[Title 40 CFR I]
[Code of Federal Regulations (annual edition) - July 1, 2002 Edition]
[Title 40 - PROTECTION OF ENVIRONMENT]
[Chapter I - ENVIRONMENTAL PROTECTION AGENCY]
[From the U.S. Government Printing Office]


40PROTECTION OF ENVIRONMENT52002-07-012002-07-01falseENVIRONMENTAL PROTECTION AGENCYICHAPTER IPROTECTION OF ENVIRONMENT
               CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY




  --------------------------------------------------------------------


  Editorial Note: Nomenclature changes to chapter I appear at 65 FR 
47324, 47325, Aug. 2, 2000; 66 FR 34375, 34376, June 28, 2001.

                 SUBCHAPTER C--AIR PROGRAMS (CONTINUED)
Part                                                                Page
53              Ambient air monitoring reference and 
                    equivalent methods......................           5
54              Prior notice of citizen suits...............         104
55              Outer continental shelf air regulations.....         105
56              Regional consistency........................         129
57              Primary nonferrous smelter orders...........         130
58              Ambient air quality surveillance............         205
59              National volatile organic compound emission 
                    standards for consumer and commercial 
                    products................................         291

[[Page 5]]



                 SUBCHAPTER C--AIR PROGRAMS (CONTINUED)


PART 53--AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS--Table of Contents




                      Subpart A--General Provisions

Sec.
53.1  Definitions.
53.2  General requirements for a reference method determination.
53.3  General requirements for an equivalent method determination.
53.4  Applications for reference or equivalent method determinations.
53.5  Processing of applications.
53.6  Right to witness conduct of tests.
53.7  Testing of methods at the initiative of the Administrator.
53.8  Designation of reference and equivalent methods.
53.9  Conditions of designation.
53.10  Appeal from rejection of application.
53.11  Cancellation of reference or equivalent method designation.
53.12  Request for hearing on cancellation.
53.13  Hearings.
53.14  Modification of a reference or equivalent method.
53.15  Trade secrets and confidential or privileged information.
53.16  Supersession of reference methods.

Table A-1 to Subpart A--Summary of Applicable Requirements for Reference 
          Equivalent Methods for Air Monitoring of Criteria Pollutants
Appendix A to Subpart A--References

    Subpart B--Procedures for Testing Performance Characteristics of 
  Automated Methods for SO2, CO, O3, and NO2

53.20  General provisions.
53.21  Test conditions.
53.22  Generation of test atmospheres.
53.23  Test procedures.

Appendix A to Subpart B--Optional Forms for Reporting Test Results

 Subpart C--Procedures for Determining Comparability Between Candidate 
                      Methods and Reference Methods

53.30   General provisions.
53.31   Test conditions.
53.32   Test procedures for methods for SO2, CO, 
          O3, and NO2.
53.33   Test procedure for methods for lead.
53.34   Test procedure for methods for PM10 and 
          PM2.5.

Table C-1 to Subpart C--Test Concentration Ranges, Number of 
          Measurements Required, and Maximum Discrepancy Specification
Table C-2 to Subpart C--Sequence of Test Measurements
Table C-3 to Subpart C--Test Specifications for Lead Methods
Table C-4 to Subpart C--Test Specifications for PM10 and 
          PM2.5 Methods
Figure C-1 to Subpart C--Suggested Format for Reporting Test Results
Appendix A to Subpart C--References

Subpart D--Procedures for Testing Performance Characteristics of Methods 
                           for PM10

53.40  General provisions.
53.41  Test conditions.
53.42  Generation of test atmospheres for wind tunnel tests.
53.43  Test procedures.

  Subpart E--Procedures for Testing Physical (Design) and Performance 
Characteristics of Reference Methods and Class I Equivalent Methods for 
                            PM2.5

53.50  General provisions.
53.51  Demonstration of compliance with design specifications and 
          manufacturing and test requirements.
53.52  Leak check test.
53.53  Test for flow rate accuracy, regulation, measurement accuracy, 
          and cut-off.
53.54  Test for proper sampler operation following power interruptions.
53.55  Test for effect of variations in power line voltage and ambient 
          temperature.
53.56  Test for effect of variations in ambient pressure.
53.57  Test for filter temperature control during sampling and post-
          sampling periods.
53.58  Operational field precision and blank test.
53.59  Aerosol transport test for Class I equivalent method samplers.

Table E-1 to Subpart E--Summary of Test Requirements for Reference and 
          Class I Equivalent Methods for PM2.5
Table E-2 to Subpart E--Spectral Energy Distribution and Permitted 
          Tolerance for Conducting Radiative Tests
Figure E-1 to Subpart E--Designation Testing Checklist
Figure E-2 to Subpart E--Product Manufacturing Checklist
Appendix A to Subpart E--References

 Subpart F--Procedures for Testing Performance Characteristics of Class 
               II Equivalent Methods for PM2.5

53.60  General provisions.

[[Page 6]]

53.61  Test conditions for PM2.5 reference method 
          equivalency.
53.62  Test procedure: Full wind tunnel test.
53.63  Test procedure: Wind tunnel inlet aspiration test.
53.64  Test procedure: Static fractionator test.
53.65  Test procedure: Loading test.
53.66  Test procedure: Volatility test.

Table F-1 to Subpart F--Performance Specifications for PM2.5 
          Class II Equivalent Samplers
Table F-2 to Subpart F--Particle Sizes and Wind Speeds for Full Wind 
          Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static 
          Chamber Test
Table F-3 to Subpart F--Critical Parameters of Idealized Ambient 
          Particle Size Distributions
Table F-4 to Subpart F--Estimated Mass Concentration Measurement of 
          PM2.5 for Idealized Coarse Aerosol Size 
          Distribution
Table F-5 to Subpart F--Estimated Mass Concentration Measurement of 
          PM2.5 for Idealized ``Typical'' Coarse Aerosol Size 
          Distribution
Table F-6 to Subpart F--Estimated Mass Concentration Measurement of 
          PM2.5 for Idealized Fine Aerosol Size Distribution
Figure E-1 to Subpart F--Designation Testing Checklist
Appendix A to Subpart F--References

    Authority: Sec. 301(a) of the Clean Air Act (42 U.S.C. sec. 
1857g(a)), as amended by sec. 15(c)(2) of Pub. L. 91-604, 84 Stat. 1713, 
unless otherwise noted.

    Source: 40 FR 7049, Feb. 18, 1975, unless otherwise noted.



                      Subpart A--General Provisions

    Source: 62 FR 38784, July 18, 1997, unless otherwise noted.



Sec. 53.1  Definitions.

    Terms used but not defined in this part shall have the meaning given 
them by the Act.
    Act means the Clean Air Act (42 U.S.C. 1857-1857l), as amended.
    Administrator means the Administrator of the Environmental 
Protection Agency or the Administrator's authorized representative.
    Agency means the Environmental Protection Agency.
    Applicant means a person or entity who submits an application for a 
reference or equivalent method determination under Sec. 53.4, or a 
person or entity who assumes the rights and obligations of an applicant 
under Sec. 53.7. Applicant may include a manufacturer, distributor, 
supplier, or vendor.
    Automated method or analyzer means a method for measuring 
concentrations of an ambient air pollutant in which sample collection 
(if necessary), analysis, and measurement are performed automatically by 
an instrument.
    Candidate method means a method for measuring the concentration of 
an air pollutant in the ambient air for which an application for a 
reference method determination or an equivalent method determination is 
submitted in accordance with Sec. 53.4, or a method tested at the 
initiative of the Administrator in accordance with Sec. 53.7.
    Class I equivalent method means an equivalent method for 
PM2.5 which is based on a sampler that is very similar to the 
sampler specified for reference methods in appendix L of this part, with 
only minor deviations or modifications, as determined by EPA.
    Class II equivalent method means an equivalent method for 
PM2.5 that utilizes a PM2.5 sampler in which an 
integrated PM2.5 sample is obtained from the atmosphere by 
filtration and is subjected to a subsequent filter conditioning process 
followed by a gravimetric mass determination, but which is not a Class I 
equivalent method because of substantial deviations from the design 
specifications of the sampler specified for reference methods in 
appendix L of part 50 of this chapter, as determined by EPA.
     Class III equivalent method means an equivalent method for 
PM2.5 that has been determined by EPA not to be a Class I or 
Class II equivalent method. This fourth type of PM2.5 method 
includes alternative equivalent method samplers and continuous 
analyzers, based on designs and measurement principles different from 
those specified for reference methods (e.g., a means for estimating 
aerosol mass concentration other than by conventional integrated 
filtration followed by equilibration and gravimetric analysis. These 
samplers (or monitors) are those deemed to be substantially different 
from reference method samplers and

[[Page 7]]

are likely to use components and methods other than those specified for 
reference method samplers.
    Collocated describes two or more air samplers, analyzers, or other 
instruments which sampler the ambient air that are operated 
silmultaneously while located side by side, separated by a distance that 
is large enough to preclude the air sampled by any of the devices from 
being affected by any of the other devices, but small enough so that all 
devices obtain identical or uniform ambient air samples that are equally 
representative of the general area in which the group of devices is 
located.
    Equivalent method means a method for measuring the concentration of 
an air pollutant in the ambient air that has been designated as an 
equivalent method in accordance with this part; it does not include a 
method for which an equivalent method designation has been canceled in 
accordance with Sec. 53.11 or Sec. 53.16.
    ISO 9001-registered facility means a manufacturing facility that is 
either:
    (1) An International Organization for Standardization (ISO) 9001-
registered manufacturing facility, registered to the ISO 9001 standard 
(by the Registrar Accreditation Board (RAB) of the American Society for 
Quality Control (ASQC) in the United States), with registration 
maintained continuously.
    (2) A facility that can be demonstrated, on the basis of information 
submitted to the EPA, to be operated according to an EPA-approved and 
periodically audited quality system which meets, to the extent 
appropriate, the same general requirements as an ISO 9001-registered 
facility for the design and manufacture of designated reference and 
equivalent method samplers and monitors.
    ISO-certified auditor means an auditor who is either certified by 
the Registrar Accreditation Board (in the United States) as being 
qualified to audit quality systems using the requirements of recognized 
standards such as ISO 9001, or who, based on information submitted to 
the EPA, meets the same general requirements as provided for ISO-
certified auditors.
    Manual method means a method for measuring concentrations of an 
ambient air pollutant in which sample collection, analysis, or 
measurement, or some combination therof, is performed manually. A method 
for PM10 or PM2.5 which utilizes a sampler that 
requires manual preparation, loading, and weighing of filter samples is 
considered a manual method even though the sampler may be capable of 
automatically collecting a series of sequential samples.
    PM2.5 sampler means a device, associated with a manual 
method for measuring PM2.5, designed to collect 
PM2.5 from an ambient air sample, but lacking the ability to 
automatically analyze or measure the collected sample to determine the 
mass concentrations of PM2.5 in the sampled air.
    PM10 sampler means a device, associated with a manual 
method for measuring PM10, designed to collect 
PM10 from an ambient air sample, but lacking the ability to 
automatically analyze or measure the collected sample to determine the 
mass concentrations of PM10 in the sampled air.
    Reference method means a method of sampling and analyzing the 
ambient air for an air pollutant that is specified as a reference method 
in an appendix to part 50 of this chapter, or a method that has been 
designated as a reference method in accordance with this part; it does 
not include a method for which a reference method designation has been 
canceled in accordance with Sec. 53.11 or Sec. 53.16.
    Sequential samples for PM samplers means two or more PM samples for 
sequential (but not necessarily contiguous) time periods that are 
collected automatically by the same sampler without the need for 
intervening operator service.
    Test analyzer means an analyzer subjected to testing as part of a 
candidate method in accordance with subparts B, C, D, E, or F of this 
part, as applicable. Test sampler means a PM10 sampler or a 
PM2.5 sampler subjected to testing as part of a candidate 
method in accordance with subparts C, D, E, or F of this part.
    Ultimate purchaser means the first person or entity who purchases a 
reference method or an equivalent method for purposes other than resale.

[[Page 8]]



Sec. 53.2   General requirements for a reference method determination.

    The following general requirements for a reference method 
determination are summarized in table A-1 of this subpart.
    (a) Manual methods. (1) For measuring sulfur dioxide 
(SO2) and lead, Appendices A and G of part 50 of this chapter 
specify unique manual reference methods for those pollutants. Except as 
provided in Sec. 53.16, other manual methods for SO2 and lead 
will not be considered for reference method determinations under this 
part.
    (2) A reference method for measuring PM10 must be a 
manual method that meets all requirements specified in appendix J of 
part 50 of this chapter and must include a PM10 sampler that 
has been shown in accordance with this part to meet all requirements 
specified in subparts A and D of this part.
    (3) A reference method for measuring PM2.5 must be a 
manual method that meets all requirements specified in appendix L of 
part 50 of this chapter and must include a PM2.5 sampler that 
has been shown in accordance with this part to meet the applicable 
requirements specified in subparts A and E of this part. Further, 
reference method samplers must be manufactured in an ISO 9001-registered 
facility, as defined in Sec. 53.1 and as set forth in Sec. 53.51, and 
the Product Manufacturing Checklist set forth in subpart E of this part 
must be completed by an ISO-certified auditor, as defined in Sec. 53.1, 
and submitted to EPA annually to retain a PM2.5 reference 
method designation.
    (b) Automated methods. An automated reference method for measuring 
carbon monoxide (CO), ozone (O3), and nitrogen dioxide 
(NO2) must utilize the measurement principle and calibration 
procedure specified in the appropriate appendix to part 50 of this 
chapter and must have been shown in accordance with this part to meet 
the requirements specified in subpart B of this part.



Sec. 53.3   General requirements for an equivalent method determination.

    (a) Manual methods. A manual equivalent method must have been shown 
in accordance with this part to satisfy the applicable requirements 
specified in subpart C of this part. In addition, PM10 or 
PM2.5 samplers associated with manual equivalent methods for 
PM10 or PM2.5 must have been shown in accordance 
with this part to satisfy the following additional requirements:
    (1) A PM10 sampler associated with a manual method for 
PM10 must satisfy the requirements of subpart D of this part.
    (2) A PM2.5 Class I equivalent method sampler must 
satisfy all requirements of subparts C and E of this part, which include 
appropriate demonstration that each and every deviation or modification 
from the reference method sampler specifications does not significantly 
alter the performance of the sampler.
    (3) A PM2.5 Class II equivalent method sampler must 
satisfy the applicable requirements of subparts C, E, and F of this 
part.
    (4) Requirements for PM2.5 Class III equivalent method 
samplers are not provided in this part because of the wide range of non-
filter-based measurement technologies that could be applied and the 
likelihood that these requirements will have to be specifically adapted 
for each such type of technology. Specific requirements will be 
developed as needed and may include selected requirements from subparts 
C, E, or F of this part or other requirements not contained in this 
part.
    (5) All designated equivalent methods for PM2.5 must be 
manufactured in an ISO 9001-registered facility, as defined in Sec. 53.1 
and as set forth in Sec. 53.51, and the Product Manufacturing Checklist 
set forth in subpart E of this part must be completed by an ISO-
certified auditor, as defined in Sec. 53.1, and submitted to EPA 
annually to retain a PM2.5 equivalent method designation.
    (b) Automated methods. (1) Automated equivalent methods for 
pollutants other than PM2.5 or PM10 must have been 
shown in accordance with this part to satisfy the requirements specified 
in subparts B and C of this part.
    (2) Automated equivalent methods for PM10 must have been 
shown in accordance with this part to satisfy the requirements of 
subparts C and D of this part.
    (3) Requirements for PM2.5 Class III automated equivalent 
methods for

[[Page 9]]

PM2.5 are not provided in this part because of the wide range 
of non-filter-based measurement technologies that could be applied and 
the likelihood that these requirements will have to be specifically 
adapted for each such type of technology. Specific requirements will be 
developed as needed and may include selected requirements from subparts 
C, E, or F of this part or other requirements not contained in this 
part.
    (4) All designated equivalent methods for PM2.5 must be 
manufactured in an ISO 9001-registered facility, as set forth in subpart 
E of this part, and the Product Manufacturing Checklist set forth in 
subpart E of this part must be completed by an ISO-certified auditor and 
submitted to EPA annually to retain a PM2.5 equivalent method 
designation.

[62 FR 38784, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.4   Applications for reference or equivalent method determinations.

    (a) Applications for reference or equivalent method determinations 
shall be submitted in duplicate to: Director, National Exposure Research 
Laboratory, Department E (MD-77B), U.S. Environmental Protection Agency, 
Research Triangle Park, North Carolina 27711.
    (b) Each application shall be signed by an authorized representative 
of the applicant, shall be marked in accordance with Sec. 53.15 (if 
applicable), and shall contain the following:
    (1) A clear identification of the candidate method, which will 
distinguish it from all other methods such that the method may be 
referred to unambiguously. This identification must consist of a unique 
series of descriptors such as title, identification number, analyte, 
measurement principle, manufacturer, brand, model, etc., as necessary to 
distinguish the method from all other methods or method variations, both 
within and outside the applicant's organization.
    (2) A detailed description of the candidate method, including but 
not limited to the following: The measurement principle, manufacturer, 
name, model number and other forms of identification, a list of the 
significant components, schematic diagrams, design drawings, and a 
detailed description of the apparatus and measurement procedures. 
Drawings and descriptions pertaining to candidate methods or samplers 
for PM2.5 must meet all applicable requirements in reference 
1 of appendix A of this subpart, using appropriate graphical, 
nomenclature, and mathematical conventions such as those specified in 
references 3 and 4 of appendix A of this subpart.
    (3) A copy of a comprehensive operation or instruction manual 
providing a complete and detailed description of the operational, 
maintenance, and calibration procedures prescribed for field use of the 
candidate method and all instruments utilized as part of that method 
(under Sec. 53.9(a)).
    (i) As a minimum this manual shall include:
    (A) Description of the method and associated instruments.
    (B) Explanation of all indicators, information displays, and 
controls.
    (C) Complete setup and installation instructions, including any 
additional materials or supplies required.
    (D) Details of all initial or startup checks or acceptance tests and 
any auxiliary equipment required.
    (E) Complete operational instructions.
    (F) Calibration procedures and required calibration equipment and 
standards.
    (G) Instructions for verification of correct or proper operation.
    (H) Trouble-shooting guidance and suggested corrective actions for 
abnormal operation.
    (I) Required or recommended routine, periodic, and preventative 
maintenance and maintenance schedules.
    (J) Any calculations required to derive final concentration 
measurements.
    (K) Appropriate references to appendix L of part 50 of this chapter; 
reference 6 of appendix A of this subpart; and any other pertinent 
guidelines.
    (ii) The manual shall also include adequate warning of potential 
safety hazards that may result from normal use and/or malfunction of the 
method and a description of necessary safety precautions. (See 
Sec. 53.9(b).) However, the previous requirement shall not be 
interpreted to constitute or imply any warranty of safety of the method 
by

[[Page 10]]

EPA. For samplers and automated methods, the manual shall include a 
clear description of all procedures pertaining to installation, 
operation, preventive maintenance, and troubleshooting and shall also 
include parts identification diagrams. The manual may be used to satisfy 
the requirements of paragraphs (b)(1) and (b)(2) of this section to the 
extent that it includes information necessary to meet those 
requirements.
    (4) A statement that the candidate method has been tested in 
accordance with the procedures described in subparts B, C, D, E, and/or 
F of this part, as applicable.
    (5) Descriptions of test facilities and test configurations, test 
data, records, calculations, and test results as specified in subparts 
B, C, D, E, and/or F of this part, as applicable. Data must be 
sufficiently detailed to meet appropriate principles described in 
paragraphs 4 through 6 of reference 2 of appendix A of this subpart, 
part b, sections 3.3.1 (paragraph 1) and 3.5.1 (paragraphs 2 and 3) and 
in paragraphs 1 through 3 of reference 5 (section 4.8, Records) of 
appendix A of this subpart. Salient requirements from these references 
include the following:
    (i) The applicant shall maintain and include records of all relevant 
measuring equipment, including the make, type, and serial number or 
other identification, and most recent calibration with identification of 
the measurement standard or standards used and their National Institute 
of Standards and Technology (NIST) traceability. These records shall 
demonstrate the measurement capability of each item of measuring 
equipment used for the application and include a description and 
justification (if needed) of the measurement setup or configuration in 
which it was used for the tests. The calibration results shall be 
recorded and identified in sufficient detail so that the traceability of 
all measurements can be determined and any measurement could be 
reproduced under conditions close to the original conditions, if 
necessary, to resolve any anomalies.
    (ii) Test data shall be collected according to the standards of good 
practice and by qualified personnel. Test anomalies or irregularities 
shall be documented and explained or justified. The impact and 
significance of the deviation on test results and conclusions shall be 
determined. Data collected shall correspond directly to the specified 
test requirement and be labeled and identified clearly so that results 
can be verified and evaluated against the test requirement. Calculations 
or data manipulations must be explained in detail so that they can be 
verified.
    (6) A statement that the method, analyzer, or sampler tested in 
accordance with this part is representative of the candidate method 
described in the application.
    (c) For candidate automated methods and candidate manual methods for 
PM10 and PM2.5, the application shall also contain 
the following:
    (1) A detailed description of the quality system that will be 
utilized, if the candidate method is designated as a reference or 
equivalent method, to ensure that all analyzers or samplers offered for 
sale under that designation will have essentially the same performance 
characteristics as the analyzer(s) or samplers tested in accordance with 
this part. In addition, the quality system requirements for candidate 
methods for PM2.5 must be described in sufficient detail, 
based on the elements described in section 4 of reference 1 (Quality 
System Requirements) of appendix A of this subpart. Further 
clarification is provided in the following sections of reference 2 of 
appendix A of this subpart: part A (Management Systems), sections 2.2 
(Quality System and Description), 2.3 (Personnel Qualification and 
Training), 2.4 (Procurement of Items and Services), 2.5 (Documents and 
Records), and 2.7 (Planning); part B (Collection and Evaluation of 
Environmental Data), sections 3.1 (Planning and Scoping), 3.2 (Design of 
Data Collection Operations), and 3.5 (Assessment and Verification of 
Data Usability); and part C (Operation of Environmental Technology), 
sections 4.1 (Planning), 4.2 (Design of Systems), and 4.4 (Operation of 
Systems).
    (2) A description of the durability characteristics of such 
analyzers or samplers (see Sec. 53.9(c)). For methods for 
PM2.5, the warranty program must ensure that the required 
specifications (see table A-1 of this subpart) will be

[[Page 11]]

met throughout the warranty period and that the applicant accepts 
responsibility and liability for ensuring this conformance or for 
resolving any nonconformities, including all necessary components of the 
system, regardless of the original manufacturer. The warranty program 
must be described in sufficient detail to meet appropriate provisions of 
the ANSI/ASQC and ISO 9001 standards (references 1 and 2 in appendix A 
of this subpart) for controlling conformance and resolving 
nonconformance, particularly sections 4.12, 4.13, and 4.14 of reference 
1 in appendix A of this subpart.
    (i) Section 4.12 in appendix A of this subpart requires the 
manufacturer to establish and maintain a system of procedures for 
identifying and maintaining the identification of inspection and test 
status throughout all phases of manufacturing to ensure that only 
instruments that have passed the required inspections and tests are 
released for sale.
    (ii) Section 4.13 in appendix A of this subpart requires documented 
procedures for control of nonconforming product, including review and 
acceptable alternatives for disposition; section 4.14 in appendix A of 
this subpart requires documented procedures for implementing corrective 
(4.14.2) and preventive (4.14.3) action to eliminate the causes of 
actual or potential nonconformities. In particular, section 4.14.3 
requires that potential causes of nonconformities be eliminated by using 
information such as service reports and customer complaints to eliminate 
potential causes of nonconformities.
    (d) For candidate reference or equivalent methods for 
PM2.5, the applicant shall provide to EPA for test purposes 
one sampler or analyzer that is representative of the sampler or 
analyzer associated with the candidate method. The sampler or analyzer 
shall be shipped FOB destination to Department E, (MD-77B), U.S. EPA, 79 
T.W. Alexander Drive, Research Triangle Park, NC 27711, scheduled to 
arrive concurrent with or within 30 days of the arrival of the other 
application materials. This analyzer or sampler may be subjected to 
various tests that EPA determines to be necessary or appropriate under 
Sec. 53.5(f), and such tests may include special tests not described in 
this part. If the instrument submitted under this paragraph 
malfunctions, becomes inoperative, or fails to perform as represented in 
the application before the necessary EPA testing is completed, the 
applicant shall be afforded an opportunity to repair or replace the 
device at no cost to EPA. Upon completion of EPA testing, the analyzer 
or sampler submitted under this paragraph shall be repacked by EPA for 
return shipment to the applicant, using the same packing materials used 
for shipping the instrument to EPA unless alternative packing is 
provided by the applicant. Arrangements for, and the cost of, return 
shipment shall be the responsibility of the applicant. EPA does not 
warrant or assume any liability for the condition of the analyzer or 
sampler upon return to the applicant.



Sec. 53.5   Processing of applications.

    After receiving an application for a reference or equivalent method 
determination, the Administrator will publish notice of the application 
in the Federal Register and, within 120 calendar days after receipt of 
the application, take one or more of the following actions:
    (a) Send notice to the applicant, in accordance with Sec. 53.8, that 
the candidate method has been determined to be a reference or equivalent 
method.
    (b) Send notice to the applicant that the application has been 
rejected, including a statement of reasons for rejection.
    (c) Send notice to the applicant that additional information must be 
submitted before a determination can be made and specify the additional 
information that is needed (in such cases, the 120-day period shall 
commence upon receipt of the additional information).
    (d) Send notice to the applicant that additional test data must be 
submitted and specify what tests are necessary and how the tests shall 
be interpreted (in such cases, the 120-day period shall commence upon 
receipt of the additional test data).
    (e) Send notice to the applicant that the application has been found 
to be

[[Page 12]]

substantially deficient or incomplete and cannot be processed until 
additional information is submitted to complete the application and 
specify the general areas of substantial deficiency.
    (f) Send notice to the applicant that additional tests will be 
conducted by the Administrator, specifying the nature of and reasons for 
the additional tests and the estimated time required (in such cases, the 
120-day period shall commence 1 calendar day after the additional tests 
have been completed).



Sec. 53.6   Right to witness conduct of tests.

    (a) Submission of an application for a reference or equivalent 
method determination shall constitute consent for the Administrator or 
the Administrator's authorized representative, upon presentation of 
appropriate credentials, to witness or observe any tests required by 
this part in connection with the application or in connection with any 
modification or intended modification of the method by the applicant.
    (b) The applicant shall have the right to witness or observe any 
test conducted by the Administrator in connection with the application 
or in connection with any modification or intended modification of the 
method by the applicant.
    (c) Any tests by either party that are to be witnessed or observed 
by the other party shall be conducted at a time and place mutually 
agreeable to both parties.



Sec. 53.7   Testing of methods at the initiative of the Administrator.

