
the average of the previous 3 operating hours) at all times except 
during periods of startup, shutdown and malfunction. Operating parameter 
limits do not apply during performance tests. Operation above the 
maximum charge rate or below the minimum secondary chamber temperature 
shall constitute a violation of the established operating parameter(s).
    (4) Except as provided in paragraph (b)(5) of this section, 
operation of the designated facility above the maximum charge rate and 
below the minimum secondary chamber temperature (each measured on a 3-
hour rolling average) simultaneously shall constitute a violation of the 
PM, CO, and dioxin/furan emission limits.
    (5) The owner or operator of a designated facility may conduct a 
repeat performance test within 30 days of violation of applicable 
operating parameter(s) to demonstrate that the designated facility is 
not in violation of

[[Page 76]]

the applicable emission limit(s). Repeat performance tests conducted 
pursuant to this paragraph must be conducted using the identical 
operating parameters that indicated a violation under paragraph (b)(4) 
of this section.
    (c) For approval, a State plan shall include the requirements for 
monitoring listed in Sec. 60.57c of subpart Ec of this part, except as 
provided for under paragraph (d) of this section.
    (d) For approval, a State plan shall include requirements for any 
small HMIWI subject to the emission limits under Sec. 60.33e(b) to meet 
the following monitoring requirements:
    (1) Install, calibrate (to manufacturers' specifications), maintain, 
and operate a device for measuring and recording the temperature of the 
secondary chamber on a continuous basis, the output of which shall be 
recorded, at a minimum, once every minute throughout operation.
    (2) Install, calibrate (to manufacturers' specifications), maintain, 
and operate a device which automatically measures and records the date, 
time, and weight of each charge fed into the HMIWI.
    (3) The owner or operator of a designated facility shall obtain 
monitoring data at all times during HMIWI operation except during 
periods of monitoring equipment malfunction, calibration, or repair. At 
a minimum, valid monitoring data shall be obtained for 75 percent of the 
operating hours per day and for 90 percent of the operating hours per 
calendar quarter that the designated facility is combusting hospital 
waste and/or medical/infectious waste.



Sec. 60.38e  Reporting and recordkeeping guidelines.

    (a) For approval, a State plan shall include the reporting and 
recordkeeping requirements listed in Sec. 60.58c(b), (c), (d), (e), and 
(f) of subpart Ec of this part, excluding Sec. 60.58c(b)(2)(ii) 
(fugitive emissions) and (b)(7) (siting).
    (b) For approval, a State plan shall require the owner or operator 
of each small HMIWI subject to the emission limits under Sec. 60.33e(b) 
to:
    (1) Maintain records of the annual equipment inspections, any 
required maintenance, and any repairs not completed within 10 days of an 
inspection or the timeframe established by the State regulatory agency; 
and
    (2) Submit an annual report containing information recorded under 
paragraph (b)(1) of this section no later than 60 days following the 
year in which data were collected. Subsequent reports shall be sent no 
later than 12 calendar months following the previous report (once the 
unit is subject to permitting requirements under Title V of the Act, the 
owner or operator must submit these reports semiannually). The report 
shall be signed by the facilities manager.



Sec. 60.39e  Compliance times.

    (a) Not later than September 15, 1998, each State in which a 
designated facility is operating shall submit to the Administrator a 
plan to implement and enforce the emission guidelines.
    (b) Except as provided in paragraphs (c) and (d) of this section, 
State plans shall provide that designated facilities comply with all 
requirements of the State plan on or before the date 1 year after EPA 
approval of the State plan, regardless of whether a designated facility 
is identified in the State plan inventory required by Sec. 60.25(a) of 
subpart B of this part.
    (c) State plans that specify measurable and enforceable incremental 
steps of progress towards compliance for designated facilities planning 
to install the necessary air pollution control equipment may allow 
compliance on or before the date 3 years after EPA approval of the State 
plan (but not later than the September 16, 2002. Suggested measurable 
and enforceable activities to be included in State plans are:
    (1) Date for submitting a petition for site specific operating 
parameters under Sec. 60.56c(i) of subpart Ec of this part.
    (2) Date for obtaining services of an architectural and engineering 
firm regarding the air pollution control device(s);
    (3) Date for obtaining design drawings of the air pollution control 
device(s);
    (4) Date for ordering the air pollution control device(s);

[[Page 77]]

    (5) Date for obtaining the major components of the air pollution 
control device(s);
    (6) Date for initiation of site preparation for installation of the 
air pollution control device(s);
    (7) Date for initiation of installation of the air pollution control 
device(s);
    (8) Date for initial startup of the air pollution control device(s); 
and
    (9) Date for initial compliance test(s) of the air pollution control 
device(s).
    (d) State plans that include provisions allowing designated 
facilities to petition the State for extensions beyond the compliance 
times required in paragraph (b) of this section shall:
    (1) Require that the designated facility requesting an extension 
submit the following information in time to allow the State adequate 
time to grant or deny the extension within 1 year after EPA approval of 
the State plan:
    (i) Documentation of the analyses undertaken to support the need for 
an extension, including an explanation of why up to 3 years after EPA 
approval of the State plan is sufficient time to comply with the State 
plan while 1 year after EPA approval of the State plan is not 
sufficient. The documentation shall also include an evaluation of the 
option to transport the waste offsite to a commercial medical waste 
treatment and disposal facility on a temporary or permanent basis; and
    (ii) Documentation of measurable and enforceable incremental steps 
of progress to be taken towards compliance with the emission guidelines.
    (2) Include procedures for granting or denying the extension; and
    (3) If an extension is granted, require compliance with the emission 
guidelines on or before the date 3 years after EPA approval of the State 
plan (but not later than September 16, 2002.
    (e) For approval, a State plan shall require compliance with 
Sec. 60.34e--Operator training and qualification guidelines and 
Sec. 60.36e--Inspection guidelines by the date 1 year after EPA approval 
of a State plan.
    (f) The Administrator shall develop, implement, and enforce a plan 
for existing HMIWI located in any State that has not submitted an 
approvable plan within date 2 years after September 15, 1997. Such plans 
shall ensure that each designated facility is in compliance with the 
provisions of this subpart no later than date 5 years after September 
15, 1997.

[[Page 78]]



                                        Table 1 to Subpart Ce--Emission Limits for Small, Medium, and Large HMIWI
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                       Emission limits
                                                                   -------------------------------------------------------------------------------------
              Pollutant               Units (7 percent oxygen, dry                                       HMIWI size
                                                 basis)            -------------------------------------------------------------------------------------
                                                                             Small                   Medium                         Large
--------------------------------------------------------------------------------------------------------------------------------------------------------
Particulate matter..................  Milligrams per dry standard   115 (0.05).............  69 (0.03).............  34 (0.015).
                                       cubic meter (grains per dry
                                       standard cubic foot).
Carbon monoxide.....................  Parts per million by volume.  40.....................  40....................  40.
Dioxins/furans......................  Nanograms per dry standard    125 (55) or 2.3 (1.0)..  125 (55) or 2.3 (1.0).  125 (55) or 2.3 (1.0).
                                       cubic meter total dioxins/
                                       furans (grains per billion
                                       dry standard cubic feet) or
                                       nanograms per dry standard
                                       cubic meter TEQ (grains per
                                       billion dry standard cubic
                                       feet).
Hydrogen chloride...................  Parts per million by volume   100 or 93%.............  100 or 93%............  100 or 93%.
                                       or percent reduction.
Sulfur dioxide......................  Parts per million by volume.  55.....................  55....................  55.
Nitrogen oxides.....................  Parts per million by volume.  250....................  250...................  250.
Lead................................  Milligrams per dry standard   1.2 (0.52) or 70%......  1.2 (0.52) or 70%.....  1.2 (0.52) or 70%.
                                       cubic meter (grains per
                                       thousand dry standard cubic
                                       feet) or percent reduction.
Cadmium.............................  Milligrams per dry standard   0.16 (0.07) or 65%.....  0.16 (0.07) or 65%....
                                       cubic meter (grains per
                                       thousand dry standard cubic
                                       feet) or percent reduction.
Mercury.............................  Milligrams per dry standard   0.55 (0.24) or 85%.....  0.55 (0.24) or 85%....  0.55 (0.24) or 85%.
                                       cubic meter (grains per
                                       thousand dry standard cubic
                                       feet) or percent reduction.

[[Page 79]]

 
--------------------------------------------------------------------------------------------------------------------------------------------------------


 Table 2 to Subpart Ce--Emissions Limits for Small HMIWI Which Meet the
                     Criteria Under Sec.  60.33e(b)
------------------------------------------------------------------------
                                   Units (7 percent      HMIWI emission
           Pollutant              oxygen, dry basis)         limits
------------------------------------------------------------------------
Particulate matter............  Milligrams per dry     197 (0.086).
                                 standard cubic meter
                                 (grains per dry
                                 standard cubic foot).
Carbon monoxide...............  Parts per million by   40.
                                 volume.
Dioxins/furans................  nanograms per dry      800 (350) or 15
                                 standard cubic meter   (6.6).
                                 total dioxins/furans
                                 (grains per billion
                                 dry standard cubic
                                 feet) or nanograms
                                 per dry standard
                                 cubic meter TEQ
                                 (grains per billion
                                 dry standard cubic
                                 feet).
Hydrogen chloride.............  Parts per million by   3100.
                                 volume.
Sulfur dioxide................  Parts per million by   55.
                                 volume.
Nitrogen oxides...............  Parts per million by   250.
                                 volume.
Lead..........................  Milligrams per dry     10 (4.4).
                                 standard cubic meter
                                 (grains per thousand
                                 dry standard cubic
                                 feet).
Cadmium.......................  Milligrams per dry     4 (1.7).
                                 standard cubic meter
                                 (grains per thousand
                                 dry standard cubic
                                 feet).
Mercury.......................  Milligrams per dry     7.5 (3.3).
                                 standard cubic meter
                                 (grains per
                                 thousands dry
                                 standard cubic feet).
------------------------------------------------------------------------



    Subpart D--Standards of Performance for Fossil-Fuel-Fired Steam 
  Generators for Which Construction is Commenced After August 17, 1971



Sec. 60.40  Applicability and designation of affected facility.

    (a) The affected facilities to which the provisions of this subpart 
apply are:
    (1) Each fossil-fuel-fired steam generating unit of more than 73 
megawatts heat input rate (250 million Btu per hour).
    (2) Each fossil-fuel and wood-residue-fired steam generating unit 
capable of firing fossil fuel at a heat input rate of more than 73 
megawatts (250 million Btu per hour).
    (b) Any change to an existing fossil-fuel-fired steam generating 
unit to accommodate the use of combustible materials, other than fossil 
fuels as defined in this subpart, shall not bring that unit under the 
applicability of this subpart.
    (c) Except as provided in paragraph (d) of this section, any 
facility under paragraph (a) of this section that commenced construction 
or modification after August 17, 1971, is subject to the requirements of 
this subpart.
    (d) The requirements of Secs. 60.44 (a)(4), (a)(5), (b) and (d), and 
60.45(f)(4)(vi) are applicable to lignite-fired steam generating units 
that commenced construction or modification after December 22, 1976.
    (e) Any facility covered under subpart Da is not covered under this 
subpart.
[42 FR 37936, July 25, 1977, as amended at 43 FR 9278, Mar. 7, 1978; 44 
FR 33612, June 17, 1979]



Sec. 60.41  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act, and in subpart A of this part.
    (a) Fossil-fuel fired steam generating unit means a furnace or 
boiler used in the process of burning fossil fuel for the purpose of 
producing steam by heat transfer.
    (b) Fossil fuel means natural gas, petroleum, coal, and any form of 
solid, liquid, or gaseous fuel derived from such materials for the 
purpose of creating useful heat.
    (c) Coal refuse means waste-products of coal mining, cleaning, and 
coal preparation operations (e.g. culm, gob, etc.) containing coal, 
matrix material, clay, and other organic and inorganic material.
    (d) Fossil fuel and wood residue-fired steam generating unit means a 
furnace or boiler used in the process of burning fossil fuel and wood 
residue for the purpose of producing steam by heat transfer.
    (e) Wood residue means bark, sawdust, slabs, chips, shavings, mill 
trim, and other wood products derived from wood processing and forest 
management operations.

[[Page 80]]

    (f) Coal means all solid fuels classified as anthracite, bituminous, 
subbituminous, or lignite by the American Society and Testing and 
Materials, Designation D388-77 (incorporated by reference--see 
Sec. 60.17).
[39 FR 20791, June 14, 1974, as amended at 40 FR 2803, Jan. 16, 1975; 41 
FR 51398, Nov. 22, 1976; 43 FR 9278, Mar. 7, 1978; 48 FR 3736, Jan. 27, 
1983]



Sec. 60.42  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which:
    (1) Contain particulate matter in excess of 43 nanograms per joule 
heat input (0.10 lb per million Btu) derived from fossil fuel or fossil 
fuel and wood residue.
    (2) Exhibit greater than 20 percent opacity except for one six-
minute period per hour of not more than 27 percent opacity.
    (b)(1) On or after December 28, 1979, no owner or operator shall 
cause to be discharged into the atmosphere from the Southwestern Public 
Service Company's Harrington Station 1, in Amarillo, TX, any gases 
which exhibit greater than 35% opacity, except that a maximum or 42% 
opacity shall be permitted for not more than 6 minutes in any hour.
    (2) Interstate Power Company shall not cause to be discharged into 
the atmosphere from its Lansing Station Unit No. 4 in Lansing, IA, any 
gases which exhibit greater than 32% opacity, except that a maximum of 
39% opacity shall be permitted for not more than six minutes in any 
hour.
[39 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 
42 FR 61537, Dec. 5, 1977; 44 FR 76787, Dec. 28, 1979; 45 FR 36077, May 
29, 1980; 45 FR 47146, July 14, 1980; 46 FR 57498, Nov. 24, 1981; 61 FR 
49976, Sept. 24, 1996]



Sec. 60.43  Standard for sulfur dioxide.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain sulfur 
dioxide in excess of:
    (1) 340 nanograms per joule heat input (0.80 lb per million Btu) 
derived from liquid fossil fuel or liquid fossil fuel and wood residue.
    (2) 520 nanograms per joule heat input (1.2 lb per million Btu) 
derived from solid fossil fuel or solid fossil fuel and wood residue, 
except as provided in paragraph (e) of this section.
    (b) When different fossil fuels are burned simultaneously in any 
combination, the applicable standard (in ng/J) shall be determined by 
proration using the following formula:
PSSO2=[y(340) +z(520)]/(y+z)
where:
    PSSO2 is the prorated standard for sulfur dioxide when 
burning different fuels simultaneously, in nanograms per joule heat 
input derived from all fossil fuels fired or from all fossil fuels and 
wood residue fired,
    y is the percentage of total heat input derived from liquid fossil 
fuel, and
    z is the percentage of total heat input derived from solid fossil 
fuel.

    (c) Compliance shall be based on the total heat input from all 
fossil fuels burned, including gaseous fuels.
    (d) [Reserved]
    (e) Units 1 and 2 (as defined in appendix G) at the Newton Power 
Station owned or operated by the Central Illinois Public Service Company 
will be in compliance with paragraph (a)(2) of this section if Unit 1 
and Unit 2 individually comply with paragraph (a)(2) of this section or 
if the combined emission rate from Units 1 and 2 does not exceed 470 
nanograms per joule (1.1 lb per million Btu) combined heat input to 
Units 1 and 2.
[39 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 
52 FR 28954, Aug. 4, 1987]



Sec. 60.44  Standard for nitrogen oxides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain nitrogen 
oxides, expressed as NO2 in excess of:

[[Page 81]]

    (1) 86 nanograms per joule heat input (0.20 lb per million Btu) 
derived from gaseous fossil fuel.
    (2) 129 nanograms per joule heat input (0.30 lb per million Btu) 
derived from liquid fossil fuel, liquid fossil fuel and wood residue, or 
gaseous fossil fuel and wood residue.
    (3) 300 nanograms per joule heat input (0.70 lb per million Btu) 
derived from solid fossil fuel or solid fossil fuel and wood residue 
(except lignite or a solid fossil fuel containing 25 percent, by weight, 
or more of coal refuse).
    (4) 260 nanograms per joule heat input (0.60 lb per million Btu) 
derived from lignite or lignite and wood residue (except as provided 
under paragraph (a)(5) of this section).
    (5) 340 nanograms per joule heat input (0.80 lb per million Btu) 
derived from lignite which is mined in North Dakota, South Dakota, or 
Montana and which is burned in a cyclone-fired unit.
    (b) Except as provided under paragraphs (c) and (d) of this section, 
when different fossil fuels are burned simultaneously in any 
combination, the applicable standard (in ng/J) is determined by 
proration using the following formula:
[GRAPHIC] [TIFF OMITTED] TC16NO91.000

where:
PSNOx=is the prorated standard for nitrogen oxides when 
          burning different fuels simultaneously, in nanograms per joule 
          heat input derived from all fossil fuels fired or from all 
          fossil fuels and wood residue fired;
w= is the percentage of total heat input derived from lignite;
x= is the percentage of total heat input derived from gaseous fossil 
          fuel;
y= is the percentage of total heat input derived from liquid fossil 
          fuel; and
z= is the percentage of total heat input derived from solid fossil fuel 
          (except lignite).

    (c) When a fossil fuel containing at least 25 percent, by weight, of 
coal refuse is burned in combination with gaseous, liquid, or other 
solid fossil fuel or wood residue, the standard for nitrogen oxides does 
not apply.
    (d) Cyclone-fired units which burn fuels containing at least 25 
percent of lignite that is mined in North Dakota, South Dakota, or 
Montana remain subject to paragraph (a)(5) of this section regardless of 
the types of fuel combusted in combination with that lignite.
[39 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 
43 FR 9278, Mar. 7, 1978; 51 FR 42797, Nov. 25, 1986]



Sec. 60.45  Emission and fuel monitoring.

    (a) Each owner or operator shall install, calibrate, maintain, and 
operate continuous monitoring systems for measuring the opacity of 
emissions, sulfur dioxide emissions, nitrogen oxides emissions, and 
either oxygen or carbon dioxide except as provided in paragraph (b) of 
this section.
    (b) Certain of the continuous monitoring system requirements under 
paragraph (a) of this section do not apply to owners or operators under 
the following conditions:
    (1) For a fossil fuel-fired steam generator that burns only gaseous 
fossil fuel, continuous monitoring systems for measuring the opacity of 
emissions and sulfur dioxide emissions are not required.
    (2) For a fossil fuel-fired steam generator that does not use a flue 
gas desulfurization device, a continuous monitoring system for measuring 
sulfur dioxide emissions is not required if the owner or operator 
monitors sulfur dioxide emissions by fuel sampling and analysis under 
paragraph (d) of this section.
    (3) Notwithstanding Sec. 60.13(b), installation of a continuous 
monitoring system for nitrogen oxides may be delayed until after the 
initial performance tests under Sec. 60.8 have been conducted. If the 
owner or operator demonstrates during the performance test that 
emissions of nitrogen oxides are less than 70 percent of the applicable 
standards in Sec. 60.44, a continuous monitoring system for measuring 
nitrogen oxides emissions is not required. If the initial performance 
test results show that nitrogen oxide emissions are greater than 70 
percent of the applicable standard, the owner or operator shall install 
a continuous monitoring system for nitrogen oxides within one year after 
the date of the initial performance tests under Sec. 60.8 and comply 
with all other

[[Page 82]]

applicable monitoring requirements under this part.
    (4) If an owner or operator does not install any continuous 
monitoring systems for sulfur oxides and nitrogen oxides, as provided 
under paragraphs (b)(1) and (b)(3) or paragraphs (b)(2) and (b)(3) of 
this section a continuous monitoring system for measuring either oxygen 
or carbon dioxide is not required.
    (c) For performance evaluations under Sec. 60.13(c) and calibration 
checks under Sec. 60.13(d), the following procedures shall be used:
    (1) Methods 6, 7, and 3B, as applicable, shall be used for the 
performance evaluations of sulfur dioxide and nitrogen oxides continuous 
monitoring systems. Acceptable alternative methods for Methods 6, 7, and 
3B are given in Sec. 60.46(d).
    (2) Sulfur dioxide or nitric oxide, as applicable, shall be used for 
preparing calibration gas mixtures under Performance Specification 2 of 
appendix B to this part.
    (3) For affected facilities burning fossil fuel(s), the span value 
for a continuous monitoring system measuring the opacity of emissions 
shall be 80, 90, or 100 percent and for a continuous monitoring system 
measuring sulfur oxides or nitrogen oxides the span value shall be 
determined as follows:

                         [In parts per million]
------------------------------------------------------------------------
                                     Span value for     Span value for
            Fossil fuel              sulfur dioxide    nitrogen oxides
------------------------------------------------------------------------
Gas...............................           (\1\ )                  500
Liquid............................            1,000                  500
Solid.............................            1,500                 1000
Combinations......................    1,000y+1,500z    500(x+y  )+1,000z
------------------------------------------------------------------------
\1\ Not applicable.

where:
x=the fraction of total heat input derived from gaseous fossil fuel, and
y=the fraction of total heat input derived from liquid fossil fuel, and
z=the fraction of total heat input derived from solid fossil fuel.

    (4) All span values computed under paragraph (c)(3) of this section 
for burning combinations of fossil fuels shall be rounded to the nearest 
500 ppm.
    (5) For a fossil fuel-fired steam generator that simultaneously 
burns fossil fuel and nonfossil fuel, the span value of all continuous 
monitoring systems shall be subject to the Administrator's approval.
    (d) [Reserved]
    (e) For any continuous monitoring system installed under paragraph 
(a) of this section, the following conversion procedures shall be used 
to convert the continuous monitoring data into units of the applicable 
standards (ng/J, lb/million Btu):
    (1) When a continuous monitoring system for measuring oxygen is 
selected, the measurement of the pollutant concentration and oxygen 
concentration shall each be on a consistent basis (wet or dry). 
Alternative procedures approved by the Administrator shall be used when 
measurements are on a wet basis. When measurements are on a dry basis, 
the following conversion procedure shall be used:
E=CF[20.9/(20.9--percent O2)]
where:

E, C, F, and %O2 are determined under paragraph (f) of this 
          section.

    (2) When a continuous monitoring system for measuring carbon dioxide 
is selected, the measurement of the pollutant concentration and carbon 
dioxide concentration shall each be on a consistent basis (wet or dry) 
and the following conversion procedure shall be used:
E=CFc [100/percent CO2]
where:

E, C, Fc and %CO2 are determined under paragraph 
          (f) of this section.

    (f) The values used in the equations under paragraphs (e) (1) and 
(2) of this section are derived as follows:
    (1) E=pollutant emissions, ng/J (lb/million Btu).
    (2) C=pollutant concentration, ng/dscm (lb/dscf), determined by 
multiplying the average concentration (ppm) for each one-hour period by 
4.15 x 10 4 M ng/dscm per ppm (2.59 x 10- 9 
M lb/dscf per ppm) where M=pollutant molecular weight, g/g-mole (lb/lb-
mole). M=64.07 for sulfur dioxide and 46.01 for nitrogen oxides.
    (3) %O2, %CO2=oxygen or carbon dioxide volume 
(expressed as percent), determined with equipment specified under 
paragraph (a) of this section.
    (4) F, Fc=a factor representing a ratio of the volume of 
dry flue gases generated to the calorific value of the fuel

[[Page 83]]

combusted (F), and a factor representing a ratio of the volume of carbon 
dioxide generated to the calorific value of the fuel combusted 
(Fc), respectively. Values of F and Fc are given 
as follows:
    (i) For anthracite coal as classified according to ASTM D388-77 
(incorporated by reference--see Sec. 60.17), 
F=2,723 x 10-\17\ dscm/J (10,140 dscf/million Btu and 
Fc=0.532 x 10 -\17\ scm CO2/J (1,980 
scf CO2/million Btu).
    (ii) For subbituminous and bituminous coal as classified according 
to ASTM D388-77 (incorporated by reference--see Sec. 60.17), 
F=2.637 x 10 -\7\ dscm/J (9,820 dscf/million Btu) and 
Fc=0.486 x 10-\7\ scm CO2/J (1,810 scf 
CO2/million Btu).
    (iii) For liquid fossil fuels including crude, residual, and 
distillate oils, F=2.476 x 10-7 dscm/J (9,220 dscf/million 
Btu) and Fc=0.384 x 10-7 scm CO2/J 
(1,430 scf CO2/million Btu).
    (iv) For gaseous fossil fuels, F=2.347 x 10- 7 
dscm/J (8,740 dscf/million Btu). For natural gas, propane, and butane 
fuels, Fc=0.279 x 10- 7 scm CO2/J 
(1,040 scf CO2/million Btu) for natural gas, 0.322 x 10- 
7 scm CO2/J (1,200 scf CO2/million Btu) for 
propane, and 0.338 x 10- 7 scm CO2/J (1,260 
scf CO2/million Btu) for butane.
    (v) For bark F=2.589 x 10-7 dscm/J (9,640 dscf/million 
Btu) and Fc=0.500 x 10-7 scm CO2/J 
(1,840 scf CO!2/ million Btu). For wood residue other than 
bark F=2.492 x 10-7 dscm/J (9,280 dscf/million Btu) and 
Fc=0.494 x 10-7 scm CO2/J (1,860 scf CO
!2/ million Btu).
    (vi) For lignite coal as classified according to ASTM D388-77 
(incorporated by reference--see Sec. 60.17), F=2.659 x 10-\7\ 
dscm/J (9,900 dscf/million Btu) and Fc=0.516 x 10 
-\7\ scm CO2/J (1,920 scf CO2/million 
Btu).
    (5) The owner or operator may use the following equation to 
determine an F factor (dscm/J or dscf/million Btu) on a dry basis (if it 
is desired to calculate F on a wet basis, consult the Administrator) or 
Fc factor (scm CO2/J, or scf CO2/
million Btu) on either basis in lieu of the F or Fc factors 
specified in paragraph (f)(4) of this section:
[GRAPHIC] [TIFF OMITTED] TC16NO91.001

    (i) H, C, S, N, and O are content by weight of hydrogen, carbon, 
sulfur, nitrogen, and oxygen (expressed as percent), respectively, as 
determined on the same basis as GCV by ultimate analysis of the fuel 
fired, using ASTM method D3178-74 or D3176 (solid fuels) or computed 
from results using ASTM method D1137-53(75), D1945-64(76), or D1946-77 
(gaseous fuels) as applicable. (These five methods are incorporated by 
reference--see Sec. 60.17.)
    (ii) GVC is the gross calorific value (kJ/kg, Btu/lb) of the fuel 
combusted determined by the ASTM test methods D2015-77 for solid fuels 
and D1826-77 for gaseous fuels as applicable. (These two methods are 
incorporated by reference--see Sec. 60.17.)

[[Page 84]]

    (iii) For affected facilities which fire both fossil fuels and 
nonfossil fuels, the F or Fc value shall be subject to the 
Administrator's approval.
    (6) For affected facilities firing combinations of fossil fuels or 
fossil fuels and wood residue, the F or Fc factors determined 
by paragraphs (f)(4) or (f)(5) of this section shall be prorated in 
accordance with the applicable formula as follows:
[GRAPHIC] [TIFF OMITTED] TC16NO91.002

where:
Xi=the fraction of total heat input derived from each type of 
          fuel (e.g. natural gas, bituminous coal, wood residue, etc.)
Fi or (Fc)i=the applicable F or Fc 
          factor for each fuel type determined in accordance with 
          paragraphs (f)(4) and (f)(5) of this section.
n=the number of fuels being burned in combination.

    (g) Excess emission and monitoring system performance reports shall 
be submitted to the Administrator for every calendar quarter. All 
quarterly reports shall be postmarked by the 30th day following the end 
of each calendar quarter. Each excess emission and MSP report shall 
include the information required in Sec. 60.7(c). Periods of excess 
emissions and monitoring systems (MS) downtime that shall be reported 
are defined as follows:
    (1) Opacity. Excess emissions are defined as any six-minute period 
during which the average opacity of emissions exceeds 20 percent 
opacity, except that one six-minute average per hour of up to 27 percent 
opacity need not be reported.
    (i) For sources subject to the opacity standard of Sec. 60.42(b)(1), 
excess emissions are defined as any six-minute period during which the 
average opacity of emissions exceeds 35 percent opacity, except that one 
six-minute average per hour of up to 42 percent opacity need not be 
reported.
    (ii) For sources subject to the opacity standard of 
Sec. 60.42(b)(2), excess emissions are defined as any six-minute period 
during which the average opacity of emissions exceeds 32 percent 
opacity, except that one six-minute average per hour of up to 39 percent 
opacity need not be reported.
    (2) Sulfur dioxide. Excess emissions for affected facilities are 
defined as:
    (i) Any three-hour period during which the average emissions 
(arithmetic average of three contiguous one-hour periods) of sulfur 
dioxide as measured by a continuous monitoring system exceed the 
applicable standard under Sec. 60.43.
    (3) Nitrogen oxides. Excess emissions for affected facilities using 
a continuous monitoring system for measuring nitrogen oxides are defined 
as any three-hour period during which the average emissions (arithmetic 
average of three contiguous one-hour periods) exceed the applicable 
standards under Sec. 60.44.
[40 FR 46256, Oct. 6, 1975]

    Editorial Note: For Federal Register citations affecting Sec. 60.45, 
see the List of CFR Sections Affected in the Finding Aids section of 
this volume.



Sec. 60.46  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b). 
Acceptable alternative methods and procedures are given in paragraph (d) 
of this section.
    (b) The owner or operator shall determine compliance with the 
particulate matter, SO2, and NOx standards in 
Secs. 60.42, 60.43, and 60.44 as follows:
    (1) The emission rate (E) of particulate matter, SO2, or 
NOx shall be computed for each run using the following 
equation:

E=C Fd (20.9)/(20.9-% 02)

E = emission rate of pollutant, ng/J (1b/million Btu).
C = concentration of pollutant, ng/dscm (1b/dscf).
%O2 = oxygen concentration, percent dry basis.
Fd = factor as determined from Method 19.

    (2) Method 5 shall be used to determine the particular matter 
concentration (C) at affected facilities without wet flue-gas-
desulfurization (FGD) systems and Method 5B shall be used to determine 
the particulate matter concentration (C) after FGD systems.

[[Page 85]]

    (i) The sampling time and sample volume for each run shall be at 
least 60 minutes and 0.85 dscm (30 dscf). The probe and filter holder 
heating systems in the sampling train may be set to provide a gas 
temperature no greater than 16014 
+C (32025 +F).
    (ii) The emission rate correction factor, integrated or grab 
sampling and analysis procedure of Method 3B shall be used to determine 
the O2 concentration (%O2). The O2 
sample shall be obtained simultaneously with, and at the same traverse 
points as, the particulate sample. If the grab sampling procedure is 
used, the O2 concentration for the run shall be the 
arithmetic mean of all the individual O2 sample 
concentrations at each traverse point.
    (iii) If the particulate run has more than 12 traverse points, the 
O2 traverse points may be reduced to 12 provided that Method 
1 is used to locate the 12 O2 traverse points.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
    (4) Method 6 shall be used to determine the SO2 
concentration.
    (i) The sampling site shall be the same as that selected for the 
particulate sample. The sampling location in the duct shall be at the 
centroid of the cross section or at a point no closer to the walls than 
1 m (3.28 ft). The sampling time and sample volume for each sample run 
shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Two samples 
shall be taken during a 1-hour period, with each sample taken within a 
30-minute interval.
    (ii) The emission rate correction factor, integrated sampling and 
analysis procedure of Method 3B shall be used to determine the 
O2 concentration (%O2). The O2 sample 
shall be taken simultaneously with, and at the same point as, the 
SO2 sample. The SO2 emission rate shall be 
computed for each pair of SO2 and O2 samples. The 
SO2 emission rate (E) for each run shall be the arithmetic 
mean of the results of the two pairs of samples.
    (5) Method 7 shall be used to determine the NOx 
concentration.
    (i) The sampling site and location shall be the same as for the 
SO2 sample. Each run shall consist of four grab samples, with 
each sample taken at about 15-minute intervals.
    (ii) For each NOx sample, the emission rate correction 
factor, grab sampling and analysis procedure of Method 3B shall be used 
to determine the O2 concentration (%O2). The 
sample shall be taken simultaneously with, and at the same point as, the 
NOx sample.
    (iii) The NOx emission rate shall be computed for each 
pair of NOx and O2 samples. The NOx 
emission rate (E) for each run shall be the arithmetic mean of the 
results of the four pairs of samples.
    (c) When combinations of fossil fuels or fossil fuel and wood 
residue are fired, the owner or operator (in order to compute the 
prorated standard as shown in Secs. 60.43(b) and 60.44(b)) shall 
determine the percentage (w, x, y, or z) of the total heat input derived 
from each type of fuel as follows:
    (1) The heat input rate of each fuel shall be determined by 
multiplying the gross calorific value of each fuel fired by the rate of 
each fuel burned.
    (2) ASTM Methods D 2015-77 (solid fuels), D 240-76 (liquid fuels), 
or D 1826-77 (gaseous fuels) (incorporated by reference--see Sec. 60.17) 
shall be used to determine the gross calorific values of the fuels. The 
method used to determine the calorific value of wood residue must be 
approved by the Administrator.
    (3) Suitable methods shall be used to determine the rate of each 
fuel burned during each test period, and a material balance over the 
steam generating system shall be used to confirm the rate.
    (d) The owner or operator may use the following as alternatives to 
the reference methods and procedures in this section or in other 
sections as specified:
    (1) The emission rate (E) of particulate matter, SO2 and 
NOx may be determined by using the Fc factor, 
provided that the following procedure is used:
    (i) The emission rate (E) shall be computed using the following 
equation:

E=C Fc (100/%CO2)

where:
E=emission rate of pollutant, ng/J (lb/million Btu).
C=concentration of pollutant, ng/dscm (lb/dscf).

[[Page 86]]

%CO2=carbon dioxide concentration, percent dry basis.
Fc=factor as determined in appropriate sections of Method 19.

    (ii) If and only if the average Fc factor in Method 19 is 
used to calculate E and either E is from 0.97 to 1.00 of the emission 
standard or the relative accuracy of a continuous emission monitoring 
system is from 17 to 20 percent, then three runs of Method 3B shall be 
used to determine the O2 and CO2 concentration 
according to the procedures in paragraph (b) (2)(ii), (4)(ii), or 
(5)(ii) of this section. Then if Fo (average of three runs), 
as calculated from the equation in Method 3B, is more than 3 
percent than the average Fo value, as determined from the 
average values of Fd and Fc in Method 19, i.e., 
Foa=0.209 (Fda/Fca), then the following 
procedure shall be followed:
    (A) When Fo is less than 0.97 Foa, then E 
shall be increased by that proportion under 0.97 Foa, e.g., 
if Fo is 0.95 Foa, E shall be increased by 2 
percent. This recalculated value shall be used to determine compliance 
with the emission standard.
    (B) When Fo is less than 0.97 Foa and when the 
average difference (d) between the continuous monitor minus the 
reference methods is negative, then E shall be increased by that 
proportion under 0.97 Foa, e.g., if Fo is 0.95 
Foa, E shall be increased by 2 percent. This recalculated 
value shall be used to determine compliance with the relative accuracy 
specification.
    (C) When Fo is greater than 1.03 Foa and when 
the average difference d is positive, then E shall be decreased by that 
proportion over 1.03 Foa, e.g., if Fo is 1.05 
Foa, E shall be decreased by 2 percent. This recalculated 
value shall be used to determine compliance with the relative accuracy 
specification.
    (2) For Method 5 or 5B, Method 17 may be used at facilities with or 
without wet FGD systems if the stack gas temperature at the sampling 
location does not exceed an average temperature of 160 
+C (320 +F). The procedures of sections 2.1 and 2.3 of Method 5B may be used with Method 17 only if it is used after wet FGD systems. Method 17 shall not be used after wet FGD systems if the effluent gas is saturated or laden with water droplets.

    (3) Particulate matter and SO2 may be determined 
simultaneously with the Method 5 train provided that the following 
changes are made:
    (i) The filter and impinger apparatus in sections 2.1.5 and 2.1.6 of 
Method 8 is used in place of the condenser (section 2.1.7) of Method 5.
    (ii) All applicable procedures in Method 8 for the determination of 
SO2 (including moisture) are used:
    (4) For Method 6, Method 6C may be used. Method 6A may also be used 
whenever Methods 6 and 3B data are specified to determine the 
SO2 emission rate, under the conditions in paragraph (d)(1) 
of this section.
    (5) For Method 7, Method 7A, 7C, 7D, or 7E may be used. If Method 
7C, 7D, or 7E is used, the sampling time for each run shall be at least 
1 hour and the integrated sampling approach shall be used to determine 
the O2 concentration (%O2) for the emission rate 
correction factor.
    (6) For Method 3, Method 3A or 3B may be used.
    (7) For Method 3B, Method 3A may be used.
[54 FR 6662, Feb. 14, 1989; 54 FR 21344, May 17, 1989, as amended at 55 
FR 5212, Feb. 14, 1990]



    Subpart Da--Standards of Performance for Electric Utility Steam 
Generating Units for Which Construction is Commenced After September 18, 
                                  1978

    Source: 44 FR 33613, June 11, 1979, unless otherwise noted.



Sec. 60.40a  Applicability and designation of affected facility.

    (a) The affected facility to which this subpart applies is each 
electric utility steam generating unit:
    (1) That is capable of combusting more than 73 megawatts (250 
million Btu/hour) heat input of fossil fuel (either alone or in 
combination with any other fuel); and
    (2) For which construction or modification is commenced after 
September 18, 1978.
    (b) This subpart applies to electric utility combined cycle gas 
turbines that are capable of combusting more

[[Page 87]]

than 73 megawatts (250 million Btu/hour) heat input of fossil fuel in 
the steam generator. Only emissions resulting from combustion of fuels 
in the steam generating unit are subject to this subpart. (The gas 
turbine emissions are subject to subpart GG.)
    (c) Any change to an existing fossil-fuel-fired steam generating 
unit to accommodate the use of combustible materials, other than fossil 
fuels, shall not bring that unit under the applicability of this 
subpart.
    (d) Any change to an existing steam generating unit originally 
designed to fire gaseous or liquid fossil fuels, to accommodate the use 
of any other fuel (fossil or nonfossil) shall not bring that unit under 
the applicability of this subpart.



Sec. 60.41a  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    Steam generating unit means any furnace, boiler, or other device 
used for combusting fuel for the purpose of producing steam (including 
fossil-fuel-fired steam generators associated with combined cycle gas 
turbines; nuclear steam generators are not included).
    Electric utility steam generating unit means any steam electric 
generating unit that is constructed for the purpose of supplying more 
than one-third of its potential electric output capacity and more than 
25 MW electrical output to any utility power distribution system for 
sale. Any steam supplied to a steam distribution system for the purpose 
of providing steam to a steam-electric generator that would produce 
electrical energy for sale is also considered in determining the 
electrical energy output capacity of the affected facility.
    Fossil fuel means natural gas, petroleum, coal, and any form of 
solid, liquid, or gaseous fuel derived from such material for the 
purpose of creating useful heat.
    Subbituminous coal means coal that is classified as subbituminous A, 
B, or C according to the American Society of Testing and Materials 
(ASTM) Standard Specification for Classification of Coals by Rank D388-
77 (incorporated by reference--see Sec. 60.17).
    Lignite means coal that is classified as lignite A or B according to 
the American Society of Testing and Materials' (ASTM) Standard 
Specification for Classification of Coals by Rank D388-77 (incorporated 
by reference--see Sec. 60.17).
    Coal refuse means waste products of coal mining, physical coal 
cleaning, and coal preparation operations (e.g. culm, gob, etc.) 
containing coal, matrix material, clay, and other organic and inorganic 
material.
    Potential combustion concentration means the theoretical emissions 
(ng/J, lb/million Btu heat input) that would result from combustion of a 
fuel in an uncleaned state without emission control systems) and:
    (a) For particulate matter is:
    (1) 3,000 ng/J (7.0 lb/million Btu) heat input for solid fuel; and
    (2) 75 ng/J (0.17 lb/million Btu) heat input for liquid fuels.
    (b) For sulfur dioxide is determined under Sec. 60.48a(b).
    (c) For nitrogen oxides is:
    (1) 290 ng/J (0.67 lb/million Btu) heat input for gaseous fuels;
    (2) 310 ng/J (0.72 lb/million Btu) heat input for liquid fuels; and
    (3) 990 ng/J (2.30 lb/million Btu) heat input for solid fuels.
    Combined cycle gas turbine means a stationary turbine combustion 
system where heat from the turbine exhaust gases is recovered by a steam 
generating unit.
    Interconnected means that two or more electric generating units are 
electrically tied together by a network of power transmission lines, and 
other power transmission equipment.
    Electric utility company means the largest interconnected 
organization, business, or governmental entity that generates electric 
power for sale (e.g., a holding company with operating subsidiary 
companies).
    Principal company means the electric utility company or companies 
which own the affected facility.
    Neighboring company means any one of those electric utility 
companies with one or more electric power interconnections to the 
principal company and which have geographically adjoining service areas.

[[Page 88]]

    Net system capacity means the sum of the net electric generating 
capability (not necessarily equal to rated capacity) of all electric 
generating equipment owned by an electric utility company (including 
steam generating units, internal combustion engines, gas turbines, 
nuclear units, hydroelectric units, and all other electric generating 
equipment) plus firm contractual purchases that are interconnected to 
the affected facility that has the malfunctioning flue gas 
desulfurization system. The electric generating capability of equipment 
under multiple ownership is prorated based on ownership unless the 
proportional entitlement to electric output is otherwise established by 
contractual arrangement.
    System load means the entire electric demand of an electric utility 
company's service area interconnected with the affected facility that 
has the malfunctioning flue gas desulfurization system plus firm 
contractual sales to other electric utility companies. Sales to other 
electric utility companies (e.g., emergency power) not on a firm 
contractual basis may also be included in the system load when no 
available system capacity exists in the electric utility company to 
which the power is supplied for sale.
    System emergency reserves means an amount of electric generating 
capacity equivalent to the rated capacity of the single largest electric 
generating unit in the electric utility company (including steam 
generating units, internal combustion engines, gas turbines, nuclear 
units, hydroelectric units, and all other electric generating equipment) 
which is interconnected with the affected facility that has the 
malfunctioning flue gas desulfurization system. The electric generating 
capability of equipment under multiple ownership is prorated based on 
ownership unless the proportional entitlement to electric output is 
otherwise established by contractual arrangement.
    Available system capacity means the capacity determined by 
subtracting the system load and the system emergency reserves from the 
net system capacity.
    Spinning reserve means the sum of the unutilized net generating 
capability of all units of the electric utility company that are 
synchronized to the power distribution system and that are capable of 
immediately accepting additional load. The electric generating 
capability of equipment under multiple ownership is prorated based on 
ownership unless the proportional entitlement to electric output is 
otherwise established by contractual arrangement.
    Available purchase power means the lesser of the following:
    (a) The sum of available system capacity in all neighboring 
companies.
    (b) The sum of the rated capacities of the power interconnection 
devices between the principal company and all neighboring companies, 
minus the sum of the electric power load on these interconnections.
    (c) The rated capacity of the power transmission lines between the 
power interconnection devices and the electric generating units (the 
unit in the principal company that has the malfunctioning flue gas 
desulfurization system and the unit(s) in the neighboring company 
supplying replacement electrical power) less the electric power load on 
these transmission lines.
    Spare flue gas desulfurization system module means a separate system 
of sulfur dioxide emission control equipment capable of treating an 
amount of flue gas equal to the total amount of flue gas generated by an 
affected facility when operated at maximum capacity divided by the total 
number of nonspare flue gas desulfurization modules in the system.
    Emergency condition means that period of time when:
    (a) The electric generation output of an affected facility with a 
malfunctioning flue gas desulfurization system cannot be reduced or 
electrical output must be increased because:
    (1) All available system capacity in the principal company 
interconnected with the affected facility is being operated, and
    (2) All available purchase power interconnected with the affected 
facility is being obtained, or
    (b) The electric generation demand is being shifted as quickly as 
possible from an affected facility with a malfunctioning flue gas 
desulfurization

[[Page 89]]

system to one or more electrical generating units held in reserve by the 
principal company or by a neighboring company, or
    (c) An affected facility with a malfunctioning flue gas 
desulfurization system becomes the only available unit to maintain a 
part or all of the principal company's system emergency reserves and the 
unit is operated in spinning reserve at the lowest practical electric 
generation load consistent with not causing significant physical damage 
to the unit. If the unit is operated at a higher load to meet load 
demand, an emergency condition would not exist unless the conditions 
under (a) of this definition apply.
    Electric utility combined cycle gas turbine means any combined cycle 
gas turbine used for electric generation that is constructed for the 
purpose of supplying more than one-third of its potential electric 
output capacity and more than 25 MW electrical output to any utility 
power distribution system for sale. Any steam distribution system that 
is constructed for the purpose of providing steam to a steam electric 
generator that would produce electrical power for sale is also 
considered in determining the electrical energy output capacity of the 
affected facility.
    Potential electrical output capacity is defined as 33 percent of the 
maximum design heat input capacity of the steam generating unit (e.g., a 
steam generating unit with a 100-MW (340 million Btu/hr) fossil-fuel 
heat input capacity would have a 33-MW potential electrical output 
capacity). For electric utility combined cycle gas turbines the 
potential electrical output capacity is determined on the basis of the 
fossil-fuel firing capacity of the steam generator exclusive of the heat 
input and electrical power contribution by the gas turbine.
    Anthracite means coal that is classified as anthracite according to 
the American Society of Testing and Materials' (ASTM) Standard 
Specification for Classification of Coals by Rank D388-77 (incorporated 
by reference--see Sec. 60.17).
    Solid-derived fuel means any solid, liquid, or gaseous fuel derived 
from solid fuel for the purpose of creating useful heat and includes, 
but is not limited to, solvent refined coal, liquified coal, and 
gasified coal.
    24-hour period means the period of time between 12:01 a.m. and 12:00 
midnight.
    Resource recovery unit means a facility that combusts more than 75 
percent non-fossil fuel on a quarterly (calendar) heat input basis.
    Noncontinental area means the State of Hawaii, the Virgin Islands, 
Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern 
Mariana Islands.
    Boiler operating day means a 24-hour period during which fossil fuel 
is combusted in a steam generating unit for the entire 24 hours.
[44 FR 33613, June 11, 1979, as amended at 48 FR 3737, Jan. 27, 1983]



Sec. 60.42a  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted under Sec. 60.8 is completed, no owner or operator subject 
to the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain 
particulate matter in excess of:
    (1) 13 ng/J (0.03 lb/million Btu) heat input derived from the 
combustion of solid, liquid, or gaseous fuel;
    (2) 1 percent of the potential combustion concentration (99 percent 
reduction) when combusting solid fuel; and
    (3) 30 percent of potential combustion concentration (70 percent 
reduction) when combusting liquid fuel.
    (b) On and after the date the particulate matter performance test 
required to be conducted under Sec. 60.8 is completed, no owner or 
operator subject to the provisions of this subpart shall cause to be 
discharged into the atmosphere from any affected facility any gases 
which exhibit greater than 20 percent opacity (6-minute average), except 
for one 6-minute period per hour of not more than 27 percent opacity.



Sec. 60.43a  Standard for sulfur dioxide.

    (a) On and after the date on which the initial performance test 
required to be conducted under Sec. 60.8 is completed, no owner or 
operator subject to the provisions of this subpart shall cause to be 
discharged into the atmosphere

[[Page 90]]

from any affected facility which combusts solid fuel or solid-derived 
fuel, except as provided under paragraphs (c), (d), (f) or (h) of this 
section, any gases which contain sulfur dioxide in excess of:
    (1) 520 ng/J (1.20 lb/million Btu) heat input and 10 percent of the 
potential combustion concentration (90 percent reduction), or
    (2) 30 percent of the potential combustion concentration (70 percent 
reduction), when emissions are less than 260 ng/J (0.60 lb/million Btu) 
heat input.
    (b) On and after the date on which the initial performance test 
required to be conducted under Sec. 60.8 is completed, no owner or 
operator subject to the provisions of this subpart shall cause to be 
discharged into the atmosphere from any affected facility which combusts 
liquid or gaseous fuels (except for liquid or gaseous fuels derived from 
solid fuels and as provided under paragraphs (e) or (h) of this 
section), any gases which contain sulfur dioxide in excess of:
    (1) 340 ng/J (0.80 lb/million Btu) heat input and 10 percent of the 
potential combustion concentration (90 percent reduction), or
    (2) 100 percent of the potential combustion concentration (zero 
percent reduction) when emissions are less than 86 ng/J (0.20 lb/million 
Btu) heat input.
    (c) On and after the date on which the initial performance test 
required to be conducted under Sec. 60.8 is complete, no owner or 
operator subject to the provisions of this subpart shall cause to be 
discharged into the atmosphere from any affected facility which combusts 
solid solvent refined coal (SRC-I) any gases which contain sulfur 
dioxide in excess of 520 ng/J (1.20 lb/million Btu) heat input and 15 
percent of the potential combustion concentration (85 percent reduction) 
except as provided under paragraph (f) of this section; compliance with 
the emission limitation is determined on a 30-day rolling average basis 
and compliance with the percent reduction requirement is determined on a 
24-hour basis.
    (d) Sulfur dioxide emissions are limited to 520 ng/J (1.20 lb/
million Btu) heat input from any affected facility which:
    (1) Combusts 100 percent anthracite,
    (2) Is classified as a resource recovery facility, or
    (3) Is located in a noncontinental area and combusts solid fuel or 
solid-derived fuel.
    (e) Sulfur dioxide emissions are limited to 340 ng/J (0.80 lb/
million Btu) heat input from any affected facility which is located in a 
noncontinental area and combusts liquid or gaseous fuels (excluding 
solid-derived fuels).
    (f) The emission reduction requirements under this section do not 
apply to any affected facility that is operated under an SO2 
commercial demonstration permit issued by the Administrator in 
accordance with the provisions of Sec. 60.45a.
    (g) Compliance with the emission limitation and percent reduction 
requirements under this section are both determined on a 30-day rolling 
average basis except as provided under paragraph (c) of this section.
    (h) When different fuels are combusted simultaneously, the 
applicable standard is determined by proration using the following 
formula:
    (1) If emissions of sulfur dioxide to the atmosphere are greater 
than 260 ng/J (0.60 lb/million Btu) heat input

Es=(340x+520 y)/100 and
%Ps=10

    (2) If emissions of sulfur dioxide to the atmosphere are equal to or 
less than 260 ng/J (0.60 lb/million Btu) heat input:

Es=(340x+520 y)/100 and
%Ps=(10x+30 y)/100

where:

Es is the prorated sulfur dioxide emission limit (ng/J heat 
          input),
%Ps is the percentage of potential sulfur dioxide emission 
          allowed.

x is the percentage of total heat input derived from the combustion of 
          liquid or gaseous fuels (excluding solid-derived fuels)
y is the percentage of total heat input derived from the combustion of 
          solid fuel (including solid-derived fuels)
[44 FR 33613, June 11, 1979, as amended at 54 FR 6663, Feb. 14, 1989; 54 
FR 21344, May 17, 1989]



Sec. 60.44a  Standard for nitrogen oxides.

    (a) On and after the date on which the initial performance test 
required to

[[Page 91]]

be conducted under Sec. 60.8 is completed, no owner or operator subject 
to the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility, except as provided under 
paragraph (b) of this section, any gases which contain nitrogen oxides 
in excess of the following emission limits, based on a 30-day rolling 
average.
    (1) NOx emission limits.

 
------------------------------------------------------------------------
                                                    Emission limit for
                                                        heat input
                                                 -----------------------
                    Fuel type                                    (lb/
                                                     ng/J       million
                                                                 Btu)
------------------------------------------------------------------------
Gaseous fuels:
  Coal-derived fuels............................         210        0.50
  All other fuels...............................          86        0.20
Liquid fuels:
  Coal-derived fuels............................         210        0.50
  Shale oil.....................................         210        0.50
  All other fuels...............................         130        0.30
Solid fuels:
  Coal-derived fuels............................         210        0.50
  Any fuel containing more than 25%, by weight,
   coal refuse..................................      (\1\ )      (\1\ )
  Any fuel containing more than 25%, by weight,
   lignite if the lignite is mined in North
   Dakota, South Dakota, or Montana, and is
   combusted in a slag tap furnace\2\...........         340        0.80
  Any fuel containing more than 25%, by weight,
   lignite not subject to the 340 ng/J heat
   input emission limit\2\......................
  Subbituminous coal............................         210        0.50
  Bituminous coal...............................         260        0.60
  Anthracite coal...............................         260        0.60
  All other fuels...............................         260        0.60
------------------------------------------------------------------------
\1\ Exempt from NOx standards and NOx monitoring     requirements.
\2\ Any fuel containing less than 25%, by weight, lignite is not
  prorated but its percentage is added to the percentage of the
  predominant fuel.

    (2) NOx reduction requirement.

 
------------------------------------------------------------------------
                                                              Percent
                                                           reduction of
                        Fuel type                            potential
                                                            combustion
                                                           concentration
------------------------------------------------------------------------
Gaseous fuels...........................................        25
Liquid fuels............................................        30
Solid fuels.............................................        65
------------------------------------------------------------------------

    (b) The emission limitations under paragraph (a) of this section do 
not apply to any affected facility which is combusting coal-derived 
liquid fuel and is operating under a commercial demonstration permit 
issued by the Administrator in accordance with the provisions of 
Sec. 60.45a.
    (c) When two or more fuels are combusted simultaneously, the 
applicable standard is determined by proration using the following 
formula:

En=[86 w+130 x +210 y+260 z+340 v]/100

where:

En  is the applicable standard for nitrogen oxides when 
          multiple fuels are combusted simultaneously (ng/J heat input);
w is the percentage of total heat input derived from the combustion of 
          fuels subject to the 86 ng/J heat input standard;
x is the percentage of total heat input derived from the combustion of 
          fuels subject to the 130 ng/J heat input standard;
y is the percentage of total heat input derived from the combustion of 
          fuels subject to the 210 ng/J heat input standard;
z is the percentage of total heat input derived from the combustion of 
          fuels subject to the 260 ng/J heat input standard; and
v is the percentage of total heat input delivered from the combustion of 
          fuels subject to the 340 ng/J heat input standard.
[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989]



Sec. 60.45a  Commercial demonstration permit.

    (a) An owner or operator of an affected facility proposing to 
demonstrate an emerging technology may apply to the Administrator for a 
commercial demonstration permit. The Administrator will issue a 
commercial demonstration permit in accordance with paragraph (e) of this 
section. Commercial demonstration permits may be issued only by the 
Administrator, and this authority will not be delegated.
    (b) An owner or operator of an affected facility that combusts solid 
solvent refined coal (SRC-I) and who is issued a commercial 
demonstration permit by the Administrator is not subject to the SO2 
emission reduction requirements under Sec. 60.43a(c) but must, as a 
minimum, reduce SO2 emissions to 20 percent of the potential 
combustion concentration (80 percent reduction) for each 24-hour period 
of steam generator operation and to less than 520 ng/J (1.20 lb/million 
Btu) heat input on a 30-day rolling average basis.
    (c) An owner or operator of a fluidized bed combustion electric 
utility steam generator (atmospheric or pressurized) who is issued a 
commercial

[[Page 92]]

demonstration permit by the Administrator is not subject to the SO2 
emission reduction requirements under Sec. 60.43a(a) but must, as a 
minimum, reduce SO2 emissions to 15 percent of the potential 
combustion concentration (85 percent reduction) on a 30-day rolling 
average basis and to less than 520 ng/J (1.20 lb/million Btu) heat input 
on a 30-day rolling average basis.
    (d) The owner or operator of an affected facility that combusts 
coal-derived liquid fuel and who is issued a commercial demonstration 
permit by the Administrator is not subject to the applicable NOx 
emission limitation and percent reduction under Sec. 60.44a(a) but must, 
as a minimum, reduce emissions to less than 300 ng/J (0.70 lb/million 
Btu) heat input on a 30-day rolling average basis.
    (e) Commercial demonstration permits may not exceed the following 
equivalent MW electrical generation capacity for any one technology 
category, and the total equivalent MW electrical generation capacity for 
all commercial demonstration plants may not exceed 15,000 MW.

 
------------------------------------------------------------------------
                                                            Equivalent
                                                            electrical
                  Technology                   Pollutant   capacity (MW
                                                            electrical
                                                              output)
------------------------------------------------------------------------
Solid solvent refined coal (SRC I)...........        SO2    6,000-10,000
Fluidized bed combustion (atmospheric).......        SO2       400-3,000
Fluidized bed combustion (pressurized).......        SO2       400-1,200
Coal liquification...........................        NOx      750-10,000
                                                         ---------------
    Total allowable for all technologies.....  .........          15,000
------------------------------------------------------------------------



Sec. 60.46a  Compliance provisions.

    (a) Compliance with the particulate matter emission limitation under 
Sec. 60.42a(a)(1) constitutes compliance with the percent reduction 
requirements for particulate matter under Sec. 60.42a(a)(2) and (3).
    (b) Compliance with the nitrogen oxides emission limitation under 
Sec. 60.44a(a) constitutes compliance with the percent reduction 
requirements under Sec. 60.44a(a)(2).
    (c) The particulate matter emission standards under Sec. 60.42a and 
the nitrogen oxides emission standards under Sec. 60.44a apply at all 
times except during periods of startup, shutdown, or malfunction. The 
sulfur dioxide emission standards under Sec. 60.43a apply at all times 
except during periods of startup, shutdown, or when both emergency 
conditions exist and the procedures under paragraph (d) of this section 
are implemented.
    (d) During emergency conditions in the principal company, an 
affected facility with a malfunctioning flue gas desulfurization system 
may be operated if sulfur dioxide emissions are minimized by:
    (1) Operating all operable flue gas desulfurization system modules, 
and bringing back into operation any malfunctioned module as soon as 
repairs are completed,
    (2) Bypassing flue gases around only those flue gas desulfurization 
system modules that have been taken out of operation because they were 
incapable of any sulfur dioxide emission reduction or which would have 
suffered significant physical damage if they had remained in operation, 
and
    (3) Designing, constructing, and operating a spare flue gas 
desulfurization system module for an affected facility larger than 365 
MW (1,250 million Btu/hr) heat input (approximately 125 MW electrical 
output capacity). The Administrator may at his discretion require the 
owner or operator within 60 days of notification to demonstrate spare 
module capability. To demonstrate this capability, the owner or operator 
must demonstrate compliance with the appropriate requirements under 
paragraph (a), (b), (d), (e), and (h) under Sec. 60.43a for any period 
of operation lasting from 24 hours to 30 days when:
    (i) Any one flue gas desulfurization module is not operated,
    (ii) The affected facility is operating at the maximum heat input 
rate,
    (iii) The fuel fired during the 24-hour to 30-day period is 
representative of the type and average sulfur content of fuel used over 
a typical 30-day period, and
    (iv) The owner or operator has given the Administrator at least 30 
days notice of the date and period of time over which the demonstration 
will be performed.
    (e) After the initial performance test required under Sec. 60.8, 
compliance with

[[Page 93]]

the sulfur dioxide emission limitations and percentage reduction 
requirements under Sec. 60.43a and the nitrogen oxides emission 
limitations under Sec. 60.44a is based on the average emission rate for 
30 successive boiler operating days. A separate performance test is 
completed at the end of each boiler operating day after the initial 
performance test, and a new 30 day average emission rate for both sulfur 
dioxide and nitrogen oxides and a new percent reduction for sulfur 
dioxide are calculated to show compliance with the standards.
    (f) For the initial performance test required under Sec. 60.8, 
compliance with the sulfur dioxide emission limitations and percent 
reduction requirements under Sec. 60.43a and the nitrogen oxides 
emission limitation under Sec. 60.44a is based on the average emission 
rates for sulfur dioxide, nitrogen oxides, and percent reduction for 
sulfur dioxide for the first 30 successive boiler operating days. The 
initial performance test is the only test in which at least 30 days 
prior notice is required unless otherwise specified by the 
Administrator. The initial performance test is to be scheduled so that 
the first boiler operating day of the 30 successive boiler operating 
days is completed within 60 days after achieving the maximum production 
rate at which the affected facility will be operated, but not later than 
180 days after initial startup of the facility.
    (g) Compliance is determined by calculating the arithmetic average 
of all hourly emission rates for SO2 and NOx for 
the 30 successive boiler operating days, except for data obtained during 
startup, shutdown, malfunction (NOx only), or emergency 
conditions (SO2 only). Compliance with the percentage 
reduction requirement for SO2 is determined based on the 
average inlet and average outlet SO2 emission rates for the 
30 successive boiler operating days.
    (h) If an owner or operator has not obtained the minimum quantity of 
emission data as required under Sec. 60.47a of this subpart, compliance 
of the affected facility with the emission requirements under 
Secs. 60.43a and 60.44a of this subpart for the day on which the 30-day 
period ends may be determined by the Administrator by following the 
applicable procedures in section 7 of Method 19.
[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989]



Sec. 60.47a  Emission monitoring.

    (a) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous monitoring system, and 
record the output of the system, for measuring the opacity of emissions 
discharged to the atmosphere, except where gaseous fuel is the only fuel 
combusted. If opacity interference due to water droplets exists in the 
stack (for example, from the use of an FGD system), the opacity is 
monitored upstream of the interference (at the inlet to the FGD system). 
If opacity interference is experienced at all locations (both at the 
inlet and outlet of the sulfur dioxide control system), alternate 
parameters indicative of the particulate matter control system's 
performance are monitored (subject to the approval of the 
Administrator).
    (b) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous monitoring system, and 
record the output of the system, for measuring sulfur dioxide emissions, 
except where natural gas is the only fuel combusted, as follows:
    (1) Sulfur dioxide emissions are monitored at both the inlet and 
outlet of the sulfur dioxide control device.
    (2) For a facility which qualifies under the provisions of 
Sec. 60.43a(d), sulfur dioxide emissions are only monitored as 
discharged to the atmosphere.
    (3) An ``as fired'' fuel monitoring system (upstream of coal 
pulverizers) meeting the requirements of Method 19 (appendix A) may be 
used to determine potential sulfur dioxide emissions in place of a 
continuous sulfur dioxide emission monitor at the inlet to the sulfur 
dioxide control device as required under paragraph (b)(1) of this 
section.
    (c) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous monitoring system, and 
record the output of the system, for measuring nitrogen oxides emissions 
discharged to the atmosphere.

[[Page 94]]

    (d) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous monitoring system, and 
record the output of the system, for measuring the oxygen or carbon 
dioxide content of the flue gases at each location where sulfur dioxide 
or nitrogen oxides emissions are monitored.
    (e) The continuous monitoring systems under paragraphs (b), (c), and 
(d) of this section are operated and data recorded during all periods of 
operation of the affected facility including periods of startup, 
shutdown, malfunction or emergency conditions, except for continuous 
monitoring system breakdowns, repairs, calibration checks, and zero and 
span adjustments.
    (f) The owner or operator shall obtain emission data for at least 18 
hours in at least 22 out of 30 successive boiler operating days. If this 
minimum data requirement cannot be met with a continuous monitoring 
system, the owner or operator shall supplement emission data with other 
monitoring systems approved by the Administrator or the reference 
methods and procedures as described in paragraph (h) of this section.
    (g) The 1-hour averages required under paragraph Sec. 60.13(h) are 
expressed in ng/J (lbs/million Btu) heat input and used to calculate the 
average emission rates under Sec. 60.46a. The 1-hour averages are 
calculated using the data points required under Sec. 60.13(b). At least 
two data points must be used to calculate the 1-hour averages.
    (h) When it becomes necessary to supplement continuous monitoring 
system data to meet the minimum data requirements in paragraph (f) of 
this section, the owner or operator shall use the reference methods and 
procedures as specified in this paragraph. Acceptable alternative 
methods and procedures are given in paragraph (j) of this section.
    (1) Method 6 shall be used to determine the SO2 
concentration at the same location as the SO2 monitor. 
Samples shall be taken at 60-minute intervals. The sampling time and 
sample volume for each sample shall be at least 20 minutes and 0.020 
dscm (0.71 dscf). Each sample represents a 1-hour average.
    (2) Method 7 shall be used to determine the NOx 
concentration at the same location as the NOx monitor. 
Samples shall be taken at 30-minute intervals. The arithmetic average of 
two consecutive samples represents a 1-hour average.
    (3) The emission rate correction factor, integrated bag sampling and 
analysis procedure of Method 3B shall be used to determine the 
O2 or CO2 concentration at the same location as 
the O2 or CO2 monitor. Samples shall be taken for 
at least 309 minutes in each hour. Each sample represents a 1-hour 
average.
    (4) The procedures in Method 19 shall be used to compute each 1-hour 
average concentration in ng/J (1b/million Btu) heat input.
    (i) The owner or operator shall use methods and procedures in this 
paragraph to conduct monitoring system performance evaluations under 
Sec. 60.13(c) and calibration checks under Sec. 60.13(d). Acceptable 
alternative methods and procedures are given in paragraph (j) of this 
section.
    (1) Methods 6, 7, and 3B, as applicable, shall be used to determine 
O2, SO2, and NOx concentrations.
    (2) SO2 or NOx (NO), as applicable, shall be 
used for preparing the calibration gas mixtures (in N2, as 
applicable) under Performance Specification 2 of appendix B of this 
part.
    (3) For affected facilities burning only fossil fuel, the span value 
for a continuous monitoring system for measuring opacity is between 60 
and 80 percent and for a continuous monitoring system measuring nitrogen 
oxides is determined as follows:

 
------------------------------------------------------------------------
                                                       Span value for
                    Fossil fuel                        nitrogen oxides
                                                            (ppm)
------------------------------------------------------------------------
Gas...............................................                   500
Liquid............................................                   500
Solid.............................................                 1,000
Combination.......................................      500 (x+y)+1,000z
------------------------------------------------------------------------

where:
x is the fraction of total heat input derived from gaseous fossil fuel,
y is the fraction of total heat input derived from liquid fossil fuel, 
          and
z is the fraction of total heat input derived from solid fossil fuel.

    (4) All span values computed under paragraph (b)(3) of this section 
for

[[Page 95]]

burning combinations of fossil fuels are rounded to the nearest 500 ppm.
    (5) For affected facilities burning fossil fuel, alone or in 
combination with non-fossil fuel, the span value of the sulfur dioxide 
continuous monitoring system at the inlet to the sulfur dioxide control 
device is 125 percent of the maximum estimated hourly potential 
emissions of the fuel fired, and the outlet of the sulfur dioxide 
control device is 50 percent of maximum estimated hourly potential 
emissions of the fuel fired.
    (j) The owner or operator may use the following as alternatives to 
the reference methods and procedures specified in this section:
    (1) For Method 6, Method 6A or 6B (whenever Methods 6 and 3 or 3B 
data are used) or 6C may be used. Each Method 6B sample obtained over 24 
hours represents 24 1-hour averages. If Method 6A or 6B is used under 
paragraph (i) of this section, the conditions under Sec. 60.46(d)(1) 
apply; these conditions do not apply under paragraph (h) of this 
section.
    (2) For Method 7, Method 7A, 7C, 7D, or 7E may be used. If Method 
7C, 7D, or 7E is used, the sampling time for each run shall be 1 hour.
    (3) For Method 3, Method 3A or 3B may be used if the sampling time 
is 1 hour.
    (4) For Method 3B, Method 3A may be used.
[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989; 55 
FR 5212, Feb. 14, 1990; 55 FR 18876, May 7, 1990]



Sec. 60.48a  Compliance determination procedures and methods.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the 
methods in appendix A of this part or the methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b). Section 
60.8(f) does not apply to this section for SO2 and 
NOx. Acceptable alternative methods are given in paragraph 
(e) of this section.
    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.42a as follows:
    (1) The dry basis F factor (O2) procedures in Method 19 
shall be used to compute the emission rate of particulate matter.
    (2) For the particular matter concentration, Method 5 shall be used 
at affected facilities without wet FGD systems and Method 5B shall be 
used after wet FGD systems.
    (i) The sampling time and sample volume for each run shall be at 
least 120 minutes and 1.70 dscm (60 dscf). The probe and filter holder 
heating system in the sampling train may be set to provide an average 
gas temperature of no greater than 16014 + C 
(32025+ F).
    (ii) For each particulate run, the emission rate correction factor, 
integrated or grab sampling and analysis procedures of Method 3B shall 
be used to determine the O2 concentration. The O2 
sample shall be obtained simultaneously with, and at the same traverse 
points as, the particulate run. If the particulate run has more than 12 
traverse points, the O2 traverse points may be reduced to 12 
provided that Method 1 is used to locate the 12 O2 traverse 
points. If the grab sampling procedure is used, the O2 
concentration for the run shall be the arithmetic mean of all the 
individual O2 concentrations at each traverse point.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
    (c) The owner or operator shall determine compliance with the 
SO2 standards in Sec. 60.43a as follows:
    (1) The percent of potential SO2 emissions 
(%Ps) to the atmosphere shall be computed using the following 
equation:

%Ps=[(100--%Rf) (100--%Rg)]/100

where:
%Ps=percent of potential SO2 emissions, percent.
%Rf=percent reduction from fuel pretreatment, percent.
%Rg=percent reduction by SO2 control system, 
          percent.

    (2) The procedures in Method 19 may be used to determine percent 
reduction (%Rf) of sulfur by such processes as fuel 
pretreatment (physical coal cleaning, hydrodesulfurization of fuel oil, 
etc.), coal pulverizers, and bottom and flyash interactions. This 
determination is optional.
    (3) The procedures in Method 19 shall be used to determine the 
percent SO2

[[Page 96]]

reduction (%Rg of any SO2 control system. 
Alternatively, a combination of an ``as fired'' fuel monitor and 
emission rates measured after the control system, following the 
procedures in Method 19, may be used if the percent reduction is 
calculated using the average emission rate from the SO2 
control device and the average SO2 input rate from the ``as 
fired'' fuel analysis for 30 successive boiler operating days.
    (4) The appropriate procedures in Method 19 shall be used to 
determine the emission rate.
    (5) The continuous monitoring system in Sec. 60.47a (b) and (d) 
shall be used to determine the concentrations of SO2 and 
CO2 or O2.
    (d) The owner or operator shall determine compliance with the 
NOx standard in Sec. 60.44a as follows:
    (1) The appropriate procedures in Method 19 shall be used to 
determine the emission rate of NOx.
    (2) The continous monitoring system in Sec. 60.47a (c) and (d) shall 
be used to determine the concentrations of NOx and 
CO2 or O2.
    (e) The owner or operator may use the following as alternatives to 
the reference methods and procedures specified in this section:
    (1) For Method 5 or 5B, Method 17 may be used at facilities with or 
without wet FGD systems if the stack temperature at the sampling 
location does not exceed an average temperature of 160 
+C (320 +F). The procedures of Secs.  2.1 and 2.3 of Method 5B may be used in Method 17 only if it is used after wet FGD systems. Method 17 shall not be used after wet FGD systems if the effluent is saturated or laden with water droplets.

    (2) The Fc factor (CO2) procedures in Method 
19 may be used to compute the emission rate of particulate matter under 
the stipulations of Sec. 60.46(d)(1). The CO2 shall be 
determined in the same manner as the O2 concentration.
    (f) Electric utility combined cycle gas turbines are performance 
tested for particulate matter, sulfur dioxide, and nitrogen oxides using 
the procedures of Method 19 (appendix A). The sulfur dioxide and 
nitrogen oxides emission rates from the gas turbine used in Method 19 
(appendix A) calculations are determined when the gas turbine is 
performance tested under subpart GG. The potential uncontrolled 
particulate matter emission rate from a gas turbine is defined as 17 ng/
J (0.04 lb/million Btu) heat input.
[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989; 55 
FR 5212, Feb. 14, 1990]



Sec. 60.49a  Reporting requirements.

    (a) For sulfur dioxide, nitrogen oxides, and particulate matter 
emissions, the performance test data from the initial performance test 
and from the performance evaluation of the continuous monitors 
(including the transmissometer) are submitted to the Administrator.
    (b) For sulfur dioxide and nitrogen oxides the following information 
is reported to the Administrator for each 24-hour period.
    (1) Calendar date.
    (2) The average sulfur dioxide and nitrogen oxide emission rates 
(ng/J or lb/million Btu) for each 30 successive boiler operating days, 
ending with the last 30-day period in the quarter; reasons for non-
compliance with the emission standards; and, description of corrective 
actions taken.
    (3) Percent reduction of the potential combustion concentration of 
sulfur dioxide for each 30 successive boiler operating days, ending with 
the last 30-day period in the quarter; reasons for non-compliance with 
the standard; and, description of corrective actions taken.
    (4) Identification of the boiler operating days for which pollutant 
or dilutent data have not been obtained by an approved method for at 
least 18 hours of operation of the facility; justification for not 
obtaining sufficient data; and description of corrective actions taken.
    (5) Identification of the times when emissions data have been 
excluded from the calculation of average emission rates because of 
startup, shutdown, malfunction (NOx only), emergency 
conditions (SO2 only), or other reasons, and justification 
for excluding data for reasons other than startup, shutdown, 
malfunction, or emergency conditions.
    (6) Identification of ``F'' factor used for calculations, method of 
determination, and type of fuel combusted.

[[Page 97]]

    (7) Identification of times when hourly averages have been obtained 
based on manual sampling methods.
    (8) Identification of the times when the pollutant concentration 
exceeded full span of the continuous monitoring system.
    (9) Description of any modifications to the continuous monitoring 
system which could affect the ability of the continuous monitoring 
system to comply with Performance Specifications 2 or 3.
    (c) If the minimum quantity of emission data as required by 
Sec. 60.47a is not obtained for any 30 successive boiler operating days, 
the following information obtained under the requirements of 
Sec. 60.46a(h) is reported to the Administrator for that 30-day period:
    (1) The number of hourly averages available for outlet emission 
rates (no) and inlet emission rates (ni) as 
applicable.
    (2) The standard deviation of hourly averages for outlet emission 
rates (so) and inlet emission rates (si) as 
applicable.
    (3) The lower confidence limit for the mean outlet emission rate 
(Eo*) and the upper confidence limit for the mean inlet 
emission rate (Ei*) as applicable.
    (4) The applicable potential combustion concentration.
    (5) The ratio of the upper confidence limit for the mean outlet 
emission rate (Eo*) and the allowable emission rate 
(Estd) as applicable.
    (d) If any standards under Sec. 60.43a are exceeded during emergency 
conditions because of control system malfunction, the owner or operator 
of the affected facility shall submit a signed statement:
    (1) Indicating if emergency conditions existed and requirements 
under Sec. 60.46a(d) were met during each period, and
    (2) Listing the following information:
    (i) Time periods the emergency condition existed;
    (ii) Electrical output and demand on the owner or operator's 
electric utility system and the affected facility;
    (iii) Amount of power purchased from interconnected neighboring 
utility companies during the emergency period;
    (iv) Percent reduction in emissions achieved;
    (v) Atmospheric emission rate (ng/J) of the pollutant discharged; 
and
    (vi) Actions taken to correct control system malfunction.
    (e) If fuel pretreatment credit toward the sulfur dioxide emission 
standard under Sec. 60.43a is claimed, the owner or operator of the 
affected facility shall submit a signed statement:
    (1) Indicating what percentage cleaning credit was taken for the 
calendar quarter, and whether the credit was determined in accordance 
with the provisions of Sec. 60.48a and Method 19 (appendix A); and
    (2) Listing the quantity, heat content, and date each pretreated 
fuel shipment was received during the previous quarter; the name and 
location of the fuel pretreatment facility; and the total quantity and 
total heat content of all fuels received at the affected facility during 
the previous quarter.
    (f) For any periods for which opacity, sulfur dioxide or nitrogen 
oxides emissions data are not available, the owner or operator of the 
affected facility shall submit a signed statement indicating if any 
changes were made in operation of the emission control system during the 
period of data unavailability. Operations of the control system and 
affected facility during periods of data unavailability are to be 
compared with operation of the control system and affected facility 
before and following the period of data unavailability.
    (g) The owner or operator of the affected facility shall submit a 
signed statement indicating whether:
    (1) The required continuous monitoring system calibration, span, and 
drift checks or other periodic audits have or have not been performed as 
specified.
    (2) The data used to show compliance was or was not obtained in 
accordance with approved methods and procedures of this part and is 
representative of plant performance.
    (3) The minimum data requirements have or have not been met; or, the 
minimum data requirements have not been met for errors that were 
unavoidable.
    (4) Compliance with the standards has or has not been achieved 
during the reporting period.

[[Page 98]]

    (h) For the purposes of the reports required under Sec. 60.7, 
periods of excess emissions are defined as all 6-minute periods during 
which the average opacity exceeds the applicable opacity standards under 
Sec. 60.42a(b). Opacity levels in excess of the applicable opacity 
standard and the date of such excesses are to be submitted to the 
Administrator each calendar quarter.
    (i) The owner or operator of an affected facility shall submit the 
written reports required under this section and subpart A to the 
Administrator for every calendar quarter. All quarterly reports shall be 
postmarked by the 30th day following the end of each calendar quarter.



     Subpart Db--Standards of Performance for Industrial-Commercial-
                  Institutional Steam Generating Units

    Source: 52 FR 47842, Dec. 16, 1987, unless otherwise noted.



Sec. 60.40b  Applicability and delegation of authority.

    (a) The affected facility to which this subpart applies is each 
steam generating unit that commences construction, modification, or 
reconstruction after June 19, 1984, and that has a heat input capacity 
from fuels combusted in the steam generating unit of greater than 29 MW 
(100 million Btu/hour).
    (b) Any affected facility meeting the applicability requirements 
under paragraph (a) of this section and commencing construction, 
modification, or reconstruction after June 19, 1984, but on or before 
June 19, 1986, is subject to the following standards:
    (1) Coal-fired affected facilities having a heat input capacity 
between 29 and 73 MW (100 and 250 million Btu/hour), inclusive, are 
subject to the particulate matter and nitrogen oxides standards under 
this subpart.
    (2) Coal-fired affected facilities having a heat input capacity 
greater than 73 MW (250 million Btu/hour) and meeting the applicability 
requirements under subpart D (Standards of performance for fossil-fuel-
fired steam generators; Sec. 60.40) are subject to the particulate 
matter and nitrogen oxides standards under this subpart and to the 
sulfur dioxide standards under subpart D (Sec. 60.43).
    (3) Oil-fired affected facilities having a heat input capacity 
between 29 and 73 MW (100 and 250 million Btu/hour), inclusive, are 
subject to the nitrogen oxides standards under this subpart.
    (4) Oil-fired affected facilities having a heat input capacity 
greater than 73 MW (250 million Btu/hour) and meeting the applicability 
requirements under subpart D (Standards of performance for fossil-fuel-
fired steam generators; Sec. 60.40) are also subject to the nitrogen 
oxides standards under this subpart and the particulate matter and 
sulfur dioxide standards under subpart D (Sec. 60.42 and Sec. 60.43).
    (c) Affected facilities which also meet the applicability 
requirements under subpart J (Standards of performance for petroleum 
refineries; Sec. 60.104) are subject to the particulate matter and 
nitrogen oxides standards under this subpart and the sulfur dioxide 
standards under subpart J (Sec. 60.104).
    (d) Affected facilities which also meet the applicability 
requirements under subpart E (Standards of performance for incinerators; 
Sec. 60.50) are subject to the nitrogen oxides and particulate matter 
standards under this subpart.
    (e) Steam generating units meeting the applicability requirements 
under subpart Da (Standards of performance for electric utility steam 
generating units; Sec. 60.40a) are not subject to this subpart.
    (f) Any change to an existing steam generating unit for the sole 
purpose of combusting gases containing TRS as defined under Sec. 60.281 
is not considered a modification under Sec. 60.14 and the steam 
generating unit is not subject to this subpart.
    (g) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Act, the following authorities shall 
be retained by the Administrator and not transferred to a State.
    (1) Section 60.44b(f).
    (2) Section 60.44b(g).
    (3) Section 60.49b(a)(4).



Sec. 60.41b  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning

[[Page 99]]

given them in the Act and in subpart A of this part.
    Annual capacity factor means the ratio between the actual heat input 
to a steam generating unit from the fuels listed in Sec. 60.42b(a), 
Sec. 60.43b(a), or Sec. 60.44b(a), as applicable, during a calendar year 
and the potential heat input to the steam generating unit had it been 
operated for 8,760 hours during a calendar year at the maximum steady 
state design heat input capacity. In the case of steam generating units 
that are rented or leased, the actual heat input shall be determined 
based on the combined heat input from all operations of the affected 
facility in a calendar year.
    Byproduct/waste means any liquid or gaseous substance produced at 
chemical manufacturing plants or petroleum refineries (except natural 
gas, distillate oil, or residual oil) and combusted in a steam 
generating unit for heat recovery or for disposal. Gaseous substances 
with carbon dioxide levels greater than 50 percent or carbon monoxide 
levels greater than 10 percent are not byproduct/waste for the purposes 
of this subpart.
    Chemical manufacturing plants means industrial plants which are 
classified by the Department of Commerce under Standard Industrial 
Classification (SIC) Code 28.
    Coal means all solid fuels classified as anthracite, bituminous, 
subbituminous, or lignite by the American Society of Testing and 
Materials in ASTM D388-77, Standard Specification for Classification of 
Coals by Rank (IBR--see Sec. 60.17), coal refuse, and petroleum coke. 
Coal-derived synthetic fuels, including but not limited to solvent 
refined coal, gasified coal, coal-oil mixtures, and coal-water mixtures, 
are also included in this definition for the purposes of this subpart.
    Coal refuse means any byproduct of coal mining or coal cleaning 
operations with an ash content greater than 50 percent, by weight, and a 
heating value less than 13,900 kJ/kg (6,000 Btu/lb) on a dry basis.
    Combined cycle system means a system in which a separate source, 
such as a gas turbine, internal combustion engine, kiln, etc., provides 
exhaust gas to a heat recovery steam generating unit.
    Conventional technology means wet flue gas desulfurization (FGD) 
technology, dry FGD technology, atmospheric fluidized bed combustion 
technology, and oil hydrodesulfurization technology.
    Distillate oil means fuel oils that contain 0.05 weight percent 
nitrogen or less and comply with the specifications for fuel oil numbers 
1 and 2, as defined by the American Society of Testing and Materials in 
ASTM D396-78, Standard Specifications for Fuel Oils (incorporated by 
reference--see Sec. 60.17).
    Dry flue gas desulfurization technology means a sulfur dioxide 
control system that is located downstream of the steam generating unit 
and removes sulfur oxides from the combustion gases of the steam 
generating unit by contacting the combustion gases with an alkaline 
slurry or solution and forming a dry powder material. This definition 
includes devices where the dry powder material is subsequently converted 
to another form. Alkaline slurries or solutions used in dry flue gas 
desulfurization technology include but are not limited to lime and 
sodium.
    Duct burner means a device that combusts fuel and that is placed in 
the exhaust duct from another source, such as a stationary gas turbine, 
internal combustion engine, kiln, etc., to allow the firing of 
additional fuel to heat the exhaust gases before the exhaust gases enter 
a heat recovery steam generating unit.
    Emerging technology means any sulfur dioxide control system that is 
not defined as a conventional technology under this section, and for 
which the owner or operator of the facility has applied to the 
Administrator and received approval to operate as an emerging technology 
under Sec. 60.49b(a)(4).
    Federally enforceable means all limitations and conditions that are 
enforceable by the Administrator, including the requirements of 40 CFR 
parts 60 and 61, requirements within any applicable State Implementation 
Plan, and any permit requirements established under 40 CFR 52.21 or 
under 40 CFR 51.18 and 40 CFR 51.24.
    Fluidized bed combustion technology means combustion of fuel in a 
bed or

[[Page 100]]

series of beds (including but not limited to bubbling bed units and 
circulating bed units) of limestone aggregate (or other sorbent 
materials) in which these materials are forced upward by the flow of 
combustion air and the gaseous products of combustion.
    Fuel pretreatment means a process that removes a portion of the 
sulfur in a fuel before combustion of the fuel in a steam generating 
unit.
    Full capacity means operation of the steam generating unit at 90 
percent or more of the maximum steady-state design heat input capacity.
    Heat input means heat derived from combustion of fuel in a steam 
generating unit and does not include the heat input from preheated 
combustion air, recirculated flue gases, or exhaust gases from other 
sources, such as gas turbines, internal combustion engines, kilns, etc.
    Heat release rate means the steam generating unit design heat input 
capacity (in MW or Btu/hour) divided by the furnace volume (in cubic 
meters or cubic feet); the furnace volume is that volume bounded by the 
front furnace wall where the burner is located, the furnace side 
waterwall, and extending to the level just below or in front of the 
first row of convection pass tubes.
    Heat transfer medium means any material that is used to transfer 
heat from one point to another point.
    High heat release rate means a heat release rate greater than 
730,000 J/sec-m\3\ (70,000 Btu/hour-ft\3\).
    Lignite means a type of coal classified as lignite A or lignite B by 
the American Society of Testing and Materials in ASTM D388-77, Standard 
Specification for Classification of Coals by Rank (IBR--see Sec. 60.17).
    Low heat release rate means a heat release rate of 730,000 J/sec-
m\3\ (70,000 Btu/hour-ft\3\) or less.
    Mass-feed stoker steam generating unit means a steam generating unit 
where solid fuel is introduced directly into a retort or is fed directly 
onto a grate where it is combusted.
    Maximum heat input capacity means the ability of a steam generating 
unit to combust a stated maximum amount of fuel on a steady state basis, 
as determined by the physical design and characteristics of the steam 
generating unit.
    Municipal-type solid waste means refuse, more than 50 percent of 
which is waste consisting of a mixture of paper, wood, yard wastes, food 
wastes, plastics, leather, rubber, and other combustible materials, and 
noncombustible materials such as glass and rock.
    Natural gas means (1) a naturally occurring mixture of hydrocarbon 
and nonhydrocarbon gases found in geologic formations beneath the 
earth's surface, of which the principal constituent is methane; or (2) 
liquid petroleum gas, as defined by the American Society for Testing and 
Materials in ASTM D1835-82, ``Standard Specification for Liquid 
Petroleum Gases'' (IBR--see Sec. 60.17).
    Noncontinental area means the State of Hawaii, the Virgin Islands, 
Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern 
Mariana Islands.
    Oil means crude oil or petroleum or a liquid fuel derived from crude 
oil or petroleum, including distillate and residual oil.
    Petroleum refinery means industrial plants as classified by the 
Department of Commerce under Standard Industrial Classification (SIC) 
Code 29.
    Potential sulfur dioxide emission rate means the theoretical sulfur 
dioxide emissions (ng/J, lb/million Btu heat input) that would result 
from combusting fuel in an uncleaned state and without using emission 
control systems.
    Process heater means a device that is primarily used to heat a 
material to initiate or promote a chemical reaction in which the 
material participates as a reactant or catalyst.
    Pulverized coal-fired steam generating unit means a steam generating 
unit in which pulverized coal is introduced into an air stream that 
carries the coal to the combustion chamber of the steam generating unit 
where it is fired in suspension. This includes both conventional 
pulverized coal-fired and micropulverized coal-fired steam generating 
units.
    Residual oil means crude oil, fuel oil numbers 1 and 2 that have a 
nitrogen content greater than 0.05 weight percent, and all fuel oil 
numbers 4, 5 and

[[Page 101]]

6, as defined by the American Society of Testing and Materials in ASTM 
D396-78, Standard Specifications for Fuel Oils (IBR--see Sec. 60.17).
    Spreader stoker steam generating unit means a steam generating unit 
in which solid fuel is introduced to the combustion zone by a mechanism 
that throws the fuel onto a grate from above. Combustion takes place 
both in suspension and on the grate.
    Steam generating unit means a device that combusts any fuel or 
byproduct/waste to produce steam or to heat water or any other heat 
transfer medium. This term includes any municipal-type solid waste 
incinerator with a heat recovery steam generating unit or any steam 
generating unit that combusts fuel and is part of a cogeneration system 
or a combined cycle system. This term does not include process heaters 
as they are defined in this subpart.
    Steam generating unit operating day means a 24-hour period between 
12:00 midnight and the following midnight during which any fuel is 
combusted at any time in the steam generating unit. It is not necessary 
for fuel to be combusted continuously for the entire 24-hour period.
    Very low sulfur oil means an oil that contains no more than 0.5 
weight percent sulfur or that, when combusted without sulfur dioxide 
emission control, has a sulfur dioxide emission rate equal to or less 
than 215 ng/J (0.5 lb/million Btu) heat input.
    Wet flue gas desulfurization technology means a sulfur dioxide 
control system that is located downstream of the steam generating unit 
and removes sulfur oxides from the combustion gases of the steam 
generating unit by contacting the combustion gas with an alkaline slurry 
or solution and forming a liquid material. This definition applies to 
devices where the aqueous liquid material product of this contact is 
subsequently converted to other forms. Alkaline reagents used in wet 
flue gas desulfurization technology include, but are not limited to, 
lime, limestone, and sodium.
    Wet scrubber system means any emission control device that mixes an 
aqueous stream or slurry with the exhaust gases from a steam generating 
unit to control emissions of particulate matter or sulfur dioxide.
    Wood means wood, wood residue, bark, or any derivative fuel or 
residue thereof, in any form, including, but not limited to, sawdust, 
sanderdust, wood chips, scraps, slabs, millings, shavings, and processed 
pellets made from wood or other forest residues.
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51819, Dec. 18, 1989]



Sec. 60.42b  Standard for sulfur dioxide.

    (a) Except as provided in paragraphs (b), (c), (d), or (j) of this 
section, on and after the date on which the performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal or oil shall cause to be discharged into the 
atmosphere any gases that contain sulfur dioxide in excess of 10 percent 
(0.10) of the potential sulfur dioxide emission rate (90 percent 
reduction) and that contain sulfur dioxide in excess of the emission 
limit determined according to the following formula:

Es=(Ka Ha+Kb Hb)/
          (Ha+Hb)

where:
Es is the sulfur dioxide emission limit, in ng/J or lb/
          million Btu heat input,
Ka is 520 ng/J (or 1.2 lb/million Btu),
Kb is 340 ng/J (or 0.80 lb/million Btu),
Ha is the heat input from the combustion of coal, in J 
          (million Btu),
Hb is the heat input from the combustion of oil, in J 
          (million Btu).


Only the heat input supplied to the affected facility from the 
combustion of coal and oil is counted under this section. No credit is 
provided for the heat input to the affected facility from the combustion 
of natural gas, wood, municipal-type solid waste, or other fuels or heat 
input to the affected facility from exhaust gases from another source, 
such as gas turbines, internal combustion engines, kilns, etc.
    (b) On and after the date on which the performance test is completed 
or required to be completed under Sec. 60.8 of this part, whichever 
comes first, no owner or operator of an affected facility that combusts 
coal refuse alone in a fluidized bed combustion steam generating unit 
shall cause to be discharged into the atmosphere any gases

[[Page 102]]

that contain sulfur dioxide in excess of 20 percent of the potential 
sulfur dioxide emission rate (80 percent reduction) and that contain 
sulfur dioxide in excess of 520 ng/J (1.2 lb/million Btu) heat input. If 
coal or oil is fired with coal refuse, the affected facility is subject 
to paragraph (a) or (d) of this section, as applicable.
    (c) On and after the date on which the performance test is completed 
or is required to be completed under Sec. 60.8 of this part, whichever 
comes first, no owner or operator of an affected facility that combusts 
coal or oil, either alone or in combination with any other fuel, and 
that uses an emerging technology for the control of sulfur dioxide 
emissions, shall cause to be discharged into the atmosphere any gases 
that contain sulfur dioxide in excess of 50 percent of the potential 
sulfur dioxide emission rate (50 percent reduction) and that contain 
sulfur dioxide in excess of the emission limit determined according to 
the following formula:

Es=(Kc Hc+Kd Hd)/
          Hc+Hd)

where:
Es is the sulfur dioxide emission limit, expressed in ng/J 
          (lb/million Btu) heat input,
Kc is 260 ng/J (0.60 lb/million Btu),
Kd is 170 ng/J (0.40 lb/million Btu),
Hc is the heat input from the combustion of coal, J (million 
          Btu),
Hd is the heat input from the combustion of oil, J (million 
          Btu).


Only the heat input supplied to the affected facility from the 
combustion of coal and oil is counted under this section. No credit is 
provided for the heat input to the affected facility from the combustion 
of natural gas, wood, municipal-type solid waste, or other fuels, or 
from the heat input to the affected facility from exhaust gases from 
another source, such as gas turbines, internal combustion engines, 
kilns, etc.
    (d) On and after the date on which the performance test is completed 
or required to be completed under Sec. 60.8 of this part, whichever 
comes first, no owner or operator of an affected facility listed in 
paragraphs (d) (1), (2), or (3) of this section shall cause to be 
discharged into the atmosphere any gases that contain sulfur dioxide in 
excess of 520 ng/J (1.2 lb/million Btu) heat input if the affected 
facility combusts coal, or 215 ng/J (0.5 lb/million Btu) heat input if 
the affected facility combusts oil other than very low sulfur oil. 
Percent reduction requirements are not applicable to affected facilities 
under this paragraph.
    (1) Affected facilities that have an annual capacity factor for coal 
and oil of 30 percent (0.30) or less and are subject to a Federally 
enforceable permit limiting the operation of the affected facility to an 
annual capacity factor for coal and oil of 30 percent (0.30) or less;
    (2) Affected facilities located in a noncontinental area; or
    (3) Affected facilities combusting coal or oil, alone or in 
combination with any other fuel, in a duct burner as part of a combined 
cycle system where 30 percent (0.30) or less of the heat input to the 
steam generating unit is from combustion of coal and oil in the duct 
burner and 70 percent (0.70) or more of the heat input to the steam 
generating unit is from the exhaust gases entering the duct burner.
    (e) Except as provided in paragraph (f) of this section, compliance 
with the emission limits, fuel oil sulfur limits, and/or percent 
reduction requirements under this section are determined on a 30-day 
rolling average basis.
    (f) Except as provided in paragraph (j)(2) of this section, 
compliance with the emission limits or fuel oil sulfur limits under this 
section is determined on a 24-hour average basis for affected facilities 
that (1) have a Federally enforceable permit limiting the annual 
capacity factor for oil to 10 percent or less, (2) combust only very low 
sulfur oil, and (3) do not combust any other fuel.
    (g) Except as provided in paragraph (i) of this section, the sulfur 
dioxide emission limits and percent reduction requirements under this 
section apply at all times, including periods of startup, shutdown, and 
malfunction.
    (h) Reductions in the potential sulfur dioxide emission rate through 
fuel pretreatment are not credited toward the percent reduction 
requirement under paragraph (c) of this section unless:
    (1) Fuel pretreatment results in a 50 percent or greater reduction 
in potential sulfur dioxide emissions and

[[Page 103]]

    (2) Emissions from the pretreated fuel (without combustion or post 
combustion sulfur dioxide control) are equal to or less than the 
emission limits specified in paragraph (c) of this section.
    (i) An affected facility subject to paragraph (a), (b), or (c) of 
this section may combust very low sulfur oil or natural gas when the 
sulfur dioxide control system is not being operated because of 
malfunction or maintenance of the sulfur dioxide control system.
    (j) Percent reduction requirements are not applicable to affected 
facilities combusting only very low sulfur oil. The owner or operator of 
an affected facility combusting very low sulfur oil shall demonstrate 
that the oil meets the definition of very low sulfur oil by: (1) 
Following the performance testing procedures as described in 
Sec. 60.45b(c) or Sec. 60.45b(d), and following the monitoring 
procedures as described in Sec. 60.47b(a) or Sec. 60.47b(b) to determine 
sulfur dioxide emission rate or fuel oil sulfur content; or (2) 
maintaining fuel receipts as described in Sec. 60.49b(r).
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51819, Dec. 18, 1989]



Sec. 60.43b  Standard for particulate matter.

    (a) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever comes first, no owner or operator of an affected facility 
which combusts coal or combusts mixtures of coal with other fuels, shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain particulate matter in excess of the following 
emission limits:
    (1) 22 ng/J (0.05 lb/million Btu) heat input,
    (i) If the affected facility combusts only coal, or
    (ii) If the affected facility combusts coal and other fuels and has 
an annual capacity factor for the other fuels of 10 percent (0.10) or 
less.
    (2) 43 ng/J (0.10 lb/million Btu) heat input if the affected 
facility combusts coal and other fuels and has an annual capacity factor 
for the other fuels greater than 10 percent (0.10) and is subject to a 
federally enforceable requirement limiting operation of the affected 
facility to an annual capacity factor greater than 10 percent (0.10) for 
fuels other than coal.
    (3) 86 ng/J (0.20 lb/million Btu) heat input if the affected 
facility combusts coal or coal and other fuels and
    (i) Has an annual capacity factor for coal or coal and other fuels 
of 30 percent (0.30) or less,
    (ii) Has a maximum heat input capacity of 73 MW (250 million Btu/
hour) or less,
    (iii) Has a federally enforceable requirement limiting operation of 
the affected facility to an annual capacity factor of 30 percent (0.30) 
or less for coal or coal and other solid fuels, and
    (iv) Construction of the affected facility commenced after June 19, 
1984, and before November 25, 1986.
    (b) On and after the date on which the performance test is completed 
or required to be completed under 60.8 of this part, whichever date 
comes first, no owner or operator of an affected facility that combusts 
oil (or mixtures of oil with other fuels) and uses a conventional or 
emerging technology to reduce sulfur dioxide emissions shall cause to be 
discharged into the atmosphere from that affected facility any gases 
that contain particulate matter in excess of 43 ng/J (0.10 lb/million 
Btu) heat input.
    (c) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts wood, or wood with other fuels, except coal, shall cause 
to be discharged from that affected facility any gases that contain 
particulate matter in excess of the following emission limits:
    (1) 43 ng/J (0.10 lb/million Btu) heat input if the affected 
facility has an annual capacity factor greater than 30 percent (0.30) 
for wood.
    (2) 86 ng/J (0.20 lb/million Btu) heat input if
    (i) The affected facility has an annual capacity factor of 30 
percent (0.30) or less for wood,
    (ii) Is subject to a federally enforceable requirement limiting 
operation of

[[Page 104]]

the affected facility to an annual capacity factor of 30 percent (0.30) 
or less for wood, and
    (iii) Has a maximum heat input capacity of 73 MW (250 million Btu/
hour) or less.
    (d) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts municipal-type solid waste or mixtures of municipal-type 
solid waste with other fuels, shall cause to be discharged into the 
atmosphere from that affected facility any gases that contain 
particulate matter in excess of the following emission limits:
    (1) 43 ng/J (0.10 lb/million Btu) heat input,
    (i) If the affected facility combusts only municipal-type solid 
waste, or
    (ii) If the affected facility combusts municipal-type solid waste 
and other fuels and has an annual capacity factor for the other fuels of 
10 percent (0.10) or less.
    (2) 86 ng/J (0.20 lb/million Btu) heat input if the affected 
facility combusts municipal-type solid waste or municipal-type solid 
waste and other fuels; and
    (i) Has an annual capacity factor for municipal-type solid waste and 
other fuels of 30 percent (0.30) or less,
    (ii) Has a maximum heat input capacity of 73 MW (250 million Btu/
hour) or less,
    (iii) Has a federally enforceable requirement limiting operation of 
the affected facility to an annual capacity factor of 30 percent (0.30) 
for municipal-type solid waste, or municipal-type solid waste and other 
fuels, and
    (iv) Construction of the affected facility commenced after June 19, 
1984, but before November 25, 1986.
    (e) For the purposes of this section, the annual capacity factor is 
determined by dividing the actual heat input to the steam generating 
unit during the calendar year from the combustion of coal, wood, or 
municipal-type solid waste, and other fuels, as applicable, by the 
potential heat input to the steam generating unit if the steam 
generating unit had been operated for 8,760 hours at the maximum design 
heat input capacity.
    (f) On and after the date on which the initial performance test is 
completed or is required to be completed under 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal, oil, wood, or mixtures of these fuels with any other 
fuels shall cause to be discharged into the atmosphere any gases that 
exhibit greater than 20 percent opacity (6-minute average), except for 
one 6-minute period per hour of not more than 27 percent opacity.
    (g) The particulate matter and opacity standards apply at all times, 
except during periods of startup, shutdown or malfunction.
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51819, Dec. 18, 1989]



Sec. 60.44b  Standard for nitrogen oxides.

    (a) Except as provided under paragraph (k) of this section, on and 
after the date on which the initial performance test is completed or is 
required to be completed under Sec. 60.8 of this part, whichever date 
comes first, no owner or operator of an affected facility that is 
subject to the provisions of this section and that combusts only coal, 
oil, or natural gas shall cause to be discharged into the atmosphere 
from that affected facility any gases that contain nitrogen oxides 
(expressed as NO2) in excess of the following emission 
limits:

 
------------------------------------------------------------------------
                                                          Nitrogen oxide
                                                             emission
                                                            limits ng/J
                                                            (lb/million
             Fuel/Steam generating unit type                   Btu)
                                                           (expressed as
                                                             NO2) heat
                                                               input
------------------------------------------------------------------------
(1) Natural gas and distillate oil, except (4):
  (i) Low heat release rate.............................       43 (0.10)
  (ii) High heat release rate...........................       86 (0.20)
(2) Residual oil:
  (i) Low heat release rate.............................      130 (0.30)
  (ii) High heat release rate...........................      170 (0.40)
(3) Coal:
  (i) Mass-feed stoker..................................      210 (0.50)
  (ii) Spreader stoker and fluidized bed combustion.....      260 (0.60)
  (iii) Pulverized coal.................................      300 (0.70)
  (iv) Lignite, except (v)..............................      260 (0.60)
  (v) Lignite mined in North Dakota, South Dakota, or
   Montana and combusted in a slag tap furnace..........      340 (0.80)
  (vi) Coal-derived synthetic fuels.....................      210 (0.50)
(4) Duct burner used in a combined cycle system:
  (i) Natural gas and distillate oil....................       86 (0.20)

[[Page 105]]

 
  (ii) Residual oil.....................................      170 (0.40)
------------------------------------------------------------------------

    (b) Except as provided under paragraph (k) of this section, on and 
after the date on which the initial performance test is completed or is 
required to be completed under Sec. 60.8 of this part, whichever date 
comes first, no owner or operator of an affected facility that 
simultaneously combusts mixtures of coal, oil, or natural gas shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain nitrogen oxides in excess of a limit determined 
by use of the following formula:

En=[(ELgo Hgo)+(ELro 
          Hro)+(ELc Hc)]/
          (Hgo+Hro+Hc)

where:

En is the nitrogen oxides emission limit (expressed as 
          NO2), ng/J (lb/million Btu)
ELgo is the appropriate emission limit from paragraph (a)(1) 
          for combustion of natural gas or distillate oil, ng/J (lb/
          million Btu)
Hgo is the heat input from combustion of natural gas or 
          distillate oil,
ELro is the appropriate emission limit from paragraph (a)(2) 
          for combustion of residual oil,
Hro is the heat input from combustion of residual oil,
ELc is the appropriate emission limit from paragraph (a)(3) 
          for combustion of coal, and
Hc is the heat input from combustion of coal.

    (c) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever comes first, no owner or operator of an affected facility that 
simultaneously combusts coal or oil, or a mixture of these fuels with 
natural gas, and wood, municipal-type solid waste, or any other fuel 
shall cause to be discharged into the atmosphere any gases that contain 
nitrogen oxides in excess of the emission limit for the coal or oil, or 
mixture of these fuels with natural gas combusted in the affected 
facility, as determined pursuant to paragraph (a) or (b) of this 
section, unless the affected facility has an annual capacity factor for 
coal or oil, or mixture of these fuels with natural gas of 10 percent 
(0.10) or less and is subject to a federally enforceable requirement 
that limits operation of the facility to an annual capacity factor of 10 
percent (0.10) or less for coal, oil, or a mixture of these fuels with 
natural gas.
    (d) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that simultaneously combusts natural gas with wood, municipal-type solid 
waste, or other solid fuel, except coal, shall cause to be discharged 
into the atmosphere from that affected facility any gases that contain 
nitrogen oxides in excess of 130 ng/J (0.30 lb/million Btu) heat input 
unless the affected facility has an annual capacity factor for natural 
gas of 10 percent (0.10) or less and is subject to a federally 
enforceable requirement that limits operation of the affected facility 
to an annual capacity factor of 10 percent (0.10) or less for natural 
gas.
    (e) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that simultaneously combusts coal, oil, or natural gas with byproduct/
waste shall cause to be discharged into the atmosphere from that 
affected facility any gases that contain nitrogen oxides in excess of an 
emission limit determined by the following formula unless the affected 
facility has an annual capacity factor for coal, oil, and natural gas of 
10 percent (0.10) or less and is subject to a federally enforceable 
requirement which limits operation of the affected facility to an annual 
capacity factor of 10 percent (0.10) or less:

En=[(ELgo Hgo)+(ELro 
          Hro)+ (ELc Hc)]/
          (Hgo+Hro+Hc)

where:

En is the nitrogen oxides emission limit (expressed as 
          NO2), ng/J (lb/million Btu)
ELgo is the appropriate emission limit from paragraph (a)(1) 
          for combustion of natural gas or distillate oil, ng/J (lb/
          million Btu).
Hgo is the heat input from combustion of natural gas, 
          distillate oil and gaseous byproduct/waste, ng/J (lb/million 
          Btu).

[[Page 106]]

ELro is the appropriate emission limit from paragraph (a)(2) 
          for combustion of residual oil, ng/J (lb/million Btu)
Hro is the heat input from combustion of residual oil and/or 
          liquid byproduct/waste.
ELc is the appropriate emission limit from paragraph (a)(3) 
          for combustion of coal, and
Hc is the heat input from combustion of coal.

    (f) Any owner or operator of an affected facility that combusts 
byproduct/waste with either natural gas or oil may petition the 
Administrator within 180 days of the initial startup of the affected 
facility to establish a nitrogen oxides emission limit which shall apply 
specifically to that affected facility when the byproduct/waste is 
combusted. The petition shall include sufficient and appropriate data, 
as determined by the Administrator, such as nitrogen oxides emissions 
from the affected facility, waste composition (including nitrogen 
content), and combustion conditions to allow the Administrator to 
confirm that the affected facility is unable to comply with the emission 
limits in paragraph (e) of this section and to determine the appropriate 
emission limit for the affected facility.
    (1) Any owner or operator of an affected facility petitioning for a 
facility-specific nitrogen oxides emission limit under this section 
shall:
    (i) Demonstrate compliance with the emission limits for natural gas 
and distillate oil in paragraph (a)(1) of this section or for residual 
oil in paragraph (a)(2) of this section, as appropriate, by conducting a 
30-day performance test as provided in Sec. 60.46b(e). During the 
performance test only natural gas, distillate oil, or residual oil shall 
be combusted in the affected facility; and
    (ii) Demonstrate that the affected facility is unable to comply with 
the emission limits for natural gas and distillate oil in paragraph 
(a)(1) of this section or for residual oil in paragraph (a)(2) of this 
section, as appropriate, when gaseous or liquid byproduct/waste is 
combusted in the affected facility under the same conditions and using 
the same technological system of emission reduction applied when 
demonstrating compliance under paragraph (f)(1)(i) of this section.
    (2) The nitrogen oxides emission limits for natural gas or 
distillate oil in paragraph (a)(1) of this section or for residual oil 
in paragraph (a)(2) of this section, as appropriate, shall be applicable 
to the affected facility until and unless the petition is approved by 
the Administrator. If the petition is approved by the Administrator, a 
facility-specific nitrogen oxides emission limit will be established at 
the nitrogen oxides emission level achievable when the affected facility 
is combusting oil or natural gas and byproduct/waste in a manner that 
the Administrator determines to be consistent with minimizing nitrogen 
oxides emissions.
    (g) Any owner or operator of an affected facility that combusts 
hazardous waste (as defined by 40 CFR part 261 or 40 CFR part 761) with 
natural gas or oil may petition the Administrator within 180 days of the 
initial startup of the affected facility for a waiver from compliance 
with the nitrogen oxides emission limit which applies specifically to 
that affected facility. The petition must include sufficient and 
appropriate data, as determined by the Administrator, on nitrogen oxides 
emissions from the affected facility, waste destruction efficiencies, 
waste composition (including nitrogen content), the quantity of specific 
wastes to be combusted and combustion conditions to allow the 
Administrator to determine if the affected facility is able to comply 
with the nitrogen oxides emission limits required by this section. The 
owner or operator of the affected facility shall demonstrate that when 
hazardous waste is combusted in the affected facility, thermal 
destruction efficiency requirements for hazardous waste specified in an 
applicable federally enforceable requirement preclude compliance with 
the nitrogen oxides emission limits of this section. The nitrogen oxides 
emission limits for natural gas or distillate oil in paragraph (a)(1) of 
this section or for residual oil in paragraph (a)(2) of this section, as 
appropriate, are applicable to the affected facility until and unless 
the petition is approved by the Administrator. (See 40 CFR 761.70 for 
regulations applicable to the incineration of materials containing 
polychlorinated biphenyls (PCB's).)

[[Page 107]]

    (h) For purposes of paragraph (i) of this section, the nitrogen 
oxide standards under this section apply at all times including periods 
of startup, shutdown, or malfunction.
    (i) Except as provided under paragraph (j) of this section, 
compliance with the emission limits under this section is determined on 
a 30-day rolling average basis.
    (j) Compliance with the emission limits under this section is 
determined on a 24-hour average basis for the initial performance test 
and on a 3-hour average basis for subsequent performance tests for any 
affected facilities that:
    (1) Combust, alone or in combination, only natural gas, distillate 
oil, or residual oil with a nitrogen content of 0.30 weight percent or 
less;
    (2) Have a combined annual capacity factor of 10 percent or less for 
natural gas, distillate oil, and residual oil with a nitrogen content of 
0.30 weight percent or less; and
    (3) Are subject to a Federally enforceable requirement limiting 
operation of the affected facility to the firing of natural gas, 
distillate oil, and/or residual oil with a nitrogen content of 0.30 
weight percent or less and limiting operation of the affected facility 
to a combined annual capacity factor of 10 percent or less for natural 
gas, distillate oil, and residual oil and a nitrogen content of 0.30 
weight percent or less.
    (k) Affected facilities that meet the criteria described in 
paragraphs (j) (1), (2), and (3) of this section, and that have a heat 
input capacity of 73 MW (250 million Btu/hour) or less, are not subject 
to the nitrogen oxides emission limits under this section.
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51825, Dec. 18, 1989]



Sec. 60.45b  Compliance and performance test methods and procedures for sulfur dioxide.

    (a) The sulfur dioxide emission standards under Sec. 60.42b apply at 
all times.
    (b) In conducting the performance tests required under Sec. 60.8, 
the owner or operator shall use the methods and procedures in appendix A 
of this part or the methods and procedures as specified in this section, 
except as provided in Sec. 60.8(b). Section 60.8(f) does not apply to 
this section. The 30-day notice required in Sec. 60.8(d) applies only to 
the initial performance test unless otherwise specified by the 
Administrator.
    (c) The owner or operator of an affected facility shall conduct 
performance tests to determine compliance with the percent of potential 
sulfur dioxide emission rate (% Ps) and the sulfur dioxide 
emission rate (Es) pursuant to Sec. 60.42b following the 
procedures listed below, except as provided under paragraph (d) of this 
section.
    (1) The initial performance test shall be conducted over the first 
30 consecutive operating days of the steam generating unit. Compliance 
with the sulfur dioxide standards shall be determined using a 30-day 
average. The first operating day included in the initial performance 
test shall be scheduled within 30 days after achieving the maximum 
production rate at which the affected facility will be operated, but not 
later than 180 days after initial startup of the facility.
    (2) If only coal or only oil is combusted, the following procedures 
are used:
    (i) The procedures in Method 19 are used to determine the hourly 
sulfur dioxide emission rate (Eho) and the 30-day average 
emission rate (Eao). The hourly averages used to compute the 
30-day averages are obtained from the continuous emission monitoring 
system of Sec. 60.47b (a) or (b).
    (ii) The percent of potential sulfur dioxide emission rate (% 
Ps) emitted to the atmosphere is computed using the following 
formula:

% Ps=100 (1-% Rg/100)(1-% Rf/100)

where:

% Rg is the sulfur dioxide removal efficiency of the control 
          device as determined by Method 19, in percent.
% Rf is the sulfur dioxide removal efficiency of fuel 
          pretreatment as determined by Method 19, in percent.

    (3) If coal or oil is combusted with other fuels, the same 
procedures required in paragraph (c)(2) of this section are used, except 
as provided in the following:
    (i) An adjusted hourly sulfur dioxide emission rate 
(Ehoo) is used in Equation 19-19 of Method 19 to 
compute an adjusted 30-day average emission rate

[[Page 108]]

(Eaoo). The Eho is computed using the 
following formula:

Ehoo=[Eho-Ew(1-Xk)
          ]/Xk
where:
Ehoo is the adjusted hourly sulfur dioxide 
          emission rate, ng/J (lb/million Btu).
Eho is the hourly sulfur dioxide emission rate, ng/J (lb/
          million Btu).
Ew is the sulfur dioxide concentration in fuels other than 
          coal and oil combusted in the affected facility, as determined 
          by the fuel sampling and analysis procedures in Method 19, ng/
          J (lb/million Btu). The value Ew for each fuel lot 
          is used for each hourly average during the time that the lot 
          is being combusted.
Xk is the fraction of total heat input from fuel combustion 
          derived from coal, oil, or coal and oil, as determined by 
          applicable procedures in Method 19.

    (ii) To compute the percent of potential sulfur dioxide emission 
rate (% Ps), an adjusted % Rg (% 
Rgo) is computed from the adjusted 
Eaoo from paragraph (b)(3)(i) of this section and 
an adjusted average sulfur dioxide inlet rate 
(Eaio) using the following formula:

% Rgo=100 (1.0-Eaoo/
          Eaio)


To compute Eaio, an adjusted hourly sulfur dioxide 
inlet rate (Ehio) is used. The 
Ehio is computed using the following formula:

Ehio=[Ehi-Ew(1-Xk)
          ]/Xk

where:

Ehio is the adjusted hourly sulfur dioxide inlet 
          rate, ng/J (lb/million Btu).
Ehi is the hourly sulfur dioxide inlet rate, ng/J (lb/million 
          Btu).

    (4) The owner or operator of an affected facility subject to 
paragraph (b)(3) of this section does not have to measure parameters 
Ew or Xk if the owner or operator elects to assume 
that Xk=1.0. Owners or operators of affected facilities who 
assume Xk=1.0 shall
    (i) Determine % Ps following the procedures in paragraph 
(c)(2) of this section, and
    (ii) Sulfur dioxide emissions (Es) are considered to be 
in compliance with sulfur dioxide emission limits under Sec. 60.42b.
    (5) The owner or operator of an affected facility that qualifies 
under the provisions of Sec. 60.42b(d) does not have to measure 
parameters Ew or Xk under paragraph (b)(3) of this 
section if the owner or operator of the affected facility elects to 
measure sulfur dioxide emission rates of the coal or oil following the 
fuel sampling and analysis procedures under Method 19.
    (d) Except as provided in paragraph (j), the owner or operator of an 
affected facility that combusts only very low sulfur oil, has an annual 
capacity factor for oil of 10 percent (0.10) or less, and is subject to 
a Federally enforceable requirement limiting operation of the affected 
facility to an annual capacity factor for oil of 10 percent (0.10) or 
less shall:
    (1) Conduct the initial performance test over 24 consecutive steam 
generating unit operating hours at full load;
    (2) Determine compliance with the standards after the initial 
performance test based on the arithmetic average of the hourly emissions 
data during each steam generating unit operating day if a continuous 
emission measurement system (CEMS) is used, or based on a daily average 
if Method 6B or fuel sampling and analysis procedures under Method 19 
are used.
    (e) The owner or operator of an affected facility subject to 
Sec. 60.42b(d)(1) shall demonstrate the maximum design capacity of the 
steam generating unit by operating the facility at maximum capacity for 
24 hours. This demonstration will be made during the initial performance 
test and a subsequent demonstration may be requested at any other time. 
If the 24-hour average firing rate for the affected facility is less 
than the maximum design capacity provided by the manufacturer of the 
affected facility, the 24-hour average firing rate shall be used to 
determine the capacity utilization rate for the affected facility, 
otherwise the maximum design capacity provided by the manufacturer is 
used.
    (f) For the initial performance test required under Sec. 60.8, 
compliance with the sulfur dioxide emission limits and percent reduction 
requirements under Sec. 60.42b is based on the average emission rates 
and the average percent reduction for sulfur dioxide for the first 30 
consecutive steam generating unit operating days, except as provided 
under paragraph (d) of this section. The initial performance test is the 
only

[[Page 109]]

test for which at least 30 days prior notice is required unless 
otherwise specified by the Administrator. The initial performance test 
is to be scheduled so that the first steam generating unit operating day 
of the 30 successive steam generating unit operating days is completed 
within 30 days after achieving the maximum production rate at which the 
affected facility will be operated, but not later than 180 days after 
initial startup of the facility. The boiler load during the 30-day 
period does not have to be the maximum design load, but must be 
representative of future operating conditions and include at least one 
24-hour period at full load.
    (g) After the initial performance test required under Sec. 60.8, 
compliance with the sulfur dioxide emission limits and percent reduction 
requirements under Sec. 60.42b is based on the average emission rates 
and the average percent reduction for sulfur dioxide for 30 successive 
steam generating unit operating days, except as provided under paragraph 
(d). A separate performance test is completed at the end of each steam 
generating unit operating day after the initial performance test, and a 
new 30-day average emission rate and percent reduction for sulfur 
dioxide are calculated to show compliance with the standard.
    (h) Except as provided under paragraph (i) of this section, the 
owner or operator of an affected facility shall use all valid sulfur 
dioxide emissions data in calculating % Ps and Eho 
under paragraph (c), of this section whether or not the minimum 
emissions data requirements under Sec. 60.46b are achieved. All valid 
emissions data, including valid sulfur dioxides emission data collected 
during periods of startup, shutdown and malfunction, shall be used in 
calculating % Ps and Eho pursuant to paragraph (c) 
of this section.
    (i) During periods of malfunction or maintenance of the sulfur 
dioxide control systems when oil is combusted as provided under 
Sec. 60.42b(i), emission data are not used to calculate % Ps 
or Es under Sec. 60.42b (a), (b) or (c), however, the 
emissions data are used to determine compliance with the emission limit 
under Sec. 60.42b(i).
    (j) The owner or operator of an affected facility that combusts very 
low sulfur oil is not subject to the compliance and performance testing 
requirements of this section if the owner or operator obtains fuel 
receipts as described in Sec. 60.49b(r).
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51820, 51825, Dec. 18, 
1989]



Sec. 60.46b  Compliance and performance test methods and procedures for particulate matter and nitrogen oxides.

    (a) The particulate matter emission standards and opacity limits 
under Sec. 60.43b apply at all times except during periods of startup, 
shutdown, or malfunction. The nitrogen oxides emission standards under 
Sec. 60.44b apply at all times.
    (b) Compliance with the particulate matter emission standards under 
Sec. 60.43b shall be determined through performance testing as described 
in paragraph (d) of this section.
    (c) Compliance with the nitrogen oxides emission standards under 
Sec. 60.44b shall be determined through performance testing under 
paragraph (e) or (f), or under paragraphs (g) and (h) of this section, 
as applicable.
    (d) To determine compliance with the particulate matter emission 
limits and opacity limits under Sec. 60.43b, the owner or operator of an 
affected facility shall conduct an initial performance test as required 
under Sec. 60.8 using the following procedures and reference methods:
    (1) Method 3B is used for gas analysis when applying Method 5 or 
Method 17.
    (2) Method 5, Method 5B, or Method 17 shall be used to measure the 
concentration of particulate matter as follows:
    (i) Method 5 shall be used at affected facilities without wet flue 
gas desulfurization (FGD) systems; and
    (ii) Method 17 may be used at facilities with or without wet 
scrubber systems provided the stack gas temperature does not exceed a 
temperature of 160 
+C (320 +F). The procedures of sections 2.1 and 2.3 of Method 5B may be used in Method 17 only if it is used after a wet FGD system. Do not use Method 17 after wet FGD systems if the effluent is saturated or laden with water droplets.I11(iii) Method 5B is to be used only after wet FGD systems.

    (3) Method 1 is used to select the sampling site and the number of 
traverse sampling points. The sampling time for each run is at least 120 
minutes and the minimum sampling volume is 1.7 dscm (60 dscf) except 
that smaller sampling times or volumes may be approved by the 
Administrator when necessitated by process variables or other factors.
    (4) For Method 5, the temperature of the sample gas in the probe and 
filter holder is monitored and is maintained at 160 
+C (320 +F).
    (5) For determination of particulate matter emissions, the oxygen or 
carbon dioxide sample is obtained simultaneously with each run of Method 
5, Method 5B or Method 17 by traversing the duct at the same sampling 
location.
    (6) For each run using Method 5, Method 5B or Method 17, the 
emission rate expressed in nanograms per joule heat input is determined 
using:
    (i) The oxygen or carbon dioxide measurements and particulate matter 
measurements obtained under this section,
    (ii) The dry basis F factor, and
    (iii) The dry basis emission rate calculation procedure contained in 
Method 19 (appendix A).
    (7) Method 9 is used for determining the opacity of stack emissions.
    (e) To determine compliance with the emission limits for nitrogen 
oxides required under Sec. 60.44b, the owner or operator of an affected 
facility shall conduct the performance test as required under Sec. 60.8 
using the continuous system for monitoring nitrogen oxides under 
Sec. 60.48(b).
    (1) For the initial compliance test, nitrogen oxides from the steam 
generating unit are monitored for 30 successive steam generating unit 
operating days and the 30-day average emission rate is used to determine 
compliance with the nitrogen oxides emission standards under 
Sec. 60.44b. The 30-day average emission rate is calculated as the 
average of all hourly emissions data recorded by the monitoring system 
during the 30-day test period.
    (2) Following the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, the owner or operator of an affected 
facility which combusts coal or which combusts residual oil having a 
nitrogen content greater than 0.30 weight percent shall determine 
compliance with the nitrogen oxides emission standards under Sec. 60.44b 
on a continuous basis through the use of a 30-day rolling average 
emission rate. A new 30-day rolling average emission rate is calculated 
each steam generating unit operating day as the average of all of the 
hourly nitrogen oxides emission data for the preceding 30 steam 
generating unit operating days.
    (3) Following the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of this part, 
whichever date comes first, the owner or operator of an affected 
facility which has a heat input capacity greater than 73 MW (250 million 
Btu/hour) and which combusts natural gas, distillate oil, or residual 
oil having a nitrogen content of 0.30 weight percent or less shall 
determine compliance with the nitrogen oxides standards under 
Sec. 60.44b on a continuous basis through the use of a 30-day rolling 
average emission rate. A new 30-day rolling average emission rate is 
calculated each steam generating unit operating day as the average of 
all of the hourly nitrogen oxides emission data for the preceding 30 
steam generating unit operating days.
    (4) Following the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, the owner or operator of an affected 
facility which has a heat input capacity of 73 MW (250 million Btu/hour) 
or less and which combusts natural gas, distillate oil, or residual oil 
having a nitrogen content of 0.30 weight percent or less shall upon 
request determine compliance with the nitrogen oxides standards under 
Sec. 60.44b through the use of a 30-day performance test. During periods 
when performance tests are not requested, nitrogen oxides emissions data 
collected pursuant to Sec. 60.48b(g)(1) or Sec. 60.48b(g)(2) are used to 
calculate a 30-day rolling average emission rate on a daily basis

[[Page 111]]

and used to prepare excess emission reports, but will not be used to 
determine compliance with the nitrogen oxides emission standards. A new 
30-day rolling average emission rate is calculated each steam generating 
unit operating day as the average of all of the hourly nitrogen oxides 
emission data for the preceding 30 steam generating unit operating days.
    (5) If the owner or operator of an affected facility which combusts 
residual oil does not sample and analyze the residual oil for nitrogen 
content, as specified in Sec. 60.49b(e), the requirements of paragraph 
(iii) of this section apply and the provisions of paragraph (iv) of this 
section are inapplicable.
    (f) To determine compliance with the emission limit for nitrogen 
oxides required by Sec. 60.44b(a)(4) for duct burners used in combined 
cycle systems, the owner or operator of an affected facility shall 
conduct the performance test required under Sec. 60.8 using the nitrogen 
oxides and oxygen measurement procedures in 40 CFR part 60 appendix A, 
Method 20. During the performance test, one sampling site shall be 
located as close as practicable to the exhaust of the turbine, as 
provided by section 6.1.1 of Method 20. A second sampling site shall be 
located at the outlet to the steam generating unit. Measurements of 
nitrogen oxides and oxygen shall be taken at both sampling sites during 
the performance test. The nitrogen oxides emission rate from the 
combined cycle system shall be calculated by subtracting the nitrogen 
oxides emission rate measured at the sampling site at the outlet from 
the turbine from the nitrogen oxides emission rate measured at the 
sampling site at the outlet from the steam generating unit.
    (g) The owner or operator of an affected facility described in 
Sec. 60.44b(j) or Sec. 60.44b(k) shall demonstrate the maximum heat 
input capacity of the steam generating unit by operating the facility at 
maximum capacity for 24 hours. The owner or operator of an affected 
facility shall determine the maximum heat input capacity using the heat 
loss method described in sections 5 and 7.3 of the ASME Power Test Codes 
4.1 (see IBR Sec. 60.17(h)). This demonstration of maximum heat input 
capacity shall be made during the initial performance test for affected 
facilities that meet the criteria of Sec. 60.44b(j). It shall be made 
within 60 days after achieving the maximum production rate at which the 
affected facility will be operated, but not later than 180 days after 
initial start-up of each facility, for affected facilities meeting the 
criteria of Sec. 60.44b(k). Subsequent demonstrations may be required by 
the Administrator at any other time. If this demonstration indicates 
that the maximum heat input capacity of the affected facility is less 
than that stated by the manufacturer of the affected facility, the 
maximum heat input capacity determined during this demonstration shall 
be used to determine the capacity utilization rate for the affected 
facility. Otherwise, the maximum heat input capacity provided by the 
manufacturer is used.
    (h) The owner or operator of an affected facility described in 
Sec. 60.44b(j) that has a heat input capacity greater than 73 MW (250 
million Btu/hour) shall:
    (1) Conduct an initial performance test as required under Sec. 60.8 
over a minimum of 24 consecutive steam generating unit operating hours 
at maximum heat input capacity to demonstrate compliance with the 
nitrogen oxides emission standards under Sec. 60.44b using Method 7, 7A, 
7E, or other approved reference methods; and
    (2) Conduct subsequent performance tests once per calendar year or 
every 400 hours of operation (whichever comes first) to demonstrate 
compliance with the nitrogen oxides emission standards under Sec. 60.44b 
over a minimum of 3 consecutive steam generating unit operating hours at 
maximum heat input capacity using Method 7, 7A, 7E, or other approved 
reference methods.
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51820, 51825, Dec. 18, 
1989; 55 FR 18876, May 7, 1990]



Sec. 60.47b  Emission monitoring for sulfur dioxide.

    (a) Except as provided in paragraphs (b) and (f) of this section, 
the owner or operator of an affected facility subject to the sulfur 
dioxide standards under Sec. 60.42b shall install, calibrate, maintain, 
and operate continuous emission

[[Page 112]]

monitoring systems (CEMS) for measuring sulfur dioxide concentrations 
and either oxygen (O2) or carbon dioxide (CO2) 
concentrations and shall record the output of the systems. The sulfur 
dioxide and either oxygen or carbon dioxide concentrations shall both be 
monitored at the inlet and outlet of the sulfur dioxide control device.
    (b) As an alternative to operating CEMS as required under paragraph 
(a) of this section, an owner or operator may elect to determine the 
average sulfur dioxide emissions and percent reduction by:
    (1) Collecting coal or oil samples in an as-fired condition at the 
inlet to the steam generating unit and analyzing them for sulfur and 
heat content according to Method 19. Method 19 provides procedures for 
converting these measurements into the format to be used in calculating 
the average sulfur dioxide input rate, or
    (2) Measuring sulfur dioxide according to Method 6B at the inlet or 
outlet to the sulfur dioxide control system. An initial stratification 
test is required to verify the adequacy of the Method 6B sampling 
location. The stratification test shall consist of three paired runs of 
a suitable sulfur dioxide and carbon dioxide measurement train operated 
at the candidate location and a second similar train operated according 
to the procedures in section 3.2 and the applicable procedures in 
section 7 of Performance Specification 2. Method 6B, Method 6A, or a 
combination of Methods 6 and 3 or 3B or Methods 6C and 3A are suitable 
measurement techniques. If Method 6B is used for the second train, 
sampling time and timer operation may be adjusted for the stratification 
test as long as an adequate sample volume is collected; however, both 
sampling trains are to be operated similarly. For the location to be 
adequate for Method 6B 24-hour tests, the mean of the absolute 
difference between the three paired runs must be less than 10 percent.
    (3) A daily sulfur dioxide emission rate, ED, shall be 
determined using the procedure described in Method 6A, section 7.6.2 
(Equation 6A-8) and stated in ng/J (lb/million Btu) heat input.
    (4) The mean 30-day emission rate is calculated using the daily 
measured values in ng/J (lb/million Btu) for 30 successive steam 
generating unit operating days using equation 19-20 of Method 19.
    (c) The owner or operator of an affected facility shall obtain 
emission data for at least 75 percent of the operating hours in at least 
22 out of 30 successive boiler operating days. If this minimum data 
requirement is not met with a single monitoring system, the owner or 
operator of the affected facility shall supplement the emission data 
with data collected with other monitoring systems as approved by the 
Administrator or the reference methods and procedures as described in 
paragraph (b) of this section.
    (d) The 1-hour average sulfur dioxide emission rates measured by the 
CEMS required by paragraph (a) of this section and required under 
Sec. 60.13(h) is expressed in ng/J or lb/million Btu heat input and is 
used to calculate the average emission rates under Sec. 60.42b. Each 1-
hour average sulfur dioxide emission rate must be based on more than 30 
minutes of steam generating unit operation and include at least 2 data 
points with each representing a 15-minute period. Hourly sulfur dioxide 
emission rates are not calculated if the affected facility is operated 
less than 30 minutes in a 1-hour period and are not counted toward 
determination of a steam generating unit operating day.
    (e) The procedures under Sec. 60.13 shall be followed for 
installation, evaluation, and operation of the CEMS.
    (1) All CEMS shall be operated in accordance with the applicable 
procedures under Performance Specifications 1, 2, and 3 (appendix B).
    (2) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with Procedure 1 (appendix F).
    (3) For affected facilities combusting coal or oil, alone or in 
combination with other fuels, the span value of the sulfur dioxide CEMS 
at the inlet to the sulfur dioxide control device is 125 percent of the 
maximum estimated hourly potential sulfur dioxide emissions of the fuel 
combusted, and the span value of the CEMS at the outlet to the sulfur 
dioxide control device is 50 percent of

[[Page 113]]

the maximum estimated hourly potential sulfur dioxide emissions of the 
fuel combusted.
    (f) The owner or operator of an affected facility that combusts very 
low sulfur oil is not subject to the emission monitoring requirements of 
this section if the owner or operator obtains fuel receipts as described 
in Sec. 60.49b(r).
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51820, Dec. 18, 1989; 
55 FR 5212, Feb. 14, 1990; 55 FR 18876, May 7, 1990]



Sec. 60.48b  Emission monitoring for particulate matter and nitrogen oxides.

    (a) The owner or operator of an affected facility subject to the 
opacity standard under Sec. 60.43b shall install, calibrate, maintain, 
and operate a continuous monitoring system for measuring the opacity of 
emissions discharged to the atmosphere and record the output of the 
system.
    (b) Except as provided under paragraphs (g), (h), and (i) of this 
section, the owner or operator of an affected facility subject to the 
nitrogen oxides standards under Sec. 60.44b shall install, calibrate, 
maintain, and operate a continuous monitoring system for measuring 
nitrogen oxides emissions discharged to the atmosphere and record the 
output of the system.
    (c) The continuous monitoring systems required under paragraph (b) 
of this section shall be operated and data recorded during all periods 
of operation of the affected facility except for continuous monitoring 
system breakdowns and repairs. Data is recorded during calibration 
checks, and zero and span adjustments.
    (d) The 1-hour average nitrogen oxides emission rates measured by 
the continuous nitrogen oxides monitor required by paragraph (b) of this 
section and required under Sec. 60.13(h) shall be expressed in ng/J or 
lb/million Btu heat input and shall be used to calculate the average 
emission rates under Sec. 60.44b. The 1-hour averages shall be 
calculated using the data points required under Sec. 60.13(b). At least 
2 data points must be used to calculate each 1-hour average.
    (e) The procedures under Sec. 60.13 shall be followed for 
installation, evaluation, and operation of the continuous monitoring 
systems.
    (1) For affected facilities combusting coal, wood or municipal-type 
solid waste, the span value for a continuous monitoring system for 
measuring opacity shall be between 60 and 80 percent.
    (2) For affected facilities combusting coal, oil, or natural gas, 
the span value for nitrogen oxides is determined as follows:

 
------------------------------------------------------------------------
                                                        Span values for
                         Fuel                           nitrogen oxides
                                                             (PPM)
------------------------------------------------------------------------
Natural gas..........................................                500
Oil..................................................                500
Coal.................................................              1,000
Mixtures.............................................    500(x+y)+1,000z
------------------------------------------------------------------------

where:

x is the fraction of total heat input derived from natural gas,
y is the fraction of total heat input derived from oil, and
z is the fraction of total heat input derived from coal.

    (3) All span values computed under paragraph (e)(2) of this section 
for combusting mixtures of regulated fuels are rounded to the nearest 
500 ppm.
    (f) When nitrogen oxides emission data are not obtained because of 
continuous monitoring system breakdowns, repairs, calibration checks and 
zero and span adjustments, emission data will be obtained by using 
standby monitoring systems, Method 7, Method 7A, or other approved 
reference methods to provide emission data for a minimum of 75 percent 
of the operating hours in each steam generating unit operating day, in 
at least 22 out of 30 successive steam generating unit operating days.
    (g) The owner or operator of an affected facility that has a heat 
input capacity of 73 MW (250 million Btu/hour) or less, and which has an 
annual capacity factor for residual oil having a nitrogen content of 
0.30 weight percent or less, natural gas, distillate oil, or any mixture 
of these fuels, greater than 10 percent (0.10) shall:
    (1) Comply with the provisions of paragraphs (b), (c), (d), (e)(2), 
(e)(3), and (f) of this section, or
    (2) Monitor steam generating unit operating conditions and predict 
nitrogen oxides emission rates as specified in a plan submitted pursuant 
to Sec. 60.49b(c).
    (h) The owner or operator of an affected facility which is subject 
to the

[[Page 114]]

nitrogen oxides standards of Sec. 60.44b(a)(4) is not required to 
install or operate a continuous monitoring system to measure nitrogen 
oxides emissions.
    (i) The owner or operator of an affected facility described in 
Sec. 60.44b(j) or Sec. 60.44b(k) is not required to install or operate a 
continuous monitoring system for measuring nitrogen oxides emissions.
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51825, Dec. 18, 1989]



Sec. 60.49b  Reporting and recordkeeping requirements.

    (a) The owner or operator of each affected facility shall submit 
notification of the date of initial startup, as provided by Sec. 60.7. 
This notification shall include:
    (1) The design heat input capacity of the affected facility and 
identification of the fuels to be combusted in the affected facility,
    (2) If applicable, a copy of any Federally enforceable requirement 
that limits the annual capacity factor for any fuel or mixture of fuels 
under Secs. 60.42b(d)(1), 60.43b(a)(2), (a)(3)(iii), (c)(2)(ii), 
(d)(2)(iii), 60.44b(c), (d), (e), (i), (j), (k), 60.45b(d), (g), 
60.46b(h), or 60.48b(i),
    (3) The annual capacity factor at which the owner or operator 
anticipates operating the facility based on all fuels fired and based on 
each individual fuel fired, and,
    (4) Notification that an emerging technology will be used for 
controlling emissions of sulfur dioxide. The Administrator will examine 
the description of the emerging technology and will determine whether 
the technology qualifies as an emerging technology. In making this 
determination, the Administrator may require the owner or operator of 
the affected facility to submit additional information concerning the 
control device. The affected facility is subject to the provisions of 
Sec. 60.42b(a) unless and until this determination is made by the 
Administrator.
    (b) The owner or operator of each affected facility subject to the 
sulfur dioxide, particulate matter, and/or nitrogen oxides emission 
limits under Secs. 60.42b, 60.43b, and 60.44b shall submit to the 
Administrator the performance test data from the initial performance 
test and the performance evaluation of the CEMS using the applicable 
performance specifications in appendix B. The owner or operator of each 
affected facility described in Sec. 60.44b(j) or Sec. 60.44b(k) shall 
submit to the Administrator the maximum heat input capacity data from 
the demonstration of the maximum heat input capacity of the affected 
facility.
    (c) The owner or operator of each affected facility subject to the 
nitrogen oxides standard of Sec. 60.44b who seeks to demonstrate 
compliance with those standards through the monitoring of steam 
generating unit operating conditions under the provisions of 
Sec. 60.48b(g)(2) shall submit to the Administrator for approval a plan 
that identifies the operating conditions to be monitored under 
Sec. 60.48b(g)(2) and the records to be maintained under Sec. 60.49b(j). 
This plan shall be submitted to the Administrator for approval within 
360 days of the initial startup of the affected facility. The plan 
shall:
    (1) Identify the specific operating conditions to be monitored and 
the relationship between these operating conditions and nitrogen oxides 
emission rates (i.e., ng/J or lbs/million Btu heat input). Steam 
generating unit operating conditions include, but are not limited to, 
the degree of staged combustion (i.e., the ratio of primary air to 
secondary and/or tertiary air) and the level of excess air (i.e., flue 
gas oxygen level);
    (2) Include the data and information that the owner or operator used 
to identify the relationship between nitrogen oxides emission rates and 
these operating conditions;
    (3) Identify how these operating conditions, including steam 
generating unit load, will be monitored under Sec. 60.48b(g) on an 
hourly basis by the owner or operator during the period of operation of 
the affected facility; the quality assurance procedures or practices 
that will be employed to ensure that the data generated by monitoring 
these operating conditions will be representative and accurate; and the 
type

[[Page 115]]

and format of the records of these operating conditions, including steam 
generating unit load, that will be maintained by the owner or operator 
under Sec. 60.49b(j).

If the plan is approved, the owner or operator shall maintain records of 
predicted nitrogen oxide emission rates and the monitored operating 
conditions, including steam generating unit load, identified in the 
plan.
    (d) The owner or operator of an affected facility shall record and 
maintain records of the amounts of each fuel combusted during each day 
and calculate the annual capacity factor individually for coal, 
distillate oil, residual oil, natural gas, wood, and municipal-type 
solid waste for each calendar quarter. The annual capacity factor is 
determined on a 12-month rolling average basis with a new annual 
capacity factor calculated at the end of each calendar month.
    (e) For an affected facility that combusts residual oil and meets 
the criteria under Secs. 60.46b(e)(4), 60.44b(j), or (k), the owner or 
operator shall maintain records of the nitrogen content of the residual 
oil combusted in the affected facility and calculate the average fuel 
nitrogen content on a per calendar quarter basis. The nitrogen content 
shall be determined using ASTM Method D3431-80, Test Method for Trace 
Nitrogen in Liquid Petroleum Hydrocarbons (IBR-see Sec. 60.17), or fuel 
suppliers. If residual oil blends are being combusted, fuel nitrogen 
specifications may be prorated based on the ratio of residual oils of 
different nitrogen content in the fuel blend.
    (f) For facilities subject to the opacity standard under 
Sec. 60.43b, the owner or operator shall maintain records of opacity.
    (g) Except as provided under paragraph (p) of this section, the 
owner or operator of an affected facility subject to the nitrogen oxides 
standards under Sec. 60.44b shall maintain records of the following 
information for each steam generating unit operating day:
    (1) Calendar date.
    (2) The average hourly nitrogen oxides emission rates (expressed as 
NO2) (ng/J or lb/million Btu heat input) measured or 
predicted.
    (3) The 30-day average nitrogen oxides emission rates (ng/J or lb/
million Btu heat input) calculated at the end of each steam generating 
unit operating day from the measured or predicted hourly nitrogen oxide 
emission rates for the preceding 30 steam generating unit operating 
days.
    (4) Identification of the steam generating unit operating days when 
the calculated 30-day average nitrogen oxides emission rates are in 
excess of the nitrogen oxides emissions standards under Sec. 60.44b, 
with the reasons for such excess emissions as well as a description of 
corrective actions taken.
    (5) Identification of the steam generating unit operating days for 
which pollutant data have not been obtained, including reasons for not 
obtaining sufficient data and a description of corrective actions taken.
    (6) Identification of the times when emission data have been 
excluded from the calculation of average emission rates and the reasons 
for excluding data.
    (7) Identification of ``F'' factor used for calculations, method of 
determination, and type of fuel combusted.
    (8) Identification of the times when the pollutant concentration 
exceeded full span of the continuous monitoring system.
    (9) Description of any modifications to the continuous monitoring 
system that could affect the ability of the continuous monitoring system 
to comply with Performance Specification 2 or 3.
    (10) Results of daily CEMS drift tests and quarterly accuracy 
assessments as required under appendix F, Procedure 1.
    (h) The owner or operator of any affected facility in any category 
listed in paragraphs (h)(1) or (2) of this section is required to submit 
excess emission reports for any calendar quarter during which there are 
excess emissions from the affected facility. If there are no excess 
emissions during the calendar quarter, the owner or operator shall 
submit a report semiannually stating that no excess emissions occurred 
during the semiannual reporting period.
    (1) Any affected facility subject to the opacity standards under 
Sec. 60.43b(e) or to the operating parameter monitoring requirements 
under Sec. 60.13(i)(1).

[[Page 116]]

    (2) Any affected facility that is subject to the nitrogen oxides 
standard of Sec. 60.44b, and that
    (i) Combusts natural gas, distillate oil, or residual oil with a 
nitrogen content of 0.3 weight percent or less, or
    (ii) Has a heat input capacity of 73 MW (250 million Btu/hour) or 
less and is required to monitor nitrogen oxides emissions on a 
continuous basis under Sec. 60.48b(g)(1) or steam generating unit 
operating conditions under Sec. 60.48b(g)(2).
    (3) For the purpose of Sec. 60.43b, excess emissions are defined as 
all 6-minute periods during which the average opacity exceeds the 
opacity standards under Sec. 60.43b(f).
    (4) For purposes of Sec. 60.48b(g)(1), excess emissions are defined 
as any calculated 30-day rolling average nitrogen oxides emission rate, 
as determined under Sec. 60.46b(e), which exceeds the applicable 
emission limits in Sec. 60.44b.
    (i) The owner or operator of any affected facility subject to the 
continuous monitoring requirements for nitrogen oxides under 
Sec. 60.48(b) shall submit a quarterly report containing the information 
recorded under paragraph (g) of this section. All quarterly reports 
shall be postmarked by the 30th day following the end of each calendar 
quarter.
    (j) The owner or operator of any affected facility subject to the 
sulfur dioxide standards under Sec. 60.42b shall submit written reports 
to the Administrator for every calendar quarter. All quarterly reports 
shall be postmarked by the 30th day following the end of each calendar 
quarter.
    (k) For each affected facility subject to the compliance and 
performance testing requirements of Sec. 60.45b and the reporting 
requirement in paragraph (j) of this section, the following information 
shall be reported to the Administrator:
    (1) Calendar dates covered in the reporting period.
    (2) Each 30-day average sulfur dioxide emission rate (ng/J or lb/
million Btu heat input) measured during the reporting period, ending 
with the last 30-day period in the quarter; reasons for noncompliance 
with the emission standards; and a description of corrective actions 
taken.
    (3) Each 30-day average percent reduction in sulfur dioxide 
emissions calculated during the reporting period, ending with the last 
30-day period in the quarter; reasons for noncompliance with the 
emission standards; and a description of corrective actions taken.
    (4) Identification of the steam generating unit operating days that 
coal or oil was combusted and for which sulfur dioxide or diluent 
(oxygen or carbon dioxide) data have not been obtained by an approved 
method for at least 75 percent of the operating hours in the steam 
generating unit operating day; justification for not obtaining 
sufficient data; and description of corrective action taken.
    (5) Identification of the times when emissions data have been 
excluded from the calculation of average emission rates; justification 
for excluding data; and description of corrective action taken if data 
have been excluded for periods other than those during which coal or oil 
were not combusted in the steam generating unit.
    (6) Identification of ``F'' factor used for calculations, method of 
determination, and type of fuel combusted.
    (7) Identification of times when hourly averages have been obtained 
based on manual sampling methods.
    (8) Identification of the times when the pollutant concentration 
exceeded full span of the CEMS.
    (9) Description of any modifications to the CEMS that could affect 
the ability of the CEMS to comply with Performance Specification 2 or 3.
    (10) Results of daily CEMS drift tests and quarterly accuracy 
assessments as required under appendix F, Procedure 1.
    (11) The annual capacity factor of each fired as provided under 
paragraph (d) of this section.
    (l) For each affected facility subject to the compliance and 
performance testing requirements of Sec. 60.45b(d) and the reporting 
requirements of paragraph (j) of this section, the following information 
shall be reported to the Administrator:
    (1) Calendar dates when the facility was in operation during the 
reporting period;
    (2) The 24-hour average sulfur dioxide emission rate measured for 
each steam

[[Page 117]]

generating unit operating day during the reporting period that coal or 
oil was combusted, ending in the last 24-hour period in the quarter; 
reasons for noncompliance with the emission standards; and a description 
of corrective actions taken;
    (3) Identification of the steam generating unit operating days that 
coal or oil was combusted for which sulfur dioxide or diluent (oxygen or 
carbon dioxide) data have not been obtained by an approved method for at 
least 75 percent of the operating hours; justification for not obtaining 
sufficient data; and description of corrective action taken.
    (4) Identification of the times when emissions data have been 
excluded from the calculation of average emission rates; justification 
for excluding data; and description of corrective action taken if data 
have been excluded for periods other than those during which coal or oil 
were not combusted in the steam generating unit.
    (5) Identification of ``F'' factor used for calculations, method of 
determination, and type of fuel combusted.
    (6) Identification of times when hourly averages have been obtained 
based on manual sampling methods.
    (7) Identification of the times when the pollutant concentration 
exceeded full span of the CEMS.
    (8) Description of any modifications to the CEMS which could affect 
the ability of the CEMS to comply with Performance Specification 2 or 3.
    (9) Results of daily CEMS drift tests and quarterly accuracy 
assessments as required under appendix F, Procedure 1.
    (m) For each affected facility subject to the sulfur dioxide 
standards under Sec. 60.42b for which the minimum amount of data 
required under Sec. 60.47b(f) were not obtained during a calendar 
quarter, the following information is reported to the Administrator in 
addition to that required under paragraph (k) of this section:
    (1) The number of hourly averages available for outlet emission 
rates and inlet emission rates.
    (2) The standard deviation of hourly averages for outlet emission 
rates and inlet emission rates, as determined in Method 19, section 7.
    (3) The lower confidence limit for the mean outlet emission rate and 
the upper confidence limit for the mean inlet emission rate, as 
calculated in Method 19, section 7.
    (4) The ratio of the lower confidence limit for the mean outlet 
emission rate and the allowable emission rate, as determined in Method 
19, section 7.
    (n) If a percent removal efficiency by fuel pretreatment (i.e., % 
Rf) is used to determine the overall percent reduction (i.e., 
% Ro) under Sec. 60.45b, the owner or operator of the 
affected facility shall submit a signed statement with the quarterly 
report:
    (1) Indicating what removal efficiency by fuel pretreatment (i.e., % 
Rf) was credited for the calendar quarter;
    (2) Listing the quantity, heat content, and date each pretreated 
fuel shipment was received during the previous calendar quarter; the 
name and location of the fuel pretreatment facility; and the total 
quantity and total heat content of all fuels received at the affected 
facility during the previous calendar quarter;
    (3) Documenting the transport of the fuel from the fuel pretreatment 
facility to the steam generating unit.
    (4) Including a signed statement from the owner or operator of the 
fuel pretreatment facility certifying that the percent removal 
efficiency achieved by fuel pretreatment was determined in accordance 
with the provisions of Method 19 (appendix A) and listing the heat 
content and sulfur content of each fuel before and after fuel 
pretreatment.
    (o) All records required under this section shall be maintained by 
the owner or operator of the affected facility for a period of 2 years 
following the date of such record.
    (p) The owner or operator of an affected facility described in 
Sec. 60.44b(j) or (k) shall maintain records of the following 
information for each steam generating unit operating day:
    (1) Calendar date,
    (2) The number of hours of operation, and
    (3) A record of the hourly steam load.
    (q) The owner or operator of an affected facility described in 
Sec. 60.44b(j) or Sec. 60.44b(k) shall submit to the Administrator on a 
quarterly basis:

[[Page 118]]

    (1) The annual capacity factor over the previous 12 months;
    (2) The average fuel nitrogen content during the quarter, if 
residual oil was fired; and
    (3) If the affected facility meets the criteria described in 
Sec. 60.44b(j), the results of any nitrogen oxides emission tests 
required during the quarter, the hours of operation during the quarter, 
and the hours of operation since the last nitrogen oxides emission test.
    (r) The owner or operator of an affected facility who elects to 
demonstrate that the affected facility combusts only very low sulfur oil 
under Sec. 60.42b(j)(2) shall obtain and maintain at the affected 
facility fuel receipts from the fuel supplier which certify that the oil 
meets the definition of distillate oil as defined in Sec. 60.41b. For 
the purposes of this section, the oil need not meet the fuel nitrogen 
content specification in the definition of distillate oil. Quarterly 
reports shall be submitted to the Administrator certifying that only 
very low sulfur oil meeting this definition was combusted in the 
affected facility during the preceding quarter.
    (s) Facility specific nitrogen oxides standard for Cytec Industries 
Fortier Plant's C.AOG incinerator located in Westwego, Louisiana:
    (1) Definitions.
    Oxidation zone is defined as the portion of the C.AOG incinerator 
that extends from the inlet of the oxidizing zone combustion air to the 
outlet gas stack.
    Reducing zone is defined as the portion of the C.AOG incinerator 
that extends from the burner section to the inlet of the oxidizing zone 
combustion air.
    Total inlet air is defined as the total amount of air introduced 
into the C.AOG incinerator for combustion of natural gas and chemical 
by-product waste and is equal to the sum of the air flow into the 
reducing zone and the air flow into the oxidation zone.
    (2) Standard for nitrogen oxides.
    (i) When fossil fuel alone is combusted, the nitrogen oxides 
emission limit for fossil fuel in Sec. 60.44b(a) applies.
    (ii) When natural gas and chemical by-product waste are 
simultaneously combusted, the nitrogen oxides emission limit is 289 ng/J 
(0.67 lb/million Btu) and a maximum of 81 percent of the total inlet air 
provided for combustion shall be provided to the reducing zone of the 
C.AOG incinerator.
    (3) Emission monitoring.
    (i) The percent of total inlet air provided to the reducing zone 
shall be determined at least every 15 minutes by measuring the air flow 
of all the air entering the reducing zone and the air flow of all the 
air entering the oxidation zone, and compliance with the percentage of 
total inlet air that is provided to the reducing zone shall be 
determined on a 3-hour average basis.
    (ii) The nitrogen oxides emission limit shall be determined by the 
compliance and performance test methods and procedures for nitrogen 
oxides in Sec. 60.46b.
    (iii) The monitoring of the nitrogen oxides emission limit shall be 
performed in accordance with Sec. 60.48b.
    (4) Reporting and recordkeeping requirements.
    (i) The owner or operator of the C.AOG incinerator shall submit a 
report on any excursions from the limits required by paragraph (a)(2) of 
this section to the Administrator with the quarterly report required by 
Sec. 60.49b(i).
    (ii) The owner or operator of the C.AOG incinerator shall keep 
records of the monitoring required by paragraph (a)(3) of this section 
for a period of 2 years following the date of such record.
    (iii) The owner of operator of the C.AOG incinerator shall perform 
all the applicable reporting and recordkeeping requirements of 
Sec. 60.49b.
    (t) Facility-specific nitrogen oxides standard for Rohm and Haas 
Kentucky Incorporated's Boiler No. 100 located in Louisville, Kentucky:
    (1) Definitions.
    Air ratio control damper is defined as the part of the low nitrogen 
oxides burner that is adjusted to control the split of total combustion 
air delivered to the reducing and oxidation portions of the combustion 
flame.
    Flue gas recirculation line is defined as the part of Boiler No. 100 
that recirculates a portion of the boiler flue gas back into the 
combustion air.