    (a) In the absence of an application for a reference or equivalent 
method determination, the Administrator may conduct the tests required 
by this part for such a determination, may compile such other 
information as may be necessary in the judgment of the Administrator to 
make such a determination, and on the basis of the tests and information 
may determine that a method satisfies applicable requirements of this 
part.
    (b) In the absence of an application requesting the Administrator to 
consider revising an appendix to part 50 of this chapter in accordance 
with Sec. 53.16, the Administrator may conduct such tests and compile 
such information as may be necessary in the Administrator's judgment to 
make a determination under Sec. 53.16(d) and on the basis of the tests 
and information make such a determination.
    (c) If a method tested in accordance with this section is designated 
as a reference or equivalent method in accordance with Sec. 53.8 or is 
specified or designated as a reference method in accordance with 
Sec. 53.16, any person or entity who offers the method for sale as a 
reference or equivalent method thereafter shall assume the rights and 
obligations of an applicant for purposes of this part, with the 
exception of those pertaining to submission and processing of 
applications.



Sec. 53.8   Designation of reference and equivalent methods.

    (a) A candidate method determined by the Administrator to satisfy 
the applicable requirements of this part shall be designated as a 
reference method or equivalent method (as applicable), and a notice of 
the designation shall be submitted for publication in the Federal 
Register not later than 15 days after the determination is made.
    (b) A notice indicating that the method has been determined to be a 
reference method or an equivalent method shall be sent to the applicant. 
This notice shall constitute proof of the determination until a notice 
of designation is published in accordance with paragraph (a) of this 
section.
    (c) The Administrator will maintain a current list of methods 
designated as reference or equivalent methods in accordance with this 
part and will send a copy of the list to any person or group upon 
request. A copy of the list will be available for inspection or copying 
at EPA Regional Offices.



Sec. 53.9   Conditions of designation.

    Designation of a candidate method as a reference method or 
equivalent method shall be conditioned to the applicant's compliance 
with the following requirements. Failure to comply with any of the 
requirements shall constitute a ground for cancellation of the 
designation in accordance with Sec. 53.11.

[[Page 13]]

    (a) Any method offered for sale as a reference or equivalent method 
shall be accompanied by a copy of the manual referred to in 
Sec. 53.4(b)(3) when delivered to any ultimate purchaser.
    (b) Any method offered for sale as a reference or equivalent method 
shall generate no unreasonable hazard to operators or to the environment 
during normal use or when malfunctioning.
    (c) Any analyzer, PM10 sampler, or PM2.5 
sampler offered for sale as part of a reference or equivalent method 
shall function within the limits of the performance specifications 
referred to in Sec. 53.20(a), Sec. 53.30(a), Sec. 53.50, or Sec. 53.60, 
as applicable, for at least 1 year after delivery and acceptance when 
maintained and operated in accordance with the manual referred to in 
Sec. 53.4(b)(3).
    (d) Any analyzer, PM10 sampler, or PM2.5 
sampler offered for sale as a reference or equivalent method shall bear 
a prominent, permanently affixed label or sticker indicating that the 
analyzer or sampler has been designated by EPA as a reference method or 
as an equivalent method (as applicable) in accordance with this part and 
displaying any designated method identification number that may be 
assigned by EPA.
    (e) If an analyzer is offered for sale as a reference or equivalent 
method and has one or more selectable ranges, the label or sticker 
required by paragraph (d) of this section shall be placed in close 
proximity to the range selector and shall indicate clearly which range 
or ranges have been designated as parts of the reference or equivalent 
method.
    (f) An applicant who offers analyzers, PM10 samplers, or 
PM2.5 samplers for sale as reference or equivalent methods 
shall maintain an accurate and current list of the names and mailing 
addresses of all ultimate purchasers of such analyzers or samplers. For 
a period of 7 years after publication of the reference or equivalent 
method designation applicable to such an analyzer or sampler, the 
applicant shall notify all ultimate purchasers of the analyzer or 
PM2.5 or PM10 sampler within 30 days if the 
designation has been canceled in accordance with Sec. 53.11 or 
Sec. 53.16 or if adjustment of the analyzer or sampler is necessary 
under Sec. 53.11(b).
    (g) If an applicant modifies an analyzer, PM10 sampler, 
or PM2.5 sampler that has been designated as a reference or 
equivalent method, the applicant shall not sell the modified analyzer or 
sampler as a reference or equivalent method nor attach a label or 
sticker to the modified analyzer or sampler under paragraph (d) or (e) 
of this section until the applicant has received notice under 
Sec. 53.14(c) that the existing designation or a new designation will 
apply to the modified analyzer, PM10 sampler, or 
PM2.5 sampler or has applied for and received notice under 
Sec. 53.8(b) of a new reference or equivalent method determination for 
the modified analyzer or sampler.
    (h) An applicant who has offered PM2.5 samplers or 
analyzers for sale as part of a reference or equivalent method may 
continue to do so only so long as the facility in which the samplers or 
analyzers are manufactured continues to be an ISO 9001-registered 
facility, as set forth in subpart E of this part. In the event that the 
ISO 9001 registration for the facility is withdrawn, suspended, or 
otherwise becomes inapplicable, either permanently or for some specified 
time interval, such that the facility is no longer an ISO 9001-
registered facility, the applicant shall notify EPA within 30 days of 
the date the facility becomes other than an ISO 9001-registered 
facility, and upon such notification, EPA shall issue a preliminary 
finding and notification of possible cancellation of the reference or 
equivalent method designation under Sec. 53.11.
    (i) An applicant who has offered PM2.5 samplers or 
analyzers for sale as part of a reference or equivalent method may 
continue to do so only so long as updates of the Product Manufacturing 
Checklist set forth in subpart E of this part are submitted annually. In 
the event that an annual Checklist update is not received by EPA within 
12 months of the date of the last such submitted Checklist or Checklist 
update, EPA shall notify the applicant within 30 days that the Checklist 
update has not been received and shall, within 30 days from the issuance 
of such notification, issue a preliminary finding and notification of 
possible cancellation of the reference or equivalent method designation 
under Sec. 53.11.

[[Page 14]]



Sec. 53.10   Appeal from rejection of application.

    Any applicant whose application for a reference or equivalent method 
determination has been rejected may appeal the Administrator's decision 
by taking one or more of the following actions:
    (a) The applicant may submit new or additional information in 
support of the application.
    (b) The applicant may request that the Administrator reconsider the 
data and information already submitted.
    (c) The applicant may request that any test conducted by the 
Administrator that was a material factor in the decision to reject the 
application be repeated.



Sec. 53.11   Cancellation of reference or equivalent method designation.

    (a) Preliminary finding. If the Administrator makes a preliminary 
finding on the basis of any available information that a representative 
sample of a method designated as a reference or equivalent method and 
offered for sale as such does not fully satisfy the requirements of this 
part or that there is any violation of the requirements set forth in 
Sec. 53.9, the Administrator may initiate proceedings to cancel the 
designation in accordance with the following procedures.
    (b) Notification and opportunity to demonstrate or achieve 
compliance. (1) After making a preliminary finding in accordance with 
paragraph (a) of this section, the Administrator will send notice of the 
preliminary finding to the applicant, together with a statement of the 
facts and reasons on which the preliminary finding is based, and will 
publish notice of the preliminary finding in the Federal Register.
    (2) The applicant will be afforded an opportunity to demonstrate or 
to achieve compliance with the requirements of this part within 60 days 
after publication of notice in accordance with paragraph (b)(1) of this 
section or within such further period as the Administrator may allow, by 
demonstrating to the satisfaction of the Administrator that the method 
in question satisfies the requirements of this part, by commencing a 
program to make any adjustments that are necessary to bring the method 
into compliance, or by taking such action as may be necessary to cure 
any violation of the requirements of Sec. 53.9. If adjustments are 
necessary to bring the method into compliance, all such adjustments 
shall be made within a reasonable time as determined by the 
Administrator. If the applicant demonstrates or achieves compliance in 
accordance with this paragraph (b)(2), the Administrator will publish 
notice of such demonstration or achievement in the Federal Register.
    (c) Request for hearing. Within 60 days after publication of a 
notice in accordance with paragraph (b)(1) of this section, the 
applicant or any interested person may request a hearing as provided in 
Sec. 53.12.
    (d) Notice of cancellation. If, at the end of the period referred to 
in paragraph (b)(2) of this section, the Administrator determines that 
the reference or equivalent method designation should be canceled, a 
notice of cancellation will be published in the Federal Register and the 
designation will be deleted from the list maintained under Sec. 53.8(c). 
If a hearing has been requested and granted in accordance with 
Sec. 53.12, action under this paragraph (d) will be taken only after 
completion of proceedings (including any administrative review) 
conducted in accordance with Sec. 53.13 and only if the decision of the 
Administrator reached in such proceedings is that the designation in 
question should be canceled.



Sec. 53.12   Request for hearing on cancellation.

    Within 60 days after publication of a notice in accordance with 
Sec. 53.11(b)(1), the applicant or any interested person may request a 
hearing on the Administrator's action. If, after reviewing the request 
and supporting data, the Administrator finds that the request raises a 
substantial issue of fact, a hearing will be granted in accordance with 
Sec. 53.13 with respect to such issue. The request shall be in writing, 
signed by an authorized representative of the applicant or interested 
person, and shall include a statement specifying:
    (a) Any objections to the Administrator's action.
    (b) Data or other information in support of such objections.

[[Page 15]]



Sec. 53.13   Hearings.

    (a)(1) After granting a request for a hearing under Sec. 53.12, the 
Administrator will designate a presiding officer for the hearing.
    (2) If a time and place for the hearing have not been fixed by the 
Administrator, the hearing will be held as soon as practicable at a time 
and place fixed by the presiding officer, except that the hearing shall 
in no case be held sooner than 30 days after publication of a notice of 
hearing in the Federal Register.
    (3) For purposes of the hearing, the parties shall include EPA, the 
applicant or interested person(s) who requested the hearing, and any 
person permitted to intervene in accordance with paragraph (c) of this 
section.
    (4) The Deputy General Counsel or the Deputy General Counsel's 
representative will represent EPA in any hearing under this section.
    (5) Each party other than EPA may be represented by counsel or by 
any other duly authorized representative.
    (b)(1) Upon appointment, the presiding officer will establish a 
hearing file. The file shall contain copies of the notices issued by the 
Administrator pursuant to Sec. 53.11(b)(1), together with any 
accompanying material, the request for a hearing and supporting data 
submitted therewith, the notice of hearing published in accordance with 
paragraph (a)(2) of this section, and correspondence and other material 
data relevant to the hearing.
    (2) The hearing file shall be available for inspection by the 
parties or their representatives at the office of the presiding officer, 
except to the extent that it contains information identified in 
accordance with Sec. 53.15.
    (c) The presiding officer may permit any interested person to 
intervene in the hearing upon such a showing of interest as the 
presiding officer may require; provided that permission to intervene may 
be denied in the interest of expediting the hearing where it appears 
that the interests of the person seeking to intervene will be adequately 
represented by another party (or by other parties), including EPA.
    (d)(1) The presiding officer, upon the request of any party or at 
the officer's discretion, may arrange for a prehearing conference at a 
time and place specified by the officer to consider the following:
    (i) Simplification of the issues.
    (ii) Stipulations, admissions of fact, and the introduction of 
documents.
    (iii) Limitation of the number of expert witnesses.
    (iv) Possibility of agreement on disposing of all or any of the 
issues in dispute.
    (v) Such other matters as may aid in the disposition of the hearing, 
including such additional tests as may be agreed upon by the parties.
    (2) The results of the conference shall be reduced to writing by the 
presiding officer and made part of the record.
    (e)(1) Hearings shall be conducted by the presiding officer in an 
informal but orderly and expeditious manner. The parties may offer oral 
or written evidence, subject to exclusion by the presiding officer of 
irrelevant, immaterial, or repetitious evidence.
    (2) Witnesses shall be placed under oath.
    (3) Any witness may be examined or cross-examined by the presiding 
officer, the parties, or their representatives. The presiding officer 
may, at his/her discretion, limit cross-examination to relevant and 
material issues.
    (4) Hearings shall be reported verbatim. Copies of transcripts of 
proceedings may be purchased from the reporter.
    (5) All written statements, charts, tabulations, and data offered in 
evidence at the hearing shall, upon a showing satisfactory to the 
presiding officer of their authenticity, relevancy, and materiality, be 
received in evidence and shall constitute part of the record.
    (6) Oral argument shall be permitted. The presiding officer may 
limit oral presentations to relevant and material issues and designate 
the amount of time allowed for oral argument.
    (f)(1) The presiding officer shall make an initial decision which 
shall include written findings and conclusions and the reasons therefore 
on all the material issues of fact, law, or discretion presented on the 
record. The findings, conclusions, and written decision shall be 
provided to the parties and made part of the record. The initial 
decision

[[Page 16]]

shall become the decision of the Administrator without further 
proceedings unless there is an appeal to, or review on motion of, the 
Administrator within 30 calendar days after the initial decision is 
filed.
    (2) On appeal from or review of the initial decision, the 
Administrator will have all the powers consistent with making the 
initial decision, including the discretion to require or allow briefs, 
oral argument, the taking of additional evidence or the remanding to the 
presiding officer for additional proceedings. The decision by the 
Administrator will include written findings and conclusions and the 
reasons or basis therefore on all the material issues of fact, law, or 
discretion presented on the appeal or considered in the review.



Sec. 53.14   Modification of a reference or equivalent method.

    (a) An applicant who offers a method for sale as a reference or 
equivalent method shall report to the EPA Administrator prior to 
implementation any intended modification of the method, including but 
not limited to modifications of design or construction or of operational 
and maintenance procedures specified in the operation manual (see 
Sec. 53.9(g)). The report shall be signed by an authorized 
representative of the applicant, marked in accordance with Sec. 53.15 
(if applicable), and addressed as specified in Sec. 53.4(a).
    (b) A report submitted under paragraph (a) of this section shall 
include:
    (1) A description, in such detail as may be appropriate, of the 
intended modification.
    (2) A brief statement of the applicant's belief that the 
modification will, will not, or may affect the performance 
characteristics of the method.
    (3) A brief statement of the probable effect if the applicant 
believes the modification will or may affect the performance 
characteristics of the method.
    (4) Such further information, including test data, as may be 
necessary to explain and support any statement required by paragraphs 
(b)(2) and (b)(3) of this section.
    (c) Within 30 calendar days after receiving a report under paragraph 
(a) of this section, the Administrator will take one or more of the 
following actions:
    (1) Notify the applicant that the designation will continue to apply 
to the method if the modification is implemented.
    (2) Send notice to the applicant that a new designation will apply 
to the method (as modified) if the modification is implemented, submit 
notice of the determination for publication in the Federal Register, and 
revise or supplement the list referred to in Sec. 53.8(c) to reflect the 
determination.
    (3) Send notice to the applicant that the designation will not apply 
to the method (as modified) if the modification is implemented and 
submit notice of the determination for publication in the Federal 
Register.
    (4) Send notice to the applicant that additional information must be 
submitted before a determination can be made and specify the additional 
information that is needed (in such cases, the 30-day period shall 
commence upon receipt of the additional information).
    (5) Send notice to the applicant that additional tests are necessary 
and specify what tests are necessary and how they shall be interpreted 
(in such cases, the 30-day period shall commence upon receipt of the 
additional test data).
    (6) Send notice to the applicant that additional tests will be 
conducted by the Administrator and specify the reasons for and the 
nature of the additional tests (in such cases, the 30-day period shall 
commence 1 calendar day after the additional tests are completed).
    (d) An applicant who has received a notice under paragraph (c)(3) of 
this section may appeal the Administrator's action as follows:
    (1) The applicant may submit new or additional information pertinent 
to the intended modification.
    (2) The applicant may request the Administrator to reconsider data 
and information already submitted.
    (3) The applicant may request that the Administrator repeat any test 
conducted that was a material factor in the Administrator's 
determination. A representative of the applicant may be present during 
the performance of any such retest.

[[Page 17]]



Sec. 53.15   Trade secrets and confidential or privileged information.

    Any information submitted under this part that is claimed to be a 
trade secret or confidential or privileged information shall be marked 
or otherwise clearly identified as such in the submittal. Information so 
identified will be treated in accordance with part 2 of this chapter 
(concerning public information).



Sec. 53.16   Supersession of reference methods.

    (a) This section prescribes procedures and criteria applicable to 
requests that the Administrator specify a new reference method, or a new 
measurement principle and calibration procedure on which reference 
methods shall be based, by revision of the appropriate appendix to part 
50 of this chapter. Such action will ordinarily be taken only if the 
Administrator determines that a candidate method or a variation thereof 
is substantially superior to the existing reference method(s).
    (b) In exercising discretion under this section, the Administrator 
will consider:
    (1) The benefits, in terms of the requirements and purposes of the 
Act, that would result from specifying a new reference method or a new 
measurement principle and calibration procedure.
    (2) The potential economic consequences of such action for State and 
local control agencies.
    (3) Any disruption of State and local air quality monitoring 
programs that might result from such action.
    (c) An applicant who wishes the Administrator to consider revising 
an appendix to part 50 of this chapter on the ground that the 
applicant's candidate method is substantially superior to the existing 
reference method(s) shall submit an application for a reference or 
equivalent method determination in accordance with Sec. 53.4 and shall 
indicate therein that such consideration is desired. The application 
shall include, in addition to the information required by Sec. 53.4, 
data and any other information supporting the applicant's claim that the 
candidate method is substantially superior to the existing reference 
method(s).
    (d) After receiving an application under paragraph (c) of this 
section, the Administrator will publish notice of its receipt in the 
Federal Register and, within 120 calendar days after receipt of the 
application, take one of the following actions:
    (1) Determine that it is appropriate to propose a revision of the 
appendix to part 50 of this chapter in question and send notice of the 
determination to the applicant.
    (2) Determine that it is inappropriate to propose a revision of the 
appendix to part 50 of this chapter in question, determine whether the 
candidate method is a reference or equivalent method, and send notice of 
the determinations, including a statement of reasons for the 
determination not to propose a revision, to the applicant.
    (3) Send notice to the applicant that additional information must be 
submitted before a determination can be made and specify the additional 
information that is needed (in such cases, the 120-day period shall 
commence upon receipt of the additional information).
    (4) Send notice to the applicant that additional tests are 
necessary, specifying what tests are necessary and how the test shall be 
interpreted (in such cases, the 120-day period shall commence upon 
receipt of the additional test data).
    (5) Send notice to the applicant that additional tests will be 
conducted by the Administrator, specifying the nature of and reasons for 
the additional tests and the estimated time required (in such cases, the 
120-day period shall commence 1 calendar day after the additional tests 
have been completed).
    (e)(1)(i) After making a determination under paragraph (d)(1) of 
this section, the Administrator will publish a notice of proposed 
rulemaking in the Federal Register. The notice of proposed rulemaking 
will indicate that the Administrator proposes:
    (A) To revise the appendix to part 50 of this chapter in question.
    (B) Where the appendix specifies a measurement principle and 
calibration procedure, to cancel reference method designations based on 
the appendix.

[[Page 18]]

    (C) To cancel equivalent method designations based on the existing 
reference method(s).
    (ii) The notice of proposed rulemaking will include the terms or 
substance of the proposed revision, will indicate what period(s) of time 
the Administrator proposes to allow for replacement of existing methods 
under section 2.3 of appendix C to part 58 of this chapter, and will 
solicit public comments on the proposal with particular reference to the 
considerations set forth in paragraphs (a) and (b) of this section.
    (2)(i) If, after consideration of comments received, the 
Administrator determines that the appendix to part 50 in question should 
be revised, the Administrator will, by publication in the Federal 
Register:
    (A) Promulgate the proposed revision, with such modifications as may 
be appropriate in view of comments received.
    (B) Where the appendix to part 50 (prior to revision) specifies a 
measurement principle and calibration procedure, cancel reference method 
designations based on the appendix.
    (C) Cancel equivalent method designations based on the existing 
reference method(s).
    (D) Specify the period(s) that will be allowed for replacement of 
existing methods under section 2.3 of appendix C to part 58 of this 
chapter, with such modifications from the proposed period(s) as may be 
appropriate in view of comments received.
    (3) Canceled designations will be deleted from the list maintained 
under Sec. 53.8(c). The requirements and procedures for cancellation set 
forth in Sec. 53.11 shall be inapplicable to cancellation of reference 
or equivalent method designations under this section.
    (4) If the appendix to part 50 of this chapter in question is 
revised to specify a new measurement principle and calibration procedure 
on which the applicant's candidate method is based, the Administrator 
will take appropriate action under Sec. 53.5 to determine whether the 
candidate method is a reference method.
    (5) Upon taking action under paragraph (e)(2) of this section, the 
Administrator will send notice of the action to all applicants for whose 
methods reference and equivalent method designations are canceled by 
such action.
    (f) An applicant who has received notice of a determination under 
paragraph (d)(2) of this section may appeal the determination by taking 
one or more of the following actions:
    (1) The applicant may submit new or additional information in 
support of the application.
    (2) The applicant may request that the Administrator reconsider the 
data and information already submitted.
    (3) The applicant may request that any test conducted by the 
Administrator that was a material factor in making the determination be 
repeated.
        Table A-1 to Subpart A of Part 53--Summary of Applicable 
      Requirements for Reference and Equivalent Methods for Air 
                   Monitoring of Criteria Pollutants

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                  Applicable Subparts of Part 53
              Pollutant                   Ref. or Equivalent      Manual or Automated    Applicable Part -----------------------------------------------
                                                                                           50 Appendix       A       B       C       D       E       F
--------------------------------------------------------------------------------------------------------------------------------------------------------
SO2..................................  Reference..............  Manual.................               A
                                       Manual.................  .......................        [bcheck]   ......  [bchec
                                                                                                                     k]
                                       Equivalent.............  Automated..............  ...............  [bchec  [bchec  [bchec
                                                                                                             k]      k]      k]
CO...................................  Reference..............  Automated..............                C  [bchec  [bchec
                                                                                                             k]      k]
                                       Manual.................  .......................        [bcheck]   ......  [bchec
                                                                                                                     k]
                                       Equivalent.............  Automated..............  ...............  [bchec  [bchec  [bchec
                                                                                                             k]      k]      k]
O3...................................  Reference..............  Automated..............               D   [bchec  [bchec
                                                                                                             k]      k]
                                       Manual.................  .......................        [bcheck]   ......  [bchec
                                                                                                                     k]
                                       Equivalent.............  Automated..............  ...............  [bchec  [bchec  [bchec
                                                                                                             k]      k]      k]
NO2..................................  Reference..............  Automated..............               F   [bchec  [bchec
                                                                                                             k]      k]
                                       Manual.................  .......................        [bcheck]   ......  [bchec
                                                                                                                     k]
                                       Equivalent.............  Automated..............  ...............  [bchec  [bchec  [bchec
                                                                                                             k]      k]      k]
Pb...................................  Reference..............  Manual.................               G
                                       Equivalent.............  Manual.................  ...............  [bchec  ......  [bchec
                                                                                                             k]              k]
PM10.................................  Reference..............  Manual.................               J   [bchec  ......  ......  [bchec
                                                                                                             k]                      k]
                                       Manual.................  .......................        [bcheck]   ......  [bchec  [bchec
                                                                                                                     k]      k]
                                       Equivalent.............  Automated..............  ...............  [bchec  ......  [bchec  [bchec
                                                                                                             k]              k]      k]

[[Page 19]]

 
PM2.5................................  Reference..............  Manual.................               L   [bchec  ......  ......  ......  [bchec
                                                                                                             k]                              k]
                                       Equivalent Class I.....  Manual.................               L   [bchec  ......  [bchec  ......  [bchec
                                                                                                             k]              k]              k]
                                       Equivalent Class II....  Manual.................               L   [bchec  ......  [bchec  ......  [bchec  [bchec
                                                                                                             k]              k]              k]      k]
                                       Equivalent Class III...  Manual or Automated....  ...............  [bchec  ......  [bchec  ......  [bchec  [bchec
                                                                                                             k]           k] \1\          k] \1\  k] \1\
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Note: Because of the wide variety of potential devices possible, the specific requirements applicable to a Class III candidate equivalent method for
  PM2.5 are not specified explicitly in this part but, instead, shall be determined on a case-by-case basis for each such candidiate method.

             Appendix A to Subpart A of Part 53--References

    (1) American National Standard Quality Systems-Model for Quality 
Assurance in Design, Development, Production, Installation, and 
Servicing, ANSI/ISO/ASQC Q9001-1994. Available from American Society for 
Quality Control, 611 East Wisconsin Avenue, Milwaukee, WI 53202.
    (2) American National Standard--Specifications and Guidelines for 
Quality Systems for Environmental Data Collection and Environmental 
Technology Programs, ANSI/ASQC E41994. Available from American Society 
for Quality Control, 611 East Wisconsin Avenue, Milwaukee, WI 53202.
    (3) Dimensioning and Tolerancing, ASME Y14.5M-1994. Available from 
the American Society of Mechanical Engineers, 345 East 47th Street, New 
York, NY 10017.
    (4) Mathematical Definition of Dimensioning and Tolerancing 
Principles, ASME Y14.5.1M-1994. Available from the American Society of 
Mechanical Engineers, 345 East 47th Street, New York, NY 10017.
    (5) ISO 10012, Quality Assurance Requirements for Measuring 
Equipment-Part 1: Meteorological confirmation system for measuring 
equipment):1992(E). Available from American Society for Quality Control, 
611 East Wisconsin Avenue, Milwaukee, WI 53202.
    (6) Copies of section 2.12 of the Quality Assurance Handbook for Air 
Pollution Measurement Systems, Volume II, Ambient Air Specific Methods, 
EPA/600/R-94/038b, are available from Department E (MD-77B), U.S. EPA, 
Research Triangle Park, NC 27711.



    Subpart B--Procedures for Testing Performance Characteristics of 
 Automated Methods SO2, CO, O3, and NO2



Sec. 53.20  General provisions.

    (a) The test procedures given in this subpart shall be used to test 
the performance of candidate automated methods against the performance 
specifications given in table B-1. A test analyzer representative of the 
candidate automated method must exhibit performance better than, or 
equal to, the specified value for each such specification (except Range) 
to satisfy the requirements of this subpart. Except as provided in 
paragraph (b) of this section, the range of the candidate method must be 
the range specified in table B-1 to satisfy the requirements of this 
subpart.
    (b) For a candidate method having more than one selectable range, 
one range must be that specified in table B-1 and a test analyzer 
representative of the method must pass the tests required by this 
subpart while operated in that range. The tests may be repeated for a 
broader range (i.e., one extending to higher concentrations) than that 
specified in table B-1 provided that the range does not extend to 
concentrations more than two times the upper range limit specified in 
table B-1. If the application is for a reference method determination, 
the tests may be repeated for a narrower range (one extending to lower 
concentrations) than that specified in table B-1.

If the tests are conducted or passed only for the specified range, any 
reference or equivalent method determination with respect to the method 
will be limited to that range. If the tests are passed for both the 
specified range and a broader range (or ranges), any such determination 
will include the broader range(s) as well as the specified range, 
provided that the tests required by subpart C of this part (if 
applicable) are met for the broader range(s). If the tests are passed 
for both the specified range and a narrower range, a reference method 
determination for the method will include the narrower range as well as 
the specified range. Appropriate test data shall be submitted for each 
range sought to be included in a reference or equivalent

[[Page 20]]

method determination under this paragraph (b).
    (c) For each performance specification (except Range), the test 
procedure shall be initially repeated seven (7) times to yield 7 test 
results. Each result shall be compared with the corresponding 
specification in table B-1; a value higher than or outside that 
specified constitutes a failure. These 7 results for each parameter 
shall be interpreted as follows:
    (1) Zero (0) failures: Candidate method passes the performance 
parameter.
    (2) Three (3) or more failures: Candidate method fails the 
performance parameter.
    (3) One (1) or two (2) failures: Repeat the test procedures for the 
parameter eight (8) additional times yielding a total of fifteen (15) 
test results. The combined total of 15 test results shall then be 
interpreted as follows:
    (i) One (1) or two (2) failures: Candidate method passes the 
performance parameter.
    (ii) Three (3) or more failures: Candidate method fails the 
performance parameter.