[[Page 119]]

    (2) Standard for nitrogen oxides. (i) When fossil fuel alone is 
combusted, the nitrogen oxides emission limit for fossil fuel in 
Sec. 60.44b(a) applies.
    (ii) When fossil fuel and chemical by-product waste are 
simultaneously combusted, the nitrogen oxides emission limit is 473 ng/J 
(1.1 lb/million Btu), and the air ratio control damper tee handle shall 
be at a minimum of 5 inches (12.7 centimeters) out of the boiler, and 
the flue gas recirculation line shall be operated at a minimum of 10 
percent open as indicated by its valve opening position indicator.
    (3) Emission monitoring for nitrogen oxides. (i) The air ratio 
control damper tee handle setting and the flue gas recirculation line 
valve opening position indicator setting shall be recorded during each 
8-hour operating shift.
    (ii) The nitrogen oxides emission limit shall be determined by the 
compliance and performance test methods and procedures for nitrogen 
oxides in Sec. 60.46b.
    (iii) The monitoring of the nitrogen oxides emission limit shall be 
performed in accordance with Sec. 60.48b.
    (4) Reporting and recordkeeping requirements. (i) The owner or 
operator of Boiler No. 100 shall submit a report on any excursions from 
the limits required by paragraph (b)(2) of this section to the 
Administrator with the quarterly report required by Sec. 60.49b(i).
    (ii) The owner or operator of Boiler No. 100 shall keep records of 
the monitoring required by paragraph (b)(3) of this section for a period 
of 2 years following the date of such record.
    (iii) The owner of operator of Boiler No. 100 shall perform all the 
applicable reporting and recordkeeping requirements of Sec. 60.49b.
    (u) Site-specific standard for Merck 
& Co., Inc.'s Stonewall Plant in Elkton, Virginia. (1) This 
paragraph applies only to the pharmaceutical manufacturing facility, 
commonly referred to as the Stonewall Plant, located at Route 340 South, 
in Elkton, Virginia (``site'') and only to the natural gas-fired boilers 
installed as part of the powerhouse conversion required pursuant to 40 
CFR 52.2454(g). The requirements of this paragraph shall apply, and the 
requirements of Secs. 60.40b through 60.49b(t) shall not apply, to the 
natural gas-fired boilers installed pursuant to 40 CFR 52.2454(g).
    (i) The site shall equip the natural gas-fired boilers with low 
nitrogen oxide (NOX) technology.
    (ii) The site shall install, calibrate, maintain, and operate a 
continuous monitoring and recording system for measuring NOX 
emissions discharged to the atmosphere and opacity using a continuous 
emissions monitoring system or a predictive emissions monitoring system.
    (iii) Within 180 days of the completion of the powerhouse 
conversion, as required by 40 CFR 52.2454, the site shall perform a 
stack test to quantify criteria pollutant emissions.
    (2) [Reserved]
[52 FR 47842, Dec. 16, 1987, as amended at 54 FR 51820, 51825, Dec. 18, 
1989; 60 FR 28062, May 30, 1995; 61 FR 14031, Mar. 29, 1996; 62 FR 
52641, Oct. 8, 1997]



  Subpart Dc--Standards of Performance for Small Industrial-Commercial-
                  Institutional Steam Generating Units

    Source: 55 FR 37683, Sept. 12, 1990, unless otherwise noted.



Sec. 60.40c  Applicability and delegation of authority.

    (a) Except as provided in paragraph (d) of this section, the 
affected facility to which this subpart applies is each steam generating 
unit for which construction, modification, or reconstruction is 
commenced after June 9, 1989 and that has a maximum design heat input 
capacity of 29 megawatts (MW) (100 million Btu per hour (Btu/hr)) or 
less, but greater than or equal to 2.9 MW (10 million Btu/hr).
    (b) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Clean Air Act, Sec. 60.48c(a)(4) shall 
be retained by the Administrator and not transferred to a State.
    (c) Steam generating units which meet the applicability requirements 
in paragraph (a) of this section are not subject to the sulfur dioxide 
(SO2) or particulate matter (PM) emission limits, performance 
testing requirements, or monitoring requirements under this

[[Page 120]]

subpart (Secs. 60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during 
periods of combustion research, as defined in Sec. 60.41c.
    (d) Any temporary change to an existing steam generating unit for 
the purpose of conducting combustion research is not considered a 
modification under Sec. 60.14.
[55 FR 37683, Sept. 12, 1990, as amended at 61 FR 20736, May 8, 1996]



Sec. 60.41c  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Clean Air Act and in subpart A of this part.
    Annual capacity factor means the ratio between the actual heat input 
to a steam generating unit from an individual fuel or combination of 
fuels during a period of 12 consecutive calendar months and the 
potential heat input to the steam generating unit from all fuels had the 
steam ch a separate source (such as a stationary gas turbine, internal 
combustion engine, or kiln) provides exhaust gas to a steam generating 
unit.
    Combustion research means the experimental firing of any fuel or 
combination of fuels in a steam generating unit for the purpose of 
conducting research and development of more efficient combustion or more 
effective prevention or control of air pollutant emissions from 
combustion, provided that, during these periods of research and 
development, the heat generated is not used for any purpose other than 
preheating combustion air for use by that steam generating unit (i.e., 
the heat generated is released to the atmosphere without being used for 
space heating, process heating, driving pumps, preheating combustion air 
for other units, generating electricity, or any other purpose).
    Conventional technology means wet flue gas desulfurization 
technology, dry flue gas desulfurization technology, atmospheric 
fluidized bed combustion technology, and oil hydrodesulfurization 
technology.
    Distillate oil means fuel oil that complies with the specifications 
for fuel oil numbers 1 or 2, as defined by the American Society for 
Testing and Materials in ASTM D396-78, ``Standard Specification for Fuel 
Oils'' (incorporated by reference--see Sec. 60.17).
    Dry flue gas desulfurization technology means a sulfur dioxide 
(SO2) control system that is located between the steam 
generating unit and the exhaust vent or stack, and that removes sulfur 
oxides from the combustion gases of the steam generating unit by 
contacting the combustion gases with an alkaline slurry or solution and 
forming a dry powder material. This definition includes devices where 
the dry powder material is subsequently converted to another form. 
Alkaline reagents used in dry flue gas desulfurization systems include, 
but are not limited to, lime and sodium compounds.
    Duct burner means a device that combusts fuel and that is placed in 
the exhaust duct from another source (such as a stationary gas turbine, 
internal combustion engine, kiln, etc.) to allow the firing of 
additional fuel to heat the exhaust gases before the exhaust gases enter 
a steam generating unit.
    Emerging technology means any SO2 control system that is 
not defined as a conventional technology under this section, and for 
which the owner or operator of the affected facility has received 
approval from the Administrator to operate as an emerging technology 
under Sec. 60.48c(a)(4).
    Federally enforceable means all limitations and conditions that are 
enforceable by the Administrator, including the requirements of 40 CFR 
Parts 60 and 61, requirements within any applicable State implementation 
plan, and any permit requirements established under 40 CFR 52.21 or 
under 40 CFR 51.18 and 40 CFR 51.24.
    Fluidized bed combustion technology means a device wherein fuel is 
distributed onto a bed (or series of beds) of limestone aggregate (or 
other sorbent materials) for combustion; and these materials are forced 
upward in the device by the flow of combustion air and the gaseous 
products of combustion. Fluidized bed combustion technology includes, 
but is not limited to, bubbling bed units and circulating bed units.
    Fuel pretreatment means a process that removes a portion of the 
sulfur in a fuel before combustion of the fuel in a steam generating 
unit.

[[Page 121]]

    Heat input means heat derived from combustion of fuel in a steam 
generating unit and does not include the heat derived from preheated 
combustion air, recirculated flue gases, or exhaust gases from other 
sources (such as stationary gas turbines, internal combustion engines, 
and kilns).
    Heat transfer medium means any material that is used to transfer 
heat from one point to another point.
    Maximum design heat input capacity means the ability of a steam 
generating unit to combust a stated maximum amount of fuel (or 
combination of fuels) on a steady state basis as determined by the 
physical design and characteristics of the steam generating unit.
    Natural gas means (1) a naturally occurring mixture of hydrocarbon 
and nonhydrocarbon gases found in geologic formations beneath the 
earth's surface, of which the principal constituent is methane, or (2) 
liquefied petroleum (LP) gas, as defined by the American Society for 
Testing and Materials in ASTM D1835-86, ``Standard Specification for 
Liquefied Petroleum Gases'' (incorporated by reference--see Sec. 60.17).
    Noncontinental area means the State of Hawaii, the Virgin Islands, 
Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern 
Mariana Islands.
    Oil means crude oil or petroleum, or a liquid fuel derived from 
crude oil or petroleum, including distillate oil and residual oil.
    Potential sulfur dioxide emission rate means the theoretical 
SO2 emissions (nanograms per joule [ng/J], or pounds per 
million Btu [lb/million Btu] heat input) that would result from 
combusting fuel in an uncleaned state and without using emission control 
systems.
    Process heater means a device that is primarily used to heat a 
material to initiate or promote a chemical reaction in which the 
material participates as a reactant or catalyst.
    Residual oil means crude oil, fuel oil that does not comply with the 
specifications under the definition of distillate oil, and all fuel oil 
numbers 4, 5, and 6, as defined by the American Society for Testing and 
Materials in ASTM D396-78, ``Standard Specification for Fuel Oils'' 
(incorporated by reference--see Sec. 60.17).
    Steam generating unit means a device that combusts any fuel and 
produces steam or heats water or any other heat transfer medium. This 
term includes any duct burner that combusts fuel and is part of a 
combined cycle system. This term does not include process heaters as 
defined in this subpart.
    Steam generating unit operating day means a 24-hour period between 
12:00 midnight and the following midnight during which any fuel is 
combusted at any time in the steam generating unit. It is not necessary 
for fuel to be combusted continuously for the entire 24-hour period.
    Wet flue gas desulfurization technology means an SO2 
control system that is located between the steam generating unit and the 
exhaust vent or stack, and that removes sulfur oxides from the 
combustion gases of the steam generating unit by contacting the 
combustion gases with an alkaline slurry or solution and forming a 
liquid material. This definition includes devices where the liquid 
material is subsequently converted to another form. Alkaline reagents 
used in wet flue gas desulfurization systems include, but are not 
limited to, lime, limestone, and sodium compounds.
    Wet scrubber system means any emission control device that mixes an 
aqueous stream or slurry with the exhaust gases from a steam generating 
unit to control emissions of particulate matter (PM) or SO2.
    Wood means wood, wood residue, bark, or any derivative fuel or 
residue thereof, in any form, including but not limited to sawdust, 
sanderdust, wood chips, scraps, slabs, millings, shavings, and processed 
pellets made from wood or other forest residues.
[55 FR 37683, Sept. 12, 1990, as amended at 61 FR 20736, May 8, 1996]



Sec. 60.42c  Standard for sulfur dioxide.

    (a) Except as provided in paragraphs (b), (c), and (e) of this 
section, on and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, the

[[Page 122]]

owner the operator of an affected facility that combusts only coal shall 
neither: (1) cause to be discharged into the atmosphere from that 
affected facility any gases that contain SO2 in excess of 10 
percent (0.10) of the potential SO2 emission rate (90 percent 
reduction); nor (2) cause to be discharged into the atmosphere from that 
affected facility any gases that contain SO2 in excess of 520 
ng/J (1.2 lb/million Btu) heat input. If coal is combusted with other 
fuels, the affected facility is subject to the 90 percent SO2 
reduction requirement specified in this paragraph and the emission limit 
is determined pursuant to paragraph (e)(2) of this section.
    (b) Except as provided in paragraphs (c) and (e) of this section, on 
and after the date on which the initial performance test is completed or 
required to be completed under Sec. 60.8 of this part, whichever date 
comes first, the owner or operator of an affected facility that:
    (1) Combusts coal refuse alone in a fluidized bed combustion steam 
generating unit shall neither:
    (i) Cause to be discharged into the atmosphere from that affected 
facility any gases that contain SO2 in excess of 20 percent 
(0.20) of the potential SO2 emission rate (80 percent 
reduction); nor
    (ii) Cause to be discharged into the atmosphere from that affected 
facility any gases that contain SO2 in excess of 520 ng/J 
(1.2 lb/million Btu) heat input. If coal is fired with coal refuse, the 
affected facility is subject to paragraph (a) of this section. If oil or 
any other fuel (except coal) is fired with coal refuse, the affected 
facility is subject to the 90 percent SO2 reduction 
requirement specified in paragraph (a) of this section and the emission 
limit determined pursuant to paragraph (e)(2) of this section.
    (2) Combusts only coal and that uses an emerging technology for the 
control of SO2 emissions shall neither:
    (i) Cause to be discharged into the atmosphere from that affected 
facility any gases that contain SO2 in excess of 50 percent 
(0.50) of the potential SO2 emission rate (50 percent 
reduction); nor
    (ii) Cause to be discharged into the atmosphere from that affected 
facility any gases that contain SO2 in excess of 260 ng/J 
(0.60 lb/million Btu) heat input. If coal is combusted with other fuels, 
the affected facility is subject to the 50 percent SO2 
reduction requirement specified in this paragraph and the emission limit 
determined pursuant to paragraph (e)(2) of this section.
    (c) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal, alone or in combination with any other fuel, and is 
listed in paragraphs (c)(1), (2), (3), or (4) of this section shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain SO2 in excess of the emission limit 
determined pursuant to paragraph (e)(2) of this section. Percent 
reduction requirements are not applicable to affected facilities under 
this paragraph.
    (1) Affected facilities that have a heat input capacity of 22 MW (75 
million Btu/hr) or less.
    (2) Affected facilities that have an annual capacity for coal of 55 
percent (0.55) or less and are subject to a Federally enforceable 
requirement limiting operation of the affected facility to an annual 
capacity factor for coal of 55 percent (0.55) or less.
    (3) Affected facilities located in a noncontinental area.
    (4) Affected facilities that combust coal in a duct burner as part 
of a combined cycle system where 30 percent (0.30) or less of the heat 
entering the steam generating unit is from combustion of coal in the 
duct burner and 70 percent (0.70) or  more  of  the  heat  entering  the 
 steam  gen erating unit is from exhaust gases entering the duct burner.
    (d) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts oil shall cause to be discharged into the atmosphere from 
that affected facility any gases that contain SO2 in excess 
of 215 ng/J (0.50 lb/million Btu) heat input;

[[Page 123]]

or, as an alternative, no owner or operator of an affected facility that 
combusts oil shall combust oil in the affected facility that contains 
greater than 0.5 weight percent sulfur. The percent reduction 
requirements are not applicable to affected facilities under this 
paragraph.
    (e) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal, oil, or coal and oil with any other fuel shall cause 
to be discharged into the atmosphere from that affected facility any 
gases that contain SO2 in excess of the following:
    (1) The percent of potential SO2 emission rate required 
under paragraph (a) or (b)(2) of this section, as applicable, for any 
affected facility that
    (i) Combusts coal in combination with any other fuel,
    (ii) Has a heat input capacity greater than 22 MW (75 million Btu/
hr), and
    (iii) Has an annual capacity factor for coal greater than 55 percent 
(0.55); and
    (2) The emission limit determined according to the following formula 
for any affected facility that combusts coal, oil, or coal and oil with 
any other fuel:

    Es=(Ka Ha+Kb 
Hb+Kc Hc)/
Ha+Hb+Hc)
where:
    Es  is the SO2 emission limit, expressed in 
ng/J or lb/million Btu heat input,
    Ka  is 520 ng/J (1.2 lb/million Btu),
    Kb  is 260 ng/J (0.60 lb/million Btu),
    Kc  is 215 ng/J (0.50 lb/million Btu),
    Ha  is the heat input from the combustion of coal, except 
coal combusted in an affected facility subject to paragraph (b)(2) of 
this section, in Joules (J) [million Btu]
    Hb  is the heat input from the combustion of coal in an 
affected facility subject to paragraph (b)(2) of this section, in J 
(million Btu)
    Hc  is the heat input from the combustion of oil, in J 
(million Btu).

    (f) Reduction in the potential SO2 emission rate through 
fuel pretreatment is not credited toward the percent reduction 
requirement under paragraph (b)(2) of this section unless:
    (1) Fuel pretreatment results in a 50 percent (0.50) or greater 
reduction in the potential SO2 emission rate; and
    (2) Emissions from the pretreated fuel (without either combustion or 
post-combustion SO2 control) are equal to or less than the 
emission limits specified under paragraph (b)(2) of this section.
    (g) Except as provided in paragraph (h) of this section, compliance 
with the percent reduction requirements, fuel oil sulfur limits, and 
emission limits of this section shall be determined on a 30-day rolling 
average basis.
    (h) For affected facilities listed under paragraphs (h)(1), (2), or 
(3) of this section, compliance with the emission limits or fuel oil 
sulfur limits under this section may be determined based on a 
certification from the fuel supplier, as described under 
Sec. 60.48c(f)(1), (2), or (3), as applicable.
    (1) Distillate oil-fired affected facilities with heat input 
capacities between 2.9 and 29 MW (10 and 100 million Btu/hr).
    (2) Residual oil-fired affected facilities with heat input 
capacities between 2.9 and 8.7 MW (10 and 30 million Btu/hr).
    (3) Coal-fired facilities with heat input capacities between 2.9 and 
8.7 MW (10 and 30 million Btu/hr).
    (i) The SO2 emission limits, fuel oil sulfur limits, and 
percent reduction requirements under this section apply at all times, 
including periods of startup, shutdown, and malfunction.
    (j) Only the heat input supplied to the affected facility from the 
combustion of coal and oil is counted under this section. No credit is 
provided for the heat input to the affected facility from wood or other 
fuels or for heat derived from exhaust gases from other sources, such as 
stationary gas turbines, internal combustion engines, and kilns.



Sec. 60.43c  Standard for particulate matter.

    (a) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal or combusts mixtures of coal with other

[[Page 124]]

fuels and has a heat input capacity of 8.7 MW (30 million Btu/hr) or 
greater, shall cause to be discharged into the atmosphere from that 
affected facility any gases that contain PM in excess of the following 
emission limits:
    (1) 22 ng/J (0.05 lb/million Btu) heat input if the affected 
facility combusts only coal, or combusts coal with other fuels and has 
an annual capacity factor for the other fuels of 10 percent (0.10) or 
less.
    (2) 43 ng/J (0.10 lb/million Btu) heat imput if the affected 
facility combusts coal with other fuels, has an annual capacity factor 
for the other fuels greater than 10 percent (0.10), and is subject to a 
federally enforceable requirement limiting operation of the affected 
facility to an annual capacity factor greater than 10 percent (0.10) for 
fuels other than coal.
    (b) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts wood or combusts mixtures of wood with other fuels (except 
coal) and has a heat input capacity of 8.7 MW (30 million Btu/hr) or 
greater, shall cause to be discharged into the atmosphere from that 
affected facility any gases that contain PM in excess of the following 
emissions limits:
    (1) 43 ng/J (0.10 lb/million Btu) heat input if the affected 
facility has an annual capacity factor for wood greater than 30 percent 
(0.30); or
    (2) 130 ng/J (0.30 lb/million Btu) heat input if the affected 
facility has an annual capacity factor for wood of 30 percent (0.30) or 
less and is subject to a federally enforceable requirement limiting 
operation of the affected facility to an annual capacity factor for wood 
of 30 percent (0.30) or less.
    (c) On and after the date on which the initial performance test is 
completed or required to be completed under Sec. 60.8 of this part, 
whichever date comes first, no owner or operator of an affected facility 
that combusts coal, wood, or oil and has a heat input capacity of 8.7 MW 
(30 million Btu/hr) or greater shall cause to be discharged into the 
atmosphere from that affected facility any gases that exhibit greater 
than 20 percent opacity (6-minute average), except for one 6-minute 
period per hour of not more than 27 percent opacity.
    (d) The PM and opacity standards under this section apply at all 
times, except during periods of startup, shutdown, or malfunction.



Sec. 60.44c  Compliance and performance test methods and procedures for sulfur dioxide.

    (a) Except as provided in paragraphs (g) and (h) of this section and 
in Sec. 60.8(b), performance tests required under Sec. 60.8 shall be 
conducted following the procedures specified in paragraphs (b), (c), 
(d), (e), and (f) of this section, as applicable. Section 60.8(f) does 
not apply to this section. The 30-day notice required in Sec. 60.8(d) 
applies only to the initial performance test unless otherwise specified 
by the Administrator.
    (b) The initial performance test required under Sec. 60.8 shall be 
conducted over 30 consecutive operating days of the steam generating 
unit. Compliance with the percent reduction requirements and 
SO2 emission limits under Sec. 60.42c shall be determined 
using a 30-day average. The first operating day included in the initial 
performance test shall be scheduled within 30 days after achieving the 
maximum production rate at which the affect facility will be operated, 
but not later than 180 days after the initial startup of the facility. 
The steam generating unit load during the 30-day period does not have to 
be the maximum design heat input capacity, but must be representative of 
future operating conditions.
    (c) After the initial performance test required under paragraph (b) 
and Sec. 60.8, compliance with the percent reduction requirements and 
SO2 emission limits under Sec. 60.42c is based on the average 
percent reduction and the average S02 emission rates for 30 
consecutive steam generating unit operating days. A separate performance 
test is completed at the end of each steam generating unit operating 
day, and a new 30-day average percent reduction and SO2 
emission rate are calculated to show compliance with the standard.

[[Page 125]]

    (d) If only coal, only oil, or a mixture of coal and oil is 
combusted in an affected facility, the procedures in Method 19 are used 
to determine the hourly SO2 emission rate (Eho) 
and the 30-day average SO2 emission rate (Eao). 
The hourly averages used to compute the 30-day averages are obtained 
from the continuous emission monitoring system (CEMS). Method 19 shall 
be used to calculate Eao when using daily fuel sampling or 
Method 6B.
    (e) If coal, oil, or coal and oil are combusted with other fuels:
    (1) An adjusted Eho (Ehoo) is used in Equation 
19-19 of Method 19 to compute the adjusted Eao 
(Eaoo). The Ehoo is computed using the following 
formula:

    Ehoo=[Eho-Ew(1-Xk)]/
Xk
where:
    Ehoo  is the adjusted Eho, ng/J (lb/million 
Btu)
    Eho  is the hourly SO2 emission rate, ng/J 
(lb/million Btu)
    Ew  is the SO2 concentration in fuels other 
than coal and oil combusted in the affected facility, as determined by 
fuel sampling and analysis procedures in Method 9, ng/J (lb/million 
Btu). The value Ew for each fuel lot is used for each hourly 
average during the time that the lot is being combusted. The owner or 
operator does not have to measure Ew if the owner or operator 
elects to assume Ew=0.
    Xk  is the fraction of the total heat input from fuel 
combustion derived from coal and oil, as determined by applicable 
procedures in Method 19.

    (2) The owner or operator of an affected facility that qualifies 
under the provisions of Sec. 60.42c(c) or (d) [where percent reduction 
is not required] does not have to measure the parameters Ew 
or Xk if the owner or operator of the affected facility 
elects to measure emission rates of the coal or oil using the fuel 
sampling and analysis procedures under Method 19.
    (f) Affected facilities subject to the percent reduction 
requirements under Sec. 60.42c(a) or (b) shall determine compliance with 
the SO2 emission limits under Sec. 60.42c pursuant to 
paragraphs (d) or (e) of this section, and shall determine compliance 
with the percent reduction requirements using the following procedures:
    (1) If only coal is combusted, the percent of potential 
SO2 emission rate is computed using the following formula:

    %Ps=100(1-%Rg/100)(1-%Rf/100)
where
    %Ps  is the percent of potential SO2 emission 
rate, in percent
    %Rg  is the SO2 removal efficiency of the 
control device as determined by Method 19, in percent
    %Rf  is the SO2 removal efficiency of fuel 
pretreatment as determined by Method 19, in percent

    (2) If coal, oil, or coal and oil are combusted with other fuels, 
the same procedures required in paragraph (f)(1) of this section are 
used, except as provided for in the following:
    (i) To compute the %Ps, an adjusted %Rg 
(%Rgo) is computed from Eaoo from paragraph (e)(1) 
of this section and an adjusted average SO2 inlet rate 
(Eaio) using the following formula:

    %Rgo=100 [1.0- Eaoo/Eaio)]
where:
    %Rgo  is the adjusted %Rg, in percent
    Eaoo  is the adjusted Eao, ng/J (lb/million 
Btu)
    Eaio  is the adjusted average SO2 inlet rate, 
ng/J (lb/million Btu)

    (ii) To compute Eaio, an adjusted hourly SO2 
inlet rate (Ehio) is used. The Ehio is computed 
using the following formula:

    Ehio=[Ehi- Ew (1-Xk)]/
Xk
where:
    Ehio  is the adjusted Ehi, ng/J (lb/million 
Btu)
    Ehi  is the hourly SO2 inlet rate, ng/J (lb/
million Btu)
    Ew  is the SO2 concentration in fuels other 
than coal and oil combusted in the affected facility, as determined by 
fuel sampling and analysis procedures in Method 19, ng/J (lb/million 
Btu). The value Ew for each fuel lot is used for each hourly 
average during the time that the lot is being combusted. The owner or 
operator does not have to measure Ew if the owner or operator 
elects to assume Ew = O.
    Xk  is the fraction of the total heat input from fuel 
combustion derived from coal and oil, as determined by applicable 
procedures in Method 19.

    (g) For oil-fired affected facilities where the owner or operator 
seeks to demonstrate compliance with the fuel oil sulfur limits under 
Sec. 60.42c based on shipment fuel sampling, the initial performance 
test shall consist of sampling and analyzing the oil in the initial tank 
of oil to be fired in the steam generating unit to demonstrate that the

[[Page 126]]

oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or 
operator of the affected facility shall sample the oil in the fuel tank 
after each new shipment of oil is received, as described under 
Sec. 60.46c(d)(2).
    (h) For affected facilities subject to Sec. 60.42c(h)(1), (2), or 
(3) where the owner or operator seeks to demonstrate compliance with the 
SO2 standards based on fuel supplier certification, the 
performance test shall consist of the certification, the certification 
from the fuel supplier, as described under Sec. 60.48c(f)(1), (2), or 
(3), as applicable.
    (i) The owner or operator of an affected facility seeking to 
demonstrate compliance with the SO2 standards under 
Sec. 60.42c(c)(2) shall demonstrate the maximum design heat input 
capacity of the steam generating unit by operating the steam generating 
unit at this capacity for 24 hours. This demonstration shall be made 
during the initial performance test, and a subsequent demonstration may 
be requested at any other time. If the demonstrated 24-hour averaged 
firing rate for the affected facility is less than the maximum design 
heat input capacity stated by the manufacturer of the affected facility, 
the demonstrated 24-hour average firing rate shall be used to determine 
the annual capacity factor for the affected facility; otherwise, the 
maximum design heat input capacity provided by the manufacturer shall be 
used.
    (j) The owner or operator of an affected facility shall use all 
valid SO2 emissions data in calculating %Ps and 
Eho under paragraphs (d), (e), or (f) of this section, as 
applicable, whether or not the minimum emissions data requirements under 
Sec. 60.46c(f) are achieved. All valid emissions data, including valid 
data collected during periods of startup, shutdown, and malfunction, 
shall be used in calculating %Ps or Eho pursuant 
to paragraphs (d), (e), or (f) of this section, as applicable.



Sec. 60.45c  Compliance and performance test methods and procedures for particulate matter.

    (a) The owner or operator of an affected facility subject to the PM 
and/or opacity standards under Sec. 60.43c shall conduct an initial 
performance test as required under Sec. 60.8, and shall conduct 
subsequent performance tests as requested by the Administrator, to 
determine compliance with the standards using the following procedures 
and reference methods.
    (1) Method 1 shall be used to select the sampling site and the 
number of traverse sampling points. The sampling time for each run shall 
be at least 120 minutes and the minimum sampling volume shall be 1.7 dry 
square cubic meters (dscm) [60 dry square cubic feet (dscf)] except that 
smaller sampling times or volumes may be approved by the Administrator 
when necessitated by process variables or other factors.
    (2) Method 3 shall be used for gas analysis when applying Method 5, 
Method 5B, of Method 17.
    (3) Method 5, Method 5B, or Method 17 shall be used to measure the 
concentration of PM as follows:
    (i) Method 5 may be used only at affected facilities without wet 
scrubber systems.
    (ii) Method 17 may be used at affected facilities with or without 
wet scrubber systems provided the stack gas temperature does not exceed 
a temperature of 160 
+C (320 +F). The procedures of Sections 2.1 and 2.3 of Method 5B may be used in Method 17 only if Method 17 is used in conjuction with a wet scrubber system. Method 17 shall not be used in conjuction with a wet scrubber system if the effluent is saturated or laden with water droplets.

    (iii) Method 5B may be used in conjunction with a wet scrubber 
system.
    (4) For Method 5 or Method 5B, the temperature of the sample gas in 
the probe and filter holder shall be monitored and maintained at 160 
+C (320 +F).
    (5) For determination of PM emissions, an oxygen or carbon dioxide 
measurement shall be obtained simultaneously with each run of Method 5, 
Method 5B, or Method 17 by traversing the duct at the same sampling 
location.
    (6) For each run using Method 5, Method 5B, or Method 17, the 
emission rates expressed in ng/J (lb/million Btu) heat input shall be 
determined using:
    (i) The oxygen or carbon dioxide measurements and PM measurements 
obtained under this section,
    (ii) The dry basis F-factor, and

[[Page 127]]

    (iii) The dry basis emission rate calculation procedure contained in 
Method 19 (appendix A).
    (7) Method 9 (6-minute average of 24 observations) shall be used for 
determining the opacity of stack emissions.
    (b) The owner or operator of an affected facility seeking to 
demonstrate compliance with the PM standards under Sec. 60.43c(b)(2) 
shall demonstrate the maximum design heat input capacity of the steam 
generating unit by operating the steam generating unit at this capacity 
for 24 hours. This demonstration shall be made during the initial 
performance test, and a subsequent demonstration may be requested at any 
other time. If the demonstrated 24-hour average firing rate for the 
affected facility is less than the maximum design heat input capacity 
stated by the manufacturer of the affected facility, the demonstrated 
24-hour average firing rate shall be used to determine the annual 
capacity factor for the affected facility; otherwise, the maximum design 
heat input capacity provided by the manufacturer shall be used.



Sec. 60.46c  Emission monitoring for sulfur dioxide

    (a) Except as provided in paragraphs (d) and (e) of this section, 
the owner or operator of an affected facility subject to the 
SO2 emission limits under Sec. 60.42c shall install, 
calibrate, maintain, and operate a CEMS for measuring SO2 
concentrations and either oxygen or carbon dioxide concentrations at the 
outlet of the SO2 control device (or the outlet of the steam 
generating unit if no SO2 control device is used), and shall 
record the output of the system. The owner or operator of an affected 
facility subject to the percent reduction requirements under Sec. 60.42c 
shall measure SO2 concentrations and either oxygen or carbon 
dioxide concentrations at both the inlet and outlet of the 
SO2 control device.
    (b) The 1-hour average SO2 emission rates measured by a 
CEM shall be expressed in ng/J or lb/million Btu heat input and shall be 
used to calculate the average emission rates under Sec. 60.42c. Each 1-
hour average SO2 emission rate must be based on at least 30 
minutes of operation and include at least 2 data points representing two 
15-minute periods. Hourly SO2 emission rates are not 
calculated if the affected facility is operated less than 30 minutes in 
a 1-hour period and are not counted toward determination of a steam 
generating unit operating day.
    (c) The procedures under Sec. 60.13 shall be followed for 
installation, evaluation, and operation of the CEMS.
    (1) All CEMS shall be operated in accordance with the applicable 
procedures under Performance Specifications 1, 2, and 3 (appendix B).
    (2) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with Procedure 1 (appendix F).
    (3) For affected facilities subject to the percent reduction 
requirements under Sec. 60.42c, the span value of the SO2 
CEMS at the inlet to the SO2 control device shall be 125 
percent of the maximum estimated hourly potential SO2 
emission rate of the fuel combusted, and the span value of the 
SO2 CEMS at the outlet from the SO2 control device 
shall be 50 percent of the maximum estimated hourly potential 
SO2 emission rate of the fuel combusted.
    (4) For affected facilities that are not subject to the percent 
reduction requirements of Sec. 60.42c, the span value of the 
SO2 CEMS at the outlet from the SO2 control device 
(or outlet of the steam generating unit if no SO2 control 
device is used) shall be 125 percent of the maximum estimated hourly 
potential SO2 emission rate of the fuel combusted.
    (d) As an alternative to operating a CEMS at the inlet to the 
SO2 control device (or outlet of the steam generating unit if 
no SO2 control device is used) as required under paragraph 
(a) of this section, an owner or operator may elect to determine the 
average SO2 emission rate by sampling the fuel prior to 
combustion. As an alternative to operating a CEM at the outlet from the 
SO2 control device (or outlet of the steam generating unit if 
no SO2 control device is used) as required under paragraph 
(a) of this section, an owner or operator may elect to determine the 
average SO2 emission rate by using Method 6B. Fuel sampling 
shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this 
section. Method

[[Page 128]]

6B shall be conducted pursuant to paragraph (d)(3) of this section.
    (1) For affected facilities combusting coal or oil, coal or oil 
samples shall be collected daily in an as-fired condition at the inlet 
to the steam generating unit and analyzed for sulfur content and heat 
content according the Method 19. Method 19 provides procedures for 
converting these measurements into the format to be used in calculating 
the average SO2 input rate.
    (2) As an alternative fuel sampling procedure for affected 
facilities combusting oil, oil samples may be collected from the fuel 
tank for each steam generating unit immediately after the fule tank is 
filled and before any oil is combusted. The owner or operator of the 
affected facility shall analyze the oil sample to determine the sulfur 
content of the oil. If a partially empty fuel tank is refilled, a new 
sample and analysis of the fuel in the tank would be required upon 
filling. Results of the fuel analysis taken after each new shipment of 
oil is received shall be used as the daily value when calculating the 
30-day rolling average until the next shipment is received. If the fuel 
analysis shows that the sulfur content in the fuel tank is greater than 
0.5 weight percent sulfur, the owner or operator shall ensure that the 
sulfur content of subsequent oil shipments is low enough to cause the 
30-day rolling average sulfur content to be 0.5 weight percent sulfur or 
less.
    (3) Method 6B may be used in lieu of CEMS to measure SO2 
at the inlet or outlet of the SO2 control system. An initial 
stratification test is required to verify the adequacy of the Method 6B 
sampling location. The stratification test shall consist of three paired 
runs of a suitable SO2 and carbon dioxide measurement train 
operated at the candidate location and a second similar train operated 
according to the procedures in Sec. 3.2 and the applicable procedures in 
section 7 of Performance Specification 2 (appendix B). Method 6B, Method 
6A, or a combination of Methods 6 and 3 or Methods 6C and 3A are 
suitable measurement techniques. If Method 6B is used for the second 
train, sampling time and timer operation may be adjusted for the 
stratification test as long as an adequate sample volume is collected; 
however, both sampling trains are to be operated similarly. For the 
location to be adequate for Method 6B 24-hour tests, the mean of the 
absolute difference between the three paired runs must be less than 10 
percent (0.10).
    (e) The monitoring requirements of paragraphs (a) and (d) of this 
section shall not apply to affected facilities subject to Sec. 60.42c(h) 
(1), (2), or (3) where the owner or operator of the affected facility 
seeks to demonstrate compliance with the SO2 standards based 
on fuel supplier certification, as described under Sec. 60.48c(f) (1), 
(2), or (3), as applicable.
    (f) The owner or operator of an affected facility operating a CEMS 
pursuant to paragraph (a) of this section, or conducting as-fired fuel 
sampling pursuant to paragraph (d)(1) of this section, shall obtain 
emission data for at least 75 percent of the operating hours in at least 
22 out of 30 successive steam generating unit operating days. If this 
minimum data requirement is not met with a single monitoring system, the 
owner or operator of the affected facility shall supplement the emission 
data with data collected with other monitoring systems as approved by 
the Administrator.



Sec. 60.47c  Emission monitoring for particulate matter.

    (a) The owner or operator of an affected facility combusting coal, 
residual oil, or wood that is subject to the opacity standards under 
Sec. 60.43c shall install, calibrate, maintain, and operate a CEMS for 
measuring the opacity of the emissions discharged to the atmosphere and 
record the output of the system.
    (b) All CEMS for measuring opacity shall be operated in accordance 
with the applicable procedures under Performance Specification 1 
(appendix B). The span value of the opacity CEMS shall be between 60 and 
80 percent.



Sec. 60.48c  Reporting and recordkeeping requirements.

    (a) The owner or operator of each affected facility shall submit 
notification of the date of construction or reconstruction, anticipated 
startup, and actual startup, as provided by Sec. 60.7 of

[[Page 129]]

this part. This notification shall include:
    (1) The design heat input capacity of the affected facility and 
identification of fuels to be combusted in the affected facility.
    (2) If applicable, a copy of any Federally enforceable requirement 
that limits the annual capacity factor for any fuel or mixture of fuels 
under Sec. 60.42c, or Sec. 60.43c.
    (3) The annual capacity factor at which the owner or operator 
anticipates operating the affected facility based on all fuels fired and 
based on each individual fuel fired.
    (4) Notification if an emerging technology will be used for 
controlling SO2 emissions. The Administrator will examine the 
description of the control device and will determine whether the 
technology qualifies as an emerging technology. In making this 
determination, the Administrator may require the owner or operator of 
the affected facility to submit additional information concerning the 
control device. The affected facility is subject to the provisions of 
Sec. 60.42c(a) or (b)(1), unless and until this determination is made by 
the Administrator.
    (b) The owner or operator of each affected facility subject to the 
SO2 emission limits of Sec. 60.42c, or the PM or opacity 
limits of Sec. 60.43c, shall submit to the Administrator the performance 
test data from the initial and any subsequent performance tests and, if 
applicable, the performance evaluation of the CEMS using the applicable 
performance specifications in appendix B.
    (c) The owner or operator of each coal-fired, residual oil-fired, or 
wood-fired affected facility subject to the opacity limits under 
Sec. 60.43c(c) shall submit excess emission reports for any calendar 
quarter for which there are excess emissions from the affected facility. 
If there are no excess emissions during the calendar quarter, the owner 
or operator shall submit a report semiannually stating that no excess 
emissioins occurred during the semiannual reporting period. The initial 
quarterly report shall be postmarked by the 30th day of the third month 
following the completion of the initial performance test, unless no 
excess emissions occur during that quarter. The initial semiannual 
report shall be postmarked by the 30th day of the sixth month following 
the completion of the initial performance test, or following the date of 
the previous quarterly report, as applicable. Each subsequent quarterly 
or semiannual report shall be postmarked by the 30th day following the 
end of the reporting period.
    (d) The owner or operator of each affected facility subject to the 
SO2 emission limits, fuel oil sulfur limits, or percent 
reduction requirements under Sec. 60.42c shall submit quarterly reports 
to the Administrator. The initial quarterly report shall be postmarked 
by the 30th day of the third month following the completion of the 
initial performance test. Each subsequenty quarterly report shall be 
postmarked by the 30th day following the end of the reporting period.
    (e) The owner or operator of each affected facility subject to the 
SO2 emission limits, fuel oil sulfur limits, or percent 
reduction requirements under Sec. 60.43c shall keep records and submit 
quarterly reports as required under paragraph (d) of this section, 
including the following information, as applicable.
    (1) Calendar dates covered in the reporting period.
    (2) Each 30-day average SO2 emission rate (ng/J or lb/
million Btu), or 30-day average sulfur content (weight percent), 
calculated during the reporting period, ending with the last 30-day 
period in the quarter; reasons for any noncompliance with the emission 
standards; and a description of corrective actions taken.
    (3) Each 30-day average percent of potential SO2 emission 
rate calculated during the reporting period, ending with the last 30-day 
period in the quarter; reasons for any noncompliance with the emission 
standards; and a description of corrective actions taken.
    (4) Identification of any steam generating unit operating days for 
which SO2 or diluent (oxygen or carbon dioxide) data have not 
been obtained by an approved method for at least 75 percent of the 
operating hours; justification for not obtaining sufficient data; and a 
description of corrective actions taken.

[[Page 130]]

    (5) Identification of any times when emissions data have been 
excluded from the calculation of average emission rates; justification 
for excluding data; and a description of corrective actions taken if 
data have been excluded for periods other than those during which coal 
or oil were not combusted in the steam generating unit.
    (6) Identification of the F factor used in calculations, method of 
determination, and type of fuel combusted.
    (7) Identification of whether averages have been obtained based on 
CEMS rather than manual sampling methods.
    (8) If a CEMS is used, identification of any times when the 
pollutant concentration exceeded the full span of the CEMS.
    (9) If a CEMS is used, description of any modifications to the CEMS 
that could affect the ability of the CEMS to comply with Performance 
Specifications 2 or 3 (appendix B).
    (10) If a CEMS is used, results of daily CEMS drift tests and 
quarterly accuracy assessments as required under appendix F, Procedure 
1.
    (11) If fuel supplier certification is used to demonstrate 
compliance, records of fuel supplier certification as described under 
paragraph (f)(1), (2), or (3) of this section, as applicable. In 
addition to records of fuel supplier certifications, the quarterly 
report shall include a certified statement signed by the owner or 
operator of the affected facility that the records of fuel supplier 
certifications submitted represent all of the fuel combusted during the 
quarter.
    (f) Fuel supplier certification shall include the following 
information:
    (1) For distillate oil:
    (i) The name of the oil supplier; and
    (ii) A statement from the oil supplier that the oil complies with 
the specifications under the definition of distillate oil in 
Sec. 60.41c.
    (2) For residual oil:
    (i) The name of the oil supplier;
    (ii) The location of the oil when the sample was drawn for analysis 
to determine the sulfur content of the oil, specifically including 
whether the oil was sampled as delivered to the affected facility, or 
whether the sample was drawn from oil in storage at the oil supplier's 
or oil refiner's facility, or other location;
    (iii) The sulfur content of the oil from which the shipment came (or 
of the shipment itself); and
    (iv) The method used to determine the sulfur content of the oil.
    (3) For coal:
    (i) The name of the coal supplier;
    (ii) The location of the coal when the sample was collected for 
analysis to determine the properties of the coal, specifically including 
whether the coal was sampled as delivered to the affected facility or 
whether the sample was collected from coal in storage at the mine, at a 
coal preparation plant, at a coal supplier's facility, or at another 
location. The certification shall include the name of the coal mine (and 
coal seam), coal storage facility, or coal preparation plant (where the 
sample was collected);
    (iii) The results of the analysis of the coal from which the 
shipment came (or of the shipment itself) including the sulfur content, 
moisture content, ash content, and heat content; and
    (iv) The methods used to determine the properties of the coal.
    (g) The owner or operator of each affected facility shall record and 
maintain records of the amounts of each fuel combusted during each day.
    (h) The owner or operator of each affected facility subject to a 
Federally enforceable requirement limiting the annual capacity factor 
for any fuel or mixture of fuels under Sec. 60.42c or Sec. 60.43c shall 
calculate the annual capacity factor individually for each fuel 
combusted. The annual capacity factor is determined on a 12-month 
rolling average basis with a new annual capacity factor calculated at 
the end of the calendar month.
    (i) All records required under this section shall be maintained by 
the owner or operator of the affected facility for a period of two years 
following the date of such record.



          Subpart E--Standards of Performance for Incinerators



Sec. 60.50  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to each 
incinerator of more

[[Page 131]]

than 45 metric tons per day charging rate (50 tons/day), which is the 
affected facility.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after August 17, 1971, is subject to the 
requirements of this subpart.
[42 FR 37936, July 25, 1977]



Sec. 60.51  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Incinerator means any furnace used in the process of burning 
solid waste for the purpose of reducing the volume of the waste by 
removing combustible matter.
    (b) Solid waste means refuse, more than 50 percent of which is 
municipal type waste consisting of a mixture of paper, wood, yard 
wastes, food wastes, plastics, leather, rubber, and other combustibles, 
and noncombustible materials such as glass and rock.
    (c) Day means 24 hours.
[36 FR 24877, Dec. 23, 1971, as amended at 39 FR 20792, June 14, 1974]



Sec. 60.52  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this part shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain 
particulate matter in excess of 0.18 g/dscm (0.08 gr/dscf) corrected to 
12 percent CO2.
[39 FR 20792, June 14, 1974]



Sec. 60.53  Monitoring of operations.

    (a) The owner or operator of any incinerator subject to the 
provisions of this part shall record the daily charging rates and hours 
of operation.



Sec. 60.54  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter standard in Sec. 60.52 as follows:
    (1) The emission rate (c12) of particulate matter, 
corrected to 12 percent CO2, shall be computed for each run 
using the following equation:

c12 = cs (12/%CO2)

where:
c12=concentration of particulate matter, corrected to 12 
          percent CO2, g/dscm (gr/dscf).
cs=concentration of particulate matter, g/dscm (gr/dscf).
%CO2=CO2 concentration, percent dry basis.

    (2) Method 5 shall be used to determine the particulate matter 
concentration (cs). The sampling time and sample volume for 
each run shall be at least 60 minutes and 0.85 dscm (30 dscf).
    (3) The emission rate correction factor, integrated or grab sampling 
and analysis procedure of Method 3B shall be used to determine 
CO2 concentration (%CO2).
    (i) The CO2 sample shall be obtained simultaneously with, 
and at the same traverse points as, the particulate run. If the 
particulate run has more than 12 traverse points, the CO2 
traverse points may be reduced to 12 if Method 1 is used to locate the 
12 CO2 traverse points. If individual CO2 samples 
are taken at each traverse point, the CO2 concentration 
(%CO2) used in the correction equation shall be the 
arithmetic mean of all the individual CO2 sample 
concentrations at each traverse point.
    (ii) If sampling is conducted after a wet scrubber, an ``adjusted'' 
CO2 concentration [(%CO2)adj], which 
accounts for the effects of CO2 absorption and dilution air, 
may be used instead of the CO2 concentration determined in 
this paragraph. The adjusted CO2 concentration shall be 
determined by either of the procedures in paragraph (c) of this section.
    (c) The owner or operator may use either of the following procedures 
to determine the adjusted CO2 concentration.
    (1) The volumetric flow rates at the inlet and outlet of the wet 
scrubber and the inlet CO2 concentration may be used to 
determine the adjusted CO2

[[Page 132]]

concentration [(%CO2)adj] using the following 
equation:

(%CO2)adj=(%CO2)di 
          (Qdi/Qdo)

where:

(%CO2)adj=adjusted outlet CO2 
          concentration, percent dry basis.
(%CO2)di=CO2 concentration measured 
          before the scrubber, percent dry basis.
Qdi=volumetric flow rate of effluent gas before the wet 
          scrubber, dscm/min (dscf/min).
Qdo=volumetric flow rate of effluent gas after the wet 
          scrubber, dscm/min (dscf/min).

    (i) At the outlet, Method 5 is used to determine the volumetric flow 
rate (Qdo) of the effluent gas.
    (ii) At the inlet, Method 2 is used to determine the volumetric flow 
rate (Qdi) of the effluent gas as follows: Two full velocity 
traverses are conducted, one immediately before and one immediately 
after each particulate run conducted at the outlet, and the results are 
averaged.
    (iii) At the inlet, the emission rate correction factor, integrated 
sampling and analysis procedure of Method 3B is used to determine the 
CO2 concentration [(%CO2)di] as 
follows: At least nine sampling points are selected randomly from the 
velocity traverse points and are divided randomly into three sets, equal 
in number of points; the first set of three or more points is used for 
the first run, the second set for the second run, and the third set for 
the third run. The CO2 sample is taken simultaneously with 
each particulate run being conducted at the outlet, by traversing the 
three sampling points (or more) and sampling at each point for equal 
increments of time.
    (2) Excess air measurements may be used to determine the adjusted 
CO2 concentration [(%CO2)adj] using the 
following equation:

(%CO2)adj=(%CO2)di 
          [(100+%EAi)/(100+%EAo)]

where:
(%CO2)adj=adjusted outlet CO2 
          concentration, percent dry basis.
(%CO2)di=CO2 concentration at the inlet 
          of the wet scrubber, percent dry basis.
%EAi=excess air at the inlet of the scrubber, percent.
%EAo=excess air at the outlet of the scrubber, percent.

    (i) A gas sample is collected as in paragraph (c)(1)(iii) of this 
section and the gas samples at both the inlet and outlet locations are 
analyzed for CO2, O2, and N2.
    (ii) Equation 3B-3 of Method 3B is used to compute the percentages 
of excess air at the inlet and outlet of the wet scrubber.
[54 FR 6665, Feb. 14, 1989, as amended at 55 FR 5212, Feb. 14, 1990]



Subpart Ea--Standards of Performance for Municipal Waste Combustors for 
Which Construction is Commenced After December 20, 1989 and on or Before 
                           September 20, 1994

    Source: 56 FR 5507, Feb. 11, 1991, unless otherwise noted.



Sec. 60.50a  Applicability and delegation of authority.

    (a) The affected facility to which this subpart applies is each 
municipal waste combustor unit with a municipal waste combustor unit 
capacity greater than 225 megagrams per day (250 tons per day) of 
municipal solid waste for which construction, modification, or 
reconstruction is commenced as specified in paragraphs (a)(1) and (a)(2) 
of this section.
    (1) Construction is commenced after December 20, 1989 and on or 
before September 20, 1994.
    (2) Modification or reconstruction is commenced after December 20, 
1989 and on or before June 19, 1996.
    (b) [Reserved]
    (c) Any unit combusting a single-item waste stream of tires is not 
subject to this subpart if the owner or operator of the unit:
    (1) Notifies the Administrator of an exemption claim; and
    (2) Provides data documenting that the unit qualifies for this 
exemption.
    (d) Any cofired combustor, as defined under Sec. 60.51a, located at 
a plant that meets the capacity specifications in paragraph (a) of this 
section is not subject to this subpart if the owner or operator of the 
cofired combustor:
    (1) Notifies the Administrator of an exemption claim;
    (2) Provides a copy of the federally enforceable permit (specified 
in the

[[Page 133]]

definition of cofired combustor in this section); and
    (3) Keeps a record on a calendar quarter basis of the weight of 
municipal solid waste combusted at the cofired combustor and the weight 
of all other fuels combusted at the cofired combustor.
    (e) Any cofired combustor that is subject to a federally enforceable 
permit limiting the operation of the combustor to no more than 225 
megagrams per day (250 tons per day) of municipal solid waste is not 
subject to this subpart.
    (f) Physical or operational changes made to an existing municipal 
waste combustor unit primarily for the purpose of complying with 
emission guidelines under subpart Cb are not considered a modification 
or reconstruction and do not result in an existing municipal waste 
combustor unit becoming subject to this subpart.
    (g) A qualifying small power production facility, as defined in 
section 3(17)(C) of the Federal Power Act (16 U.S.C. 796(17)(C)), that 
burns homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy is 
not subject to this subpart if the owner or operator of the facility 
notifies the Administrator of an exemption claim and provides data 
documenting that the facility qualifies for this exemption.
    (h) A qualifying cogeneration facility, as defined in section 
3(18)(B) of the Federal Power Act (16 U.S.C. 796(18)(B)), that burns 
homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy and 
steam or forms of useful energy (such as heat) that are used for 
industrial, commercial, heating, or cooling purposes, is not subject to 
this subpart if the owner or operator of the facility notifies the 
Administrator of an exemption claim and provides data documenting that 
the facility qualifies for this exemption.
    (i) Any unit required to have a permit under section 3005 of the 
Solid Waste Disposal Act is not subject to this subpart.
    (j) Any materials recovery facility (including primary or secondary 
smelters) that combusts waste for the primary purpose of recovering 
metals is not subject to this subpart.
    (k) Pyrolysis/combustion units that are an integrated part of a 
plastics/rubber recycling unit (as defined in Sec. 60.51a) are not 
subject to this subpart if the owner or operator of the plastics/rubber 
recycling unit keeps records of: the weight of plastics, rubber, and/or 
rubber tires processed on a calendar quarter basis; the weight of 
chemical plant feedstocks and petroleum refinery feedstocks produced and 
marketed on a calendar quarter basis; and the name and address of the 
purchaser of the feedstocks. The combustion of gasoline, diesel fuel, 
jet fuel, fuel oils, residual oil, refinery gas, petroleum coke, 
liquified petroleum gas, propane, or butane produced by chemical plants 
or petroleum refineries that use feedstocks produced by plastics/rubber 
recycling units are not subject to this subpart.
    (l) The following authorities shall be retained by the Administrator 
and not transferred to a State:
    None.
    (m) This subpart shall become effective on August 12, 1991.
[56 FR 5507, Feb. 11, 1991, as amended at 60 FR 65384, Dec. 19, 1995]



Sec. 60.51a  Definitions.

    ASME means the American Society of Mechanical Engineers.
    Batch MWC means an MWC unit designed such that it cannot combust MSW 
continuously 24 hours per day because the design does not allow waste to 
be fed to the unit or ash to be removed while combustion is occurring.
    Bubbling fluidized bed combustor means a fluidized bed combustor in 
which the majority of the bed material remains in a fluidized state in 
the primary combustion zone.
    Calendar quarter means a consecutive 3-month period (nonoverlapping) 
beginning on January 1, April 1, July 1, and October 1.
    Chief facility operator means the person in direct charge and 
control of the operation of an MWC and who is responsible for daily on-
site supervision, technical direction, management, and overall 
performance of the facility.

[[Page 134]]

    Circulating fluidized bed combustor means a fluidized bed combustor 
in which the majority of the fluidized bed material is carried out of 
the primary combustion zone and is transported back to the primary zone 
through a recirculation loop.
    Clean wood means untreated wood or untreated wood products including 
clean untreated lumber, tree stumps (whole or chipped), and tree limbs 
(whole or chipped). Clean wood does not include yard waste, which is 
defined elsewhere in this section, or construction, renovation, and 
demolition wastes (which includes but is not limited to railroad ties 
and telephone poles), which are exempt from the definition of municipal 
solid waste in this section.
    Cofired combustor means a unit combusting municipal solid waste with 
nonmunicipal solid waste fuel (e.g., coal, industrial process waste) and 
subject to a federally enforceable permit limiting the unit to 
combusting a fuel feed stream, 30 percent or less of the weight of which 
is comprised, in aggregate, of municipal solid waste as measured on a 
calendar quarter basis.
    Continuous emission monitoring system or CEMS means a monitoring 
system for continuously measuring the emissions of a pollutant from an 
affected facility.
    Dioxin/furan means total tetra- through octachlorinated dibenzo-p-
dioxins and dibenzofurans.
    Federally-enforceable means all limitations and conditions that are 
enforceable by the Administrator including the requirements of 40 CFR 
parts 60 and 61, requirements within any applicable State implementation 
plan, and any permit requirements established under 40 CFR 52.21 or 
under 40 CFR 51.18 and 40 CFR 51.24.
    Four-hour block average or 4-hour block average means the average of 
all hourly emission rates when the affected facility is operating and 
combusting MSW measured over 4-hour periods of time from 12 midnight to 
4 a.m., 4 a.m. to 8 a.m., 8 a.m. to 12 noon, 12 noon to 4 p.m., 4 p.m. 
to 8 p.m., and 8 p.m. to 12 midnight.
    Large municipal waste combustor plant means a municipal waste 
combustor plant with a municipal waste combustor aggregate plant 
capacity for affected facilities that is greater than 225 megagrams per 
day (250 tons per day) of municipal solid waste.
    Mass burn refractory municipal waste combustor means a field-erected 
combustor that combusts municipal solid waste in a refractory wall 
furnace. Unless otherwise specified, this includes combustors with a 
cylindrical rotary refractory wall furnace.
    Mass burn rotary waterwall municipal waste combustor means a field-
erected combustor that combusts municipal solid waste in a cylindrical 
rotary waterwall furnace.
    Mass burn waterwall municipal waste combustor means a field-erected 
combustor that combusts municipal solid waste in a waterwall furnace.
    Maximum demonstrated municipal waste combustor unit load means the 
highest 4-hour arithmetic average municipal waste combustor unit load 
achieved during four consecutive hours during the most recent dioxin/
furan performance test demonstrating compliance with the applicable 
limit for municipal waste combustor organics specified under 
Sec. 60.53a.
    Maximum demonstrated particulate matter control device temperature 
means the highest 4-hour arithmetic average flue gas temperature 
measured at the particulate matter control device inlet during four 
consecutive hours during the most recent dioxin/furan performance test 
demonstrating compliance with the applicable limit for municipal waste 
combustor organics specified under Sec. 60.53a.
    Modification or modified municipal waste combustor unit means a 
municipal waste combustor unit to which changes have been made if the 
cumulative cost of the changes, over the life of the unit, exceed 50 
percent of the original cost of construction and installation of the 
unit (not including the cost of any land purchased in connection with 
such construction or installation) updated to current costs; or any 
physical change in the municipal waste combustor unit or change in the 
method of operation of the municipal waste combustor unit increases the 
amount of any air pollutant emitted by the unit for which standards have 
been established under section 129 or section 111. Increases in

[[Page 135]]

the amount of any air pollutant emitted by the municipal waste combustor 
unit are determined at 100-percent physical load capability and 
downstream of all air pollution control devices, with no consideration 
given for load restrictions based on permits or other nonphysical 
operational restrictions.
    Modular excess air MWC means a combustor that combusts MSW and that 
is not field-erected and has multiple combustion chambers, all of which 
are designed to operate at conditions with combustion air amounts in 
excess of theoretical air requirements.
    Modular starved air MWC means a combustor that combusts MSW and that 
is not field-erected and has multiple combustion chambers in which the 
primary combustion chamber is designed to operate at substoichiometric 
conditions.
    Municipal solid waste or municipal-type solid waste or MSW means 
household, commercial/retail, and/or institutional waste. Household 
waste includes material discarded by single and multiple residential 
dwellings, hotels, motels, and other similar permanent or temporary 
housing establishments or facilities. Commercial/retail waste includes 
material discarded by stores, offices, restaurants, warehouses, 
nonmanufacturing activities at industrial facilities, and other similar 
establishments or facilities. Institutional waste includes material 
discarded by schools, nonmedical waste discarded by hospitals, material 
discarded by nonmanufacturing activities at prisons and government 
facilities, and material discarded by other similar establishments or 
facilities. Household, commercial/retail, and institutional waste does 
not include used oil; sewage sludge; wood pallets; construction, 
renovation, and demolition wastes (which includes but is not limited to 
railroad ties and telephone poles); clean wood; industrial process or 
manufacturing wastes; medical waste; or motor vehicles (including motor 
vehicle parts or vehicle fluff). Household, commercial/retail, and 
institutional wastes include:
    (1) Yard waste;
    (2) Refuse-derived fuel; and
    (3) Motor vehicle maintenance materials limited to vehicle batteries 
and tires except as specified in Sec. 60.50a(c).
    Municipal waste combustor, MWC, or municipal waste combustor unit: 
(1) Means any setting or equipment that combusts solid, liquid, or 
gasified MSW including, but not limited to, field-erected incinerators 
(with or without heat recovery), modular incinerators (starved-air or 
excess-air), boilers (i.e., steam-generating units), furnaces (whether 
suspension-fired, grate-fired, mass-fired, air curtain incinerators, or 
fluidized bed-fired), and pyrolysis/combustion units. Municipal waste 
combustors do not include pyrolysis/combustion units located at 
plastics/ rubber recycling units (as specified in Sec. 60.50a(k) of this 
section). Municipal waste combustors do not include internal combustion 
engines, gas turbines, or other combustion devices that combust landfill 
gases collected by landfill gas collection systems.
    (2) The boundaries of an MWC are defined as follows. The MWC unit 
includes, but is not limited to, the MSW fuel feed system, grate system, 
flue gas system, bottom ash system, and the combustor water system. The 
MWC boundary starts at the MSW pit or hopper and extends through:
    (i) The combustor flue gas system, which ends immediately following 
the heat recovery equipment or, if there is no heat recovery equipment, 
immediately following the combustion chamber;
    (ii) The combustor bottom ash system, which ends at the truck 
loading station or similar ash handling equipment that transfer the ash 
to final disposal, including all ash handling systems that are connected 
to the bottom ash handling system; and
    (iii) The combustor water system, which starts at the feed water 
pump and ends at the piping exiting the steam drum or superheater.
    (3) The MWC unit does not include air pollution control equipment, 
the stack, water treatment equipment, or the turbine generator set.
    Municipal waste combustor plant means one or more MWC units at the 
same location for which construction,

[[Page 136]]

modification, or reconstruction is commenced after December 20, 1989 and 
on or before September 20, 1994.
    Municipal waste combustor plant capacity means the aggregate MWC 
unit capacity of all MWC units at an MWC plant for which construction, 
modification, or reconstruction of the units commenced after December 
20, 1989 and on or before September 20, 1994. Any MWC units for which 
construction, modification, or reconstruction is commenced on or before 
December 20, 1989 or after September 20, 1994 are not included for 
determining applicability under this subpart.
    Municipal waste combustor unit capacity means the maximum design 
charging rate of an MWC unit expressed in megagrams per day (tons per 
day) of MSW combusted, calculated according to the procedures under 
Sec. 60.58a(j). Municipal waste combustor unit capacity is calculated 
using a design heating value of 10,500 kilojoules per kilogram (4,500 
British thermal units per pound) for MSW. The calculational procedures 
under Sec. 60.58a(j) include procedures for determining MWC unit 
capacity for continuous and batch feed MWC's.
    Municipal waste combustor unit load means the steam load of the MWC 
unit measured as specified in Sec. 60.58a(h)(6).
    MWC acid gases means all acid gases emitted in the exhaust gases 
from MWC units including, but not limited to, sulfur dioxide and 
hydrogen chloride gases.
    MWC metals means metals and metal compounds emitted in the exhaust 
gases from MWC units.
    MWC organics means organic compounds emitted in the exhaust gases 
from MWC units and includes total tetra- through octa-chlorinated 
dibenzo-p-dioxins and dibenzofurans.
    Particulate matter means total particulate matter emitted from MWC 
units as measured by Method 5 (see Sec. 60.58a).
    Plastics/rubber recycling unit means an integrated processing unit 
where plastics, rubber, and/or rubber tires are the only feed materials 
(incidental contaminants may be included in the feed materials) and they 
are processed into a chemical plant feedstock or petroleum refinery 
feedstock, where the feedstock is marketed to and used by a chemical 
plant or petroleum refinery as input feedstock. The combined weight of 
the chemical plant feedstock and petroleum refinery feedstock produced 
by the plastics/rubber recycling unit on a calendar quarter basis shall 
be more than 70 percent of the combined weight of the plastics, rubber, 
and rubber tires processed by the plastics/rubber recycling unit on a 
calendar quarter basis. The plastics, rubber, and/or rubber tire feed 
materials to the plastics/rubber recycling unit may originate from the 
separation or diversion of plastics, rubber, or rubber tires from MSW or 
industrial solid waste, and may include manufacturing scraps, trimmings, 
and off-specification plastics, rubber, and rubber tire discards. The 
plastics, rubber, and rubber tire feed materials to the plastics/rubber 
recycling unit may contain incidental contaminants (e.g., paper labels 
on plastic bottles, metal rings on plastic bottle caps, etc.).
    Potential hydrogen chloride emission rate means the hydrogen 
chloride emission rate that would occur from combustion of MSW in the 
absence of any hydrogen chloride emissions control.
    Potential sulfur dioxide emission rate means the sulfur dioxide 
emission rate that would occur from combustion of MSW in the absence of 
any sulfur dioxide emissions control.
    Pulverized coal/refuse-derived fuel mixed fuel-fired combustor or 
pulverized coal/RDF mixed fuel-fired combustor means a combustor that 
fires coal and RDF simultaneously, in which pulverized coal is 
introduced into an air stream that carries the coal to the combustion 
chamber of the unit where it is fired in suspension. This includes both 
conventional pulverized coal and micropulverized coal.
    Pyrolysis/combustion unit means a unit that produces gases, liquids, 
or solids through the heating of MSW, and the gases, liquids, or solids 
produced are combusted and emissions vented to the atmosphere.
    Reconstruction means rebuilding an MWC unit for which the cumulative 
costs of the construction over the life of the unit exceed 50 percent of 
the original cost of construction and installation of the unit (not 
including

[[Page 137]]

any cost of land purchased in connection with such construction or 
installation) updated to current costs (current dollars).
    Refractory unit or refractory wall furnace means a combustion unit 
having no energy recovery (e.g., via a waterwall) in the furnace (i.e., 
radiant heat transfer section) of the combustor.
    Refuse-derived fuel or RDF means a type of MSW produced by 
processing MSW through shredding and size classification.
    This includes all classes of RDF including low density fluff RDF 
through densified RDF and RDF fuel pellets.
    RDF stoker means a steam generating unit that combusts RDF in a 
semi-suspension firing mode using air-fed distributors.
    Same location means the same or contiguous property that is under 
common ownership or control, including properties that are separated 
only by a street, road, highway, or other public right-of-way. Common 
ownership or control includes properties that are owned, leased, or 
operated by the same entity, parent entity, subsidiary, subdivision, or 
any combination thereof, including any municipality or other 
governmental unit, or any quasigovernmental authority (e.g., a public 
utility district or regional waste disposal authority).
    Shift supervisor means the person in direct charge and control of 
the operation of an MWC and who is responsible for on-site supervision, 
technical direction, management, and overall performance of the facility 
during an assigned shift.
    Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 
or spreader stoker coal/RDF mixed fuel-fired combustor means a combustor 
that fires coal and refuse-derived fuel simultaneously, in which coal is 
introduced to the combustion zone by a mechanism that throws the fuel 
onto a grate from above. Combustion takes place both in suspension and 
on the grate.
    Standard conditions means a temperature of 20 
+C (68 +F) and a pressure of 101.3 kilopascals (29.92 inches of mercury).

    Twenty-four hour daily average or 24-hour daily average means the 
arithmetic or geometric mean (as specified in Sec. 60.58a (e), (g), or 
(h) as applicable) of all hourly emission rates when the affected 
facility is operating and firing MSW measured over a 24-hour period 
between 12 midnight and the following midnight.
    Untreated lumber means wood or wood products that have been cut or 
shaped and include wet, air-dried, and kiln-dried wood products. 
Untreated lumber does not include wood products that have been painted, 
pigment-stained, or ``pressure-treated.'' Pressure-treating compounds 
include, but are not limited to, chromate copper arsenate, 
pentachlorophenol, and creosote.
    Waterwall furnace means a combustion unit having energy (heat) 
recovery in the furnace (i.e., radiant heat transfer section) of the 
combustor.
    Yard waste means grass, grass clippings, bushes, shrubs, and 
clippings from bushes and shrubs that are generated by residential, 
commercial/retail, institutional, and/or industrial sources as part of 
maintenance activities associated with yards or other private or public 
lands. Yard waste does not include construction, renovation, and 
demolition wastes, which are exempt from the definition of MSW in this 
section. Yard waste does not include clean wood, which is exempt from 
the definition of MSW in this section.
[56 FR 5507, Feb. 11, 1991, as amended at 60 FR 65384, Dec. 19, 1995]



Sec. 60.52a  Standard for municipal waste combustor metals.

    (a) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain particulate matter in excess of 34 milligrams per 
dry standard cubic meter (0.015 grains per dry standard cubic foot), 
corrected to 7 percent oxygen (dry basis).
    (b) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an

[[Page 138]]

affected facility subject to the particulate matter emission limit under 
paragraph (a) of this section shall cause to be discharged into the 
atmosphere from that affected facility any gases that exhibit greater 
than 10 percent opacity (6-minute average).
    (c) [Reserved]



Sec. 60.53a  Standard for municipal waste combustor organics.

    (a) [Reserved]
    (b) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain dioxin/furan emissions that exceed 30 nanograms 
per dry standard cubic meter (12 grains per billion dry standard cubic 
feet), corrected to 7 percent oxygen (dry basis).



Sec. 60.54a  Standard for municipal waste combustor acid gases.

    (a)--(b) [Reserved]
    (c) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain sulfur dioxide in excess of 20 percent of the 
potential sulfur dioxide emission rate (80 percent reduction by weight 
or volume) or 30 parts per million by volume, corrected to 7 percent 
oxygen (dry basis), whichever is less stringent. The averaging time is 
specified in Sec. 60.58a(e).
    (d) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain hydrogen chloride in excess of 5 percent of the 
potential hydrogen chloride emission rate (95 percent reduction by 
weight or volume) or 25 parts per million by volume, corrected to 7 
percent oxygen (dry basis), whichever is less stringent.



Sec. 60.55a  Standard for nitrogen oxides.

    On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause to be discharged into the atmosphere from that affected facility 
any gases that contain nitrogen oxides in excess of 180 parts per 
million by volume, corrected to 7 percent oxygen (dry basis). The 
averaging time is specified under Sec. 60.58a(g).



Sec. 60.56a  Standards for municipal waste combustor operating practices.

    (a) On and after the date on which the initial compliance test is 
completed or is required to be completed under Sec. 60.8, no owner or 
operator of an affected facility located within a large MWC plant shall 
cause such facility to exceed the carbon monoxide standards shown in 
table 1.

                    Table 1--MWC Operating Standards
------------------------------------------------------------------------
                                                              Carbon
                                                             monoxide
                                                          emission limit
                     MWC technology                         (parts per
                                                            million by
                                                            volume) \1\
------------------------------------------------------------------------
Mass burn waterwall.....................................             100
Mass burn refractory....................................             100
Mass burn rotary waterwall..............................             100
Modular starved air.....................................              50
Modular excess air......................................              50
RDF stoker..............................................             150
Bubbling fluidized bed combustor........................             100
Circulating fluidized bed combustor.....................             100
Pulverized coal/RDF mixed fuel-fired combustor..........             150
Spreader stoker coal/RDF mixed fuel-fird combustor......             150
------------------------------------------------------------------------
\1\ Measured at the combustor outlet in conjunction with a measurement
  of oxygen concentration, corrected to 7 percent oxygen (dry basis).
  The averaging times are specified in Sec.  60.58a(h).

    (b) No owner or operator of an affected facility located within a 
large MWC plant shall cause such facility to operate at a load level 
greater than 110 percent of the maximum demonstrated MWC unit load as 
defined in Sec. 60.51a. The averaging time is specified under 
Sec. 60.58a(h).
    (c) No owner or operator of an affected facility located within a 
large MWC plant shall cause such facility to operate at a temperature, 
measured at

[[Page 139]]

the final particulate matter control device inlet, exceeding 
17+ Centigrade (30+ Fahrenheit) above the maximum 
demonstrated particulate matter control device temperature as defined in 
Sec. 60.51a. The averaging time is specified under Sec. 60.58a(h).
    (d) Within 24 months from the date of start-up of an affected 
facility or before February 11, 1993, whichever is later, each chief 
facility operator and shift supervisor of an affected faciltiy located 
within a large MWC plant shall obtain and keep current either a 
provisional or operator certification in accordance with ASME QRO-1-1994 
(incorporated by reference, see Sec. 60.17) or an equivalent State-
approved certification program.
    (e) No owner or operator of an affected facility shall allow such 
affected facility located at a large MWC plant to operate at any time 
without a certified shift supervisor, as provided under paragraph (d) of 
this section, on duty at the affected facility. This requirement shall 
take effect 24 months after the date of start-up of the affected 
facility or on and after February 11, 1993, whichever is later.
    (f) The owner or operator of an affected facility located within a 
large MWC plant shall develop and update on a yearly basis a 
sitespecific operating manual that shall, at a minimum, address the 
following elements of MWC unit operation:
    (1) Summary of the applicable standards under this subpart;
    (2) Description of basic combustion theory applicable to an MWC 
unit;
    (3) Procedures for receiving, handling, and feeding MSW;
    (4) MWC unit start-up, shutdown, and malfunction procedures;
    (5) Procedures for maintaining proper combustion air supply levels;
    (6) Procedures for operating the MWC unit within the standards 
established under this subpart;
    (7) Procedures for responding to periodic upset or off-specification 
conditions;
    (8) Procedures for minimizing particulate matter carryover;
    (9) [Reserved]
    (10) Procedures for handling ash;
    (11) Procedures for monitoring MWC unit emissions; and
    (12) Reporting and recordkeeping procedures.
    (g) The owner or operator of an affected facility located within a 
large MWC plant shall establish a program for reviewing the operating 
manual annually with each person who has responsibilities affecting the 
operation of an affected facility including, but not limited to, chief 
facility operators, shift supervisors, control room operators, ash 
handlers, maintenance personnel, and crane/load handlers.
    (h) The initial review of the operating manual, as specified under 
paragraph (g) of this section, shall be conducted prior to assumption of 
responsibilities affecting MWC unit operation by any person required to 
undergo training under paragraph (g) of this section. Subsequent reviews 
of the manual shall be carried out annually by each such person.
    (i) The operating manual shall be kept in a readily accessible 
location for all persons required to undergo training under paragraph 
(g) of this section. The operating manual and records of training shall 
be available for inspection by EPA or its delegated enforcement agent 
upon request.
    (j)--(k) [Reserved]
[56 FR 5507, Feb. 11, 1991, as amended at 60 FR 65386, Dec. 19, 1995]



Sec. 60.57a  [Reserved]



Sec. 60.58a  Compliance and performance testing.

    (a) The standards under this subpart apply at all times, except 
during periods of start-up, shutdown, or malfunction; provided, however, 
that the duration of start-up, shutdown, or malfunction shall not exceed 
3 hours per occurrence.
    (1) The start-up period commences when the affected facility begins 
the continuous burning of MSW and does not include any warm-up period 
when the affected facility is combusting only a fossil fuel or other 
non-MSW fuel and no MSW is being combusted.
    (2) Continuous burning is the continuous, semicontinuous, or batch 
feeding of MSW for purposes of waste disposal, energy production, or 
providing heat to the combustion system in preparation

[[Page 140]]

for waste disposal or energy production. The use of MSW solely to 
provide thermal protection of grate or hearth during the start-up period 
shall not be considered to be continuous burning.
    (b) The following procedures and test methods shall be used to 
determine compliance with the emission limits for particulate matter 
under Sec. 60.52a:
    (1) Method 1 shall be used to select sampling site and number of 
traverse points.
    (2) Method 3 shall be used for gas analysis.
    (3) Method 5 shall be used for determining compliance with the 
particulate matter emission standard. The minimum sample volume shall be 
1.7 cubic meters (60 cubic feet). The probe and filter holder heating 
systems in the sample train shall be set to provide a gas temperature no 
greater than 
160+14+ Centigrade (320+
25+ Fahrenheit). An oxygen or carbon dioxide measurement shall be obtained simultaneously with each Method 5 run.