                           Table B-1--Performance Specifications for Automated Methods
----------------------------------------------------------------------------------------------------------------
                                                   Sulfur   Photochemical    Carbon    Nitrogen  Definitions and
    Performance parameter          Units \1\      dioxide      oxidants     monoxide   dioxide   test procedures
----------------------------------------------------------------------------------------------------------------
1. Range.....................  Parts per             0-0.5        0-0.5         0-50      0-0.5  Sec. 53.23(a).
                                million.
2. Noise.....................  ......do........       .005         .005          .50       .005  Sec. 53.23(b).
3. Lower detectable limit....  Parts per               .01          .01          1.0        .01  Sec. 53.23(c).
                                million.
4. Interference equivalent...  ................  .........  .............  .........  .........  Sec. 53.23(d).
  Each interferant...........  Parts per         .  .  2  5  [mu] g/m \3\ at 25  deg.C and 760 mm Hg, multiply by M/0.02447, where M
  is the molecular weight of the gas.

    (d) The tests for zero drift, span drift, lag time, rise time, fall 
time, and precision shall be combined into a single sequential procedure 
to be conducted at various line voltages and ambient temperatures 
specified in Sec. 53.23(e). The tests for noise, lower detectable limit, 
and interference equivalents shall be made at any temperature between 20 
 deg.C. and 30  deg.C. and at any normal line voltage between 105 and 
125 volts, and shall be conducted such that not more than three (3) test 
results for each parameter are obtained per 24 hours.
    (e) All response readings to be recorded shall first be converted to 
concentration units according to the calibration curve constructed in 
accordance with Sec. 53.21(b).
    (f) All recorder chart tracings, records, test data and other 
documentation obtained from or pertinent to these tests shall be 
identified, dated, signed by the analyst performing the test, and 
submitted.
    Note: Suggested formats for reporting the test results and 
calculations are provided in Figures B-2, B-3, B-4, B-5, and B-6 in 
appendix A. Symbols and abbreviations used in this subpart are listed in 
table B-5, appendix A.

[40 FR 7049, Feb. 18, 1975, as amended at 40 FR 18168, Apr. 25, 1975; 41 
FR 52694, Dec. 1, 1976]



Sec. 53.21  Test conditions.

    (a) Set-up and start-up of the test analyzer shall be in strict 
accordance with the operating instructions specified in the manual 
referred to in Sec. 53.4(b)(3). Allow adequate warm-up or stabilization 
time as indicated in the operating instructions before beginning the 
tests. If the candidate method does not include an integral strip chart 
recorder,

[[Page 21]]

connect the output signal of the test analyzer to a suitable strip chart 
recorder of the servo, null-balance type. This recorder shall have a 
chart width of at least 25 centimeters, chart speeds up to 10 cm per 
hour, a response time of 1 second or less, a deadband of not more than 
0.25 percent of full scale, and capability either of reading 
measurements at least 5 percent below zero or of offsetting the zero by 
at least 5 percent.
    Note: Other data acquisition components may be used along with the 
chart recorder during conduct of these tests. Use of the chart recorder 
is intended only to facilitate evaluation of data submitted.
    (b) Calibration of the test analyzer shall be as indicated in the 
manual referred to in Sec. 53.4(b)(3) and as follows: If the chart 
recorder does not have below zero capability, adjust either the controls 
of the test analyzer or the chart recorder to obtain a +5% offset zero 
reading on the recorder chart to facilitate observing negative response 
or drift. If the candidate method is not capable of negative response, 
the test analyzer (not recorder) shall be operated with an offset zero. 
Construct and submit a calibration curve showing a plot of recorder 
scale readings (ordinate) against pollutant concentrations (abscissa). A 
plot of output units (volts, millivolts, milliamps, etc.) against 
pollutant concentrations shall also be shown for methods not including 
an integral chart recorder. All such plots shall consist of at least 
seven (7) approximately equally spaced, identifiable points, including 0 
and 905 percent of full scale.
    (c) Once the test analyzer has been set up and calibrated and the 
tests started, manual adjustment or normal periodic maintenance is 
permitted only every 3 days. Automatic adjustments which the test 
analyzer performs by itself are permitted at any time. The submitted 
records shall show clearly when any manual adjustment or periodic 
maintenance was made and describe the operations performed.
    (d) If the test analyzer should malfunction during any of the 
performance tests, the tests for that parameter shall be repeated. A 
detailed explanation of the malfunction, remedial action taken, and 
whether recalibration was necessary (along with all pertinent records 
and charts) shall be submitted. If more than one malfunction occurs, all 
performance test procedures for all parameters shall be repeated.
    (e) Tests for all performance parameters shall be completed on the 
same test analyzer, except that use of multiple test analyzers to 
accelerate testing will be permitted when alternate ranges of a multi-
range candidate method are being tested.



Sec. 53.22  Generation of test atmospheres.

    (a) Table B-2 specifies preferred methods for generating test 
atmospheres and suggested methods of verifying the concentrations. Only 
one means of establishing the concentration of a test atmosphere is 
normally required. If the method of generation can produce reproducible 
concentrations, verification is optional. If the method of generation is 
not reproducible, then establishment of the concentration by some 
verification method is required. However, when a method of generation 
other than that given in table B-2 is used, the test concentration shall 
be verified.
    (b) The test atmosphere delivery system shall be designed and 
constructed so as not to significantly alter the test atmosphere 
composition or concentration during the period of the test. The delivery 
system shall be fabricated from borosilicate glass or FEP Teflon.
    (c) The output of the test atmosphere generation system shall be 
sufficiently stable to obtain stable response during the required tests. 
If a permeation device is used for generation of a test atmosphere, the 
device, as well as the air passing over it, shall be controlled to 
0.1  deg.C.
    (d) All diluent air shall be zero air free of contaminants likely to 
cause a detectable response on the test analyzer.

[[Page 22]]



                                           Table B-2--Test Atmospheres
----------------------------------------------------------------------------------------------------------------
               Test gas                             Generation                          Verification
----------------------------------------------------------------------------------------------------------------
Ammonia...............................  Permeation device. Similar to      Indophenol method, reference 3.
                                         system described in references 1
                                         and 2.
Carbon dioxide........................  Cylinder of zero air or nitrogen   Use NBS-certified standards whenever
                                         containing CO2 as required to      possible. If NBS standards are not
                                         obtain the concentration           available, obtain 2 standards from
                                         specified in table B-3.            independent sources which agree
                                                                            within 2 percent; or obtain one
                                                                            standard and submit it to an
                                                                            independent laboratory for analysis
                                                                            which must agree within 2 percent of
                                                                            the supplier's nominal analysis.
Carbon monoxide.......................  Cylinder of zero air or nitrogen     Do.
                                         containing CO as required to
                                         obtain the concentration
                                         specified in table B-3.
Ethane................................  Cylinder of zero air or nitrogen     Do.
                                         containing ethane as required to
                                         obtain the concentration
                                         specified in table B-3.
Ethylene..............................  Cylinder of prepurified nitrogen     Do.
                                         containing ethylene as required
                                         to obtain the concentration
                                         specified in table B-3.
Hydrogen chloride.....................  Cylinder \1\ of prepurified        Collect samples in bubbler containing
                                         nitrogen containing                distilled water and analyze by the
                                         approximately 100 p/m of gaseous   mercuric thiocyanate method, ASTM
                                         HCl. Dilute with zero air to       (D512), p. 29, reference 4.
                                         concentration specified in table
                                         B-3.
Hydrogen sulfide......................  Permeation device system           Tentative method of analysis for H 2
                                         described in references 1 and 2.   S content of the atmosphere, p. 426,
                                                                            reference 5.
Methane...............................  Cylinder of zero air containing    Use NBS-certified standards whenever
                                         methane as required to obtain      possible. If NBS standards are not
                                         the concentration specified in     available, obtain 2 standards from
                                         table B-3.                         independent sources which agree
                                                                            within 2 percent; or obtain one
                                                                            standard and submit it to an
                                                                            independent laboratory for an
                                                                            analysis which must agree within 2
                                                                            percent of the supplier's nominal
                                                                            analysis.
Nitric oxide..........................  Cylinder \1\ of prepurified        Gas-phase titration as described in
                                         nitrogen containing                reference 6, section 7.1.
                                         approximately 100 p/m NO. Dilute
                                         with zero air to required
                                         concentration.
Nitrogen dioxide......................  1. Gas phase titration as          1. Use an NO 2 analyzer calibrated
                                         described in reference 6.          with a gravimetrically calibrated
                                        2. Permeation device, similar to    permeation device.
                                         system described in references 1  2. Use an NO 2 analyzer calibrated by
                                         and 2.                             gas-phase titration as described in
                                                                            reference 6.
Ozone.................................  Calibrated ozone generator as      Use an ozone analyzer calibrated by
                                         described in reference 7,          gas-phase titration as described in
                                         appendix D.                        reference 6.
Sulfur dioxide........................  Permeation device Similar to       P-rosaniline method. Reference 7,
                                         system described in reference      appendix A.
                                         method for SO2, reference 7,
                                         appendix A.
Water.................................  Pass zero air through distilled    Measure relative humidity by means of
                                         water at a fixed known             a dew-point indicator, calibrated
                                         temperature between 20 deg. and    electrolytic or piezo electric
                                         30  deg.C. such that the air       hygrometer, or wet/dry bulb
                                         stream becomes saturated. Dilute   thermometer.
                                         with zero air to concentration
                                         specified in table B-3.
Xylene................................  Cylinder of prepurified nitrogen   Use NBS-certified standards whenever
                                         containing 100 p/m xylene.         possible. If NBS standards are not
                                         Dilute with zero air to            available, obtain 2 standards from
                                         concentration specified in table   independent sources which agree
                                         B-3.                               within 2 percent; or obtain one
                                                                            standard and submit it to an
                                                                            independent laboratory for an
                                                                            analysis which must agree within 2
                                                                            percent of the supplier's nominal
                                                                            analysis.
Zero air..............................  1. Ambient air purified by
                                         appropriate scrubbers or other
                                         devices such that it is free of
                                         contaminants likely to cause a
                                         detectable response on the
                                         analyzer.
                                        2. Cylinder of compressed zero
                                         air certified by the supplier or
                                         an independent laboratory to be
                                         free of contaminants likely to
                                         cause a detectable response on
                                         the analyzer.
----------------------------------------------------------------------------------------------------------------
\1\ Use stainless steel pressure regulator dedicated to the pollutant measured.
Reference 1. O'Keeffe, A. E., and Ortaman, G. C. ``Primary Standards for Trace Gas Analysis,'' Anal. Chem. 38,
  760 (1966).
Reference 2. Scaringelli, F. P., A. E., Rosenberg, E., and Bell, J. P., ``Primary Standards for Trace Gas
  Analysis.'' Anal. Chem. 42, 871 (1970).
Reference 3. ``Tentative Method of Analysis for Ammonia in the Atmosphere (Indophenol Method)'', Health Lab
  Sciences, vol. 10, No. 2, 115-118, April 1973.
Reference 4. 1973 Annual Book of ASTM Standards, American Society for Testing and Materials, 1916 Race St.,
  Philadelphia, PA.
Reference 5. Methods for Air Sampling and Analysis, Intersociety Committee, 1972, American Public Health
  Association, 1015.
Reference 6. Federal Register, vol. 38, No. 110, Tentative Method for the Continuous Measurement of Nitrogen
  Dioxide (Chemiluminescent) addenda C. (June 8, 1973).
Reference 7. Federal Register, vol. 36, No. 228, National Primary and Secondary Ambient Air Quality Standards,
  Nov. 25, 1971.


[[Page 23]]

    (e) The concentration of each test atmosphere shall be established 
and/or verified before or during each series of tests. Samples for 
verifying test concentrations shall be collected from the test 
atmosphere delivery system as close as possible to the sample intake 
port of the test analyzer.
    (f) The accuracy of all flow measurements used to calculate test 
atmosphere concentrations shall be documented and referenced to a 
primary standard (such as a spirometer, bubble meter, etc.). Any 
corrections shall be clearly shown. All flow measurements given in 
volume units shall be standardized to 25  deg.C. and 760 mm Hg.
    (g) Schematic drawings and other information showing complete 
procedural details of the test atmosphere generation, verification, and 
delivery system shall be provided. All pertinent calculations shall be 
clearly indicated.

[40 FR 7049, Feb. 18, 1975, as amended at 40 FR 18168, Apr. 25, 1975]



Sec. 53.23  Test procedures.

    (a) Range--(1) Technical definition. Nominal minimum and maximum 
concentrations which a method is capable of measuring.
    Note: The nominal range is specified at the lower and upper range 
limits in concentration units, for example, 0-0.5 p/m.
    (2) Test procedure. Submit a suitable calibration curve, as 
specified in Sec. 53.21(b), showing the test analyzer's response over at 
least 95 percent of the required range.
    Note: A single calibration curve will normally suffice.
    (b) Noise--(1) Technical definition. Spontaneous, short duration 
deviations in output, about the mean output, which are not caused by 
input concentration changes. Noise is determined as the standard 
deviation about the mean and is expressed in concentration units.
    (2) Test procedure. (i) Allow sufficient time for the test analyzer 
to warm up and stabilize. Determine at two concentrations, first using 
zero air and then a pollutant test gas concentration as indicated below. 
The noise specification in table B-1 shall apply to both of these tests.
    (ii) Connect an integrating-type digital meter (DM) suitable for the 
test analyzer's output and accurate to three significant digits, to 
measure the analyzer's output signal.
    Note: Use of a chart recorder in addition to the DM is optional.
    (iii) Measure zero air for 60 minutes. During this 60-minute 
interval, record twenty-five (25) readings at 2-minute intervals. (See 
Figure B-2 in appendix A.)
    (iv) Convert each DM reading to concentration units (p/m) by 
reference to the test analyzer's calibration curve as determined in 
Sec. 53.21(b). Label the converted DM readings r1, 
r2, r3 . . . ri . . . r25.
    (v) Calculate the standard deviation, S, as follows:
    
    

where i indicates the i-th DM reading in ppm.

    (vi) Let S at 0 ppm be identified as So; compare So 
to the noise specification given in table B-1.
    (vii) Repeat steps (iii) through (vi) of this section using a 
pollutant test atmosphere concentration of 805 percent of 
the upper range limit (URL) instead of zero gas, and let S at 80 percent 
of the URL be identified as S80. Compare S80 to 
the noise specification given in table B-1.
    (viii) Both S0 and S80 must be less than or 
equal to the specification for noise to pass the test for the noise 
parameter.
    (c) Lower detectable limit--(1) Technical definition. The minimum 
pollutant concentration which produces a signal of twice the noise 
level.
    (2) Test procedure. (i) Allow sufficient time for the test analyzer 
to warm up and stabilize. Measure zero air and record the stable reading 
in ppm as BZ. (See Figure B-3 in appendix A.)
    (ii) Generate and measure a pollutant test atmosphere concentration 
equal to the value for the lower detectable limit specified in table B-
1.
    Note: If necessary, the test atmosphere concentration may be 
generated or verified at a higher concentration, then accurately diluted 
with zero air to the final required concentration.

[[Page 24]]

    (iii) Record the test analyzer's stable indicated reading, in ppm, 
as BL.
    (iv) Determine the Lower Detectable Limit (LDL) as LDL = 
BL-BZ. Compare this LDL value with the noise 
level, S0, determined in Sec. 53.23(b), for 0 concentration 
test atmosphere. LDL must be equal to or higher than 2S0 to 
pass this test.
    (d) Interference equivalent--(1) Technical definition. Positive or 
negative response caused by a substance other than the one being 
measured.
    (2) Test procedure. The test analyzer shall be tested for all 
substances likely to cause a detectable response. The test analyzer 
shall be challenged, in turn, with each interfering agent specified in 
table B-3. In the event that there are substances likely to cause a 
significant interference which have not been specified in table B-3, 
these substances shall be tested at a concentration substantially higher 
than that normally found in the ambient air. The interference may be 
either positive or negative, depending on whether the test analyzer's 
response is increased or decreased by the presence of the interferent. 
Interference equivalents shall be determined by mixing each interferent, 
one at a time, with the pollutant at the concentrations specified in 
table B-3, and comparing the test analyzer's response to the response 
caused by the pollutant alone. Known gas-phase reactions that might 
occur between an interferent and the pollutant are designated by 
footnote 3 in table B-3. In these cases, the interference equivalent 
shall be determined in the absence of the pollutant.
    (i) Allow sufficient time for warm-up and stabilization of the test 
analyzer.
    (ii) For a candidate method using a prefilter or scrubber based upon 
a chemical reaction to derive part of its specificity, and which 
requires periodic service or maintenance, the test analyzer shall be 
``conditioned'' prior to each interference test as follows:

[[Page 25]]



                                                                 Table B-3--Interferant Test Concentration,\1\ Parts Per Million
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                        Hydrochloric           Hydrogen   Sulfur   Nitrogen   Nitric   Carbon                         M-      Water    Carbon
        Pollutant               Analyzer type \2\           acid      Ammonia   sulfide   dioxide   dioxide   oxide    dioxide  Ethylene   Ozone    xylene    vapor   monoxide  Methane   Ethane
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SO2.....................  Flame photometric (FPD).....  ............  .......       0.1  \1\ 0.14  ........  .......       750  ........  .......  .......  \3\ 20,0        50  .......  .......
                                                                                                                                                                  00
SO2.....................  Gas chromatography (FPD)....  ............  .......        .1    \4\.14  ........  .......       750  ........  .......  .......  \3\ 20,0        50  .......  .......
                                                                                                                                                                  00
SO2.....................  Spectrophotometric-wet               0.2    \3\ 0.1        .1    \4\.14       0.5  .......       750  ........      0.5  .......  ........  ........  .......  .......
                           chemical (pararosaniline
                           reaction).
SO2.....................  Electrochemical.............          .2      \3\.1        .1    \4\.14        .5      0.5  ........       0.2       .5  .......  \3\ 20,0  ........  .......  .......
                                                                                                                                                                  00
SO2.....................  Conductivity................          .2      \3\.1  ........    \4\.14        .5  .......       750  ........  .......  .......  ........  ........  .......  .......
SO2.....................  Spectrophotometric-gas phase  ............  .......  ........    \4\.14        .5       .5  ........  ........       .5      0.2  ........  ........  .......  .......
O3......................  Chemiluminescent............  ............  .......     \3\.1  ........  ........  .......       750  ........   \4\.08  .......  \3\ 20,0  ........  .......  .......
                                                                                                                                                                  00
O3......................  Electrochemical.............  ............    \3\.1  ........        .5        .5  .......  ........  ........   \4\.08  .......  \3\ 20,0  ........  .......  .......
                                                                                                                                                                  00
O3......................  Spectrophotometric-wet        ............    \3\.1  ........        .5        .5    \3\.5  ........  ........   \4\.08  .......  ........  ........  .......  .......
                           chemical (potassium iodide
                           reaction).
O3......................  Spectrophotometric-gas phase  ............  .......  ........        .5        .5    \3\.5  ........  ........   \4\.08  .......  ........  ........  .......  .......
CO......................  Infrared....................  ............  .......  ........  ........  ........  .......       750  ........  .......  .......    20,000    \4\ 10  .......  .......
CO......................  Gas chromatography with       ............  .......  ........  ........  ........  .......  ........  ........  .......  .......    20,000    \4\ 10  .......      0.5
                           flame ionization detector.
CO......................  Electrochemical.............  ............  .......  ........  ........  ........       .5  ........        .2  .......  .......    20,000    \4\ 10  .......  .......
CO......................  Catalytic combustion-thermal  ............       .1  ........  ........  ........  .......       750        .2  .......  .......    20,000    \4\ 10      5.0       .5
                           detection.
CO......................  IR fluorescence.............  ............  .......  ........  ........  ........  .......       750  ........  .......  .......    20,000    \4\ 10  .......       .5
CO......................  Mercury replacement UV        ............  .......  ........  ........  ........  .......  ........        .2  .......  .......  ........    \4\ 10  .......       .5
                           photometric.
NO2.....................  Chemiluminescent............  ............    \3\.1  ........        .5     \4\.1       .5  ........  ........  .......  .......    20,000  ........  .......  .......
NO2.....................  Spectrophotometric-wet        ............  .......  ........        .5     \4\.1       .5       750  ........       .5  .......  ........  ........  .......  .......
                           chemical (azo-dye reaction).
NO2.....................  Electrochemical.............         0.2      \3\.1  ........        .5     \4\.1       .5       750  ........       .5  .......    20,000        50  .......  .......
NO2.....................  Spectrophotometric-gas phase  ............    \3\.1  ........        .5     \4\.1       .5  ........  ........       .5  .......    20,000        50  .......  .......
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Concentrations of interferant listed must be prepared and controlled to  10 percent of the state value.
\2\ Analyzer types not listed will be considered by the administrator as special cases.
\3\ Do not mix with pollutant.
\4\ Concentration of pollutant used for test. These pollutant concentrations must be prepared to  10 percent of the stated value.


[[Page 26]]

    (A) Service or perform the indicated maintenance on the scrubber or 
prefilter as directed in the manual referred to in Sec. 53.4(b)(3).
    (B) Before testing for each interferent, allow the test analyzer to 
sample through the scrubber a test atmosphere containing the interferent 
at a concentration equal to the value specified in table B-3. Sampling 
shall be at the normal flow rate and shall be continued for 6 continuous 
hours prior to testing.
    (iii) Generate three test atmosphere streams as follows:
    (A) Test atmosphere P: Pollutant concentration.
    (B) Test atmosphere I: Interference concentration.
    (C) Test atmosphere Z: Zero air.
    (iv) Adjust the individual flow rates and the pollutant or 
interferent generators for the three test atmospheres as follows:
    (A) The flow rates of test atmospheres I and Z shall be identical.
    (B) The concentration of pollutant in test atmosphere P shall be 
adjusted such that when P is mixed (diluted) with either test atmosphere 
I or Z, the resulting concentration of pollutant shall be as specified 
in table B-3.
    (C) The concentration of interferent in test atmosphere I shall be 
adjusted such that when I is mixed (diluted) with test atmosphere P, the 
resulting concentration of interferent shall be equal to the value 
specified in table B-3.
    (D) To minimize concentration errors due to flow rate differences 
between I and Z, it is recommended that, when possible, the flow rate of 
P be from 10 to 20 times larger than the flow rates of I and Z.
    (v) Mix test atmospheres P and Z by passing the total flow of both 
atmospheres through a mixing flask.
    (vi) Sample and measure the mixture of test atmospheres P and Z with 
the test analyzer. Allow for a stable reading, and record the reading, 
in concentration units, as R (see Figure B-3).
    (vii) Mix test atmospheres P and I by passing the total flow of both 
atmospheres through a mixing flask.
    (viii) Sample and measure this mixture. Record the stable reading, 
in concentration units, as RI.
    (ix) Calculate the interference equivalent (IE) as:

IE = RI-R


IE must be equal to or less than the specification given in table B-1 
for each interferent to pass the test.
    (x) Follow steps (iii) through (ix) of this section, in turn, to 
determine the interference equivalent for each interferent.
    (xi) For those interferents which cannot be mixed with the 
pollutant, as indicated by footnote (3) in table B-3, adjust the 
concentration of test atmosphere I to the specified value without being 
mixed or diluted by the pollutant test atmosphere. Determine IE as 
follows:
    (A) Sample and measure test atmosphere Z (zero air). Allow for a 
stable reading and record the reading, in concentration units, as R.
    (B) Sample and measure the interferent test atmosphere I. If the 
test analyzer is not capable of negative readings, adjust the analyzer 
(not the recorder) to give an offset zero. Record the stable reading in 
concentration units as RI, extrapolating the calibration 
curve, if necessary, to represent negative readings.
    (C) Calculate IE=RI-R. IE must be equal to or less than 
the specification in table B-1 to pass the test.
    (xii) Sum the absolute value of all the individual interference 
equivalents. This sum must be equal to or less than the total 
interferent specification given in table B-1 to pass the test.
    (e) Zero drift, span drift, lag time, rise time, fall time, and 
precision--(1) Technical definitions--(i) Zero drift: The change in 
response to zero pollutant concentration, over 12- and 24-hour periods 
of continuous unadjusted operation.
    (ii) Span drift: The percent change in response to an up-scale 
pollutant concentration over a 24-hour period of continuous unadjusted 
operation.
    (iii) Lag time: The time interval between a step change in input 
concentration and the first observable corresponding change in response.
    (iv) Rise time: The time interval between initial response and 95 
percent of final response after a step increase in input concentration.

[[Page 27]]

    (v) Fall time: The time interval between initial response and 95 
percent of final response after a step decrease in input concentration.
    (vi) Precision: Variation about the mean of repeated measurements of 
the same pollutant concentration, expressed as one standard deviation 
about the mean.
    (2) Tests for these performance parameters shall be accomplished 
over a period of seven (7) or more days. During this time, the line 
voltage supplied to the test analyzer and the ambient temperature 
surrounding the analyzer shall be varied from day to day. One test 
result for each performance parameter shall be obtained each test day, 
for seven (7) or fifteen (15) test days as necessary. The tests are 
performed sequentially in a single procedure.
    (3) The 24-hour test day may begin at any clock hour. The first 12 
hours out of each test day are required for testing 12-hour zero drift. 
Tests for the other parameters shall be conducted during the remaining 
12 hours.
    (4) Table B-4 specifies the line voltage and room temperature to be 
used for each test day. The line voltage and temperature shall be 
changed to the specified values at the start of each test day (i.e., at 
the start of the 12-hour zero test). Initial adjustments (day zero) 
shall be made at a line voltage of 115 volts (rms) and a room 
temperature of 25  deg.C.
    (5) The tests shall be conducted in blocks consisting of 3 test days 
each until 7 or 15 test results have been obtained. (The final block may 
contain fewer than three test days.) If a test is interrupted by an 
occurrence other than a malfunction of the test analyzer, only the block 
during which the interruption occurred shall be repeated.
    (6) During each block, manual adjustments to the electronics, gas, 
or reagent flows or periodic maintenance shall not be permitted. 
Automatic adjustments which the test analyzer performs by itself are 
permitted at any time.
    (7) At least 4 hours prior to the start of the first test day of 
each block, the test analyzer may be adjusted and/or serviced according 
to the periodic maintenance procedures specified in the manual referred 
to in Sec. 53.4(b)(3). If a new block is to immediately follow a 
previous block, such adjustments or servicing may be done immediately 
after completion of the day's tests for the last day of the previous 
block and at the voltage and temperature specified for that day, but 
only on test days 3, 6, 9, and 12.
    Note: If necessary, the beginning of the test days succeeding such 
maintenance or adjustment may be delayed as necessary to complete the 
service or adjustment operation.
    (8) All response readings to be recorded shall first be converted to 
concentration units according to the calibration curve. Whenever a test 
atmosphere is to be measured but a stable reading is not required, the 
test atmosphere shall be measured long enough to cause a change in 
response of at least 10% of full scale. Identify all readings and other 
pertinent data on the strip chart. (See Figure B-1 illustrating the 
pattern of the required readings.)

      Table B-4--Line Voltage and Room Temperature Test Conditions
------------------------------------------------------------------------
                          Line           Room
      Test day        voltage,\1\  temperature,\2\        Comments
                          rms            deg.C
------------------------------------------------------------------------
0...................          115             25    Initial set-up and
                                                     adjustments.
1...................          125             20
2...................          105             20
3...................          125             30    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
4...................          105             30
5...................          125             20
6...................          105             20    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
7...................          125             30    Examine test results
                                                     to ascertain if
                                                     further testing is
                                                     required.
8...................          105             30
9...................          125             20    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
10..................          105             20
11..................          125             30
12..................          105             30    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
13..................          125             20

[[Page 28]]

 
14..................          105             20
15..................          125             30
------------------------------------------------------------------------
\1\ Voltage specified shall be controlled to  1 volt.
\2\ Temperature specified shall be controlled to  1  deg.C.


[[Page 29]]

[GRAPHIC] [TIFF OMITTED] TC01JY92.000

    (9) Test procedure. (i) Arrange to generate pollutant test 
atmospheres as follows:

------------------------------------------------------------------------
                                               Pollutant concentration
              Test atmosphere                         (percent)
------------------------------------------------------------------------
A0........................................  Zero air.
A20.......................................  205 of the upper
                                             range limit.
A30.......................................  305 of the upper
                                             range limit.

[[Page 30]]

 
A80.......................................  805 of the upper
                                             range limit.
A90.......................................  905 of the upper
                                             range limit.
------------------------------------------------------------------------


Test atmospheres A0, A20, and A80 shall 
be consistent during the tests and from day to day.
    (ii) For steps (xxv) through (xxxi) of this section, a chart speed 
of at least 10 centimeters per hour shall be used. The actual chart 
speed, chart speed changes, and time checks shall be clearly marked on 
the chart.
    (iii) Allow sufficient time for test analyzer to warm up and 
stabilize at a line voltage of 115 volts and a room temperature of 25 
deg.C. Recalibrate, if necessary, and adjust the zero baseline to 5 
percent of chart. No further adjustments shall be made to the analyzer 
until the end of the tests on the third day.
    (iv) Measure test atmosphere A0 until a stable reading is 
obtained, and record this reading (in ppm) as Z'n, where n = 
0 (see Figure B-4 in appendix A).
    (v) Measure test atmosphere A20. Allow for a stable 
reading and record it as M'n, where n = 0.
    (vi) Measure test atmosphere A80. Allow for a stable 
reading and record it as S'n, where n = 0.
    (vii) The above readings for Z'0, M'0, and 
S'0 should be taken at least four (4) hours prior to the 
beginning of test day 1.
    (viii) At the beginning of each test day, adjust the line voltage 
and room temperature to the values given in table B-4.
    (ix) Measure test atmosphere A0 continuously for at least 
twelve (12) continuous hours during each test day.
    (x) After the 12-hour zero drift test (step ix), sample test 
atmosphere A0. A stable reading is not required.
    (xi) Measure test atmosphere A20 and record the stable 
reading (in ppm) as P1. (See Figure B-4 in appendix A.)
    (xii) Sample test atmosphere A30; a stable reading is not 
required.
    (xiii) Measure test atmosphere A20 and record the stable 
reading as P2.
    (xiv) Sample test atmosphere A0; a stable reading is not 
required.
    (xv) Measure test atmosphere A20 and record the stable 
reading as P3.
    (xvi) Sample test atmosphere A30; a stable reading is not 
required.
    (xvii) Measure test atmosphere A20 and record the stable 
reading as P4.
    (xviii) Sample test atmosphere A0; a stable reading is 
not required.
    (xix) Measure test atmosphere A20 and record the stable 
reading as P5.
    (xx) Sample test atmosphere A30; a stable reading is not 
required.
    (xxi) Measure test atmosphere A20 and record the stable 
reading as P6.
    (xxii) Measure test atmosphere A30 and record the stable 
reading as P7.
    (xxiii) Sample test atmosphere A90; a stable reading is 
not required.
    (xxiv) Measure test atmosphere A80 and record the stable 
reading as P8. Increase chart speed to at least 10 
centimeters per hour.
    (xxv) Measure test atmosphere A0. Record the stable 
reading as L1.
    (xxvi) Quickly switch the test analyzer to measure test atmosphere 
A80 and mark the recorder chart to show the exact time when 
the switch occurred.
    (xxvii) Measure test atmosphere A90 and record the stable 
reading as P80.
    (xxviii) Sample test atmosphere A90; a stable reading is 
not required.
    (xxix) Measure test atmosphere A80 and record the stable 
reading as P10.
    (xxx) Measure test atmosphere A0 and record the stable 
reading as L2.
    (xxxi) Measure test atmosphere A80 and record the stable 
reading as P11.
    (xxxii) Sample test atmosphere A90; a stable reading is 
not required.
    (xxxiii) Measure test atmosphere A80 and record the 
stable reading as P12.
    (xxxiv) Repeat steps (viii) through (xxxiii) of this section, each 
test day.
    (xxxv) If zero and span adjustments are made after the readings are 
taken on test days 3, 6, 9, or 12, complete all adjustments; then 
measure test atmospheres A0, A80, and A20. 
Allow for a stable reading on each, and record the readings as 
Z'nS'n, and Mn respectively, where n = 
the test day number.
    (10) Determine the results of each day's tests as follows. Mark the 
recorder chart to show readings and determinations.
    (i) Zero drift. (A) 12-hour. Examine the strip chart pertaining to 
the 12-

[[Page 31]]

hour continuous zero air test. Determine the minimum (Cmin.) and maximum 
(Cmax.) readings (in p/m) during this period of 12 consecutive hours, 
extrapolating the calibration curve to negative concentration units if 
necessary. Determine the 12-hour zero drift (12ZD) as 12ZD = 
Cmax.-Cmin.. (See Figure B-5 in appendix A.)
    (B) Calculate the 24-hour zero drift (24ZD) for the n-th test day as 
24ZDn = Zn-Zn-1, or 24ZDn = 
Zn-Z'n-1 if zero adjustment was made on the 
previous day, where Zn = \1/2\(L1+L2) 
for L1 and L2 taken on the n-th test day.
    (C) Compare 12ZD and 24ZD to the zero drift specification in table 
B-1. Both 12ZD and 24ZD must be equal to or less than the specified 
value to pass the test for zero drift.
    (ii) Span drift. (A) Span drift at 20 percent of URL (MSD)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.000
    
    [GRAPHIC] [TIFF OMITTED] TC09NO91.001
    

If span adjustment was made on the previous day, where
[GRAPHIC] [TIFF OMITTED] TC09NO91.002


n indicates the n-th test day, and i indicates the i-th reading on the n 
th day.
    (B) Span drift at 80 percent of URL (USD):
    [GRAPHIC] [TIFF OMITTED] TC09NO91.003
    

or
[GRAPHIC] [TIFF OMITTED] TC09NO91.004



If span adjustment was made on the previous day, where

[GRAPHIC] [TIFF OMITTED] TC09NO91.005


n indicates the n-th test day, and i indicates the i-th reading on the 
n-th test day.
    (C) Both USD and MSD must be equal to or less than the respective 
specifications given in table B-1 to pass the test for span draft.
    (iii) Lag time. Determine, from the strip chart, the elapsed time in 
minutes between the mark made in step (xxvi) and the first observable 
(two times the noise level) response. This time must be equal to or less 
than the time specified in table B-1 to pass the test for lag time.
    (iv) Rise time. Calculate 95 percent of reading P9 and 
determine from the recorder chart, the elapsed time between the first 
observable (two times noise level) response and a response equal to 95 
percent of the P9 reading. This time must be equal to or less 
than the rise time specified in table B-1 to pass the test for rise 
time.
    (v) Fall time. Calculate five percent of (P10-
L2) and determine, from the strip chart, the elapsed time in 
minutes between the first observable decrease in response following 
reading P10 and a response equal to five percent of 
(P10-L2). This time must be equal to or less than 
the fall time specification in table B-1 to pass the test for fall time.
    (vi) Precision. Calculate precision (P20 and 
P80) for each day's test as follows:
    (A)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.006
    
    (B)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.007
    

[[Page 32]]


    (C) Both P20 and P80 must be equal to or less 
than the specification given in table B-1 to pass the test for 
precision.

[40 FR 7049, Feb. 18, 1975, as amended at 41 FR 52694, Dec. 1, 1976]

 Appendix A to Subpart B of Part 53--Optional Forms for Reporting Test 
                                 Results

                  Table B-5--Symbols and Abbreviations
 
 
 
BL............................  Analyzer reading at specified LDL
                                 concentration.
Bz............................  Analyzer reading at 0 concentration for
                                 LDL test.
DM............................  Digital meter.
Cmax..........................  Maximum analyzer reading during 12ZD
                                 test.
Cmin..........................  Minimum analyzer reading during 12ZD
                                 test.
i.............................  Subscript indicating the i-th quantity
                                 in a series.
IE............................  Interference equivalent.
L1............................  First analyzer zero reading for 24ZD
                                 test.
L2............................  Second analyzer zero reading for 24ZD
                                 test.
Mn............................  Average of P1 . . . P6 for the n-th test
                                 day.
M'n...........................  Adjusted span reading at 20 percent of
                                 URL on the n-th test day.
MSD...........................  Span drift at 20 percent of URL.
n.............................  Subscript indicating the test day
                                 number.
P.............................  Analyzer reading for precision test.
Pi............................  The i-th analyzer reading for precision
                                 test.
P20...........................  Precision at 20 percent of URL.
P80...........................  Precision at 80 percent of URL.
R.............................  Analyzer reading of pollutant alone for
                                 IE test.
RI............................  Analyzer reading with interferent added
                                 for IE test.
ri............................  The i-th DM reading for noise test.
S.............................  Standard deviation of noise readings.
S0............................  Noise value (S) measured at 0
                                 concentration.
S80...........................  Noise value (S) measured at 80 percent
                                 of URL.
Sn............................  Average of P7 . . . P12 for the n-th
                                 test day.
S'n...........................  Adjusted span reading at 80 percent of
                                 URL on the n-th test day.
URL...........................  Upper range limit.
USD...........................  Span drift at 80 percent o
Z.............................  Average of L1 and L2.
Zn............................  Average of L1 and L2 on the n-th test
                                 day.
Z'n...........................  Adjusted zero reading on the n-th test
                                 day.
ZD............................  Zero drift.
12ZD..........................  12-hour zero drift.
24ZD..........................  24-hour zero drift.
 


[[Page 33]]




[[Page 34]]




[[Page 35]]




[[Page 36]]




[[Page 37]]

[GRAPHIC] [TIFF OMITTED] TC09NO91.031

[40 FR 7049, Feb. 18, 1975, as amended at 40 FR 18169, Apr. 25, 1975]



 Subpart C--Procedures for Determining Comparability Between Candidate 
                      Methods and Reference Methods

    Source: 62 FR 38792, July 18, 1997, unless otherwise noted.



Sec. 53.30   General provisions.

    (a) Determination of comparability. The test procedures prescribed 
in this subpart shall be used to determine if a candidate method is 
comparable to a reference method when both methods measure pollutant 
concentrations in ambient air.

[[Page 38]]

    (1) Comparability is shown for SO2, CO, O3, 
and NO2 methods when the differences between:
    (i) Measurements made by a candidate manual method or by a test 
analyzer representative of a candidate automated method.
    (ii) Measurements made simultaneously by a reference method, are 
less than or equal to the values specified in the last column of table 
C-1 of this subpart.
    (2) Comparability is shown for lead methods when the differences 
between:
    (i) Measurements made by a candidate method.
    (ii) Measurements made by the reference method on simultaneously 
collected lead samples (or the same sample, if applicable), are less 
than or equal to the value specified in table C-3 of this subpart.
    (3) Comparability is shown for PM10 and PM2.5 
methods when the relationship between:
    (i) Measurements made by a candidate method.
    (ii) Measurements made by a reference method on simultaneously 
collected samples (or the same sample, if applicable) at each of two 
test sites, is such that the linear regression parameters (slope, 
intercept, and correlation coefficient) describing the relationship meet 
the values specified in table C-4 of this subpart.
    (b) Selection of test sites--(1) All methods. Each test site shall 
be in a predominately urban area which can be shown to have at least 
moderate concentrations of various pollutants. The site shall be clearly 
identified and shall be justified as an appropriate test site with 
suitable supporting evidence such as maps, population density data, 
vehicular traffic data, emission inventories, pollutant measurements 
from previous years, concurrent pollutant measurements, and 
meteorological data. If approval of a proposed test site is desired 
prior to conducting the tests, a written request for approval of the 
test site or sites must be submitted prior to conducting the tests and 
must include the supporting and justification information required. The 
Administrator may exercise discretion in selecting a different site (or 
sites) for any additional tests the Administrator decides to conduct.
    (2) Methods for SO2, CO, O3, and 
NO2. All test measurements are to be made at the same test 
site. If necessary, the concentration of pollutant in the sampled 
ambient air may be augmented with artificially generated pollutant to 
facilitate measurements in the specified ranges described under 
paragraph (d)(2) of this section.
    (3) Methods for Pb. Test measurements may be made at any number of 
test sites. Augmentation of pollutant concentrations is not permitted, 
hence an appropriate test site or sites must be selected to provide lead 
concentrations in the specified range.
    (4) Methods for PM10. Test measurements must be made, or 
derived from particulate samples collected, at not less than two test 
sites, each of which must be located in a geographical area 
characterized by ambient particulate matter that is significantly 
different in nature and composition from that at the other test site(s). 
Augmentation of pollutant concentrations is not permitted, hence 
appropriate test sites must be selected to provide PM10 
concentrations in the specified range. The tests at the two sites may be 
conducted in different calendar seasons, if appropriate, to provide 
PM10 concentrations in the specified ranges.
    (5) Methods for PM2.5. Augmentation of pollutant 
concentrations is not permitted, hence appropriate test sites must be 
selected to provide PM2.5 concentrations and 
PM2.5/PM10 ratios (if applicable) in the specified 
ranges.
    (i) Where only one test site is required, as specified in table C-4 
of this subpart, the site need only meet the PM2.5 ambient 
concentration levels required by Sec. 53.34(c)(3).
    (ii) Where two sites are required, as specified in table C-4 of this 
subpart, each site must be selected to provide the ambient concentration 
levels required by Sec. 53.34(c)(3). In addition, one site must be 
selected such that all acceptable test sample sets, as defined in 
Sec. 53.34(c)(3), have a PM2.5/PM10 ratio of more 
than 0.75; the other site must be selected such that all acceptable test 
sample sets, as defined in Sec. 53.34(c)(3), have a PM2.5/
PM10 ratio of less than 0.40. At least two reference method

[[Page 39]]

PM10 samplers shall be collocated with the candidate and 
reference method PM2.5 samplers and operated simultaneously 
with the other samplers at each test site to measure concurrent ambient 
concentrations of PM10 to determine the PM2.5/
PM10 ratio for each sample set. The PM2.5/
PM10 ratio for each sample set shall be the average of the 
PM2.5 concentration, as determined in Sec. 53.34(c)(1), 
divided by the average PM10 concentration, as measured by the 
PM10 samplers. The tests at the two sites may be conducted in 
different calendar seasons, if appropriate, to provide PM2.5 
concentrations and PM2.5/PM10 ratios in the 
specified ranges.
    (c) Test atmosphere. Ambient air sampled at an appropriate test site 
or sites shall be used for these tests. Simultaneous concentration 
measurements shall be made in each of the concentration ranges specified 
in tables C-1, C-3, or C-4 of this subpart, as appropriate.
    (d) Sample collection--(1) All methods. All test concentration 
measurements or samples shall be taken in such a way that both the 
candidate method and the reference method receive air samples that are 
homogenous or as nearly identical as practical.
    (2) Methods for SO2, CO, O3, and 
NO2. Ambient air shall be sampled from a common intake and 
distribution manifold designed to deliver homogenous air samples to both 
methods. Precautions shall be taken in the design and construction of 
this manifold to minimize the removal of particulates and trace gases, 
and to ensure that identical samples reach the two methods. If 
necessary, the concentration of pollutant in the sampled ambient air may 
be augmented with artificially-generated pollutant. However, at all 
times the air sample measured by the candidate and reference methods 
under test shall consist of not less than 80 percent ambient air by 
volume. Schematic drawings, physical illustrations, descriptions, and 
complete details of the manifold system and the augmentation system (if 
used) shall be submitted.
    (3) Methods for Pb, PM10 and PM2.5. The 
ambient air intake points of all the candidate and reference method 
collocated samplers for lead, PM10 or PM2.5 shall 
be positioned at the same height above the ground level, and between 2 
and 4 meters apart. The samplers shall be oriented in a manner that will 
minimize spatial and wind directional effects on sample collection.
    (4) PM10 methods employing the same sampling procedure as 
the reference method but a different analytical method. Candidate 
methods for PM10 which employ a sampler and sample collection 
procedure that are identical to the sampler and sample collection 
procedure specified in the reference method, but use a different 
analytical procedure, may be tested by analyzing common samples. The 
common samples shall be collected according to the sample collection 
procedure specified by the reference method and shall be analyzed in 
accordance with the analytical procedures of both the candidate method 
and the reference method.
    (e) Submission of test data and other information. All recorder 
charts, calibration data, records, test results, procedural descriptions 
and details, and other documentation obtained from (or pertinent to) 
these tests shall be identified, dated, signed by the analyst performing 
the test, and submitted. For candidate methods for PM2.5, all 
submitted information must meet the requirements of the ANSI/ASQC E4 
Standard, sections 3.3.1, paragraphs 1 and 2 (reference 1 of appendix A 
of this subpart).



Sec. 53.31   Test conditions.

    (a) All methods. All test measurements made or test samples 
collected by means of a sample manifold as specified in Sec. 53.30(d)(2) 
shall be at a room temperature between 20  deg.C and 30  deg.C, and at a 
line voltage between 105 and 125 volts. All methods shall be calibrated 
as specified in paragraph (c) of this section prior to initiation of the 
tests.
    (b) Samplers and automated methods. (1) Setup and start-up of the 
test analyzer, test sampler(s), and reference method (if applicable) 
shall be in strict accordance with the applicable operation manual(s). 
If the test analyzer does not have an integral strip chart or digital 
data recorder, connect the analyzer output to a suitable strip chart or 
digital data recorder. This recorder shall have a chart width of at 
least 25

[[Page 40]]

centimeters, a response time of 1 second or less, a deadband of not more 
than 0.25 percent of full scale, and capability of either reading 
measurements at least 5 percent below zero or offsetting the zero by at 
least 5 percent. Digital data shall be recorded at appropriate time 
intervals such that trend plots similar to a strip chart recording may 
be constructed with a similar or suitable level of detail.
    (2) Other data acquisition components may be used along with the 
chart recorder during the conduct of these tests. Use of the chart 
recorder is intended only to facilitate visual evaluation of data 
submitted.
    (3) Allow adequate warmup or stabilization time as indicated in the 
applicable operation manual(s) before beginning the tests.
    (c) Calibration. The reference method shall be calibrated according 
to the appropriate appendix to part 50 of this chapter (if it is a 
manual method) or according to the applicable operation manual(s) (if it 
is an automated method). A candidate manual method (or portion thereof) 
shall be calibrated, according to the applicable operation manual(s), if 
such calibration is a part of the method.
    (d) Range. (1) Except as provided in paragraph (d)(2) of this 
section, each method shall be operated in the range specified for the 
reference method in the appropriate appendix to part 50 of this chapter 
(for manual reference methods), or specified in table B-1 of subpart B 
of this part (for automated reference methods).
    (2) For a candidate method having more than one selectable range, 
one range must be that specified in table B-1 of subpart B of this part 
and a test analyzer representative of the method must pass the tests 
required by this subpart while operated on that range. The tests may be 
repeated for a broader range (i.e., one extending to higher 
concentrations) than the one specified in table B-1 of subpart B of this 
part, provided that the range does not extend to concentrations more 
than two times the upper range limit specified in table B-1 of subpart B 
of this part and that the test analyzer has passed the tests required by 
subpart B of this part (if applicable) for the broader range. If the 
tests required by this subpart are conducted or passed only for the 
range specified in table B-1 of subpart B of this part, any equivalent 
method determination with respect to the method will be limited to that 
range. If the tests are passed for both the specified range and a 
broader range (or ranges), any such determination will include the 
broader range(s) as well as the specified range. Appropriate test data 
shall be submitted for each range sought to be included in such a 
determination.
    (e) Operation of automated methods. (1) Once the test analyzer has 
been set up and calibrated and tests started, manual adjustment or 
normal periodic maintenance as specified in the manual referred to in 
Sec. 53.4(b)(3) is permitted only every 3 days. Automatic adjustments 
which the test analyzer performs by itself are permitted at any time. 
The submitted records shall show clearly when manual adjustments were 
made and describe the operations performed.
    (2) All test measurements shall be made with the same test analyzer; 
use of multiple test analyzers is not permitted. The test analyzer shall 
be operated continuously during the entire series of test measurements.
    (3) If a test analyzer should malfunction during any of these tests, 
the entire set of measurements shall be repeated, and a detailed 
explanation of the malfunction, remedial action taken, and whether 
recalibration was necessary (along with all pertinent records and 
charts) shall be submitted.



Sec. 53.32   Test procedures for methods for SO2, CO, O3, and NO2.

    (a) Conduct the first set of simultaneous measurements with the 
candidate and reference methods:
    (1) Table C-1 of this subpart specifies the type (1- or 24-hour) and 
number of measurements to be made in each of the three test 
concentration ranges.
    (2) The pollutant concentration must fall within the specified range 
as measured by the reference method.
    (3) The measurements shall be made in the sequence specified in 
table C-2 of this subpart, except for the 1-hour SO2 
measurements, which are all in the high range.

[[Page 41]]

    (b) For each pair of measurements, determine the difference 
(discrepancy) between the candidate method measurement and reference 
method measurement. A discrepancy which exceeds the discrepancy 
specified in table C-1 of this subpart constitutes a failure. Figure C-1 
of this subpart contains a suggested format for reporting the test 
results.
    (c) The results of the first set of measurements shall be 
interpreted as follows:
    (1) Zero failures. The candidate method passes the test for 
comparability.
    (2) Three or more failures. The candidate method fails the test for 
comparability.
    (3) One or two failures. Conduct a second set of simultaneous 
measurements as specified in table C-1 of this subpart. The results of 
the combined total of first-set and second-set measurements shall be 
interpreted as follows:
    (i) One or two failures. The candidate method passes the test for 
comparability.
    (ii) Three or more failures. The candidate method fails the test for 
comparability.
    (4) For SO2, the 1-hour and 24-hour measurements shall be 
interpreted separately, and the candidate method must pass the tests for 
both 1- and 24-hour measurements to pass the test for comparability.
    (d) A 1-hour measurement consists of the integral of the 
instantaneous concentration over a 60-minute continuous period divided 
by the time period. Integration of the instantaneous concentration may 
be performed by any appropriate means such as chemical, electronic, 
mechanical, visual judgment, or by calculating the mean of not less than 
12 equally spaced instantaneous readings. Appropriate allowances or 
corrections shall be made in cases where significant errors could occur 
due to characteristic lag time or rise/fall time differences between the 
candidate and reference methods. Details of the means of integration and 
any corrections shall be submitted.
    (e) A 24-hour measurement consists of the integral of the 
instantaneous concentration over a 24-hour continuous period divided by 
the time period. This integration may be performed by any appropriate 
means such as chemical, electronic, mechanical, or by calculating the 
mean of 24 sequential 1-hour measurements.
    (f) For ozone and carbon monoxide, no more than six 1-hour 
measurements shall be made per day. For sulfur dioxide, no more than 
four 1-hour measurements or one 24-hour measurement shall be made per 
day. One-hour measurements may be made concurrently with 24-hour 
measurements if appropriate.
    (g) For applicable methods, control or calibration checks may be 
performed once per day without adjusting the test analyzer or method. 
These checks may be used as a basis for a linear interpolation-type 
correction to be applied to the measurements to correct for drift. If 
such a correction is used, it shall be applied to all measurements made 
with the method, and the correction procedure shall become a part of the 
method.



Sec. 53.33   Test procedure for methods for lead.

    (a) Sample collection. Collect simultaneous 24-hour samples 
(filters) of lead at the test site or sites with both the reference and 
candidate methods until at least 10 filter pairs have been obtained. If 
the conditions of Sec. 53.30(d)(4) apply, collect at least 10 common 
samples (filters) in accordance with Sec. 53.30(d)(4) and divide each to 
form the filter pairs.
    (b) Audit samples. Three audit samples must be obtained from the 
address given in Sec. 53.4(a). The audit samples are 3/4x8-inch glass 
fiber strips containing known amounts of lead at the following nominal 
levels: 100 [mu]g/strip; 300 [mu]g/strip; 750 [mu]g/strip. The true 
amount of lead, in total [mu]g/strip, will be provided with each audit 
sample.
    (c) Filter analysis. (1) For both the reference method samples and 
the audit samples, analyze each filter extract three times in accordance 
with the reference method analytical procedure. The analysis of 
replicates should not be performed sequentially, i.e., a single sample 
should not be analyzed three

[[Page 42]]

times in sequence. Calculate the indicated lead concentrations for the 
reference method samples in [mu]g/m3 for each analysis of 
each filter. Calculate the indicated total lead amount for the audit 
samples in [mu]g/strip for each analysis of each strip. Label these test 
results as R1A, R1B, R1C, 
R2A, R2B, ..., Q1A, Q1B, 
Q1C, ..., where R denotes results from the reference method 
samples; Q denotes results from the audit samples; 1, 2, 3 indicate the 
filter number, and A, B, C indicate the first, second, and third 
analysis of each filter, respectively.
    (2) For the candidate method samples, analyze each sample filter or 
filter extract three times and calculate, in accordance with the 
candidate method, the indicated lead concentrates in [mu]g/m3 
for each analysis of each filter. Label these test results as 
C1A, C1B, C2C, ..., where C denotes 
results from the candidate method. For candidate methods which provide a 
direct measurement of lead concentrations without a separable procedure, 
C1A = C1B = C1C, C2A = 
C2B = C2C, etc.
    (d) Average lead concentration. For the reference method, calculate 
the average lead concentration for each filter by averaging the 
concentrations calculated from the three analyses:

                               Equation 1
[GRAPHIC] [TIFF OMITTED] TR18JY97.052


where:


i is the filter number.

    (e) Acceptable filter pairs. Disregard all filter pairs for which 
the lead concentration as determined in the previous paragraph (d) of 
this section by the average of the three reference method 
determinations, falls outside the range of 0.5 to 4.0 [mu]g/
m3. All remaining filter pairs must be subjected to both of 
the following tests for precision and comparability. At least five 
filter pairs must be within the 0.5 to 4.0 [mu]g/m3 range for 
the tests to be valid.
    (f) Test for precision. (1) Calculate the precision (P) of the 
analysis (in percent) for each filter and for each method, as the 
maximum minus the minimum divided by the average of the three 
concentration values, as follows:

                               Equation 2
[GRAPHIC] [TIFF OMITTED] TR18JY97.053


or

                               Equation 3
[GRAPHIC] [TIFF OMITTED] TR18JY97.054


where:


i indicates the filter number.