    (4) For each Method 5 run, the emission rate shall be determined 
using:
    (i) Oxygen or carbon dioxide measurements,
    (ii) Dry basis F factor, and
    (iii) Dry basis emission rate calculation procedures in Method 19.
    (5) An owner or operator may request that compliance be determined 
using carbon dioxide measurements corrected to an equivalent of 7 
percent oxygen. The relationship between oxygen and carbon dioxide 
levels for the affected facility shall be established during the initial 
compliance test.
    (6) The owner or operator of an affected facility shall conduct an 
initial compliance test for particulate matter and opacity as required 
under Sec. 60.8.
    (7) Method 9 shall be used for determining compliance with the 
opacity limit.
    (8) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a CEMS for measuring opacity and record 
the output of the system on a 6-minute average basis.
    (9) Following the date the initial compliance test for particulate 
matter is completed or is required to be completed under Sec. 60.8 for 
an affected facility located within a large MWC plant, the owner or 
operator shall conduct a performance test for particulate matter on an 
annual basis (no more than 12 calendar months following the previous 
compliance test).
    (10) [Reserved]
    (c) [Reserved]
    (d) The following procedures and test methods shall be used to 
determine compliance with the limits for dioxin/furan emissions under 
Sec. 60.53a:
    (1) Method 23 shall be used for determining compliance with the 
dioxin/furan emission limits. The minimum sample time shall be 4 hours 
per test run.
    (2) The owner or operator of an affected facility shall conduct an 
initial compliance test for dioxin/furan emissions as required under 
Sec. 60.8.
    (3) Following the date of the initial compliance test or the date on 
which the initial compliance test is required to be completed under 
Sec. 60.8, the owner or operator of an affected facility located within 
a large MWC plant shall conduct a performance test for dioxin/furan 
emissions on an annual basis (no more than 12 calendar months following 
the previous compliance test).
    (4) [Reserved]
    (5) An owner or operator may request that compliance with the 
dioxin/furan emissions limit be determined using carbon dioxide 
measurements corrected to an equivalent of 7 percent oxygen. The 
relationship between oxygen and carbon dioxide levels for the affected 
facility shall be established during the initial compliance test.
    (e) The following procedures and test methods shall be used for 
determining compliance with the sulfur dioxide limit under Sec. 60.54a:
    (1) Method 19, section 5.4, shall be used to determine the daily 
geometric average percent reduction in the potential sulfur dioxide 
emission rate.
    (2) Method 19, section 4.3, shall be used to determine the daily 
geometric average sulfur dioxide emission rate.
    (3) An owner or operator may request that compliance with the sulfur 
dioxide emissions limit be determined using carbon dioxide measurements 
corrected to an equivalent of 7 percent oxygen. The relationship between 
oxygen

[[Page 141]]

and carbon dioxide levels for the affected facility shall be established 
during the initial compliance test.
    (4) The owner or operator of an affected facility shall conduct an 
initial compliance test for sulfur dioxide as required under Sec. 60.8. 
Compliance with the sulfur dioxide emission limit and percent reduction 
is determined by using a CEMS to measure sulfur dioxide and calculating 
a 24-hour daily geometric mean emission rate and daily geometric mean 
percent reduction using Method 19 sections 4.3 and 5.4, as applicable, 
except as provided under paragraph (e)(5) of this section.
    (5) For batch MWC's or MWC units that do not operate continuously, 
compliance shall be determined using a daily geometric mean of all 
hourly average values for the hours during the day that the affected 
facility is combusting MSW.
    (6) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a CEMS for measuring sulfur dioxide 
emissions discharged to the atmosphere and record the output of the 
system.
    (7) Following the date of the initial compliance test or the date on 
which the initial compliance test is required to be completed under 
Sec. 60.8, compliance with the sulfur dioxide emission limit or percent 
reduction shall be determined based on the geometric mean of the hourly 
arithmetic average emission rates during each 24-hour daily period 
measured between 12:00 midnight and the following midnight using: CEMS 
inlet and outlet data, if compliance is based on a percent reduction; or 
CEMS outlet data only if compliance is based on an emission limit.
    (8) At a minimum, valid CEMS data shall be obtained for 75 percent 
of the hours per day for 75 percent of the days per month the affected 
facility is operated and combusting MSW.
    (9) The 1-hour arithmetic averages required under paragraph (e)(7) 
of this section shall be expressed in parts per million (dry basis) and 
used to calculate the 24-hour daily geometric mean emission rates. The 
1-hour arithmetic averages shall be calculated using the data points 
required under Sec. 60.13(e)(2). At least two data points shall be used 
to calculate each 1-hour arithmetic average.
    (10) All valid CEMS data shall be used in calculating emission rates 
and percent reductions even if the minimum CEMS data requirements of 
paragraph (e)(8) of this Section are not met.
    (11) The procedures under Sec. 60.1 3 shall be followed for 
installation, evaluation, and operation of the CEMS.
    (12) The CEMS shall be operated according to Performance 
Specifications 1, 2, and 3 (appendix B of part 60).
    (13) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with Procedure 1 (appendix F of 
part 60).
    (14) The span value of the CEMS at the inlet to the sulfur dioxide 
control device is 125 percent of the maximum estimated hourly potential 
sulfur dioxide emissions of the MWC unit, and the span value of the CEMS 
at the outlet to the sulfur dioxide control device is 50 percent of the 
maximum estimated hourly potential sulfur dioxide emissions of the MWC 
unit.
    (15) When sulfur dioxide emissions data are not obtained because of 
CEMS breakdowns, repairs, calibration checks and zero and span 
adjustments, emissions data shall be obtained by using other monitoring 
systems as approved by the Administrator or Method 19 to provide as 
necessary valid emission data for a minimum of 75 percent of the hours 
per day for 75 percent of the days per month the unit is operated and 
combusting MSW.
    (16) Not operating a sorbent injection system for the sole purpose 
of testing in order to demonstrate compliance with the percent reduction 
standards for MWC acid gases shall not be considered a physical change 
in the method of operation under 40 CFR 52.21, or under regulations 
approved pursuant to 40 CFR 51.166 or 40 CFR 51.165 (a) and (b).
    (f) The following procedures and test methods shall be used for 
determining compliance with the hydrogen chloride limits under 
Sec. 60.54a:
    (1) The percentage reduction in the potential hydrogen chloride 
emissions (%PHCl) is computed using the following formula:

[[Page 142]]

[GRAPHIC] [TIFF OMITTED] TC16NO91.003


where:
    Ei is the potential hydrogen chloride emission rate.
    Eo is the hydrogen chloride emission rate measured at the 
outlet of the acid gas control device.

    (2) Method 26 shall be used for determining the hydrogen chloride 
emission rate. The minimum sampling time for Method 26 shall be 1 hour.
    (3) An owner or operator may request that compliance with the 
hydrogen chloride emissions limit be determined using carbon dioxide 
measurements corrected to an equivalent of 7 percent oxygen. The 
relationship between oxygen and carbon dioxide levels for the affected 
facility shall be established during the initial compliance test.
    (4) The owner or operator of an affected facility shall conduct an 
initial compliance test for hydrogen chloride as required under 
Sec. 60.8.
    (5) Following the date of the initial compliance test or the date on 
which the initial compliance test is required under Sec. 60.8, the owner 
or operator of an affected facility located within a large MWC plant 
shall conduct a performance test for hydrogen chloride on an annual 
basis (no more than 12 calendar months following the previous compliance 
test).
    (6) [Reserved]
    (7) Not operating a sorbent injection system for the sole purpose of 
testing in order to demonstrate compliance with the percent reduction 
standards for MWC acid gases shall not be considered a physical change 
in the method of operation under 40 CFR 52.21, or under regulations 
approved pursuant to 40 CFR 51.166 or 40 CFR 51.165 (a) and (b).
    (g) The following procedures and test methods shall be used to 
determine compliance with the nitrogen oxides limit under Sec. 60.55a:
    (1) Method 19, section 4.1, shall be used for determining the daily 
arithmetic average nitrogen oxides emission rate.
    (2) An owner or operator may request that compliance with the 
nitrogen oxides emissions limit be determined using carbon dioxide 
measurements corrected to an equivalent of 7 percent oxygen. The 
relationship between oxygen and carbon dioxide levels for the affected 
facility shall be established during the initial compliance test.
    (3) The owner or operator of an affected facility subject to the 
nitrogen oxides limit under Sec. 60.55a shall conduct an initial 
compliance test for nitrogen oxides as required under Sec. 60.8. 
Compliance with the nitrogen oxides emission standard shall be 
determined by using a CEMS for measuring nitrogen oxides and calculating 
a 24-hour daily arithmetic average emission rate using Method 19, 
section 4.1, except as specified under paragraph (g)(4) of this section.
    (4) For batch MWC's or MWC's that do not operate continuously, 
compliance shall be determined using a daily arithmetic average of all 
hourly average values for the hours during the day that the affected 
facility is combusting MSW.
    (5) The owner or operator of an affected facility subject to the 
nitrogen oxides emissions limit under Sec. 60.55a shall install, 
calibrate, maintain, and operate a CEMS for measuring nitrogen oxides 
discharged to the atmosphere and record the output of the system.
    (6) Following the initial compliance test or the date on which the 
initial compliance test is required to be completed under Sec. 60.8, 
compliance with the emission limit for nitrogen oxides required under 
Sec. 60.55a shall be determined based on the arithmetic average of the 
arithmetic average hourly emission rates during each 24-hour daily 
period measured between 12:00 midnight and the following midnight using 
CEMS data.
    (7) At a minimum valid CEMS data shall be obtained for 75 percent of 
the hours per day for 75 percent of the days per month the affected 
facility is operated and combusting MSW.
    (8) The 1-hour arithmetic averages required by paragraph (g)(6) of 
this section shall be expressed in parts per million volume (dry basis) 
and used to calculate the 24-hour daily arithmetic average emission 
rates. The 1-hour arithmetic averages shall be calculated using the data 
points required under Sec. 60.13(b). At least two data points shall

[[Page 143]]

be used to calculate each 1-hour arithmetic average.
    (9) All valid CEMS data must be used in calculating emission rates 
even if the minimum CEMS data requirements of paragraph (g)(7) of this 
section are not met.
    (10) The procedures under Sec. 60.13 shall be followed for 
installation, evaluation, and operation of the CEMS.
    (11) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with Procedure 1 (appendix F of 
part 60).
    (12) When nitrogen oxides emissions data are not obtained because of 
CEMS breakdowns, repairs, calibration checks, and zero and span 
adjustments, emission data calculations to determine compliance shall be 
made using other monitoring systems as approved by the Administrator or 
Method 19 to provide as necessary valid emission data for a minimum of 
75 percent of the hours per day for 75 percent of the days per month the 
unit is operated and combusting MSW.
    (h) The following procedures shall be used for determining 
compliance with the operating standards under Sec. 60.56a:
    (1) Compliance with the carbon monoxide emission limits in 
Sec. 60.56a(a) shall be determined using a 4-hour block arithmetic 
average for all types of affected facilities except mass burn rotary 
waterwall MWC's, RDF stokers, and spreader stoker/RDF mixed fuel-fired 
combustors.
    (2) For affected mass burn rotary waterwall MWC's, RDF stokers, and 
spreader stoker/RDF mixed fuel-fired combustors, compliance with the 
carbon monoxide emission limits in Sec. 60.56a(a) shall be determined 
using a 24-hour daily arithmetic average.
    (3) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a CEMS for measuring carbon monoxide at 
the combustor outlet and record the output of the system.
    (4) The 4-hour and 24-hour daily arithmetic averages in paragraphs 
(h) (1) and (2) of this section shall be calculated from 1-hour 
arithmetic averages expressed in parts per million by volume (dry 
basis). The 1-hour arithmetic averages shall be calculated using the 
data points generated by the CEMS. At least two data points shall be 
used to calculate each 1-hour arithmetic average.
    (5) An owner or operator may request that compliance with the carbon 
monoxide emission limit be determined using carbon dioxide measurements 
corrected to an equivalent of 7 percent oxygen. The relationship between 
oxygen and carbon dioxide levels for the affected facility shall be 
established during the initial compliance test.
    (6) The following procedures shall be used to determine compliance 
with load level requirements under Sec. 60.56a(b):
    (i) The owner or operator of an affected facility with steam 
generation capability shall install, calibrate, maintain, and operate a 
steam flow meter or a feedwater flow meter; measure steam or feedwater 
flow in kilograms per hour (pounds per hour) on a continuous basis; and 
record the output of the monitor. Steam or feedwater flow shall be 
calculated in 4-hour block arithmetic averages.
    (ii) The method included in ``American Society of Mechanical 
Engineers Power Test Codes: Test Code for Steam Generating Units, Power 
Test Code 4.1--1964'', Section 4 (incorporated by reference, see 
Sec. 60.17) shall be used for calculating the steam (or feedwater flow) 
required under paragraph (h)(6)(i) of this section. The recommendations 
of ``American Society of Mechanical Engineers Interim Supplement 19.5 on 
Instruments and Apparatus: Application, Part II of Fluid Meters, 6th 
edition (1971),'' chapter 4 (incorporated by reference, see Sec. 60.17) 
shall be followed for design, construction, installation, calibration, 
and use of nozzles and orifices except as specified in (h)(6)(iii) of 
this section.
    (iii) Measurement devices such as flow nozzles and orifices are not 
required to be recalibrated after they are installed.
    (iv) All signal conversion elements associated with steam (or 
feedwater flow) measurements must be calibrated according to the 
manufacturer's instructions before each dioxin/furan compliance and 
performance test, and at least once per year.

[[Page 144]]

    (v) The owner or operator of an affected facility without heat 
recovery shall:
    (A) [Reserved]
    (7) To determine compliance with the maximum particulate matter 
control device temperature requirements under Sec. 60.56a(c), the owner 
or operator of an affected facility shall install, calibrate, maintain, 
and operate a device for measuring temperature of the flue gas stream at 
the inlet to the final particulate matter control device on a continuous 
basis and record the output of the device. Temperature shall be 
calculated in 4-hour block arithmetic averages.
    (8) Maximum demonstrated MWC unit load shall be determined during 
the initial compliance test for dioxins/furans and each subsequent 
performance test during which compliance with the dioxin/furan emission 
limit under Sec. 60.53a is achieved. Maximum demonstrated MWC unit load 
shall be the maximum 4-hour arithmetic average load achieved during the 
most recent test during which compliance with the dioxin/furan limit was 
achieved.
    (9) The maximum demonstrated particulate matter control device 
temperature shall be determined during the initial compliance test for 
dioxins/furans and each subsequent performance test during which 
compliance with the dioxin/furan emission limit under Sec. 60.53a is 
achieved. Maximum demonstrated particulate matter control device 
temperature shall be the maximum 4-hour arithmetic average temperature 
achieved at the final particulate matter control device inlet during the 
most recent test during which compliance with the dioxin/furan limit was 
achieved.
    (10) At a minimum, valid CEMS data for carbon monoxide, steam or 
feedwater flow, and particulate matter control device inlet temperature 
shall be obtained 75 percent of the hours per day for 75 percent of the 
days per month the affected facility is operated and combusting MSW.
    (11) All valid data must be used in calculating the parameters 
specified under paragraph (h) of this section even if the minimum data 
requirements of paragraph (h)(10) of this section are not met.
    (12) Quarterly accuracy determinations and daily calibration drift 
tests for carbon monoxide CEMS shall be performed in accordance with 
Procedure 1 (appendix F).
    (i) [Reserved]
    (j) The following procedures shall be used for calculating MWC unit 
capacity as defined under Sec. 60.51a:
    (1) For MWC units capable of combusting MSW continuously for a 24-
hour period, MWC unit capacity, in megagrams per day (tons per day) of 
MSW combusted, shall be calculated based on 24 hours of operation at the 
maximum design charging rate. The design heating values under paragraph 
(j)(4) of this section shall be used in calculating the design charging 
rate.
    (2) For batch MWC units, MWC unit capacity, in megagrams per day 
(tons per day) of MSW combusted, shall be calculated as the maximum 
design amount of MSW that can be charged per batch multiplied by the 
maximum number of batches that could be processed in a 24-hour period. 
The maximum number of batches that could be processed in a 24-hour 
period is calculated as 24 hours divided by the design number of hours 
required to process one batch of MSW, and may include fractional 
batches.\1\ The design heating values under paragraph (j)(4) of this 
section shall be used in calculating the MWC unit capacity in megagrams 
per day (tons per day) of MSW.
---------------------------------------------------------------------------

    \1\ For example, if one batch requires 16 hours, then 24/16, or 1.5 
batches, could be combusted in a 24-hour period.
---------------------------------------------------------------------------

    (3) [Reserved]
    (4) The MWC unit capacity shall be calculated using a design heating 
value of 10,500 kilojoules per kilogram (4,500 British thermal units per 
pound) for all MSW.
[56 FR 5507, Feb. 11, 1991, as amended at 60 FR 65387, Dec. 19, 1995]



Sec. 60.59a  Reporting and recordkeeping requirements.

    (a) The owner or operator of an affected facility located at an MWC 
plant with a capacity greater than 225 megagrams per day (250 tons per 
day) shall provide notification of intent to construct and of planned 
initial start-up date and the type(s) of fuels that

[[Page 145]]

they plan to combust in the affected facility. The MWC unit capacity and 
MWC plant capacity and supporting capacity calculations shall be 
provided at the time of the notification of construction.
    (b) The owner or operator of an affected facility located within a 
small or large MWC plant and subject to the standards under Sec. 60.52a, 
Sec. 60.53a, Sec. 60.54a, Sec. 60.55a, Sec. 60.56a, or Sec. 60.57a shall 
maintain records of the following information for each affected facility 
for a period of at least 2 years:
    (1) Calendar date.
    (2) The emission rates and parameters measured using CEMS as 
specified under (b)(2) (i) and (ii) of this section:
    (i) The following measurements shall be recorded in computer-
readable format and on paper:
    (A) All 6-minute average opacity levels required under 
Sec. 60.58a(b).
    (B) All 1 hour average sulfur dioxide emission rates at the inlet 
and outlet of the acid gas control device if compliance is based on a 
percent reduction, or at the outlet only if compliance is based on the 
outlet emission limit, as specified under Sec. 60.58a(e).
    (C) All 1-hour average nitrogen oxides emission rates as specified 
under Sec. 60.58a(g).
    (D) All 1-hour average carbon monoxide emission rates, MWC unit load 
measurements, and particulate matter control device inlet temperatures 
as specified under Sec. 60.58a(h).
    (ii) The following average rates shall be computed and recorded:
    (A) All 24-hour daily geometric average percent reductions in sulfur 
dioxide emissions and all 24-hour daily geometric average sulfur dioxide 
emission rates as specified under Sec. 60.58a(e).
    (B) All 24-hour daily arithmetic average nitrogen oxides emission 
rates as specified under Sec. 60.58a(g).
    (C) All 4-hour block or 24-hour daily arithmetic average carbon 
monoxide emission rates, as applicable, as specified under 
Sec. 60.58a(h).
    (D) All 4-hour block arithmetic average MWC unit load levels and 
particulate matter control device inlet temperatures as specified under 
Sec. 60.58a(h).
    (3) Identification of the operating days when any of the average 
emission rates, percent reductions, or operating parameters specified 
under paragraph (b)(2)(ii) of this section or the opacity level exceeded 
the applicable limits, with reasons for such exceedances as well as a 
description of corrective actions taken.
    (4) Identification of operating days for which the minimum number of 
hours of sulfur dioxide or nitrogen oxides emissions or operational data 
(carbon monoxide emissions, unit load, particulate matter control device 
temperature) have not been obtained, including reasons for not obtaining 
sufficient data and a description of corrective actions taken.
    (5) Identification of the times when sulfur dioxide or nitrogen 
oxides emission or operational data (carbon monoxide emissions, unit 
load, particulate matter control device temperature) have been excluded 
from the calculation of average emission rates or parameters and the 
reasons for excluding data.
    (6) The results of daily sulfur dioxide, nitrogen oxides, and carbon 
monoxide CEMS drift tests and accuracy assessments as required under 
appendix F, Procedure 1.
    (7) The results of all annual performance tests conducted to 
determine compliance with the particulate matter, dioxin/furan and 
hydrogen chloride limits. For all annual dioxin/furan tests, the maximum 
demonstrated MWC unit load and maximum demonstrated particulate matter 
control device temperature shall be recorded along with supporting 
calculations.
    (8)--(15) [Reserved]
    (c) Following the initial compliance test as required under 
Sec. Sec. 60.8 and 60.58a, the owner or operator of an affected facility 
located within a large MWC plant shall submit the initial compliance 
test data, the performance evaluation of the CEMS using the applicable 
performance specifications in appendix B, and the maximum demonstrated 
MWC unit load and maximum demonstrated particulate matter control device 
temperature established during the dioxin/furan compliance test.
    (d) [Reserved]
    (e) The owner or operator of an affected facility located within a 
large MWC plant shall submit quarterly

[[Page 146]]

compliance reports for sulfur dioxide, nitrogen oxide (if applicable), 
carbon monoxide, load level, and particulate matter control device 
temperature to the Administrator containing the information recorded 
under paragraphs (b)(1), (2)(ii), (3), (4), (5), and (6) of this section 
for each pollutant or parameter. The hourly average values recorded 
under paragraph (b)(2)(i) of this section are not required to be 
included in the quarterly reports. Such reports shall be postmarked no 
later than the 30th day following the end of each calendar quarter.
    (f) The owner or operator of an affected facility located within a 
large MWC plant shall submit quarterly excess emission reports, as 
applicable, for opacity. The quarterly excess emission reports shall 
include all information recorded under paragraph (b)(3) of this section 
which pertains to opacity and a listing of the 6-minute average opacity 
levels recorded under paragraph (b)(2)(i)(A) of this section for all 
periods when such 6-minute average levels exceeded the opacity limit 
under Sec. 60.52a. The quarterly report shall also list the percent of 
the affected facility operating time for the calendar quarter that the 
opacity CEMS was operating and collecting valid data. Such excess 
emission reports shall be postmarked no later than the 30th day 
following the end of each calendar quarter.
    (g) The owner or operator of an affected facility located within a 
large MWC plant shall submit reports to the Administrator of all annual 
performance tests for particulate matter, dioxin/furan, and hydrogen 
chloride as recorded under paragraph (b)(7) of this section, as 
applicable, from the affected facility. For each annual dioxin/furan 
compliance test, the maximum demonstrated MWC unit load and maximum 
demonstrated particulate matter control device temperature shall be 
reported. Such reports shall be submitted when available and in no case 
later than the date of required submittal of the quarterly report 
specified under paragraph (e) of this section covering the calendar 
quarter following the quarter during which the test was conducted.
    (h) [Reserved]
    (i) Records of CEMS data for opacity, sulfur dioxide, nitrogen 
oxides, and carbon monoxide, load level data, and particulate matter 
control device temperature data shall be maintained for at least 2 years 
after date of recordation and be made available for inspection upon 
request.
    (j) Records showing the names of persons who have completed review 
of the operating manual, including the date of the initial review and 
all subsequent annual reviews, shall be maintained for at least 2 years 
after date of review and be made available for inspection upon request.
[56 FR 5507, Feb. 11, 1991, as amended at 60 FR 65387, Dec. 19, 1995]



     Subpart Eb--Standards of Performance for Large Municipal Waste 
Combustors for Which Construction is Commenced After September 20, 1994 
or for Which Modification or Reconstruction is Commenced After June 19, 
                                  1996

    Source: 60 FR 65419, Dec. 19, 1995, unless otherwise noted.



Sec. 60.50b  Applicability and delegation of authority.

    (a) The affected facility to which this subpart applies is each 
municipal waste combustor unit with a combustion capacity greater than 
250 tons per day of municipal solid waste for which construction is 
commenced after September 20, 1994 or for which modification or 
reconstruction is commenced after June 19, 1996.
    (b) Any waste combustion unit that is capable of combusting more 
than 250 tons per day of municipal solid waste and is subject to a 
federally enforceable permit limiting the maximum amount of municipal 
solid waste that may be combusted in the unit to less than or equal to 
11 tons per day is not subject to this subpart if the owner or operator:
    (1) Notifies the EPA Administrator of an exemption claim;
    (2) Provides a copy of the federally enforceable permit that limits 
the firing of municipal solid waste to less than 11 tons per day; and

[[Page 147]]

    (3) Keeps records of the amount of municipal solid waste fired on a 
daily basis.
    (c) An affected facility to which this subpart applies is not 
subject to subpart E or Ea of this part.
    (d) Physical or operational changes made to an existing municipal 
waste combustor unit primarily for the purpose of complying with 
emission guidelines under subpart Cb are not considered a modification 
or reconstruction and do not result in an existing municipal waste 
combustor unit becoming subject to this subpart.
    (e) A qualifying small power production facility, as defined in 
section 3(17)(C) of the Federal Power Act (16 U.S.C. 796(17)(C)), that 
burns homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy is 
not subject to this subpart if the owner or operator of the facility 
notifies the EPA Administrator of this exemption and provides data 
documenting that the facility qualifies for this exemption.
    (f) A qualifying cogeneration facility, as defined in section 
3(18)(B) of the Federal Power Act (16 U.S.C. 796(18)(B)), that burns 
homogeneous waste (such as automotive tires or used oil, but not 
including refuse-derived fuel) for the production of electric energy and 
steam or forms of useful energy (such as heat) that are used for 
industrial, commercial, heating, or cooling purposes, is not subject to 
this subpart if the owner or operator of the facility notifies the EPA 
Administrator of this exemption and provides data documenting that the 
facility qualifies for this exemption.
    (g) Any unit combusting a single-item waste stream of tires is not 
subject to this subpart if the owner or operator of the unit:
    (1) Notifies the EPA Administrator of an exemption claim; and
    (2) [Reserved]
    (3) Provides data documenting that the unit qualifies for this 
exemption.
    (h) Any unit required to have a permit under section 3005 of the 
Solid Waste Disposal Act is not subject to this subpart.
    (i) Any materials recovery facility (including primary or secondary 
smelters) that combusts waste for the primary purpose of recovering 
metals is not subject to this subpart.
    (j) Any cofired combustor, as defined under Sec. 60.51b, that meets 
the capacity specifications in paragraph (a) of this section is not 
subject to this subpart if the owner or operator of the cofired 
combustor:
    (1) Notifies the EPA Administrator of an exemption claim;
    (2) Provides a copy of the federally enforceable permit (specified 
in the definition of cofired combustor in this section); and
    (3) Keeps a record on a calendar quarter basis of the weight of 
municipal solid waste combusted at the cofired combustor and the weight 
of all other fuels combusted at the cofired combustor.
    (k) Air curtain incinerators, as defined under Sec. 60.51b, located 
at a plant that meet the capacity specifications in paragraph (a) of 
this section and that combust a fuel stream composed of 100 percent yard 
waste are exempt from all provisions of this subpart except the opacity 
limit under Sec. 60.56b, the testing procedures under Sec. 60.58b(l), 
and the reporting and recordkeeping provisions under Sec. 60.59b (e) and 
(i).
    (l) Air curtain incinerators located at plants that meet the 
capacity specifications in paragraph (a) of this section combusting 
municipal solid waste other than yard waste are subject to all 
provisions of this subpart.
    (m) Pyrolysis/combustion units that are an integrated part of a 
plastics/rubber recycling unit (as defined in Sec. 60.51b) are not 
subject to this subpart if the owner or operator of the plastics/rubber 
recycling unit keeps records of the weight of plastics, rubber, and/or 
rubber tires processed on a calendar quarter basis; the weight of 
chemical plant feedstocks and petroleum refinery feedstocks produced and 
marketed on a calendar quarter basis; and the name and address of the 
purchaser of the feedstocks. The combustion of gasoline, diesel fuel, 
jet fuel, fuel oils, residual oil, refinery gas, petroleum coke, 
liquified petroleum gas, propane, or butane produced by chemical plants

[[Page 148]]

or petroleum refineries that use feedstocks produced by plastics/rubber 
recycling units are not subject to this subpart.
    (n) The following authorities shall be retained by the Administrator 
and not transferred to a State: None.
    (o) This subpart shall become effective June 19, 1996.
    (p) Cement kilns firing municipal solid waste are not subject to 
this subpart.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 
1997]



Sec. 60.51b  Definitions.

    Air curtain incinerator means an incinerator that operates by 
forcefully projecting a curtain of air across an open chamber or pit in 
which burning occurs. Incinerators of this type can be constructed above 
or below ground and with or without refractory walls and floor.
    Batch municipal waste combustor means a municipal waste combustor 
unit designed so that it cannot combust municipal solid waste 
continuously 24 hours per day because the design does not allow waste to 
be fed to the unit or ash to be removed while combustion is occurring.
    Bubbling fluidized bed combustor means a fluidized bed combustor in 
which the majority of the bed material remains in a fluidized state in 
the primary combustion zone.
    Calendar quarter means a consecutive 3-month period (nonoverlapping) 
beginning on January 1, April 1, July 1, and October 1.
    Calendar year means the period including 365 days starting January 1 
and ending on December 31.
    Chief facility operator means the person in direct charge and 
control of the operation of a municipal waste combustor and who is 
responsible for daily onsite supervision, technical direction, 
management, and overall performance of the facility.
    Circulating fluidized bed combustor means a fluidized bed combustor 
in which the majority of the fluidized bed material is carried out of 
the primary combustion zone and is transported back to the primary zone 
through a recirculation loop.
    Clean wood means untreated wood or untreated wood products including 
clean untreated lumber, tree stumps (whole or chipped), and tree limbs 
(whole or chipped). Clean wood does not include yard waste, which is 
defined elsewhere in this section, or construction, renovation, and 
demolition wastes (including but not limited to railroad ties and 
telephone poles), which are exempt from the definition of municipal 
solid waste in this section.
    Cofired combustor means a unit combusting municipal solid waste with 
nonmunicipal solid waste fuel (e.g., coal, industrial process waste) and 
subject to a federally enforceable permit limiting the unit to 
combusting a fuel feed stream, 30 percent or less of the weight of which 
is comprised, in aggregate, of municipal solid waste as measured on a 
calendar quarter basis.
    Continuous emission monitoring system means a monitoring system for 
continuously measuring the emissions of a pollutant from an affected 
facility.
    Dioxin/furan means tetra- through octa- chlorinated dibenzo-p-
dioxins and dibenzofurans.
    Federally enforceable means all limitations and conditions that are 
enforceable by the Administrator including the requirements of 40 CFR 
parts 60, 61, and 63, requirements within any applicable State 
implementation plan, and any permit requirements established under 40 
CFR 52.21 or under 40 CFR 51.18 and 40 CFR 51.24.
    First calendar half means the period starting on January 1 and 
ending on June 30 in any year.
    Four-hour block average or 4-hour block average means the average of 
all hourly emission concentrations when the affected facility is 
operating and combusting municipal solid waste measured over 4-hour 
periods of time from 12:00 midnight to 4 a.m., 4 a.m. to 8 a.m., 8 a.m. 
to 12:00 noon, 12:00 noon to 4 p.m., 4 p.m. to 8 p.m., and 8 p.m. to 
12:00 midnight.
    Mass burn refractory municipal waste combustor means a field-erected 
combustor that combusts municipal solid waste in a refractory wall 
furnace. Unless otherwise specified, this includes combustors with a 
cylindrical rotary refractory wall furnace.

[[Page 149]]

    Mass burn rotary waterwall municipal waste combustor means a field-
erected combustor that combusts municipal solid waste in a cylindrical 
rotary waterwall furnace.
    Mass burn waterwall municipal waste combustor means a field-erected 
combustor that combusts municipal solid waste in a waterwall furnace.
    Materials separation plan means a plan that identifies both a goal 
and an approach to separate certain components of municipal solid waste 
for a given service area in order to make the separated materials 
available for recycling. A materials separation plan may include 
elements such as dropoff facilities, buy-back or deposit-return 
incentives, curbside pickup programs, or centralized mechanical 
separation systems. A materials separation plan may include different 
goals or approaches for different subareas in the service area, and may 
include no materials separation activities for certain subareas or, if 
warranted, an entire service area.
    Maximum demonstrated municipal waste combustor unit load means the 
highest 4-hour arithmetic average municipal waste combustor unit load 
achieved during four consecutive hours during the most recent dioxin/
furan performance test demonstrating compliance with the applicable 
limit for municipal waste combustor organics specified under 
Sec. 60.52b(c).
    Maximum demonstrated particulate matter control device temperature 
means the highest 4-hour arithmetic average flue gas temperature 
measured at the particulate matter control device inlet during four 
consecutive hours during the most recent dioxin/furan performance test 
demonstrating compliance with the applicable limit for municipal waste 
combustor organics specified under Sec. 60.52b(c).
    Modification or modified municipal waste combustor unit means a 
municipal waste combustor unit to which changes have been made after 
June 19, 1996 if the cumulative cost of the changes, over the life of 
the unit, exceed 50 percent of the original cost of construction and 
installation of the unit (not including the cost of any land purchased 
in connection with such construction or installation) updated to current 
costs; or any physical change in the municipal waste combustor unit or 
change in the method of operation of the municipal waste combustor unit 
increases the amount of any air pollutant emitted by the unit for which 
standards have been established under section 129 or section 111. 
Increases in the amount of any air pollutant emitted by the municipal 
waste combustor unit are determined at 100-percent physical load 
capability and downstream of all air pollution control devices, with no 
consideration given for load restrictions based on permits or other 
nonphysical operational restrictions.
    Modular excess-air municipal waste combustor means a combustor that 
combusts municipal solid waste and that is not field-erected and has 
multiple combustion chambers, all of which are designed to operate at 
conditions with combustion air amounts in excess of theoretical air 
requirements.
    Modular starved-air municipal waste combustor means a combustor that 
combusts municipal solid waste and that is not field-erected and has 
multiple combustion chambers in which the primary combustion chamber is 
designed to operate at substoichiometric conditions.
    Municipal solid waste or municipal-type solid waste or MSW means 
household, commercial/retail, and/or institutional waste. Household 
waste includes material discarded by single and multiple residential 
dwellings, hotels, motels, and other similar permanent or temporary 
housing establishments or facilities. Commercial/retail waste includes 
material discarded by stores, offices, restaurants, warehouses, 
nonmanufacturing activities at industrial facilities, and other similar 
establishments or facilities. Institutional waste includes material 
discarded by schools, nonmedical waste discarded by hospitals, material 
discarded by nonmanufacturing activities at prisons and government 
facilities, and material discarded by other similar establishments or 
facilities. Household, commercial/retail, and institutional waste does 
not include used oil; sewage sludge; wood pallets; construction, 
renovation, and demolition wastes (which includes but

[[Page 150]]

is not limited to railroad ties and telephone poles); clean wood; 
industrial process or manufacturing wastes; medical waste; or motor 
vehicles (including motor vehicle parts or vehicle fluff). Household, 
commercial/retail, and institutional wastes include:
    (1) Yard waste;
    (2) Refuse-derived fuel; and
    (3) Motor vehicle maintenance materials limited to vehicle batteries 
and tires except as specified in Sec. 60.50b(g).
    Municipal waste combustor, MWC, or municipal waste combustor unit: 
(1) Means any setting or equipment that combusts solid, liquid, or 
gasified municipal solid waste including, but not limited to, field-
erected incinerators (with or without heat recovery), modular 
incinerators (starved-air or excess-air), boilers (i.e., steam 
generating units), furnaces (whether suspension-fired, grate-fired, 
mass-fired, air curtain incinerators, or fluidized bed-fired), and 
pyrolysis/combustion units. Municipal waste combustors do not include 
pyrolysis/combustion units located at a plastics/rubber recycling unit 
(as specified in Sec. 60.50b(m)). Municipal waste combustors do not 
include cement kilns firing municipal solid waste (as specified in 
Sec. 60.50b(p)). Municipal waste combustors do not include internal 
combustion engines, gas turbines, or other combustion devices that 
combust landfill gases collected by landfill gas collection systems.
    (2) The boundaries of a municipal solid waste combustor are defined 
as follows. The municipal waste combustor unit includes, but is not 
limited to, the municipal solid waste fuel feed system, grate system, 
flue gas system, bottom ash system, and the combustor water system. The 
municipal waste combustor boundary starts at the municipal solid waste 
pit or hopper and extends through:
    (i) The combustor flue gas system, which ends immediately following 
the heat recovery equipment or, if there is no heat recovery equipment, 
immediately following the combustion chamber,
    (ii) The combustor bottom ash system, which ends at the truck 
loading station or similar ash handling equipment that transfer the ash 
to final disposal, including all ash handling systems that are connected 
to the bottom ash handling system; and
    (iii) The combustor water system, which starts at the feed water 
pump and ends at the piping exiting the steam drum or superheater.
    (3) The municipal waste combustor unit does not include air 
pollution control equipment, the stack, water treatment equipment, or 
the turbine-generator set.
    Municipal waste combustor acid gases means all acid gases emitted in 
the exhaust gases from municipal waste combustor units including, but 
not limited to, sulfur dioxide and hydrogen chloride gases.
    Municipal waste combustor metals means metals and metal compounds 
emitted in the exhaust gases from municipal waste combustor units.
    Municipal waste combustor organics means organic compounds emitted 
in the exhaust gases from municipal waste combustor units and includes 
tetra-through octa- chlorinated dibenzo-p-dioxins and dibenzofurans.
    Municipal waste combustor plant means one or more affected 
facilities (as defined in Sec. 60.50b) at the same location.
    Municipal waste combustor unit capacity means the maximum charging 
rate of a municipal waste combustor unit expressed in tons per day of 
municipal solid waste combusted, calculated according to the procedures 
under Sec. 60.58b(j). Section 60.58b(j) includes procedures for 
determining municipal waste combustor unit capacity for continuous and 
batch feed municipal waste combustors.
    Municipal waste combustor unit load means the steam load of the 
municipal waste combustor unit measured as specified in 
Sec. 60.58b(i)(6).
    Particulate matter means total particulate matter emitted from 
municipal waste combustor units as measured by EPA Reference Method 5 
(see Sec. 60.58b(c)).
    Plastics/rubber recycling unit means an integrated processing unit 
where plastics, rubber, and/or rubber tires are the only feed materials 
(incidental contaminants may be included in the feed materials) and they 
are processed into a chemical plant feedstock or petroleum refinery 
feedstock, where the

[[Page 151]]

feedstock is marketed to and used by a chemical plant or petroleum 
refinery as input feedstock. The combined weight of the chemical plant 
feedstock and petroleum refinery feedstock produced by the plastics/
rubber recycling unit on a calendar quarter basis shall be more than 70 
percent of the combined weight of the plastics, rubber, and rubber tires 
processed by the plastics/rubber recycling unit on a calendar quarter 
basis. The plastics, rubber, and/or rubber tire feed materials to the 
plastics/rubber recycling unit may originate from the separation or 
diversion of plastics, rubber, or rubber tires from MSW or industrial 
solid waste, and may include manufacturing scraps, trimmings, and off-
specification plastics, rubber, and rubber tire discards. The plastics, 
rubber, and rubber tire feed materials to the plastics/rubber recycling 
unit may contain incidental contaminants (e.g., paper labels on plastic 
bottles, metal rings on plastic bottle caps, etc.).
    Potential hydrogen chloride emission concentration means the 
hydrogen chloride emission concentration that would occur from 
combustion of municipal solid waste in the absence of any emission 
controls for municipal waste combustor acid gases.
    Potential mercury emission concentration means the mercury emission 
concentration that would occur from combustion of municipal solid waste 
in the absence of any mercury emissions control.
    Potential sulfur dioxide emissions means the sulfur dioxide emission 
concentration that would occur from combustion of municipal solid waste 
in the absence of any emission controls for municipal waste combustor 
acid gases.
    Pulverized coal/refuse-derived fuel mixed fuel-fired combustor means 
a combustor that fires coal and refuse-derived fuel simultaneously, in 
which pulverized coal is introduced into an air stream that carries the 
coal to the combustion chamber of the unit where it is fired in 
suspension. This includes both conventional pulverized coal and 
micropulverized coal.
    Pyrolysis/combustion unit means a unit that produces gases, liquids, 
or solids through the heating of municipal solid waste, and the gases, 
liquids, or solids produced are combusted and emissions vented to the 
atmosphere.
    Reconstruction means rebuilding a municipal waste combustor unit for 
which the reconstruction commenced after June 19, 1996, and the 
cumulative costs of the construction over the life of the unit exceed 50 
percent of the original cost of construction and installation of the 
unit (not including any cost of land purchased in connection with such 
construction or installation) updated to current costs (current 
dollars).
    Refractory unit or refractory wall furnace means a combustion unit 
having no energy recovery (e.g., via a waterwall) in the furnace (i.e., 
radiant heat transfer section) of the combustor.
    Refuse-derived fuel means a type of municipal solid waste produced 
by processing municipal solid waste through shredding and size 
classification. This includes all classes of refuse-derived fuel 
including low-density fluff refuse-derived fuel through densified 
refuse-derived fuel and pelletized refuse-derived fuel.
    Refuse-derived fuel stoker means a steam generating unit that 
combusts refuse-derived fuel in a semisuspension firing mode using air-
fed distributors.
    Same location means the same or contiguous property that is under 
common ownership or control including properties that are separated only 
by a street, road, highway, or other public right-of-way. Common 
ownership or control includes properties that are owned, leased, or 
operated by the same entity, parent entity, subsidiary, subdivision, or 
any combination thereof including any municipality or other governmental 
unit, or any quasi-governmental authority (e.g., a public utility 
district or regional waste disposal authority).
    Second calendar half means the period starting July 1 and ending on 
December 31 in any year.
    Shift supervisor means the person who is in direct charge and 
control of the operation of a municipal waste combustor and who is 
responsible for onsite supervision, technical direction, management, and 
overall performance of the facility during an assigned shift.

[[Page 152]]

    Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 
means a combustor that fires coal and refuse-derived fuel 
simultaneously, in which coal is introduced to the combustion zone by a 
mechanism that throws the fuel onto a grate from above. Combustion takes 
place both in suspension and on the grate.
    Standard conditions means a temperature of 
20+ C and a pressure of 101.3 kilopascals.
    Total mass dioxin/furan or total mass means the total mass of tetra- 
through octa- chlorinated dibenzo-p-dioxins and dibenzofurans, as 
determined using EPA Reference Method 23 and the procedures specified 
under Sec. 60.58b(g).
    Twenty-four hour daily average or 24-hour daily average means either 
the arithmetic mean or geometric mean (as specified) of all hourly 
emission concentrations when the affected facility is operating and 
combusting municipal solid waste measured over a 24-hour period between 
12:00 midnight and the following midnight.
    Untreated lumber means wood or wood products that have been cut or 
shaped and include wet, air-dried, and kiln-dried wood products. 
Untreated lumber does not include wood products that have been painted, 
pigment-stained, or ``pressure-treated.'' Pressure-treating compounds 
include, but are not limited to, chromate copper arsenate, 
pentachlorophenol, and creosote.
    Waterwall furnace means a combustion unit having energy (heat) 
recovery in the furnace (i.e., radiant heat transfer section) of the 
combustor.
    Yard waste means grass, grass clippings, bushes, shrubs, and 
clippings from bushes and shrubs that are generated by residential, 
commercial/retail, institutional, and/or industrial sources as part of 
maintenance activities associated with yards or other private or public 
lands. Yard waste does not include construction, renovation, and 
demolition wastes, which are exempt from the definition of municipal 
solid waste in this section. Yard waste does not include clean wood, 
which is exempt from the definition of municipal solid waste in this 
section.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45126, Aug. 25, 
1997]



Sec. 60.52b  Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    (a) The limits for municipal waste combustor metals are specified in 
paragraphs (a)(1) through (a)(5) of this section.
    (1) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain particulate matter in excess of 24 milligrams per dry 
standard cubic meter, corrected to 7 percent oxygen.
    (2) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that exhibit greater than 10 percent opacity (6-minute average).
    (3) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain cadmium in excess of 0.020 milligrams per dry standard 
cubic meter, corrected to 7 percent oxygen.
    (4) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from the affected facility any gases 
that contain lead in excess of 0.20 milligrams per dry standard cubic 
meter, corrected to 7 percent oxygen.
    (5) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from the affected facility any gases 
that contain mercury in excess of 0.080 milligrams per dry

[[Page 153]]

standard cubic meter or 15 percent of the potential mercury emission 
concentration (85-percent reduction by weight), corrected to 7 percent 
oxygen, whichever is less stringent.
    (b) The limits for municipal waste combustor acid gases are 
specified in paragraphs (b)(1) and (b)(2) of this section.
    (1) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain sulfur dioxide in excess of 30 parts per million by volume 
or 20 percent of the potential sulfur dioxide emission concentration 
(80-percent reduction by weight or volume), corrected to 7 percent 
oxygen (dry basis), whichever is less stringent. The averaging time is 
specified under Sec. 60.58b(e).
    (2) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain hydrogen chloride in excess of 25 parts per million by 
volume or 5 percent of the potential hydrogen chloride emission 
concentration (95-percent reduction by weight or volume), corrected to 7 
percent oxygen (dry basis), whichever is less stringent.
    (c) The limits for municipal waste combustor organics are specified 
in paragraphs (c)(1) and (c)(2) of this section.
    (1) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility for which 
construction, modification or reconstruction commences on or before 
November 20, 1997 shall cause to be discharged into the atmosphere from 
that affected facility any gases that contain dioxin/furan emissions 
that exceed 30 nanograms per dry standard cubic meter (total mass), 
corrected to 7 percent oxygen, for the first 3 years following the date 
of initial startup. After the first 3 years following the date of 
initial startup, no owner or operator shall cause to be discharged into 
the atmosphere from that affected facility any gases that contain 
dioxin/furan total mass emissions that exceed 13 nanograms per dry 
standard cubic meter (total mass), corrected to 7 percent oxygen.
    (2) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility for which 
construction, modification, or reconstruction commences after November 
20, 1997 shall cause to be discharged into the atmosphere from that 
affected facility any gases that contain dioxin/furan total mass 
emissions that exceed 13 nanograms per dry standard cubic meter (total 
mass), corrected to 7 percent oxygen.
    (d) The limits for nitrogen oxides are specified in paragraphs 
(d)(1) and (d)(2) of this section.
    (1) During the first year of operation after the date on which the 
initial performance test is completed or is required to be completed 
under Sec. 60.8 of subpart A of this part, no owner or operator of an 
affected facility shall cause to be discharged into the atmosphere from 
that affected facility any gases that contain nitrogen oxides in excess 
of 180 parts per million by volume, corrected to 7 percent oxygen (dry 
basis). The averaging time is specified under Sec. 60.58b(h).
    (2) After the first year of operation following the date on which 
the initial performance test is completed or is required to be completed 
under Sec. 60.8 of subpart A of this part, no owner or operator of an 
affected facility shall cause to be discharged into the atmosphere from 
that affected facility any gases that contain nitrogen oxides in excess 
of 150 parts per million by volume, corrected to 7 percent oxygen (dry 
basis). The averaging time is specified under Sec. 60.58b(h).
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45126, Aug. 25, 
1997]

[[Page 154]]



Sec. 60.53b  Standards for municipal waste combustor operating practices.

    (a) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain carbon monoxide in excess of the emission limits specified 
in table 1 of this subpart.

         Table 1.--Municipal Waste Combustor Operating Standards
------------------------------------------------------------------------
                                       Carbon monoxide
                                       emission limit
Municipal waste combustor technology     (parts per      Averaging time
                                         million by         (hours) b
                                          volume) a
------------------------------------------------------------------------
Mass burn waterwall.................               100                 4
Mass burn refractory................               100                 4
Mass burn rotary waterwall..........               100                24
Modular starved air.................                50                 4
Modular excess air..................                50                 4
Refuse-derived fuel stoker..........               150                24
Bubbling fluidized bed combustor....               100                 4
Circulating fluidized bed combustor.               100                 4
Pulverized coal/refuse-derived fuel
 mixed fuel-fired combustor.........               150                 4
Spreader stoker coal/refuse-derived
 fuel mixed fuel-fired combustor....               150                24
------------------------------------------------------------------------
a  Measured at the combustor outlet in conjunction with a measurement of
  oxygen concentration, corrected to 7 percent oxygen (dry basis). The
  averaging times are specified in greater detail in Sec.  60.58b(i).
b  Averaging times are 4-hour or 24-hour block averages.

    (b) No owner or operator of an affected facility shall cause such 
facility to operate at a load level greater than 110 percent of the 
maximum demonstrated municipal waste combustor unit load as defined in 
Sec. 60.51b, except as specified in paragraphs (b)(1) and (b)(2) of this 
section. The averaging time is specified under Sec. 60.58b(i).
    (1) During the annual dioxin/furan performance test and the 2 weeks 
preceding the annual dioxin/furan performance test, no municipal waste 
combustor unit load limit is applicable.
    (2) The municipal waste combustor unit load limit may be waived in 
accordance with permission granted by the Administrator or delegated 
State regulatory authority for the purpose of evaluating system 
performance, testing new technology or control technologies, diagnostic 
testing, or related activities for the purpose of improving facility 
performance or advancing the state-of-the-art for controlling facility 
emissions.
    (c) No owner or operator of an affected facility shall cause such 
facility to operate at a temperature, measured at the particulate matter 
                                     control device inlet, exceeding 17 
+C above the maximum demonstrated particulate matter control device temperature as defined in Sec.  60.51b, except as specified in paragraphs (c)(1) and (c)(2) of this section. The averaging time is specified under Sec.  60.58b(i). The requirements specified in this paragraph apply to each particulate matter control device utilized at the affected facility.


    (1) During the annual dioxin/furan performance test and the 2 weeks 
preceding the annual dioxin/furan performance test, no particulate 
matter control device temperature limitations are applicable.
    (2) The particulate matter control device temperature limits may be 
waived in accordance with permission granted by the Administrator or 
delegated State regulatory authority for the purpose of evaluating 
system performance, testing new technology or control technologies, 
diagnostic testing, or related activities for the purpose of improving 
facility performance or advancing the state-of-the-art for controlling 
facility emissions.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]

[[Page 155]]



Sec. 60.54b  Standards for municipal waste combustor operator training and certification.

    (a) No later than the date 6 months after the date of startup of an 
affected facility or on December 19, 1996, whichever is later, each 
chief facility operator and shift supervisor shall obtain and maintain a 
current provisional operator certification from either the American 
Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference--
see Sec. 60.17 of subpart A of this part)] or a State certification 
program.
    (b) Not later than the date 6 months after the date of startup of an 
affected facility or on December 19, 1996, whichever is later, each 
chief facility operator and shift supervisor shall have completed full 
certification or shall have scheduled a full certification exam with 
either the American Society of Mechanical Engineers [QRO-1-1994 
(incorporated by reference--see Sec. 60.17 of subpart A of this part)] 
or a State certification program.
    (c) No owner or operator of an affected facility shall allow the 
facility to be operated at any time unless one of the following persons 
is on duty and at the affected facility: A fully certified chief 
facility operator, a provisionally certified chief facility operator who 
is scheduled to take the full certification exam according to the 
schedule specified in paragraph (b) of this section, a fully certified 
shift supervisor, or a provisionally certified shift supervisor who is 
scheduled to take the full certification exam according to the schedule 
specified in paragraph (b) of this section.
    (1) The requirement specified in paragraph (c) of this section shall 
take effect 6 months after the date of startup of the affected facility 
or on December 19, 1996, whichever is later.
    (2) If one of the persons listed in paragraph (c) of this section 
must leave the affected facility during their operating shift, a 
provisionally certified control room operator who is onsite at the 
affected facility may fulfill the requirement in paragraph (c) of this 
section.
    (d) All chief facility operators, shift supervisors, and control 
room operators at affected facilities must complete the EPA or State 
municipal waste combustor operator training course no later than the 
date 6 months after the date of startup of the affected facility or by 
December 19, 1996, whichever is later.
    (e) The owner or operator of an affected facility shall develop and 
update on a yearly basis a site-specific operating manual that shall, at 
a minimum, address the elements of municipal waste combustor unit 
operation specified in paragraphs (e)(1) through (e)(11) of this 
section.
    (1) A summary of the applicable standards under this subpart;
    (2) A description of basic combustion theory applicable to a 
municipal waste combustor unit;
    (3) Procedures for receiving, handling, and feeding municipal solid 
waste;
    (4) Municipal waste combustor unit startup, shutdown, and 
malfunction procedures;
    (5) Procedures for maintaining proper combustion air supply levels;
    (6) Procedures for operating the municipal waste combustor unit 
within the standards established under this subpart;
    (7) Procedures for responding to periodic upset or off-specification 
conditions;
    (8) Procedures for minimizing particulate matter carryover;
    (9) Procedures for handling ash;
    (10) Procedures for monitoring municipal waste combustor unit 
emissions; and
    (11) Reporting and recordkeeping procedures.
    (f) The owner or operator of an affected facility shall establish a 
training program to review the operating manual according to the 
schedule specified in paragraphs (f)(1) and (f)(2) of this section with 
each person who has responsibilities affecting the operation of an 
affected facility including, but not limited to, chief facility 
operators, shift supervisors, control room operators, ash handlers, 
maintenance personnel, and crane/load handlers.
    (1) Each person specified in paragraph (f) of this section shall 
undergo initial training no later than the date specified in paragraph 
(f)(1)(i), (f)(1)(ii), or (f)(1)(iii) of this section whichever is 
later.

[[Page 156]]

    (i) The date 6 months after the date of startup of the affected 
facility;
    (ii) The date prior to the day the person assumes responsibilities 
affecting municipal waste combustor unit operation; or
    (iii) December 19, 1996.
    (2) Annually, following the initial review required by paragraph 
(f)(1) of this section.
    (g) The operating manual required by paragraph (e) of this section 
shall be kept in a readily accessible location for all persons required 
to undergo training under paragraph (f) of this section. The operating 
manual and records of training shall be available for inspection by the 
EPA or its delegated enforcement agency upon request.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]



Sec. 60.55b  Standards for municipal waste combustor fugitive ash emissions.

    (a) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, no owner or operator of an affected facility shall cause to 
be discharged to the atmosphere visible emissions of combustion ash from 
an ash conveying system (including conveyor transfer points) in excess 
of 5 percent of the observation period (i.e., 9 minutes per 3-hour 
period), as determined by EPA Reference Method 22 observations as 
specified in Sec. 60.58b(k), except as provided in paragraphs (b) and 
(c) of this section.
    (b) The emission limit specified in paragraph (a) of this section 
does not cover visible emissions discharged inside buildings or 
enclosures of ash conveying systems; however, the emission limit 
specified in paragraph (a) of this section does cover visible emissions 
discharged to the atmosphere from buildings or enclosures of ash 
conveying systems.
    (c) The provisions specified in paragraph (a) of this section do not 
apply during maintenance and repair of ash conveying systems.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]



Sec. 60.56b  Standards for air curtain incinerators.

    On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, the owner or operator of an air curtain incinerator with the 
capacity to combust greater than 250 tons per day of municipal solid 
waste and that combusts a fuel feed stream composed of 100 percent yard 
waste and no other municipal solid waste materials shall at no time 
cause to be discharged into the atmosphere from that incinerator any 
gases that exhibit greater than 10-percent opacity (6-minute average), 
except that an opacity level of up to 35 percent (6-minute average) is 
permitted during startup periods during the first 30 minutes of 
operation of the unit.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]



Sec. 60.57b  Siting requirements.

    (a) The owner or operator of an affected facility for which the 
initial application for a construction permit under 40 CFR part 51, 
subpart I, or part 52, as applicable, is submitted after December 19, 
1995, shall prepare a materials separation plan, as defined in 
Sec. 60.51b, for the affected facility and its service area, and shall 
comply with the requirements specified in paragraphs (a)(1) through 
(a)(10) of this section. The initial application is defined as 
representing a good faith submittal for complying with the requirements 
under 40 CFR part 51, subpart I, or part 52, as applicable, as 
determined by the Administrator.
    (1) The owner or operator shall prepare a preliminary draft 
materials separation plan and shall make the plan available to the 
public as specified in paragraphs (a)(1)(i) and (a)(1)(ii) of this 
section.
    (i) The owner or operator shall distribute the preliminary draft 
materials separation plan to the principal public libraries in the area 
where the affected facility is to be constructed.
    (ii) The owner or operator shall publish a notification of a public 
meeting in the principal newspaper(s) serving the area where the 
affected facility is to be constructed and where the waste

[[Page 157]]

treated by the affected facility will primarily be collected. As a 
minimum, the notification shall include the information specified in 
paragraphs (a)(1)(ii)(A) through (a)(1)(ii)(D) of this section.
    (A) The date, time, and location of the public meeting.
    (B) The location of the public libraries where the preliminary draft 
materials separation plan may be found, including normal business hours 
of the libraries.
    (C) An agenda of the issues to be discussed at the public meeting.
    (D) The dates that the public comment period on the preliminary 
draft materials separation plan begins and ends.
    (2) The owner or operator shall conduct a public meeting, accept 
comments on the preliminary draft materials separation plan, and comply 
with the requirements specified in paragraphs (a)(2)(i) through 
(a)(2)(iv) of this section.
    (i) The public meeting shall be conducted in the county where the 
affected facility is to be located.
    (ii) The public meeting shall be scheduled to occur 30 days or more 
after making the preliminary draft materials separation plan available 
to the public as specified under paragraph (a)(1) of this section.
    (iii) Suggested issues to be addressed at the public meeting are 
listed in paragraphs (a)(2)(iii)(A) through (a)(2)(iii)(H) of this 
section.
    (A) The expected size of the service area for the affected facility.
    (B) The amount of waste generation anticipated for the service area.
    (C) The types and estimated amounts of materials proposed for 
separation.
    (D) The methods proposed for materials separation.
    (E) The amount of residual waste to be disposed.
    (F) Alternate disposal methods for handling the residual waste.
    (G) Identification of the location(s) where responses to public 
comment on the preliminary draft materials separation plan will be 
available for inspection, as specified in paragraphs (a)(3) and (a)(4) 
of this section.
    (H) Identification of the locations where the final draft materials 
separation plan will be available for inspection, as specified in 
paragraph (a)(7).
    (iv) Nothing in this section shall preclude an owner or operator 
from combining this public meeting with any other public meeting 
required as part of any other Federal, State, or local permit review 
process except the public meeting required under paragraph (b)(4) of 
this section.
    (3) Following the public meeting required by paragraph (a)(2) of 
this section, the owner or operator shall prepare responses to the 
comments received at the public meeting.
    (4) The owner or operator shall make the document summarizing 
responses to public comments available to the public (including 
distribution to the principal public libraries used to announce the 
meeting) in the service area where the affected facility is to be 
located.
    (5) The owner or operator shall prepare a final draft materials 
separation plan for the affected facility considering the public 
comments received at the public meeting.
    (6) As required under Sec. 60.59b(a), the owner or operator shall 
submit to the Administrator a copy of the notification of the public 
meeting, a transcript of the public meeting, the document summarizing 
responses to public comments, and copies of both the preliminary and 
final draft materials separation plans on or before the time the 
facility's application for a construction permit is submitted under 40 
CFR part 51, subpart I, or part 52, as applicable.
    (7) As part of the distribution of the siting analysis required 
under paragraph (b)(3) of this section, the owner or operator shall make 
the final draft materials separation plan required under paragraph 
(a)(5) of this section available to the public, as specified in 
paragraph (b)(3) of this section.
    (8) As part of the public meeting for review of the siting analysis 
required under paragraph (b)(4) of this section, the owner or operator 
shall address questions concerning the final draft materials separation 
plan required by paragraph (a)(5) of this section including discussion 
of how the final draft materials separation plan has changed from the 
preliminary draft materials separation plan that was discussed at

[[Page 158]]

the first public meeting required by paragraph (a)(2) of this section.
    (9) If the owner or operator receives any comments on the final 
draft materials separation plan during the public meeting required in 
paragraph (b)(4) of this section, the owner or operator shall respond to 
those comments in the document prepared in accordance with paragraph 
(b)(5) of this section.
    (10) The owner or operator shall prepare a final materials 
separation plan and shall submit, as required under 
Sec. 60.59b(b)(5)(ii), the final materials separation plan as part of 
the initial notification of construction.
    (b) The owner or operator of an affected facility for which the 
initial application for a construction permit under 40 CFR part 51, 
subpart I, or part 52, as applicable, is submitted after December 19, 
1995 shall prepare a siting analysis in accordance with paragraphs 
(b)(1) and (b)(2) of this section and shall comply with the requirements 
specified in paragraphs (b)(3) through (b)(7) of this section.
    (1) The siting analysis shall be an analysis of the impact of the 
affected facility on ambient air quality, visibility, soils, and 
vegetation.
    (2) The analysis shall consider air pollution control alternatives 
that minimize, on a site-specific basis, to the maximum extent 
practicable, potential risks to the public health or the environment.
    (3) The owner or operator shall make the siting analysis and final 
draft materials separation plan required by paragraph (a)(5) of this 
section available to the public as specified in paragraphs (b)(3)(i) and 
(b)(3)(ii) of this section.
    (i) The owner or operator shall distribute the siting analysis and 
final draft materials separation plan to the principal public libraries 
in the area where the affected facility is to be constructed.
    (ii) The owner or operator shall publish a notification of a public 
meeting in the principal newspaper(s) serving the area where the 
affected facility is to be constructed and where the waste treated by 
the affected facility will primarily be collected. As a minimum, the 
notification shall include the information specified in paragraphs 
(b)(3)(ii)(A) through (b)(3)(ii)(D) of this section.
    (A) The date, time, and location of the public meeting.
    (B) The location of the public libraries where the siting analyses 
and final draft materials separation plan may be found, including normal 
business hours.
    (C) An agenda of the issues to be discussed at the public meeting.
    (D) The dates that the public comment period on the siting analyses 
and final draft materials separation plan begins and ends.
    (4) The owner or operator shall conduct a public meeting and accept 
comments on the siting analysis and the final draft materials separation 
plan required under paragraph (a)(5) of this section. The public meeting 
shall be conducted in the county where the affected facility is to be 
located and shall be scheduled to occur 30 days or more after making the 
siting analysis available to the public as specified under paragraph 
(b)(3) of this section.
    (5) The owner or operator shall prepare responses to the comments on 
the siting analysis and the final draft materials separation plan that 
are received at the public meeting.
    (6) The owner or operator shall make the document summarizing 
responses to public comments available to the public (including 
distribution to all public libraries) in the service area where the 
affected facility is to be located.
    (7) As required under Sec. 60.59b(b)(5), the owner or operator shall 
submit a copy of the notification of the public meeting, a transcript of 
the public meeting, the document summarizing responses to public 
comments, and the siting analysis as part of the initial notification of 
construction.
    (c) The owner or operator of an affected facility for which 
construction is commenced after September 20, 1994 shall prepare a 
siting analysis in accordance with 40 CFR part 51, Subpart I, or part 
52, as applicable, and shall submit the siting analysis as part of the 
initial notification of construction.

[[Page 159]]

Affected facilities subject to paragraphs (a) and (b) of this section 
are not subject to this paragraph.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]



Sec. 60.58b  Compliance and performance testing.

    (a) The provisions for startup, shutdown, and malfunction are 
provided in paragraphs (a)(1) and (a)(2) of this section.
    (1) Except as provided by Sec. 60.56b, the standards under this 
subpart apply at all times except during periods of startup, shutdown, 
or malfunction. Duration of startup, shutdown, or malfunction periods 
are limited to 3 hours per occurrence.
    (i) The startup period commences when the affected facility begins 
the continuous burning of municipal solid waste and does not include any 
warmup period when the affected facility is combusting fossil fuel or 
other nonmunicipal solid waste fuel, and no municipal solid waste is 
being fed to the combustor.
    (ii) Continuous burning is the continuous, semicontinuous, or batch 
feeding of municipal solid waste for purposes of waste disposal, energy 
production, or providing heat to the combustion system in preparation 
for waste disposal or energy production. The use of municipal solid 
waste solely to provide thermal protection of the grate or hearth during 
the startup period when municipal solid waste is not being fed to the 
grate is not considered to be continuous burning.
    (2) The opacity limits for air curtain incinerators specified in 
Sec. 60.56b apply at all times as specified under Sec. 60.56b except 
during periods of malfunction. Duration of malfunction periods are 
limited to 3 hours per occurrence.
    (b) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous emission monitoring system 
and record the output of the system for measuring the oxygen or carbon 
dioxide content of the flue gas at each location where carbon monoxide, 
sulfur dioxide, or nitrogen oxides emissions are monitored and shall 
comply with the test procedures and test methods specified in paragraphs 
(b)(1) through (b)(7) of this section.
    (1) The span value of the oxygen (or carbon dioxide) monitor shall 
be 25 percent oxygen (or carbon dioxide).
    (2) The monitor shall be installed, evaluated, and operated in 
accordance with Sec. 60.13 of subpart A of this part.
    (3) The initial performance evaluation shall be completed no later 
than 180 days after the date of initial startup of the affected 
facility, as specified under Sec. 60.8 of subpart A of this part.
    (4) The monitor shall conform to Performance Specification 3 in 
appendix B of this part except for section 2.3 (relative accuracy 
requirement).
    (5) The quality assurance procedures of appendix F of this part 
except for section 5.1.1 (relative accuracy test audit) shall apply to 
the monitor.
    (6) If carbon dioxide is selected for use in diluent corrections, 
the relationship between oxygen and carbon dioxide levels shall be 
established during the initial performance test according to the 
procedures and methods specified in paragraphs (b)(6)(i) through 
(b)(6)(iv) of this section. This relationship may be reestablished 
during performance compliance tests.
    (i) The fuel factor equation in Method 3B shall be used to determine 
the relationship between oxygen and carbon dioxide at a sampling 
location. Method 3, 3A, or 3B, as applicable, shall be used to determine 
the oxygen concentration at the same location as the carbon dioxide 
monitor.
    (ii) Samples shall be taken for at least 30 minutes in each hour.
    (iii) Each sample shall represent a 1-hour average.
    (iv) A minimum of three runs shall be performed.
    (7) The relationship between carbon dioxide and oxygen 
concentrations that is established in accordance with paragraph (b)(6) 
of this section shall be submitted to the EPA Administrator as part of 
the initial performance test report and, if applicable, as part of the 
annual test report if the relationship is reestablished during the 
annual performance test.
    (c) The procedures and test methods specified in paragraphs (c)(1) 
through (c)(11) of this section shall be used to

[[Page 160]]

determine compliance with the emission limits for particulate matter and 
opacity under Sec. 60.52b(a)(1) and (a)(2).
    (1) The EPA Reference Method 1 shall be used to select sampling site 
and number of traverse points.
    (2) The EPA Reference Method 3, 3A, or 3B, as applicable, shall be 
used for gas analysis.
    (3) The EPA Reference Method 5 shall be used for determining 
compliance with the particulate matter emission limit. The minimum 
sample volume shall be 1.7 cubic meters. The probe and filter holder 
heating systems in the sample train shall be set to provide a gas 
temperature no greater than 160#14 
+C. An oxygen or carbon dioxide measurement shall be obtained simultaneously with each Method 5 run.

    (4) The owner or operator of an affected facility may request that 
compliance with the particulate matter emission limit be determined 
using carbon dioxide measurements corrected to an equivalent of 7 
percent oxygen. The relationship between oxygen and carbon dioxide 
levels for the affected facility shall be established as specified in 
paragraph (b)(6) of this section.
    (5) As specified under Sec. 60.8 of subpart A of this part, all 
performance tests shall consist of three test runs. The average of the 
particulate matter emission concentrations from the three test runs is 
used to determine compliance.
    (6) In accordance with paragraphs (c)(7) and (c)(11) of this 
section, EPA Reference Method 9 shall be used for determining compliance 
with the opacity limit except as provided under Sec. 60.11(e) of subpart 
A of this part.
    (7) The owner or operator of an affected facility shall conduct an 
initial performance test for particulate matter emissions and opacity as 
required under Sec. 60.8 of subpart A of this part.
    (8) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous opacity monitoring system 
for measuring opacity and shall follow the methods and procedures 
specified in paragraphs (c)(8)(i) through (c)(8)(iv) of this section.
    (i) The output of the continuous opacity monitoring system shall be 
recorded on a 6-minute average basis.
    (ii) The continuous opacity monitoring system shall be installed, 
evaluated, and operated in accordance with Sec. 60.13 of subpart A of 
this part.
    (iii) The continuous opacity monitoring system shall conform to 
Performance Specification 1 in appendix B of this part.
    (iv) The initial performance evaluation shall be completed no later 
than 180 days after the date of the initial startup of the municipal 
waste combustor unit, as specified under Sec. 60.8 of subpart A of this 
part.
    (9) Following the date that the initial performance test for 
particulate matter is completed or is required to be completed under 
Sec. 60.8 of subpart A of this part for an affected facility, the owner 
or operator shall conduct a performance test for particulate matter on 
an annual basis (no more than 12 calendar months following the previous 
performance test).
    (10) [Reserved]
    (11) Following the date that the initial performance test for 
opacity is completed or is required to be completed under Sec. 60.8 of 
subpart A of this part for an affected facility, the owner or operator 
shall conduct a performance test for opacity on an annual basis (no more 
than 12 calendar months following the previous performance test) using 
the test method specified in paragraph (c)(6) of this section.
    (d) The procedures and test methods specified in paragraphs (d)(1) 
and (d)(2) of this section shall be used to determine compliance with 
the emission limits for cadmium, lead, and mercury under Sec. 60.52b(a).
    (1) The procedures and test methods specified in paragraphs 
(d)(1)(i) through (d)(1)(ix) of this section shall be used to determine 
compliance with the emission limits for cadmium and lead under 
Sec. 60.52b(a) (3) and (4).
    (i) The EPA Reference Method 1 shall be used for determining the 
location and number of sampling points.
    (ii) The EPA Reference Method 3, 3A, or 3B, as applicable, shall be 
used for flue gas analysis.
    (iii) The EPA Reference Method 29 shall be used for determining 
compliance with the cadmium and lead emission limits.

[[Page 161]]

    (iv) An oxygen or carbon dioxide measurement shall be obtained 
simultaneously with each Method 29 test run for cadmium and lead 
required under paragraph (d)(1)(iii) of this section.
    (v) The owner or operator of an affected facility may request that 
compliance with the cadmium or lead emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (vi) All performance tests shall consist of a minimum of three test 
runs conducted under representative full load operating conditions. The 
average of the cadmium or lead emission concentrations from three test 
runs or more shall be used to determine compliance.
    (vii) Following the date of the initial performance test or the date 
on which the initial performance test is required to be completed under 
Sec. 60.8 of subpart A of this part, the owner or operator of an 
affected facility shall conduct a performance test for compliance with 
the emission limits for cadmium and lead on an annual basis (no more 
than 12 calendar months following the previous performance test).
    (viii)-(ix) [Reserved]
    (2) The procedures and test methods specified in paragraphs 
(d)(2)(i) through (d)(2)(xi) of this section shall be used to determine 
compliance with the mercury emission limit under Sec. 60.52b(a)(5).
    (i) The EPA Reference Method 1 shall be used for determining the 
location and number of sampling points.
    (ii) The EPA Reference Method 3, 3A, or 3B, as applicable, shall be 
used for flue gas analysis.
    (iii) The EPA Reference Method 29 shall be used to determine the 
mercury emission concentration. The minimum sample volume when using 
Method 29 for mercury shall be 1.7 cubic meters.
    (iv) An oxygen (or carbon dioxide) measurement shall be obtained 
simultaneously with each Method 29 test run for mercury required under 
paragraph (d)(2)(iii) of this section.
    (v) The percent reduction in the potential mercury emissions (%PHg) 
is computed using equation 1:
[GRAPHIC] [TIFF OMITTED] TR19DE95.001

where:

%PHg = percent reduction of the potential mercury emissions 
          achieved.
Ei = potential mercury emission concentration measured at the 
          control device inlet, corrected to 7 percent oxygen (dry 
          basis).
Eo = controlled mercury emission concentration measured at 
          the mercury control device outlet, corrected to 7 percent 
          oxygen (dry basis).

    (vi) All performance tests shall consist of a minimum of three test 
runs conducted under representative full load operating conditions. The 
average of the mercury emission concentrations or percent reductions 
from three test runs or more is used to determine compliance.
    (vii) The owner or operator of an affected facility may request that 
compliance with the mercury emission limit be determined using carbon 
dioxide measurements corrected to an equivalent of 7 percent oxygen. The 
relationship between oxygen and carbon dioxide levels for the affected 
facility shall be established as specified in paragraph (b)(6) of this 
section.
    (viii) The owner or operator of an affected facility shall conduct 
an initial performance test for mercury emissions as required under 
Sec. 60.8 of subpart A of this part.
    (ix) Following the date that the initial performance test for 
mercury is completed or is required to be completed under Sec. 60.8 of 
subpart A of this part, the owner or operator of an affected facility 
shall conduct a performance test for mercury emissions on a annual basis 
(no more than 12 calendar months from the previous performance test).
    (x) [Reserved]
    (xi) The owner or operator of an affected facility where activated 
carbon injection is used to comply with the mercury emission limit shall 
follow the procedures specified in paragraph (m) of this section for 
measuring and calculating carbon usage.
    (e) The procedures and test methods specified in paragraphs (e)(1) 
through (e)(14) of this section shall be used for

[[Page 162]]

determining compliance with the sulfur dioxide emission limit under 
Sec. 60.52b(b)(1).
    (1) The EPA Reference Method 19, section 4.3, shall be used to 
calculate the daily geometric average sulfur dioxide emission 
concentration.
    (2) The EPA Reference Method 19, section 5.4, shall be used to 
determine the daily geometric average percent reduction in the potential 
sulfur dioxide emission concentration.
    (3) The owner or operator of an affected facility may request that 
compliance with the sulfur dioxide emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (4) The owner or operator of an affected facility shall conduct an 
initial performance test for sulfur dioxide emissions as required under 
Sec. 60.8 of subpart A of this part. Compliance with the sulfur dioxide 
emission limit (concentration or percent reduction) shall be determined 
by using the continuous emission monitoring system specified in 
paragraph (e)(5) of this section to measure sulfur dioxide and 
calculating a 24-hour daily geometric average emission concentration or 
a 24-hour daily geometric average percent reduction using EPA Reference 
Method 19, sections 4.3 and 5.4, as applicable.
    (5) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous emission monitoring system 
for measuring sulfur dioxide emissions discharged to the atmosphere and 
record the output of the system.
    (6) Following the date that the initial performance test for sulfur 
dioxide is completed or is required to be completed under Sec. 60.8 of 
subpart A of this part, compliance with the sulfur dioxide emission 
limit shall be determined based on the 24-hour daily geometric average 
of the hourly arithmetic average emission concentrations using 
continuous emission monitoring system outlet data if compliance is based 
on an emission concentration, or continuous emission monitoring system 
inlet and outlet data if compliance is based on a percent reduction.
    (7) At a minimum, valid continuous monitoring system hourly averages 
shall be obtained as specified in paragraphs (e)(7)(i) and (e)(7)(ii) 
for 75 percent of the operating hours per day for 90 percent of the 
operating days per calendar quarter that the affected facility is 
combusting municipal solid waste.
    (i) At least two data points per hour shall be used to calculate 
each 1-hour arithmetic average.
    (ii) Each sulfur dioxide 1-hour arithmetic average shall be 
corrected to 7 percent oxygen on an hourly basis using the 1-hour 
arithmetic average of the oxygen (or carbon dioxide) continuous emission 
monitoring system data.
    (8) The 1-hour arithmetic averages required under paragraph (e)(6) 
of this section shall be expressed in parts per million corrected to 7 
percent oxygen (dry basis) and used to calculate the 24-hour daily 
geometric average emission concentrations and daily geometric average 
emission percent reductions. The 1-hour arithmetic averages shall be 
calculated using the data points required under Sec. 60.13(e)(2) of 
subpart A of this part.
    (9) All valid continuous emission monitoring system data shall be 
used in calculating average emission concentrations and percent 
reductions even if the minimum continuous emission monitoring system 
data requirements of paragraph (e)(7) of this section are not met.
    (10) The procedures under Sec. 60.13 of subpart A of this part shall 
be followed for installation, evaluation, and operation of the 
continuous emission monitoring system.
    (11) The initial performance evaluation shall be completed no later 
than 180 days after the date of initial startup of the municipal waste 
combustor as specified under Sec. 60.8 of subpart A of this part.
    (12) The continuous emission monitoring system shall be operated 
according to Performance Specification 2 in appendix B of this part.
    (i) During each relative accuracy test run of the continuous 
emission monitoring system required by Performance Specification 2 in 
appendix B of

[[Page 163]]

this part, sulfur dioxide and oxygen (or carbon dioxide) data shall be 
collected concurrently (or within a 30- to 60-minute period) by both the 
continuous emission monitors and the test methods specified in 
paragraphs (e)(12)(i)(A) and (e)(12)(i)(B) of this section.
    (A) For sulfur dioxide, EPA Reference Method 6, 6A, or 6C shall be 
used.
    (B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 
3B, as applicable shall be used.
    (ii) The span value of the continuous emissions monitoring system at 
the inlet to the sulfur dioxide control device shall be 125 percent of 
the maximum estimated hourly potential sulfur dioxide emissions of the 
municipal waste combustor unit. The span value of the continuous 
emission monitoring system at the outlet of the sulfur dioxide control 
device shall be 50 percent of the maximum estimated hourly potential 
sulfur dioxide emissions of the municipal waste combustor unit.
    (13) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with procedure 1 in appendix F of 
this part.
    (14) When sulfur dioxide emissions data are not obtained because of 
continuous emission monitoring system breakdowns, repairs, calibration 
checks, and zero and span adjustments, emissions data shall be obtained 
by using other monitoring systems as approved by the Administrator or 
EPA Reference Method 19 to provide, as necessary, valid emissions data 
for a minimum of 75 percent of the hours per day that the affected 
facility is operated and combusting municipal solid waste for 90 percent 
of the days per calendar quarter that the affected facility is operated 
and combusting municipal solid waste.
    (f) The procedures and test methods specified in paragraphs (f)(1) 
through (f)(8) of this section shall be used for determining compliance 
with the hydrogen chloride emission limit under Sec. 60.52b(b)(2).
    (1) The EPA Reference Method 26 or 26A, as applicable, shall be used 
to determine the hydrogen chloride emission concentration. The minimum 
sampling time for Method 26 shall be 1 hour.
    (2) An oxygen (or carbon dioxide) measurement shall be obtained 
simultaneously with each Method 26 test run for hydrogen chloride 
required by paragraph (f)(1) of this section.
    (3) The percent reduction in potential hydrogen chloride emissions 
(% PHCl) is computed using equation 2:
[GRAPHIC] [TIFF OMITTED] TR19DE95.002

where:

%PHCl=percent reduction of the potential hydrogen chloride 
          emissions achieved.
Ei=potential hydrogen chloride emission concentration 
          measured at the control device inlet, corrected to 7 percent 
          oxygen (dry basis).