    (2) If any reference method precision value (PRi) exceeds 
15 percent, the precision of the reference method analytical procedure 
is out of control. Corrective action must be taken to determine the 
source(s) of imprecision and the reference method determinations must be 
repeated according to paragraph (c) of this section, or the entire test 
procedure (starting with paragraph (a) of this section) must be 
repeated.
    (3) If any candidate method precision value (PCi) exceeds 
15 percent, the candidate method fails the precision test.
    (4) The candidate method passes this test if all precision values 
(i.e., all PRi's and all PCi's) are less than 15 
percent.
    (g) Test for accuracy. (1)(i) For the audit samples calculate the 
average lead concentration for each strip by averaging the 
concentrations calculated from the three analyses:

                               Equation 4
[GRAPHIC] [TIFF OMITTED] TR18JY97.055


where:


i is audit sample number.

    (ii) Calculate the percent difference (Dq) between the 
indicated lead concentration for each audit sample and the true lead 
concentration (Tq) as follows:

[[Page 43]]

                               Equation 5
[GRAPHIC] [TIFF OMITTED] TR18JY97.056

    (2) If any difference value (Dqi) exceeds 5 
percent, the accuracy of the reference method analytical procedure is 
out of control. Corrective action must be taken to determine the source 
of the error(s) (e.g., calibration standard discrepancies, extraction 
problems, etc.) and the reference method and audit sample determinations 
must be repeated according to paragraph (c) of this section, or the 
entire test procedure (starting with paragraph (a) of this section) must 
be repeated.
    (h) Test for comparability. (1) For each filter pair, calculate all 
nine possible percent differences (D) between the reference and 
candidate methods, using all nine possible combinations of the three 
determinations (A, B, and C) for each method, as:

                               Equation 6
[GRAPHIC] [TIFF OMITTED] TR18JY97.057


where:

i is the filter number, and n numbers from 1 to 9 for the nine possible 
    difference combinations for the three determinations for each method 
    (j = A, B, C, candidate; k = A, B, C, reference).

    (2) If none of the percent differences (D) exceeds 20 
percent, the candidate method passes the test for comparability.
    (3) If one or more of the percent differences (D) exceeds 
20 percent, the candidate method fails the test for 
comparability.
    (i) The candidate method must pass both the precision test 
(paragraph (f) of this section) and the comparability test (paragraph 
(h) of this section) to qualify for designation as an equivalent method.



Sec. 53.34   Test procedure for methods for PM10 and PM2.5.

    (a) Collocated measurements. Set up three reference method samplers 
collocated with three candidate method samplers or analyzers at each of 
the number of test sites specified in table C-4 of this subpart. At each 
site, obtain as many sets of simultaneous PM10 or 
PM2.5 measurements as necessary (see paragraph (c)(3) of this 
section), each set consisting of three reference method and three 
candidate method measurements, all obtained simultaneously. For 
PM2.5 candidate Class II equivalent methods, at least two 
collocated PM10 reference method samplers are also required 
to obtain PM2.5/PM10 ratios for each sample set. 
Candidate PM10 method measurements shall be 24-hour 
integrated measurements; PM2.5 measurements may be either 24- 
or 48-hour integrated measurements. All collocated measurements in a 
sample set must cover the same 24- or 48-hour time period. For samplers, 
retrieve the samples promptly after sample collection and analyze each 
sample according to the reference method or candidate method, as 
appropriate, and determine the PM10 or PM2.5 
concentration in [mu]g/m3. If the conditions of 
Sec. 53.30(d)(4) apply, collect sample sets only with the three 
reference method samplers. Guidance for quality assurance procedures for 
PM2.5 methods is found in section 2.12 of the Quality 
Assurance Handbook (reference 6 of appendix A to subpart A of this 
part).
    (b) Sequential samplers. For sequential samplers, the sampler shall 
be configured for the maximum number of sequential samples and shall be 
set for automatic collection of all samples sequentially such that the 
test samples are collected equally, to the extent possible, among all 
available sequential channels or utilizing the full available sequential 
capability.
    (c) Test for comparability and precision. (1) For each of the 
measurement sets, calculate the average PM10 or 
PM2.5 concentration obtained with the reference method 
samplers:

                               Equation 7
[GRAPHIC] [TIFF OMITTED] TR18JY97.058


where:


[[Page 44]]


R denotes results from the reference method;
i is the sampler number; and
j is the set.

    (2)(i) For each of the measurement sets, calculate the precision of 
the reference method PM10 or PM2.5 measurements 
as:

                               Equation 8
[GRAPHIC] [TIFF OMITTED] TR18JY97.059


 If the corresponding Rj is below:

80 [mu]g/m3 for PM10 methods.
40 [mu]g/m3 for 24-hour PM2.5 at single test sites 
for Class I candidate methods.
40 [mu]g/m3 for 24-hour PM2.5 at sites having 
PM2.5/PM10 ratios 0.75.
30 [mu]g/m3 for 48-hour PM2.5 at single test sites 
for Class I candidate methods.
30 [mu]g/m3 for 48-hour PM2.5 at sites having 
PM2.5/PM10 ratios 0.75.
30 [mu]g/m3 for 24-hour PM2.5 at sites having 
PM2.5/PM10 ratios <0.40.
20 [mu]g/m3 for 48-hour PM2.5 at sites having 
PM2.5/PM10 ratios 0.75.

    (ii) Otherwise, calculate the precision of the reference method 
PM10 or PM2.5 measurements as:

                               Equation 9
[GRAPHIC] [TIFF OMITTED] TR18JY97.060

    (3) If Rj falls outside the acceptable concentration 
range specified in table C-4 of this subpart for any set, or if 
Pj RPj as applicable, exceeds the value specified 
in table C-4 of this subpart for any set, that set of measurements shall 
be discarded. For each site, table C-4 of this subpart specifies the 
minimum number of sample sets required for various conditions, and 
Sec. 53.30(b)(5) specifies the PM2.5/PM10 ratio 
requirements applicable to Class II candidate equivalent methods. 
Additional measurement sets shall be collected and analyzed, as 
necessary, to provide a minimum of 10 acceptable measurement sets for 
each test site. If more than 10 measurement sets are collected that meet 
the above criteria, all such measurement sets shall be used to 
demonstrate comparability.
    (4) For each of the acceptable measurement sets, calculate the 
average PM10 or PM2.5 concentration obtained with 
the candidate method samplers:

                               Equation 10
[GRAPHIC] [TIFF OMITTED] TR18JY97.061


where:

C denotes results from the candidate method;
i is the sampler number; and
j is the set.

    (5) For each site, plot the average PM10 or 
PM2.5 measurements obtained with the candidate method 
(Rj) against the corresponding average PM10 or 
PM2.5 measurements obtained with the reference method 
(Rj). For each site, calculate and record the linear 
regression slope and intercept, and the correlation coefficient.
    (6) If the linear regression parameters calculated under paragraph 
(c)(5) of this section meet the values specified in table C-4 of this 
subpart for all test sites, the candidate method passes the test for 
comparability.

[62 FR 38792, July 19, 1997; 63 FR 7714, Feb. 17, 1998]
         Table C-1 to Subpart C of Part 53--Test Concentration 
         Ranges, Number of Measurements Required, and Maximum 
                       Discrepancy Specification

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              Simultaneous Measurements Required             Maximum
                                                                                       ------------------------------------------------    Discrepancy
                 Pollutant                     Concentration Range Parts per Million             1-hr                    24-hr           Specification,
                                                                                       ------------------------------------------------     Parts per
                                                                                         First Set  Second Set   First Set  Second Set       Million
--------------------------------------------------------------------------------------------------------------------------------------------------------
Ozone......................................  Low 0.06 to 0.10.........................           5           6  ..........  ..........              0.02
                                             Med 0.15 to 0.25.........................           5           6  ..........  ..........               .03

[[Page 45]]

 
                                             High 0.35 to 0.45........................           4           6  ..........  ..........               .04
                                                                                       -----------------------------------------------------------------
                                               Total..................................          14          18
                                                                                       =================================================================
Carbon Monoxide............................  Low 7 to 11..............................           5           6  ..........  ..........               1.5
                                             Med 20 to 30.............................           5           6  ..........  ..........               2.0
                                             High 35 to 45............................           4           6  ..........  ..........               3.0
                                                                                       -----------------------------------------------------------------
                                               Total..................................          14          18
                                                                                       =================================================================
Sulfur Dioxide.............................  Low 0.02 to 0.05.........................  ..........  ..........           3           3              0.02
                                             Med 0.10 to 0.15.........................  ..........  ..........           2           3               .03
                                             High 0.30 to 0.50........................           7           8           2           2               .04
                                                                                       -----------------------------------------------------------------
                                                Total.................................           7           8           7           8
                                                                                       =================================================================
Nitrogen Dioxide...........................  Low 0.02 to 0.08.........................  ..........  ..........           3           3              0.02
                                             Med 0.10 to 0.20.........................  ..........  ..........           2           3               .03
                                             High 0.25 to 0.35........................  ..........  ..........           2           2               .03
                                                                                       -----------------------------------------------------------------
                                               Total..................................  ..........  ..........           7           8
--------------------------------------------------------------------------------------------------------------------------------------------------------

          Table C-2 to Subpart C of Part 53--Sequence of Test 
                             Measurements

------------------------------------------------------------------------
                                               Concentration Range
              Measurement              ---------------------------------
                                           First Set        Second Set
------------------------------------------------------------------------
1.....................................             Low           Medium
2.....................................            High             High
3.....................................          Medium              Low
4.....................................            High             High
5.....................................             Low           Medium
6.....................................          Medium              Low
7.....................................             Low           Medium
8.....................................          Medium              Low
9.....................................            High             High
10....................................          Medium              Low
11....................................            High           Medium
12....................................             Low             High
13....................................          Medium           Medium
14....................................             Low             High
15....................................  ...............             Low
16....................................  ...............          Medium
17....................................  ...............             Low
18....................................  ...............            High
------------------------------------------------------------------------

       Table C-3 to Subpart C of Part 53--Test Specifications for 
                             Lead Methods

------------------------------------------------------------------------
 
------------------------------------------------------------------------
Concentration range, [mu]g/m\3\...............................   0.5-4.0
Minimum number of 24-hr measurements..........................         5
Maximum analytical precision, percent.........................         5
Maximum analytical accuracy, percent..........................  10 and PM2.5 Methods

------------------------------------------------------------------------
                                                          PM2.5
          Specification                PM10    -------------------------
                                                  Class I      Class II
------------------------------------------------------------------------
Acceptable concentration range         30-300       10-200       10-200
 (Rj), [mu]g/m3..................

[[Page 46]]

 
Minimum number of test sites.....           2            1            2
Number of candidate method                  3            3            3
 samplers per site...............
Number of reference method                  3            3            3
 samplers per site...............
Minimum number of acceptable
 sample sets per site for PM10:
    Rj < 80 [mu]g/m3.............           3
    Rj > 80 [mu]g/m3.............           3
        Total....................          10
Minimum number of acceptable
 sample sets per site for PM2.5:
    Single test site for Class I
     candidate equivalent
     methods:
        Rj < 40 [mu]g/m3 for 24-                         3
         hr or Rj < 30 [mu]g/m3
         for 48-hr samples.......
        Rj > 40 [mu]g/m3 for 24-                         3
         hr or Rj > 30 [mu]g/m3
         for 48-hr samples.......
    Sites at which the PM2.5/PM10
     ratio must be > 0.75:
        Rj < 40 [mu]g/m3 for 24-                                      3
         hr or Rj < 30 [mu]g/m3
         for 48-hr samples.......
        Rj > 40 [mu]g/m3 for 24-                                      3
         hr or Rj > 30 [mu]g/m3
         for 48-hr samples.......
    Sites at which the PM2.5/PM10
     ratio must be < 0.40:
        Rj < 30 [mu]g/m3 for 24-                                      3
         hr or Rj < 20 [mu]g/m3
         for 48-hr samples.......
        Rj > 30 [mu]g/m3 for 24-                                      3
         hr or Rj > 20 [mu]g/m3
         for 48-hr samples.......
Total, each site.................                       10           10
Precision of replicate reference   5 [mu]g/m3   2 [mu]g/m3   2 [mu]g/m3
 method measurements, Pj or RPj         or 7%        or 5%        or 5%
 respectively, maximum...........
Slope of regression relationship.  13..........          s5           s1           s1
Correlation of reference method      [ge]0.97     [ge]0.97     [ge]0.97
 and candidate method
 measurements....................
------------------------------------------------------------------------

[62 FR 38792, July 18, 1997; 63 FR 7714, Feb. 17, 1998]
        Figure C-1 to Subpart C of Part 53--Suggested Format for 
                        Reporting Test Results

                  Candidate Method------------------------------------------------------------
                  Reference Method------------------------------------------------------------
                  Applicant--------------------------------------------------------------------
             [squ]  First Set    [squ]  Second Set    [squ]  Type    [squ]  1 Hour    [squ]  24 Hour
----------------------------------------------------------------------------------------------------------------
                                                     Concentration, ppm
Concentration Range          Date        Time    --------------------------  Difference    Table C-1    Pass or
                                                   Candidate    Reference                    Spec.       Fail
----------------------------------------------------------------------------------------------------------------
        Low          1
---------- ppm
to -------- ppm1
                    --------------------------------------------------------------------------------------------
                     2
                    --------------------------------------------------------------------------------------------
                     3
                    --------------------------------------------------------------------------------------------
                     4
                    --------------------------------------------------------------------------------------------
                     5
                    --------------------------------------------------------------------------------------------
                     6
----------------------------------------------------------------------------------------------------------------
       Medium        1
---------- ppm
to -------- ppm1
                    --------------------------------------------------------------------------------------------
                     2
                    --------------------------------------------------------------------------------------------
                     3
                    --------------------------------------------------------------------------------------------
                     4
                    --------------------------------------------------------------------------------------------
                     5
                    --------------------------------------------------------------------------------------------
                     6
----------------------------------------------------------------------------------------------------------------

[[Page 47]]

 
        High         1
---------- ppm
to -------- ppm1
                    --------------------------------------------------------------------------------------------
                     2
                    --------------------------------------------------------------------------------------------
                     3
                    --------------------------------------------------------------------------------------------
                     4
                    --------------------------------------------------------------------------------------------
                     5
                    --------------------------------------------------------------------------------------------
                     6
                    --------------------------------------------------------------------------------------------
                     7
                    --------------------------------------------------------------------------------------------
                     8
                    --------------------------------------------------------------------------------------------
                     ...  ..........  ..........  ...........  ...........  ............  Total
                                                                                          Failures:
----------------------------------------------------------------------------------------------------------------

             Appendix A to Subpart C of Part 53--References

    (1) American National Standard--Specifications and Guidelines for 
Quality Systems for Environmental Data Collection and Environmental 
Technology Programs, ANSI/ASQC E4-1994. Available from American Society 
for Quality Control, 611 East Wisconsin Avenue, Milwaukee, WI 53202.



Subpart D--Procedures for Testing Performance Characteristics of Methods 
                           for PM10

    Source: 52 FR 24729, July 1, 1987, unless otherwise noted.



Sec. 53.40  General provisions.

    (a) The test procedures prescribed in this subpart shall be used to 
test the performance of candidate methods for PM10 against 
the performance specifications given in table D-1. Except as provided in 
paragraph (b) of this section, a test sampler or samplers representative 
of the sampler described in the candidate method must exhibit 
performance better than, or equal to, the specified value for each 
performance parameter, to satisfy the requirements of this subpart.
    (b) For a candidate method using a PM10 sampler 
previously approved as part of a designated PM10 method, only 
the test for precision need be conducted and passed to satisfy the 
requirements of this subpart. For a candidate method using a 
PM10 sampler inlet previously approved as part of a 
designated PM10 method, the tests for precision and flow rate 
stability must be conducted and passed to satisfy the requirements of 
this subpart; the tests for sampling effectiveness and 50 percent 
cutpoint need not be conducted if suitable rationale is provided to 
demonstrate that test results submitted for the previously approved 
method are applicable to the candidate method.
    (c) The liquid particle sampling effectiveness and 50 percent 
cutpoint of a test sampler shall be determined in a wind tunnel using 10 
particle sizes and three wind speeds as specified in table D-2. A 
minimum of 3 replicate measurements of sampling effectiveness shall be 
required for each of the 30 test conditions for a minimum of 90 test 
measurements.
    (d) For the liquid particle sampling effectiveness parameter, a 
smooth

[[Page 48]]

curve plot shall be constructed of sampling effectiveness (percent) 
versus aerodynamic particle diameter ([mu]m) for each of the three wind 
speeds. These plots shall be used to calculate the expected mass 
concentration for the test sampler, using the procedure in 
Sec. 53.43(a). The candidate method passes the liquid particle sampling 
effectiveness test if the expected mass concentration calculated for the 
test sampler at each wind speed differs by no more than 10 
percent from that predicted for the ``ideal'' sampler.*
---------------------------------------------------------------------------

    * The sampling effectiveness curve for this ``ideal'' sampler is 
described by column 5 of table D-3 and is based on a model that 
approximates the penetration of particles into the human respiratory 
tract. Additional information on this model may be found in a document 
entitled, ``Particle Collection Criteria for 10 Micrometer Samplers,'' 
which is available from the Quality Assurance Division (MD-77), 
Environmental Monitoring Systems Laboratory, U.S. Environmental 
Protection Agency, Research Triangle Park, NC 27711.
---------------------------------------------------------------------------

    (e) For the 50 percent cutpoint parameter, the test result for each 
wind speed shall be reported as the particle size at which the curve 
specified in Sec. 53.40(d) crosses the 50 percent effectiveness line. 
The candidate method passes the 50 percent cutpoint test if the test 
result at each wind speed falls within 100.5 [mu]m.
    (f) The solid particle sampling effectiveness of a test sampler 
shall be determined in a wind tunnel using 25 [mu]m particles at 2 wind 
speeds as specified in table D-2. A minimum of three replicate 
measurements of sampling effectiveness for the 25 [mu]m solid particles 
shall be required at both wind speeds for a minimum of 6 test 
measurements.
    (g) For the solid particle sampling effectiveness parameter, the 
test result for each wind speed shall be reported as the difference 
between the average of the replicate sampling effectiveness measurements 
obtained for the 25 [mu]m solid particles and the average of the 
replicate measurements obtained for the 25 [mu]m liquid particles. The 
candidate method passes the solid particle sampling effectiveness test 
if the test result for each wind speed is less than, or equal to, 5 
percent.
    (h) The precision and flow rate stability of three identical test 
samplers shall be determined at a suitable test site by simultaneously 
sampling the PM10 concentration of the atmosphere for 10 
periods of 24 hours.
    (i) For the precision parameter, the test result for each of the 10 
periods of 24 hours shall be calculated using the procedure in 
Sec. 53.43(c). The candidate method passes the precision test if all of 
the test results meet the specifications in table D-1.
    (j) For the flow rate stability parameter, the test results for each 
of the three test samplers and for each of the 10 periods of 24 hours 
shall be calculated using the procedure in Sec. 53.43(d). The candidate 
method passes the flow rate stability test if all of the test results 
meet the specifications in table D-1.
    (k) All test data and other documentation obtained from or pertinent 
to these tests shall be identified, dated, signed by the analyst 
performing the test, and submitted to EPA.

         Table D-1--Performance Specifications for PM10 Samplers
------------------------------------------------------------------------
     Performance parameter            Units            Specification
------------------------------------------------------------------------
1. Sampling effectiveness:
  A. Liquid particles.........  Percent..........  Such that the
                                                    expected mass
                                                    concentration is
                                                    within 10 percent of
                                                    that predicted for
                                                    the ideal sampler.
  B. Solid particles..........  Percent..........  Sampling
                                                    effectiveness is no
                                                    more than 5 percent
                                                    above that obtained
                                                    for liquid particles
                                                    of same size.
2. 50 Percent cutpoint          [mu]m............  10[mu].5
                                                    [mu]m aerodynamic
                                                    diameter.
3. Precision                    [mu]g/m\3\ or      5 [mu]g/m\3\ or 7
                                 percent.           percent for three
                                                    collocated samplers.
4. Flow rate stability          Percent..........  Average flow rate
                                                    over 24 hours within
                                                    5
                                                    percent of initial
                                                    flow rate; all
                                                    measured flow rates
                                                    over 24 hours within
                                                    10
                                                    percent of initial
                                                    flow rate.
------------------------------------------------------------------------


[[Page 49]]



Sec. 53.41  Test conditions.

    (a) Set-up and start-up of all test samplers shall be in strict 
accordance with the operating instructions specified in the manual 
referred to in Sec. 53.4(b)(3).
    (b) If the internal surface or surfaces of the candidate method's 
sampler inlet on which the particles removed by the inlet are collected 
is a dry surface (i.e., not normally coated with oil or grease), those 
surfaces shall be cleaned prior to conducting wind tunnel tests with 
solid particles.
    (c) Once the test sampler or samplers have been set up and the 
performance tests started, manual adjustment shall be permitted only 
between test points for the sampling effectiveness and 50 percent 
cutpoint tests or between test days for the precision and flow rate 
stability tests. The manual adjustments and any periodic maintenance 
shall be limited to only those procedures prescribed in the manual 
referred to in Sec. 53.4(b)(3). The submitted records shall show clearly 
when any manual adjustment or periodic maintenance was made and shall 
describe the operations performed.
    (d) If a test sampler malfunctions during any of the sampling 
effectiveness and 50 percent cutpoint tests, that test run shall be 
repeated. If a test sampler malfunctions during any of the precision and 
flow rate stability tests, that day's test shall be repeated. A detailed 
explanation of all malfunctions and the remedial actions taken shall be 
submitted to EPA with the application.



Sec. 53.42  Generation of test atmospheres for wind tunnel tests.

    (a) A vibrating orifice aerosol generator shall be used to produce 
monodispersed liquid particles of oleic acid tagged with uranine dye and 
monodispersed solid particles of ammonium fluoroscein with equivalent 
aerodynamic diameters as specified in table D-2. The geometric standard 
deviation for each particle size and type generated shall not exceed 1.1 
(for primary particles) and the proportion of multiplets (doublets and 
triplets) in a test particle atmosphere shall not exceed 10 percent. The 
particle delivery system shall consist of a blower system and a wind 
tunnel having a test section of sufficiently large cross-sectional area 
such that the test sampler, or portion thereof, as installed in the test 
section for testing, blocks no more than 15 percent of that area. To be 
acceptable, the blower system must be capable of achieving uniform wind 
speeds at the speeds specified in table D-2.

  Table D-2--Particle Sizes and Wind Speeds for Sampling Effectiveness
                                  Tests
------------------------------------------------------------------------
                                             Wind speed (km/hr)
      Particle size ([mu]m) a      -------------------------------------
                                        2            8            24
------------------------------------------------------------------------
30.5..................  l          l             l
50.5..................  l          l             l
70.5..................  l          l             l
90.5..................  l          l             l
100.5.................  l          l             l
110.5.................  l          l             l
131.0.................  l          l             l
151.0.................  l          l             l
201.0.................  l          l             l
251.0.................  l          l/s           l/s
------------------------------------------------------------------------
a&thnsp[gE] Mass median aerodynamic diameter.
l = liquid particle.
s=solid particle.
Number of liquid particle test points (minimum of 3 replicates for each
  combination of particle size and wind speed): 90.
Number of solid particle test points (minimum of 3 replicates for each
  combination of particle size and wind speed): 6.
Total number of test points: 96.

    (b) The size of the test particles delivered to the test section of 
the wind tunnel shall be established using the operating parameters of 
the vibrating orifice aerosol generator and shall be verified during the 
tests by microscopic examination of samples of the particles collected 
on glass slides or other suitable substrates. When sizing liquid 
particles on glass slides, the slides should be pretreated with an 
oleophobic surfactant and an appropriate flattening factor shall be used 
in the calculation of aerodynamic diameter. The particle size, as 
established by the operating parameters of the vibrating orifice aerosol 
generator, shall be within the tolerance specified in table D-2. The 
precision of the particle size verification technique shall be 0.5 [mu]m 
or better, and particle size determined by the verification technique 
shall not differ by more than 0.5 [mu]m or 10 percent, whichever is 
higher, from that established by the operating parameters of the 
vibrating orifice aerosol generator.

[[Page 50]]

    (c) The population of multiplets in a test particle atmosphere shall 
be determined during the tests and shall not exceed 10 percent. Solid 
particles shall be checked for dryness and evidence of breakage or 
agglomeration during the microscopic examination. If the solid particles 
in a test atmosphere are wet or show evidence of significant breakage or 
agglomeration ([mu]5 percent), the solid particle test atmosphere is 
unacceptable for purposes of these tests.
    (d) The concentration of particles in the wind tunnel is not 
critical. However, the cross-sectional uniformity of the particle 
concentration in the sampling zone of the test section shall be 
established during the tests using isokinetic samplers. An array of not 
less than five evenly spaced isokinetic samplers shall be used to 
determine the particle concentration uniformity in the sampling zone. If 
the particle concentration measured by any single isokinetic sampler in 
the sampling zone differs by more than 10 percent from the mean 
concentration, the particle delivery system is unacceptable in terms of 
uniformity of particle concentration. The sampling zone shall be a 
rectangular area having a horizontal dimension not less than 1.2 times 
the width of the test sampler at its inlet opening and a vertical 
dimension not less than 25 centimeters. The sampling zone is an area in 
the test section of the wind tunnel that is horizontally and vertically 
symmetrical with respect to the test sampler inlet opening.
    (e) The wind speed in the wind tunnel shall be determined during the 
tests using an appropriate technique capable of a precision of 5 percent 
or better (e.g., hot-wire anemometry). The mean wind speed in the test 
section of the wind tunnel during the tests shall be within 10 percent 
of the value specified in table D-2. The wind speed measured at any test 
point in the test section shall not differ by more than 10 percent from 
the mean wind speed in the test section. The turbulence intensity 
(longitudinal component and macroscale) in the test section shall be 
determined during the tests using an appropriate technique (e.g., hot-
wire anemometry).
    (f) The accuracy of all flow measurements used to calculate the test 
atmosphere concentrations and the test results shall be documented to be 
within 2 percent, referenced to a primary standard. Any flow 
measurement corrections shall be clearly shown. All flow measurements 
shall be given in actual volumetric units.
    (g) Schematic drawings of the particle delivery system (wind tunnel 
and blower system) and other information showing complete procedural 
details of the test atmosphere generation, verification, and delivery 
techniques shall be submitted to EPA. All pertinent calculations shall 
be clearly presented.



Sec. 53.43  Test procedures.

    (a) Sampling effectiveness--(1) Technical definition. The ratio 
(expressed as a percentage) of the mass concentration of particles of a 
given size reaching the sampler filter or filters to the mass 
concentration of particles of the same size approaching the sampler.
    (2) Test procedure. (i) Establish a wind speed specified in table D-
2 and measure the wind speed and turbulence intensity (longitudinal 
component and macroscale) at a minimum of 12 test points in a cross-
sectional area of the test section of the wind tunnel. The mean wind 
speed in the test section must be within 10 percent of the 
value specified in table D-2 and the variation at any test point in the 
test section may not exceed 10 percent of the mean.
    (ii) Generate particles of a size and type specified in table D-2 
using a vibrating orifice aerosol generator. Check for the presence of 
satellites and adjust the generator as necessary. Calculate the 
aerodynamic particle size using the operating parameters of the 
vibrating orifice aerosol generator and record. The calculated 
aerodynamic diameter must be within the tolerance specified in table D-
2.
    (iii) Collect a sample of the particles on a glass slide or other 
suitable substrate at the particle injection point. If a glass slide is 
used, it should be pretreated with an appropriate oleophobic surfactant 
when collecting liquid particles. Use a microscopic technique to size a 
minimum of 25 primary particles in three viewing fields (do not include 
multiplets). Determine

[[Page 51]]

the geometric mean aerodynamic diameter and geometric standard deviation 
using the bulk density of the particle type (and an appropriate 
flattening factor for liquid particles if collected on a glass slide). 
The measured geometric mean aerodynamic diameter must be within 0.5 
[mu]m or 10 percent of the aerodynamic diameter calculated from the 
operating parameters of the vibrating orifice aerosol generator. The 
geometric standard deviation must not exceed 1.1.
    (iv) Determine the population of multiplets (doublets and triplets) 
in the collected sample by counting a minimum of 100 particles in three 
viewing fields. The multiplet population of the particle test atmosphere 
must not exceed 10 percent.
    (v) Introduce the particles into the wind tunnel and allow the 
particle concentration to stabilize.
    (vi) Install an array of five or more evenly spaced isokinetic 
samplers in the sampling zone (see Sec. 53.42(d)) of the wind tunnel. 
Collect particles on appropriate filters (e.g., glass fiber) over a time 
period such that the relative error of the measured particle 
concentration is less than 5 percent. Relative error is defined as 
(px100%)/(X), where p is the precision of the fluorometer on the 
appropriate range, X is the measured concentration, and the units of p 
and X are the same.
    (vii) Determine the quantity of material collected with each 
isokinetic sampler in the array using a calibrated fluorometer. 
Calculate and record the mass concentration for each isokinetic sampler 
as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.015


where
i = replicate number and j = isokinetic sampler number.

    (viii) Calculate and record the mean mass concentration as:
    [GRAPHIC] [TIFF OMITTED] TC09NO91.016
    

where
n = total number of isokinetic samplers.

    (ix) Calculate and record the coefficient of variation of the mass 
concentration measurements as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.017


If the value of CViso(i) exceeds 0.10, the particle 
concentration uniformity is unacceptable and steps (vi) through (ix) 
must be repeated. If adjustment of the vibrating orifice aerosol 
generator or changes in the particle delivery system are necessary to 
achieve uniformity, steps (ii) through (ix) must be repeated. Remove the 
array of isokinetic samplers from the wind tunnel. NOTE: A single 
isokinetic sampler, operated at the same nominal flow rate as the test 
sampler, may be used in place of the array of isokinetic samplers for 
the determination of particle mass concentration used in the calculation 
of

[[Page 52]]

sampling effectiveness of the test sampler in step (xiii). In this case, 
the array of isokinetic samplers must be used to demonstrate particle 
concentration uniformity prior to the replicate measurements of sampling 
effectiveness.
    (x) If a single isokinetic sampler is used, install the sampler in 
the wind tunnel with the sampler nozzle centered in the sampling zone 
(see Sec. 53.42(d)). Collect particles on an appropriate filter (e.g., 
glass fiber) for a time period such that the relative error of the 
measured concentration (as defined in step (vi)) is less than 5 percent. 
Determine the quantity of material collected with the isokinetic sampler 
using a calibrated fluorometer. Calculate and record the mass 
concentration as Ciso(i) as in step vii. Remove the 
isokinetic sampler from the wind tunnel.
    (xi) Install the test sampler (or portion thereof) in the wind 
tunnel with the sampler inlet opening centered in the sampling zone (see 
Sec. 53.42(d)). To meet the maximum blockage limit of Sec. 53.42(a) or 
for convenience, part of the test sampler may be positioned external to 
the wind tunnel provided that neither the geometry of the sampler nor 
the length of any connecting tube or pipe is altered. Collect particles 
on an appropriate filter or filters (e.g., glass fiber) for a time 
period such that the relative error of the measured concentration (as 
defined in step (vi)) is less than 5 percent.
    (xii) Determine the quantity of material collected with the test 
sampler using a calibrated fluorometer. Calculate and record the mass 
concentration as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.018


where i=replicate number.

    (xiii) Calculate and record the sampling effectiveness of the test 
sampler as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.019


where i = replicate number.
    Note: If a single isokinetic sampler is used for the determination 
of particle mass concentration, replace Ciso(i) with 
Ciso(i).
    (xiv) Remove the test sampler from the wind tunnel. Repeat steps 
(vi) through (xiii), as appropriate, to obtain a minimum of three 
replicate measurements of sampling effectiveness.
    (xv) Calculate and record the average sampling effectiveness of the 
test sampler as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.020


where n=number of replicates.
    (xvi) Calculate and record the coefficient of variation for the 
replicate sampling effectiveness measurements of the test sampler as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.021


If the value of CVE exceeds 0.10, the test run (steps (ii) 
through (xvi)) must be repeated.
    (xvii) Repeat steps i through xvi for each wind speed, particle 
size, and particle type specified in table D-2.
    (xviii) For each of the three wind speeds (nominally 2, 8, and 24 
km/hr), correct the liquid particle sampling effectiveness data for the 
presence of multiplets (doublets and triplets) in the test particle 
atmospheres.
    (xix) For each wind speed, plot the corrected liquid particle 
sampling effectiveness of the test sampler (Ecorr) as a 
function of particle size (dp) on semi-logarithmic graph 
paper where dp is the

[[Page 53]]

particle size established by the operating parameters of the vibrating 
orifice aerosol generator. Construct a smooth curve through the data.
    (xx) For each wind speed, calculate the expected mass concentration 
for the test sampler under the assumed particle size distribution and 
compare it to the mass concentration predicted for the ideal sampler, as 
follows:
    (A) Extrapolate the upper and lower ends of the corrected liquid 
particle sampling effectiveness curve to 100 percent and 0 percent, 
respectively, using smooth curves. Assume that Ecorr = 100 
percent at a particle size of 1.0 [mu]m and Ecorr = 0 percent 
at a particle size of 50 [mu]m.
    (B) Determine the value of Ecorr at each of the particle 
sizes specified in the first column of table D-3. Record each 
Ecorr value as a decimal between 0 and 1 in the second column 
of table D-3.
    (C) Multiply the values of Ecorr in column 2 by the 
interval mass concentration values in column 3 and enter the products in 
column 4 of table D-3.
    (D) Sum the values in column 4 and enter the total as the expected 
mass concentration for the test sampler at the bottom of column 4 of 
table D-3.
    (E) Calculate and record the percent difference in expected mass 
concentration between the test sampler and the ideal sampler as:
[GRAPHIC] [TIFF OMITTED] TC09NO91.022


where:

Csam(exp) = expected mass concentration for the test sampler, 
[mu]g/m\3\
Cideal(exp) = expected mass concentration for the ideal 
sampler, [mu]g/m\3\ (calculated for the ideal sampler and given at the 
bottom of column 7 of table D-3.)

    (F) The candidate method passes the liquid particle sampling 
effectiveness test if the [Delta] C value for each wind speed meets the 
specification in table D-1.
    (xxi) For each of the two wind speeds (nominally 8 and 24 km/hr), 
calculate the difference between the average sampling effectiveness 
value for the 25 [mu]m solid particles and the average sampling 
effectiveness value for the 25 [mu]m liquid particles (uncorrected for 
multiplets).
    (xxii) The candidate method passes the solid particle sampling 
effectiveness test if each such difference meets the specification in 
table D-1.

                                                Table D-3--Expected Mass Concentration for PM10 Samplers
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                Test sampler                                                      Ideal Sampler
                     -----------------------------------------------------------------------------------------------------------------------------------
 Particle size (um)                             Interval mass         Expected mass                               Interval mass         Expected mass
                            Sampling        concentration ([mu]g/ concentration ([mu]g/       Sampling        concentration ([mu]g/ concentration ([mu]g/
                          effectiveness             m\3\)                 m\3\)             effectiveness             m\3\)                 m\3\)
--------------------------------------------------------------------------------------------------------------------------------------------------------
(1)                                  (2)                   (3)                   (4)                   (5)                   (6)                   (7)
--------------------------------------------------------------------------------------------------------------------------------------------------------
              <1.0                 1.000                62.813                62.813                 1.000                62.813                62.813
               1.5                                       9.554                                       0.949                 9.554                 9.067
              02.0                                       2.164                                       0.942                 2.164                 2.038
              02.5                                       1.785                                       0.933                 1.785                 1.665
              03.0                                       2.084                                       0.922                 2.084                 1.921
              03.5                                       2.618                                       0.909                 2.618                 2.380
              04.0                                       3.211                                       0.893                 3.211                 2.867
              04.5                                       3.784                                       0.876                 3.784                 3.315
              05.0                                       4.300                                       0.857                 4.300                 3.685
              05.5                                       4.742                                       0.835                 4.742                 3.960
              06.0                                       5.105                                       0.812                 5.105                 4.145
              06.5                                       5.389                                       0.786                 5.389                 4.236
              07.0                                       5.601                                       0.759                 5.601                 4.251
              07.5                                       5.746                                       0.729                 5.746                 4.189
              08.0                                       5.834                                       0.697                 5.834                 4.066
              08.5                                       5.871                                       0.664                 5.871                 3.898
              09.0                                       5.864                                       0.628                 5.864                 3.683
              09.5                                       5.822                                       0.590                 5.822                 3.435
              10.0                                       5.750                                       0.551                 5.750                 3.168
              10.5                                       5.653                                       0.509                 5.653                 2.877
              11.0                                       8.257                                       0.465                 8.257                 3.840
              12.0                                      10.521                                       0.371                10.521                 3.903
              13.0                                       9.902                                       0.269                 9.902                 2.664

[[Page 54]]

 
              14.0                                       9.250                                       0.159                 9.250                 1.471
              15.0                                       8.593                                       0.041                 8.593                 0.352
              16.0                                       7.948                                       0.000                 7.948                 0.000
              17.0                                       7.329                                       0.000                 7.329                 0.000
              18.0                                       9.904                                       0.000                 9.904                 0.000
              20.0                                      11.366                                       0.000                11.366                 0.000
              22.0                                       9.540                                       0.000                 9.540                 0.000
              24.0                                       7.997                                       0.000                 7.997                 0.000
              26.0                                       6.704                                       0.000                 6.704                 0.000
              28.0                                       5.627                                       0.000                 5.627                 0.000
              30.0                                       7.785                                       0.000                 7.785                 0.000
              35.0                                       7.800                                       0.000                 7.800                 0.000
              40.0                                       5.192                                       0.000                 5.192                 0.000
              45.0                                       4.959                                       0.000                 4.959                 0.000
                                                Csam(exp) = D                                                      Cideal(exp) =               143.889
--------------------------------------------------------------------------------------------------------------------------------------------------------

    (b) 50 Percent cutpoint--(1) Technical definition. The particle size 
for which the sampling effectiveness of the sampler is 50 percent.
    (2) Test procedure. (i) From the corrected liquid particle sampling 
effectiveness curves for each of the three wind speeds, determine the 
particle size at which the curve crosses the 50 percent effectiveness 
line and record as D50 on the corresponding sampling 
effectiveness plot.
    (ii) The candidate method passes the 50 percent cutpoint test if the 
D50 value at each wind speed meets the specification in table 
D-1.
    (c) Precision--(1) Technical definition. The variation in the 
measured particle concentration among identical samplers under typical 
sampling conditions.
    (2) Test procedure. (i) Set up three identical test samplers at the 
test site in strict accordance with the instructions in the manual 
referred to in Sec. 53.4(b)(3). Locate the test sampler inlet openings 
at the same height and between 2 and 4 meters apart. The samplers shall 
be oriented in a manner that will minimize spatial and wind directional 
effects on sample collection. Perform a flow calibration for each test 
sampler in accordance with the instructions given in the instruction 
manual and/or appendix J to part 50 of this chapter. Set the operating 
flow rate to the value prescribed in the sampler instruction manual.
    Note: For candidate equivalent methods, this test may be used to 
satisfy part of the requirements of subpart C of this chapter. In that 
case, three reference method samplers are also used at the test site, 
measurements with the candidate and reference methods are compared as 
specified in Sec. 53.34, and the test site must meet the requirements of 
Sec. 53.30(b).
    (ii) Measure the PM10 concentration of the atmosphere 
using the three test samplers for 10 periods (test days) of 24 hours 
each. On each of the 10 test days, measure the initial and final flow 
rates of each test sampler. On three of the test days, measure the flow 
rate of each test sampler after 6, 12, and 18 hours of operation. All 
measurements of flow rate and mass collected must be made in accordance 
with the procedures prescribed in the sampler instruction manual and/or 
appendix J to part 50 of this chapter. All measurements of flow rate 
must be in actual volumetric units. Record the PM10 
concentration for each sampler and each test day as C(i)(j) 
where i is the sampler number and j is the test day.
    (iii) For each test day, calculate and record the average of the 
three measured PM10 concentrations as C(j) where j 
is the test day. If C(j)<30 [mu] g/m\3\ for any test day, 
data from that test day are unacceptable and the tests for that day must 
be repeated.

[[Page 55]]

    (iv) Calculate and record the precision for each of the 10 test days 
as:


    (v) The candidate method passes the precision test if all 10 
Pj or RPj values meet the specifications in table 
D-1.
    (d) Flow rate stability--(1) Technical definition. Freedom from 
variation in the operating flow rate of the sampler under typical 
sampling conditions.
    (2) Test procedure. (i) For each of the three test samplers and each 
of the 10 test days of the precision test, record each measured flow 
rate as F(i)(j)(t), where i is the sampler number, j is the 
test day, and t is the time of flow rate measurement (t=0, 6, 12, 18, or 
24 hours).
    (ii) For each sampler and for each test day, calculate and record 
the average flow rate as:


where n = number of flow rate measurements during the 24-hour test day.

    (iii) For each sampler and for each test day, calculate and record 
the percent difference between the average flow rate and the initial 
flow rate as:


where F(i)(j)(0) is the initial flow rate (t=0).

    (iv) For each sampler and for each of the 3 test days on which flow 
measurements were obtained at 6-hour intervals throughout the 24-hour 
sampling period, calculate and record the percent differences between 
each measured flow rate and the initial flow rate as:



where t = 6, 12, 18, or 24 hours.

    (v) The candidate method passes the flow rate stability test if all 
of the [Delta] F(i)(j) and [Delta] F(i)(j)(t) 
values meet the specifications in table D-1.



  Subpart E--Procedures for Testing Physical (Design) and Performance 
Characteristics of Reference Methods and Class I Equivalent Methods for 
                            PM2.5

    Source: 62 FR 38799, July 18, 1997, unless otherwise noted.



Sec. 53.50   General provisions.

    (a) This subpart sets forth the specific tests that must be carried 
out and the test results, evidence, documentation, and other materials 
that must be

[[Page 56]]

provided to EPA to demonstrate that a PM2.5 sampler 
associated with a candidate reference method or Class I equivalent 
method meets all design and performance specifications set forth in 40 
CFR part 50, appendix L, as well as additional requirements specified in 
this subpart E. Some of these tests may also be applicable to portions 
of a candidate Class II equivalent method sampler, as determined under 
subpart F of this part. Some or all of these tests may also be 
applicable to a candidate Class III equivalent method sampler, as may be 
determined under Sec. 53.3(a)(4) or Sec. 53.3(b)(3).
    (b) Samplers associated with candidate reference methods for 
PM2.5 shall be subject to the provisions, specifications, and 
test procedures prescribed in Secs. 53.51 through 53.58. Samplers 
associated with candidate Class I equivalent methods for 
PM2.5 shall be subject to the provisions, specifications, and 
test procedures prescribed in all sections of this subpart. Samplers 
associated with candidate Class II equivalent methods for 
PM2.5 shall be subject to the provisions, specifications, and 
test procedures prescribed in all applicable sections of this subpart, 
as specified in subpart F of this part.
    (c) The provisions of Sec. 53.51 pertain to test results and 
documentation required to demonstrate compliance of a candidate method 
sampler with the design specifications set forth in 40 CFR part 50, 
appendix L. The test procedures prescribed in Secs. 53.52 through 53.59 
pertain to performance tests required to demonstrate compliance of a 
candidate method sampler with the performance specifications set forth 
in 40 CFR part 50, appendix L, as well as additional requirements 
specified in this subpart E. These latter test procedures shall be used 
to test the performance of candidate samplers against the performance 
specifications and requirements specified in each procedure and 
summarized in table E-1 of this subpart.
    (d) Test procedures prescribed in Sec. 53.59 do not apply to 
candidate reference method samplers. These procedures apply primarily to 
candidate Class I equivalent method samplers for PM2.5 which 
have a sample air flow path configuration upstream of the sample filter 
that is modified with respect to that specified for the reference method 
sampler, as set forth in 40 CFR part 50, appendix L, figures L-1 to L-
29, such as might be necessary to provide for sequential sample 
capability. The additional tests determine the adequacy of aerosol 
transport through any altered components or supplemental devices that 
are used in a candidate sampler upstream of the sample filter. In 
addition to the other test procedures in this subpart, these test 
procedures shall be used to further test the performance of such an 
equivalent method sampler against the performance specifications given 
in the procedure and summarized in table E-1 of this subpart.
    (e) A 10-day operational field test of measurement precision is 
required under Sec. 53.58 for both candidate reference and equivalent 
method samplers. This test requires collocated operation of three 
candidate method samplers at a field test site. For candidate equivalent 
method samplers, this test may be combined and carried out concurrently 
with the test for comparability to the reference method specified under 
Sec. 53.34, which requires collocated operation of three reference 
method samplers and three candidate equivalent method samplers.
    (f) All tests and collection of test data shall be performed in 
accordance with the requirements of reference 1, section 4.10.5 (ISO 
9001) and reference 2, part B, section 3.3.1, paragraphs 1 and 2 and 
part C, section 4.6 (ANSI/ASQC E4) in appendix A of this subpart. All 
test data and other documentation obtained specifically from or 
pertinent to these tests shall be identified, dated, signed by the 
analyst performing the test, and submitted to EPA in accordance with 
subpart A of this part.



Sec. 53.51   Demonstration of compliance with design specifications and manufacturing and test requirements.

    (a) Overview. (1) The subsequent paragraphs of this section specify 
certain documentation that must be submitted and tests that are required 
to demonstrate that samplers associated with a designated reference or 
equivalent method for PM2.5 are properly manufactured to meet 
all applicable design and

[[Page 57]]

performance specifications and have been properly tested according to 
all applicable test requirements for such designation. Documentation is 
required to show that instruments and components of a PM2.5 
sampler are manufactured in an ISO 9001-registered facility under a 
quality system that meets ISO-9001 requirements for manufacturing 
quality control and testing.
    (2) In addition, specific tests are required to verify that two 
critical features of reference method samplers impactor jet diameter and 
the surface finish of surfaces specified to be anodized meet the 
specifications of 40 CFR part 50, appendix L. A checklist is required to 
provide certification by an ISO-certified auditor that all performance 
and other required tests have been properly and appropriately conducted, 
based on a reasonable and appropriate sample of the actual operations or 
their documented records. Following designation of the method, another 
checklist is required, initially and annually, to provide an ISO-
certified auditor's certification that the sampler manufacturing process 
is being implemented under an adequate and appropriate quality system.
    (3) For the purposes of this section, the definitions of ISO 9001-
registered facility and ISO-certified auditor are found in Sec. 53.1. An 
exception to the reliance by EPA on ISO-certified auditors is the 
requirement for the submission of the operation or instruction manual 
associated with the candidate method to EPA as part of the application. 
This manual is required under Sec. 53.4(b)(3). EPA has determined that 
acceptable technical judgment for review of this manual may not be 
assured by ISO-certified auditors, and approval of this manual will 
therefore be performed by EPA.
    (b) ISO registration of manufacturing facility. (1) The applicant 
must submit documentation verifying that the samplers identified and 
sold as part of a designated PM2.5 reference or equivalent 
method will be manufactured in an ISO 9001-registered facility and that 
the manufacturing facility is maintained in compliance with all 
applicable ISO 9001 requirements (reference 1 in appendix A of this 
subpart). The documentation shall indicate the date of the original ISO 
9001 registration for the facility and shall include a copy of the most 
recent certification of continued ISO 9001 facility registration. If the 
manufacturer does not wish to initiate or complete ISO 9001 registration 
for the manufacturing facility, documentation must be included in the 
application to EPA describing an alternative method to demonstrate that 
the facility meets the same general requirements as required for 
registration to ISO-9001. In this case, the applicant must provide 
documentation in the application to demonstrate, by required ISO-
certified auditor's inspections, that a quality system is in place which 
is adequate to document and monitor that the sampler system components 
and final assembled samplers all conform to the design, performance and 
other requirements specified in this part and in 40 CFR part 50, 
appendix L.
    (2) Phase-in period. For a period of 1 year following the effective 
date of this subpart, a candidate reference or equivalent method for 
PM2.5 that utilizes a sampler manufactured in a facility that 
is not ISO 9001-registered or otherwise approved by EPA under paragraph 
(b)(1) of this section may be conditionally designated as a reference or 
equivalent method under this part. Such conditional designation will be 
considered on the basis of evidence submitted in association with the 
candidate method application showing that appropriate efforts are 
currently underway to seek ISO 9001 registration or alternative approval 
of the facility's quality system under paragraph (b)(1) of this section 
within the next 12 months. Such conditional designation shall expire 1 
year after the date of the Federal Register notice of the conditional 
designation unless documentation verifying successful ISO 9001 
registration for the facility or other EPA-acceptable quality system 
review and approval process of the production facility that will 
manufacture the samplers is submitted at least 30 days prior to the 
expiration date.
    (c) Sampler manufacturing quality control. The manufacturer must 
ensure that all components used in the manufacture of PM2.5 
samplers to be sold as part of a reference or equivalent method and that 
are specified by design in

[[Page 58]]

40 CFR part 50, appendix L, are fabricated or manufactured exactly as 
specified. If the manufacturer's quality records show that its quality 
control (QC) and quality assurance (QA) system of standard process 
control inspections (of a set number and frequency of testing that is 
less than 100 percent) complies with the applicable QA provisions of 
section 4 of reference 4 in appendix A of this subpart and prevents 
nonconformances, 100 percent testing shall not be required until that 
conclusion is disproved by customer return or other independent 
manufacturer or customer test records. If problems are uncovered, 
inspection to verify conformance to the drawings, specifications, and 
tolerances shall be performed. Refer also to paragraph (e) of this 
section--final assembly and inspection requirements.
    (d) Specific tests and supporting documentation required to verify 
conformance to critical component specifications--(1) Verification of 
PM2.5 impactor jet diameter. The diameter of the jet of each 
impactor manufactured for a PM2.5 sampler under the impactor 
design specifications set forth in 40 CFR part 50, appendix L, shall be 
verified against the tolerance specified on the drawing, using standard, 
NIST-traceable ZZ go/no go plug gages. This test shall be a final check 
of the jet diameter following all fabrication operations, and a record 
shall be kept of this final check. The manufacturer shall submit 
evidence that this procedure is incorporated into the manufacturing 
procedure, that the test is or will be routinely implemented, and that 
an appropriate procedure is in place for the disposition of units that 
fail this tolerance test.
    (2) Verification of surface finish. The anodization process used to 
treat surfaces specified to be anodized shall be verified by testing 
treated specimen surfaces for weight and corrosion resistance to ensure 
that the coating obtained conforms to the coating specification. The 
specimen surfaces shall be finished in accordance with military standard 
specification 8625F, Type II, Class I (reference 4 in appendix A of this 
subpart) in the same way the sampler surfaces are finished, and tested, 
prior to sealing, as specified in section 4.5.2 of reference 4 in 
appendix A of this subpart.
    (e) Final assembly and inspection requirements. Each sampler shall 
be tested after manufacture and before delivery to the final user. Each 
manufacturer shall document its post-manufacturing test procedures. As a 
minimum, each test shall consist of the following: Tests of the overall 
integrity of the sampler, including leak tests; calibration or 
verification of the calibration of the flow measurement device, 
barometric pressure sensor, and temperature sensors; and operation of 
the sampler with a filter in place over a period of at least 48 hours. 
The results of each test shall be suitably documented and shall be 
subject to review by an ISO-certified auditor.
    (f) Manufacturer's audit checklists. Manufacturers shall require an 
ISO-certified auditor to sign and date a statement indicating that the 
auditor is aware of the appropriate manufacturing specifications 
contained in 40 CFR part 50, appendix L, and the test or verification 
requirements in this subpart. Manufacturers shall also require an ISO-
certified auditor to complete the checklists, shown in figures E-1 and 
E-2 of this subpart, which describe the manufacturer's ability to meet 
the requirements of the standard for both designation testing and 
product manufacture.
    (1) Designation testing checklist. The completed statement and 
checklist as shown in figure E-1 of this subpart shall be submitted with 
the application for reference or equivalent method determination.
    (2) Product manufacturing checklist. Manufacturers shall require an 
ISO-certified auditor to complete a Product Manufacturing Checklist 
(figure E-2 of this subpart), which evaluates the manufacturer on its 
ability to meet the requirements of the standard in maintaining quality 
control in the production of reference or equivalent devices. The 
initial completed checklist shall be submitted with the application for 
reference or equivalent method determination. Also, this checklist 
(figure E-2 of this subpart) must be completed and submitted annually to 
retain a reference or equivalent method designation for a 
PM2.5 method.

[[Page 59]]

    (3) Phase-in period. If the conditions of paragraph (b)(2) of this 
section apply, a candidate reference or equivalent method for 
PM2.5 may be conditionally designated as a reference or 
equivalent method under this part 53 without the submission of the 
checklists described in paragraphs (f)(1) and (f)(2) of this section. 
Such conditional designation shall expire 1 year after the date of the 
Federal Register notice of the conditional designation unless the 
checklists are submitted at least 30 days prior to the expiration date.

[62 FR 38799, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.52   Leak check test.