Eo=controlled hydrogen chloride emission concentration 
          measured at the control device outlet, corrected to 7 percent 
          oxygen (dry basis).
    (4) The owner or operator of an affected facility may request that 
compliance with the hydrogen chloride emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (5) As specified under Sec. 60.8 of subpart A of this part, all 
performance tests shall consist of three test runs. The average of the 
hydrogen chloride emission concentrations or percent reductions from the 
three test runs is used to determine compliance.
    (6) The owner or operator of an affected facility shall conduct an 
initial performance test for hydrogen chloride as required under 
Sec. 60.8 of subpart A of this part.
    (7) Following the date that the initial performance test for 
hydrogen chloride is completed or is required to be completed under 
Sec. 60.8 of subpart A of this part, the owner or operator of an 
affected facility shall conduct a performance test for hydrogen chloride 
emissions on an annual basis (no more than 12 calendar months following 
the previous performance test).
    (8) [Reserved]
    (g) The procedures and test methods specified in paragraphs (g)(1) 
through

[[Page 164]]

(g)(9) of this section shall be used to determine compliance with the 
limits for dioxin/furan emissions under Sec. 60.52b(c).
    (1) The EPA Reference Method 1 shall be used for determining the 
location and number of sampling points.
    (2) The EPA Reference Method 3, 3A, or 3B, as applicable, shall be 
used for flue gas analysis.
    (3) The EPA Reference Method 23 shall be used for determining the 
dioxin/furan emission concentration.
    (i) The minimum sample time shall be 4 hours per test run.
    (ii) An oxygen (or carbon dioxide) measurement shall be obtained 
simultaneously with each Method 23 test run for dioxins/furans.
    (4) The owner or operator of an affected facility shall conduct an 
initial performance test for dioxin/furan emissions in accordance with 
paragraph (g)(3) of this section, as required under Sec. 60.8 of subpart 
A of this part.
    (5) Following the date that the initial performance test for 
dioxins/furans is completed or is required to be completed under 
Sec. 60.8 of subpart A of this part, the owner or operator of an 
affected facility shall conduct performance tests for dioxin/furan 
emissions in accordance with paragraph (g)(3) of this section, according 
to one of the schedules specified in paragraphs (g)(5)(i) through 
(g)(5)(iii) of this section.
    (i) For affected facilities, performance tests shall be conducted on 
an annual basis (no more than 12 calendar months following the previous 
performance test.)
    (ii) [Reserved]
    (iii) Where all performance tests over a 2-year period indicate that 
dioxin/furan emissions are less than or equal to 7 nanograms per dry 
standard cubic meter (total mass) for all affected facilities located 
within a municipal waste combustor plant, the owner or operator of the 
municipal waste combustor plant may elect to conduct annual performance 
tests for one affected facility (i.e., unit) per year at the municipal 
waste combustor plant. At a minimum, a performance test for dioxin/furan 
emissions shall be conducted annually (no more than 12 months following 
the previous performance test) for one affected facility at the 
municipal waste combustor plant. Each year a different affected facility 
at the municipal waste combustor plant shall be tested, and the affected 
facilities at the plant shall be tested in sequence (e.g., unit 1, unit 
2, unit 3, as applicable). If each annual performance test continues to 
indicate a dioxin/furan emission level less than or equal to 7 nanograms 
per dry standard cubic meter (total mass), the owner or operator may 
continue conducting a performance test on only one affected facility per 
year. If any annual performance test indicates a dioxin/furan emission 
level greater than 7 nanograms per dry standard cubic meter (total 
mass), performance tests thereafter shall be conducted annually on all 
affected facilities at the plant until and unless all annual performance 
tests for all affected facilities at the plant over a 2-year period 
indicate a dioxin/furan emission level less than or equal to 7 nanograms 
per dry standard cubic meter (total mass).
    (6) The owner or operator of an affected facility that selects to 
follow the performance testing schedule specified in paragraph 
(g)(5)(iii) of this section shall follow the procedures specified in 
Sec. 60.59b(g)(4) for reporting the selection of this schedule.
    (7) The owner or operator of an affected facility where activated 
carbon is used to comply with the dioxin/furan emission limits specified 
in Sec. 60.52b(c) or the dioxin/furan emission level specified in 
paragraph (g)(5)(iii) of this section shall follow the procedures 
specified in paragraph (m) of this section for measuring and calculating 
the carbon usage rate.
    (8) The owner or operator of an affected facility may request that 
compliance with the dioxin/furan emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (9) As specified under Sec. 60.8 of subpart A of this part, all 
performance tests shall consist of three test runs. The average of the 
dioxin/furan emission concentrations from the three test runs is used to 
determine compliance.

[[Page 165]]

    (h) The procedures and test methods specified in paragraphs (h)(1) 
through (h)(12) of this section shall be used to determine compliance 
with the nitrogen oxides emission limit for affected facilities under 
Sec. 60.52b(d).
    (1) The EPA Reference Method 19, section 4.1, shall be used for 
determining the daily arithmetic average nitrogen oxides emission 
concentration.
    (2) The owner or operator of an affected facility may request that 
compliance with the nitrogen oxides emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (3) The owner or operator of an affected facility subject to the 
nitrogen oxides limit under Sec. 60.52b(d) shall conduct an initial 
performance test for nitrogen oxides as required under Sec. 60.8 of 
subpart A of this part. Compliance with the nitrogen oxides emission 
limit shall be determined by using the continuous emission monitoring 
system specified in paragraph (h)(4) of this section for measuring 
nitrogen oxides and calculating a 24-hour daily arithmetic average 
emission concentration using EPA Reference Method 19, section 4.1.
    (4) The owner or operator of an affected facility subject to the 
nitrogen oxides emission limit under Sec. 60.52b(d) shall install, 
calibrate, maintain, and operate a continuous emission monitoring system 
for measuring nitrogen oxides discharged to the atmosphere, and record 
the output of the system.
    (5) Following the date that the initial performance test for 
nitrogen oxides is completed or is required to be completed under 
Sec. 60.8 of subpart A of this part, compliance with the emission limit 
for nitrogen oxides required under Sec. 60.52b(d) shall be determined 
based on the 24-hour daily arithmetic average of the hourly emission 
concentrations using continuous emission monitoring system outlet data.
    (6) At a minimum, valid continuous emission monitoring system hourly 
averages shall be obtained as specified in paragraphs (h)(6)(i) and 
(h)(6)(ii) of this section for 75 percent of the operating hours per day 
for 90 percent of the operating days per calendar quarter that the 
affected facility is combusting municipal solid waste.
    (i) At least 2 data points per hour shall be used to calculate each 
1-hour arithmetic average.
    (ii) Each nitrogen oxides 1-hour arithmetic average shall be 
corrected to 7 percent oxygen on an hourly basis using the 1-hour 
arithmetic average of the oxygen (or carbon dioxide) continuous emission 
monitoring system data.
    (7) The 1-hour arithmetic averages required by paragraph (h)(5) of 
this section shall be expressed in parts per million by volume (dry 
basis) and used to calculate the 24-hour daily arithmetic average 
concentrations. The 1-hour arithmetic averages shall be calculated using 
the data points required under Sec. 60.13(e)(2) of subpart A of this 
part.
    (8) All valid continuous emission monitoring system data must be 
used in calculating emission averages even if the minimum continuous 
emission monitoring system data requirements of paragraph (h)(6) of this 
section are not met.
    (9) The procedures under Sec. 60.13 of subpart A of this part shall 
be followed for installation, evaluation, and operation of the 
continuous emission monitoring system. The initial performance 
evaluation shall be completed no later than 180 days after the date of 
initial startup of the municipal waste combustor unit, as specified 
under Sec. 60.8 of subpart A of this part.
    (10) The owner or operator of an affected facility shall operate the 
continuous emission monitoring system according to Performance 
Specification 2 in appendix B of this part and shall follow the 
procedures and methods specified in paragraphs (h)(10)(i) and 
(h)(10)(ii) of this section.
    (i) During each relative accuracy test run of the continuous 
emission monitoring system required by Performance Specification 2 of 
appendix B of this part, nitrogen oxides and oxygen (or carbon dioxide) 
data shall be collected concurrently (or within a 30- to 60-minute 
period) by both the continuous emission monitors and the test methods 
specified in paragraphs (h)(10)(i)(A) and (h)(10)(i)(B) of this section.

[[Page 166]]

    (A) For nitrogen oxides, EPA Reference Method 7, 7A, 7C, 7D, or 7E 
shall be used.
    (B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 
3B, as applicable shall be used.
    (ii) The span value of the continuous emission monitoring system 
shall be 125 percent of the maximum estimated hourly potential nitrogen 
oxide emissions of the municipal waste combustor unit.
    (11) Quarterly accuracy determinations and daily calibration drift 
tests shall be performed in accordance with procedure 1 in appendix F of 
this part.
    (12) When nitrogen oxides continuous emissions data are not obtained 
because of continuous emission monitoring system breakdowns, repairs, 
calibration checks, and zero and span adjustments, emissions data shall 
be obtained using other monitoring systems as approved by the 
Administrator or EPA Reference Method 19 to provide, as necessary, valid 
emissions data for a minimum of 75 percent of the hours per day for 90 
percent of the days per calendar quarter the unit is operated and 
combusting municipal solid waste.
    (i) The procedures specified in paragraphs (i)(1) through (i)(12) of 
this section shall be used for determining compliance with the operating 
requirements under Sec. 60.53b.
    (1) Compliance with the carbon monoxide emission limits in 
Sec. 60.53b(a) shall be determined using a 4-hour block arithmetic 
average for all types of affected facilities except mass burn rotary 
waterwall municipal waste combustors and refuse-derived fuel stokers.
    (2) For affected mass burn rotary waterwall municipal waste 
combustors and refuse-derived fuel stokers, compliance with the carbon 
monoxide emission limits in Sec. 60.53b(a) shall be determined using a 
24-hour daily arithmetic average.
    (3) The owner or operator of an affected facility shall install, 
calibrate, maintain, and operate a continuous emission monitoring system 
for measuring carbon monoxide at the combustor outlet and record the 
output of the system and shall follow the procedures and methods 
specified in paragraphs (i)(3)(i) through (i)(3)(iii) of this section.
    (i) The continuous emission monitoring system shall be operated 
according to Performance Specification 4A in appendix B of this part.
    (ii) During each relative accuracy test run of the continuous 
emission monitoring system required by Performance Specification 4A in 
appendix B of this part, carbon monoxide and oxygen (or carbon dioxide) 
data shall be collected concurrently (or within a 30- to 60-minute 
period) by both the continuous emission monitors and the test methods 
specified in paragraphs (i)(3)(ii)(A) and (i)(3)(ii)(B) of this section.
    (A) For carbon monoxide, EPA Reference Method 10, 10A, or 10B shall 
be used.
    (B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 
3B, as applicable shall be used.
    (iii) The span value of the continuous emission monitoring system 
shall be 125 percent of the maximum estimated hourly potential carbon 
monoxide emissions of the municipal waste combustor unit.
    (4) The 4-hour block and 24-hour daily arithmetic averages specified 
in paragraphs (i)(1) and (i)(2) of this section shall be calculated from 
1-hour arithmetic averages expressed in parts per million by volume 
corrected to 7 percent oxygen (dry basis). The 1-hour arithmetic 
averages shall be calculated using the data points generated by the 
continuous emission monitoring system. At least two data points shall be 
used to calculate each 1-hour arithmetic average.
    (5) The owner or operator of an affected facility may request that 
compliance with the carbon monoxide emission limit be determined using 
carbon dioxide measurements corrected to an equivalent of 7 percent 
oxygen. The relationship between oxygen and carbon dioxide levels for 
the affected facility shall be established as specified in paragraph 
(b)(6) of this section.
    (6) The procedures specified in paragraphs (i)(6)(i) through 
(i)(6)(v) of this section shall be used to determine compliance with 
load level requirements under Sec. 60.53b(b).
    (i) The owner or operator of an affected facility with steam 
generation

[[Page 167]]

capability shall install, calibrate, maintain, and operate a steam flow 
meter or a feedwater flow meter; measure steam (or feedwater) flow in 
kilograms per hour (or pounds per hour) on a continuous basis; and 
record the output of the monitor. Steam (or feedwater) flow shall be 
calculated in 4-hour block arithmetic averages.
    (ii) The method included in the ``American Society of Mechanical 
Engineers Power Test Codes: Test Code for Steam Generating Units, Power 
Test Code 4.1--1964 (R1991)'' section 4 (incorporated by reference, see 
Sec. 60.17 of subpart A of this part) shall be used for calculating the 
steam (or feedwater) flow required under paragraph (i)(6)(i) of this 
section. The recommendations in ``American Society of Mechanical 
Engineers Interim Supplement 19.5 on Instruments and Apparatus: 
Application, Part II of Fluid Meters, 6th edition (1971),'' chapter 4 
(incorporated by reference--see Sec. 60.17 of subpart A of this part) 
shall be followed for design, construction, installation, calibration, 
and use of nozzles and orifices except as specified in (i)(6)(iii) of 
this section.
    (iii) Measurement devices such as flow nozzles and orifices are not 
required to be recalibrated after they are installed.
    (iv) All signal conversion elements associated with steam (or 
feedwater flow) measurements must be calibrated according to the 
manufacturer's instructions before each dioxin/furan performance test, 
and at least once per year.
    (7) To determine compliance with the maximum particulate matter 
control device temperature requirements under Sec. 60.53b(c), the owner 
or operator of an affected facility shall install, calibrate, maintain, 
and operate a device for measuring on a continuous basis the temperature 
of the flue gas stream at the inlet to each particulate matter control 
device utilized by the affected facility. Temperature shall be 
calculated in 4-hour block arithmetic averages.
    (8) The maximum demonstrated municipal waste combustor unit load 
shall be determined during the initial performance test for dioxins/
furans and each subsequent performance test during which compliance with 
the dioxin/furan emission limit specified in Sec. 60.52b(c) is achieved. 
The maximum demonstrated municipal waste combustor unit load shall be 
the highest 4-hour arithmetic average load achieved during four 
consecutive hours during the most recent test during which compliance 
with the dioxin/furan emission limit was achieved.
    (9) For each particulate matter control device employed at the 
affected facility, the maximum demonstrated particulate matter control 
device temperature shall be determined during the initial performance 
test for dioxins/furans and each subsequent performance test during 
which compliance with the dioxin/furan emission limit specified in 
Sec. 60.52b(c) is achieved. The maximum demonstrated particulate matter 
control device temperature shall be the highest 4-hour arithmetic 
average temperature achieved at the particulate matter control device 
inlet during four consecutive hours during the most recent test during 
which compliance with the dioxin/furan limit was achieved.
    (10) At a minimum, valid continuous emission monitoring system 
hourly averages shall be obtained as specified in paragraphs (i)(10)(i) 
and (i)(10)(ii) of this section for 75 percent of the operating hours 
per day for 90 percent of the operating days per calendar quarter that 
the affected facility is combusting municipal solid waste.
    (i) At least two data points per hour shall be used to calculate 
each 1-hour arithmetic average.
    (ii) At a minimum, each carbon monoxide 1-hour arithmetic average 
shall be corrected to 7 percent oxygen on an hourly basis using the 1-
hour arithmetic average of the oxygen (or carbon dioxide) continuous 
emission monitoring system data.
    (11) All valid continuous emission monitoring system data must be 
used in calculating the parameters specified under paragraph (i) of this 
section even if the minimum data requirements of paragraph (i)(10) of 
this section are not

[[Page 168]]

met. When carbon monoxide continuous emission data are not obtained 
because of continuous emission monitoring system breakdowns, repairs, 
calibration checks, and zero and span adjustments, emissions data shall 
be obtained using other monitoring systems as approved by the 
Administrator or EPA Reference Method 10 to provide, as necessary, the 
minimum valid emission data.
    (12) Quarterly accuracy determinations and daily calibration drift 
tests for the carbon monoxide continuous emission monitoring system 
shall be performed in accordance with procedure 1 in appendix F of this 
part.
    (j) The procedures specified in paragraphs (j)(1) and (j)(2) of this 
section shall be used for calculating municipal waste combustor unit 
capacity as defined under Sec. 60.51b.
    (1) For municipal waste combustor units capable of combusting 
municipal solid waste continuously for a 24-hour period, municipal waste 
combustor unit capacity shall be calculated based on 24 hours of 
operation at the maximum charging rate. The maximum charging rate shall 
be determined as specified in paragraphs (j)(1)(i) and (j)(1)(ii) of 
this section as applicable.
    (i) For combustors that are designed based on heat capacity, the 
maximum charging rate shall be calculated based on the maximum design 
heat input capacity of the unit and a heating value of 12,800 kilojoules 
per kilogram for combustors firing refuse-derived fuel and a heating 
value of 10,500 kilojoules per kilogram for combustors firing municipal 
solid waste that is not refuse-derived fuel.
    (ii) For combustors that are not designed based on heat capacity, 
the maximum charging rate shall be the maximum design charging rate.
    (2) For batch feed municipal waste combustor units, municipal waste 
combustor unit capacity shall be calculated as the maximum design amount 
of municipal solid waste that can be charged per batch multiplied by the 
maximum number of batches that could be processed in a 24-hour period. 
The maximum number of batches that could be processed in a 24-hour 
period is calculated as 24 hours divided by the design number of hours 
required to process one batch of municipal solid waste, and may include 
fractional batches (e.g., if one batch requires 16 hours, then 24/16, or 
1.5 batches, could be combusted in a 24-hour period). For batch 
combustors that are designed based on heat capacity, the design heating 
value of 12,800 kilojoules per kilogram for combustors firing refuse-
derived fuel and a heating value of 10,500 kilojoules per kilogram for 
combustors firing municipal solid waste that is not refuse-derived fuel 
shall be used in calculating the municipal waste combustor unit capacity 
in megagrams per day of municipal solid waste.
    (k) The procedures specified in paragraphs (k)(1) through (k)(4) of 
this section shall be used for determining compliance with the fugitive 
ash emission limit under Sec. 60.55b.
    (1) The EPA Reference Method 22 shall be used for determining 
compliance with the fugitive ash emission limit under Sec. 60.55b. The 
minimum observation time shall be a series of three 1-hour observations. 
The observation period shall include times when the facility is 
transferring ash from the municipal waste combustor unit to the area 
where ash is stored or loaded into containers or trucks.
    (2) The average duration of visible emissions per hour shall be 
calculated from the three 1-hour observations. The average shall be used 
to determine compliance with Sec. 60.55b.
    (3) The owner or operator of an affected facility shall conduct an 
initial performance test for fugitive ash emissions as required under 
Sec. 60.8 of subpart A of this part.
    (4) Following the date that the initial performance test for 
fugitive ash emissions is completed or is required to be completed under 
Sec. 60.8 of subpart A of this part for an affected facility, the owner 
or operator shall conduct a performance test for fugitive ash emissions 
on an annual basis (no more than 12 calendar months following the 
previous performance test).
    (l) The procedures specified in paragraphs (l)(1) through (l)(3) of 
this section shall be used to determine compliance with the opacity 
limit for air curtain incinerators under Sec. 60.56b.

[[Page 169]]

    (1) The EPA Reference Method 9 shall be used for determining 
compliance with the opacity limit.
    (2) The owner or operator of the air curtain incinerator shall 
conduct an initial performance test for opacity as required under 
Sec. 60.8 of subpart A of this part.
    (3) Following the date that the initial performance test is 
completed or is required to be completed under Sec. 60.8 of subpart A of 
this part, the owner or operator of the air curtain incinerator shall 
conduct a performance test for opacity on an annual basis (no more than 
12 calendar months following the previous performance test).
    (m) The owner or operator of an affected facility where activated 
carbon injection is used to comply with the mercury emission limit under 
Sec. 60.52b(a)(5), or the dioxin/furan emission limits under 
Sec. 60.52(b)(c), or the dioxin/furan emission level specified in 
Sec. 60.58b(g)(5)(iii) shall follow the procedures specified in 
paragraphs (m)(1) through (m)(3) of this section.
    (1) During the performance tests for dioxins/furans and mercury, as 
applicable, the owner or operator shall estimate an average carbon mass 
feed rate based on carbon injection system operating parameters such as 
the screw feeder speed, hopper volume, hopper refill frequency, or other 
parameters appropriate to the feed system being employed, as specified 
in paragraphs (m)(1)(i) and (m)(1)(ii) of this section.
    (i) An average carbon mass feed rate in kilograms per hour or pounds 
per hour shall be estimated during the initial performance test for 
mercury emissions and each subsequent performance test for mercury 
emissions.
    (ii) An average carbon mass feed rate in kilograms per hour or 
pounds per hour shall be estimated during the initial performance test 
for dioxin/furan emissions and each subsequent performance test for 
dioxin/furan emissions.
    (2) During operation of the affected facility, the carbon injection 
system operating parameter(s) that are the primary indicator(s) of the 
carbon mass feed rate (e.g., screw feeder setting) must equal or exceed 
the level(s) documented during the performance tests specified under 
paragraphs (m)(1)(i) and (m)(1)(ii) of this section.
    (3) The owner or operator of an affected facility shall estimate the 
total carbon usage of the plant (kilograms or pounds) for each calendar 
quarter by two independent methods, according to the procedures in 
paragraphs (m)(3)(i) and (m)(3)(ii) of this section.
    (i) The weight of carbon delivered to the plant.
    (ii) Estimate the average carbon mass feed rate in kilograms per 
hour or pounds per hour for each hour of operation for each affected 
facility based on the parameters specified under paragraph (m)(1) of 
this section, and sum the results for all affected facilities at the 
plant for the total number of hours of operation during the calendar 
quarter.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]



Sec. 60.59b  Reporting and recordkeeping requirements.

    (a) The owner or operator of an affected facility with a capacity to 
combust greater than 250 tons per day shall submit, on or before the 
date the application for a construction permit is submitted under 40 CFR 
part 51, subpart I, or part 52, as applicable, the items specified in 
paragraphs (a)(1) through (a)(4) of this section.
    (1) The preliminary and final draft materials separation plans 
required by Sec. 60.57b(a)(1) and (a)(5).
    (2) A copy of the notification of the public meeting required by 
Sec. 60.57b(a)(1)(ii).
    (3) A transcript of the public meeting required by 
Sec. 60.57b(a)(2).
    (4) A copy of the document summarizing responses to public comments 
required by Sec. 60.57b(a)(3).
    (b) The owner or operator of an affected facility with a capacity to 
combust greater than 250 tons per day shall submit a notification of 
construction, which includes the information specified in paragraphs 
(b)(1) through (b)(5) of this section.
    (1) Intent to construct.
    (2) Planned initial startup date.
    (3) The types of fuels that the owner or operator plans to combust 
in the affected facility.

[[Page 170]]

    (4) The municipal waste combustor unit capacity, and supporting 
capacity calculations prepared in accordance with Sec. 60.58b(j).
    (5) Documents associated with the siting requirements under 
Sec. 60.57b (a) and (b), as specified in paragraphs (b)(5)(i) through 
(b)(5)(v) of this section.
    (i) The siting analysis required by Sec. 60.57b (b)(1) and (b)(2).
    (ii) The final materials separation plan for the affected facility 
required by Sec. 60.57b(a)(10).
    (iii) A copy of the notification of the public meeting required by 
Sec. 60.57b(b)(3)(ii).
    (iv) A transcript of the public meeting required by 
Sec. 60.57b(b)(4).
    (v) A copy of the document summarizing responses to public comments 
required by Sec. 60.57b (a)(9) and (b)(5).
    (c) The owner or operator of an air curtain incinerator subject to 
the opacity limit under Sec. 60.56b shall provide a notification of 
construction that includes the information specified in paragraphs 
(b)(1) through (b)(4) of this section.
    (d) The owner or operator of an affected facility subject to the 
standards under Secs. 60.52b, 60.53b, 60.54b, 60.55b, and 60.57b shall 
maintain records of the information specified in paragraphs (d)(1) 
through (d)(15) of this section, as applicable, for each affected 
facility for a period of at least 5 years.
    (1) The calendar date of each record.
    (2) The emission concentrations and parameters measured using 
continuous monitoring systems as specified under paragraphs (d)(2)(i) 
and (d)(2)(ii) of this section.
    (i) The measurements specified in paragraphs (d)(2)(i)(A) through 
(d)(2)(i)(D) of this section shall be recorded and be available for 
submittal to the Administrator or review onsite by an inspector.
    (A) All 6-minute average opacity levels as specified under 
Sec. 60.58b(c).
    (B) All 1-hour average sulfur dioxide emission concentrations as 
specified under Sec. 60.58b(e).
    (C) All 1-hour average nitrogen oxides emission concentrations as 
specified under Sec. 60.58b(h).
    (D) All 1-hour average carbon monoxide emission concentrations, 
municipal waste combustor unit load measurements, and particulate matter 
control device inlet temperatures as specified under Sec. 60.58b(i).
    (ii) The average concentrations and percent reductions, as 
applicable, specified in paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(D) 
of this section shall be computed and recorded, and shall be available 
for submittal to the Administrator or review on-site by an inspector.
    (A) All 24-hour daily geometric average sulfur dioxide emission 
concentrations and all 24-hour daily geometric average percent 
reductions in sulfur dioxide emissions as specified under 
Sec. 60.58b(e).
    (B) All 24-hour daily arithmetic average nitrogen oxides emission 
concentrations as specified under Sec. 60.58b(h).
    (C) All 4-hour block or 24-hour daily arithmetic average carbon 
monoxide emission concentrations, as applicable, as specified under 
Sec. 60.58b(i).
    (D) All 4-hour block arithmetic average municipal waste combustor 
unit load levels and particulate matter control device inlet 
temperatures as specified under Sec. 60.58b(i).
    (3) Identification of the calendar dates when any of the average 
emission concentrations, percent reductions, or operating parameters 
recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(D) of this 
section, or the opacity levels recorded under paragraph (d)(2)(i)(A) of 
this section are above the applicable limits, with reasons for such 
exceedances and a description of corrective actions taken.
    (4) For affected facilities that apply activated carbon for mercury 
or dioxin/furan control, the records specified in paragraphs (d)(4)(i) 
through (d)(4)(v) of this section.
    (i) The average carbon mass feed rate (in kilograms per hour or 
pounds per hour) estimated as required under Sec. 60.58b(m)(1)(i) of 
this section during the initial mercury performance test and all 
subsequent annual performance tests, with supporting calculations.
    (ii) The average carbon mass feed rate (in kilograms per hour or 
pounds per hour) estimated as required under Sec. 60.58b(m)(1)(ii) of 
this section during the initial dioxin/furan performance

[[Page 171]]

test and all subsequent annual performance tests, with supporting 
calculations.
    (iii) The average carbon mass feed rate (in kilograms per hour or 
pounds per hour) estimated for each hour of operation as required under 
Sec. 60.58b(m)(3)(ii) of this section, with supporting calculations.
    (iv) The total carbon usage for each calendar quarter estimated as 
specified by paragraph 60.58b(m)(3) of this section, with supporting 
calculations.
    (v) Carbon injection system operating parameter data for the 
parameter(s) that are the primary indicator(s) of carbon feed rate 
(e.g., screw feeder speed).
    (5) [Reserved]
    (6) Identification of the calendar dates for which the minimum 
number of hours of any of the data specified in paragraphs (d)(6)(i) 
through (d)(6)(v) of this section have not been obtained including 
reasons for not obtaining sufficient data and a description of 
corrective actions taken.
    (i) Sulfur dioxide emissions data;
    (ii) Nitrogen oxides emissions data;
    (iii) Carbon monoxide emissions data;
    (iv) Municipal waste combustor unit load data; and
    (v) Particulate matter control device temperature data.
    (7) Identification of each occurrence that sulfur dioxide emissions 
data, nitrogen oxides emissions data (large municipal waste combustors 
only), or operational data (i.e., carbon monoxide emissions, unit load, 
and particulate matter control device temperature) have been excluded 
from the calculation of average emission concentrations or parameters, 
and the reasons for excluding the data.
    (8) The results of daily drift tests and quarterly accuracy 
determinations for sulfur dioxide, nitrogen oxides, and carbon monoxide 
continuous emission monitoring systems, as required under appendix F of 
this part, procedure 1.
    (9) The test reports documenting the results of the initial 
performance test and all annual performance tests listed in paragraphs 
(d)(9)(i) and (d)(9)(ii) of this section shall be recorded along with 
supporting calculations.
    (i) The results of the initial performance test and all annual 
performance tests conducted to determine compliance with the particulate 
matter, opacity, cadmium, lead, mercury, dioxins/furans, hydrogen 
chloride, and fugitive ash emission limits.
    (ii) For the initial dioxin/furan performance test and all 
subsequent dioxin/furan performance tests recorded under paragraph 
(d)(9)(i) of this section, the maximum demonstrated municipal waste 
combustor unit load and maximum demonstrated particulate matter control 
device temperature (for each particulate matter control device).
    (10) [Reserved]
    (11) For each affected facility subject to the siting provisions 
under Sec. 60.57b, the siting analysis, the final materials separation 
plan, a record of the location and date of the public meetings, and the 
documentation of the responses to public comments received at the public 
meetings.
    (12) The records specified in paragraphs (d)(12)(i) through 
(d)(12)(iii) of this section.
    (i) Records showing the names of the municipal waste combustor chief 
facility operator, shift supervisors, and control room operators who 
have been provisionally certified by the American Society of Mechanical 
Engineers or an equivalent State-approved certification program as 
required by Sec. 60.54b(a) including the dates of initial and renewal 
certifications and documentation of current certification.
    (ii) Records showing the names of the municipal waste combustor 
chief facility operator, shift supervisors, and control room operators 
who have been fully certified by the American Society of Mechanical 
Engineers or an equivalent State-approved certification program as 
required by Sec. 60.54b(b) including the dates of initial and renewal 
certifications and documentation of current certification.
    (iii) Records showing the names of the municipal waste combustor 
chief facility operator, shift supervisors, and control room operators 
who have completed the EPA municipal waste combustor operator training 
course or a State-approved equivalent course as required by 
Sec. 60.54b(d) including documentation of training completion.

[[Page 172]]

    (13) Records showing the names of persons who have completed a 
review of the operating manual as required by Sec. 60.54b(f) including 
the date of the initial review and subsequent annual reviews.
    (14) For affected facilities that apply activated carbon for mercury 
or dioxin/furan control, identification of the calendar dates when the 
average carbon mass feed rates recorded under (d)(4)(iii) of this 
section were less than either of the hourly carbon feed rates estimated 
during performance tests for mercury or dioxin/furan emissions and 
recorded under paragraphs (d)(4)(i) and (d)(4)(ii) of this section, 
respectively, with reasons for such feed rates and a description of 
corrective actions taken.
    (15) For affected facilities that apply activated carbon for mercury 
or dioxin/furan control, identification of the calendar dates when the 
carbon injection system operating parameter(s) that are the primary 
indicator(s) of carbon mass feed rate (e.g., screw feeder speed) 
recorded under paragraph (d)(4)(v) of this section are below the 
level(s) estimated during the performance tests as specified in 
Sec. 60.58b(m)(1)(i) and Sec. 60.58b(m)(1)(ii) of this section, with 
reasons for such occurrences and a description of corrective actions 
taken.
    (e) The owner or operator of an air curtain incinerator subject to 
the opacity limit under Sec. 60.56b shall maintain records of results of 
the initial opacity performance test and subsequent performance tests 
required by Sec. 60.58b(l) for a period of at least 5 years.
    (f) The owner or operator of an affected facility shall submit the 
information specified in paragraphs (f)(1) through (f)(6) of this 
section in the initial performance test report.
    (1) The initial performance test data as recorded under paragraphs 
(d)(2)(ii)(A) through (d)(2)(ii)(D) of this section for the initial 
performance test for sulfur dioxide, nitrogen oxides, carbon monoxide, 
municipal waste combustor unit load level, and particulate matter 
control device inlet temperature.
    (2) The test report documenting the initial performance test 
recorded under paragraph (d)(9) of this section for particulate matter, 
opacity, cadmium, lead, mercury, dioxins/furans, hydrogen chloride, and 
fugitive ash emissions.
    (3) The performance evaluation of the continuous emission monitoring 
system using the applicable performance specifications in appendix B of 
this part.
    (4) The maximum demonstrated municipal waste combustor unit load and 
maximum demonstrated particulate matter control device inlet 
temperature(s) established during the initial dioxin/furan performance 
test as recorded under paragraph (d)(9) of this section.
    (5) For affected facilities that apply activated carbon injection 
for mercury control, the owner or operator shall submit the average 
carbon mass feed rate recorded under paragraph (d)(4)(i) of this 
section.
    (6) For those affected facilities that apply activated carbon 
injection for dioxin/furan control, the owner or operator shall submit 
the average carbon mass feed rate recorded under paragraph (d)(4)(ii) of 
this section.
    (g) Following the first year of municipal combustor operation, the 
owner or operator of an affected facility shall submit an annual report 
including the information specified in paragraphs (g)(1) through (g)(4) 
of this section, as applicable, no later than February 1 of each year 
following the calendar year in which the data were collected (once the 
unit is subject to permitting requirements under Title V of the Act, the 
owner or operator of an affected facility must submit these reports 
semiannually).
    (1) A summary of data collected for all pollutants and parameters 
regulated under this subpart, which includes the information specified 
in paragraphs (g)(1)(i) through (g)(1)(v) of this section.
    (i) A list of the particulate matter, opacity, cadmium, lead, 
mercury, dioxins/furans, hydrogen chloride, and fugitive ash emission 
levels achieved during the performance tests recorded under paragraph 
(d)(9) of this section.
    (ii) A list of the highest emission level recorded for sulfur 
dioxide, nitrogen oxides, carbon monoxide, municipal waste combustor 
unit load level, and particulate matter control device

[[Page 173]]

inlet temperature based on the data recorded under paragraphs 
(d)(2)(ii)(A) through (d)(2)(ii)(D) of this section.
    (iii) List the highest opacity level measured, based on the data 
recorded under paragraph (d)(2)(i)(A) of this section.
    (iv) The total number of days that the minimum number of hours of 
data for sulfur dioxide, nitrogen oxides, carbon monoxide, municipal 
waste combustor unit load, and particulate matter control device 
temperature data were not obtained based on the data recorded under 
paragraph (d)(6) of this section.
    (v) The total number of hours that data for sulfur dioxide, nitrogen 
oxides, carbon monoxide, municipal waste combustor unit load, and 
particulate matter control device temperature were excluded from the 
calculation of average emission concentrations or parameters based on 
the data recorded under paragraph (d)(7) of this section.
    (2) The summary of data reported under paragraph (g)(1) of this 
section shall also provide the types of data specified in paragraphs 
(g)(1)(i) through (g)(1)(vi) of this section for the calendar year 
preceding the year being reported, in order to provide the Administrator 
with a summary of the performance of the affected facility over a 2-year 
period.
    (3) The summary of data including the information specified in 
paragraphs (g)(1) and (g)(2) of this section shall highlight any 
emission or parameter levels that did not achieve the emission or 
parameter limits specified under this subpart.
    (4) A notification of intent to begin the reduced dioxin/furan 
performance testing schedule specified in Sec. 60.58b(g)(5)(iii) of this 
section during the following calendar year.
    (h) The owner or operator of an affected facility shall submit a 
semiannual report that includes the information specified in paragraphs 
(h)(1) through (h)(5) of this section for any recorded pollutant or 
parameter that does not comply with the pollutant or parameter limit 
specified under this subpart, according to the schedule specified under 
paragraph (h)(6) of this section.
    (1) The semiannual report shall include information recorded under 
paragraph (d)(3) of this section for sulfur dioxide, nitrogen oxides, 
carbon monoxide, municipal waste combustor unit load level, particulate 
matter control device inlet temperature, and opacity.
    (2) For each date recorded as required by paragraph (d)(3) of this 
section and reported as required by paragraph (h)(1) of this section, 
the semiannual report shall include the sulfur dioxide, nitrogen oxides, 
carbon monoxide, municipal waste combustor unit load level, particulate 
matter control device inlet temperature, or opacity data, as applicable, 
recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(D) and 
(d)(2)(i)(A) of this section, as applicable.
    (3) If the test reports recorded under paragraph (d)(9) of this 
section document any particulate matter, opacity, cadmium, lead, 
mercury, dioxins/furans, hydrogen chloride, and fugitive ash emission 
levels that were above the applicable pollutant limits, the semiannual 
report shall include a copy of the test report documenting the emission 
levels and the corrective actions taken.
    (4) The semiannual report shall include the information recorded 
under paragraph (d)(15) of this section for the carbon injection system 
operating parameter(s) that are the primary indicator(s) of carbon mass 
feed rate.
    (5) For each operating date reported as required by paragraph (h)(4) 
of this section, the semiannual report shall include the carbon feed 
rate data recorded under paragraph (d)(4)(iii) of this section.
    (6) Semiannual reports required by paragraph (h) of this section 
shall be submitted according to the schedule specified in paragraphs 
(h)(6)(i) and (h)(6)(ii) of this section.
    (i) If the data reported in accordance with paragraphs (h)(1) 
through (h)(5) of this section were collected during the first calendar 
half, then the report shall be submitted by August 1 following the first 
calendar half.
    (ii) If the data reported in accordance with paragraphs (h)(1) 
through (h)(5) of this section were collected during the second calendar 
half, then the report

[[Page 174]]

shall be submitted by February 1 following the second calendar half.
    (i) The owner or operator of an air curtain incinerator subject to 
the opacity limit under Sec. 60.56b shall submit the results of the 
initial opacity performance test and all subsequent annual performance 
tests recorded under paragraph (e) of this section. Annual performance 
tests shall be submitted by February 1 of the year following the year of 
the performance test.
    (j) All reports specified under paragraphs (a), (b), (c), (f), (g), 
(h), and (i) of this section shall be submitted as a paper copy, 
postmarked on or before the submittal dates specified under these 
paragraphs, and maintained onsite as a paper copy for a period of 5 
years.
    (k) All records specified under paragraphs (d) and (e) of this 
section shall be maintained onsite in either paper copy or computer-
readable format, unless an alternative format is approved by the 
Administrator.
    (l) If the owner or operator of an affected facility would prefer a 
different annual or semiannual date for submitting the periodic reports 
required by paragraphs (g), (h) and (i) of this section, then the dates 
may be changed by mutual agreement between the owner or operator and the 
Administrator according to the procedures specified in Sec. 60.19(c) of 
subpart A of this part.
[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45127, Aug. 25, 
1997]



  Subpart Ec--Standards of Performance for Hospital/Medical/Infectious 
 Waste Incinerators for Which Construction is Commenced After June 20, 
                                  1996

    Source:  62 FR 48382, Sept. 15, 1997, unless otherwise noted.



Sec. 60.50c  Applicability and delegation of authority.

    (a) Except as provided in paragraphs (b) through (h) of this 
section, the affected facility to which this subpart applies is each 
individual hospital/medical/infectious waste incinerator (HMIWI) for 
which construction is commenced after June 20, 1996 or for which 
modification is commenced after March 16, 1998.
    (b) A combustor is not subject to this subpart during periods when 
only pathological waste, low-level radioactive waste, and/or 
chemotherapeutic waste (all defined in Sec. 60.51c) is burned, provided 
the owner or operator of the combustor:
    (1) Notifies the Administrator of an exemption claim; and
    (2) Keeps records on a calendar quarter basis of the periods of time 
when only pathological waste, low-level radioactivewaste and/or 
chemotherapeutic waste is burned.
    (c) Any co-fired combustor (defined in Sec. 60.51c) is not subject 
to this subpart if the owner or operator of the co-fired combustor:
    (1) Notifies the Administrator of an exemption claim;
    (2) Provides an estimate of the relative amounts of hospital waste, 
medical/infectious waste, and other fuels and wastes to be combusted; 
and
    (3) Keeps records on a calendar quarter basis of the weight of 
hospital waste and medical/infectious waste combusted, and the weight of 
all other fuels and wastes combusted at the co-fired combustor.
    (d) Any combustor required to have a permit under section 3005 of 
the Solid Waste Disposal Act is not subject to this subpart.
    (e) Any combustor which meets the applicability requirements under 
subpart Cb, Ea, or Eb of this part (standards or guidelines for certain 
municipal waste combustors) is not subject to this subpart.
    (f) Any pyrolysis unit (defined in Sec. 60.51c) is not subject to 
this subpart.
    (g) Cement kilns firing hospital waste and/or medical/infectious 
waste are not subject to this subpart.
    (h) Physical or operational changes made to an existing HMIWI solely 
for the purpose of complying with emission guidelines under subpart Ce 
are not considered a modification and do not result in an existing HMIWI 
becoming subject to this subpart.
    (i) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Clean Air Act, the following 
authorities shall be

[[Page 175]]

retained by the Administrator and not transferred to a State:
    (1) The requirements of Sec. 60.56c(i) establishing operating 
parameters when using controls other than those listed in 
Sec. 60.56c(d).
    (2) Alternative methods of demonstrating compliance under Sec. 60.8.
    (j) Affected facilities subject to this subpart are not subject to 
the requirements of 40 CFR part 64.
    (k) The requirements of this subpart shall become effective March 
16, 1998
    (l) Beginning September 15, 2000, or on the effective date of an 
EPA-approved operating permit program under Clean Air Act title V and 
the implementing regulations under 40 CFR part 70 in the State in which 
the unit is located, whichever date is later, affected facilities 
subject to this subpart shall operate pursuant to a permit issued under 
the EPA approved State operating permit program.



Sec. 60.51c  Definitions.

    Batch HMIWI means an HMIWI that is designed such that neither waste 
charging nor ash removal can occur during combustion.
    Biologicals means preparations made from living organisms and their 
products, including vaccines, cultures, etc., intended for use in 
diagnosing, immunizing, or treating humans or animals or in research 
pertaining thereto.
    Blood products means any product derived from human blood, including 
but not limited to blood plasma, platelets, red or white blood 
corpuscles, and other derived licensed products, such as interferon, 
etc.
    Body fluids means liquid emanating or derived from humans and 
limited to blood; dialysate; amniotic, cerebrospinal, synovial, pleural, 
peritoneal and pericardial fluids; and semen and vaginal secretions.
    Bypass stack means a device used for discharging combustion gases to 
avoid severe damage to the air pollution control device or other 
equipment.
    Chemotherapeutic waste means waste material resulting from the 
production or use of antineoplastic agents used for the purpose of 
stopping or reversing the growth of malignant cells.
    Co-fired combustor means a unit combusting hospital waste and/or 
medical/infectious waste with other fuels or wastes (e.g., coal, 
municipal solid waste) and subject to an enforceable requirement 
limiting the unit to combusting a fuel feed stream, 10 percent or less 
of the weight of which is comprised, in aggregate, of hospital waste and 
medical/infectious waste as measured on a calendar quarter basis. For 
purposes of this definition, pathological waste, chemotherapeutic waste, 
and low-level radioactive waste are considered ``other'' wastes when 
calculating the percentage of hospital waste and medical/infectious 
waste combusted.
    Continuous emission monitoring system or CEMS means a monitoring 
system for continuously measuring and recording the emissions of a 
pollutant from an affected facility.
    Continuous HMIWI means an HMIWI that is designed to allow waste 
charging and ash removal during combustion.
    Dioxins/furans means the combined emissions of tetra-through octa-
chlorinated dibenzo-para-dioxins and dibenzofurans, as measured by EPA 
Reference Method 23.
    Dry scrubber means an add-on air pollution control system that 
injects dry alkaline sorbent (dry injection) or sprays an alkaline 
sorbent (spray dryer) to react with and neutralize acid gases in the 
HMIWI exhaust stream forming a dry powder material.
    Fabric filter or baghouse means an add-on air pollution control 
system that removes particulate matter (PM) and nonvaporous metals 
emissions by passing flue gas through filter bags.
    Facilities manager means the individual in charge of purchasing, 
maintaining, and operating the HMIWI or the owner's or operator's 
representative responsible for the management of the HMIWI. Alternative 
titles may include director of facilities or vice president of support 
services.
    High-air phase means the stage of the batch operating cycle when the 
primary chamber reaches and maintains maximum operating temperatures.
    Hospital means any facility which has an organized medical staff, 
maintains at least six inpatient beds, and where the primary function of 
the institution

[[Page 176]]

is to provide diagnostic and therapeutic patient services and continuous 
nursing care primarily to human inpatients who are not related and who 
stay on average in excess of 24 hours per admission. This definition 
does not include facilities maintained for the sole purpose of providing 
nursing or convalescent care to human patients who generally are not 
acutely ill but who require continuing medical supervision.
    Hospital/medical/infectious waste incinerator or HMIWI or HMIWI unit 
means any device that combusts any amount of hospital waste and/or 
medical/infectious waste.
    Hospital/medical/infectious waste incinerator operator or HMIWI 
operator means any person who operates, controls or supervises the day-
to-day operation of an HMIWI.
    Hospital waste means discards generated at a hospital, except unused 
items returned to the manufacturer. The definition of hospital waste 
does not include human corpses, remains, and anatomical parts that are 
intended for interment or cremation.
    Infectious agent means any organism (such as a virus or bacteria) 
that is capable of being communicated by invasion and multiplication in 
body tissues and capable of causing disease or adverse health impacts in 
humans.
    Intermittent HMIWI means an HMIWI that is designed to allow waste 
charging, but not ash removal, during combustion.
    Large HMIWI means:
    (1) Except as provided in (2);
    (i) An HMIWI whose maximum design waste burning capacity is more 
than 500 pounds per hour; or
    (ii) A continuous or intermittent HMIWI whose maximum charge rate is 
more than 500 pounds per hour; or
    (iii) A batch HMIWI whose maximum charge rate is more than 4,000 
pounds per day.
    (2) The following are not large HMIWI:
    (i) A continuous or intermittent HMIWI whose maximum charge rate is 
less than or equal to 500 pounds per hour; or
    (ii) A batch HMIWI whose maximum charge rate is less than or equal 
to 4,000 pounds per day.
    Low-level radioactive waste means waste material which contains 
radioactive nuclides emitting primarily beta or gamma radiation, or 
both, in concentrations or quantities that exceed applicable federal or 
State standards for unrestricted release. Low-level radioactive waste is 
not high-level radioactive waste, spent nuclear fuel, or by-product 
material as defined by the Atomic Energy Act of 1954 (42 U.S.C. 
2014(e)(2)).
    Malfunction means any sudden, infrequent, and not reasonably 
preventable failure of air pollution control equipment, process 
equipment, or a process to operate in a normal or usual manner. Failures 
that are caused, in part, by poor maintenance or careless operation are 
not malfunctions. During periods of malfunction the operator shall 
operate within established parameters as much as possible, and 
monitoring of all applicable operating parameters shall continue until 
all waste has been combusted or until the malfunction ceases, whichever 
comes first.
    Maximum charge rate means:
    (1) For continuous and intermittent HMIWI, 110 percent of the lowest 
3-hour average charge rate measured during the most recent performance 
test demonstrating compliance with all applicable emission limits.
    (2) For batch HMIWI, 110 percent of the lowest daily charge rate 
measured during the most recent performance test demonstrating 
compliance with all applicable emission limits.
    Maximum design waste burning capacity means:
    (1) For intermittent and continuous HMIWI,

C=PV  x  15,000/8,500
Where:
C=HMIWI capacity, lb/hr
PV=primary chamber volume, ft\3\
15,000=primary chamber heat release rate factor, Btu/ft\3\/hr
68,500=standard waste heating value, Btu/lb;

    (2) For batch HMIWI,

C=PV  x  4.5/8

Where:
C=HMIWI capacity, lb/hr
PV=primary chamber volume, ft\3\
164.5=waste density, lb/ft\3\

[[Page 177]]

8=typical hours of operation of a batch HMIWI, hours.

    Maximum fabric filter inlet temperature means 110 percent of the 
lowest 3-hour average temperature at the inlet to the fabric filter 
(taken, at a minimum, once every minute) measured during the most recent 
performance test demonstrating compliance with the dioxin/furan emission 
limit.
    Maximum flue gas temperature means 110 percent of the lowest 3-hour 
average temperature at the outlet from the wet scrubber (taken, at a 
minimum, once every minute) measured during the most recent performance 
test demonstrating compliance with the mercury (Hg) emission limit.
    Medical/infectious waste means any waste generated in the diagnosis, 
treatment, or immunization of human beings or animals, in research 
pertaining thereto, or in the production or testing of biologicals that 
is listed in paragraphs (1) through (7) of this definition. The 
definition of medical/infectious waste does not include hazardous waste 
identified or listed under the regulations in part 261 of this chapter; 
household waste, as defined in Sec. 261.4(b)(1) of this chapter; ash 
from incineration of medical/infectious waste, once the incineration 
process has been completed; human corpses, remains, and anatomical parts 
that are intended for interment mation; and domestic sewage materials 
identified in Sec. 261.4(a)(1) of this chapter.
    (1) Cultures and stocks of infectious agents and associated 
biologicals, including: cultures from medical and pathological 
laboratories; cultures and stocks of infectious agents from research and 
industrial laboratories; wastes from the production of biologicals; 
discarded live and attenuated vaccines; and culture dishes and devices 
used to transfer, inoculate, and mix cultures.
    (2) Human pathological waste, including tissues, organs, and body 
parts and body fluids that are removed during surgery or autopsy, or 
other medical procedures, and specimens of body fluids and their 
containers.
    (3) Human blood and blood products including:
    (i) Liquid waste human blood;
    (ii) Products of blood;
    (iii) Items saturated and/or dripping with human blood; or
    (iv) Items that were saturated and/or dripping with human blood that 
are now caked with dried human blood; including serum, plasma, and other 
blood components, and their containers, which were used or intended for 
use in either patient care, testing and laboratory analysis or the 
development of pharmaceuticals. Intravenous bags are also include in 
this category.
    (4) Sharps that have been used in animal or human patient care or 
treatment or in medical, research, or industrial laboratories, including 
hypodermic needles, syringes (with or without the attached needle), 
pasteur pipettes, scalpel blades, blood vials, needles with attached 
tubing, and culture dishes (regardless of presence of infectious 
agents). Also included are other types of broken or unbroken glassware 
that were in contact with infectious agents, such as used slides and 
cover slips.
    (5) Animal waste including contaminated animal carcasses, body 
parts, and bedding of animals that were known to have been exposed to 
infectious agents during research (including research in veterinary 
hospitals), production of biologicals or testing of pharmaceuticals.
    (6) Isolation wastes including biological waste and discarded 
materials contaminated with blood, excretions, exudates, or secretions 
from humans who are isolated to protect others from certain highly 
communicable diseases, or isolated animals known to be infected with 
highly communicable diseases.
    (7) Unused sharps including the following unused, discarded sharps: 
hypodermic needles, suture needles, syringes, and scalpel blades.
    Medium HMIWI means:
    (1) Except as provided in paragraph (2);
    (i) An HMIWI whose maximum design waste burning capacity is more 
than 200 pounds per hour but less than or equal to 500 pounds per hour; 
or
    (ii) A continuous or intermittent HMIWI whose maximum charge rate is 
more than 200 pounds per hour but less than or equal to 500 pounds per 
hour; or

[[Page 178]]

    (iii) A batch HMIWI whose maximum charge rate is more than 1,600 
pounds per day but less than or equal to 4,000 pounds per day.
    (2) The following are not medium HMIWI:
    (i) A continuous or intermittent HMIWI whose maximum charge rate is 
less than or equal to 200 pounds per hour or more than 500 pounds per 
hour; or
    (ii) A batch HMIWI whose maximum charge rate is more than 4,000 
pounds per day or less than or equal to 1,600 pounds per day.
    Minimum dioxin/furan sorbent flow rate means 90 percent of the 
highest 3-hour average dioxin/furan sorbent flow rate (taken, at a 
minimum, once every hour) measured during the most recent performance 
test demonstrating compliance with the dioxin/furan emission limit.
    Minimum Hg sorbent flow rate means 90 percent of the highest 3-hour 
average Hg sorbent flow rate (taken, at a minimum, once every hour) 
measured during the most recent performance test demonstrating 
compliance with the Hg emission limit.
    Minimum hydrogen chloride (HCl) sorbent flow rate means 90 percent 
of the highest 3-hour average HCl sorbent flow rate (taken, at a 
minimum, once every hour) measured during the most recent performance 
test demonstrating compliance with the HCl emission limit.
    Minimum horsepower or amperage means 90 percent of the highest 3-
hour average horsepower or amperage to the wet scrubber (taken, at a 
minimum, once every minute) measured during the most recent performance 
test demonstrating compliance with the applicable emission limits.
    Minimum pressure drop across the wet scrubber means 90 percent of 
the highest 3-hour average pressure drop across the wet scrubber PM 
control device (taken, at a minimum, once every minute) measured during 
the most recent performance test demonstrating compliance with the PM 
emission limit.
    Minimum scrubber liquor flow rate means 90 percent of the highest 3-
hour average liquor flow rate at the inlet to the wet scrubber (taken, 
at a minimum, once every minute) measured during the most recent 
performance test demonstrating compliance with all applicable emission 
limits.
    Minimum scrubber liquor pH means 90 percent of the highest 3-hour 
average liquor pH at the inlet to the wet scrubber (taken, at a minimum, 
once every minute) measured during the most recent performance test 
demonstrating compliance with the HCl emission limit.
    Minimum secondary chamber temperature means 90 percent of the 
highest 3-hour average secondary chamber temperature (taken, at a 
minimum, once every minute) measured during the most recent performance 
test demonstrating compliance with the PM, CO, or dioxin/furan emission 
limits.
    Modification or Modified HMIWI means any change to an HMIWI unit 
after the effective date of these standards such that:
    (1) The cumulative costs of the modifications, over the life of the 
unit, exceed 50 per centum of the original cost of the construction and 
installation of the unit (not including the cost of any land purchased 
in connection with such construction or installation) updated to current 
costs, or
    (2) The change involves a physical change in or change in the method 
of operation of the unit which increases the amount of any air pollutant 
emitted by the unit for which standards have been established under 
section 129 or section 111.
    Operating day means a 24-hour period between 12:00 midnight and the 
following midnight during which any amount of hospital waste or medical/
infectious waste is combusted at any time in the HMIWI.
    Operation means the period during which waste is combusted in the 
incinerator excluding periods of startup or shutdown.
    Particulate matter or PM means the total particulate matter emitted 
from an HMIWI as measured by EPA Reference Method 5 or EPA Reference 
Method 29.
    Pathological waste means waste material consisting of only human or 
animal remains, anatomical parts, and/or

[[Page 179]]

tissue, the bags/containers used to collect and transport the waste 
material, and animal bedding (if applicable).
    Primary chamber means the chamber in an HMIWI that receives waste 
material, in which the waste is ignited, and from which ash is removed.
    Pyrolysis means the endothermic gasification of hospital waste and/
or medical/infectious waste using external energy.
    Secondary chamber means a component of the HMIWI that receives 
combustion gases from the primary chamber and in which the combustion 
process is completed.
    Shutdown means the period of time after all waste has been combusted 
in the primary chamber. For continuous HMIWI, shutdown shall commence no 
less than 2 hours after the last charge to the incinerator. For 
intermittent HMIWI, shutdown shall commence no less than 4 hours after 
the last charge to the incinerator. For batch HMIWI, shutdown shall 
commence no less than 5 hours after the high-air phase of combustion has 
been completed.
    Small HMIWI means:
    (1) Except as provided in (2);
    (i) An HMIWI whose maximum design waste burning capacity is less 
than or equal to 200 pounds per hour; or
    (ii) A continuous or intermittent HMIWI whose maximum charge rate is 
less than or equal to 200 pounds per hour; or
    (iii) A batch HMIWI whose maximum charge rate is less than or equal 
to 1,600 pounds per day.
    (2) The following are not small HMIWI:
    (i) A continuous or intermittent HMIWI whose maximum charge rate is 
more than 200 pounds per hour;
    (ii) A batch HMIWI whose maximum charge rate is more than 1,600 
pounds per day.
    Standard conditions means a temperature of 20 
+C and a pressure of 101.3 kilopascals.
    Startup means the period of time between the activation of the 
system and the first charge to the unit. For batch HMIWI, startup means 
the period of time between activation of the system and ignition of the 
waste.
    Wet scrubber means an add-on air pollution control device that 
utilizes an alkaline scrubbing liquor to collect particulate matter 
(including nonvaporous metals and condensed organics) and/or to absorb 
and neutralize acid gases.



Sec. 60.52c  Emission limits.

    (a) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from that affected facility any gases 
that contain stack emissions in excess of the limits presented in Table 
1 of this subpart.
    (b) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, no owner or operator of an affected facility shall cause to 
be discharged into the atmosphere from the stack of that affected 
facility any gases that exhibit greater than 10 percent opacity (6-
minute block average).
    (c) On and after the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, no owner or operator of an affected facility utilizing a 
large HMIWI shall cause to be discharged into the atmosphere visible 
emissions of combustion ash from an ash conveying system (including 
conveyor transfer points) in excess of 5 percent of the observation 
period (i.e., 9 minutes per 3-hour period), as determined by EPA 
Reference Method 22, except as provided in paragraphs (d) and (e) of 
this section.
    (d) The emission limit specified in paragraph (c) of this section 
does not cover visible emissions discharged inside buildings or 
enclosures of ash conveying systems; however, the emission limit does 
cover visible emissions discharged to the atmosphere from buildings or 
enclosures of ash conveying systems.
    (e) The provisions specified in paragraph (c) of this section do not 
apply during maintenance and repair of ash conveying systems. 
Maintenance and/or repair shall not exceed 10 operating days per 
calendar quarter unless the

[[Page 180]]

owner or operator obtains written approval from the State agency 
establishing a date whereby all necessary maintenance and repairs of ash 
conveying systems shall be completed.



Sec. 60.53c  Operator training and qualification requirements.

    (a) No owner or operator of an affected facility shall allow the 
affected facility to operate at any time unless a fully trained and 
qualified HMIWI operator is accessible, either at the facility or 
available within 1 hour. The trained and qualified HMIWI operator may 
operate the HMIWI directly or be the direct supervisor of one or more 
HMIWI operators.
    (b) Operator training and qualification shall be obtained through a 
State-approved program or by completing the requirements included in 
paragraphs (c) through (g) of this section.
    (c) Training shall be obtained by completing an HMIWI operator 
training course that includes, at a minimum, the following provisions:
    (1) 24 hours of training on the following subjects:
    (i) Environmental concerns, including pathogen destruction and types 
of emissions;
    (ii) Basic combustion principles, including products of combustion;
    (iii) Operation of the type of incinerator to be used by the 
operator, including proper startup, waste charging, and shutdown 
procedures;
    (iv) Combustion controls and monitoring;
    (v) Operation of air pollution control equipment and factors 
affecting performance (if applicable);
    (vi) Methods to monitor pollutants (continuous emission monitoring 
systems and monitoring of HMIWI and air pollution control device 
operating parameters) and equipment calibration procedures (where 
applicable);
    (vii) Inspection and maintenance of the HMIWI, air pollution control 
devices, and continuous emission monitoring systems;
    (viii) Actions to correct malfunctions or conditions that may lead 
to malfunction;
    (ix) Bottom and fly ash characteristics and handling procedures;
    (x) Applicable Federal, State, and local regulations;
    (xi) Work safety procedures;
    (xii) Pre-startup inspections; and
    (xiii) Recordkeeping requirements.
    (2) An examination designed and administered by the instructor.
    (3) Reference material distributed to the attendees covering the 
course topics.
    (d) Qualification shall be obtained by:
    (1) Completion of a training course that satisfies the criteria 
under paragraph (c) of this section; and
    (2) Either 6 months experience as an HMIWI operator, 6 months 
experience as a direct supervisor of an HMIWI operator, or completion of 
at least two burn cycles under the observation of two qualified HMIWI 
operators.
    (e) Qualification is valid from the date on which the examination is 
passed or the completion of the required experience, whichever is later.
    (f) To maintain qualification, the trained and qualified HMIWI 
operator shall complete and pass an annual review or refresher course of 
at least 4 hours covering, at a minimum, the following:
    (1) Update of regulations;
    (2) Incinerator operation, including startup and shutdown 
procedures;
    (3) Inspection and maintenance;
    (4) Responses to malfunctions or conditions that may lead to 
malfunction; and
    (5) Discussion of operating problems encountered by attendees.
    (g) A lapsed qualification shall be renewed by one of the following 
methods:
    (1) For a lapse of less than 3 years, the HMIWI operator shall 
complete and pass a standard annual refresher course described in 
paragraph (f) of this section.
    (2) For a lapse of 3 years or more, the HMIWI operator shall 
complete and pass a training course with the minimum criteria described 
in paragraph (c) of this section.
    (h) The owner or operator of an affected facility shall maintain 
documentation at the facility that address the following:
    (1) Summary of the applicable standards under this subpart;

[[Page 181]]

    (2) Description of basic combustion theory applicable to an HMIWI;
    (3) Procedures for receiving, handling, and charging waste;
    (4) HMIWI startup, shutdown, and malfunction procedures;
    (5) Procedures for maintaining proper combustion air supply levels;
    (6) Procedures for operating the HMIWI and associated air pollution 
control systems within the standards established under this subpart;
    (7) Procedures for responding to periodic malfunction or conditions 
that may lead to malfunction;
    (8) Procedures for monitoring HMIWI emissions;
    (9) Reporting and recordkeeping procedures; and
    (10) Procedures for handling ash.
    (i) The owner or operator of an affected facility shall establish a 
program for reviewing the information listed in paragraph (h) of this 
section annually with each HMIWI operator (defined in Sec. 60.51c).
    (1) The initial review of the information listed in paragraph (h) of 
this section shall be conducted within 6 months after the effective date 
of this subpart or prior to assumption of responsibilities affecting 
HMIWI operation, whichever date is later.
    (2) Subsequent reviews of the information listed in paragraph (h) of 
this section shall be conducted annually.
    (j) The information listed in paragraph (h) of this section shall be 
kept in a readily accessible location for all HMIWI operators. This 
information, along with records of training shall be available for 
inspection by the EPA or its delegated enforcement agent upon request.



Sec. 60.54c  Siting requirements.

    (a) The owner or operator of an affected facility for which 
construction is commenced after September 15, 1997 shall prepare an 
analysis of the impacts of the affected facility. The analysis shall 
consider air pollution control alternatives that minimize, on a site-
specific basis, to the maximum extent practicable, potential risks to 
public health or the environment. In considering such alternatives, the 
analysis may consider costs, energy impacts, non-air environmental 
impacts, or any other factors related to the practicability of the 
alternatives.
    (b) Analyses of facility impacts prepared to comply with State, 
local, or other Federal regulatory requirements may be used to satisfy 
the requirements of this section, as long as they include the 
consideration of air pollution control alternatives specified in 
paragraph (a) of this section.
    (c) The owner or operator of the affected facility shall complete 
and submit the siting requirements of this section as required under 
Sec. 60.58c(a)(1)(iii).



Sec. 60.55c  Waste management plan.

    The owner or operator of an affected facility shall prepare a waste 
management plan. The waste management plan shall identify both the 
feasibility and the approach to separate certain components of solid 
waste from the health care waste stream in order to reduce the amount of 
toxic emissions from incinerated waste. A waste management plan may 
include, but is not limited to, elements such as paper, cardboard, 
plastics, glass, battery, or metal recycling; or purchasing recycled or 
recyclable products. A waste management plan may include different goals 
or approaches for different areas or departments of the facility and 
need not include new waste management goals for every waste stream. It 
should identify, where possible, reasonably available additional waste 
management measures, taking into account the effectiveness of waste 
management measures already in place, the costs of additional measures, 
the emission reductions expected to be achieved, and any other 
environmental or energy impacts they might have. The American Hospital 
Association publication entitled ``An Ounce of Prevention: Waste 
Reduction Strategies for Health Care Facilities'' (incorporated by 
reference, see Sec. 60.17) shall be considered in the development of the 
waste management plan.



Sec. 60.56c  Compliance and performance testing.

    (a) The emission limits under this subpart apply at all times except 
during periods of startup, shutdown, or malfunction, provided that no 
hospital waste or medical/infectious waste is

[[Page 182]]

charged to the affected facility during startup, shutdown, or 
malfunction.
    (b) The owner or operator of an affected facility shall conduct an 
initial performance test as required under Sec. 60.8 to determine 
compliance with the emission limits using the procedures and test 
methods listed in paragraphs (b)(1) through (b)(12) of this section. The 
use of the bypass stack during a performance test shall invalidate the 
performance test.
    (1) All performance tests shall consist of a minimum of three test 
runs conducted under representative operating conditions.
    (2) The minimum sample time shall be 1 hour per test run unless 
otherwise indicated.
    (3) EPA Reference Method 1 of appendix A of this part shall be used 
to select the sampling location and number of traverse points.
    (4) EPA Reference Method 3 or 3A of appendix A of this part shall be 
used for gas composition analysis, including measurement of oxygen 
concentration. EPA Reference Method 3 or 3A of appendix A of this part 
shall be used simultaneously with each reference method.
    (5) The pollutant concentrations shall be adjusted to 7 percent 
oxygen using the following equation:

Cadj=Cmeas (20.9--7)/(20.9--%O2) where:

Cadj=pollutant concentration adjusted to 7 percent oxygen;
Cmeas=pollutant concentration measured on a dry basis (20.9--
7)=20.9 percent oxygen--7 percent oxygen (defined oxygen correction 
basis);
20.9=oxygen concentration in air, percent; and
%O2=oxygen concentration measured on a dry basis, percent.

    (6) EPA Reference Method 5 or 29 of appendix A of this part shall be 
used to measure the particulate matter emissions.
    (7) EPA Reference Method 9 of appendix A of this part shall be used 
to measure stack opacity.
    (8) EPA Reference Method 10 or 10B of appendix A of this part shall 
be used to measure the CO emissions.
    (9) EPA Reference Method 23 of appendix A of this part shall be used 
to measure total dioxin/furan emissions. The minimum sample time shall 
be 4 hours per test run. If the affected facility has selected the toxic 
equivalency standards for dioxin/furans, under Sec. 60.52c, the 
following procedures shall be used to determine compliance:
    (i) Measure the concentration of each dioxin/furan tetra-through 
octa-congener emitted using EPA Reference Method 23.
    (ii) For each dioxin/furan congener measured in accordance with 
paragraph (b)(9)(i) of this section, multiply the congener concentration 
by its corresponding toxic equivalency factor specified in Table 2 of 
this subpart.
    (iii) Sum the products calculated in accordance with paragraph 
(b)(9)(ii) of this section to obtain the total concentration of dioxins/
furans emitted in terms of toxic equivalency.
    (10) EPA Reference Method 26 of appendix A of this part shall be 
used to measure HCl emissions. If the affected facility has selected the 
percentage reduction standards for HCl under Sec. 60.52c, the percentage 
reduction in HCl emissions (%RHCl) is computed using the 
following formula:
[GRAPHIC] [TIFF OMITTED] TR15SE97.000

Where:
%RHCl=percentage reduction of HCl emissions achieved;
Ei=HCl emission concentration measured at the control device 
inlet, corrected to 7 percent oxygen (dry basis); and
Eo=HCl emission concentration measured at the control device 
outlet, corrected to 7 percent oxygen (dry basis).

    (11) EPA Reference Method 29 of appendix A of this part shall be 
used to measure Pb, Cd, and Hg emissions. If the affected facility has 
selected the percentage reduction standards for metals under 
Sec. 60.52c, the percentage reduction in emissions (%Rmetal) 
is computed using the following formula:
[GRAPHIC] [TIFF OMITTED] TC16NO91.251

Where:
%Rmetal=percentage reduction of metal emission (Pb, Cd, or 
Hg) achieved;

[[Page 183]]

Ei=metal emission concentration (Pb, Cd, or Hg) measured at 
the control device inlet, corrected to 7 percent oxygen (dry basis); and
Eo=metal emission concentration (Pb, Cd, or Hg) measured at 
the control device outlet, corrected to 7 percent oxygen (dry basis).

    (12) The EPA Reference Method 22 of appendix A of this part shall be 
used to determine compliance with the fugitive ash emission limit under 
Sec. 60.52c(c). The minimum observation time shall be a series of three 
1-hour observations.
    (c) Following the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, the owner or operator of an affected facility shall:
    (1) Determine compliance with the opacity limit by conducting an 
annual performance test (no more than 12 months following the previous 
performance test) using the applicable procedures and test methods 
listed in paragraph (b) of this section.
    (2) Determine compliance with the PM, CO, and HCl emission limits by 
conducting an annual performance test (no more than 12 months following 
the previous performance test) using the applicable procedures and test 
methods listed in paragraph (b) of this section. If all three 
performance tests over a 3-year period indicate compliance with the 
emission limit for a pollutant (PM, CO, or HCl), the owner or operator 
may forego a performance test for that pollutant for the subsequent 2 
years. At a minimum, a performance test for PM, CO, and HCl shall be 
conducted every third year (no more than 36 months following the 
previous performance test). If a performance test conducted every third 
year indicates compliance with the emission limit for a pollutant (PM, 
CO, or HCl), the owner or operator may forego a performance test for 
that pollutant for an additional 2 years. If any performance test 
indicates noncompliance with the respective emission limit, a 
performance test for that pollutant shall be conducted annually until 
all annual performance tests over a 3-year period indicate compliance 
with the emission limit. The use of the bypass stack during a 
performance test shall invalidate the performance test.
    (3) For large HMIWI, determine compliance with the visible emission 
limits for fugitive emissions from flyash/bottom ash storage and 
handling by conducting a performance test using EPA Reference Method 22 
on an annual basis (no more than 12 months following the previous 
performance test).
    (4) Facilities using a CEMS to demonstrate compliance with any of 
the emission limits under Sec. 60.52c shall:
    (i) Determine compliance with the appropriate emission limit(s) 
using a 12-hour rolling average, calculated each hour as the average of 
the previous 12 operating hours (not including startup, shutdown, or 
malfunction).
    (ii) Operate all CEMS in accordance with the applicable procedures 
under appendices B and F of this part.
    (d) The owner or operator of an affected facility equipped with a 
dry scrubber followed by a fabric filter, a wet scrubber, or a dry 
scrubber followed by a fabric filter and wet scrubber shall:
    (1) Establish the appropriate maximum and minimum operating 
parameters, indicated in Table 3 of this subpart for each control 
system, as site specific operating parameters during the initial 
performance test to determine compliance with the emission limits; and
    (2) Following the date on which the initial performance test is 
completed or is required to be completed under Sec. 60.8, whichever date 
comes first, ensure that the affected facility does not operate above 
any of the applicable maximum operating parameters or below any of the 
applicable minimum operating parameters listed in Table 3 of this 
subpart and measured as 3-hour rolling averages (calculated each hour as 
the average of the previous 3 operating hours) at all times except 
during periods of startup, shutdown and malfunction. Operating parameter 
limits do not apply during performance tests. Operation above the 
established maximum or below the established minimum operating 
parameter(s) shall constitute a violation of established operating 
parameter(s).
    (e) Except as provided in paragraph (h) of this section, for 
affected facilities equipped with a dry scrubber followed by a fabric 
filter:

[[Page 184]]

    (1) Operation of the affected facility above the maximum charge rate 
and below the minimum secondary chamber temperature (each measured on a 
3-hour rolling average) simultaneously shall constitute a violation of 
the CO emission limit.
    (2) Operation of the affected facility above the maximum fabric 
filter inlet temperature, above the maximum charge rate, and below the 
minimum dioxin/furan sorbent flow rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the 
dioxin/furan emission limit.
    (3) Operation of the affected facility above the maximum charge rate 
and below the minimum HCl sorbent flow rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the HCl 
emission limit.
    (4) Operation of the affected facility above the maximum charge rate 
and below the minimum Hg sorbent flow rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the Hg 
emission limit.
    (5) Use of the bypass stack (except during startup, shutdown, or 
malfunction) shall constitute a violation of the PM, dioxin/furan, HCl, 
Pb, Cd and Hg emission limits.
    (f) Except as provided in paragraph (h) of this section, for 
affected facilities equipped with a wet scrubber:
    (1) Operation of the affected facility above the maximum charge rate 
and below the minimum pressure drop across the wet scrubber or below the 
minimum horsepower or amperage to the system (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the PM 
emission limit.
    (2) Operation of the affected facility above the maximum charge rate 
and below the minimum secondary chamber temperature (each measured on a 
3-hour rolling average) simultaneously shall constitute a violation of 
the CO emission limit.
    (3) Operation of the affected facility above the maximum charge 
rate, below the minimum secondary chamber temperature, and below the 
minimum scrubber liquor flow rate (each measured on a 3-hour rolling 
average) simultaneously shall constitute a violation of the dioxin/furan 
emission limit.
    (4) Operation of the affected facility above the maximum charge rate 
and below the minimum scrubber liquor pH (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the HCl 
emission limit.
    (5) Operation of the affected facility above the maximum flue gas 
temperature and above the maximum charge rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the Hg 
emission limit.
    (6) Use of the bypass stack (except during startup, shutdown, or 
malfunction) shall constitute a violation of the PM, dioxin/furan, HCl, 
Pb, Cd and Hg emission limits.
    (g) Except as provided in paragraph (h) of this section, for 
affected facilities equipped with a dry scrubber followed by a fabric 
filter and a wet scrubber:
    (1) Operation of the affected facility above the maximum charge rate 
and below the minimum secondary chamber temperature (each measured on a 
3-hour rolling average) simultaneously shall constitute a violation of 
the CO emission limit.
    (2) Operation of the affected facility above the maximum fabric 
filter inlet temperature, above the maximum charge rate, and below the 
minimum dioxin/furan sorbent flow rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the 
dioxin/furan emission limit.
    (3) Operation of the affected facility above the maximum charge rate 
and below the minimum scrubber liquor pH (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the HCl 
emission limit.
    (4) Operation of the affected facility above the maximum charge rate 
and below the minimum Hg sorbent flow rate (each measured on a 3-hour 
rolling average) simultaneously shall constitute a violation of the Hg 
emission limit.
    (5) Use of the bypass stack (except during startup, shutdown, or 
malfunction) shall constitute a violation of the

[[Page 185]]

PM, dioxin/furan, HCl, Pb, Cd and Hg emission limits.
    (h) The owner or operator of an affected facility may conduct a 
repeat performance test within 30 days of violation of applicable 
operating parameter(s) to demonstrate that the affected facility is not 
in violation of the applicable emission limit(s). Repeat performance 
tests conducted pursuant to this paragraph shall be conducted using the 
identical operating parameters that indicated a violation under 
paragraph (e), (f), or (g) of this section.
    (i) The owner or operator of an affected facility using an air 
pollution control device other than a dry scrubber followed by a fabric 
filter, a wet scrubber, or a dry scrubber followed by a fabric filter 
and a wet scrubber to comply with the emission limits under Sec. 60.52c 
shall petition the Administrator for other site-specific operating 
parameters to be established during the initial performance test and 
continuously monitored thereafter. The owner or operator shall not 
conduct the initial performance test until after the petition has been 
approved by the Administrator.
    (j) The owner or operator of an affected facility may conduct a 
repeat performance test at any time to establish new values for the 
operating parameters. The Administrator may request a repeat performance 
test at any time.



Sec. 60.57c  Monitoring requirements.

    (a) The owner or operator of an affected facility shall install, 
calibrate (to manufacturers' specifications), maintain, and operate 
devices (or establish methods) for monitoring the applicable maximum and 
minimum operating parameters listed in Table 3 of this subpart such that 
these devices (or methods) measure and record values for these operating 
parameters at the frequencies indicated in Table 3 of this subpart at 
all times except during periods of startup and shutdown.
    (b) The owner or operator of an affected facility shall install, 
calibrate (to manufacturers' specifications), maintain, and operate a 
device or method for measuring the use of the bypass stack including 
date, time, and duration.
    (c) The owner or operator of an affected facility using something 
other than a dry scrubber followed by a fabric filter, a wet scrubber, 
or a dry scrubber followed by a fabric filter and a wet scrubber to 
comply with the emission limits under Sec. 60.52c shall install, 
calibrate (to the manufacturers' specifications), maintain, and operate 
the equipment necessary to monitor the site-specific operating 
parameters developed pursuant to Sec. 60.56c(i).
    (d) The owner or operator of an affected facility shall obtain 
monitoring data at all times during HMIWI operation except during 
periods of monitoring equipment malfunction, calibration, or repair. At 
a minimum, valid monitoring data shall be obtained for 75 percent of the 
operating hours per day and for 90 percent of the operating days per 
calendar quarter that the affected facility is combusting hospital waste 
and/or medical/infectious waste.



Sec. 60.58c  Reporting and recordkeeping requirements.

    (a) The owner or operator of an affected facility shall submit 
notifications, as provided by Sec. 60.7. In addition, the owner or 
operator shall submit the following information:
    (1) Prior to commencement of construction;
    (i) A statement of intent to construct;
    (ii) The anticipated date of commencement of construction; and
    (iii) All documentation produced as a result of the siting 
requirements of Sec. 60.54c.
    (2) Prior to initial startup;
    (i) The type(s) of waste to be combusted;
    (ii) The maximum design waste burning capacity;
    (iii) The anticipated maximum charge rate; and
    (iv) If applicable, the petition for site-specific operating 
parameters under Sec. 60.56c(i).
    (b) The owner or operator of an affected facility shall maintain the 
following information (as applicable) for a period of at least 5 years:
    (1) Calendar date of each record;
    (2) Records of the following data:
    (i) Concentrations of any pollutant listed in Sec. 60.52c or 
measurements of

[[Page 186]]

opacity as determined by the continuous emission monitoring system (if 
applicable);
    (ii) Results of fugitive emissions (by EPA Reference Method 22) 
tests, if applicable;
    (iii) HMIWI charge dates, times, and weights and hourly charge 
rates;
    (iv) Fabric filter inlet temperatures during each minute of 
operation, as applicable;
    (v) Amount and type of dioxin/furan sorbent used during each hour of 
operation, as applicable;
    (vi) Amount and type of Hg sorbent used during each hour of 
operation, as applicable;
    (vii) Amount and type of HCl sorbent used during each hour of 
operation, as applicable;
    (viii) Secondary chamber temperatures recorded during each minute of 
operation;
    (ix) Liquor flow rate to the wet scrubber inlet during each minute 
of operation, as applicable;
    (x) Horsepower or amperage to the wet scrubber during each minute of 
operation, as applicable;
    (xi) Pressure drop across the wet scrubber system during each minute 
of operation, as applicable,
    (xii) Temperature at the outlet from the wet scrubber during each 
minute of operation, as applicable;
    (xiii) pH at the inlet to the wet scrubber during each minute of 
operation, as applicable,
    (xiv) Records indicating use of the bypass stack, including dates, 
times, and durations, and
    (xv) For affected facilities complying with Secs. 60.56c(i) and 
60.57c(c), the owner or operator shall maintain all operating parameter 
data collected.
    (3) Identification of calendar days for which data on emission rates 
or operating parameters specified under paragraph (b)(2) of this section 
have not been obtained, with an identification of the emission rates or 
operating parameters not measured, reasons for not obtaining the data, 
and a description of corrective actions taken.
    (4) Identification of calendar days, times and durations of 
malfunctions, a description of the malfunction and the corrective action 
taken.
    (5) Identification of calendar days for which data on emission rates 
or operating parameters specified under paragraph (b)(2) of this section 
exceeded the applicable limits, with a description of the exceedances, 
reasons for such exceedances, and a description of corrective actions 
taken.
    (6) The results of the initial, annual, and any subsequent 
performance tests conducted to determine compliance with the emission 
limits and/or to establish operating parameters, as applicable.
    (7) All documentation produced as a result of the siting 
requirements of Sec. 60.54c;
    (8) Records showing the names of HMIWI operators who have completed 
review of the information in Sec. 60.53c(h) as required by 
Sec. 60.53c(i), including the date of the initial review and all 
subsequent annual reviews;
    (9) Records showing the names of the HMIWI operators who have 
completed the operator training requirements, including documentation of 
training and the dates of the training;
    (10) Records showing the names of the HMIWI operators who have met 
the criteria for qualification under Sec. 60.53c and the dates of their 
qualification; and
    (11) Records of calibration of any monitoring devices as required 
under Sec. 60.57c (a), (b), and (c).
    (c) The owner or operator of an affected facility shall submit the 
information specified in paragraphs (c)(1) through (c)(3) of this 
section no later than 60 days following the initial performance test. 
All reports shall be signed by the facilities manager.
    (1) The initial performance test data as recorded under Sec. 60.56c 
(b)(1) through (b)(12), as applicable.
    (2) The values for the site-specific operating parameters 
established pursuant to Sec. 60.56c (d) or (i), as applicable.
    (3) The waste management plan as specified in Sec. 60.55c.
    (d) An annual report shall be submitted 1 year following the 
submission of the information in paragraph (c) of this section and 
subsequent reports shall be submitted no more than 12 months following 
the previous report (once the unit is subject to permitting requirements 
under Title V of the Clean Air

[[Page 187]]

Act, the owner or operator of an affected facility must submit these 
reports semiannually). The annual report shall include the information 
specified in paragraphs (d)(1) through (d)(8) of this section. All 
reports shall be signed by the facilities manager.
    (1) The values for the site-specific operating parameters 
established pursuant to Sec. 60.56c (d) or (i), as applicable.
    (2) The highest maximum operating parameter and the lowest minimum 
operating parameter, as applicable, for each operating parameter 
recorded for the calendar year being reported, pursuant to 
Sec. 60.56c(d) or (i), as applicable.
    (3) The highest maximum operating parameter and the lowest minimum 
operating parameter, as applicable for each operating parameter recorded 
pursuant to Sec. 60.56c (d) or (i) for the calendar year preceding the 
year being reported, in order to provide the Administrator with a 
summary of the performance of the affected facility over a 2-year 
period.
    (4) Any information recorded under paragraphs (b)(3) through (b)(5) 
of this section for the calendar year being reported.
    (5) Any information recorded under paragraphs (b)(3) through (b)(5) 
of this section for the calendar year preceding the year being reported, 
in order to provide the Administrator with a summary of the performance 
of the affected facility over a 2-year period.
    (6) If a performance test was conducted during the reporting period, 
the results of that test.
    (7) If no exceedances or malfunctions were reported under paragraphs 
(b)(3) through (b)(5) of this section for the calendar year being 
reported, a statement that no exceedances occurred during the reporting 
period.
    (8) Any use of the bypass stack, the duration, reason for 
malfunction, and corrective action taken.
    (e) The owner or operator of an affected facility shall submit 
semiannual reports containing any information recorded under paragraphs 
(b)(3) through (b)(5) of this section no later than 60 days following 
the reporting period. The first semiannual reporting period ends 6 
months following the submission of information in paragraph (c) of this 
section. Subsequent reports shall be submitted no later than 6 calendar 
months following the previous report. All reports shall be signed by the 
facilities manager.
    (f) All records specified under paragraph (b) of this section shall 
be maintained onsite in either paper copy or computer-readable format, 
unless an alternative format is approved by the Administrator.

                    Table 1 to Subpart Ec--Emission Limits for Small, Medium, and Large HMIWI
----------------------------------------------------------------------------------------------------------------
                                                                             Emission limits
                                                        --------------------------------------------------------
           Pollutant                Units (7 percent                            HMIWI size
                                   oxygen, dry basis)   --------------------------------------------------------
                                                               Small              Medium             Large
----------------------------------------------------------------------------------------------------------------
Particulate matter.............  Milligrams per dry      69 (0.03)........  34 (0.015).......  34 (0.015).
                                  standard cubic meter
                                  (grains per dry
                                  standard cubic foot).
Carbon monoxide................  Parts per million by    40...............  40...............  40.
                                  volume.
Dioxins/furans.................  Nanograms per dry       125 (55) or 2.3    25 (11) or 0.6     25 (11) or 0.6
                                  standard cubic meter    (1.0).             (0.26).            (0.26).
                                  total dioxins/furans
                                  (grains per billion
                                  dry standard cubic
                                  feet) or nanograms
                                  per dry standard
                                  cubic meter total
                                  dioxins/furans TEQ
                                  (grains per billion
                                  dry standard cubic
                                  feet).
Hydrogen chloride..............  Parts per million or    15 or 99%........  15 or 99%........  15 or 99%.
                                  percent reduction.
Sulfur dioxide.................  Parts per million by    55...............  55...............  55.
                                  volume.
Nitrogen oxides................  Parts per million by    250..............  250..............  250.
                                  volume.
Lead...........................  Milligrams per dry      1.2 (0.52) or 70%  0.07 (0.03) or     0.07 (0.03) or
                                  standard cubic meter                       98%.               98%.
                                  (grains per thousand
                                  dry standard cubic
                                  feet) or percent
                                  reduction.
Cadmium........................  Milligrams per dry      0.16 (0.07) or     0.04 (0.02) or     0.04 (0.02) or
                                  standard cubic meter    65%.               90%.               90%.
                                  (grains per thousand
                                  dry standard cubic
                                  feet) or percent
                                  reduction.
Mercury........................  Milligrams per dry      0.55 (0.24) or     0.55 (0.24) or     0.55 (0.24) or
                                  standard cubic meter    85%.               85%.               85%.
                                  (grains per thousand
                                  dry standard cubic
                                  feet) or percent
                                  reduction.

[[Page 188]]

 
----------------------------------------------------------------------------------------------------------------


            Table 2 To Supbart Ec--Toxic Equivalency Factors
------------------------------------------------------------------------
                                                                Toxic
                   Dioxin/furan congener                     equivalency
                                                               factor
------------------------------------------------------------------------
2,3,7,8-tetrachlorinated dibenzo-p-dioxin.................         1
1,2,3,7,8-pentachlorinated dibenzo-p-dioxin...............         0.5
1,2,3,4,7,8-hexachlorinated dibenzo-p-dioxin..............         0.1
1,2,3,7,8,9-hexachlorinated dibenzo-p-dioxin..............         0.1
1,2,3,6,7,8-hexachlorinated dibenzo-p-dioxin..............         0.1
1,2,3,4,6,7,8-heptachlorinated dibenzo-p-dioxin...........         0.01
octachlorinated dibenzo-p-dioxin..........................         0.001
2,3,7,8-tetrachlorinated dibenzofuran.....................         0.1
2,3,4,7,8-pentachlorinated dibenzofuran...................         0.5
1,2,3,7,8-pentachlorinated dibenzofuran...................         0.05
1,2,3,4,7,8-hexachlorinated dibenzofuran..................         0.1
1,2,3,6,7,8-hexachlorinated dibenzofuran..................         0.1
1,2,3,7,8,9-hexachlorinated dibenzofuran..................         0.1
2,3,4,6,7,8-hexachlorinated dibenzofuran..................         0.1
1,2,3,4,6,7,8-heptachlorinated dibenzofuran...............         0.01
1,2,3,4,7,8,9-heptachlorinated dibenzofuran...............         0.01
Octachlorinated dibenzofuran..............................         0.001
------------------------------------------------------------------------


                      Table 3 to Subpart Ec--Operating Parameters to be Monitored and Minimum Measurement and Recording Frequencies
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                    Minimum frequency                                        Control system
                                          --------------------------------------------------------------------------------------------------------------
                                                                                                                                            Dry scrubber
   Operating parameters to be monitored                                                                         Dry scrubber                 followed by
                                                    Data measurement                   Data recording            followed by  Wet scrubber     fabric
                                                                                                                   fabric                    filter and
                                                                                                                   filter                   wet scrubber
--------------------------------------------------------------------------------------------------------------------------------------------------------
Maximum operating parameters:
    Maximum charge rate..................  Continuous.......................  1 x hour........................                    
    Maximum fabric filter inlet            Continuous.......................  1 x minute......................         ............      
     temperature.
    Maximum flue gas temperature.........  Continuous.......................  1 x minute......................             
Minimum operating parameters:
    Minimum secondary chamber temperature  Continuous.......................  1 x minute......................                    
    Minimum dioxin/furan sorbent flow      Hourly...........................  1 x hour........................         ............      
     rate.
    Minimum HCI sorbent flow rate........  Hourly...........................  1 x hour........................         ............      
    Minimum mercury (Hg) sorbent flow      Hourly...........................  1 x hour........................         ............      
     rate.
    Minimum pressure drop across the wet   Continuous.......................  1 x minute......................  ............             
     scrubber or minimum horsepower or
     amperage to wet scrubber.
    Minimum scrubber liquor flow rate....  Continuous.......................  1 x minute......................  ............             
    Minimum scrubber liquor pH...........  Continuous.......................  1 x minute......................  ............             
--------------------------------------------------------------------------------------------------------------------------------------------------------



     Subpart F--Standards of Performance for Portland Cement Plants



Sec. 60.60  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in portland cement plants: Kiln, clinker cooler, raw 
mill system, finish mill system, raw mill dryer, raw material storage, 
clinker storage, finished product storage, conveyor transfer points, 
bagging and bulk loading and unloading systems.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after August 17, 1971, is subject to the 
requirements of this subpart.
[42 FR 37936, July 25, 1977]



Sec. 60.61  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning

[[Page 189]]

given them in the Act and in subpart A of this part.
    (a) Portland cement plant means any facility manufacturing portland 
cement by either the wet or dry process.
    (b) Bypass means any system that prevents all or a portion of the 
kiln or clinker cooler exhaust gases from entering the main control 
device and ducts the gases through a separate control device. This does 
not include emergency systems designed to duct exhaust gases directly to 
the atmosphere in the event of a malfunction of any control device 
controlling kiln or clinker cooler emissions.
    (c) Bypass stack means the stack that vents exhaust gases to the 
atmosphere from the bypass control device.
    (d) Monovent means an exhaust configuration of a building or 
emission control device (e.g., positive-pressure fabric filter) that 
extends the length of the structure and has a width very small in 
relation to its length (i.e., length to width ratio is typically greater 
than 5:1). The exhaust may be an open vent with or without a roof, 
louvered vents, or a combination of such features.
[36 FR 24877, Dec. 23, 1971, as amended at 39 FR 20793, June 13, 1974; 
53 FR 50363, Dec. 14, 1988]



Sec. 60.62  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any kiln any gases which:
    (1) Contain particulate matter in excess of 0.15 kg per metric ton 
of feed (dry basis) to the kiln (0.30 lb per ton).
    (2) Exhibit greater than 20 percent opacity.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any clinker cooler any gases which:
    (1) Contain particulate matter in excess of 0.050 kg per metric ton 
of feed (dry basis) to the kiln (0.10 lb per ton).
    (2) Exhibit 10 percent opacity, or greater.
    (c) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility other than the kiln and clinker 
cooler any gases which exhibit 10 percent opacity, or greater.
[39 FR 20793, June 14, 1974, as amended at 39 FR 39874, Nov. 12, 1974; 
40 FR 46258, Oct. 6, 1975]



Sec. 60.63  Monitoring of operations.

    (a) The owner or operator of any portland cement plant subject to 
the provisions of this part shall record the daily production rates and 
kiln feed rates.
    (b) Except as provided in paragraph (c) of this section, each owner 
or operator of a kiln or clinker cooler that is subject to the 
provisions of this subpart shall install, calibrate, maintain, and 
operate in accordance with Sec. 60.13 a continuous opacity monitoring 
system to measure the opacity of emissions discharged into the 
atmosphere from any kiln or clinker cooler. Except as provided in 
paragraph (c) of this section, a continuous opacity monitoring system 
shall be installed on each stack of any multiple stack device 
controlling emissions from any kiln or clinker cooler. If there is a 
separate bypass installed, each owner or operator of a kiln or clinker 
cooler shall also install, calibrate, maintain, and operate a continuous 
opacity monitoring system on each bypass stack in addition to the main 
control device stack. Each owner or operator of an affected kiln or 
clinker cooler for which the performance test required under Sec. 60.8 
has been completed on or prior to December 14, 1988, shall install the 
continuous opacity monitoring system within 180 days after December 14, 
1988.
    (c) Each owner or operator of a kiln or clinker cooler subject to 
the provisions of this subpart using a positive-pressure fabric filter 
with multiple stacks, or a negative-pressure fabric filter with multiple 
stacks, or an electrostatic precipitator with multiple stacks may, in 
lieu of installing the continuous opacity monitoring system

[[Page 190]]

required by Sec. 60.63(b), monitor visible emissions at least once per 
day by using a certified visible emissions observer. If the control 
device exhausts gases through a monovent, visible emission observations 
in lieu of a continuous opacity monitoring system are required. These 
observations shall be taken in accordance with EPA Method 9. Visible 
emissions shall be observed during conditions representative of normal 
operation. Observations shall be recorded for at least three 6-minute 
periods each day. In the event that visible emissions are observed for a 
number of emission sites from the control device with multiple stacks, 
Method 9 observations shall be recorded for the emission site with the 
highest opacity. All records of visible emissions shall be maintained 
for a period of 2 years.
    (d) For the purpose of reports under Sec. 60.65, periods of excess 
emissions that shall be reported are defined as all 6-minute periods 
during which the average opacity exceeds that allowed by 
Sec. 60.62(a)(2) or Sec. 60.62(b)(2).
    (e) The provisions of paragraphs (a), (b), and (c) of this section 
apply to kilns and clinker coolers for which construction, modification, 
or reconstruction commenced after August 17, 1971.
[36 FR 24877, Dec. 23, 1971, as amended at 53 FR 50363, Dec. 14, 1988]



Sec. 60.64  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter standard in Sec. 60.62 as follows:
    (1) The emission rate (E) of particulate matter shall be computed 
for each run using the following equation:

    E=(cs Qsd)/(P K)

where:
E=emission rate of particulate matter, kg/metric ton (lb/ton) of kiln 
          feed.
cs=concentration of particulate matter, g/dscm (g/dscf).
Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
P=total kiln feed (dry basis) rate, metric ton/hr (ton/hr).
K=conversion factor, 1000 g/kg (453.6 g/lb).

    (2) Method 5 shall be used to determine the particulate matter 
concentration (cs) and the volumetric flow rate 
(Qsd) of the effluent gas.

The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30.0 dscf) for the kiln and at least 60 minutes 
and 1.15 dscm (40.6 dscf) for the clinker cooler.
    (3) Suitable methods shall be used to determine the kiln feed rate 
(P), except fuels, for each run. Material balance over the production 
system shall be used to confirm the feed rate.
    (4) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6666, Feb. 14, 1989]



Sec. 60.65  Recordkeeping and reporting requirements.

    (a) Each owner or operator required to install a continuous opacity 
monitoring system under Sec. 60.63(b) shall submit reports of excess 
emissions as defined in Sec. 60.63(d). The content of these reports must 
comply with the requirements in Sec. 60.7(c). Notwithstanding the 
provisions of Sec. 60.7(c), such reports shall be submitted 
semiannually.
    (b) Each owner or operator monitoring visible emissions under 
Sec. 60.63(c) shall submit semiannual reports of observed excess 
emissions as defined in Sec. 60.63(d).
    (c) Each owner or operator of facilities subject to the provisions 
of Sec. 60.63(c) shall submit semiannual reports of the malfunction 
information required to be recorded by Sec. 60.7(b). These reports shall 
include the frequency, duration, and cause of any incident resulting in 
deenergization of any device controlling kiln emissions or in the 
venting of emissions directly to the atmosphere.
    (d) The requirements of this section remain in force until and 
unless the Agency, in delegating enforcement authority to a State under 
section 111(c) of the Clean Air Act, 42 U.S.C. 7411, approves reporting 
requirements or an alternative means of compliance surveillance adopted 
by such States. In that event, affected sources within the

[[Page 191]]

State will be relieved of the obligation to comply with this section, 
provided that they comply with the requirements established by the 
State.
[53 FR 50364, Dec. 14, 1988]



Sec. 60.66  Delegation of authority.

    (a) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Act, the authorities contained in 
paragraph (b) of this section shall be retained by the Administrator and 
not transferred to a State.
    (b) Authorities which will not be delegated to States: No 
restrictions.
[53 FR 50364, Dec. 14, 1988]



       Subpart G--Standards of Performance for Nitric Acid Plants



Sec. 60.70  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to each nitric 
acid production unit, which is the affected facility.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after August 17, 1971, is subject to the 
requirements of this subpart.
[42 FR 37936, July 25, 1977]



Sec. 60.71  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Nitric acid production unit means any facility producing weak 
nitric acid by either the pressure or atmospheric pressure process.
    (b) Weak nitric acid means acid which is 30 to 70 percent in 
strength.



Sec. 60.72  Standard for nitrogen oxides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which:
    (1) Contain nitrogen oxides, expressed as NO2, in excess 
of 1.5 kg per metric ton of acid produced (3.0 lb per ton), the 
production being expressed as 100 percent nitric acid.
    (2) Exhibit 10 percent opacity, or greater.
[39 FR 20794, June 14, 1974, as amended at 40 FR 46258, Oct. 6, 1975]



Sec. 60.73  Emission monitoring.

    (a) The source owner or operator shall install, calibrate, maintain, 
and operate a continuous monitoring system for measuring nitrogen oxides 
(NOx). The pollutant gas mixtures under Performance 
Specification 2 and for calibration checks under Sec. 60.13(d) of this 
part shall be nitrogen dioxide (NO2). The span value shall be 
500 ppm of NO2. Method 7 shall be used for the performance 
evaluations under Sec. 60.13(c). Acceptable alternative methods to 
Method 7 are given in Sec. 60.74(c).
    (b) The owner or operator shall establish a conversion factor for 
the purpose of converting monitoring data into units of the applicable 
standard (kg/metric ton, lb/ton). The conversion factor shall be 
established by measuring emissions with the continuous monitoring system 
concurrent with measuring emissions with the applicable reference method 
tests. Using only that portion of the continuous monitoring emission 
data that represents emission measurements concurrent with the reference 
method test periods, the conversion factor shall be determined by 
dividing the reference method test data averages by the monitoring data 
averages to obtain a ratio expressed in units of the applicable standard 
to units of the monitoring data, i.e., kg/metric ton per ppm (lb/ton per 
ppm). The conversion factor shall be reestablished during any 
performance test under Sec. 60.8 or any continuous monitoring system 
performance evaluation under Sec. 60.13(c).
    (c) The owner or operator shall record the daily production rate and 
hours of operation.
    (d) [Reserved]
    (e) For the purpose of reports required under Sec. 60.7(c), periods 
of excess emissions that shall be reported are defined as any 3-hour 
period during which the average nitrogen oxides emissions (arithmetic 
average of three contiguous 1-hour periods) as measured by a

[[Page 192]]

continuous monitoring system exceed the standard under Sec. 60.72(a).
[39 FR 20794, June 14, 1974, as amended at 40 FR 46258, Oct. 6, 1975; 50 
FR 15894, Apr. 22, 1985; 54 FR 6666, Feb. 14, 1989]



Sec. 60.74  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b). 
Acceptable alternative methods and procedures are given in paragraph (c) 
of this section.
    (b) The owner or operator shall determine compliance with the 
NOx standard in Sec. 60.72 as follows:
    (1) The emission rate (E) of NOx shall be computed for 
each run using the following equation:

E=(Cs Qsd)/(P K)

where:
E=emission rate of NOx as NO2, kg/metric ton (lb/
          ton) of 100 percent nitric acid.
Cs=concentration of NOx as NO2, g/dscm 
          (lb/dscf).
Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
P=acid production rate, metric ton/hr (ton/hr) or 100 percent nitric 
          acid.
K=conversion factor, 1000 g/kg (1.0 lb/lb).

    (2) Method 7 shall be used to determine the NOx 
concentration of each grab sample. Method 1 shall be used to select the 
sampling site, and the sampling point shall be the centroid of the stack 
or duct or at a point no closer to the walls than 1 m (3.28 ft). Four 
grab samples shall be taken at approximately 15-minute intervals. The 
arithmetic mean of the four sample concentrations shall constitute the 
run value (Cs).
    (3) Method 2 shall be used to determine the volumetric flow rate 
(Qsd) of the effluent gas. The measurement site shall be the 
same as for the NOx sample. A velocity traverse shall be made 
once per run within the hour that the NOx samples are taken.
    (4) The methods of Sec. 60.73(c) shall be used to determine the 
production rate (P) of 100 percent nitric acid for each run. Material 
balance over the production system shall be used to confirm the 
production rate.
    (c) The owner or operator may use the following as alternatives to 
the reference methods and procedures specified in this section:
    (1) For Method 7, Method 7A, 7B, 7C, or 7D may be used. If Method 7C 
or 7D is used, the sampling time shall be at least 1 hour.
    (d) The owner or operator shall use the procedure in Sec. 60.73(b) 
to determine the conversion factor for converting the monitoring data to 
the units of the standard.
[54 FR 6666, Feb. 14, 1989]



      Subpart H--Standards of Performance for Sulfuric Acid Plants



Sec. 60.80  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to each sulfuric 
acid production unit, which is the affected facility.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after August 17, 1971, is subject to the 
requirements of this subpart.
[42 FR 37936, July 25, 1977]



Sec. 60.81  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Sulfuric acid production unit means any facility producing 
sulfuric acid by the contact process by burning elemental sulfur, 
alkylation acid, hydrogen sulfide, organic sulfides and mercaptans, or 
acid sludge, but does not include facilities where conversion to 
sulfuric acid is utilized primarily as a means of preventing emissions 
to the atmosphere of sulfur dioxide or other sulfur compounds.
    (b) Acid mist means sulfuric acid mist, as measured by Method 8 of 
appendix A to this part or an equivalent or alternative method.
[36 FR 24877, Dec. 23, 1971, as amended at 39 FR 20794, June 14, 1974]



Sec. 60.82  Standard for sulfur dioxide.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no

[[Page 193]]

owner or operator subject to the provisions of this subpart shall cause 
to be discharged into the atmosphere from any affected facility any 
gases which contain sulfur dioxide in excess of 2 kg per metric ton of 
acid produced (4 lb per ton), the production being expressed as 100 
percent H2SO4.
[39 FR 20794, June 14, 1974]



Sec. 60.83  Standard for acid mist.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which:
    (1) Contain acid mist, expressed as H2SO4, in 
excess of 0.075 kg per metric ton of acid produced (0.15 lb per ton), 
the production being expressed as 100 percent 
H2SO4.
    (2) Exhibit 10 percent opacity, or greater.
[39 FR 20794, June 14, 1974, as amended at 40 FR 46258, Oct. 6, 1975]



Sec. 60.84  Emission monitoring.

    (a) A continuous monitoring system for the measurement of sulfur 
dioxide shall be installed, calibrated, maintained, and operated by the 
owner or operator. The pollutant gas used to prepare calibration gas 
mixtures under Performance Specification 2 and for calibration checks 
under Sec. 60.13(d), shall be sulfur dioxide (SO2). Method 8 
shall be used for conducting monitoring system performance evaluations 
under Sec. 60.13(c) except that only the sulfur dioxide portion of the 
Method 8 results shall be used. The span value shall be set at 1000 ppm 
of sulfur dioxide.
    (b) The owner or operator shall establish a conversion factor for 
the purpose of converting monitoring data into units of the applicable 
standard (kg/metric ton, lb/ton). The conversion factor shall be 
determined, as a minimum, three times daily by measuring the 
concentration of sulfur dioxide entering the converter using suitable 
methods (e.g., the Reich test, National Air Pollution Control 
Administration Publication No. 999-AP-13) and calculating the 
appropriate conversion factor for each eight-hour period as follows:
CF=k[(1.000-0.015r)/(r-s)]
where:
CF=conversion factor (kg/metric ton per ppm, lb/ton per ppm).
k=constant derived from material balance. For determining CF in metric 
          units, k=0.0653. For determining CF in English units, 
          k=0.1306.
r=percentage of sulfur dioxide by volume entering the gas converter. 
          Appropriate corrections must be made for air injection plants 
          subject to the Administrator's approval.
s=percentage of sulfur dioxide by volume in the emissions to the 
          atmosphere determined by the continuous monitoring system 
          required under paragraph (a) of this section.

    (c) The owner or operator shall record all conversion factors and 
values under paragraph (b) of this section from which they were computed 
(i.e., CF, r, and s).
    (d) Alternatively, a source that processes elemental sulfur or an 
ore that contains elemental sulfur and uses air to supply oxygen may use 
the following continuous emission monitoring approach and calculation 
procedures in determining SO2 emission rates in terms of the 
standard. This procedure is not required, but is an alternative that 
would alleviate problems encountered in the measurement of gas 
velocities or production rate. Continuous emission monitoring of 
SO2, O2, and CO2 (if required) shall be 
installed, calibrated, maintained, and operated by the owner or operator 
and subjected to the certification procedures in Performance 
Specifications 2 and 3. The calibration procedure and span value for 
this SO2 monitor shall be as specified in paragraph (b) of 
this section. The span value for CO2 (if required) shall be 
10 percent and for O2 shall be 20.9 percent (air). A 
conversion factor based on process rate data is not necessary. Calculate 
the SO2 emission rate as follows:
Es=(Cs S)/[0.265-(0.126 %O2)-(A 
          %CO2)]

where:
Es=emission rate of SO2, kg/metric ton (lb/ton) of 
          100 percent of H2SO4 produced.
Cs=concentration of SO2, kg/dscm (lb/dscf).
S=acid production rate factor, 368 dscm/metric ton (11,800 dscf/ton) of 
          100 percent H2SO4 produced.
%O2=oxygen concentration, percent dry basis.

[[Page 194]]

A=auxiliary fuel factor,
=0.00 for no fuel.
=0.0226 for methane.
=0.0217 for natural gas.
=0.0196 for propane.
=0.0172 for No 2 oil.
=0.0161 for No 6 oil.
=0.0148 for coal.
=0.0126 for coke.
%CO2= carbon dioxide concentration, percent dry basis.

    Note: It is necessary in some cases to convert measured 
concentration units to other units for these calculations:

Use the following table for such conversions:


------------------------------------------------------------------------
              From--                        To--           Multiply by--
------------------------------------------------------------------------
g/scm.............................  kg/scm..............            10-3
mg/scm............................  kg/scm..............            10-6
ppm (SO2).........................  kg/scm..............    2.660 x 10-6
ppm (SO2).........................  lb/scf..............    1.660 x 10-7
------------------------------------------------------------------------

    (e) For the purpose of reports under Sec. 60.7(c), periods of excess 
emissions shall be all three-hour periods (or the arithmetic average of 
three consecutive one-hour periods) during which the integrated average 
sulfur dioxide emissions exceed the applicable standards under 
Sec. 60.82.
[39 FR 20794, June 14, 1974, as amended at 40 FR 46258, Oct. 6, 1975; 48 
FR 23611, May 25, 1983; 48 FR 4700, Sept. 29, 1983; 48 FR 48669, Oct. 
20, 1983; 54 FR 6666, Feb. 14, 1989]



Sec. 60.85  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b). 
Acceptable alternative methods and procedures are given in paragraph (c) 
of this section.
    (b) The owner or operator shall determine compliance with the 
SO2 acid mist, and visible emission standards in Secs. 60.82 
and 60.83 as follows:
    (1) The emission rate (E) of acid mist or SO2 shall be 
computed for each run using the following equation:

E=(CQsd)/(PK)

where:
E=emission rate of acid mist or SO2 kg/metric ton (lb/ton) of 
          100 percent H2SO4 produced.
C=concentration of acid mist or SO2, g/dscm (lb/dscf).
Qsd=volumetric flow rate of the effluent gas, dscm/hr (dscf/
          hr).
P=production rate of 100 percent H2SO4, metric 
          ton/hr (ton/hr).
K=conversion factor, 1000 g/kg (1.0 lb/lb).

    (2) Method 8 shall be used to determine the acid mist and 
SO2 concentrations (C's) and the volumetric flow rate 
(Qsd) of the effluent gas. The moisture content may be 
considered to be zero. The sampling time and sample volume for each run 
shall be at least 60 minutes and 1.15 dscm (40.6 dscf).
    (3) Suitable methods shall be used to determine the production rate 
(P) of 100 percent H2SO4 for each run. Material 
balance over the production system shall be used to confirm the 
production rate.
    (4) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
    (c) The owner or operator may use the following as alternatives to 
the reference methods and procedures specified in this section:
    (1) If a source processes elemental sulfur or an ore that contains 
elemental sulfur and uses air to supply oxygen, the following procedure 
may be used instead of determining the volumetric flow rate and 
production rate:
    (i) The integrated technique of Method 3 is used to determine the 
O2 concentration and, if required, CO2 
concentration.
    (ii) The SO2 or acid mist emission rate is calculated as 
described in Sec. 60.84(d), substituting the acid mist concentration for 
Cs as appropriate.
[54 FR 6666, Feb. 14, 1989]



   Subpart I--Standards of Performance for Hot Mix Asphalt Facilities



Sec. 60.90  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each hot mix asphalt facility. For the purpose of this subpart, 
a hot mix asphalt facility is comprised only of any combination of the 
following: dryers; systems for screening, handling, storing, and 
weighing hot aggregate; systems for loading, transferring, and storing 
mineral filler, systems for mixing hot

[[Page 195]]

mix asphalt; and the loading, transfer, and storage systems associated 
with emission control systems.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after June 11, 1973, is subject to the 
requirements of this subpart.
[42 FR 37936, July 25, 1977, as amended at 51 FR 12325, Apr. 10, 1986]



Sec. 60.91  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Hot mix asphalt facility means any facility, as described in 
Sec. 60.90, used to manufacture hot mix asphalt by heating and drying 
aggregate and mixing with asphalt cements.
[51 FR 12325, Apr. 10, 1986]



Sec. 60.92  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall discharge or cause the discharge 
into the atmosphere from any affected facility any gases which:
    (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/
dscf).
    (2) Exhibit 20 percent opacity, or greater.
[39 FR 9314, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]



Sec. 60.93  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.92 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration. The sampling time and sample volume for each run shall be 
at least 60 minutes and 0.90 dscm (31.8 dscf).
    (2) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6667, Feb. 14, 1989]



      Subpart J--Standards of Performance for Petroleum Refineries



Sec. 60.100  Applicability, designation of affected facility, and reconstruction.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in petroleum refineries: fluid catalytic cracking 
unit catalyst regenerators, fuel gas combustion devices, and all Claus 
sulfur recovery plants except Claus plants of 20 long tons per day (LTD) 
or less. The Claus sulfur recovery plant need not be physically located 
within the boundaries of a petroleum refinery to be an affected 
facility, provided it processes gases produced within a petroleum 
refinery.
    (b) Any fluid catalytic cracking unit catalyst regenerator or fuel 
gas combustion device under paragraph (a) of this section which 
commences construction or modification after June 11, 1973, or any Claus 
sulfur recovery plant under paragraph (a) of this section which 
commences construction or modification after October 4, 1976, is subject 
to the requirements of this subpart except as provided under paragraphs 
(c) and (d) of this section.
    (c) Any fluid catalytic cracking unit catalyst regenerator under 
paragraph (b) of this section which commences construction or 
modification on or before January 17, 1984, is exempted from 
Sec. 60.104(b).
    (d) Any fluid catalytic cracking unit in which a contact material 
reacts with petroleum derivatives to improve feedstock quality and in 
which the contact material is regenerated by burning off coke and/or 
other deposits and that commences construction or modification on or 
before January 17, 1984, is exempt from this subpart.
    (e) For purposes of this subpart, under Sec. 60.15, the ``fixed 
capital cost of the new components'' includes the fixed capital cost of 
all depreciable components which are or will be replaced pursuant to all 
continuous programs of component replacement which are commenced within 
any 2-

[[Page 196]]

year period following January 17, 1984. For purposes of this paragraph, 
``commenced'' means that an owner or operator has undertaken a 
continuous program of component replacement or that an owner or operator 
has entered into a contractual obligation to undertake and complete, 
within a reasonable time, a continuous program of component replacement.
[43 FR 10868, Mar. 15, 1978, as amended at 44 FR 61543, Oct. 25, 1979; 
54 FR 34026, Aug. 17, 1989]



Sec. 60.101  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A.
    (a) Petroleum refinery means any facility engaged in producing 
gasoline, kerosene, distillate fuel oils, residual fuel oils, 
lubricants, or other products through distillation of petroleum or 
through redistillation, cracking or reforming of unfinished petroleum 
derivatives.
    (b) Petroleum means the crude oil removed from the earth and the 
oils derived from tar sands, shale, and coal.
    (c) Process gas means any gas generated by a petroleum refinery 
process unit, except fuel gas and process upset gas as defined in this 
section.
    (d) Fuel gas means any gas which is generated at a petroleum 
refinery and which is combusted. Fuel gas also includes natural gas when 
the natural gas is combined and combusted in any proportion with a gas 
generated at a refinery. Fuel gas does not include gases generated by 
catalytic cracking unit catalyst regenerators and fluid coking burners.
    (e) Process upset gas means any gas generated by a petroleum 
refinery process unit as a result of start-up, shut-down, upset or 
malfunction.
    (f) Refinery process unit means any segment of the petroleum 
refinery in which a specific processing operation is conducted.
    (g) Fuel gas combustion device means any equipment, such as process 
heaters, boilers and flares used to combust fuel gas, except facilities 
in which gases are combusted to produce sulfur or sulfuric acid.
    (h) Coke burn-off means the coke removed from the surface of the 
fluid catalytic cracking unit catalyst by combustion in the catalyst 
regenerator. The rate of coke burn-off is calculated by the formula 
specified in Sec. 60.106.
    (i) Claus sulfur recovery plant means a process unit which recovers 
sulfur from hydrogen sulfide by a vapor-phase catalytic reaction of 
sulfur dioxide and hydrogen sulfide.
    (j) Oxidation control system means an emission control system which 
reduces emissions from sulfur recovery plants by converting these 
emissions to sulfur dioxide.
    (k) Reduction control system means an emission control system which 
reduces emissions from sulfur recovery plants by converting these 
emissions to hydrogen sulfide.
    (l) Reduced sulfur compounds means hydrogen sulfide 
(H2S), carbonyl sulfide (COS) and carbon disulfide 
(CS2).
    (m) Fluid catalytic cracking unit means a refinery process unit in 
which petroleum derivatives are continuously charged; hydrocarbon 
molecules in the presence of a catalyst suspended in a fluidized bed are 
fractured into smaller molecules, or react with a contact material 
suspended in a fluidized bed to improve feedstock quality for additional 
processing; and the catalyst or contact material is continuously 
regenerated by burning off coke and other deposits. The unit includes 
the riser, reactor, regenerator, air blowers, spent catalyst or contact 
material stripper, catalyst or contact material recovery equipment, and 
regenerator equipment for controlling air pollutant emissions and for 
heat recovery.
    (n) Fluid catalytic cracking unit catalyst regenerator means one or 
more regenerators (multiple regenerators) which comprise that portion of 
the fluid catalytic cracking unit in which coke burn-off and catalyst or 
contact material regeneration occurs, and includes the regenerator 
combustion air blower(s).
    (o) Fresh feed means any petroleum derivative feedstock stream 
charged directly into the riser or reactor of a fluid catalytic cracking 
unit except for petroleum derivatives recycled within

[[Page 197]]

the fluid catalytic cracking unit, fractionator, or gas recovery unit.
    (p) Contact material means any substance formulated to remove 
metals, sulfur, nitrogen, or any other contaminant from petroleum 
derivatives.
    (q) Valid day means a 24-hour period in which at least 18 valid 
hours of data are obtained. A ``valid hour'' is one in which at least 2 
valid data points are obtained.
[39 FR 9315, Mar. 8, 1974, as amended at 43 FR 10868, Mar. 15, 1978; 44 
FR 13481, Mar. 12, 1979; 45 FR 79453, Dec. 1, 1980; 54 FR 34027, Aug. 
17, 1989]



Sec. 60.102  Standard for particulate matter.

    Each owner or operator of any fluid catalytic cracking unit catalyst 
regenerator that is subject to the requirements of this subpart shall 
comply with the emission limitations set forth in this section on and 
after the date on which the initial performance test, required by 
Sec. 60.8, is completed, but not later than 60 days after achieving the 
maximum production rate at which the fluid catalytic cracking unit 
catalyst regenerator will be operated, or 180 days after initial 
startup, whichever comes first.
    (a) No owner or operator subject to the provisions of this subpart 
shall discharge or cause the discharge into the atmosphere from any 
fluid catalytic cracking unit catalyst regenerator:
    (1) Particulate matter in excess of 1.0 kg/1000 kg (1.0 lb/1000 lb) 
of coke burn-off in the catalyst regenerator.
    (2) Gases exhibiting greater than 30 percent opacity, except for one 
six-minute average opacity reading in any one hour period.
    (b) Where the gases discharged by the fluid catalytic cracking unit 
catalyst regenerator pass through an incinerator or waste heat boiler in 
which auxiliary or supplemental liquid or solid fossil fuel is burned, 
particulate matter in excess of that permitted by paragraph (a)(1) of 
this section may be emitted to the atmosphere, except that the 
incremental rate of particulate matter emissions shall not exceed 43.0 
g/MJ (0.10 lb/million Btu) of heat input attributable to such liquid or 
solid fossil fuel.
[39 FR 9315, Mar. 8, 1974, as amended at 42 FR 32427, June 24, 1977; 42 
FR 39389, Aug. 4, 1977; 43 FR 10868, Feb. 15, 1978; 54 FR 34027, Aug. 
17, 1989]



Sec. 60.103  Standard for carbon monoxide.

    Each owner or operator of any fluid catalytic cracking unit catalyst 
regenerator that is subject to the requirements of this subpart shall 
comply with the emission limitations set forth in this section on and 
after the date on which the initial performance test, required by 
Sec. 60.8, is completed, but not later than 60 days after achieving the 
maximum production rate at which the fluid catalytic cracking unit 
catalyst regenerator will be operated, or 180 days after initial 
startup, whichever comes first.
    (a) No owner or operator subject to the provisions of this subpart 
shall discharge or cause the discharge into the atmosphere from any 
fluid catalytic cracking unit catalyst regenerator any gases that 
contain carbon monoxide (CO) in excess of 500 ppm by volume (dry basis).
[54 FR 34027, Aug. 17, 1989, as amended at 55 FR 40175, Oct. 2, 1990]



Sec. 60.104  Standards for sulfur oxides.

    Each owner or operator that is subject to the requirements of this 
subpart shall comply with the emission limitations set forth in this 
section on and after the date on which the initial performance test, 
required by Sec. 60.8, is completed, but not later than 60 days after 
achieving the maximum production rate at which the affected facility 
will be operated, or 180 days after initial startup, whichever comes 
first.
    (a) No owner or operator subject to the provisions of this subpart 
shall:
    (1) Burn in any fuel gas combustion device any fuel gas that 
contains hydrogen sulfide (H2S) in excess of 230 mg/dscm 
(0.10 gr/dscf). The combustion in a flare of process upset gases or fuel 
gas that is released to the flare as a result of relief valve leakage or 
other emergency malfunctions is exempt from this paragraph.
    (2) Discharge or cause the discharge of any gases into the 
atmosphere from

[[Page 198]]

any Claus sulfur recovery plant containing in excess of:
    (i) For an oxidation control system or a reduction control system 
followed by incineration, 250 ppm by volume (dry basis) of sulfur 
dioxide (SO2) at zero percent excess air.
    (ii) For a reduction control system not followed by incineration, 
300 ppm by volume of reduced sulfur compounds and 10 ppm by volume of 
hydrogen sulfide (H2S), each calculated as ppm SO2 
by volume (dry basis) at zero percent excess air.
    (b) Each owner or operator that is subject to the provisions of this 
subpart shall comply with one of the following conditions for each 
affected fluid catalytic cracking unit catalyst regenerator:
    (1) With an add-on control device, reduce sulfur dioxide emissions 
to the atmosphere by 90 percent or maintain sulfur dioxide emissions to 
the atmosphere less than or equal to 50 ppm by volume (vppm), whichever 
is less stringent; or
    (2) Without the use of an add-on control device, maintain sulfur 
oxides emissions calculated as sulfur dioxide to the atmosphere less 
than or equal to 9.8 kg/1,000 kg coke burn-off; or
    (3) Process in the fluid catalytic cracking unit fresh feed that has 
a total sulfur content no greater than 0.30 percent by weight.
    (c) Compliance with paragraph (b)(1), (b)(2), or (b)(3) of this 
section is determined daily on a 7-day rolling average basis using the 
appropriate procedures outlined in Sec. 60.106.
    (d) A minimum of 22 valid days of data shall be obtained every 30 
rolling successive calendar days when complying with paragraph (b)(1) of 
this section.
[43 FR 10869, Mar. 15, 1978, as amended at 54 FR 34027, Aug. 17, 1989; 
55 FR 40175, Oct. 2, 1990]



Sec. 60.105  Monitoring of emissions and operations.

    (a) Continuous monitoring systems shall be installed, calibrated, 
maintained, and operated by the owner or operator subject to the 
provisions of this subpart as follows:
    (1) For fluid catalytic cracking unit catalyst regenerators subject 
to Sec. 60.102(a)(2), an instrument for continuously monitoring and 
recording the opacity of emissions into the atmosphere. The instrument 
shall be spanned at 60, 70, or 80 percent opacity.
    (2) For fluid catalytic cracking unit catalyst regenerators subject 
to Sec. 60.103(a), an instrument for continuously monitoring and 
recording the concentration by volume (dry basis) of CO emissions into 
the atmosphere, except as provided in paragraph (a)(2) (ii) of this 
section.
    (i) The span value for this instrument is 1,000 ppm CO.
    (ii) A CO continuous monitoring system need not be installed if the 
owner or operator demonstrates that the average CO emissions are less 
than 50 ppm (dry basis) and also files a written request for exemption 
to the Administrator and receives such an exemption. The demonstration 
shall consist of continuously monitoring CO emissions for 30 days using 
an instrument that shall meet the requirements of Performance 
Specification 4 of Appendix B of this part. The span value shall be 100 
ppm CO instead of 1,000 ppm, and the relative accuracy limit shall be 10 
percent of the average CO emissions or 5 ppm CO, whichever is greater. 
For instruments that are identical to Method 10 and employ the sample 
conditioning system of Method 10A, the alternative relative accuracy 
test procedure in Sec. 10.1 of Performance Specification 2 may be used 
in place of the relative accuracy test.
    (3) For fuel gas combustion devices subject to Sec. 60.104(a)(1), an 
instrument for continuously monitoring and recording the concentration 
by volume (dry basis, zero percent excess air) of SO2 
emissions into the atmosphere (except where an H2S monitor is 
installed under paragraph (a)(4) of this section). The monitor shall 
include an oxygen monitor for correcting the data for excess air.
    (i) The span values for this monitor are 50 ppm SO2 and 
10 percent oxygen (O2).
    (ii) The SO2 monitoring level equivalent to the 
H2S standard under Sec. 60.104(a)(1) shall be 20 ppm (dry 
basis, zero percent excess air).
    (iii) The performance evaluations for this SO2 monitor 
under Sec. 60.13(c) shall

[[Page 199]]

use Performance Specification 2. Methods 6 and 3 shall be used for 
conducting the relative accuracy evaluations. Method 6 samples shall be 
taken at a flow rate of approximately 2 liters/min for at least 30 
minutes. The relative accuracy limit shall be 20 percent or 4 ppm, 
whichever is greater, and the calibration drift limit shall be 5 percent 
of the established span value.
    (iv) Fuel gas combustion devices having a common source of fuel gas 
may be monitored at only one location (i.e., after one of the combustion 
devices), if monitoring at this location accurately represents the 
S2 emissions into the atmosphere from each of the combustion 
devices.
    (4) In place of the SO2 monitor in paragraph (a)(3) of 
this section, an instrument for continuously monitoring and recording 
the concentration (dry basis) of H2S in fuel gases before 
being burned in any fuel gas combustion device.
    (i) The span value for this instrument is 425 mg/dscm 
H2S.
    (ii) Fuel gas combustion devices having a common source of fuel gas 
may be monitored at only one location, if monitoring at this location 
accurately represents the concentration of H2S in the fuel 
gas being burned.
    (iii) The performance evaluations for this H2S monitor 
under Sec. 60.13(c) shall use Performance Specification 7. Method 11 
shall be used for conducting the relative accuracy evaluations.
    (5) For Claus sulfur recovery plants with oxidation control systems 
or reduction control systems followed by incineration subject to 
Sec. 60.104(a)(2)(i), an instrument for continuously monitoring and 
recording the concentration (dry basis, zero percent excess air) of 
SO2 emissions into the atmosphere. The monitor shall include 
an oxygen monitor for correcting the data for excess air.
    (i) The span values for this monitor are 500 ppm SO2 and 
10 percent O2.
    (ii) The performance evaluations for this SO2 monitor 
under Sec. 60.13(c) shall use Performance Specification 2. Methods 6 and 
3 shall be used for conducting the relative accuracy evaluations.
    (6) For Claus sulfur recovery plants with reduction control systems 
not followed by incineration subject to Sec. 60.104(a)(2)(ii), an 
instrument for continuously monitoring and recording the concentration 
of reduced sulfur and O2 emissions into the atmosphere. The 
reduced sulfur emissions shall be calculated as SO2 (dry 
basis, zero percent excess air).
    (i) The span values for this monitor are 450 ppm reduced sulfur and 
10 percent O2.
    (ii) The performance evaluations for this reduced sulfur (and 
O2) monitor under Sec. 60.13(c) shall use Performance 
Specification 5, except the calibration drift specification is 2.5 
percent of the span value rather than 5 percent. Methods 15 or 15A and 
Method 3 shall be used for conducting the relative accuracy evaluations. 
If Method 3 yields O2 concentrations below 0.25 percent 
during the performance specification test, the O2 
concentration may be assumed to be zero and the reduced sulfur CEMS need 
not include an O2 monitor.
    (7) In place of the reduced sulfur monitor under paragraph (a)(6) of 
this section, an instrument using an air or O2 dilution and 
oxidation system to convert the reduced sulfur to SO2 for 
continuously monitoring and recording the concentration (dry basis, zero 
percent excess air) of the resultant SO2. The monitor shall 
include an oxygen monitor for correcting the data for excess oxygen.
    (i) The span values for this monitor are 375 ppm SO2 and 
10 percent O2.
    (ii) For reporting purposes, the SO2 exceedance level for 
this monitor is 250 ppm (dry basis, zero percent excess air).
    (iii) The performance evaluations for this SO2 (and 
O2) monitor under Sec. 60.13(c) shall use Performance 
Specification 5. Methods 15 or 15A and Method 3 shall be used for 
conducting the relative accuracy evaluations.
    (8) An instrument for continuously monitoring and recording 
concentrations of sulfur dioxide in the gases at both the inlet and 
outlet of the sulfur dioxide control device from any fluid catalytic 
cracking unit catalyst regenerator for which the owner or operator seeks 
to comply with Sec. 60.104(b)(1). The span value of the inlet monitor 
shall be set at 125 percent of the maximum estimated hourly potential 
sulfur dioxide emission concentration entering the

[[Page 200]]

control device, and the span value of the outlet monitor shall be set at 
50 percent of the maximum estimated hourly potential sulfur dioxide 
emission concentration entering the control device.
    (9) An instrument for continuously monitoring and recording 
concentrations of sulfur dioxide in the gases discharged into the 
atmosphere from any fluid catalytic cracking unit catalyst regenerator 
for which the owner or operator seeks to comply specifically with the 50 
vppm emission limit under Sec. 60.104(b)(1). The span value of the 
monitor shall be set at 50 percent of the maximum hourly potential 
sulfur dioxide emission concentration entering the control device.
    (10) An instrument for continuously monitoring and recording 
concentrations of oxygen (O2) in the gases at both the inlet 
and outlet of the sulfur dioxide control device (or the outlet only if 
specifically complying with the 50 vppm standard) from any fluid 
catalytic cracking unit catalyst regenerator for which the owner or 
operator has elected to comply with Sec. 60.104(b)(1). The span of this 
continuous monitoring system shall be set at 10 percent.
    (11) The continuous monitoring systems under paragraphs (a)(8), 
(a)(9), and (a)(10) of this section are operated and data recorded 
during all periods of operation of the affected facility including 
periods of startup, shutdown, or malfunction, except for continuous 
monitoring system breakdowns, repairs, calibration checks, and zero and 
span adjustments.
    (12) The owner or operator shall follow appendix F, Procedure 1, 
including quarterly accuracy determinations and daily calibration drift 
tests, for the continuous monitoring systems under paragraphs (a)(8), 
(a)(9), and (a)(10) of this section.
    (13) When seeking to comply with Sec. 60.104(b)(1), when emission 
data are not obtained because of continuous monitoring system 
breakdowns, repairs, calibration checks and zero and span adjustments, 
emission data will be obtained by using one of the following methods to 
provide emission data for a minimum of 18 hours per day in at least 22 
out of 30 rolling successive calendar days.
    (i) The test methods as described in Sec. 60.106(k);
    (ii) A spare continuous monitoring system; or
    (iii) Other monitoring systems as approved by the Administrator.
    (b) [Reserved]
    (c) The average coke burn-off rate (thousands of kilograms per hour) 
and hours of operation shall be recorded daily for any fluid catalytic 
cracking unit catalyst regenerator subject to Sec. 60.102, Sec. 60.103, 
or Sec. 60.104(b)(2).
    (d) For any fluid catalytic cracking unit catalyst regenerator under 
Sec. 60.102 that uses an incinerator-waste heat boiler to combust the 
exhaust gases from the catalyst regenerator, the owner or operator shall 
record daily the rate of combustion of liquid or solid fossil-fuels 
(liters/hr or kg/hr) and the hours of operation during which liquid or 
solid fossil-fuels are combusted in the incinerator-waste heat boiler.
    (e) For the purpose of reports under Sec. 60.7(c), periods of excess 
emissions that shall be determined and reported are defined as follows:

    Note: All averages, except for opacity, shall be determined as the 
arithmetic average of the applicable 1-hour averages, e.g., the rolling 
3-hour average shall be determined as the arithmetic average of three 
contiguous 1-hour averages.

    (1) Opacity. All 1-hour periods that contain two or more 6-minute 
periods during which the average opacity as measured by the continuous 
monitoring system under Sec. 60.105(a)(1) exceeds 30 percent.
    (2) Carbon monoxide. All 1-hour periods during which the average CO 
concentration as measured by the CO continuous monitoring system under 
Sec. 60.105(a)(2) exceeds 500 ppm.
    (3) Sulfur dioxide from fuel gas combustion. (i) All rolling 3-hour 
periods during which the average concentration of SO2 as 
measured by the SO2 continuous monitoring system under 
Sec. 60.105(a)(3) exceeds 20 ppm (dry basis, zero percent excess air); 
or
    (ii) All rolling 3-hour periods during which the average 
concentration of H2S as measured by the H2S 
continuous

[[Page 201]]

monitoring system under Sec. 60.105(a)(4) exceeds 230 mg/dscm (0.10 gr/
dscf).
    (4) Sulfur dioxide from Claus sulfur recovery plants. (i) All 12-
hour periods during which the average concentration of SO2 as 
measured by the SO2 continuous monitoring system under 
Sec. 60.105(a)(5) exceeds 250 ppm (dry basis, zero percent excess air); 
or
    (ii) All 12-hour periods during which the average concentration of 
reduced sulfur (as SO2) as measured by the reduced sulfur 
continuous monitoring system under Sec. 60.105(a)(6) exceeds 300 ppm; or
    (iii) All 12-hour periods during which the average concentration of 
SO2 as measured by the SO2 continuous monitoring 
system under Sec. 60.105(a)(7) exceeds 250 ppm (dry basis, zero percent 
excess air).
[39 FR 9315, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975; 42 
FR 32427, June 24, 1977; 42 FR 39389, Aug. 4, 1977; 43 FR 10869, Mar. 
15, 1978; 48 FR 23611, May 25, 1983; 50 FR 31701, Aug. 5, 1985; 54 FR 
34028, Aug. 17, 1989; 55 FR 40175, Oct. 2, 1990]



Sec. 60.106  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter (PM) standards in Sec. 60.102(a) as follows:
    (1) The emission rate (E) of PM shall be computed for each run using 
the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.004

where:

E=Emission rate of PM, kg/1000 kg (lb/1000 lb) of coke burn-off.
cs=Concentration of PM, g/dscm (lb/dscf).
Qsd=Volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
Rc=Coke burn-off rate, kg coke/hr (1000 lb coke/hr).
K=Conversion factor, 1.0 (kg\2\/g)/(1000 kg) [10\3\ lb/(1000 lb)].

    (2) Method 5B or 5F is to be used to determine particulate matter 
emissions and associated moisture content from affected facilities 
without wet FGD systems; only Method 5B is to be used after wet FGD 
systems. The sampling time for each run shall be at least 60 minutes and 
the sampling rate shall be at least 0.015 dscm/min (0.53 dscf/min), 
except that shorter sampling times may be approved by the Administrator 
when process variables or other factors preclude sampling for at least 
60 minutes.
    (3) The coke burn-off rate (Rc) shall be computed for 
each run using the following equation:

Rc=K1 Qr 
          (%CO2+%CO)K2 Qa-K3 
          Qr [(%CO/2)+%CO2+%O2]

where:

Rc=Coke burn-off rate, kg/hr (1000 lb/hr).
Qr=Volumetric flow rate of exhaust gas from catalyst 
          regenerator before entering the emission control system, dscm/
          min (dscf/min).
Qa=Volumetric flow rate of air to FCCU regenerator, as 
          determined from the fluid catalytic cracking unit control room 
          instrumentation, dscm/min (dscf/min).
%CO2=Carbon dioxide concentration, percent by volume (dry 
          basis).
%CO=Carbon monoxide concentration, percent by volume (dry basis).
%O2=Oxygen concentration, percent by volume (dry basis).
K1=Material balance and conversion factor, 0.2982 (kg-min)/
          (hr-dscm-%) [0.0186 (lb-min)/(hr-dscf-%)].
K2=Material balance and conversion factor, 2.088 (kg-min)/
          (hr-dscm-%)[0.1303 (lb-min)/(hr-dscf-%)].
K3=Material balance and conversion factor,
    0.0994 (kg-min)/(hr-dscm-%)
    [0.0062 (lb-min)/(hr-dscf-%)].

    (i) Method 2 shall be used to determine the volumetric flow rate 
(Qr).
    (ii) The emission correction factor, integrated sampling and 
analysis procedure of Method 3 shall be used to determine 
CO2, CO, and O2 concentrations.
    (4) Method 9 and the procedures of Sec. 60.11 shall be used to 
determine opacity.
    (c) If auxiliary liquid or solid fossil-fuels are burned in an 
incinerator-waste heat boiler, the owner or operator shall determine the 
emission rate of PM permitted in Sec. 60.102(b) as follows:
    (1) The allowable emission rate (Es) of PM shall be 
computed for each run using the following equation:

Es=1.0 + A (H/Rc) K'


[[Page 202]]


where:
Es=Emission rate of PM allowed, kg/1000 kg (lb/1000 lb) of 
          coke burn-off in catalyst regenerator.
1.0=Emission standard, kg coke/1000 kg (lb coke/1000 lb).
A=Allowable incremental rate of PM emissions, 0.18 g/million cal (0.10 
          lb/million Btu).
H=Heat input rate from solid or liquid fossil fuel, million cal/hr 
          (million Btu/hr).
Rc=Coke burn-off rate, kg coke/hr (1000 lb coke/hr).
K'=Conversion factor to units of standard, 1.0 (kg\2\/g)/(1000 kg) 
          [10\3\ lb/(1000 lb)].

    (2) Procedures subject to the approval of the Administrator shall be 
used to determine the heat input rate.
    (3) The procedure in paragraph (b)(3) of this section shall be used 
to determine the coke burn-off rate (Rc).
    (d) The owner or operator shall determine compliance with the CO 
standard in Sec. 60.103(a) by using the integrated sampling technique of 
Method 10 to determine the CO concentration (dry basis). The sampling 
time for each run shall be 60 minutes.
    (e) The owner or operator shall determine compliance with the 
H2S standard in Sec. 60.104(a)(1) as follows: Method 11 shall 
be used to determine the H2 concentration. The gases entering 
the sampling train should be at about atmospheric pressure. If the 
pressure in the refinery fuel gas lines is relatively high, a flow 
control valve may be used to reduce the pressure. If the line pressure 
is high enough to operate the sampling train without a vacuum pump, the 
pump may be eliminated from the sampling train. The sample shall be 
drawn from a point near the centroid of the fuel gas line. The sampling 
time and sample volume shall be at least 10 minutes and 0.010 dscm (0.35 
dscf). Two samples of equal sampling times shall be taken at about 1-
hour intervals. The arithmetic average of these two samples shall 
constitute a run. For most fuel gases, sampling times exceeding 20 
minutes may result in depletion of the collection solution, although 
fuel gases containing low concentrations of H2S may 
necessitate sampling for longer periods of time.
    (f) The owner or operator shall determine compliance with the 
SO2 and the H2S and reduced sulfur standards in 
Sec. 60.104(a)(2) as follows:
    (1) Method 6 shall be used to determine the SO2 
concentration. The concentration in mg/dscm (lb/dscf) obtained by Method 
6 is multiplied by 0.3754 to obtain the concentration in ppm. The 
sampling point in the duct shall be the centroid of the cross section if 
the cross-sectional area is less than 5.00 m2 (54 
ft2) or at a point no closer to the walls than 1.00 m (39 
in.) if the cross-sectional area is 5.00 m2 or more and the 
centroid is more than 1 m from the wall. The sampling time and sample 
volume shall be at least 10 minutes and 0.010 dscm (0.35 dscf) for each 
sample. Eight samples of equal sampling times shall be taken at about 
30-minute intervals. The arithmetic average of these eight samples shall 
constitute a run. Method 4 shall be used to determine the moisture 
content of the gases. The sampling point for Method 4 shall be adjacent 
to the sampling point for Method 6. The sampling time for each sample 
shall be equal to the time it takes for two Method 6 samples. The 
moisture content from this sample shall be used to correct the 
corresponding Method 6 samples for moisture. For documenting the 
oxidation efficiency of the control device for reduced sulfur compounds, 
Method 15 shall be used following the procedures of paragraph (f)(2) of 
this section.
    (2) Method 15 shall be used to determine the reduced sulfur and 
H2 S concentrations. Each run shall consist of 16 samples 
taken over a minimum of 3 hours. The sampling point shall be the same as 
that described for Method 6 in paragraph (f)(1) of this section. To 
ensure minimum residence time for the sample inside the sample lines, 
the sampling rate shall be at least 3.0 lpm (0.10 cfm). The 
SO2 equivalent for each run shall be calculated after being 
corrected for moisture and oxygen as the arithmetic average of the 
SO2 equivalent for each sample during the run. Method 4 shall 
be used to determine the moisture content of the gases as the paragraph 
(f)(1) of this section. The sampling time for each sample shall be equal 
to the time it takes for four Method 15 samples.
    (3) The oxygen concentration used to correct the emission rate for 
excess air shall be obtained by the integrated sampling and analysis 
procedure of

[[Page 203]]

Method 3. The samples shall be taken simultaneously with the 
SO2, reduced sulfur and H2S, or moisture samples. 
The SO2, reduced sulfur, and H2S samples shall be 
corrected to zero percent excess air using the equation in paragraph 
(h)(3) of this section.
    (g) Each performance test conducted for the purpose of determining 
compliance under Sec. 60.104(b) shall consist of all testing performed 
over a 7-day period using the applicable test methods and procedures 
specified in this section. To determine compliance, the arithmetic mean 
of the results of all the tests shall be compared with the applicable 
standard.
    (h) For the purpose of determining compliance with 
Sec. 60.104(b)(1), the following calculation procedures shall be used:
    (1) Calculate each 1-hour average concentration (dry, zero percent 
oxygen, vppm) of sulfur dioxide at both the inlet and the outlet to the 
add-on control device as specified in Sec. 60.13(h). These calculations 
are made using the emission data collected under Sec. 60.105(a).
    (2) Calculate a 7-day average (arithmetic mean) concentration of 
sulfur dioxide for the inlet and for the outlet to the add-on control 
device using all of the 1-hour average concentration values obtained 
during seven successive 24-hour periods.
    (3) Calculate the 7-day average percent reduction using the 
following equation:

Rso2 = 100(Cso2(i)-Cso2(o))/
Cso2(i)
where:

Rso2 = 7-day average sulfur dioxide emission reduction, 
percent
Cso2(i) = sulfur dioxide emission concentration determined in 
Sec. 60.106(h)(2) at the inlet to the add-on control device, vppm
Cso2(o) = sulfur dioxide emission concentration determined in 
Sec. 60.106(h)(2) at the outlet to the add-on control device, vppm
100 = conversion factor, decimal to percent

    (4) Outlet concentrations of sulfur dioxide from the add-on control 
device for compliance with the 50 vppm standard, reported on a dry, 
O2-free basis, shall be calculated using the procedures 
outlined in Sec. 60.106(h)(1) and (2) above, but for the outlet monitor 
only.
    (5) If supplemental sampling data are used for determining the 7-day 
averages under paragraph (h) of this section and such data are not 
hourly averages, then the value obtained for each supplemental sample 
shall be assumed to represent the hourly average for each hour over 
which the sample was obtained.
    (6) For the purpose of adjusting pollutant concentrations to zero 
percent oxygen, the following equation shall be used:

Cadj = Cmeas [20.9c/
(20.9-%O2)]

where:

Cadj = pollutant concentration adjusted to zero percent 
oxygen, ppm or g/dscm
Cmeas = pollutant concentration measured on a dry basis, ppm 
or g/dscm
20.9c = 20.9 percent oxygen-0.0 percent oxygen (defined 
oxygen correction basis), percent

20.9 = oxygen concentration in air, percent
%O2 = oxygen concentration measured on a dry basis, percent

    (i) For the purpose of determining compliance with 
Sec. 60.104(b)(2), the following reference methods and calculation 
procedures shall be used except as provided in paragraph (i)(12) of this 
section:
    (1) One 3-hour test shall be performed each day.
    (2) For gases released to the atmosphere from the fluid catalytic 
cracking unit catalyst regenerator:
    (i) Method 8 as modified in Sec. 60.106(i)(3) for the concentration 
of sulfur oxides calculated as sulfur dioxide and moisture content,
    (ii) Method 1 for sample and velocity traverses,
    (iii) Method 2 calculation procedures (data obtained from Methods 3 
and 8) for velocity and volumetric flow rate, and
    (iv) Method 3 for gas analysis.
    (3) Method 8 shall be modified by the insertion of a heated glass 
fiber filter between the probe and first impinger. The probe liner and 
glass fiber filter temperature shall be maintained above 
160+C (320+F). The isopropanol impinger shall be eliminated. Sample recovery procedures described in Method 8 for container No. 1 shall be eliminated. The heated glass fiber filter also shall be excluded; however, rinsing of all connecting glassware after the heated glass fiber filter shall be retained andincluded in container No. 2. Sampled volume shall be at least 1 dscm.

    (4) For Method 3, the integrated sampling technique shall be used.
    (5) Sampling time for each run shall be at least 3 hours.
    (6) All testing shall be performed at the same location. Where the 
gases discharged by the fluid catalytic cracking unit catalyst 
regenerator pass through an incinerator-waste heat boiler in which 
auxiliary or supplemental gaseous, liquid, or solid fossil fuel is 
burned, testing shall be conducted at a point between the regenerator 
outlet and the incinerator-waste heat boiler. An alternative sampling 
location after the waste heat boiler may be used if alternative coke 
burn-off rate equations, and, if requested, auxiliary/supplemental fuel 
SOX credits, have been submitted to and approved by the 
Administrator prior to sampling.
    (7) Coke burn-off rate shall be determined using the procedures 
specified under paragraph (b)(3) of this section, unless paragraph 
(i)(6) of this section applies.
    (8) Calculate the concentration of sulfur oxides as sulfur dioxide 
using equation 8-3 in Section 6.5 of Method 8 to calculate and report 
the total concentration of sulfur oxides as sulfur dioxide 
(Cso x).
    (9) Sulfur oxides emission rate calculated as sulfur dioxide shall 
be determined for each test run by the following equation:

         Eso x = CsoX Qsd/1,000

where:

Eso x = sulfur oxides emission rate calculated as sulfur 
          dioxide, kg/hr
Cso x = sulfur oxides emission concentration calculated as 
          sulfur dioxide, g/dscm
Qsd = dry volumetric stack gas flow rate corrected to 
          standard conditions, dscm/hr
1,000 = conversion factor, g to kg

    (10) Sulfur oxides emissions calculated as sulfur dioxide per 1,000 
kg coke burn-off in the fluid catalytic cracking unit catalyst 
regenerator shall be determined for each test run by the following 
equation:

           Rso x = (Eso x/Rc)

where:

Rso x = sulfur oxides emissions calculated as sulfur dioxide, 
          kg/1,000 kg coke burn-off
Eso x = sulfur oxides emission rate calculated as sulfur 
          dioxide, kg/hr
Rc = coke burn-off rate, 1,000 kg/hr

    (11) Calculate the 7-day average sulfur oxides emission rate as 
sulfur dioxide per 1,000 kg of coke burn-off by dividing the sum of the 
individual daily rates by the number of daily rates summed.
    (12) An owner or operator may, upon approval by the Administrator, 
use an alternative method for determining compliance with 
Sec. 60.104(b)(2), as provided in Sec. 60.8(b). Any requests for 
approval must include data to demonstrate to the Administrator that the 
alternative method would produce results adequate for the determination 
of compliance.
    (j) For the purpose of determining compliance with 
Sec. 60.104(b)(3), the following analytical methods and calculation 
procedures shall be used:
    (1) One fresh feed sample shall be collected once per 8-hour period.
    (2) Fresh feed samples shall be analyzed separately by using any one 
of the following applicable analytical test methods: ASTM D129-64 
(Reapproved 1978), ASTM D1552-83, ASTM D2622-87, or ASTM D1266-87. 
(These methods are incorporated by reference: see Sec. 60.17.) The 
applicable range of some of these ASTM methods is not adequate to 
measure the levels of sulfur in some fresh feed samples. Dilution of 
samples prior to analysis with verification of the dilution ratio is 
acceptable upon prior approval of the Administrator.
    (3) If a fresh feed sample cannot be collected at a single location, 
then the fresh feed sulfur content shall be determined as follows:
    (i) Individual samples shall be collected once per 8-hour period for 
each separate fresh feed stream charged directly into the riser or 
reactor of the fluid catalytic cracking unit. For each sample location 
the fresh feed volumetric flow rate at the time of collecting the fresh 
feed sample shall be measured and recorded. The same method for 
measuring volumetric flow rate shall be used at all locations.
    (ii) Each fresh feed sample shall be analyzed separately using the 
methods specified under paragraph (j)(2) of this section.

[[Page 205]]

    (iii) Fresh feed sulfur content shall be calculated for each 8-hour 
period using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.005

where:

Sf = fresh feed sulfur content expressed in percent by weight 
          of fresh feed.
n = number of separate fresh feed streams charged directly to the riser 
          or reactor of the fluid catalytic cracking unit.
Qf = total volumetric flow rate of fresh feed charged to the 
          fluid catalytic cracking unit.
Si = fresh feed sulfur content expressed in percent by weight 
          of fresh feed for the ``ith'' sampling location.
Qi = volumetric flow rate of fresh feed stream for the 
          ``ith'' sampling location.

    (4) Calculate a 7-day average (arithmetic mean) sulfur content of 
the fresh feed using all of the fresh feed sulfur content values 
obtained during seven successive 24-hour periods.
    (k) The test methods used to supplement continuous monitoring system 
data to meet the minimum data requirements in Sec. 60.104(d) will be 
used as described below or as otherwise approved by the Administrator.
    (1) Methods 6, 6B, or 8 are used. The sampling location(s) are the 
same as those specified for the monitor.
    (2) For Method 6, the minimum sampling time is 20 minutes and the 
minimum sampling volume is 0.02 dscm (0.71 dscf) for each sample. 
Samples are taken at approximately 60-minute intervals. Each sample 
represents a 1-hour average. A minimum of 18 valid samples is required 
to obtain one valid day of data.
    (3) For Method 6B, collection of a sample representing a minimum of 
18 hours is required to obtain one valid day of data.
    (4) For Method 8, the procedures as outlined in this section are 
used. The equivalent of 16 hours of sampling is required to obtain one 
valid day of data.
[39 FR 9315, Mar. 8, 1974, as amended at 43 FR 10869, Mar. 15, 1978; 51 
FR 42842, Nov. 26, 1986; 52 FR 20392, June 1, 1987; 53 FR 41333, Oct. 
21, 1988; 54 FR 34028, Aug. 17, 1989; 55 FR 40176, Oct. 2, 1990; 56 FR 
4176, Feb. 4, 1991]



Sec. 60.107  Reporting and recordkeeping requirements.