    (a) Overview. In section 7.4.6 of 40 CFR part 50, appendix L, the 
sampler is required to include the facility, including components, 
instruments, operator controls, a written procedure, and other 
capabilities as necessary, to allow the operator to carry out a leak 
test of the sampler at a field monitoring site without additional 
equipment. This test procedure is intended to test the adequacy and 
effectiveness of the sampler's leak check facility. Because of the 
variety of potential sampler configurations and leak check procedures 
possible, some adaptation of this procedure may be necessary to 
accommodate the specific sampler under test. The test conditions and 
performance specifications associated with this test are summarized in 
table E-1 of this subpart. The candidate test sampler must meet all test 
parameters and test specifications to successfully pass this test.
    (b) Technical definitions. (1) External leakage includes the total 
flow rate of external ambient air which enters the sampler other than 
through the sampler inlet and which passes through any one or more of 
the impactor, filter, or flow rate measurement components.
    (2) Internal leakage is the total sample air flow rate that passes 
through the filter holder assembly without passing through the sample 
filter.
    (c) Required test equipment. (1) Flow rate measurement device, range 
70 mL/min to 130 mL/min, 2 percent certified accuracy, NIST-traceable.
    (2) Flow rate measurement adaptor (40 CFR part 50, appendix L, 
figure L-30) or equivalent adaptor to facilitate measurement of sampler 
flow rate at the top of the downtube.
    (3) Impermeable membrane or disk, 47 mm nominal diameter.
    (4) Means, such as a micro-valve, of providing a simulated leak flow 
rate through the sampler of approximately 80 mL/min under the conditions 
specified for the leak check in the sampler's leak check procedure.
    (5) Teflon sample filter, as specified in section 6 of 40 CFR part 
50, appendix L.
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and one or more non-zero flow rates within 7 days of use for this 
test.
    (e) Test setup. (1) The test sampler shall be set up for testing as 
described in the sampler's operation or instruction manual referred to 
in Sec. 53.4(b)(3). The sampler shall be installed upright and set up in 
its normal configuration for collecting PM2.5 samples, except 
that the sample air inlet shall be removed and the flow rate measurement 
adaptor shall be installed on the sampler's downtube.
    (2) The flow rate control device shall be set up to provide a 
constant, controlled flow rate of 80 mL/min into the sampler downtube 
under the conditions specified for the leak check in the sampler's leak 
check procedure.
    (3) The flow rate measurement device shall be set up to measure the 
controlled flow rate of 80 mL/min into the sampler downtube under the 
conditions specified for the leak check in the sampler's leak check 
procedure.
    (f) Procedure. (1) Install the impermeable membrane in a filter 
cassette and install the cassette into the sampler. Carry out the 
internal leak check procedure as described in the sampler's operation/
instruction manual and verify that the leak check acceptance

[[Page 60]]

criterion specified in table E-1 of this subpart is met.
    (2) Replace the impermeable membrane with a Teflon filter and 
install the cassette in the sampler. Remove the inlet from the sampler 
and install the flow measurement adaptor on the sampler's downtube. 
Close the valve of the adaptor to seal the flow system. Conduct the 
external leak check procedure as described in the sampler's operation/
instruction manual and verify that the leak check acceptance criteria 
specified in table E-1 of this subpart are met.
    (3) Arrange the flow control device, flow rate measurement device, 
and other apparatus as necessary to provide a simulated leak flow rate 
of 80 mL/min into the test sampler through the downtube during the 
specified external leak check procedure. Carry out the external leak 
check procedure as described in the sampler's operation/instruction 
manual but with the simulated leak of 80 mL/min.
    (g) Test results. The requirements for successful passage of this 
test are:
    (1) That the leak check procedure indicates no significant external 
or internal leaks in the test sampler when no simulated leaks are 
introduced.
    (2) That the leak check procedure properly identifies the occurrence 
of the simulated external leak of 80 mL/min.



Sec. 53.53   Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    (a) Overview. This test procedure is designed to evaluate a 
candidate sampler's flow rate accuracy with respect to the design flow 
rate, flow rate regulation, flow rate measurement accuracy, coefficient 
of variability measurement accuracy, and the flow rate cut-off function. 
The tests for the first four parameters shall be conducted over a 6-hour 
time period during which reference flow measurements are made at 
intervals not to exceed 5 minutes. The flow rate cut-off test, conducted 
separately, is intended to verify that the sampler carries out the 
required automatic sample flow rate cut-off function properly in the 
event of a low-flow condition. The test conditions and performance 
specifications associated with this test are summarized in table E-1 of 
this subpart. The candidate test sampler must meet all test parameters 
and test specifications to successfully pass this test.
    (b) Technical definitions. (1) Sample flow rate means the 
quantitative volumetric flow rate of the air stream caused by the 
sampler to enter the sampler inlet and pass through the sample filter, 
measured in actual volume units at the temperature and pressure of the 
air as it enters the inlet.
    (2) The flow rate cut-off function requires the sampler to 
automatically stop sample flow and terminate the current sample 
collection if the sample flow rate deviates by more than the variation 
limits specified in table E-1 of this subpart (10 percent 
from the nominal sample flow rate) for more than 60 seconds during a 
sample collection period. The sampler is also required to properly 
notify the operator with a flag warning indication of the out-of-
specification flow rate condition and if the flow rate cut-off results 
in an elapsed sample collection time of less than 23 hours.
    (c) Required test equipment. (1) Flow rate meter, suitable for 
measuring and recording the actual volumetric sample flow rate at the 
sampler downtube, with a minimum range of 10 to 25 L/min, 2 percent 
certified, NIST-traceable accuracy. Optional capability for continuous 
(analog) recording capability or digital recording at intervals not to 
exceed 30 seconds is recommended. While a flow meter which provides a 
direct indication of volumetric flow rate is preferred for this test, an 
alternative certified flow measurement device may be used as long as 
appropriate volumetric flow rate corrections are made based on 
measurements of actual ambient temperature and pressure conditions.
    (2) Ambient air temperature sensor, with a resolution of 0.1  deg.C 
and certified to be accurate to within 0.5  deg.C (if needed). If the 
certified flow meter does not provide direct volumetric flow rate 
readings, ambient air temperature measurements must be made using 
continuous (analog) recording capability or digital recording at 
intervals not to exceed 5 minutes.

[[Page 61]]

    (3) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 
mm Hg (if needed). If the certified flow meter does not provide direct 
volumetric flow rate readings, ambient pressure measurements must be 
made using continuous (analog) recording capability or digital recording 
at intervals not to exceed 5 minutes.
    (4) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-
30) or equivalent adaptor to facilitate measurement of sample flow rate 
at the sampler downtube.
    (5) Valve or other means to restrict or reduce the sample flow rate 
to a value at least 10 percent below the design flow rate (16.67 L/min). 
If appropriate, the valve of the flow measurement adaptor may be used 
for this purpose.
    (6) Means for creating an additional pressure drop of 55 mm Hg in 
the sampler to simulate a heavily loaded filter, such as an orifice or 
flow restrictive plate installed in the filter holder or a valve or 
other flow restrictor temporarily installed in the flow path near the 
filter.
    (7) Teflon sample filter, as specified in section 6 of 40 CFR part 
50, appendix L (if required).
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow-rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.
    (e) Test setup. (1) Setup of the sampler shall be as required in 
this paragraph (e) and otherwise as described in the sampler's operation 
or instruction manual referred to in Sec. 53.4(b)(3). The sampler shall 
be installed upright and set up in its normal configuration for 
collecting PM2.5 samples. A sample filter and (or) the device 
for creating an additional 55 mm Hg pressure drop shall be installed for 
the duration of these tests. The sampler's ambient temperature, ambient 
pressure, and flow rate measurement systems shall all be calibrated per 
the sampler's operation or instruction manual within 7 days prior to 
this test.
    (2) The inlet of the candidate sampler shall be removed and the flow 
measurement adaptor installed on the sampler's downtube. A leak check as 
described in the sampler's operation or instruction manual shall be 
conducted and must be properly passed before other tests are carried 
out.
    (3) The inlet of the flow measurement adaptor shall be connected to 
the outlet of the flow rate meter.
    (4) For the flow rate cut-off test, the valve or means for reducing 
sampler flow rate shall be installed between the flow measurement 
adaptor and the downtube or in another location within the sampler such 
that the sampler flow rate can be manually restricted during the test.
    (f) Procedure. (1) Set up the sampler as specified in paragraph (e) 
of this section and otherwise prepare the sampler for normal sample 
collection operation as directed in the sampler's operation or 
instruction manual. Set the sampler to automatically start a 6-hour 
sample collection period at a convenient time.
    (2) During the 6-hour operational flow rate portion of the test, 
measure and record the sample flow rate with the flow rate meter at 
intervals not to exceed 5 minutes. If ambient temperature and pressure 
corrections are necessary to calculate volumetric flow rate, ambient 
temperature and pressure shall be measured at the same frequency as that 
of the certified flow rate measurements. Note and record the actual 
start and stop times for the 6-hour flow rate test period.
    (3) Following completion of the 6-hour flow rate test period, 
install the flow rate reduction device and change the sampler flow rate 
recording frequency to intervals of not more than 30 seconds. Reset the 
sampler to start a new sample collection period. Manually restrict the 
sampler flow rate such that the sampler flow rate is decreased slowly 
over several minutes to a flow rate slightly less than the flow rate

[[Page 62]]

cut-off value (15.0 L/min). Maintain this flow rate for at least 2.0 
minutes or until the sampler stops the sample flow automatically. 
Manually terminate the sample period, if the sampler has not terminated 
it automatically.
    (g) Test results. At the completion of the test, validate the test 
conditions and determine the test results as follows:
    (1) Mean sample flow rate. (i) From the certified measurements 
(Qref) of the test sampler flow rate obtained by use of the 
flow rate meter, tabulate each flow rate measurement in units of L/min. 
If ambient temperature and pressure corrections are necessary to 
calculate volumetric flow rate, each measured flow rate shall be 
corrected using its corresponding temperature and pressure measurement 
values. Calculate the mean flow rate for the sample period 
(Qref,ave) as follows:

                               Equation 1
[GRAPHIC] [TIFF OMITTED] TR18JY97.063


where:

n equals the number of discrete certified flow rate measurements over 
the 6-hour test period.

    (ii)(A) Calculate the percent difference between this mean flow rate 
value and the design value of 16.67 L/min, as follows:

                               Equation 2
[GRAPHIC] [TIFF OMITTED] TR18JY97.064

    (B) To successfully pass the mean flow rate test, the percent 
difference calculated in Equation 2 of this paragraph (g)(1)(ii) must be 
within 5 percent.
    (2) Sample flow rate regulation. (i) From the certified measurements 
of the test sampler flow rate, calculate the sample coefficient of 
variation (CV) of the discrete measurements as follows:

                               Equation 3
[GRAPHIC] [TIFF OMITTED] TR18JY97.065

    (ii) To successfully pass the flow rate regulation test, the 
calculated coefficient of variation for the certified flow rates must 
not exceed 2 percent.
    (3) Flow rate measurement accuracy. (i) Using the mean volumetric 
flow rate reported by the candidate test sampler at the completion of 
the 6-hour test period (Qind,ave), determine the accuracy of 
the reported mean flow rate as:

                               Equation 4
[GRAPHIC] [TIFF OMITTED] TR18JY97.066

    (ii) To successfully pass the flow rate measurement accuracy test, 
the percent difference calculated in Equation 4 of this paragraph (g)(3) 
shall not exceed 2 percent.
    (4) Flow rate coefficient of variation measurement accuracy. (i) 
Using the flow rate coefficient of variation indicated by the candidate 
test sampler at the completion of the 6-hour test (%CVind), 
determine the accuracy of this reported coefficient of variation as:

                               Equation 5
[GRAPHIC] [TIFF OMITTED] TR18JY97.067

    (ii) To successfully pass the flow rate CV measurement accuracy 
test, the absolute difference in values calculated in Equation 5 of this 
paragraph (g)(4) must not exceed 0.3 (CV%).
    (5) Flow rate cut-off. (i) Inspect the measurements of the sample 
flow rate during the flow rate cut-off test and determine the time at 
which the sample flow rate decreased to a value less than the cut-off 
value specified in table E-1 of this subpart. To pass this test, the 
sampler must have automatically stopped the sample flow at least 30 
seconds but not more than 90 seconds after the time at which the sampler 
flow rate was determined to have decreased to a value less than the cut-
off value.

[[Page 63]]

    (ii) At the completion of the flow rate cut-off test, download the 
archived data from the test sampler and verify that the sampler's 
required Flow-out-of-spec and Incorrect sample period flag indicators 
are properly set.



Sec. 53.54   Test for proper sampler operation following power interruptions.

    (a) Overview. (1) This test procedure is designed to test certain 
performance parameters of the candidate sampler during a test period in 
which power interruptions of various duration occur. The performance 
parameters tested are:
    (i) Proper flow rate performance of the sampler.
    (ii) Accuracy of the sampler's average flow rate, CV, and sample 
volume measurements.
    (iii) Accuracy of the sampler's reported elapsed sampling time.
    (iv) Accuracy of the reported time and duration of power 
interruptions.
    (2) This test shall be conducted during operation of the test 
sampler over a continuous 6-hour test period during which the sampler's 
flow rate shall be measured and recorded at intervals not to exceed 5 
minutes. The performance parameters tested under this procedure, the 
corresponding minimum performance specifications, and the applicable 
test conditions are summarized in table E-1 of this subpart. Each 
performance parameter tested, as described or determined in the test 
procedure, must meet or exceed the associated performance specification 
to successfully pass this test.
    (b) Required test equipment. (1) Flow rate meter, suitable for 
measuring and recording the actual volumetric sample flow rate at the 
sampler downtube, with a minimum range of 10 to 25 L/min, 2 percent 
certified, NIST-traceable accuracy. Optional capability for continuous 
(analog) recording capability or digital recording at intervals not to 
exceed 5 minutes is recommended. While a flow meter which provides a 
direct indication of volumetric flow rate is preferred for this test, an 
alternative certified flow measurement device may be used as long as 
appropriate volumetric flow rate corrections are made based on 
measurements of actual ambient temperature and pressure conditions.
    (2) Ambient air temperature sensor (if needed for volumetric 
corrections to flow rate measurements), with a resolution of 0.1  deg.C, 
certified accurate to within 0.5  deg.C, and continuous (analog) 
recording capability or digital recording at intervals not to exceed 5 
minutes.
    (3) Barometer (if needed for volumetric corrections to flow rate 
measurements), range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm 
Hg, with continuous (analog) recording capability or digital recording 
at intervals not to exceed 5 minutes.
    (4) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-
30) or equivalent adaptor to facilitate measurement of sample flow rate 
at the sampler downtube.
    (5) Means for creating an additional pressure drop of 55 mm Hg in 
the sampler to simulate a heavily loaded filter, such as an orifice or 
flow restrictive plate installed in the filter holder or a valve or 
other flow restrictor temporarily installed in the flow path near the 
filter.
    (6) Teflon sample filter, as specified in section 6 of 40 CFR part 
50, appendix L (if required).
    (7) Time measurement system, accurate to within 10 seconds per day.
    (c) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.
    (d) Test setup. (1) Setup of the sampler shall be performed as 
required in this paragraph (d) and otherwise as described in the 
sampler's operation or instruction manual referred to in

[[Page 64]]

Sec. 53.4(b)(3). The sampler shall be installed upright and set up in 
its normal configuration for collecting PM2.5 samples. A 
sample filter and (or) the device for creating an additional 55 mm Hg 
pressure drop shall be installed for the duration of these tests. The 
sampler's ambient temperature, ambient pressure, and flow measurement 
systems shall all be calibrated per the sampler's operating manual 
within 7 days prior to this test.
    (2) The inlet of the candidate sampler shall be removed and the flow 
measurement adaptor installed on the sample downtube. A leak check as 
described in the sampler's operation or instruction manual shall be 
conducted and must be properly passed before other tests are carried 
out.
    (3) The inlet of the flow measurement adaptor shall be connected to 
the outlet of the flow rate meter.
    (e) Procedure. (1) Set up the sampler as specified in paragraph (d) 
of this section and otherwise prepare the sampler for normal sample 
collection operation as directed in the sampler's operation or 
instruction manual. Set the sampler to automatically start a 6-hour 
sample collection period at a convenient time.
    (2) During the entire 6-hour operational flow rate portion of the 
test, measure and record the sample flow rate with the flow rate meter 
at intervals not to exceed 5 minutes. If ambient temperature and 
pressure corrections are necessary to calculate volumetric flow rate, 
ambient temperature and pressure shall be measured at the same frequency 
as that of the certified flow rate measurements. Note and record the 
actual start and stop times for the 6-hour flow rate test period.
    (3) During the 6-hour test period, interrupt the AC line electrical 
power to the sampler 5 times, with durations of 20 seconds, 40 seconds, 
2 minutes, 7 minutes, and 20 minutes (respectively), with not less than 
10 minutes of normal electrical power supplied between each power 
interruption. Record the hour and minute and duration of each power 
interruption.
    (4) At the end of the test, terminate the sample period (if not 
automatically terminated by the sampler) and download all archived 
instrument data from the test sampler.
    (f) Test results. At the completion of the sampling period, validate 
the test conditions and determine the test results as follows:
    (1) Mean sample flow rate. (i) From the certified measurements 
(Qref) of the test sampler flow rate, tabulate each flow rate 
measurement in units of L/min. If ambient temperature and pressure 
corrections are necessary to calculate volumetric flow rate, each 
measured flow rate shall be corrected using its corresponding 
temperature and pressure measurement values. Calculate the mean flow 
rate for the sample period (Qref,ave) as follows:

                               Equation 6
[GRAPHIC] [TIFF OMITTED] TR18JY97.068


where:

n equals the number of discrete certified flow rate measurements over 
the 6-hour test period, excluding flow rate values obtained during 
periods of power interruption.

    (ii)(A) Calculate the percent difference between this mean flow rate 
value and the design value of 16.67 L/min, as follows:

                               Equation 7
[GRAPHIC] [TIFF OMITTED] TR18JY97.069

    (B) To successfully pass this test, the percent difference 
calculated in Equation 7 of this paragraph (f)(1)(ii) must be within 
5 percent.
    (2) Sample flow rate regulation. (i) From the certified measurements 
of the test sampler flow rate, calculate the sample coefficient of 
variation of the discrete measurements as follows:

                               Equation 8
[GRAPHIC] [TIFF OMITTED] TR18JY97.070

    (ii) To successfully pass this test, the calculated coefficient of 
variation for

[[Page 65]]

the certified flow rates must not exceed 2 percent.
    (3) Flow rate measurement accuracy. (i) Using the mean volumetric 
flow rate reported by the candidate test sampler at the completion of 
the 6-hour test (Qind,ave), determine the accuracy of the 
reported mean flow rate as:

                               Equation 9
[GRAPHIC] [TIFF OMITTED] TR18JY97.071

    (ii) To successfully pass this test, the percent difference 
calculated in Equation 9 of this paragraph (f)(3) shall not exceed 2 
percent.
    (4) Flow rate CV measurement accuracy. (i) Using the flow rate 
coefficient of variation indicated by the candidate test sampler at the 
completion of the 6-hour test (%CVind), determine the 
accuracy of the reported coefficient of variation as:

                               Equation 10
[GRAPHIC] [TIFF OMITTED] TR18JY97.072

    (ii) To successfully pass this test, the absolute difference in 
values calculated in Equation 10 of this paragraph (f)(4) must not 
exceed 0.3 (CV%).
    (5) Verify that the sampler properly provided a record and visual 
display of the correct year, month, day-of-month, hour, and minute with 
an accuracy of 2 minutes, of the start of each power 
interruption of duration greater than 60 seconds.
    (6) Calculate the actual elapsed sample time, excluding the periods 
of electrical power interruption. Verify that the elapsed sample time 
reported by the sampler is accurate to within 20 seconds for 
the 6-hour test run.
    (7) Calculate the sample volume as Qref.ave multiplied by 
the sample time, excluding periods of power interruption. Verify that 
the sample volume reported by the sampler is within 2 percent of the 
calculated sample volume to successfully pass this test.
    (8) Inspect the downloaded instrument data from the test sampler and 
verify that all data are consistent with normal operation of the 
sampler.

[62 FR 38799, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.55   Test for effect of variations in power line voltage and ambient temperature.

    (a) Overview. (1) This test procedure is a combined procedure to 
test various performance parameters under variations in power line 
voltage and ambient temperature. Tests shall be conducted in a 
temperature controlled environment over four 6-hour time periods during 
which reference temperature and flow rate measurements shall be made at 
intervals not to exceed 5 minutes. Specific parameters to be evaluated 
at line voltages of 105 and 125 volts and temperatures of -20  deg.C and 
=40  deg.C are as follows:
    (i) Sample flow rate.
    (ii) Flow rate regulation.
    (iii) Flow rate measurement accuracy.
    (iv) Coefficient of variability measurement accuracy.
    (v) Ambient air temperature measurement accuracy.
    (vi) Proper operation of the sampler when exposed to power line 
voltage and ambient temperature extremes.
    (2) The performance parameters tested under this procedure, the 
corresponding minimum performance specifications, and the applicable 
test conditions are summarized in table E-1 of this subpart. Each 
performance parameter tested, as described or determined in the test 
procedure, must meet or exceed the associated performance specification 
given. The candidate sampler must meet all specifications for the 
associated PM2.5 method to pass this test procedure.
    (b) Technical definition. Sample flow rate means the quantitative 
volumetric flow rate of the air stream caused by the sampler to enter 
the sampler inlet and pass through the sample filter, measured in actual 
volume units at the temperature and pressure of the air as it enters the 
inlet.
    (c) Required test equipment. (1) Environmental chamber or other 
temperature-controlled environment or environments, capable of obtaining 
and maintaining temperatures at -20  deg.C

[[Page 66]]

and =40  deg.C as required for the test with an accuracy of 
2  deg.C. The test environment(s) must be capable of 
maintaining these temperatures within the specified limits continuously 
with the additional heat load of the operating test sampler in the 
environment. Henceforth, where the test procedures specify a test or 
environmental ``chamber,'' an alternative temperature-controlled 
environmental area or areas may be substituted, provided the required 
test temperatures and all other test requirements are met.
    (2) Variable voltage AC power transformer, range 100 Vac to 130 Vac, 
with sufficient current capacity to operate the test sampler 
continuously under the test conditions.
    (3) Flow rate meter, suitable for measuring and recording the actual 
volumetric sample flow rate at the sampler downtube, with a minimum 
range of 10 to 25 actual L/min, 2 percent certified, NIST-traceable 
accuracy. Optional capability for continuous (analog) recording 
capability or digital recording at intervals not to exceed 5 minutes is 
recommended. While a flow meter which provides a direct indication of 
volumetric flow rate is preferred for this test, an alternative 
certified flow measurement device may be used as long as appropriate 
volumetric flow rate corrections are made based on measurements of 
actual ambient temperature and pressure conditions.
    (4) Ambient air temperature recorder, range -30  deg.C to =50 
deg.C, with a resolution of 0.1  deg.C and certified accurate to within 
0.5  deg.C. Ambient air temperature measurements must be made using 
continuous (analog) recording capability or digital recording at 
intervals not to exceed 5 minutes.
    (5) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 
mm Hg. If the certified flow rate meter does not provide direct 
volumetric flow rate readings, ambient pressure measurements must be 
made using continuous (analog) recording capability or digital recording 
at intervals not to exceed 5 minutes.
    (6) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-
30) or equivalent adaptor to facilitate measurement of sampler flow rate 
at the sampler downtube.
    (7) Means for creating an additional pressure drop of 55 mm Hg in 
the sampler to simulate a heavily loaded filter, such as an orifice or 
flow restrictive plate installed in the filter holder or a valve or 
other flow restrictor temporarily installed in the flow path near the 
filter.
    (8) AC RMS voltmeter, accurate to 1.0 volt.
    (9) Teflon sample filter, as specified in section 6 of 40 CFR part 
50, appendix L (if required).
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.
    (e) Test setup. (1) Setup of the sampler shall be performed as 
required in this paragraph (e) and otherwise as described in the 
sampler's operation or instruction manual referred to in 
Sec. 53.4(b)(3). The sampler shall be installed upright and set up in 
the temperature-controlled chamber in its normal configuration for 
collecting PM2.5 samples. A sample filter and (or) the device 
for creating an additional 55 mm Hg pressure drop shall be installed for 
the duration of these tests. The sampler's ambient temperature, ambient 
pressure, and flow measurement systems shall all be calibrated per the 
sampler's operating manual within 7 days prior to this test.
    (2) The inlet of the candidate sampler shall be removed and the flow 
measurement adaptor installed on the sampler's downtube. A leak check as 
described in the sampler's operation or instruction manual shall be 
conducted and must be properly passed before other tests are carried 
out.

[[Page 67]]

    (3) The inlet of the flow measurement adaptor shall be connected to 
the outlet of the flow rate meter.
    (4) The ambient air temperature recorder shall be installed in the 
test chamber such that it will accurately measure the temperature of the 
air in the vicinity of the candidate sampler without being unduly 
affected by the chamber's air temperature control system.
    (f) Procedure. (1) Set up the sampler as specified in paragraph (e) 
of this section and otherwise prepare the sampler for normal sample 
collection operation as directed in the sampler's operation or 
instruction manual.
    (2) The test shall consist of four test runs, one at each of the 
following conditions of chamber temperature and electrical power line 
voltage (respectively):
    (i) -20  deg.C 2  deg.C and 105 1 Vac.
    (ii) -20  deg.C 2  deg.C and 125 1 Vac.
    (iii) =40  deg.C 2  deg.C and 105 1 Vac.
    (iv) =40  deg.C 2  deg.C and 125 1 Vac.
    (3) For each of the four test runs, set the selected chamber 
temperature and power line voltage for the test run. Upon achieving each 
temperature setpoint in the chamber, the candidate sampler and flow 
meter shall be thermally equilibrated for a period of at least 2 hours 
prior to the test run. Following the thermal conditioning time, set the 
sampler to automatically start a 6-hour sample collection period at a 
convenient time.
    (4) During each 6-hour test period:
    (i) Measure and record the sample flow rate with the flow rate meter 
at intervals not to exceed 5 minutes. If ambient temperature and 
pressure corrections are necessary to calculate volumetric flow rate, 
ambient temperature and pressure shall be measured at the same frequency 
as that of the certified flow rate measurements. Note and record the 
actual start and stop times for the 6-hour flow rate test period.
    (ii) Determine and record the ambient (chamber) temperature 
indicated by the sampler and the corresponding ambient (chamber) 
temperature measured by the ambient temperature recorder specified in 
paragraph (c)(4) of this section at intervals not to exceed 5 minutes.
    (iii) Measure the power line voltage to the sampler at intervals not 
greater than 1 hour.
    (5) At the end of each test run, terminate the sample period (if not 
automatically terminated by the sampler) and download all archived 
instrument data from the test sampler.
    (g) Test results. For each of the four test runs, examine the 
chamber temperature measurements and the power line voltage 
measurements. Verify that the temperature and line voltage met the 
requirements specified in paragraph (f) of this section at all times 
during the test run. If not, the test run is not valid and must be 
repeated. Determine the test results as follows:
    (1) Mean sample flow rate. (i) From the certified measurements 
(Qref) of the test sampler flow rate, tabulate each flow rate 
measurement in units of L/min. If ambient temperature and pressure 
corrections are necessary to calculate volumetric flow rate, each 
measured flow rate shall be corrected using its corresponding 
temperature and pressure measurement values. Calculate the mean flow 
rate for each sample period (Qref,ave) as follows:

                               Equation 11
[GRAPHIC] [TIFF OMITTED] TR18JY97.073


where:

n equals the number of discrete certified flow rate measurements over 
each 6-hour test period.

    (ii)(A) Calculate the percent difference between this mean flow rate 
value and the design value of 16.67 L/min, as follows:

                               Equation 12
[GRAPHIC] [TIFF OMITTED] TR18JY97.074

    (B) To successfully pass this test, the percent difference 
calculated in Equation 12 of this paragraph (g)(1)(ii) must be within 
5 percent for each test run.
    (2) Sample flow rate regulation. (i) From the certified measurements 
of the test sampler flow rate, calculate

[[Page 68]]

the sample coefficient of variation of the discrete measurements as 
follows:

                               Equation 13
[GRAPHIC] [TIFF OMITTED] TR18JY97.075

    (ii) To successfully pass this test, the calculated coefficient of 
variation for the certified flow rates must not exceed 2 percent.
    (3) Flow rate measurement accuracy. (i) Using the mean volumetric 
flow rate reported by the candidate test sampler at the completion of 
each 6-hour test (Qind,ave), determine the accuracy of the 
reported mean flow rate as:

                               Equation 14
[GRAPHIC] [TIFF OMITTED] TR18JY97.076

    (ii) To successfully pass this test, the percent difference 
calculated in Equation 14 of this paragraph (g)(3) shall not exceed 2 
percent for each test run.
    (4) Flow rate coefficient of variation measurement accuracy. (i) 
Using the flow rate coefficient of variation indicated by the candidate 
test sampler (%CVind), determine the accuracy of the reported 
coefficient of variation as:

                               Equation 15
[GRAPHIC] [TIFF OMITTED] TR18JY97.077

    (ii) To successfully pass this test, the absolute difference 
calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 
(CV%) for each test run.
    (5) Ambient temperature measurement accuracy. (i) Calculate the 
absolute value of the difference between the mean ambient air 
temperature indicated by the test sampler and the mean ambient (chamber) 
air temperature measured with the ambient air temperature recorder as:

                               Equation 16
[GRAPHIC] [TIFF OMITTED] TR18JY97.078


where:

Tind,ave = mean ambient air temperature indicated by the test 
sampler,  deg.C; and
ref,ave = mean ambient air temperature measured by the 
reference temperature instrument,  deg.C.