    (a) Each owner or operator subject to Sec. 60.104(b) shall notify 
the Administrator of the specific provisions of Sec. 60.104(b) with 
which the owner or operator seeks to comply. Notification shall be 
submitted with the notification of initial startup required by 
Sec. 60.7(a)(3). If an owner or operator elects at a later date to 
comply with an alternative provision of Sec. 60.104(b), then the 
Administrator shall be notified by the owner or operator in the 
quarterly (or semiannual) report described in paragraphs (c) and (d) of 
this section for the quarter during which the change occurred.
    (b) Each owner or operator subject to Sec. 60.104(b) shall record 
and maintain the following information:
    (1) If subject to Sec. 60.104(b)(1),
    (i) All data and calibrations from continuous monitoring systems 
located at the inlet and outlet to the control device, including the 
results of the daily drift tests and quarterly accuracy assessments 
required under appendix F, Procedure 1;
    (ii) Measurements obtained by supplemental sampling (refer to 
Sec. 60.105(a)(13) and Sec. 60.106(k)) for meeting minimum data 
requirements; and
    (iii) The written procedures for the quality control program 
required by appendix F, Procedure 1.
    (2) If subject to Sec. 60.104(b)(2), measurements obtained in the 
daily Method 8 testing, or those obtained by alternative measurement 
methods, if Sec. 60.106(i)(12) applies.
    (3) If subject to Sec. 60.104(b)(3), data obtained from the daily 
feed sulfur tests.
    (4) Each 7-day rolling average compliance determination.
    (c) Each owner or operator subject to Sec. 60.104(b) shall submit a 
report each quarter except as provided by paragraph (d) of this section. 
The following information shall be contained in each quarterly report:
    (1) Any 7-day period during which:
    (i) The average percent reduction and average concentration of 
sulfur dioxide on a dry, O2-free basis in the gases 
discharged to the atmosphere from any fluid cracking unit catalyst 
regenerator for which the owner or operator seeks to comply with 
Sec. 60.104(b)(1) is

[[Page 206]]

below 90 percent and above 50 vppm, as measured by the continuous 
monitoring system prescribed under Sec. 60.105(a)(8), or above 50 vppm, 
as measured by the outlet continuous monitoring system prescribed under 
Sec. 60.105(a)(9). The average percent reduction and average sulfur 
dioxide concentration shall be determined using the procedures specified 
under Sec. 60.106(h);
    (ii) The average emission rate of sulfur dioxide in the gases 
discharged to the atmosphere from any fluid catalytic cracking unit 
catalyst regenerator for which the owner or operator seeks to comply 
with Sec. 60.104(b)(2) exceeds 9.8 kg SOX per 1,000 kg coke 
burn-off, as measured by the daily testing prescribed under 
Sec. 60.106(i). The average emission rate shall be determined using the 
procedures specified under Sec. 60.106(i); and
    (iii) The average sulfur content of the fresh feed for which the 
owner or operator seeks to comply with Sec. 60.104(b)(3) exceeds 0.30 
percent by weight. The fresh feed sulfur content, a 7-day rolling 
average, shall be determined using the procedures specified under 
Sec. 60.106(j).
    (2) Any 30-day period in which the minimum data requirements 
specified in Sec. 60.104(d) are not obtained.
    (3) For each 7-day period during which an exceedance has occurred as 
defined in paragraphs (c)(1)(i) through (c)(1)(iii) and (c)(2) of this 
section:
    (i) The date that the exceedance occurred;
    (ii) An explanation of the exceedance;
    (iii) Whether the exceedance was concurrent with a startup, 
shutdown, or malfunction of the fluid catalytic cracking unit or control 
system; and
    (iv) A description of the corrective action taken, if any.
    (4) If subject to Sec. 60.104(b)(1),
    (i) The dates for which and brief explanations as to why fewer than 
18 valid hours of data were obtained for the inlet continuous monitoring 
system;
    (ii) The dates for which and brief explanations as to why fewer than 
18 valid hours of data were obtained for the outlet continuous 
monitoring system;
    (iii) Identification of times when hourly averages have been 
obtained based on manual sampling methods;
    (iv) Identification of the times when the pollutant concentration 
exceeded full span of the continuous monitoring system; and
    (v) Description of any modifications to the continuous monitoring 
system that could affect the ability of the continuous monitoring system 
to comply with Performance Specifications 2 or 3.
    (vi) Results of daily drift tests and quarterly accuracy assessments 
as required under appendix F, Procedure 1.
    (5) If subject to Sec. 60.104(b)(2), for each day in which a Method 
8 sample result was not obtained, the date for which and brief 
explanation as to why a Method 8 sample result was not obtained, for 
approval by the Administrator.
    (6) If subject to Sec. 60.104(b)(3), for each 8-hour shift in which 
a feed sulfur measurement was not obtained, the date for which and brief 
explanation as to why a feed sulfur measurement was not obtained, for 
approval by the Administrator.
    (d) If no exceedances (as defined in paragraphs (c)(1)(i) through 
(c)(1)(iii) and (c)(2) of this section) occur in a quarter, and if the 
owner or operator has not changed the standard under Sec. 60.104(b) 
under which compliance is obtained, then the owner or operator may 
submit a semiannual report in which a statement is included that states 
that no exceedances had occurred during the affected quarter(s). If the 
owner or operator elects to comply with an alternative provision of 
Sec. 60.104(b), a quarterly report must be submitted for the quarter 
during which a change occurred.
    (e) For any periods for which sulfur dioxide or oxides emissions 
data are not available, the owner or operator of the affected facility 
shall submit a signed statement indicating if any changes were made in 
operation of the emission control system during the period of data 
unavailability which could affect the ability of the system to meet the 
applicable emission limit. Operations of the control system and affected 
facility during periods of data unavailability are to be compared with

[[Page 207]]

operation of the control system and affected facility before and 
following the period of data unavailability.
    (f) The owner or operator of the affected facility shall submit a 
signed statement certifying the accuracy and completeness of the 
information contained in the report.
[54 FR 34029, Aug. 17, 1989, as amended at 55 FR 40178, Oct. 2, 1990]



Sec. 60.108  Performance test and compliance provisions.

    (a) Section 60.8(d) shall apply to the initial performance test 
specified under paragraph (c) of this section, but not to the daily 
performance tests required thereafter as specified in Sec. 60.108(d). 
Section 60.8(f) does not apply when determining compliance with the 
standards specified under Sec. 60.104(b). Performance tests conducted 
for the purpose of determining compliance under Sec. 60.104(b) shall be 
conducted according to the applicable procedures specified under 
Sec. 60.106.
    (b) Owners or operators who seek to comply with Sec. 60.104(b)(3) 
shall meet that standard at all times, including periods of startup, 
shutdown, and malfunctions.
    (c) The initial performance test shall consist of the initial 7-day 
average calculated for compliance with Sec. 60.104(b)(1), (b)(2), or 
(b)(3).
    (d) After conducting the initial performance test prescribed under 
Sec. 60.8, the owner or operator of a fluid catalytic cracking unit 
catalyst regenerator subject to Sec. 60.104(b) shall conduct a 
performance test for each successive 24-hour period thereafter. The 
daily performance tests shall be conducted according to the appropriate 
procedures specified under Sec. 60.106. In the event that a sample 
collected under Sec. 60.106(i) or (j) is accidentally lost or conditions 
occur in which one of the samples must be discontinued because of forced 
shutdown, failure of an irreplaceable portion of the sample train, 
extreme meteorological conditions, or other circumstances, beyond the 
owner or operators' control, compliance may be determined using 
available data for the 7-day period.
    (e) Each owner or operator subject to Sec. 60.104(b) who has 
demonstrated compliance with one of the provisions of Sec. 60.104(b) but 
at a later date seeks to comply with another of the provisions of 
Sec. 60.104(b) shall begin conducting daily performance tests as 
specified under paragraph (d) of this section immediately upon electing 
to become subject to one of the other provisions of Sec. 60.104(b). The 
owner or operator shall furnish the Administrator a written notification 
of the change in a quarterly report that must be submitted for the 
quarter in which the change occurred.
[54 FR 34030, Aug. 17, 1989, as amended at 55 FR 40178, Oct. 2, 1990]



Sec. 60.109  Delegation of authority.

    (a) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Act, the authorities contained in 
paragraph (b) of this section shall be retained by the Administrator and 
not transferred to a State.
    (b) Authorities which shall not be delegated to States:
    (1) Section 60.105(a)(13)(iii),
    (2) Section 60.106(i)(12).
[54 FR 34031, Aug. 17, 1989, as amended at 55 FR 40178, Oct. 2, 1990]



 Subpart K--Standards of Performance for Storage Vessels for Petroleum 
    Liquids for Which Construction, Reconstruction, or Modification 
        Commenced After June 11, 1973, and Prior to May 19, 1978



Sec. 60.110  Applicability and designation of affected facility.

    (a) Except as provided in Sec. 60.110(b), the affected facility to 
which this subpart applies is each storage vessel for petroleum liquids 
which has a storage capacity greater than 151,412 liters (40,000 
gallons).
    (b) This subpart does not apply to storage vessels for petroleum or 
condensate stored, processed, and/or treated at a drilling and 
production facility prior to custody transfer.
    (c) Subject to the requirements of this subpart is any facility 
under paragraph (a) of this section which:
    (1) Has a capacity greater than 151, 416 liters (40,000 gallons), 
but not exceeding 246,052 liters (65,000 gallons),

[[Page 208]]

and commences construction or modification after March 8, 1974, and 
prior to May 19, 1978.
    (2) Has a capacity greater than 246,052 liters (65,000 gallons) and 
commences construction or modification after June 11, 1973, and prior to 
May 19, 1978.
[42 FR 37937, July 25, 1977, as amended at 45 FR 23379, Apr. 4, 1980]



Sec. 60.111  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Storage vessel means any tank, reservoir, or container used for 
the storage of petroleum liquids, but does not include:
    (1) Pressure vessels which are designed to operate in excess of 15 
pounds per square inch gauge without emissions to the atmosphere except 
under emergency conditions,
    (2) Subsurface caverns or porous rock reservoirs, or
    (3) Underground tanks if the total volume of petroleum liquids added 
to and taken from a tank annually does not exceed twice the volume of 
the tank.
    (b) Petroleum liquids means petroleum, condensate, and any finished 
or intermediate products manufactured in a petroleum refinery but does 
not mean Nos. 2 through 6 fuel oils as specified in ASTM D396-78, gas 
turbine fuel oils Nos. 2-GT through 4-GT as specified in ASTM D2880-78, 
or diesel fuel oils Nos. 2-D and 4-D as specified in ASTM D975-78. 
(These three methods are incorporated by reference--see Sec. 60.17.)
    (c) Petroleum refinery means each facility engaged in producing 
gasoline, kerosene, distillate fuel oils, residual fuel oils, 
lubricants, or other products through distillation of petroleum or 
through redistillation, cracking, extracting, or reforming of unfinished 
petroleum derivatives.
    (d) Petroleum means the crude oil removed from the earth and the 
oils derived from tar sands, shale, and coal.
    (e) Hydrocarbon means any organic compound consisting predominantly 
of carbon and hydrogen.
    (f) Condensate means hydrocarbon liquid separated from natural gas 
which condenses due to changes in the temperature and/or pressure and 
remains liquid at standard conditions.
    (g) Custody transfer means the transfer of produced petroleum and/or 
condensate, after processing and/or treating in the producing 
operations, from storage tanks or automatic transfer facilities to 
pipelines or any other forms of transportation.
    (h) Drilling and production facility means all drilling and 
servicing equipment, wells, flow lines, separators, equipment, gathering 
lines, and auxiliary nontransportation-related equipment used in the 
production of petroleum but does not include natural gasoline plants.
    (i) True vapor pressure means the equilibrium partial pressure 
exerted by a petroleum liquid as determined in accordance with methods 
described in American Petroleum Institute Bulletin 2517, Evaporation 
Loss from External Floating-Roof Tanks, Second Edition, February 1980 
(incorporated by reference--see Sec. 60.17).
    (j) Floating roof means a storage vessel cover consisting of a 
double deck, pontoon single deck, internal floating cover or covered 
floating roof, which rests upon and is supported by the petroleum liquid 
being contained, and is equipped with a closure seal or seals to close 
the space between the roof edge and tank wall.
    (k) Vapor recovery system means a vapor gathering system capable of 
collecting all hydrocarbon vapors and gases discharged from the storage 
vessel and a vapor disposal system capable of processing such 
hydrocarbon vapors and gases so as to prevent their emission to the 
atmosphere.
    (l) Reid vapor pressure is the absolute vapor pressure of volatile 
crude oil and volatile nonviscous petroleum liquids, except liquified 
petroleum gases, as determined by ASTM D323-82 (incorporated by 
reference--see Sec. 60.17).
[39 FR 9317, Mar. 8, 1974; 39 FR 13776, Apr. 17, 1974, as amended at 39 
FR 20794, June 14, 1974; 45 FR 23379, Apr. 4, 1980; 48 FR 3737, Jan. 27, 
1983; 52 FR 11429, Apr. 8, 1987]

[[Page 209]]



Sec. 60.112  Standard for volatile organic compounds (VOC).

    (a) The owner or operator of any storage vessel to which this 
subpart applies shall store petroleum liquids as follows:
    (1) If the true vapor pressure of the petroleum liquid, as stored, 
is equal to or greater than 78 mm Hg (1.5 psia) but not greater than 570 
mm Hg (11.1 psia), the storage vessel shall be equipped with a floating 
roof, a vapor recovery system, or their equivalents.
    (2) If the true vapor pressure of the petroleum liquid as stored is 
greater than 570 mm Hg (11.1 psia), the storage vessel shall be equipped 
with a vapor recovery system or its equivalent.
[39 FR 9317, Mar. 8, 1974; 39 FR 13776, Apr. 17, 1974, as amended at 45 
FR 23379, Apr. 4, 1980]



Sec. 60.113  Monitoring of operations.

    (a) Except as provided in paragraph (d) of this section, the owner 
or operator subject to this subpart shall maintain a record of the 
petroleum liquid stored, the period of storage, and the maximum true 
vapor pressure of that liquid during the respective storage period.
    (b) Available data on the typical Reid vapor pressure and the 
maximum expected storage temperature of the stored product may be used 
to determine the maximum true vapor pressure from nomographs contained 
in API Bulletin 2517, unless the Administrator specifically requests 
that the liquid be sampled, the actual storage temperature determined, 
and the Reid vapor pressure determined from the sample(s).
    (c) The true vapor pressure of each type of crude oil with a Reid 
vapor pressure less than 13.8 kPa (2.0 psia) or whose physical 
properties preclude determination by the recommended method is to be 
determined from available data and recorded if the estimated true vapor 
pressure is greater than 6.9 kPa (1.0 psia).
    (d) The following are exempt from the requirements of this section:
    (1) Each owner or operator of each affected facility which stores 
petroleum liquids with a Reid vapor pressure of less than 6.9 kPa (1.0 
psia) provided the maximum true vapor pressure does not exceed 6.9 kPa 
(1.0 psia).
    (2) Each owner or operator of each affected facility equipped with a 
vapor recovery and return or disposal system in accordance with the 
requirements of Sec. 60.112.
[45 FR 23379, Apr. 4, 1980]



 Subpart Ka--Standards of Performance for Storage Vessels for Petroleum 
    Liquids for Which Construction, Reconstruction, or Modification 
        Commenced After May 18, 1978, and Prior to July 23, 1984



Sec. 60.110a  Applicability and designation of affected facility.

    (a) Except as provided in paragraph (b) of this section, the 
affected facility to which this subpart applies is each storage vessel 
for petroleum liquids which has a storage capacity greater than 151,416 
liters (40,000 gallons) and for which construction is commenced after 
May 18, 1978.
    (b) Each petroleum liquid storage vessel with a capacity of less 
than 1,589,873 liters (420,000 gallons) used for petroleum or condensate 
stored, processed, or treated prior to custody transfer is not an 
affected facility and, therefore, is exempt from the requirements of 
this subpart.
[45 FR 23379, Apr. 4, 1980]



Sec. 60.111a  Definitions.

    In addition to the terms and their definitions listed in the Act and 
subpart A of this part the following definitions apply in this subpart:
    (a) Storage vessel means each tank, reservoir, or container used for 
the storage of petroleum liquids, but does not include:
    (1) Pressure vessels which are designed to operate in excess of 
204.9 kPa (15 psig) without emissions to the atmosphere except under 
emergency conditions.
    (2) Subsurface caverns or porous rock reservoirs, or
    (3) Underground tanks if the total volume of petroleum liquids added 
to and taken from a tank annually does

[[Page 210]]

not exceed twice the volume of the tank.
    (b) Petroleum liquids means petroleum, condensate, and any finished 
or intermediate products manufactured in a petroleum refinery but does 
not mean Nos. 2 through 6 fuel oils as specified in ASTM D396-78, gas 
turbine fuel oils Nos. 2-GT through 4-GT as specified in ASTM D2880-78, 
gas turbine fuel oils Nos. 2-GT through 4-GT as specified in ASTM D2880-
78, or diesel fuel oils Nos. 2-D and 4-D as specified in ASTM D975-78. 
(These three methods are incorporated by reference--see Sec. 60.17.)
    (c) Petroleum refinery means each facility engaged in producing 
gasoline, kerosene, distillate fuel oils, residual fuel oils, 
lubricants, or other products through distillation of petroleum or 
through redistillation, cracking, extracting, or reforming of unfinished 
petroleum derivatives.
    (d) Petroleum means the crude oil removed from the earth and the 
oils derived from tar sands, shale, and coal.
    (e) Condensate means hydrocarbon liquid separated from natural gas 
which condenses due to changes in the temperature or pressure, or both, 
and remains liquid at standard conditions.
    (f) True vapor pressure means the equilibrium partial pressure 
exerted by a petroleum liquid such as determined in accordance with 
methods described in American Petroleum Institute Bulletin 2517, 
Evaporation Loss from External Floating-Roof Tanks, Second Edition, 
February 1980 (incorporated by reference--see Sec. 60.17).
    (g) Reid vapor pressure is the absolute vapor pressure of volatile 
crude oil and nonviscous petroleum liquids, except liquified petroleum 
gases, as determined by ASTM D323-82 (incorporated by reference--see 
Sec. 60.17).
    (h) Liquid-mounted seal means a foam or liquid-filled primary seal 
mounted in contact with the liquid between the tank wall and the 
floating roof continuously around the circumference of the tank.
    (i) Metallic shoe seal includes but is not limited to a metal sheet 
held vertically against the tank wall by springs or weighted levers and 
is connected by braces to the floating roof. A flexible coated fabric 
(envelope) spans the annular space between the metal sheet and the 
floating roof.
    (j) Vapor-mounted seal means a foam-filled primary seal mounted 
continuously around the circumference of the tank so there is an annular 
vapor space underneath the seal. The annular vapor space is bounded by 
the bottom of the primary seal, the tank wall, the liquid surface, and 
the floating roof.
    (k) Custody transfer means the transfer of produced petroleum and/or 
condensate, after processing and/or treating in the producing 
operations, from storage tanks or automatic transfer facilities to 
pipelines or any other forms of transportation.
[45 FR 23379, Apr. 4, 1980, as amended at 48 FR 3737, Jan. 27, 1983; 52 
FR 11429, Apr. 8, 1987]



Sec. 60.112a  Standard for volatile organic compounds (VOC).

    (a) The owner or operator of each storage vessel to which this 
subpart applies which contains a petroleum liquid which, as stored, has 
a true vapor pressure equal to or greater than 10.3 kPa (1.5 psia) but 
not greater than 76.6 kPa (11.1 psia) shall equip the storage vessel 
with one of the following:
    (1) An external floating roof, consisting of a pontoon-type or 
double-deck-type cover that rests on the surface of the liquid contents 
and is equipped with a closure device between the tank wall and the roof 
edge. Except as provided in paragraph (a)(1)(ii)(D) of this section, the 
closure device is to consist of two seals, one above the other. The 
lower seal is referred to as the primary seal and the upper seal is 
referred to as the secondary seal. The roof is to be floating on the 
liquid at all times (i.e., off the roof leg supports) except during 
initial fill and when the tank is completely emptied and subsequently 
refilled. The process of emptying and refilling when the roof is resting 
on the leg supports shall be continuous and shall be accomplished as 
rapidly as possible.
    (i) The primary seal is to be either a metallic shoe seal, a liquid-
mounted seal, or a vapor-mounted seal. Each seal is to meet the 
following requirements:
    (A) The accumulated area of gaps between the tank wall and the 
metallic

[[Page 211]]

shoe seal or the liquid-mounted seal shall not exceed 212 cm2 
per meter of tank diameter (10.0 in 2per ft of tank diameter) 
and the width of any portion of any gap shall not exceed 3.81 cm (1\1/2\ 
in).
    (B) The accumulated area of gaps between the tank wall and the 
vapor-mounted seal shall not exceed 21.2 cm2 per meter of 
tank diameter (1.0 in2 per ft of tank diameter) and the width 
of any portion of any gap shall not exceed 1.27 cm (\1/2\ in).
    (C) One end of the metallic shoe is to extend into the stored liquid 
and the other end is to extend a minimum vertical distance of 61 cm (24 
in) above the stored liquid surface.
    (D) There are to be no holes, tears, or other openings in the shoe, 
seal fabric, or seal envelope.
    (ii) The secondary seal is to meet the following requirements:
    (A) The secondary seal is to be installed above the primary seal so 
that it completely covers the space between the roof edge and the tank 
wall except as provided in paragraph (a)(1)(ii)(B) of this section.
    (B) The accumulated area of gaps between the tank wall and the 
secondary seal used in combination with a metallic shoe or liquid-
mounted primary seal shall not exceed 21.2 cm2per meter of 
tank diameter (1.0 in2per ft. of tank diameter) and the width 
of any portion of any gap shall not exceed 1.27 cm (\1/2\ in.). There 
shall be no gaps between the tank wall and the secondary seal used in 
combination with a vapor-mounted primary seal.
    (C) There are to be no holes, tears or other openings in the seal or 
seal fabric.
    (D) The owner or operator is exempted from the requirements for 
secondary seals and the secondary seal gap criteria when performing gap 
measurements or inspections of the primary seal.
    (iii) Each opening in the roof except for automatic bleeder vents 
and rim space vents is to provide a projection below the liquid surface. 
Each opening in the roof except for automatic bleeder vents, rim space 
vents and leg sleeves is to be equipped with a cover, seal or lid which 
is to be maintained in a closed position at all times (i.e., no visible 
gap) except when the device is in actual use or as described in pargraph 
(a)(1)(iv) of this section. Automatic bleeder vents are to be closed at 
all times when the roof is floating, except when the roof is being 
floated off or is being landed on the roof leg supports. Rim vents are 
to be set to open when the roof is being floated off the roof legs 
supports or at the manufacturer's recommended setting.
    (iv) Each emergency roof drain is to be provided with a slotted 
membrane fabric cover that covers at least 90 percent of the area of the 
opening.
    (2) A fixed roof with an internal floating type cover equipped with 
a continuous closure device between the tank wall and the cover edge. 
The cover is to be floating at all times, (i.e., off the leg supports) 
except during initial fill and when the tank is completely emptied and 
subsequently refilled. The process of emptying and refilling when the 
cover is resting on the leg supports shall be continuous and shall be 
accomplished as rapidly as possible. Each opening in the cover except 
for automatic bleeder vents and the rim space vents is to provide a 
projection below the liquid surface. Each opening in the cover except 
for automatic bleeder vents, rim space vents, stub drains and leg 
sleeves is to be equipped with a cover, seal, or lid which is to be 
maintained in a closed position at all times (i.e., no visible gap) 
except when the device is in actual use. Automatic bleeder vents are to 
be closed at all times when the cover is floating except when the cover 
is being floated off or is being landed on the leg supports. Rim vents 
are to be set to open only when the cover is being floated off the leg 
supports or at the manufacturer's recommended setting.
    (3) A vapor recovery system which collects all VOC vapors and gases 
discharged from the storage vessel, and a vapor return or disposal 
system which is designed to process such VOC vapors and gases so as to 
reduce their emission to the atmosphere by at least 95 percent by 
weight.
    (4) A system equivalent to those described in paragraphs (a)(1), 
(a)(2), or

[[Page 212]]

(a)(3) of this section as provided in Sec. 60.114a.
    (b) The owner or operator of each storage vessel to which this 
subpart applies which contains a petroleum liquid which, as stored, has 
a true vapor pressure greater than 76.6 kPa (11.1 psia), shall equip the 
storage vessel with a vapor recovery system which collects all VOC 
vapors and gases discharged from the storage vessel, and a vapor return 
or disposal system which is designed to process such VOC vapors and 
gases so as to reduce their emission to the atmosphere by at least 95 
percent by weight.
[45 FR 23379, Apr. 4, 1980, as amended at 45 FR 83229, Dec. 18, 1980]



Sec. 60.113a  Testing and procedures.

    (a) Except as provided in Sec. 60.8(b) compliance with the standard 
prescribed in Sec. 60.112a shall be determined as follows or in 
accordance with an equivalent procedure as provided in Sec. 60.114a.
    (1) The owner or operator of each storage vessel to which this 
subpart applies which has an external floating roof shall meet the 
following requirements:
    (i) Determine the gap areas and maximum gap widths between the 
primary seal and the tank wall and between the secondary seal and the 
tank wall according to the following frequency:
    (A) For primary seals, gap measurements shall be performed within 60 
days of the initial fill with petroleum liquid and at least once every 
five years thereafter. All primary seal inspections or gap measurements 
which require the removal or dislodging of the secondary seal shall be 
accomplished as rapidly as possible and the secondary seal shall be 
replaced as soon as possible.
    (B) For secondary seals, gap measurements shall be performed within 
60 days of the initial fill with petroleum liquid and at least once 
every year thereafter.
    (C) If any storage vessel is out of service for a period of one year 
or more, subsequent refilling with petroleum liquid shall be considered 
initial fill for the purposes of paragraphs (a)(1)(i)(A) and 
(a)(1)(i)(B) of this section.
    (D) Keep records of each gap measurement at the plant for a period 
of at least 2 years following the date of measurement. Each record shall 
identify the vessel on which the measurement was performed and shall 
contain the date of the seal gap measurement, the raw data obtained in 
the measurement process required by paragraph (a)(1)(ii) of this section 
and the calculation required by paragraph (a)(1)(iii) of this section.
    (E) If either the seal gap calculated in accord with paragraph 
(a)(1)(iii) of this section or the measured maximum seal gap exceeds the 
limitations specified by Sec. 60.112a of this subpart, a report shall be 
furnished to the Administrator within 60 days of the date of 
measurements. The report shall identify the vessel and list each reason 
why the vessel did not meet the specifications of Sec. 60.112a. The 
report shall also describe the actions necessary to bring the storage 
vessel into compliance with the specifications of Sec. 60.112a.
    (ii) Determine gap widths in the primary and secondary seals 
individually by the following procedures:
    (A) Measure seal gaps, if any, at one or more floating roof levels 
when the roof is floating off the roof leg supports.
    (B) Measure seal gaps around the entire circumference of the tank in 
each place where a \1/8\inch diameter uniform probe passes freely 
(without forcing or binding against seal) between the seal and the tank 
wall and measure the circumferential distance of each such location.
    (C) The total surface area of each gap described in paragraph 
(a)(1)(ii)(B) of this section shall be determined by using probes of 
various widths to accurately measure the actual distance from the tank 
wall to the seal and multiplying each such width by its respective 
circumferential distance.
    (iii) Add the gap surface area of each gap location for the primary 
seal and the secondary seal individually. Divide the sum for each seal 
by the nominal diameter of the tank and compare each ratio to the 
appropriate ratio in the standard in Sec. 60.112a(a)(1)(i) and 
Sec. 60.112a(a)(1)(ii).

[[Page 213]]

    (iv) Provide the Administrator 30 days prior notice of the gap 
measurement to afford the Administrator the opportunity to have an 
observer present.
    (2) The owner or operator of each storage vessel to which this 
subpart applies which has a vapor recovery and return or disposal system 
shall provide the following information to the Administrator on or 
before the date on which construction of the storage vessel commences:
    (i) Emission data, if available, for a similar vapor recovery and 
return or disposal system used on the same type of storage vessel, which 
can be used to determine the efficiency of the system. A complete 
description of the emission measurement method used must be included.
    (ii) The manufacturer's design specifications and estimated emission 
reduction capability of the system.
    (iii) The operation and maintenance plan for the system.
    (iv) Any other information which will be useful to the Administrator 
in evaluating the effectiveness of the system in reducing VOC emissions.
[45 FR 23379, Apr. 4, 1980, as amended at 52 FR 11429, Apr. 8, 1987]



Sec. 60.114a  Alternative means of emission limitation.

    (a) If, in the Administrator's judgment, an alternative means of 
emission limitation will achieve a reduction in emissions at least 
equivalent to the reduction in emissions achieved by any requirement in 
Sec. 60.112a, the Administrator will publish in the Federal Register a 
notice permitting the use of the alternative means for purposes of 
compliance with that requirement.
    (b) Any notice under paragraph (a) of this section will be published 
only after notice and an opportunity for a hearing.
    (c) Any person seeking permission under this section shall submit to 
the Administrator a written application including:
    (1) An actual emissions test that uses a full-sized or scale-model 
storage vessel that accurately collects and measures all VOC emissions 
from a given control device and that accurately simulates wind and 
accounts for other emission variables such as temperature and barometric 
pressure.
    (2) An engineering evaluation that the Administrator determines is 
an accurate method of determining equivalence.
    (d) The Administrator may condition the permission on requirements 
that may be necessary to ensure operation and maintenance to achieve the 
same emissions reduction as specified in Sec. 60.112a.
    (e) The primary vapor-mounted seal in the ``Volume-Maximizing Seal'' 
manufactured by R.F.I. Services Corporation is approved as equivalent to 
the vapor-mounted seal required by Sec. 60.112a(a)(1)(i) and must meet 
the gap criteria specified in Sec. 60.112a(a)(1)(i)(B). There shall be 
no gaps between the tank wall and any secondary seal used in conjunction 
with the primary seal in the ``Volume-Maximizing Seal''.
[52 FR 11429, Apr. 8, 1987]



Sec. 60.115a  Monitoring of operations.

    (a) Except as provided in paragraph (d) of this section, the owner 
or operator subject to this subpart shall maintain a record of the 
petroleum liquid stored, the period of storage, and the maximum true 
vapor pressure of that liquid during the respective storage period.
    (b) Available data on the typical Reid vapor pressure and the 
maximum expected storage temperature of the stored product may be used 
to determine the maximum true vapor pressure from nomographs contained 
in API Bulletin 2517, unless the Administrator specifically requests 
that the liquid be sampled, the actual storage temperature determined, 
and the Reid vapor pressure determined from the sample(s).
    (c) The true vapor pressure of each type of crude oil with a Reid 
vapor pressure less than 13.8 kPa (2.0 psia) or whose physical 
properties preclude determination by the recommended method is to be 
determined from available data and recorded if the estimated true vapor 
pressure is greater than 6.9 kPa (1.0 psia).
    (d) The following are exempt from the requirements of this section:

[[Page 214]]

    (1) Each owner or operator of each storage vessel storing a 
petroleum liquid with a Reid vapor pressure of less than 6.9 kPa (1.0 
psia) provided the maximum true vapor pressure does not exceed 6.9 kPa 
(1.0 psia).
    (2) Each owner or operator of each storage vessel equipped with a 
vapor recovery and return or disposal system in accordance with the 
requirements of Sec. 60.112a (a)(3) and (b).
[45 FR 23379, Apr. 4, 1980]



Subpart Kb--Standards of Performance for Volatile Organic Liquid Storage 
     Vessels (Including Petroleum Liquid Storage Vessels) for Which 
 Construction, Reconstruction, or Modification Commenced After July 23, 
                                  1984

    Source: 52 FR 11429, Apr. 8, 1987, unless otherwise noted.



Sec. 60.110b  Applicability and designation of affected facility.

    (a) Except as provided in paragraphs (b), (c), and (d) of this 
section, the affected facility to which this subpart applies is each 
storage vessel with a capacity greater than or equal to 40 cubic meters 
(m3) that is used to store volatile organic liquids (VOL's) 
for which construction, reconstruction, or modification is commenced 
after July 23, 1984.
    (b) Except as specified in paragraphs (a) and (b) of Sec. 60.116b, 
storage vessels with design capacity less than 75 m3 are 
exempt from the General Provisions (part 60, subpart A) and from the 
provisions of this subpart.
    (c) Except as specified in paragraphs (a) and (b) of Sec. 60.116b, 
vessels either with a capacity greater than or equal to 151 m\3\ storing 
a liquid with a maximum true vapor pressure less than 3.5 kPa or with a 
capacity greater than or equal to 75 m\3\ but less than 151 m\3\ storing 
a liquid with a maximum true vapor pressure less than 15.0 kPa are 
exempt from the General Provisions (part 60, subpart A) and from the 
provisions of this subpart.
    (d) This subpart does not apply to the following:
    (1) Vessels at coke oven by-product plants.
    (2) Pressure vessels designed to operate in excess of 204.9 kPa and 
without emissions to the atmosphere.
    (3) Vessels permanently attached to mobile vehicles such as trucks, 
railcars, barges, or ships.
    (4) Vessels with a design capacity less than or equal to 1,589.874 
m3 used for petroleum or condensate stored, processed, or 
treated prior to custody transfer.
    (5) Vessels located at bulk gasoline plants.
    (6) Storage vessels located at gasoline service stations.
    (7) Vessels used to store beverage alcohol.
[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989]



Sec. 60.111b  Definitions.

    Terms used in this subpart are defined in the Act, in subpart A of 
this part, or in this subpart as follows:
    (a) Bulk gasoline plant means any gasoline distribution facility 
that has a gasoline throughput less than or equal to 75,700 liters per 
day. Gasoline throughput shall be the maximum calculated design 
throughput as may be limited by compliance with an enforceable condition 
under Federal requirement or Federal, State or local law, and 
discoverable by the Administrator and any other person.
    (b) Condensate means hydrocarbon liquid separated from natural gas 
that condenses due to changes in the temperature or pressure, or both, 
and remains liquid at standard conditions.
    (c) Custody transfer means the transfer of produced petroleum and/or 
condensate, after processing and/or treatment in the producing 
operations, from storage vessels or automatic transfer facilities to 
pipelines or any other forms of transportation.
    (d) Fill means the introduction of VOL into a storage vessel but not 
necessarily to complete capacity.
    (e) Gasoline service station means any site where gasoline is 
dispensed to motor vehicle fuel tanks from stationary storage tanks.

[[Page 215]]

    (f) Maximum true vapor pressure means the equilibrium partial 
pressure exerted by the stored VOL at the temperature equal to the 
highest calendar-month average of the VOL storage temperature for VOL's 
stored above or below the ambient temperature or at the local maximum 
monthly average temperature as reported by the National Weather Service 
for VOL's stored at the ambient temperature, as determined:
    (1) In accordance with methods described in American Petroleum 
institute Bulletin 2517, Evaporation Loss From External Floating Roof 
Tanks, (incorporated by reference--see Sec. 60.17); or
    (2) As obtained from standard reference texts; or
    (3) As determined by ASTM Method D2879-83 (incorporated by 
reference--see Sec. 60.17);
    (4) Any other method approved by the Administrator.
    (g) Reid vapor pressure means the absolute vapor pressure of 
volatile crude oil and volatile nonviscous petroleum liquids except 
liquified petroleum gases, as determined by ASTM D323-82 (incorporated 
by reference--see Sec. 60.17).
    (h) Petroleum means the crude oil removed from the earth and the 
oils derived from tar sands, shale, and coal.
    (i) Petroleum liquids means petroleum, condensate, and any finished 
or intermediate products manufactured in a petroleum refinery.
    (j) Storage vessel means each tank, reservoir, or container used for 
the storage of volatile organic liquids but does not include:
    (1) Frames, housing, auxiliary supports, or other components that 
are not directly involved in the containment of liquids or vapors; or
    (2) Subsurface caverns or porous rock reservoirs.
    (k) Volatile organic liquid (VOL) means any organic liquid which can 
emit volatile organic compounds into the atmosphere except those VOL's 
that emit only those compounds which the Administrator has determined do 
not contribute appreciably to the formation of ozone. These compounds 
are identified in EPA statements on ozone abatement policy for SIP 
revisions (42 FR 35314, 44 FR 32042, 45 FR 32424, and 45 FR 48941).
    (l) Waste means any liquid resulting from industrial, commercial, 
mining or agricultural operations, or from community activities that is 
discarded or is being accumulated, stored, or physically, chemically, or 
biologically treated prior to being discarded or recycled.
[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989]



Sec. 60.112b  Standard for volatile organic compounds (VOC).

    (a) The owner or operator of each storage vessel either with a 
design capacity greater than or equal to 151 m\3\ containing a VOL that, 
as stored, has a maximum true vapor pressure equal to or greater than 
5.2 kPa but less than 76.6 kPa or with a design capacity greater than or 
equal to 75 m\3\ but less than 151 m\3\ containing a VOL that, as 
stored, has a maximum true vapor pressure equal to or greater than 27.6 
kPa but less than 76.6 kPa, shall equip each storage vessel with one of 
the following:
    (1) A fixed roof in combination with an internal floating roof 
meeting the following specifications:
    (i) The internal floating roof shall rest or float on the liquid 
surface (but not necessarily in complete contact with it) inside a 
storage vessel that has a fixed roof. The internal floating roof shall 
be floating on the liquid surface at all times, except during initial 
fill and during those intervals when the storage vessel is completely 
emptied or subsequently emptied and refilled. When the roof is resting 
on the leg supports, the process of filling, emptying, or refilling 
shall be continuous and shall be accomplished as rapidly as possible.
    (ii) Each internal floating roof shall be equipped with one of the 
following closure devices between the wall of the storage vessel and the 
edge of the internal floating roof:
    (A) A foam- or liquid-filled seal mounted in contact with the liquid 
(liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-
filled seal mounted in contact with the liquid between the wall of the 
storage vessel

[[Page 216]]

and the floating roof continuously around the circumference of the tank.
    (B) Two seals mounted one above the other so that each forms a 
continuous closure that completely covers the space between the wall of 
the storage vessel and the edge of the internal floating roof. The lower 
seal may be vapor-mounted, but both must be continuous.
    (C) A mechanical shoe seal. A mechanical shoe seal is a metal sheet 
held vertically against the wall of the storage vessel by springs or 
weighted levers and is connected by braces to the floating roof. A 
flexible coated fabric (envelope) spans the annular space between the 
metal sheet and the floating roof.
    (iii) Each opening in a noncontact internal floating roof except for 
automatic bleeder vents (vacuum breaker vents) and the rim space vents 
is to provide a projection below the liquid surface.
    (iv) Each opening in the internal floating roof except for leg 
sleeves, automatic bleeder vents, rim space vents, column wells, ladder 
wells, sample wells, and stub drains is to be equipped with a cover or 
lid which is to be maintained in a closed position at all times (i.e., 
no visible gap) except when the device is in actual use. The cover or 
lid shall be equipped with a gasket. Covers on each access hatch and 
automatic gauge float well shall be bolted except when they are in use.
    (v) Automatic bleeder vents shall be equipped with a gasket and are 
to be closed at all times when the roof is floating except when the roof 
is being floated off or is being landed on the roof leg supports.
    (vi) Rim space vents shall be equipped with a gasket and are to be 
set to open only when the internal floating roof is not floating or at 
the manufacturer's recommended setting.
    (vii) Each penetration of the internal floating roof for the purpose 
of sampling shall be a sample well. The sample well shall have a slit 
fabric cover that covers at least 90 percent of the opening.
    (viii) Each penetration of the internal floating roof that allows 
for passage of a column supporting the fixed roof shall have a flexible 
fabric sleeve seal or a gasketed sliding cover.
    (ix) Each penetration of the internal floating roof that allows for 
passage of a ladder shall have a gasketed sliding cover.
    (2) An external floating roof. An external floating roof means a 
pontoon-type or double-deck type cover that rests on the liquid surface 
in a vessel with no fixed roof. Each external floating roof must meet 
the following specifications:
    (i) Each external floating roof shall be equipped with a closure 
device between the wall of the storage vessel and the roof edge. The 
closure device is to consist of two seals, one above the other. The 
lower seal is referred to as the primary seal, and the upper seal is 
referred to as the secondary seal.
    (A) The primary seal shall be either a mechanical shoe seal or a 
liquid-mounted seal. Except as provided in Sec. 60.113b(b)(4), the seal 
shall completely cover the annular space between the edge of the 
floating roof and tank wall.
    (B) The secondary seal shall completely cover the annular space 
between the external floating roof and the wall of the storage vessel in 
a continuous fashion except as allowed in Sec. 60.113b(b)(4).
    (ii) Except for automatic bleeder vents and rim space vents, each 
opening in a noncontact external floating roof shall provide a 
projection below the liquid surface. Except for automatic bleeder vents, 
rim space vents, roof drains, and leg sleeves, each opening in the roof 
is to be equipped with a gasketed cover, seal, or lid that is to be 
maintained in a closed position at all times (i.e., no visible gap) 
except when the device is in actual use. Automatic bleeder vents are to 
be closed at all times when the roof is floating except when the roof is 
being floated off or is being landed on the roof leg supports. Rim vents 
are to be set to open when the roof is being floated off the roof legs 
supports or at the manufacturer's recommended setting. Automatic bleeder 
vents and rim space vents are to be gasketed. Each emergency roof drain 
is to be provided with a slotted membrane fabric cover that covers at 
least 90 percent of the area of the opening.
    (iii) The roof shall be floating on the liquid at all times (i.e., 
off the roof leg

[[Page 217]]

supports) except during initial fill until the roof is lifted off leg 
supports and when the tank is completely emptied and subsequently 
refilled. The process of filling, emptying, or refilling when the roof 
is resting on the leg supports shall be continuous and shall be 
accomplished as rapidly as possible.
    (3) A closed vent system and control device meeting the following 
specifications:
    (i) The closed vent system shall be designed to collect all VOC 
vapors and gases discharged from the storage vessel and operated with no 
detectable emissions as indicated by an instrument reading of less than 
500 ppm above background and visual inspections, as determined in part 
60, subpart VV, Sec. 60.485(b).
    (ii) The control device shall be designed and operated to reduce 
inlet VOC emissions by 95 percent or greater. If a flare is used as the 
control device, it shall meet the specifications described in the 
general control device requirements (Sec. 60.18) of the General 
Provisions.
    (4) A system equivalent to those described in paragraphs (a)(1), 
(a)(2), or (a)(3) of this section as provided in Sec. 60.114b of this 
subpart.
    (b) The owner or operator of each storage vessel with a design 
capacity greater than or equal to 75 m3 which contains a VOL 
that, as stored, has a maximum true vapor pressure greater than or equal 
to 76.6 kPa shall equip each storage vessel with one of the following:
    (1) A closed vent system and control device as specified in 
Sec. 60.112b(a)(3).
    (2) A system equivalent to that described in paragraph (b)(1) as 
provided in Sec. 60.114b of this subpart.
    (c) Site-specific standard for Merck 
& Co., Inc.'s Stonewall Plant in Elkton, Virginia. This 
paragraph applies only to the pharmaceutical manufacturing facility, 
commonly referred to as the Stonewall Plant, located at Route 340 South, 
in Elkton, Virginia (``site'').
    (1) For any storage vessel that otherwise would be subject to the 
control technology requirements of paragraphs (a) or (b) of this 
section, the site shall have the option of either complying directly 
with the requirements of this subpart, or reducing the site-wide total 
criteria pollutant emissions cap (total emissions cap) in accordance 
with the procedures set forth in a permit issued pursuant to 40 CFR 
52.2454. If the site chooses the option of reducing the total emissions 
cap in accordance with the procedures set forth in such permit, the 
requirements of such permit shall apply in lieu of the otherwise 
applicable requirements of this subpart for such storage vessel.
    (2) For any storage vessel at the site not subject to the 
requirements of 40 CFR 60.112b (a) or (b), the requirements of 40 CFR 
60.116b (b) and (c) and the General Provisions (subpart A of this part) 
shall not apply.
[52 FR 11429, Apr. 8, 1987, as amended at 62 FR 52641, Oct. 8, 1997]



Sec. 60.113b  Testing and procedures.

    The owner or operator of each storage vessel as specified in 
Sec. 60.112b(a) shall meet the requirements of paragraph (a), (b), or 
(c) of this section. The applicable paragraph for a particular storage 
vessel depends on the control equipment installed to meet the 
requirements of Sec. 60.112b.
    (a) After installing the control equipment required to meet 
Sec. 60.112b(a)(1) (permanently affixed roof and internal floating 
roof), each owner or operator shall:
    (1) Visually inspect the internal floating roof, the primary seal, 
and the secondary seal (if one is in service), prior to filling the 
storage vessel with VOL. If there are holes, tears, or other openings in 
the primary seal, the secondary seal, or the seal fabric or defects in 
the internal floating roof, or both, the owner or operator shall repair 
the items before filling the storage vessel.
    (2) For Vessels equipped with a liquid-mounted or mechanical shoe 
primary seal, visually inspect the internal floating roof and the 
primary seal or the secondary seal (if one is in service) through 
manholes and roof hatches on the fixed roof at least once every 12 
months after initial fill. If the internal floating roof is not resting 
on the surface of the VOL inside the storage vessel, or there is liquid 
accumulated on the roof, or the seal is detached, or there are holes or 
tears in the seal fabric, the owner or operator shall repair

[[Page 218]]

the items or empty and remove the storage vessel from service within 45 
days. If a failure that is detected during inspections required in this 
paragraph cannot be repaired within 45 days and if the vessel cannot be 
emptied within 45 days, a 30-day extension may be requested from the 
Administrator in the inspection report required in Sec. 60.115b(a)(3). 
Such a request for an extension must document that alternate storage 
capacity is unavailable and specify a schedule of actions the company 
will take that will assure that the control equipment will be repaired 
or the vessel will be emptied as soon as possible.
    (3) For vessels equipped with a double-seal system as specified in 
Sec. 60.112b(a)(1)(ii)(B):
    (i) Visually inspect the vessel as specified in paragraph (a)(4) of 
this section at least every 5 years; or
    (ii) Visually inspect the vessel as specified in paragraph (a)(2) of 
this section.
    (4) Visually inspect the internal floating roof, the primary seal, 
the secondary seal (if one is in service), gaskets, slotted membranes 
and sleeve seals (if any) each time the storage vessel is emptied and 
degassed. If the internal floating roof has defects, the primary seal 
has holes, tears, or other openings in the seal or the seal fabric, or 
the secondary seal has holes, tears, or other openings in the seal or 
the seal fabric, or the gaskets no longer close off the liquid surfaces 
from the atmosphere, or the slotted membrane has more than 10 percent 
open area, the owner or operator shall repair the items as necessary so 
that none of the conditions specified in this paragraph exist before 
refilling the storage vessel with VOL. In no event shall inspections 
conducted in accordance with this provision occur at intervals greater 
than 10 years in the case of vessels conducting the annual visual 
inspection as specified in paragraphs (a)(2) and (a)(3)(ii) of this 
section and at intervals no greater than 5 years in the case of vessels 
specified in paragraph (a)(3)(i) of this section.
    (5) Notify the Administrator in writing at least 30 days prior to 
the filling or refilling of each storage vessel for which an inspection 
is required by paragraphs (a)(1) and (a)(4) of this section to afford 
the Administrator the opportunity to have an observer present. If the 
inspection required by paragraph (a)(4) of this section is not planned 
and the owner or operator could not have known about the inspection 30 
days in advance or refilling the tank, the owner or operator shall 
notify the Administrator at least 7 days prior to the refilling of the 
storage vessel. Notification shall be made by telephone immediately 
followed by written documentation demonstrating why the inspection was 
unplanned. Alternatively, this notification including the written 
documentation may be made in writing and sent by express mail so that it 
is received by the Administrator at least 7 days prior to the refilling.
    (b) After installing the control equipment required to meet 
Sec. 60.112b(a)(2) (external floating roof), the owner or operator 
shall:
    (1) Determine the gap areas and maximum gap widths, between the 
primary seal and the wall of the storage vessel and between the 
secondary seal and the wall of the storage vessel according to the 
following frequency.
    (i) Measurements of gaps between the tank wall and the primary seal 
(seal gaps) shall be performed during the hydrostatic testing of the 
vessel or within 60 days of the initial fill with VOL and at least once 
every 5 years thereafter.
    (ii) Measurements of gaps between the tank wall and the secondary 
seal shall be performed within 60 days of the initial fill with VOL and 
at least once per year thereafter.
    (iii) If any source ceases to store VOL for a period of 1 year or 
more, subsequent introduction of VOL into the vessel shall be considered 
an initial fill for the purposes of paragraphs (b)(1)(i) and (b)(1)(ii) 
of this section.
    (2) Determine gap widths and areas in the primary and secondary 
seals individually by the following procedures:
    (i) Measure seal gaps, if any, at one or more floating roof levels 
when the roof is floating off the roof leg supports.
    (ii) Measure seal gaps around the entire circumference of the tank 
in each place where a 0.32-cm diameter uniform probe passes freely 
(without forcing or

[[Page 219]]

binding against seal) between the seal and the wall of the storage 
vessel and measure the circumferential distance of each such location.
    (iii) The total surface area of each gap described in paragraph 
(b)(2)(ii) of this section shall be determined by using probes of 
various widths to measure accurately the actual distance from the tank 
wall to the seal and multiplying each such width by its respective 
circumferential distance.
    (3) Add the gap surface area of each gap location for the primary 
seal and the secondary seal individually and divide the sum for each 
seal by the nominal diameter of the tank and compare each ratio to the 
respective standards in paragraph (b)(4) of this section.
    (4) Make necessary repairs or empty the storage vessel within 45 
days of identification in any inspection for seals not meeting the 
requirements listed in (b)(4) (i) and (ii) of this section:
    (i) The accumulated area of gaps between the tank wall and the 
mechanical shoe or liquid-mounted primary seal shall not exceed 212 
Cm\2\ per meter of tank diameter, and the width of any portion of any 
gap shall not exceed 3.81 cm.
    (A) One end of the mechanical shoe is to extend into the stored 
liquid, and the other end is to extend a minimum vertical distance of 61 
cm above the stored liquid surface.
    (B) There are to be no holes, tears, or other openings in the shoe, 
seal fabric, or seal envelope.
    (ii) The secondary seal is to meet the following requirements:
    (A) The secondary seal is to be installed above the primary seal so 
that it completely covers the space between the roof edge and the tank 
wall except as provided in paragraph (b)(2)(iii) of this section.
    (B) The accumulated area of gaps between the tank wall and the 
secondary seal shall not exceed 21.2 cm2 per meter of tank 
diameter, and the width of any portion of any gap shall not exceed 1.27 
cm.
    (C) There are to be no holes, tears, or other openings in the seal 
or seal fabric.
    (iii) If a failure that is detected during inspections required in 
paragraph (b)(1) of Sec. 60.113b(b) cannot be repaired within 45 days 
and if the vessel cannot be emptied within 45 days, a 30-day extension 
may be requested from the Administrator in the inspection report 
required in Sec. 60.115b(b)(4). Such extension request must include a 
demonstration of unavailability of alternate storage capacity and a 
specification of a schedule that will assure that the control equipment 
will be repaired or the vessel will be emptied as soon as possible.
    (5) Notify the Administrator 30 days in advance of any gap 
measurements required by paragraph (b)(1) of this section to afford the 
Administrator the opportunity to have an observer present.
    (6) Visually inspect the external floating roof, the primary seal, 
secondary seal, and fittings each time the vessel is emptied and 
degassed.
    (i) If the external floating roof has defects, the primary seal has 
holes, tears, or other openings in the seal or the seal fabric, or the 
secondary seal has holes, tears, or other openings in the seal or the 
seal fabric, the owner or operator shall repair the items as necessary 
so that none of the conditions specified in this paragraph exist before 
filling or refilling the storage vessel with VOL.
    (ii) For all the inspections required by paragraph (b)(6) of this 
section, the owner or operator shall notify the Administrator in writing 
at least 30 days prior to the filling or refilling of each storage 
vessel to afford the Administrator the opportunity to inspect the 
storage vessel prior to refilling. If the inspection required by 
paragraph (b)(6) of this section is not planned and the owner or 
operator could not have known about the inspection 30 days in advance of 
refilling the tank, the owner or operator shall notify the Administrator 
at least 7 days prior to the refilling of the storage vessel. 
Notification shall be made by telephone immediately followed by written 
documentation demonstrating why the inspection was unplanned. 
Alternatively, this notification including the written documentation may 
be made in writing and sent by express mail so that it is received by 
the Administrator at least 7 days prior to the refilling.

[[Page 220]]

    (c) The owner or operator of each source that is equipped with a 
closed vent system and control device as required in Sec. 60.112b (a)(3) 
or (b)(2) (other than a flare) is exempt from Sec. 60.8 of the General 
Provisions and shall meet the following requirements.
    (1) Submit for approval by the Administrator as an attachment to the 
notification required by Sec. 60.7(a)(1) or, if the facility is exempt 
from Sec. 60.7(a)(1), as an attachment to the notification required by 
Sec. 60.7(a)(2), an operating plan containing the information listed 
below.
    (i) Documentation demonstrating that the control device will achieve 
the required control efficiency during maximum loading conditions. This 
documentation is to include a description of the gas stream which enters 
the control device, including flow and VOC content under varying liquid 
level conditions (dynamic and static) and manufacturer's design 
specifications for the control device. If the control device or the 
closed vent capture system receives vapors, gases, or liquids other than 
fuels from sources that are not designated sources under this subpart, 
the efficiency demonstration is to include consideration of all vapors, 
gases, and liquids received by the closed vent capture system and 
control device. If an enclosed combustion device with a minimum 
residence time of 0.75 seconds and a minimum temperature of 816 
+C is used to meet the 95 percent requirement, documentation that those conditions will exist is sufficient to meet the requirements of this paragraph.

    (ii) A description of the parameter or parameters to be monitored to 
ensure that the control device will be operated in conformance with its 
design and an explanation of the criteria used for selection of that 
parameter (or parameters).
    (2) Operate the closed vent system and control device and monitor 
the parameters of the closed vent system and control device in 
accordance with the operating plan submitted to the Administrator in 
accordance with paragraph (c)(1) of this section, unless the plan was 
modified by the Administrator during the review process. In this case, 
the modified plan applies.
    (d) The owner or operator of each source that is equipped with a 
closed vent system and a flare to meet the requirements in Sec. 60.112b 
(a)(3) or (b)(2) shall meet the requirements as specified in the general 
control device requirements, Sec. 60.18 (e) and (f).
[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989]



Sec. 60.114b  Alternative means of emission limitation.

    (a) If, in the Administrator's judgment, an alternative means of 
emission limitation will achieve a reduction in emissions at least 
equivalent to the reduction in emissions achieved by any requirement in 
Sec. 60.112b, the Administrator will publish in the Federal Register a 
notice permitting the use of the alternative means for purposes of 
compliance with that requirement.
    (b) Any notice under paragraph (a) of this section will be published 
only after notice and an opportunity for a hearing.
    (c) Any person seeking permission under this section shall submit to 
the Administrator a written application including:
    (1) An actual emissions test that uses a full-sized or scale-model 
storage vessel that accurately collects and measures all VOC emissions 
from a given control device and that accurately simulates wind and 
accounts for other emission variables such as temperature and barometric 
pressure.
    (2) An engineering evaluation that the Administrator determines is 
an accurate method of determining equivalence.
    (d) The Administrator may condition the permission on requirements 
that may be necessary to ensure operation and maintenance to achieve the 
same emissions reduction as specified in Sec. 60.112b.



Sec. 60.115b  Reporting and recordkeeping requirements.

    The owner or operator of each storage vessel as specified in 
Sec. 60.112b(a) shall keep records and furnish reports as required by 
paragraphs (a), (b), or (c) of this section depending upon the control 
equipment installed to meet the requirements of Sec. 60.112b. The owner 
or

[[Page 221]]

operator shall keep copies of all reports and records required by this 
section, except for the record required by (c)(1), for at least 2 years. 
The record required by (c)(1) will be kept for the life of the control 
equipment.
    (a) After installing control equipment in accordance with 
Sec. 60.112b(a)(1) (fixed roof and internal floating roof), the owner or 
operator shall meet the following requirements.
    (1) Furnish the Administrator with a report that describes the 
control equipment and certifies that the control equipment meets the 
specifications of Sec. 60.112b(a)(1) and Sec. 60.113b(a)(1). This report 
shall be an attachment to the notification required by Sec. 60.7(a)(3).
    (2) Keep a record of each inspection performed as required by 
Sec. 60.113b (a)(1), (a)(2), (a)(3), and (a)(4). Each record shall 
identify the storage vessel on which the inspection was performed and 
shall contain the date the vessel was inspected and the observed 
condition of each component of the control equipment (seals, internal 
floating roof, and fittings).
    (3) If any of the conditions described in Sec. 60.113b(a)(2) are 
detected during the annual visual inspection required by 
Sec. 60.113b(a)(2), a report shall be furnished to the Administrator 
within 30 days of the inspection. Each report shall identify the storage 
vessel, the nature of the defects, and the date the storage vessel was 
emptied or the nature of and date the repair was made.
    (4) After each inspection required by Sec. 60.113b(a)(3) that finds 
holes or tears in the seal or seal fabric, or defects in the internal 
floating roof, or other control equipment defects listed in 
Sec. 60.113b(a)(3)(ii), a report shall be furnished to the Administrator 
within 30 days of the inspection. The report shall identify the storage 
vessel and the reason it did not meet the specifications of 
Sec. 61.112b(a)(1) or Sec. 60.113b(a)(3) and list each repair made.
    (b) After installing control equipment in accordance with 
Sec. 61.112b(a)(2) (external floating roof), the owner or operator shall 
meet the following requirements.
    (1) Furnish the Administrator with a report that describes the 
control equipment and certifies that the control equipment meets the 
specifications of Sec. 60.112b(a)(2) and Sec. 60.113b(b)(2), (b)(3), and 
(b)(4). This report shall be an attachment to the notification required 
by Sec. 60.7(a)(3).
    (2) Within 60 days of performing the seal gap measurements required 
by Sec. 60.113b(b)(1), furnish the Administrator with a report that 
contains:
    (i) The date of measurement.
    (ii) The raw data obtained in the measurement.
    (iii) The calculations described in Sec. 60.113b (b)(2) and (b)(3).
    (3) Keep a record of each gap measurement performed as required by 
Sec. 60.113b(b). Each record shall identify the storage vessel in which 
the measurement was performed and shall contain:
    (i) The date of measurement.
    (ii) The raw data obtained in the measurement.
    (iii) The calculations described in Sec. 60.113b (b)(2) and (b)(3).
    (4) After each seal gap measurement that detects gaps exceeding the 
limitations specified by Sec. 60.113b(b)(4), submit a report to the 
Administrator within 30 days of the inspection. The report will identify 
the vessel and contain the information specified in paragraph (b)(2) of 
this section and the date the vessel was emptied or the repairs made and 
date of repair.
    (c) After installing control equipment in accordance with 
Sec. 60.112b (a)(3) or (b)(1) (closed vent system and control device 
other than a flare), the owner or operator shall keep the following 
records.
    (1) A copy of the operating plan.
    (2) A record of the measured values of the parameters monitored in 
accordance with Sec. 60.113b(c)(2).
    (d) After installing a closed vent system and flare to comply with 
Sec. 60.112b, the owner or operator shall meet the following 
requirements.
    (1) A report containing the measurements required by Sec. 60.18(f) 
(1), (2), (3), (4), (5), and (6) shall be furnished to the Administrator 
as required by Sec. 60.8 of the General Provisions. This report shall be 
submitted within 6 months of the initial start-up date.
    (2) Records shall be kept of all periods of operation during which 
the flare pilot flame is absent.

[[Page 222]]

    (3) Semiannual reports of all periods recorded under 
Sec. 60.115b(d)(2) in which the pilot flame was absent shall be 
furnished to the Administrator.



Sec. 60.116b  Monitoring of operations.

    (a) The owner or operator shall keep copies of all records required 
by this section, except for the record required by paragraph (b) of this 
section, for at least 2 years. The record required by paragraph (b) of 
this section will be kept for the life of the source.
    (b) The owner or operator of each storage vessel as specified in 
Sec. 60.110b(a) shall keep readily accessible records showing the 
dimension of the storage vessel and an analysis showing the capacity of 
the storage vessel. Each storage vessel with a design capacity less than 
75 m3 is subject to no provision of this subpart other than 
those required by this paragraph.
    (c) Except as provided in paragraphs (f) and (g) of this section, 
the owner or operator of each storage vessel either with a design 
capacity greater than or equal to 151 m3 storing a liquid 
with a maximum true vapor pressure greater than or equal to 3.5 kPa or 
with a design capacity greater than or equal to 75 m3 but 
less than 151 m3 storing a liquid with a maximum true vapor 
pressure greater than or equal to 15.0 kPa shall maintain a record of 
the VOL stored, the period of storage, and the maximum true vapor 
pressure of that VOL during the respective storage period.
    (d) Except as provided in paragraph (g) of this section, the owner 
or operator of each storage vessel either with a design capacity greater 
than or equal to 151 m3 storing a liquid with a maximum true 
vapor pressure that is normally less than 5.2 kPa or with a design 
capacity greater than or equal to 75 m3 but less than 151 
m3 storing a liquid with a maximum true vapor pressure that 
is normally less than 27.6 kPa shall notify the Administrator within 30 
days when the maximum true vapor pressure of the liquid exceeds the 
respective maximum true vapor vapor pressure values for each volume 
range.
    (e) Available data on the storage temperature may be used to 
determine the maximum true vapor pressure as determined below.
    (1) For vessels operated above or below ambient temperatures, the 
maximum true vapor pressure is calculated based upon the highest 
expected calendar-month average of the storage temperature. For vessels 
operated at ambient temperatures, the maximum true vapor pressure is 
calculated based upon the maximum local monthly average ambient 
temperature as reported by the National Weather Service.
    (2) For crude oil or refined petroleum products the vapor pressure 
may be obtained by the following:
    (i) Available data on the Reid vapor pressure and the maximum 
expected storage temperature based on the highest expected calendar-
month average temperature of the stored product may be used to determine 
the maximum true vapor pressure from nomographs contained in API 
Bulletin 2517 (incorporated by reference--see Sec. 60.17), unless the 
Administrator specifically requests that the liquid be sampled, the 
actual storage temperature determined, and the Reid vapor pressure 
determined from the sample(s).
    (ii) The true vapor pressure of each type of crude oil with a Reid 
vapor pressure less than 13.8 kPa or with physical properties that 
preclude determination by the recommended method is to be determined 
from available data and recorded if the estimated maximum true vapor 
pressure is greater than 3.5 kPa.
    (3) For other liquids, the vapor pressure:
    (i) May be obtained from standard reference texts, or
    (ii) Determined by ASTM Method D2879-83 (incorporated by reference--
see Sec. 60.17); or
    (iii) Measured by an appropriate method approved by the 
Administrator; or
    (iv) Calculated by an appropriate method approved by the 
Administrator.
    (f) The owner or operator of each vessel storing a waste mixture of 
indeterminate or variable composition shall be subject to the following 
requirements.
    (1) Prior to the initial filling of the vessel, the highest maximum 
true vapor pressure for the range of anticipated liquid compositions to 
be stored

[[Page 223]]

will be determined using the methods described in paragraph (e) of this 
section.
    (2) For vessels in which the vapor pressure of the anticipated 
liquid composition is above the cutoff for monitoring but below the 
cutoff for controls as defined in Sec. 60.112b(a), an initial physical 
test of the vapor pressure is required; and a physical test at least 
once every 6 months thereafter is required as determined by the 
following methods:
    (i) ASTM Method D2879-83 (incorporated by reference--see 
Sec. 60.17); or
    (ii) ASTM Method D323-82 (incorporated by reference--see 
Sec. 60.17); or
    (iii) As measured by an appropriate method as approved by the 
Administrator.
    (g) The owner or operator of each vessel equipped with a closed vent 
system and control device meeting the specifications of Sec. 60.112b is 
exempt from the requirements of paragraphs (c) and (d) of this section.



Sec. 60.117b  Delegation of authority.

    (a) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Act, the authorities contained in 
paragraph (b) of this section shall be retained by the Administrator and 
not transferred to a State.
    (b) Authorities which will not be delegated to States: 
Secs. 60.111b(f)(4), 60.114b, 60.116b(e)(3)(iii), 60.116b(e)(3)(iv), and 
60.116b(f)(2)(iii).
[52 FR 11429, Apr. 8, 1987, as amended at 52 FR 22780, June 16, 1987]



     Subpart L--Standards of Performance for Secondary Lead Smelters



Sec. 60.120  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in secondary lead smelters: Pot furnaces of more 
than 250 kg (550 lb) charging capacity, blast (cupola) furnaces, and 
reverberatory furnaces.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after June 11, 1973, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977]



Sec. 60.121  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Reverberatory furnace includes the following types of 
reverberatory furnaces: stationary, rotating, rocking, and tilting.
    (b) Secondary lead smelter means any facility producing lead from a 
leadbearing scrap material by smelting to the metallic form.
    (c) Lead means elemental lead or alloys in which the predominant 
component is lead.
[39 FR 9317, Mar. 8, 1974; 39 FR 13776, Apr. 17, 1974]



Sec. 60.122  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall discharge or cause the discharge 
into the atmosphere from a blast (cupola) or reverberatory furnace any 
gases which:
    (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/
dscf).
    (2) Exhibit 20 percent opacity or greater.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall discharge or cause the discharge 
into the atmosphere from any pot furnace any gases which exhibit 10 
percent opacity or greater.
[39 FR 9317, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]



Sec. 60.123  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in Appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).

[[Page 224]]

    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.122 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration during representative periods of furnace operation, 
including charging and tapping. The sampling time and sample volume for 
each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf).
    (2) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6667, Feb. 14, 1989]



   Subpart M--Standards of Performance for Secondary Brass and Bronze 
                            Production Plants



Sec. 60.130  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in secondary brass or bronze production plants: 
Reverberatory and electric furnaces of 1,000 kg (2205 lb) or greater 
production capacity and blast (cupola) furnaces of 250 kg/h (550 lb/h) 
or greater production capacity. Furnaces from which molten brass or 
bronze are cast into the shape of finished products, such as foundry 
furnaces, are not considered to be affected facilities.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after June 11, 1973, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977, as amended at 49 FR 43618, Oct. 30, 1984]



Sec. 60.131  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Brass or bronze means any metal alloy containing copper as its 
predominant constituent, and lesser amounts of zinc, tin, lead, or other 
metals.
    (b) Reverberatory furnace includes the following types of 
reverberatory furnaces: Stationary, rotating, rocking, and tilting.
    (c) Electric furnace means any furnace which uses electricity to 
produce over 50 percent of the heat required in the production of 
refined brass or bronze.
    (d) Blast furnace means any furnace used to recover metal from slag.
[39 FR 9318, Mar. 8, 1974]



Sec. 60.132  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall discharge or cause the discharge 
into the atmosphere from a reverberatory furnace any gases which:
    (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/
dscf).
    (2) Exhibit 20 percent opacity or greater.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall discharge or cause the discharge 
into the atmosphere from any blast (cupola) or electric furnace any 
gases which exhibit 10 percent opacity or greater.
[39 FR 9318, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]



Sec. 60.133  Test methods and procedures.

    (a) In conducting performance tests required in Sec. 60.8, the owner 
or operator shall use as reference methods and procedures the test 
methods in Appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.132 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration during representative periods of charging and refining, 
but not during pouring of the heat. The sampling time and sample volume 
for each run shall be at least 120 minutes and 1.80 dscm (63.6 dscf).
    (2) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6667, Feb. 14, 1989]

[[Page 225]]



  Subpart N--Standards of Performance for Primary Emissions from Basic 
 Oxygen Process Furnaces for Which Construction is Commenced After June 
                                11, 1973



Sec. 60.140  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each basic oxygen process furnace.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after June 11, 1973, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977]



Sec. 60.141  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Basic oxygen process furnace (BOPF) means any furnace with a 
refractory lining in which molten steel is produced by charging scrap 
metal, molten iron, and flux materials or alloy additions into a vessel 
and introducing a high volume of oxygen-rich gas. Open hearth, blast, 
and reverberatory furnaces are not included in this definition.
    (b) Primary emissions means particulate matter emissions from the 
BOPF generated during the steel production cycle and captured by the 
BOPF primary control system.
    (c) Primary oxygen blow means the period in the steel production 
cycle of a BOPF during which a high volume of oxygen-rich gas is 
introduced to the bath of molten iron by means of a lance inserted from 
the top of the vessel or through tuyeres in the bottom or through the 
bottom and sides of the vessel. This definition does not include any 
additional or secondary oxygen blows made after the primary blow or the 
introduction of nitrogen or other inert gas through tuyeres in the 
bottom or bottom and sides of the vessel.
    (d) Steel production cycle means the operations conducted within the 
BOPF steelmaking facility that are required to produce each batch of 
steel and includes the following operations: scrap charging, preheating 
(when used), hot metal charging, primary oxygen blowing, sampling 
(vessel turndown and turnup), additional oxygen blowing (when used), 
tapping, and deslagging. This definition applies to an affected facility 
constructed, modified, or reconstructed after January 20, 1983. For an 
affected facility constructed, modified, or reconstructed after June 11, 
1973, but on or before January 20, 1983, steel production cycle means 
the operations conducted within the BOPF steelmaking facility that are 
required to produce each batch of steel and includes the following 
operations: scrap charging, preheating (when used), hot metal charging, 
primary oxygen blowing, sampling (vessel turndown and turnup), 
additional oxygen blowing (when used), and tapping.
[39 FR 9318, Mar. 8, 1974, as amended at 51 FR 160, Jan. 2, 1986]



Sec. 60.142  Standard for particulate matter.

    (a) Except as provided under paragraph (b) of this section, on and 
after the date on which the performance test required to be conducted by 
Sec. 60.8 is completed, no owner or operator subject to the provisions 
of this subpart shall discharge or cause the discharge into the 
atmosphere from any affected facility any gases which:
    (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/
dscf).
    (2) Exit from a control device and exhibit 10 percent opacity or 
greater, except that an opacity of greater than 10 percent but less than 
20 percent may occur once per steel production cycle.
    (b) For affected facilities constructed, modified, or reconstructed 
after January 20, 1983, the following limits shall apply:
    (1) On or after the date on which the performance test under 
Sec. 60.8 is required to be completed, no owner or operator of an 
affected facility for which open hooding is the method for controlling 
primary emissions shall cause to be discharged to the atmosphere any 
gases that:
    (i) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/
dscf), as measured for the primary oxygen blow.

[[Page 226]]

    (ii) Exit from a control device not used solely for the collection 
of secondary emissions, as defined in Sec. 60.141a, and exhibit 10 
percent opacity or greater, except that an opacity greater than 10 
percent but less than 20 percent may occur once per steel production 
cycle.
    (2) On or after the date on which the performance test required by 
Sec. 60.8 is completed, no owner or operator of an affected facility for 
which closed hooding is the method for controlling primary emissions 
shall cause to be discharged into the atmosphere any gases that:
    (i) Contain particulate matter in excess of 68 mg/dscm (0.030 gr/
dscf), as measured for the primary oxygen blow.
    (ii) Exit from a control device not used solely for the collection 
of secondary emissions, as defined in Sec. 60.141a, and exhibit 10 
percent opacity or greater, except that an opacity greater than 10 
percent but less than 20 percent may occur once per steel production 
cycle.
    (c) On and after the date on which the performance test required by 
Sec. 60.8 is completed, each owner or operator of an affected facility 
subject to paragraph (b) of this section shall operate the primary gas 
cleaning system during any reblow in a manner identical to operation 
during the primary oxygen blow.
[39 FR 9318, Mar. 8, 1974, as amended at 43 FR 15602, Apr. 13, 1978; 51 
FR 161, Jan. 2, 1986]



Sec. 60.143  Monitoring of operations.

    (a) The owner or operator of an affected facility shall maintain a 
single time-measuring instrument which shall be used in recording daily 
the time and duration of each steel production cycle, and the time and 
duration of any diversion of exhaust gases from the main stack servicing 
the BOPF.
    (b) The owner or operator of any affected facility that uses venturi 
scrubber emission control equipment shall install, calibrate, maintain, 
and continuously operate monitoring devices as follows:
    (1) A monitoring device for the continuous measurement of the 
pressure loss through the venturi constriction of the control equipment. 
The monitoring device is to be certified by the manufacturer to be 
accurate within plus-minus250 Pa (plus-minus1 inch 
water).
    (2) A monitoring device for the continual measurement of the water 
supply pressure to the control equipment. The monitoring device is to be 
certified by the manufacturer to be accurate within 5 
percent of the design water supply pressure. The monitoring device's 
pressure sensor or pressure tap must be located close to the water 
discharge point. The Administrator must be consulted for approval in 
advance of selecting alternative locations for the pressure sensor or 
tap.
    (3) All monitoring devices shall be synchronized each day with the 
time-measuring instrument used under paragraph (a) of this section. The 
chart recorder error directly after synchronization shall not exceed 
0.08 cm (\1/32\ inch).
    (4) All monitoring devices shall use chart recorders which are 
operated at a minimum chart speed of 3.8 cm/hr (1.5 in/hr).
    (5) All monitoring devices are to be recalibrated annually, and at 
other times as the Administrator may require, in accordance with the 
procedures under Sec. 60.13(b).
    (c) Any owner or operator subject to the requirements of paragraph 
(b) of this section shall report to the Administrator, on a semiannual 
basis, all measurements over any 3-hour period that average more than 10 
percent below the average levels maintained during the most recent 
performance test conducted under Sec. 60.8 in which the affected 
facility demonstrated compliance with the mass standards under 
Sec. 60.142(a)(1), (b)(1)(i) or (b)(2)(i). The accuracy of the 
respective measurements, not to exceed the values specified in 
paragraphs (b)(1) and (b)(2) of this section, may be taken into 
consideration when determining the measurement results that must be 
reported.
[43 FR 15602, Apr. 13, 1978, as amended at 51 FR 161, Jan. 2, 1986; 54 
FR 6667, Feb. 14, 1989]



Sec. 60.144  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in Appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).

[[Page 227]]

    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.142 as follows:
    (1) The time-measuring instrument of Sec. 60.143 shall be used to 
document the time and duration of each steel production cycle and each 
diversion period during each run.
    (2) Method 5 shall be used to determine the particulate matter 
concentration. The sampling time and sample volume for each run shall be 
at least 60 minutes and 1.50 dscm (53 dscf). Sampling shall be 
discontinued during periods of diversions.
    (i) For affected facilities that commenced construction, 
modification, or reconstruction on or before January 20, 1983, the 
sampling for each run shall continue for an integral number of steel 
production cycles. A cycle shall start at the beginning of either the 
scrap preheat or the oxygen blow and shall terminate immediately before 
tapping.
    (ii) For affected facilities that commenced construction, 
modification, or reconstruction after January 20, 1983, the sampling for 
each run shall continue for an integral number of primary oxygen blows.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity. Observations taken during a diversion period shall 
not be used in determining compliance with the opacity standard. Opacity 
observations taken at 15-second intervals immediately before and after a 
diversion of exhaust gases from the stack may be considered to be 
consecutive for the purpose of computing an average opacity for a 6-
minute period.
    (c) To comply with Sec. 60.143(c), the owner or operator shall use 
the monitoring devices of Sec. 60.143(b) (1) and (2) during the 
particulate runs to determine the 3-hour averages of the required 
measurements.
[54 FR 6667, Feb. 14, 1989]



Subpart Na--Standards of Performance for Secondary Emissions from Basic 
    Oxygen Process Steelmaking Facilities for Which Construction is 
                    Commenced After January 20, 1983

    Source: 51 FR 161, Jan. 2, 1986, unless otherwise noted.



Sec. 60.140a  Applicability and designation of affected facilities.

    (a) The provisions of this subpart apply to the following affected 
facilities in an iron and steel plant: top-blown BOPF's and hot metal 
transfer stations and skimming stations used with bottom-blown or top-
blown BOPF's.
    (b) This subpart applies to any facility identified in paragraph (a) 
of this section that commences construction, modification, or 
reconstruction after January 20, 1983.
    (c) Any BOPF subject to the provisions of this subpart is subject to 
those provisions of subpart N of this part applicable to affected 
facilities commencing construction, modification or reconstruction after 
January 20, 1983.



Sec. 60.141a  Definitions.

    All terms in this subpart not defined below are given the same 
meaning as in the Clean Air Act as amended or in subpart A of this part.
    Basic oxygen process furnace (BOPF) means any furnace with a 
refractory lining in which molten steel is produced by charging scrap 
metal, molten iron, and flux materials or alloy additions into a vessel 
and by introducing a high volume of oxygen-rich gas. Open hearth, blast, 
and reverberatory furnaces are not included in this definition.
    Bottom-blown furnace means any BOPF in which oxygen and other 
combustion gases are introduced to the bath of molten iron through 
tuyeres in the bottom of the vessel or through

[[Page 228]]

tuyeres in the bottom and sides of the vessel.
    Fume suppression system means the equipment comprising any system 
used to inhibit the generation of emissions from steelmaking facilities 
with an inert gas, flame, or steam blanket applied to the surface of 
molten iron or steel.
    Hot metal transfer station means the facility where molten iron is 
emptied from the railroad torpedo car or hot metal car to the shop 
ladle. This includes the transfer of molten iron from the torpedo car or 
hot metal car to a mixer (or other intermediate vessel) and from a mixer 
(or other intermediate vessel) to the ladle. This facility is also known 
as the reladling station or ladle transfer station.
    Primary emission control system means the combination of equipment 
used for the capture and collection of primary emissions (e.g., an open 
hood capture system used in conjunction with a particulate matter 
cleaning device such as an electrostatic precipitator or a closed hood 
capture system used in conjunction with a particulate matter cleaning 
device such as a scrubber).
    Primary emissions means particulate matter emissions from the BOPF 
generated during the steel production cycle which are captured by, and 
do not thereafter escape from, the BOPF primary control system.
    Primary oxygen blow means the period in the steel production cycle 
of a BOPF during which a high volume of oxygen-rich gas is introduced to 
the bath of molten iron by means of a lance inserted from the top of the 
vessel. This definition does not include any additional, or secondary, 
oxygen blows made after the primary blow.
    Secondary emission control system means the combination of equipment 
used for the capture and collection of secondary emissions (e.g.,
    (1) An open hood system for the capture and collection of primary 
and secondary emissions from the BOPF, with local hooding ducted to a 
secondary emission collection device such as a baghouse for the capture 
and collection of emissions from the hot metal transfer and skimming 
station; or
    (2) An open hood system for the capture and collection of primary 
and secondary emissions from the furnace, plus a furnace enclosure with 
local hooding ducted to a secondary emission collection device, such as 
a baghouse, for additional capture and collection of secondary emissions 
from the furnace, with local hooding ducted to a secondary emission 
collection device, such as a baghouse, for the capture and collection of 
emissions from hot metal transfer and skimming station; or
    (3) A furnace enclosure with local hooding ducted to a secondary 
emission collection device such as a baghouse for the capture and 
collection of secondary emissions from a BOPF controlled by a closed 
hood primary emission control system, with local hooding ducted to a 
secondary emission collection device, such as a baghouse, for the 
capture and collection of emissions from hot metal transfer and skimming 
stations).
    Secondary emissions means particulate matter emissions that are not 
captured by the BOPF primary control system, including emissions from 
hot metal transfer and skimming stations. This definition also includes 
particulate matter emissions that escape from openings in the primary 
emission control system, such as from lance hole openings, gaps or tears 
in the ductwork of the primary emission control system, or leaks in 
hoods.
    Skimming station means the facility where slag is mechanically raked 
from the top of the bath of molten iron.
    Steel production cycle means the operations conducted within the 
BOPF steelmaking facility that are required to produce each batch of 
steel, including the following operations: scrap charging, preheating 
(when used), hot metal charging, primary oxygen blowing, sampling 
(vessel turndown and turnup), additional oxygen blowing (when used), 
tapping, and deslagging. Hot metal transfer and skimming operations for 
the next steel production cycle are also included when the hot metal 
transfer station or skimming station is an affected facility.
    Top-blown furnace means any BOPF in which oxygen is introduced to 
the bath of molten iron by means of an oxygen lance inserted from the 
top of the vessel.

[[Page 229]]



Sec. 60.142a  Standards for particulate matter.

    (a) Except as provided under paragraphs (b) and (c) of this section, 
on and after the date on which the performance test under Sec. 60.8 is 
required to be completed, no owner or operator subject to the provisions 
of this subpart shall cause to be discharged into the atmosphere from 
any affected facility any secondary emissions that:
    (1) Exit from the BOPF shop roof monitor (or other building 
openings) and exhibit greater than 10 percent opacity during the steel 
production cycle of any top-blown BOPF or during hot metal transfer or 
skimming operations for any bottom-blown BOPF; except that an opacity 
greater than 10 percent but less than 20 percent may occur once per 
steel production cycle.
    (2) Exit from a control device used solely for the collection of 
secondary emissions from a top-blown BOPF or from hot metal transfer or 
skimming for a top-blown or a bottom-blown BOPF and contain particulate 
matter in excess of 23 mg/dscm (0.010 gr/dscf).
    (3) Exit from a control device used solely for the collecton of 
secondary emissions from a top-blown BOPF or from hot metal transfer or 
skimming for a top-blown or a bottom-blown BOPF and exhibit more than 5 
percent opacity.
    (b) A fume suppression system used to control secondary emissions 
from an affected facility is not subject to paragraphs (a)(2) and (a)(3) 
of this section.
    (c) A control device used to collect both primary and secondary 
emissions from a BOPF is not subject to paragraphs (a)(2) and (a)(3) of 
this section.



Sec. 60.143a  Monitoring of operations.

    (a) Each owner or operator of an affected facility shall install, 
calibrate, operate, and maintain a monitoring device that continually 
measures and records for each steel production cycle the various rates 
or levels of exhaust ventilation at each phase of the cycle through each 
duct of the secondary emission capture system. The monitoring device or 
devices are to be placed at locations near each capture point of the 
secondary emission capture system to monitor the exhaust ventilation 
rates or levels adequately, or in alternative locations approved in 
advance by the Administrator.
    (b) If a chart recorder is used, the owner or operator shall use 
chart recorders that are operated at a minimum chart speed of 3.8 cm/hr 
(1.5 in./hr).
    (c) All monitoring devices are to be certified by the manufacturer 
to be accurate to within 10 percent compared to EPA 
Reference Method 2. The owner or operator shall recalibrate and check 
the device(s) annually and at other times as the Administrator may 
require, in accordance with the written instructions of the manufacturer 
and by comparing the device against EPA Reference Method 2.
    (d) Each owner or operator subject to the requirements of paragraph 
(a) of this section shall report on a semiannual basis all measurements 
of exhaust ventilation rates or levels over any 3-hour period that 
average more than 10 percent below the average rates or levels of 
exhaust ventilation maintained during the most recent performance test 
conducted under Sec. 60.8 in which the affected facility demonstrated 
compliance with the standard under Sec. 60.142a(a)(2). The accuracy of 
the respective measurements, not to exceed the values specified in 
paragraph (c) of this section, may be considered when determining the 
measurement results that must be reported.
    (e) If a scrubber primary emission control device is used to collect 
secondary emissions, the owner or operator shall report on a semiannual 
basis all measurements of exhaust ventilation rate over any 3-hour 
period that average more than 10 percent below the average levels 
maintained during the most recent performance test conducted under 
Sec. 60.8 in which the affected facility demonstrated compliance with 
the standard under Sec. 60.142(a)(1).



Sec. 60.144a  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in Appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).

[[Page 230]]

    (b) The owner or operator shall determine compliance with the 
particulate matter standards in Sec. 60.142a as follows:
    (1) Start and end times of each steel production cycle during each 
run shall be recorded (see Sec. 60.145a (c) and (d) for the definitions 
of start and end times of a cycle).
    (2) Method 5 shall be used to determine the particulate matter 
concentration. Sampling shall be conducted only during the steel 
production cycle and for a sufficient number of steel production cycles 
to obtain a total sample volume of at least 5.67 dscm (200 dscf) for 
each run.
    (3) Method 9 and the procedures of Sec. 60.11 shall be used to 
determine opacity, except sections 2.4 and 2.5 of Method 9 shall be 
replaced with the following instructions for recording observations and 
reducing data:
    (i) Section 2.4. Opacity observations shall be recorded to the 
nearest 5 percent at 15-second intervals. During the initial performance 
test conducted pursuant to Sec. 60.8, observations shall be made and 
recorded in this manner for a minimum of three steel production cycles. 
During any subsequent compliance test, observations may be made for any 
number of steel production cycles, although, where conditions permit, 
observations will generally be made for a minimum of three steel 
production cycles.
    (ii) Section 2.5. Opacity shall be determined as an average of 12 
consecutive observations recorded at 15-second intervals. For each steel 
production cycle, divide the observations recorded into sets of 12 
consecutive observations. Sets need not be consecutive in time, and in 
no case shall two sets overlap. For each set of 12 observations, 
calculate the average by summing the opacity of 12 consecutive 
observations and dividing this sum by 12.
    (c) In complying with the requirements of Sec. 60.143a(c), the owner 
or operator shall conduct an initial test as follows:
    (1) For devices that monitor and record the exhaust ventilation 
rate, compare velocity readings recorded by the monitoring device 
against the velocity readings obtained by Method 2. Take Method 2 
readings at a point or points that would properly characterize the 
monitoring device's performance and that would adequately reflect the 
various rates of exhaust ventilation. Obtain readings at sufficient 
intervals to obtain 12 pairs of readings for each duct of the secondary 
emission capture system. Compare the averages of the two sets to 
determine whether the monitoring device velocity is within 
10 percent of the Method 2 average.
    (2) For devices that monitor the level of exhaust ventilation and 
record only step changes when a set point rate is reached, compare step 
changes recorded by the monitoring device against the velocity readings 
obtained by Method 2. Take Method 2 readings at a point or points that 
would properly characterize the performance of the monitoring device and 
that would adequately reflect the various rates of exhaust ventilation. 
Obtain readings at sufficient intervals to obtain 12 pairs of readings 
for each duct of the secondary emission capture system. Compare the 
averages of the two sets to determine whether the monitoring device step 
change is within 10 percent of the setpoint rate.
    (d) To comply with Sec. 60.143a (d) or (e), the owner or operator 
shall use the monitoring device of Sec. 60.143a(a) to determine the 
exhaust ventilation rates or levels during the particulate matter runs 
and to determine a 3-hour average.
[51 FR 161, Jan. 2, 1986, as amended at 54 FR 6667, Feb. 14, 1989]



Sec. 60.145a  Compliance provisions.

    (a) When determining compliance with mass and visible emission 
limits specified in Sec. 60.142a(a) (2) and (3), the owner or operator 
of a BOPF shop that normally operates two furnaces with overlapping 
cycles may elect to operate only one furnace. If an owner or operator 
chooses to shut down one furnace, he shall be allowed a reasonable time 
period to adjust his production schedule before the compliance tests are 
conducted. The owner or operator of an affected facility may also elect 
to suspend shop operations not subject to this subpart during compliance 
testing.
    (b) During compliance testing for mass and visible emission 
standards, if an owner or operator elects to shut

[[Page 231]]

down one furnace in a shop that normally operates two furnaces with 
overlapping cycles, the owner or operator shall operate the secondary 
emission control system for the furnace being tested at exhaust 
ventilation rates or levels for each duct of the secondary emission 
control system that are appropriate for single-furnace operation. 
Following the compliance test, the owner or operator shall operate the 
secondary emission control system at exhaust ventilation rates or levels 
for each duct of the system that are no lower than 90 percent of the 
exhaust ventilation values established during the most recent compliance 
test.
    (c) For the purpose of determining compliance with visible and mass 
emission standards, a steel production cycle begins when the scrap or 
hot metal is charged to the vessel (whichever operation occurs first) 
and terminates 3 minutes after slag is emptied from the vessel into the 
slag pot. Consecutive steel production cycles are not required for the 
purpose of determining compliance. Where a hot metal transfer or 
skimming station is an affected facility, the steel production cycle 
also includes the hot metal transfer or skimming operation for the next 
steel production cycle for the affected vessel. Visible emission 
observations for both hot metal transfer and skimming operations begin 
with the start of the operation and terminate 3 minutes after completion 
of the operation.
    (d) For the purpose of determining compliance with visible emission 
standards specified in Sec. 60.142a(a) (1) and (3), the starting and 
stopping times of regulated process operations shall be determined and 
the starting and stopping times of visible emissions data sets shall be 
determined accordingly.
    (e) To determine compliance with Sec. 60.142a(a)(1), select the data 
sets yielding the highest and second highest 3-minute average opacities 
for each steel production cycle. Compliance is achieved if the highest 
3-minute average for each cycle observed is less than 20 percent and the 
second highest 3-minute average is 10 percent or less.
    (f) To determine compliance with Sec. 60.142(a)(2), determine the 
concentration of particulate matter in exhaust gases exiting the 
secondary emission collection device with Reference Method 5. Compliance 
is achieved if the concentration of particulate matter does not exceed 
23 mg/dscm (0.010 gr/dscf).
    (g) To determine compliance with Sec. 60.142a(a)(3), construct 
consecutive 3-minute averages for each steel production cycle. 
Compliance is achieved if no 3-minute average is more than 5 percent.



     Subpart O--Standards of Performance for Sewage Treatment Plants



Sec. 60.150  Applicability and designation of affected facility.

    (a) The affected facility is each incinerator that combusts wastes 
containing more than 10 percent sewage sludge (dry basis) produced by 
municipal sewage treatment plants, or each incinerator that charges more 
than 1000 kg (2205 lb) per day municipal sewage sludge (dry basis).
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after June 11, 1973, is subject to the 
requirements of this subpart.
[42 FR 58521, Nov. 10, 1977]



Sec. 60.151  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
[39 FR 9319, Mar. 8, 1974]



Sec. 60.152  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator of any 
sewage sludge incinerator subject to the provisions of this subpart 
shall discharge or cause the discharge into the atmosphere of:
    (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge 
input (1.30 lb/ton dry sludge input).
    (2) Any gases which exhibit 20 percent opacity or greater.
[39 FR 9319, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]

[[Page 232]]



Sec. 60.153  Monitoring of operations.

    (a) The owner or operator of any sludge incinerator subject to the 
provisions of this subpart shall:
    (1) Install, calibrate, maintain, and operate a flow measuring 
device which can be used to determine either the mass or volume of 
sludge charged to the incinerator. The flow measuring device shall be 
certified by the manufacturer to have an accuracy of 5 
percent over its operating range. Except as provided in paragraph (d) of 
this section, the flow measuring device shall be operated continuously 
and data recorded during all periods of operation of the incinerator.
    (2) Provide access to the sludge charged so that a well-mixed 
representative grab sample of the sludge can be obtained.
    (3) Install, calibrate, maintain, and operate a weighing device for 
determining the mass of any municipal solid waste charged to the 
incinerator when sewage sludge and municipal solid waste are incinerated 
together. The weighing device shall have an accuracy of 
plus-minus5 percent over its operating range.
    (b) The owner or operator of any multiple hearth, fluidized bed, or 
electric sludge incinerator subject to the provisions of this subpart 
shall comply with the requirements of paragraph (a) of this section and:
    (1) For incinerators equipped with a wet scrubbing device, install, 
calibrate, maintain and operate a monitoring device that continuously 
measures and records the pressure drop of the gas flow through the wet 
scrubbing device. Where a combination of wet scrubbers is used in 
series, the pressure drop of the gas flow through the combined system 
shall be continuously monitored. The device used to monitor scrubber 
pressure drop shall be certified by the manufacturer to be accurate 
within 250 pascals (1 inch water gauge) and 
shall be calibrated on an annual basis in accordance with the 
manufacturer's instructions.
    (2) Install, calibrate, maintain and operate a monitoring device 
that continuously measures and records the oxygen content of the 
incinerator exhaust gas. The oxygen monitor shall be located upstream of 
any rabble shaft cooling air inlet into the incinerator exhaust gas 
stream, fan, ambient air recirculation damper, or any other source of 
dilution air. The oxygen monitoring device shall be certified by the 
manufacturer to have a relative accurancy of 5 percent over 
its operating range and shall be calibrated according to method(s) 
prescribed by the manufacturer at least once each 24-hour operating 
period.
    (3) Install, calibrate, maintain and operate temperature measuring 
devices at every hearth in multiple hearth furnaces; in the bed and 
outlet of fluidized bed incinerators; and in the drying, combustion, and 
cooling zones of electric incinerators. For multiple hearth furnaces, a 
minimum of one thermocouple shall be installed in each hearth in the 
cooling and drying zones, and a minimum of two thermocouples shall be 
installed in each hearth in the combustion zone. For electric 
incinerators, a minimum of one thermocouple shall be installed in the 
drying zone and one in the cooling zone, and a minimum of two 
thermocouples shall be installed in the combustion zone. Each 
temperature measuring device shall be certified by the manufacturer to 
have an accuracy of 5 percent over its operating range. 
Except as provided in paragraph (d) of this section, the temperature 
monitoring devices shall be operated continuously and data recorded 
during all periods of operation of the incinerator.
    (4) Install, calibrate, maintain and operate a device for measuring 
the fuel flow to the incinerator. The flow measuring device shall be 
certified by the manufacturer to have an accuracy of 5 
percent over its operating range. Except as provided in paragraph (d) of 
the section, the fuel flow measuring device shall be operated 
continuously and data recorded during all periods of operation of the 
incinerator.
    (5) Except as provided in paragraph (d) of this section, collect and 
analyze a grab sample of the sludge fed to the incinerator once per day. 
The dry sludge content and the volatile solids content of the sample 
shall be determined in accordance with the method specified under 
Sec. 60.154(c)(2), except that the determination of volatile solids, 
step (3)(b) of the method, may not be deleted.

[[Page 233]]

    (c) The owner or operator of any multiple hearth, fluidized bed, or 
electric sludge incinerator subject to the provisions of this subpart 
shall retain the following information and make it available for 
inspection by the Administrator for a minimum of 2 years:
    (1) For incinerators equipped with a wet scrubbing device, a record 
of the measured pressure drop of the gas flow through the wet scrubbing 
device, as required by paragraph (b)(1) of this section.
    (2) A record of the measured oxygen content of the incinerator 
exhaust gas, as required by paragraph (b)(2) of this section.
    (3) A record of the rate of sludge charged to the incinerator, the 
measured temperatures of the incinerator, the fuel flow to the 
incinerator, and the total solids and volatile solids content of the 
sludge charged to the incinerator, as required by paragraphs (a)(1), 
(b)(3), (b)(4), and (b)(5) of this section.
    (d) The owner or operator of any multiple hearth, fluidized bed, or 
electric sludge incinerator subject to the provisions of this subpart 
from which the particulate matter emission rate measured during the 
performance test required under Sec. 60.154(d) is less than or equal to 
0.38 g/kg of dry sludge input (0.75 lb/ton) shall be required to comply 
with the requirements in paragraphs (a), (b), and (c) of this section 
during all periods of this incinerator following the performance test 
except that:
    (1) Continuous operation of the monitoring devices and data 
recorders in paragraphs (a)(1), (b)(3), and (b)(4) of this section shall 
not be required.
    (2) Daily sampling and analysis of sludge feed in paragraph (b)(5) 
of this section shall not be required.
    (3) Recordkeeping specified in paragraph (c)(3) of this section 
shall not be required.
    (e) The owner or operator of any sludge incinerator other than a 
multiple hearth, fluidized bed, or electric incinerator or any sludge 
incinerator equipped with a control device other than a wet scrubber 
shall submit to the Administrator for approval a plan for monitoring and 
recording incinerator and control device operation parameters. The plan 
shall be submitted to the Administrator:
    (1) No later than 90 days after October 6, 1988, for sources which 
have provided notification of commencement of construction prior to 
October 6, 1988.
    (2) No later than 90 days after the notification of commencement of 
construction, for sources which provide notification of commencement of 
construction on or after October 6, 1988.
    (3) At least 90 days prior to the date on which the new control 
device becomes operative, for sources switching to a control device 
other than a wet scrubber.
[36 FR 24877, Dec. 23, 1971, as amended at 53 FR 39416, Oct. 6, 1988]



Sec. 60.154  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in Appendix A of this part or other methods and procedures as 
specified in this section, except as provided for in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter emission standards in Sec. 60.152 as follows:
    (1) The emission rate (E) of particulate matter for each run shall 
be computed using the following equation:

E=K(cs Qsd)/S

where:
E=emission rate of particulate matter, g/kg (lb/ton) of dry sludge 
          input.
cs=concentration of particulate matter, g/dscm (g/dscf).
Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
S=charging rate of dry sludge during the run, kg/hr (lb/hr).
K=conversion factor, 1.0 g/g [4.409 lb2/(g-ton)].

    (2) Method 5 shall be used to determine the particulate matter 
concentration (cs) and the volumetric flow rate 
(Qsd) of the effluent gas. The sampling time and sample 
volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 
dscf).
    (3) The dry sludge charging rate (S) for each run shall be computed 
using either of the following equations:

S=Km Sm Rdm/
S=Kv Sv Rdv/
where:
S=charging rate of dry sludge, kg/hr (lb/hr).
Sm=total mass of sludge charged, kg (lb).
Rdm=average mass of dry sludge per unit mass of sludge 
          charged, mg/mg (lb/lb).

[[Page 234]]

=duration of run, min.
Km=conversion factor, 60 min/hr.
Sv=total volume of sludge charged, m\3\ (gal).
Rdv=average mass of dry sludge per unit volume of sludge 
          charged, mg/liter (lb/ft\3\).
Kv=conversion factor, 60 x 10-3 (liter-kg-min)/
          (m\3\-mg-hr) [8.021 (ft\3\-min)/(gal-hr)].

    (4) the flow measuring device of Sec. 60.153(a)(1) shall be used to 
determine the total mass (Sm) or volume (Sv) of 
sludge charged to the incinerator during each run. If the flow measuring 
device is on a time rate basis, readings shall be taken and recorded at 
5-minute intervals during the run and the total charge of sludge shall 
be computed using the following equations, as applicable:
[GRAPHIC] [TIFF OMITTED] TC16NO91.006

where:
Qmi=average mass flow rate calculated by averaging the flow 
rates at the beginning and end of each interval ``i'', kg/min (lb/min).
Qvi=average volume flow rate calculated by averaging the flow 
          rates at the beginning and end of each interval ``i'', m\3\/
          min (gal/min).
i=duration of interval ``i'', min.

    (5) Samples of the sludge charged to the incinerator shall be 
collected in nonporous jars at the beginning of each run and at 
approximately 1-hour intervals thereafter until the test ends, and ``209 
F. Method for Solid and Semisolid Samples'' (incorporated by reference--
see Sec. 60.17) shall be used to determine dry sludge content of each 
sample (total solids residue), except that:
    (i) Evaporating dishes shall be ignited to at least 103 
+C rather than the 550 +C specified in step 
3(a)(1).
    (ii) Determination of volatile residue, step 3(b) may be deleted.
    (iii) The quantity of dry sludge per unit sludge charged shall be 
determined in terms of mg/liter (lb/ft\3\) or mg/mg (lb/lb).
    (iv) The average dry sludge content shall be the arithmetic average 
of all the samples taken during the run.
    (6) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
    (c) [Reserved]
    (d) The owner or operator of any sludge incinerator subject to the 
provisions of this subpart shall conduct a performance test during which 
the monitoring and recording devices required under Sec. 60.153(a)(1), 
(b)(1), (b)(2), (b)(3), and (b)(4) are installed and operating and for 
which the sampling and analysis procedures required under 
Sec. 60.153(b)(5) are performed. The owner or operator shall provide the 
Administrator at least 30 days prior notice of the performance test to 
afford the Administrator the opportunity to have an observer present.
    (1) For incinerators that commenced construction or modification on 
or before April 18, 1986, the performance test shall be conducted within 
360 days of the effective date of these regulations unless the 
monitoring and recording devices required under Sec. 60.153(a)(1), 
(b)(1), (b)(2), (b)(3), and (b)(4) were installed and operating and the 
sampling and analysis procedures required under Sec. 60.153(b)(5) were 
performed during the most recent performance test and a record of the 
measurements taken during the performance test is available.
    (2) For incinerators that commence construction or modification 
after April 18, 1986, the date of the performance test shall be 
determined by the requirements in Sec. 60.8.
[54 FR 6668, Feb. 14, 1989, as amended at 54 FR 27015, June 27, 1989; 59 
FR 5108, Feb. 3, 1994]



Sec. 60.155  Reporting.

    (a) The owner or operator of any multiple hearth, fluidized bed, or 
electric sludge incinerator subject to the provisions of this subpart 
shall submit to the Administrator semi-annually a report in writing 
which contains the following:
    (1) A record of average scrubber pressure drop measurements for each 
period of 15 minutes duration or more during which the pressure drop of 
the scrubber was less than, by a percentage specified below, the average 
scrubber pressure drop measured during the most recent performance test. 
The percent reduction in scrubber pressure

[[Page 235]]

drop for which a report is required shall be determined as follows:
    (i) For incinerators that achieved an average particulate matter 
emission rate of 0.38 kg/Mg (0.75 lb/ton) dry sludge input or less 
during the most recent performance test, a scrubber pressure drop 
reduction of more than 30 percent from the average scrubber pressure 
drop recorded during the most recent performance test shall be reported.
    (ii) For incinerators that achieved an average particulate matter 
emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input 
during the most recent performance test, a percent reduction in pressure 
drop greater than that calculated according to the following equation 
shall be reported:

P=-111E+72.15
where P=Percent reduction in pressure drop, and
E=Average particulate matter emissions (kg/megagram)

    (2) A record of average oxygen content in the incinerator exhaust 
gas for each period of 1-hour duration or more that the oxygen content 
of the incinerator exhaust gas exceeds the average oxygen content 
measured during the most recent performance test by more than 3 percent.
    (b) The owner or operator of any multiple hearth, fluidized bed, or 
electric sludge incinerator from which the average particulate matter 
emission rate measured during the performance test required under 
Sec. 60.154(d) exceeds 0.38 g/kg of dry sludge input (0.75 lb/ton of dry 
sludge input) shall include in the report for each calendar day that a 
decrease in scrubber pressure drop or increase in oxygen content of 
exhaust gas is reported a record of the following:
    (1) Scrubber pressure drop averaged over each 1-hour incinerator 
operating period.
    (2) Oxygen content in the incinerator exhaust averaged over each 1-
hour incinerator operating period.
    (3) Temperatures of every hearth in multiple hearth incinerators; of 
the bed and outlet of fluidized bed incinerators; and of the drying, 
combustion, and cooling zones of electric incinerators averaged over 
each 1-hour incinerator operating period.
    (4) Rate of sludge charged to the incinerator averaged over each 1-
hour incinerator operating period.
    (5) Incinerator fuel use averaged over each 8-hour incinerator 
operating period.
    (6) Moisture and volatile solids content of the daily grab sample of 
sludge charged to the incinerator.
    (c) The owner or operator of any sludge incinerator other than a 
multiple hearth, fluidized bed, or electric incinerator or any sludge 
incinerator equipped with a control device other than a wet scrubber 
shall include in the semi-annual report a record of control device 
operation measurements, as specified in the plan approved under 
Sec. 60.153(e).
[53 FR 39417, Oct. 6, 1988]



Sec. 60.156  Delegation of authority.

    (a) In delegating implementation and enforcement authority to a 
State under section 111(c) of the Act, the authorities contained in 
paragraph (b) of this section shall be retained by the Administrator and 
not transferred to a State.
    (b) Authorities which will not be delegated to States: 
Sec. 60.153(e).
[53 FR 39418, Oct. 6, 1988]



     Subpart P--Standards of Performance for Primary Copper Smelters

    Source: 41 FR 2338, Jan. 15, 1976, unless otherwise noted.



Sec. 60.160  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in primary copper smelters: Dryer, roaster, smelting 
furnace, and copper converter.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 16, 1974, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977]



Sec. 60.161  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning

[[Page 236]]

given them in the Act and in subpart A of this part.
    (a) Primary copper smelter means any installation or any 
intermediate process engaged in the production of copper from copper 
sulfide ore concentrates through the use of pyrometallurgical 
techniques.
    (b) Dryer means any facility in which a copper sulfide ore 
concentrate charge is heated in the presence of air to eliminate a 
portion of the moisture from the charge, provided less than 5 percent of 
the sulfur contained in the charge is eliminated in the facility.
    (c) Roaster means any facility in which a copper sulfide ore 
concentrate charge is heated in the presence of air to eliminate a 
significant portion (5 percent or more) of the sulfur contained in the 
charge.
    (d) Calcine means the solid materials produced by a roaster.
    (e) Smelting means processing techniques for the melting of a copper 
sulfide ore concentrate or calcine charge leading to the formation of 
separate layers of molten slag, molten copper, and/or copper matte.
    (f) Smelting furnace means any vessel in which the smelting of 
copper sulfide ore concentrates or calcines is performed and in which 
the heat necessary for smelting is provided by an electric current, 
rapid oxidation of a portion of the sulfur contained in the concentrate 
as it passes through an oxidizing atmosphere, or the combustion of a 
fossil fuel.
    (g) Copper converter means any vessel to which copper matte is 
charged and oxidized to copper.
    (h) Sulfuric acid plant means any facility producing sulfuric acid 
by the contact process.
    (i) Fossil fuel means natural gas, petroleum, coal, and any form of 
solid, liquid, or gaseous fuel derived from such materials for the 
purpose of creating useful heat.
    (j) Reverberatory smelting furnace means any vessel in which the 
smelting of copper sulfide ore concentrates or calcines is performed and 
in which the heat necessary for smelting is provided primarily by 
combustion of a fossil fuel.
    (k) Total smelter charge means the weight (dry basis) of all copper 
sulfide ore concentrates processed at a primary copper smelter, plus the 
weight of all other solid materials introduced into the roasters and 
smelting furnaces at a primary copper smelter, except calcine, over a 
one-month period.
    (l) High level of volatile impurities means a total smelter charge 
containing more than 0.2 weight percent arsenic, 0.1 weight percent 
antimony, 4.5 weight percent lead or 5.5 weight percent zinc, on a dry 
basis.



Sec. 60.162  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any dryer any gases which contain particulate matter in 
excess of 50 mg/dscm (0.022 gr/dscf).



Sec. 60.163  Standard for sulfur dioxide.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any roaster, smelting furnace, or copper converter any 
gases which contain sulfur dioxide in excess of 0.065 percent by volume, 
except as provided in paragraphs (b) and (c) of this section.
    (b) Reverberatory smelting furnaces shall be exempted from paragraph 
(a) of this section during periods when the total smelter charge at the 
primary copper smelter contains a high level of volatile impurities.
    (c) A change in the fuel combusted in a reverberatory smelting 
furnace shall not be considered a modification under this part.



Sec. 60.164  Standard for visible emissions.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any dryer any visible emissions which exhibit greater 
than 20 percent opacity.
    (b) On and after the date on which the performance test required to 
be

[[Page 237]]

conducted by Sec. 60.8 is completed, no owner or operator subject to the 
provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility that uses a sulfuric acid plant to 
comply with the standard set forth in Sec. 60.163, any visible emissions 
which exhibit greater than 20 percent opacity.



Sec. 60.165  Monitoring of operations.

    (a) The owner or operator of any primary copper smelter subject to 
Sec. 60.163 (b) shall keep a monthly record of the total smelter charge 
and the weight percent (dry basis) of arsenic, antimony, lead and zinc 
contained in this charge. The analytical methods and procedures employed 
to determine the weight of the total smelter charge and the weight 
percent of arsenic, antimony, lead and zinc shall be approved by the 
Administrator and shall be accurate to within plus or minus ten percent.
    (b) The owner or operator of any primary copper smelter subject to 
the provisions of this subpart shall install and operate:
    (1) A continuous monitoring system to monitor and record the opacity 
of gases discharged into the atmosphere from any dryer. The span of this 
system shall be set at 80 to 100 percent opacity.
    (2) A continuous monitoring system to monitor and record sulfur 
dioxide emissions discharged into the atmosphere from any roaster, 
smelting furnace or copper converter subject to Sec. 60.163 (a). The 
span of this system shall be set at a sulfur dioxide concentration of 
0.20 percent by volume.
    (i) The continuous monitoring system performance evaluation required 
under Sec. 60.13(c) shall be completed prior to the initial performance 
test required under Sec. 60.8.
    (ii) For the purpose of the continuous monitoring system performance 
evaluation required under Sec. 60.13(c) the reference method referred to 
under the Relative Accuracy Test Procedure in Performance Specification 
2 of appendix B to this part shall be Method 6. For the performance 
evaluation, each concentration measurement shall be of one hour 
duration. The pollutant gas used to prepare the calibration gas mixtures 
required under Performance Specification 2 of appendix B, and for 
calibration checks under Sec. 60.13 (d), shall be sulfur dioxide.
    (c) Six-hour average sulfur dioxide concentrations shall be 
calculated and recorded daily for the four consecutive 6-hour periods of 
each operating day. Each six-hour average shall be determined as the 
arithmetic mean of the appropriate six contiguous one-hour average 
sulfur dioxide concentrations provided by the continuous monitoring 
system installed under paragraph (b) of this section.
    (d) For the purpose of reports required under Sec. 60.7(c), periods 
of excess emissions that shall be reported are defined as follows:
    (1) Opacity. Any six-minute period during which the average opacity, 
as measured by the continuous monitoring system installed under 
paragraph (b) of this section, exceeds the standard under 
Sec. 60.164(a).
    (2) Sulfur dioxide. All six-hour periods during which the average 
emissions of sulfur dioxide, as measured by the continuous monitoring 
system installed under Sec. 60.163, exceed the level of the standard. 
The Administrator will not consider emissions in excess of the level of 
the standard for less than or equal to 1.5 percent of the six-hour 
periods during the quarter as indicative of a potential violation of 
Sec. 60.11(d) provided the affected facility, including air pollution 
control equipment, is maintained and operated in a manner consistent 
with good air pollution control practice for minimizing emissions during 
these periods. Emissions in excess of the level of the standard during 
periods of startup, shutdown, and malfunction are not to be included 
within the 1.5 percent.
[41 FR 2338, Jan. 15, 1976; 41 FR 8346, Feb. 26, 1976, as amended at 42 
FR 57126, Nov. 1, 1977; 48 FR 23611, May 25, 1983; 54 FR 6668, Feb. 14, 
1989]



Sec. 60.166  Test methods and procedures.

    (a) In conducting performance tests required in Sec. 60.8, the owner 
or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).

[[Page 238]]

    (b) The owner or operator shall determine compliance with the 
particulate matter, sulfur dioxide (SO2) and visible emission 
standards in Secs. 60.162, 60.163, and 60.164 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration. The sampling time and sample volume for each run shall be 
at least 60 minutes and 0.85 dscm (30 dscf).
    (2) The continuous monitoring system of Sec. 60.165(b)(2) shall be 
used to determine the SO2 concentrations on a dry basis. The 
sampling time for each run shall be 6 hours, and the average 
SO2 concentration shall be computed for the 6-hour period as 
in Sec. 60.165(c). The monitoring system drift during the run may not 
exceed 2 percent of the span value.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6668, Feb. 14, 1989]



      Subpart Q--Standards of Performance for Primary Zinc Smelters

    Source: 41 FR 2340, Jan. 15, 1976, unless otherwise noted.



Sec. 60.170  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in primary zinc smelters: roaster and sintering 
machine.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 16, 1974, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977]



Sec. 60.171  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Primary zinc smelter means any installation engaged in the 
production, or any intermediate process in the production, of zinc or 
zinc oxide from zinc sulfide ore concentrates through the use of 
pyrometallurgical techniques.
    (b) Roaster means any facility in which a zinc sulfide ore 
concentrate charge is heated in the presence of air to eliminate a 
significant portion (more than 10 percent) of the sulfur contained in 
the charge.
    (c) Sintering machine means any furnace in which calcines are heated 
in the presence of air to agglomerate the calcines into a hard porous 
mass called sinter.
    (d) Sulfuric acid plant means any facility producing sulfuric acid 
by the contact process.



Sec. 60.172  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any sintering machine any gases which contain 
particulate matter in excess of 50 mg/dscm (0.022 gr/dscf).



Sec. 60.173  Standard for sulfur dioxide.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any roaster any gases which contain sulfur dioxide in 
excess of 0.065 percent by volume.
    (b) Any sintering machine which eliminates more than 10 percent of 
the sulfur initially contained in the zinc sulfide ore concentrates will 
be considered as a roaster under paragraph (a) of this section.



Sec. 60.174  Standard for visible emissions.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any sintering machine any visible emissions which 
exhibit greater than 20 percent opacity.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility that uses a sulfuric acid plant to 
comply with the

[[Page 239]]

standard set forth in Sec. 60.173, any visible emissions which exhibit 
greater than 20 percent opacity.



Sec. 60.175  Monitoring of operations.

    (a) The owner or operator of any primary zinc smelter subject to the 
provisions of this subpart shall install and operate:
    (1) A continuous monitoring system to monitor and record the opacity 
of gases discharged into the atmosphere from any sintering machine. The 
span of this system shall be set at 80 to 100 percent opacity.
    (2) A continuous monitoring system to monitor and record sulfur 
dioxide emissions discharged into the atmosphere from any roaster 
subject to Sec. 60.173. The span of this system shall be set at a sulfur 
dioxide concentration of 0.20 percent by volume.
    (i) The continuous monitoring system performance evaluation required 
under Sec. 60.13(c) shall be completed prior to the initial performance 
test required under Sec. 60.8.
    (ii) For the purpose of the continuous monitoring system performance 
evaluation required under Sec. 60.13(c), the reference method referred 
to under the Relative Accuracy Test Procedure in Performance 
Specification 2 of appendix B to this part shall be Method 6. For the 
performance evaluation, each concentration measurement shall be of 1 
hour duration. The pollutant gas used to prepare the calibration gas 
mixtures required under Performance Specification 2 of appendix B, and 
for calibration checks under Sec. 60.13(d), shall be sulfur dioxide.
    (b) Two-hour average sulfur dioxide concentrations shall be 
calculated and recorded daily for the 12 consecutive 2-hour periods of 
each operating day. Each 2-hour average shall be determined as the 
arithmetic mean of the appropriate two contiguous 1-hour average sulfur 
dioxide concentrations provided by the continuous monitoring system 
installed under paragraph (a) of this section.
    (c) For the purpose of reports required under Sec. 60.7(c), periods 
of excess emissions that shall be reported are defined as follows:
    (1) Opacity. Any 6-minute period during which the average opacity, 
as measured by the continuous monitoring system installed under 
paragraph (a) of this section, exceeds the standard under 
Sec. 60.174(a).
    (2) Sulfur dioxide. Any 2-hour period, as described in paragraph (b) 
of this section, during which the average emissions of sulfur dioxide, 
as measured by the continuous monitoring system installed under 
paragraph (a) of this section, exceeds the standard under Sec. 60.173.
[41 FR 2340, Jan. 15, 1976, as amended at 48 FR 23611, May 25, 1983; 54 
FR 6668, Feb. 14, 1989]



Sec. 60.176  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter, sulfur dioxide (SO2), and visible 
emission standards in Secs. 60.172, 60.173, and 60.174 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration. The sampling time and sample volume for each run shall be 
at least 60 minutes and 0.85 dscm (30 dscf).
    (2) The continuous monitoring system of Sec. 60.175(a)(2) shall be 
used to determine the SO2 concentrations on a dry basis. The 
sampling time for each run shall be 2 hours, and the average 
SO2 concentration for the 2-hour period shall be computed as 
in Sec. 60.175(b). The monitoring system drift during the run may not 
exceed 2 percent of the span value.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6669, Feb. 14, 1989]



      Subpart R--Standards of Performance for Primary Lead Smelters

    Source: 41 FR 2340, Jan. 15, 1976, unless otherwise noted.

[[Page 240]]



Sec. 60.180  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to the following 
affected facilities in primary lead smelters: sintering machine, 
sintering machine discharge end, blast furnace, dross reverberatory 
furnace, electric smelting furnace, and converter.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 16, 1974, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977]



Sec. 60.181  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Primary lead smelter means any installation or any intermediate 
process engaged in the production of lead from lead sulfide ore 
concentrates through the use of pyrometallurgical techniques.
    (b) Sintering machine means any furnace in which a lead sulfide ore 
concentrate charge is heated in the presence of air to eliminate sulfur 
contained in the charge and to agglomerate the charge into a hard porous 
mass called sinter.
    (c) Sinter bed means the lead sulfide ore concentrate charge within 
a sintering machine.
    (d) Sintering machine discharge end means any apparatus which 
receives sinter as it is discharged from the conveying grate of a 
sintering machine.
    (e) Blast furnace means any reduction furnace to which sinter is 
charged and which forms separate layers of molten slag and lead bullion.
    (f) Dross reverberatory furnace means any furnace used for the 
removal or refining of impurities from lead bullion.
    (g) Electric smelting furnace means any furnace in which the heat 
necessary for smelting of the lead sulfide ore concentrate charge is 
generated by passing an electric current through a portion of the molten 
mass in the furnace.
    (h) Converter means any vessel to which lead concentrate or bullion 
is charged and refined.
    (i) Sulfuric acid plant means any facility producing sulfuric acid 
by the contact process.



Sec. 60.182  Standard for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any blast furnace, dross reverberatory furnace, or 
sintering machine discharge end any gases which contain particulate 
matter in excess of 50 mg/dscm (0.022 gr/dscf).
    (b) [Reserved]



Sec. 60.183  Standard for sulfur dioxide.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any sintering machine, electric smelting furnace, or 
converter gases which contain sulfur dioxide in excess of 0.065 percent 
by volume.
    (b) [Reserved]



Sec. 60.184  Standard for visible emissions.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any blast furnace, dross reverberatory furnace, or 
sintering machine discharge end any visible emissions which exhibit 
greater than 20 percent opacity.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility that uses a sulfuric acid plant to 
comply with the standard set forth in Sec. 60.183, any visible emissions 
which exhibit greater than 20 percent opacity.

[[Page 241]]



Sec. 60.185  Monitoring of operations.

    (a) The owner or operator of any primary lead smelter subject to the 
provisions of this subpart shall install and operate:
    (1) A continuous monitoring system to monitor and record the opacity 
of gases discharged into the atmosphere from any blast furnace, dross 
reverberatory furnace, or sintering machine discharge end. The span of 
this system shall be set at 80 to 100 percent opacity.
    (2) A continuous monitoring system to monitor and record sulfur 
dioxide emissions discharged into the atmosphere from any sintering 
machine, electric furnace or converter subject to Sec. 60.183. The span 
of this system shall be set at a sulfur dioxide concentration of 0.20 
percent by volume.
    (i) The continuous monitoring system performance evaluation required 
under Sec. 60.13(c) shall be completed prior to the initial performance 
test required under Sec. 60.8.
    (ii) For the purpose of the continuous monitoring system performance 
evaluation required under Sec. 60.13(c), the reference method referred 
to under the Relative Accuracy Test Procedure in Performance 
Specification 2 of appendix B to this part shall be Method 6. For the 
performance evaluation, each concentration measurement shall be of one 
hour duration. The pollutant gases used to prepare the calibration gas 
mixtures required under Performance Specification 2 of appendix B, and 
for calibration checks under Sec. 60.13(d), shall be sulfur dioxide.
    (b) Two-hour average sulfur dioxide concentrations shall be 
calculated and recorded daily for the twelve consecutive two-hour 
periods of each operating day. Each two-hour average shall be determined 
as the arithmetic mean of the appropriate two contiguous one-hour 
average sulfur dioxide concentrations provided by the continuous 
monitoring system installed under paragraph (a) of this section.
    (c) For the purpose of reports required under Sec. 60.7(c), periods 
of excess emissions that shall be reported are defined as follows:
    (1) Opacity. Any six-minute period during which the average opacity, 
as measured by the continuous monitoring system installed under 
paragraph (a) of this section, exceeds the standard under 
Sec. 60.184(a).
    (2) Sulfur dioxide. Any two-hour period, as described in paragraph 
(b) of this section, during which the average emissions of sulfur 
dioxide, as measured by the continuous monitoring system installed under 
paragraph (a) of this section, exceeds the standard under Sec. 60.183.
[41 FR 2340, Jan. 15, 1976, as amended at 48 FR 23611, May 25, 1983; 54 
FR 6668, Feb. 14, 1989]



Sec. 60.186  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the 
particulate matter, sulfur dioxide (SO2), and visible 
emission standards in Secs. 60.182, 60.183, and 60.184 as follows:
    (1) Method 5 shall be used to determine the particulate matter 
concentration. The sampling time and sample volume for each run shall be 
at least 60 minutes and 0.85 dscm (30 dscf).
    (2) The continuous monitoring system of Sec. 60.185(a)(2) shall be 
used to determine the SO2 concentrations on a dry basis. The 
sampling time for each run shall be 2 hours, and the average 
SO2 concentration for the 2-hour period shall be computed as 
in Sec. 60.185(b). The monitoring system drift during the run may not 
exceed 2 percent of the span value.
    (3) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6669, Feb. 14, 1989]



   Subpart S--Standards of Performance for Primary Aluminum Reduction 
                                 Plants

    Source: 45 FR 44207, June 30, 1980, unless otherwise noted.



Sec. 60.190  Applicability and designation of affected facility.

    (a) The affected facilities in primary aluminum reduction plants to 
which

[[Page 242]]

this subpart applies are potroom groups and anode bake plants.
    (b) Except as provided in paragraph (c) of this section, any 
affected facility under paragraph (a) of this section that commences 
construction or modification after October 23, 1974, is subject to the 
requirements of this subpart.
    (c) An owner or operator of an affected facility under paragraph (a) 
of this section may elect to comply with the requirements of this 
subpart or the requirements of subpart LL of part 63 of this chapter.
[42 FR 37937, July 25, 1977, as amended at 45 FR 44206, June 30, 1980; 
62 FR 52399, Oct. 7, 1997]



Sec. 60.191  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    Aluminum equivalent means an amount of aluminum which can be 
produced from a Mg of anodes produced by an anode bake plant as 
determined by Sec. 60.195(g).
    Anode bake plant means a facility which produces carbon anodes for 
use in a primary aluminum reduction plant.
    Potroom means a building unit which houses a group of electrolytic 
cells in which aluminum is produced.
    Potroom group means an uncontrolled potroom, a potroom which is 
controlled individually, or a group of potrooms or potroom segments 
ducted to a common control system.
    Primary aluminum reduction plant means any facility manufacturing 
aluminum by electrolytic reduction.
    Primary control system means an air pollution control system 
designed to remove gaseous and particulate flourides from exhaust gases 
which are captured at the cell.
    Roof monitor means that portion of the roof of a potroom where gases 
not captured at the cell exit from the potroom.
    Total fluorides means elemental fluorine and all fluoride compounds 
as measured by reference methods specified in Sec. 60.195 or by 
equivalent or alternative methods (see Sec. 60.8(b)).



Sec. 60.192  Standard for fluorides.

    (a) On and after the date on which the initial performance test 
required to be conducted by Sec. 60.8 is completed, no owner or operator 
subject to the provisions of this subpart shall cause to be discharged 
into the atmosphere from any affected facility any gases containing 
total fluorides, as measured according to Sec. 60.8 above, in excess of:
    (1) 1.0 kg/Mg (2.0 lb/ton) of aluminum produced for potroom groups 
at Soderberg plants: except that emissions between 1.0 kg/Mg and 1.3 kg/
Mg (2.6 lb/ton) will be considered in compliance if the owner or 
operator demonstrates that exemplary operation and maintenance 
procedures were used with respect to the emission control system and 
that proper control equipment was operating at the affected facility 
during the performance tests;
    (2) 0.95 kg/Mg (1.9 lb/ton) of aluminum produced for potroom groups 
at prebake plants; except that emissions between 0.95 kg/Mg and 1.25 kg/
Mg (2.5 lb/ton) will be considered in compliance if the owner or 
operator demonstrates that exemplary operation and maintenance 
procedures were used with respect to the emission control system and 
that proper control equipment was operating at the affected facility 
during the performance test; and
    (3) 0.05 kg/Mg (0.1 lb/ton) of aluminum equivalent for anode bake 
plants.
    (b) Within 30 days of any performance test which reveals emissions 
which fall between the 1.0 kg/Mg and 1.3 kg/Mg levels in paragraph 
(a)(1) of this section or between the 0.95 kg/Mg and 1.25 kg/Mg levels 
in paragraph (a)(2) of this section, the owner or operator shall submit 
a report indicating whether all necessary control devices were on-line 
and operating properly during the performance test, describing the 
operating and maintenance procedures followed, and setting forth any 
explanation for the excess emissions, to the Director of the Enforcement 
Division of the appropriate EPA Regional Office.



Sec. 60.193  Standard for visible emissions.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no

[[Page 243]]

owner or operator subject to the provisions of this subpart shall cause 
to be discharged into the atmosphere:
    (1) From any potroom group any gases which exhibit 10 percent 
opacity or greater, or
    (2) From any anode bake plant any gases which exhibit 20 percent 
opacity or greater.



Sec. 60.194  Monitoring of operations.

    (a) The owner or operator of any affected facility subject to the 
provisions of this subpart shall install, calibrate, maintain, and 
operate monitoring devices which can be used to determine daily the 
weight of aluminum and anode produced. The weighing devices shall have 
an accuracy of plus-minus 5 percent over their operating 
range.
    (b) The owner or operator of any affected facility shall maintain a 
record of daily production rates of aluminum and anodes, raw material 
feed rates, and cell or potline voltages.
    (c) Following the initial performance test as required under 
Sec. 60.8(a), an owner or operator shall conduct a performance test at 
least once each month during the life of the affected facility, except 
when malfunctions prevent representative sampling, as provided under 
Sec. 60.8(c). The owner or operator shall give the Administrator at 
least 15 days advance notice of each test. The Administrator may require 
additional testing under section 114 of the Clean Air Act.
    (d) An owner or operator may petition the Administrator to establish 
an alternative testing requirement that requires testing less frequently 
than once each month for a primary control system or an anode bake 
plant. If the owner or operator show that emissions from the primary 
control system or the anode bake plant have low variability during day-
to-day operations, the Administrator may establish such an alternative 
testing requirement. The alternative testing requirement shall include a 
testing schedule and, in the case of a primary control system, the 
method to be used to determine primary control system emissions for the 
purpose of performance tests. The Administrator shall publish the 
alternative testing requirement in the Federal Register.
    (1) Alternative testing requirements are established for Anaconda 
Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake 
plant and primary control system are to be tested once a year rather 
than once a month.
    (2) Alternative testing requirements are established for Alumax of 
South Carolina's Mt. Holly Plant in Mt. Holly, South Carolina: The anode 
bake plant and primary control system are to be tested once a year 
rather than once a month.
[45 FR 44207, June 30, 1980, as amended at 54 FR 6669, Feb. 14, 1989]



Sec. 60.195  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the total 
fluorides and visible emission standards in Secs. 60.192 and 60.193 as 
follows:
    (1) The emission rate (Ep) of total fluorides from 
potroom groups shall be computed for each run using the following 
equation:

Ep=[(Cs Qsd)1+(Cs 
          Qsd)2]/(P K)
where:
Ep=emission rate of total fluorides from a potroom group, kg/
          Mg (lb/ton).
Cs=concentration of total fluorides, mg/dscm (mg/dscf).
Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
P=aluminum production rate, Mg/hr (ton/hr).
K=conversion factor, 106 mg/kg (453,600 mg/lb).
1=subscript for primary control system effluent gas.
2=subscript for secondary control system or roof monitor effluent gas.

    (2) The emission rate (Eb) of total fluorides from anode 
bake plants shall be computed for each run using the following equation:

Eb=(Cs Qsd)/(PeK)

where:
Eb=emission rate of total fluorides, kg/Mg (lb/ton) of 
          aluminum equivalent.
Cs=concentration of total fluorides, mg/dscm (mg/dscf).
Qsd=volumetric flow rate of effluent gas, dscm/hr (dscf/hr).

[[Page 244]]

Pe=aluminum equivalent for anode production rate, Mg/hr (ton/
          hr).
K=conversion factor, 106 mg/kg (453,600 mg/lb).

    (3) Methods 13A or 13B shall be used for ducts or stacks, and Method 
14 for roof monitors not employing stacks or pollutant collection 
systems, to determine the total fluorides concentration (Cs) 
and volumetric flow rate (Qsd) of the effluent gas. The 
sampling time and sample volume for each run shall be at least 8 hours 
and 6.80 dscm (240 dscf) for potroom groups and at least 4 hours and 
3.40 dscm (120 dscf) for anode bake plants.
    (4) The monitoring devices of Sec. 60.194(a) shall be used to 
determine the daily weight of aluminum and anode produced.
    (i) The aluminum production rate (P) shall be determined by dividing 
720 hours into the weight of aluminum tapped from the affected facility 
during a period of 30 days before and including the final run of a 
performance test.
    (ii) The aluminum equivalent production rate (Pe) for 
anodes shall be determined as 2 times the average weight of anode 
produced during a representative oven cycle divided by the cycle time. 
An owner or operator may establish a multiplication factor other than 2 
by submitting production records of the amount of aluminum produced and 
the concurrent weight of anodes consumed by the potrooms.
    (5) Method 9 and the procedures in Sec. 60.11 shall be used to 
determine opacity.
[54 FR 6669, Feb. 14, 1989]



    Subpart T--Standards of Performance for the Phosphate Fertilizer 
              Industry: Wet-Process Phosphoric Acid Plants



Sec. 60.200  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each wet-process phosphoric acid plant having a design capacity 
of more than 15 tons of equivalent P2O5 feed per 
calendar day. For the purpose of this subpart, the affected facility 
includes any combination of: reactors, filters, evaporators, and hot 
wells.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 22, 1974, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977, as amended at 48 FR 7129, Feb. 17, 1983]



Sec. 60.201  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Wet-process phosphoric acid plant means any facility 
manufacturing phosphoric acid by reacting phosphate rock and acid.
    (b) Total fluorides means elemental fluorine and all fluoride 
compounds as measured by reference methods specified in Sec. 60.204, or 
equivalent or alternative methods.
    (c) Equivalent P2 O5 feed means the quantity 
of phosphorus, expressed as phosphorous pentoxide, fed to the process.
[40 FR 33154, Aug. 6, 1975]



Sec. 60.202  Standard for fluorides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain total 
fluorides in excess of 10.0 g/metric ton of equivalent 
P2O5 feed (0.020 lb/ton).
[40 FR 33154, Aug. 6, 1975]



Sec. 60.203  Monitoring of operations.

    (a) The owner or operator of any wet-process phosphoric acid plant 
subject to the provisions of this subpart shall install, calibrate, 
maintain, and operate a monitoring device which can be used to determine 
the mass flow of phosphorus-bearing feed material to the process. The 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
    (b) The owner or operator of any wet-process phosphoric acid plant 
shall maintain a daily record of equivalent P2O5 
feed by first determining the total

[[Page 245]]

mass rate in metric ton/hr of phosphorus bearing feed using a monitoring 
device for measuring mass flowrate which meets the requirements of 
paragraph (a) of this section and then by proceeding according to 
Sec. 60.204(b)(3).
    (c) The owner or operator of any wet-process phosphoric acid subject 
to the provisions of this part shall install, calibrate, maintain, and 
operate a monitoring device which continuously measures and permanently 
records the total pressure drop across the process scrubbing system. The 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
[40 FR 3154, Aug. 6, 1975, as amended at 54 FR 6669, Feb. 14, 1989]



Sec. 60.204  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the total 
fluorides standard in Sec. 60.202 as follows:
    (1) The emission rate (E) of total fluorides shall be computed for 
each run using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.007

where:
E=emission rate of total fluorides, g/metric ton (lb/ton) of equivalent 
          P2O5 feed.
Csi=concentration of total fluorides from emission point 
          ``i,'' mg/dscm (mg/dscf).
Qsdi=volumetric flow rate of effluent gas from emission point 
          ``i,'' dscm/hr (dscf/hr).
N=number of emission points associated with the affected facility.
P=equivalent P2O5 feed rate, metric ton/hr (ton/
          hr).
K=conversion factor, 1000 mg/g (453,600 mg/lb).

    (2) Method 13A or 13B shall be used to determine the total fluorides 
concentration (Csi) and volumetric flow rate 
(Qsdi) of the effluent gas from each of the emission points. 
The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30 dscf).
    (3) The equivalent P2O5 feed rate (P) shall be 
computed for each run using the following equation:

P=Mp Rp
where:
Mp=total mass flow rate of phosphorus-bearing feed, metric 
          ton/hr (ton/hr).
Rp=P2O5 content, decimal fraction.

    (i) The accountability system of Sec. 60.203(a) shall be used to 
determine the mass flow rate (Mp) of the phosphorus-bearing 
feed.
    (ii) The Association of Official Analytical Chemists (AOAC) Method 9 
(incorporated by reference--see Sec. 60.17) shall be used to determine 
the P2O5 content (Rp) of the feed.
[54 FR 6669, Feb. 14, 1989]



    Subpart U--Standards of Performance for the Phosphate Fertilizer 
                  Industry: Superphosphoric Acid Plants



Sec. 60.210  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each superphosphoric acid plant having a design capacity of 
more than 15 tons of equivalent P2O5 feed per 
calendar day. For the purpose of this subpart, the affected facility 
includes any combination of: evaporators, hot wells, acid sumps, and 
cooling tanks.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 22, 1974, is subject to the 
requirements of this subpart.
[42 FR 37937, July 25, 1977, as amended at 48 FR 7129, Feb. 17, 1983]



Sec. 60.211  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Superphosphoric acid plant means any facility which concentrates 
wet-process phosphoric acid to 66 percent or greater 
P2O5 content by weight for eventual consumption as 
a fertilizer.
    (b) Total fluorides means elemental fluorine and all fluoride 
compounds as measured by reference methods specified in Sec. 60.214, or 
equivalent or alternative methods.

[[Page 246]]

    (c) Equivalent P2 O5 feed means the quantity 
of phosphorus, expressed as phosphorous pentoxide, fed to the process.
[40 FR 33155, Aug. 6, 1975]



Sec. 60.212  Standard for fluorides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain total 
fluorides in excess of 5.0 g/metric ton of equivalent 
P2O5 feed (0.010 lb/ton).
[40 FR 33155, Aug. 6, 1975]



Sec. 60.213  Monitoring of operations.

    (a) The owner or operator of any superphosphoric acid plant subject 
to the provisions of this subpart shall install, calibrate, maintain, 
and operate a flow monitoring device which can be used to determine the 
mass flow of phosphorus-bearing feed material to the process. The flow 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
    (b) The owner or operator of any superphosphoric acid plant shall 
maintain a daily record of equivalent P2O5 feed by 
first determining the total mass rate in metric ton/hr of phosphorus-
bearing feed using a flow monitoring device meeting the requirements of 
paragraph (a) of this section and then by proceeding according to 
Sec. 60.214(b)(3).
    (c) The owner or operator of any superphosphoric acid plant subject 
to the provisions of this part shall install, calibrate, maintain, and 
operate a monitoring device which continuously measures and permanently 
records the total pressure drop across the process scrubbing system. The 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
[40 FR 33155, Aug. 6, 1975, as amended at 54 FR 6670, Feb. 14, 1989]



Sec. 60.214  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the total 
fluorides standard in Sec. 60.212 as follows:
    (1) The emission rate (E) of total fluorides shall be computed for 
each run using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.008

where:
E=emission rate of total fluorides, g/metric ton (lb/ton) of equivalent 
          P2O5 feed.
Csi=concentration of total fluorides from emission point 
          ``i,'' mg/dscm (mg/dscf).
Qsdi=volumetric flow rate of effluent gas from emission point 
          ``i,'' dscm/hr (dscf/hr).
N=number of emission points associated with the affected facility.
P=equivalent P2O5 feed rate, metric ton/hr (ton/
          hr).
K=conversion factor, 1000 mg/g (453,600 mg/lb).

    (2) Method 13A or 13B shall be used to determine the total fluorides 
concentration (Csi) and volumetric flow rate 
(Qsdi) of the effluent gas from each of the emission points. 
The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30 dscf).
    (3) The equivalent P2O5 feed rate (P) shall be 
computed for each run using the following equation:

P=Mp Rp
where:
Mp=total mass flow rate of phosphorus-bearing feed, metric 
          ton/hr (ton/hr).
Rp=P2O5 content, decimal fraction.

    (i) The accountability system of Sec. 60.213(a) shall be used to 
determine the mass flow rate (Mp) of the phosphorus-bearing 
feed.
    (ii) The Association of Official Analytical Chemists (AOAC) Method 9 
(incorporated by reference--see Sec. 60.17) shall be used to determine 
the P2O5 content (Rp) of the feed.
[54 FR 6670, Feb. 14, 1989]

[[Page 247]]



    Subpart V--Standards of Performance for the Phosphate Fertilizer 
                  Industry: Diammonium Phosphate Plants



Sec. 60.220  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each granular diammonium phosphate plant having a design 
capacity of more than 15 tons of equivalent P2O5 
feed per calendar day. For the purpose of this subpart, the affected 
facility includes any combination of: reactors, granulators, dryers, 
coolers, screens, and mills.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 22, 1974, is subject to the 
requirements of this subpart.
[42 FR 37938, July 25, 1977, as amended at 48 FR 7129, Feb. 17, 1983]



Sec. 60.221  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Granular diammonium phosphate plant means any plant 
manufacturing granular diammonium phosphate by reacting phosphoric acid 
with ammonia.
    (b) Total fluorides means elemental fluorine and all fluoride 
compounds as measured by reference methods specified in Sec. 60.224, or 
equivalent or alternative methods.
    (c) Equivalent P2O5 feed means the quantity of 
phosphorus, expressed as phosphorus pentoxide, fed to the process.
[40 FR 33155, Aug. 6, 1975]



Sec. 60.222  Standard for fluorides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain total 
fluorides in excess of 30 g/metric ton of equivalent 
P2O5 feed (0.060 lb/ton).
[40 FR 33155, Aug. 6, 1975]



Sec. 60.223  Monitoring of operations.

    (a) The owner or operator of any granular diammonium phosphate plant 
subject to the provisions of this subpart shall install, calibrate, 
maintain, and operate a flow monitoring device which can be used to 
determine the mass flow of phosphorus-bearing feed material to the 
process. The flow monitoring device shall have an accuracy of 
plus-minus5 percent over its operating range.
    (b) The owner or operator of any granular diammonium phosphate plant 
shall maintain a daily record of equivalent P2O5 
feed by first determining the total mass rate in metric ton/hr of 
phosphorus-bearing feed using a flow monitoring device meeting the 
requirements of paragraph (a) of this section and then by proceeding 
according to Sec. 60.224(b)(3).
    (c) The owner or operator of any granular diammonium phosphate plant 
subject to the provisions of this part shall install, calibrate, 
maintain, and operate a monitoring device which continuously measures 
and permanently records the total pressure drop across the scrubbing 
system. The monitoring device shall have an accuracy of 
plus-minus5 percent over its operating range.
[40 FR 33155, Aug. 6, 1975, as amended at 54 FR 6670, Feb. 14, 1989]



Sec. 60.224  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the total 
fluorides standard in Sec. 60.222 as follows:
    (1) The emission rate (E) of total fluorides shall be computed for 
each run using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.009

where:
E=emission rate of total fluorides, g/metric ton (lb/ton) of equivalent 
          P2O5 feed.
Csi=concentration of total fluorides from emission point 
          ``i,'' mg/dscm (mg/dscf).
Qsdi=volumetric flow rate of effluent gas from emission point 
          ``i,'' dscm/hr (dscf/hr).

[[Page 248]]

N=number of emission points associated with the affected facility.
P=equivalent P2O5 feed rate, metric ton/hr (ton/
          hr).
K=conversion factor, 1000 mg/g (453,600 mg/lb).

    (2) Method 13A or 13B shall be used to determine the total fluorides 
concentration (Csi) and volumetric flow rate 
(Qsdi) of the effluent gas from each of the emission points. 
The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30 dscf).
    (3) The equivalent P2O5 feed rate (P) shall be 
computed for each run using the following equation:

P=Mp Rp
where:
Mp=total mass flow rate of phosphorus-bearing feed, metric 
          ton/hr (ton/hr).
Rp=P2O5 content, decimal fraction.

    (i) The accountability system of Sec. 60.223(a) shall be used to 
determine the mass flow rate (Mp) of the phosphorus-bearing 
feed.
    (ii) The Association of Official Analytical Chemists (AOAC) Method 9 
(incorported by reference--see Sec. 60.17) shall be used to determine 
the P2O5 content (Rp) of the feed.
[54 FR 6670, Feb. 14, 1989]



    Subpart W--Standards of Performance for the Phosphate Fertilizer 
                 Industry: Triple Superphosphate Plants



Sec. 60.230  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each triple superphosphate plant having a design capacity of 
more than 15 tons of equivalent P2O5 feed per 
calendar day. For the purpose of this subpart, the affected facility 
includes any combination of: mixers, curing belts (dens), reactors, 
granulators, dryers, cookers, screens, mills, and facilities which store 
run-of-pile triple superphosphate.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 22, 1974, is subject to the 
requirements of this subpart.
[42 FR 37938, July 25, 1977, as amended at 48 FR 7129, Feb. 17, 1983]



Sec. 60.231  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Triple superphosphate plant means any facility manufacturing 
triple superphosphate by reacting phosphate rock with phosphoric acid. A 
run-of-pile triple superphosphate plant includes curing and storing.
    (b) Run-of-pile triple superphosphate means any triple 
superphosphate that has not been processed in a granulator and is 
composed of particles at least 25 percent by weight of which (when not 
caked) will pass through a 16 mesh screen.
    (c) Total fluorides means elemental fluorine and all fluoride 
compounds as measured by reference methods specified in Sec. 60.234, or 
equivalent or alternative methods.
    (d) Equivalent P2O5 feed means the quantity of 
phosphorus, expressed as phosphorus pentoxide, fed to the process.
[40 FR 33156, Aug. 6, 1975]



Sec. 60.232  Standard for fluorides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain total 
fluorides in excess of 100 g/metric ton of equivalent 
P2O5 feed (0.20 lb/ton).
[40 FR 33156, Aug. 6, 1975]



Sec. 60.233  Monitoring of operations.

    (a) The owner or operator of any triple superphosphate plant subject 
to the provisions of this subpart shall install, calibrate, maintain, 
and operate a flow monitoring device which can be used to determine the 
mass flow of phosphorus-bearing feed material to the process. The flow 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
    (b) The owner or operator of any triple superphosphate plant shall 
maintain a daily record of equivalent P2O5 feed by 
first determining the total

[[Page 249]]

mass rate in metric ton/hr of phosphorus-bearing feed using a flow 
monitoring device meeting the requirements of paragraph (a) of this 
section and then by proceeding according to Sec. 60.234(b)(3).
    (c) The owner or operator of any triple superphosphate plant subject 
to the provisions of this part shall install, calibrate, maintain, and 
operate a monitoring device which continuously measures and permanently 
records the total pressure drop across the process scrubbing system. The 
monitoring device shall have an accuracy of plus-minus5 
percent over its operating range.
[40 FR 33156, Aug. 6, 1975, as amended at 54 FR 6670, Feb. 14, 1989]



Sec. 60.234  Test methods and procedures.

    (a) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (b) The owner or operator shall determine compliance with the total 
fluorides standards in Sec. 60.232 as follows:
    (1) The emission rate (E) of total fluorides shall be computed for 
each run using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.010

where:
E=emission rate of total fluorides, g/metric ton (lb/ton) of equivalent 
          P2O5 feed.
Csi=concentration of total fluorides from emission point 
          ``i,'' mg/dscm (mg/dscf).
Qsdi=volumetric flow rate of effluent gas from emission point 
          ``i,'' dscm/hr (dscf/hr).
N=number of emission points in the affected facility.
P=equivalent P2O5 feed rate, metric ton/hr (ton/
          hr).
K=conversion factor, 1000 mg/g (453,600 mg/lb).

    (2) Method 13A or 13b shall be used to determine the total fluorides 
concentration (Csi) and volumetric flow rate 
(Qsdi) of the effluent gas from each of the emission points. 
The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30 dscf).
    (3) The equivalent P2O5 feed rate (P) shall be 
computed for each run using the following equation:

P = Mp Rp
where:
Mp total mass flow rate of phosphorus-bearing feed, metric 
          ton/hr (ton/hr).
Rp=P2O5 content, decimal fraction.

    (i) The accountability system of Sec. 60.233(a) shall be used to 
determine the mass flow rate (Mp) of the phosphorus-bearing 
feed.
    (ii) The Association of Official Analytical Chemists (AOAC) Method 9 
(incorporated by reference--see Sec. 60.17) shall be used to determine 
the P2O5 content (Rp) of the feed.
[54 FR 6670, Feb. 14, 1989; 54 FR 21344, May 17, 1989]



    Subpart X--Standards of Performance for the Phosphate Fertilizer 
       Industry: Granular Triple Superphosphate Storage Facilities



Sec. 60.240  Applicability and designation of affected facility.

    (a) The affected facility to which the provisions of this subpart 
apply is each granular triple superphosphate storage facility. For the 
purpose of this subpart, the affected facility includes any combination 
of: Storage or curing piles, conveyors, elevators, screens and mills.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 22, 1974, is subject to the 
requirements of this subpart.
[42 FR 37938, July 25, 1977]



Sec. 60.241  Definitions.

    As used in this subpart, all terms not defined herein shall have the 
meaning given them in the Act and in subpart A of this part.
    (a) Granular triple superphosphate storage facility means any 
facility curing or storing fresh granular triple superphosphate.
    (b) Total fluorides means elemental fluorine and all fluoride 
compounds as measured by reference methods specified in Sec. 60.244, or 
equivalent or alternative methods.

[[Page 250]]

    (c) Equivalent P2O5 stored means the quantity 
of phosphorus, expressed as phosphorus pentoxide, being cured or stored 
in the affected facility.
    (d) Fresh granular triple superphosphate means granular triple 
superphosphate produced within the preceding 72 hours.
[40 FR 33156, Aug. 6, 1975, as amended at 62 FR 18280, Apr. 15, 1997]



Sec. 60.242  Standard for fluorides.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, no owner or operator subject to 
the provisions of this subpart shall cause to be discharged into the 
atmosphere from any affected facility any gases which contain total 
fluorides in excess of 0.25 g/hr/metric ton of equivalent 
P2O5 stored (5.0  x  10- 4 lb/hr/
ton of equivalent P2O5 stored).
    (b) No owner or operator subject to the provisions of this subpart 
shall ship fresh granular triple superphosphate from an affected 
facility.
[40 FR 33156, Aug. 6, 1975, as amended at 62 FR 18280, Apr. 15, 1997]



Sec. 60.243  Monitoring of operations.

    (a) The owner or operator of any granular triple superphosphate 
storage facility subject to the provisions of this subpart shall 
maintain an accurate account of triple superphosphate in storage to 
permit the determination of the amount of equivalent 
P2O5 stored.
    (b) The owner or operator of any granular triple superphosphate 
storage facility subject to the provisions of this subpart shall 
maintain a daily record of total equivalent P2O5 
stored by multiplying the percentage P2O5 content, 
as determined by Sec. 60.244(c)(3), times the total mass of granular 
triple superphosphate stored.
    (c) The owner or operator of any granular triple superphosphate 
storage facility subject to the provisions of this subpart shall 
install, calibrate, maintain, and operate a monitoring device which 
continuously measures and permanently records the total pressure drop 
across any process scrubbing system. The monitoring device shall have an 
accuracy of  5 percent over its operating range.
    (d) The owner or operator of any granular triple superphosphate 
storage facility subject to the provisions of this subpart shall develop 
for approval by the Administrator a site-specific methodology including 
sufficient recordkeeping for the purposes of demonstrating compliance 
with Sec. 60.242 (b).
[40 FR 33156, Aug. 6, 1975, as amended at 54 FR 6671, Feb. 14, 1989; 62 
FR 18280, Apr. 15, 1997]



Sec. 60.244  Test methods and procedures.

    (a) The owner or operator shall conduct performance tests required 
in Sec. 60.8 only when the following quantities of product are being 
cured or stored in the facility.
    (1) Total granular triple superphosphate is at least 10 percent of 
the building capacity, and
    (2) Fresh granular triple superphosphate is at least 6 percent of 
the total amount of triple superphosphate, or
    (3) If the provision in paragraph (a)(2) of this section exceeds 
production capabilities for fresh granular triple superphosphate, fresh 
granular triple superphosphate is equal to at least 5 days maximum 
production.
    (b) In conducting the performance tests required in Sec. 60.8, the 
owner or operator shall use as reference methods and procedures the test 
methods in appendix A of this part or other methods and procedures as 
specified in this section, except as provided in Sec. 60.8(b).
    (c) The owner or operator shall determine compliance with the total 
fluorides standard in Sec. 60.242 as follows:
    (1) The emission rate (E) of total fluorides shall be computed for 
each run using the following equation:
[GRAPHIC] [TIFF OMITTED] TC16NO91.011

where:
E=emission rate of total fluorides, g/hr/metric ton (lb/hr/ton) of 
          equivalent P2O5 stored.
Csi=concentration of total fluorides from emission point 
          ``i,'' mg/dscm (mg/dscf).
Qsdi=volumetric flow rate of effluent gas from emission point 
          ``i,'' dscm/hr (dscf/hr).
N=number of emission points in the affected facility.
P=equivalent P2O5 stored, metric tons (tons).

[[Page 251]]

K=conversion factor, 1000 mg/g (453,600 mg/lb).

    (2) Method 13A or 13B shall be used to determine the total fluorides 
concentration (Csi) and volumetric flow rate 
(Qsdi) of the effluent gas from each of the emission points. 
The sampling time and sample volume for each run shall be at least 60 
minutes and 0.85 dscm (30 dscf).
    (3) The equivalent P2O5 feed rate (P) shall be 
computed for each run using the following equation:

P=Mp Rp
where:
Mp=amount of product in storage, metric ton (ton).
Rp=P2O5 content of product in storage, 
          weight fraction.

    (i) The accountability system of Sec. 60.243(a) shall be used to 
determine the amount of product (Mp) in storage.
    (ii) The Association of Official Analytical Chemists (AOAC) Method 9 
(incorporated by reference--see Sec. 60.17) shall be used to determine 
the P2O5 content (Rp) of the product in 
storage.
[54 FR 6671, Feb. 14, 1989, as amended at 62 FR 18280, Apr. 15, 1997]



     Subpart Y--Standards of Performance for Coal Preparation Plants



Sec. 60.250  Applicability and designation of affected facility.

    (a) The provisions of this subpart are applicable to any of the 
following affected facilities in coal preparation plants which process 
more than 200 tons per day: Thermal dryers, pneumatic coal-cleaning 
equipment (air tables), coal processing and conveying equipment 
(including breakers and crushers), coal storage systems, and coal 
transfer and loading systems.
    (b) Any facility under paragraph (a) of this section that commences 
construction or modification after October 24, 1974, is subject to the 
requirements of this subpart.
[42 FR 37938, July 25, 1977; 42 FR 44812, Sept. 7, 1977]



Sec. 60.251  Definitions.

    As used in this subpart, all terms not defined herein have the 
meaning given them in the Act and in subpart A of this part.
    (a) Coal preparation plant means any facility (excluding underground 
mining operations) which prepares coal by one or more of the following 
processes: breaking, crushing, screening, wet or dry cleaning, and 
thermal drying.
    (b) Bituminous coal means solid fossil fuel classified as bituminous 
coal by ASTM Designation D388-77 (incorporated by reference--see 
Sec. 60.17).
    (c) Coal means all solid fossil fuels classified as anthracite, 
bituminous, subbituminous, or lignite by ASTM Designation D388-77 
(incorporated by reference--see Sec. 60.17).
    (d) Cyclonic flow means a spiraling movement of exhaust gases within 
a duct or stack.
    (e) Thermal dryer means any facility in which the moisture content 
of bituminous coal is reduced by contact with a heated gas stream which 
is exhausted to the atmosphere.
    (f) Pneumatic coal-cleaning equipment means any facility which 
classifies bituminous coal by size or separates bituminous coal from 
refuse by application of air stream(s).
    (g) Coal processing and conveying equipment means any machinery used 
to reduce the size of coal or to separate coal from refuse, and the 
equipment used to convey coal to or remove coal and refuse from the 
machinery. This includes, but is not limited to, breakers, crushers, 
screens, and conveyor belts.
    (h) Coal storage system means any facility used to store coal except 
for open storage piles.
    (i) Transfer and loading system means any facility used to transfer 
and load coal for shipment.
[41 FR 2234, Jan. 15, 1976, as amended at 48 FR 3738, Jan. 27, 1983]



Sec. 60.252  Standards for particulate matter.

    (a) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, an owner or operator subject to 
the provisions of this subpart shall not cause to be discharged into the 
atmosphere from any thermal dryer gases which:
    (1) Contain particulate matter in excess of 0.070 g/dscm (0.031 gr/
dscf).

[[Page 252]]

    (2) Exhibit 20 percent opacity or greater.
    (b) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, an owner or operator subject to 
the provisions of this subpart shall not cause to be discharged into the 
atmosphere from any pneumatic coal cleaning equipment, gases which:
    (1) Contain particulate matter in excess of 0.040 g/dscm (0.018 gr/
dscf).
    (2) Exhibit 10 percent opacity or greater.
    (c) On and after the date on which the performance test required to 
be conducted by Sec. 60.8 is completed, an owner or operator subject to 
the provisions of this subpart shall not cause to be discharged into the 
atmosphere from any coal processing and conveying equipment, coal 
storage system, or coal transfer and loading system processing coal, 
gases which exhibit 20 percent opacity or greater.
[41 FR 2234, Jan. 15, 1976]



Sec. 60.253  Monitoring of operations.

    (a) The owner or operator of any thermal dryer shall install, 
calibrate, maintain, and continuously operate monitoring devices as 
follows:
    (1) A monitoring device for the measurement of the temperature of 
the gas stream at the exit of the thermal dryer on a continuous basis. 
The monitoring device is to be certified by the manufacturer to be 
accurate within plus-minus3+ Fahrenheit.
    (2) For affected facilities that use venturi scrubber emission 
control equipment:
    (i) A monitoring device for the continuous measurement of the 
pressure loss through the venturi constriction of the c