    (ii) The calculated temperature difference must be less than 2 
deg.C for each test run.
    (6) Sampler functionality. To pass the sampler functionality test, 
the following two conditions must both be met for each test run:
    (i) The sampler must not shutdown during any portion of the 6-hour 
test.
    (ii) An inspection of the downloaded data from the test sampler 
verifies that all the data are consistent with normal operation of the 
sampler.



Sec. 53.56   Test for effect of variations in ambient pressure.

    (a) Overview. (1) This test procedure is designed to test various 
sampler performance parameters under variations in ambient (barometric) 
pressure. Tests shall be conducted in a pressure-controlled environment 
over two 6-hour time periods during which reference pressure and flow 
rate measurements shall be made at intervals not to exceed 5 minutes. 
Specific parameters to be evaluated at operating pressures of 600 and 
800 mm Hg are as follows:
    (i) Sample flow rate.
    (ii) Flow rate regulation.
    (iii) Flow rate measurement accuracy.
    (iv) Coefficient of variability measurement accuracy.
    (v) Ambient pressure measurement accuracy.
    (vi) Proper operation of the sampler when exposed to ambient 
pressure extremes.
    (2) The performance parameters tested under this procedure, the 
corresponding minimum performance specifications, and the applicable 
test conditions are summarized in table E-1 of this subpart. Each 
performance parameter tested, as described or determined in the test 
procedure, must meet or exceed the associated performance specification 
given. The candidate sampler must meet all specifications for the 
associated PM2.5 method to pass this test procedure.

[[Page 69]]

    (b) Technical definition. Sample flow rate means the quantitative 
volumetric flow rate of the air stream caused by the sampler to enter 
the sampler inlet and pass through the sample filter, measured in actual 
volume units at the temperature and pressure of the air as it enters the 
inlet.
    (c) Required test equipment. (1) Hypobaric chamber or other 
pressure-controlled environment or environments, capable of obtaining 
and maintaining pressures at 600 mm Hg and 800 mm Hg required for the 
test with an accuracy of 5 mm Hg. Henceforth, where the test procedures 
specify a test or environmental chamber, an alternative pressure-
controlled environmental area or areas may be substituted, provided the 
test pressure requirements are met. Means for simulating ambient 
pressure using a closed-loop sample air system may also be approved for 
this test; such a proposed method for simulating the test pressure 
conditions may be described and submitted to EPA at the address given in 
Sec. 53.4(a) prior to conducting the test for a specific individual 
determination of acceptability.
    (2) Flow rate meter, suitable for measuring and recording the actual 
volumetric sampler flow rate at the sampler downtube, with a minimum 
range of 10 to 25 L/min, 2 percent certified, NIST-traceable accuracy. 
Optional capability for continuous (analog) recording capability or 
digital recording at intervals not to exceed 5 minutes is recommended. 
While a flow meter which provides a direct indication of volumetric flow 
rate is preferred for this test, an alternative certified flow 
measurement device may be used as long as appropriate volumetric flow 
rate corrections are made based on measurements of actual ambient 
temperature and pressure conditions.
    (3) Ambient air temperature recorder (if needed for volumetric 
corrections to flow rate measurements) with a range -30  deg.C to =50 
deg.C, certified accurate to within 0.5  deg.C. If the certified flow 
meter does not provide direct volumetric flow rate readings, ambient 
temperature measurements must be made using continuous (analog) 
recording capability or digital recording at intervals not to exceed 5 
minutes.
    (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 
mm Hg. Ambient air pressure measurements must be made using continuous 
(analog) recording capability or digital recording at intervals not to 
exceed 5 minutes.
    (5) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-
30) or equivalent adaptor to facilitate measurement of sampler flow rate 
at the sampler downtube.
    (6) Means for creating an additional pressure drop of 55 mm Hg in 
the sampler to simulate a heavily loaded filter, such as an orifice or 
flow restrictive plate installed in the filter holder or a valve or 
other flow restrictor temporarily installed in the flow path near the 
filter.
    (7) Teflon sample filter, as specified in section 6 of 40 CFR part 
50, appendix L (if required).
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.
    (e) Test setup. (1) Setup of the sampler shall be performed as 
required in this paragraph (e) and otherwise as described in the 
sampler's operation or instruction manual referred to in 
Sec. 53.4(b)(3). The sampler shall be installed upright and set up in 
the pressure-controlled chamber in its normal configuration for 
collecting PM2.5 samples. A sample filter and (or) the device 
for creating an additional 55 mm Hg pressure drop shall be installed for 
the duration of these tests. The sampler's ambient temperature, ambient 
pressure, and flow measurement systems shall all be calibrated per the 
sampler's operating manual within 7 days prior to this test.

[[Page 70]]

    (2) The inlet of the candidate sampler shall be removed and the flow 
measurement adaptor installed on the sampler's downtube. A leak check as 
described in the sampler's operation or instruction manual shall be 
conducted and must be properly passed before other tests are carried 
out.
    (3) The inlet of the flow measurement adaptor shall be connected to 
the outlet of the flow rate meter.
    (4) The barometer shall be installed in the test chamber such that 
it will accurately measure the air pressure to which the candidate 
sampler is subjected.
    (f) Procedure. (1) Set up the sampler as specified in paragraph (e) 
of this section and otherwise prepare the sampler for normal sample 
collection operation as directed in the sampler's operation or 
instruction manual.
    (2) The test shall consist of two test runs, one at each of the 
following conditions of chamber pressure:
    (i) 600 mm Hg.
    (ii) 800 mm Hg.
    (3) For each of the two test runs, set the selected chamber pressure 
for the test run. Upon achieving each pressure setpoint in the chamber, 
the candidate sampler shall be pressure-equilibrated for a period of at 
least 30 minutes prior to the test run. Following the conditioning time, 
set the sampler to automatically start a 6-hour sample collection period 
at a convenient time.
    (4) During each 6-hour test period:
    (i) Measure and record the sample flow rate with the flow rate meter 
at intervals not to exceed 5 minutes. If ambient temperature and 
pressure corrections are necessary to calculate volumetric flow rate, 
ambient temperature and pressure shall be measured at the same frequency 
as that of the certified flow rate measurements. Note and record the 
actual start and stop times for the 6-hour flow rate test period.
    (ii) Determine and record the ambient (chamber) pressure indicated 
by the sampler and the corresponding ambient (chamber) pressure measured 
by the barometer specified in paragraph (c)(4) of this section at 
intervals not to exceed 5 minutes.
    (5) At the end of each test period, terminate the sample period (if 
not automatically terminated by the sampler) and download all archived 
instrument data for the test run from the test sampler.
    (g) Test results. For each of the two test runs, examine the chamber 
pressure measurements. Verify that the pressure met the requirements 
specified in paragraph (f) of this section at all times during the test. 
If not, the test run is not valid and must be repeated. Determine the 
test results as follows:
    (1) Mean sample flow rate. (i) From the certified measurements 
(Qref) of the test sampler flow rate, tabulate each flow rate 
measurement in units of L/min. If ambient temperature and pressure 
corrections are necessary to calculate volumetric flow rate, each 
measured flow rate shall be corrected using its corresponding 
temperature and pressure measurement values. Calculate the mean flow 
rate for the sample period (Qref,ave) as follows:

                               Equation 17
[GRAPHIC] [TIFF OMITTED] TR18JY97.079


where:

n equals the number of discrete certified flow measurements over the 6-
hour test period.

    (ii)(A) Calculate the percent difference between this mean flow rate 
value and the design value of 16.67 L/min, as follows:

                               Equation 18
[GRAPHIC] [TIFF OMITTED] TR18JY97.080

    (B) To successfully pass this test, the percent difference 
calculated in Equation 18 of this paragraph (g)(1) must be within 
5 percent for each test run.
    (2) Sample flow rate regulation. (i) From the certified measurements 
of the test sampler flow rate, calculate the sample coefficient of 
variation of the discrete measurements as follows:

[[Page 71]]

                               Equation 19
[GRAPHIC] [TIFF OMITTED] TR18JY97.081

    (ii) To successfully pass this test, the calculated coefficient of 
variation for the certified flow rates must not exceed 2 percent.
    (3) Flow rate measurement accuracy. (i) Using the mean volumetric 
flow rate reported by the candidate test sampler at the completion of 
each 6-hour test (Qind,ave), determine the accuracy of the 
reported mean flow rate as:

                               Equation 20
[GRAPHIC] [TIFF OMITTED] TR18JY97.082

    (ii) To successfully pass this test, the percent difference 
calculated in Equation 20 of this paragraph (g)(3) shall not exceed 2 
percent for each test run.
    (4) Flow rate CV measurement accuracy. (i) Using the flow rate 
coefficient of variation indicated by the candidate test sampler at the 
completion of the 6-hour test (%CVind), determine the 
accuracy of the reported coefficient of variation as:

                               Equation 21
[GRAPHIC] [TIFF OMITTED] TR18JY97.083

    (ii) To successfully pass this test, the absolute difference in 
values calculated in Equation 21 of this paragraph (g)(4) must not 
exceed 0.3 (CV%) for each test run.
    (5) Ambient pressure measurement accuracy. (i) Calculate the 
absolute difference between the mean ambient air pressure indicated by 
the test sampler and the ambient (chamber) air pressure measured with 
the reference barometer as:

                               Equation 22
[GRAPHIC] [TIFF OMITTED] TR18JY97.084


where:

Pind,ave = mean ambient pressure indicated by the test 
sampler, mm Hg; and
Pref,ave = mean barometric pressure measured by the reference 
barometer, mm Hg.

    (ii) The calculated pressure difference must be less than 10 mm Hg 
for each test run to pass the test.
    (6) Sampler functionality. To pass the sampler functionality test, 
the following two conditions must both be met for each test run:
    (i) The sampler must not shut down during any part of the 6-hour 
tests; and
    (ii) An inspection of the downloaded data from the test sampler 
verifies that all the data are consistent with normal operation of the 
sampler.

[62 FR 38799, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.57   Test for filter temperature control during sampling and post-sampling periods.

    (a) Overview. This test is intended to measure the candidate 
sampler's ability to prevent excessive overheating of the 
PM2.5 sample collection filter (or filters) under conditions 
of elevated solar insolation. The test evaluates radiative effects on 
filter temperature during a 4-hour period of active sampling as well as 
during a subsequent 4-hour non-sampling time period prior to filter 
retrieval. Tests shall be conducted in an environmental chamber which 
provides the proper radiant wavelengths and energies to adequately 
simulate the sun's radiant effects under clear conditions at sea level. 
For additional guidance on conducting solar radiative tests under 
controlled conditions, consult military standard specification 810-E 
(reference 6 in appendix A of this subpart). The performance parameters 
tested under this procedure, the corresponding minimum performance 
specifications, and the applicable test conditions are summarized in 
table E-1 of this subpart. Each performance parameter tested, as 
described or determined in the test procedure, must meet or exceed the 
associated performance specification to successfully pass this test.
    (b) Technical definition. Filter temperature control during sampling 
is the ability of a sampler to maintain the temperature of the 
particulate matter sample filter within the specified deviation (5 
deg.C) from ambient temperature during any active sampling period.

[[Page 72]]

Post-sampling temperature control is the ability of a sampler to 
maintain the temperature of the particulate matter sample filter within 
the specified deviation from ambient temperature during the period from 
the end of active sample collection of the PM2.5 sample by 
the sampler until the filter is retrieved from the sampler for 
laboratory analysis.
    (c) Required test equipment. (1) Environmental chamber providing the 
means, such as a bank of solar-spectrum lamps, for generating or 
simulating thermal radiation in approximate spectral content and 
intensity equivalent to solar insolation of 1000 50 W/
m2 inside the environmental chamber. To properly simulate the 
sun's radiative effects on the sampler, the solar bank must provide the 
spectral energy distribution and permitted tolerances specified in table 
E-2 of this subpart. The solar radiation source area shall be such that 
the width of the candidate sampler shall not exceed one-half the 
dimensions of the solar bank. The solar bank shall be located a minimum 
of 76 cm (30 inches) from any surface of the candidate sampler. To meet 
requirements of the solar radiation tests, the chamber's internal volume 
shall be a minimum of 10 times that of the volume of the candidate 
sampler. Air velocity in the region of the sampler must be maintained 
continuously during the radiative tests at 2.0 0.5 m/sec.
    (2) Ambient air temperature recorder, range -30  deg.C to =50 
deg.C, with a resolution of 0.1  deg.C and certified accurate to within 
0.5  deg.C. Ambient air temperature measurements must be made using 
continuous (analog) recording capability or digital recording at 
intervals not to exceed 5 minutes.
    (3) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-
30) or equivalent adaptor to facilitate measurement of sampler flow rate 
at the sampler downtube.
    (4) Miniature temperature sensor(s), capable of being installed in 
the sampler without introducing air leakage and capable of measuring the 
sample air temperature within 1 cm of the center of the filter, 
downstream of the filter; with a resolution of 0.1  deg.C, certified 
accurate to within 0.5  deg.C, NIST-traceable, with continuous (analog) 
recording capability or digital recording at intervals of not more than 
5 minutes.
    (5) Solar radiometer, to measure the intensity of the simulated 
solar radiation in the test environment, range of 0 to approximately 
1500 W/m2. Optional capability for continuous (analog) 
recording or digital recording at intervals not to exceed 5 minutes is 
recommended.
    (6) Sample filter or filters, as specified in section 6 of 40 CFR 
part 50, appendix L.
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.
    (e) Test setup. (1) Setup of the sampler shall be performed as 
required in this paragraph (e) and otherwise as described in the 
sampler's operation or instruction manual referred to in 
Sec. 53.4(b)(3). The sampler shall be installed upright and set up in 
the solar radiation environmental chamber in its normal configuration 
for collecting PM2.5 samples (with the inlet installed). The 
sampler's ambient and filter temperature measurement systems shall be 
calibrated per the sampler's operating manual within 7 days prior to 
this test. A sample filter shall be installed for the duration of this 
test. For sequential samplers, a sample filter shall also be installed 
in each available sequential channel or station intended for collection 
of a sequential sample (or at least 5 additional filters for magazine-
type sequential samplers) as directed by the sampler's operation or 
instruction manual.
    (2) The miniature temperature sensor shall be temporarily installed 
in the test sampler such that it accurately

[[Page 73]]

measures the air temperature 1 cm from the center of the filter on the 
downstream side of the filter. The sensor shall be installed such that 
no external or internal air leakage is created by the sensor 
installation. The sensor's dimensions and installation shall be selected 
to minimize temperature measurement uncertainties due to thermal 
conduction along the sensor mounting structure or sensor conductors. For 
sequential samplers, similar temperature sensors shall also be 
temporarily installed in the test sampler to monitor the temperature 1 
cm from the center of each filter stored in the sampler for sequential 
sample operation.
    (3) The solar radiant energy source shall be installed in the test 
chamber such that the entire test sampler is irradiated in a manner 
similar to the way it would be irradiated by solar radiation if it were 
located outdoors in an open area on a sunny day, with the radiation 
arriving at an angle of between 30 deg. and 45 deg. from vertical. The 
intensity of the radiation received by all sampler surfaces that receive 
direct radiation shall average 1000 50 W/m2, 
measured in a plane perpendicular to the incident radiation. The 
incident radiation shall be oriented with respect to the sampler such 
that the area of the sampler's ambient temperature sensor (or 
temperature shield) receives full, direct radiation as it would or could 
during normal outdoor installation. Also, the temperature sensor must 
not be shielded or shaded from the radiation by a sampler part in a way 
that would not occur at other normal insolation angles or directions.
    (4) The solar radiometer shall be installed in a location where it 
measures thermal radiation that is generally representative of the 
average thermal radiation intensity that the upper portion of the 
sampler and sampler inlet receive. The solar radiometer shall be 
oriented so that it measures the radiation in a plane perpendicular to 
its angle of incidence.
    (5) The ambient air temperature recorder shall be installed in the 
test chamber such that it will accurately measure the temperature of the 
air in the chamber without being unduly affected by the chamber's air 
temperature control system or by the radiant energy from the solar 
radiation source that may be present inside the test chamber.
    (f) Procedure. (1) Set up the sampler as specified in paragraph (e) 
of this section and otherwise prepare the sampler for normal sample 
collection operation as directed in the sampler's operation or 
instruction manual.
    (2) Remove the inlet of the candidate test sampler and install the 
flow measurement adaptor on the sampler's downtube. Conduct a leak check 
as described in the sampler's operation or instruction manual. The leak 
test must be properly passed before other tests are carried out.
    (3) Remove the flow measurement adaptor from the downtube and re-
install the sampling inlet.
    (4) Activate the solar radiation source and verify that the 
resulting energy distribution prescribed in table E-2 of this subpart is 
achieved.
    (5) Program the test sampler to conduct a single sampling run of 4 
continuous hours. During the 4-hour sampling run, measure and record the 
radiant flux, ambient temperature, and filter temperature (all filter 
temperatures for sequential samplers) at intervals not to exceed 5 
minutes.
    (6) At the completion of the 4-hour sampling phase, terminate the 
sample period, if not terminated automatically by the sampler. Continue 
to measure and record the radiant flux, ambient temperature, and filter 
temperature or temperatures for 4 additional hours at intervals not to 
exceed 5 minutes. At the completion of the 4-hour post-sampling period, 
discontinue the measurements and turn off the solar source.
    (7) Download all archived sampler data from the test run.
    (g) Test results. Chamber radiant flux control. Examine the 
continuous record of the chamber radiant flux and verify that the flux 
met the requirements specified in table E-2 of this subpart at all times 
during the test. If not, the entire test is not valid and must be 
repeated.
    (1) Filter temperature measurement accuracy. (i) For each 4-hour 
test period,

[[Page 74]]

calculate the absolute value of the difference between the mean filter 
temperature indicated by the sampler (active filter) and the mean filter 
temperature measured by the reference temperature sensor installed 
within 1 cm downstream of the (active) filter as:

                               Equation 23
[GRAPHIC] [TIFF OMITTED] TR18JY97.085


where:

Tind,filter = mean filter temperature indicated by the test 
sampler,  deg.C; and
Tref,filter = mean filter temperature measured by the 
reference temperature sensor,  deg.C.

    (ii) To successfully pass the indicated filter temperature accuracy 
test, the calculated difference between the measured means 
(Tdiff,filter) must not exceed 2  deg.C for each 4-hour test 
period.
    (2) Ambient temperature measurement accuracy. (i) For each 4-hour 
test period, calculate the absolute value of the difference between the 
mean ambient air temperature indicated by the test sampler and the mean 
ambient air temperature measured by the reference ambient air 
temperature recorder as:

                               Equation 24
[GRAPHIC] [TIFF OMITTED] TR18JY97.086


where:

Tind,ambient = mean ambient air temperature indicated by the 
test sampler,  deg.C; and
Tref,ambient = mean ambient air temperature measured by the 
reference ambient air temperature recorder,  deg.C.

    (ii) To successfully pass the indicated ambient temperature accuracy 
test, the calculated difference between the measured means 
(Tdiff,ambient) must not exceed 2  deg.C for each 4-hour test 
period.
    (3) Filter temperature control accuracy. (i) For each temperature 
measurement interval over each 4-hour test period, calculate the 
difference between the filter temperature indicated by the reference 
temperature sensor and the ambient temperature indicated by the test 
sampler as:

                               Equation 25
[GRAPHIC] [TIFF OMITTED] TR18JY97.087

    (ii) Tabulate and inspect the calculated differences as a function 
of time. To successfully pass the indicated filter temperature control 
test, the calculated difference between the measured values must not 
exceed 5  deg.C for any consecutive intervals covering more than a 30-
minute time period.
    (iii) For sequential samplers, repeat the test calculations for each 
of the stored sequential sample filters. All stored filters must also 
meet the 5  deg.C temperature control test.

[62 FR 38799, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.58   Operational field precision and blank test.

    (a) Overview. This test is intended to determine the operational 
precision of the candidate sampler during a minimum of 10 days of field 
operation, using three collocated test samplers. Measurements of 
PM2.5 are made at a test site with all of the samplers and 
then compared to determine replicate precision. Candidate sequential 
samplers are also subject to a test for possible deposition of 
particulate matter on inactive filters during a period of storage in the 
sampler. This procedure is applicable to both reference and equivalent 
methods. In the case of equivalent methods, this test may be combined 
and conducted concurrently with the comparability test for equivalent 
methods (described in subpart C of this part), using three reference 
method samplers collocated with three candidate equivalent method 
samplers and meeting the applicable site and other requirements of 
subpart C of this part.
    (b) Technical definition. (1) Field precision is defined as the 
standard deviation or relative standard deviation of a set of 
PM2.5 measurements obtained concurrently with three or more 
collocated samplers in actual ambient air field operation.
    (2) Storage deposition is defined as the mass of material 
inadvertently deposited on a sample filter that is stored in a 
sequential sampler either prior to or subsequent to the active sample 
collection period.
    (c) Test site. Any outdoor test site having PM2.5 
concentrations that are reasonably uniform over the test area

[[Page 75]]

and that meet the minimum level requirement of paragraph (g)(2) of this 
section is acceptable for this test.
    (d) Required facilities and equipment. (1) An appropriate test site 
and suitable electrical power to accommodate three test samplers are 
required.
    (2) Teflon sample filters, as specified in section 6 of 40 CFR part 
50, appendix L, conditioned and preweighed as required by section 8 of 
40 CFR part 50, appendix L, as needed for the test samples.
    (e) Test setup. (1) Three identical test samplers shall be installed 
at the test site in their normal configuration for collecting 
PM2.5 samples in accordance with the instructions in the 
associated manual referred to in Sec. 53.4(b)(3) and should be in 
accordance with applicable supplemental guidance provided in reference 3 
in appendix A of this subpart. The test samplers' inlet openings shall 
be located at the same height above ground and between 2 and 4 meters 
apart horizontally. The samplers shall be arranged or oriented in a 
manner that will minimize the spatial and wind directional effects on 
sample collection of one sampler on any other sampler.
    (2) Each test sampler shall be successfully leak checked, 
calibrated, and set up for normal operation in accordance with the 
instruction manual and with any applicable supplemental guidance 
provided in reference 3 in appendix A of this subpart.
    (f) Test procedure. (1) Install a conditioned, preweighed filter in 
each test sampler and otherwise prepare each sampler for normal sample 
collection. Set identical sample collection start and stop times for 
each sampler. For sequential samplers, install a conditioned, preweighed 
specified filter in each available channel or station intended for 
automatic sequential sample filter collection (or at least 5 additional 
filters for magazine-type sequential samplers), as directed by the 
sampler's operation or instruction manual. Since the inactive sequential 
channels are used for the storage deposition part of the test, they may 
not be used to collect the active PM2.5 test samples.
    (2) Collect either a 24-hour or a 48-hour atmospheric 
PM2.5 sample simultaneously with each of the three test 
samplers.
    (3) Following sample collection, retrieve the collected sample from 
each sampler. For sequential samplers, retrieve the additional stored 
(blank, unsampled) filters after at least 5 days (120 hours) storage in 
the sampler if the active samples are 24-hour samples, or after at least 
10 days (240 hours) if the active samples are 48-hour samples.
    (4) Determine the measured PM2.5 mass concentration for 
each sample in accordance with the applicable procedures prescribed for 
the candidate method in appendix L, 40 CFR part 50 of this chapter, in 
the associated manual referred to in Sec. 53.4(b)(3) and in accordance 
with supplemental guidance in reference 2 in appendix A of this subpart. 
For sequential samplers, also similarly determine the storage deposition 
as the net weight gain of each blank, unsampled filter after the 5-day 
(or 10-day) period of storage in the sampler.
    (5) Repeat this procedure to obtain a total of 10 sets of any 
combination of 24-hour or 48-hour PM2.5 measurements over 10 
test periods. For sequential samplers, repeat the 5-day (or 10-day) 
storage test of additional blank filters once for a total of two sets of 
blank filters.
    (g) Calculations. (1) Record the PM2.5 concentration for 
each test sampler for each test period as Ci,j, where i is 
the sampler number (i = 1,2,3) and j is the test period (j = 1,2, . . . 
10).
    (2)(i) For each test period, calculate and record the average of the 
three measured PM2.5 concentrations as Cj where j 
is the test period:

                               Equation 26
[GRAPHIC] [TIFF OMITTED] TR18JY97.088

    (ii) If Cave,j < 10 [mu]g/m3 for any test 
period, data from that test period are unacceptable, and an additional 
sample collection set must be obtained to replace the unacceptable data.
    (3)(i) Calculate and record the precision for each of the 10 test 
days as:

[[Page 76]]

                               Equation 27
[GRAPHIC] [TIFF OMITTED] TR18JY97.089

    (ii) If Cave,j is below 40 [mu]g/m3 for 24-
hour measurements or below 30 [mu]g/m3 for 48-hour 
measurements; or

                               Equation 28
[GRAPHIC] [TIFF OMITTED] TR18JY97.090

    (iii) If Cave,j is above 40 [mu]g/m3 for 24-
hour measurements or above 30 [mu]g/m3 for 48-hour 
measurements.
    (h) Test results. (1) The candidate method passes the precision test 
if all 10 Pj or RPj values meet the specifications 
in table E-1 of this subpart.
    (2) The candidate sequential sampler passes the blank filter storage 
deposition test if the average net storage deposition weight gain of 
each set of blank filters (total of the net weight gain of each blank 
filter divided by the number of filters in the set) from each test 
sampler (six sets in all) is less than 50 [mu]g.



Sec. 53.59   Aerosol transport test for Class I equivalent method samplers.

    (a) Overview. This test is intended to verify adequate aerosol 
transport through any modified or air flow splitting components that may 
be used in a Class I candidate equivalent method sampler such as may be 
necessary to achieve sequential sampling capability. This test is 
applicable to all Class I candidate samplers in which the aerosol flow 
path (the flow path through which sample air passes upstream of sample 
collection filter) differs from that specified for reference method 
samplers as specified in 40 CFR part 50, appendix L. The test 
requirements and performance specifications for this test are summarized 
in table E-1 of this subpart.
    (b) Technical definitions. (1) Aerosol transport is the percentage 
of a laboratory challenge aerosol which penetrates to the active sample 
filter of the candidate equivalent method sampler.
    (2) The active sample filter is the exclusive filter through which 
sample air is flowing during performance of this test.
    (3) A no-flow filter is a sample filter through which no sample air 
is intended to flow during performance of this test.
    (4) A channel is any of two or more flow paths that the aerosol may 
take, only one of which may be active at a time.
    (5) An added component is any physical part of the sampler which is 
different in some way from that specified for a reference method sampler 
in 40 CFR part 50, appendix L, such as a device or means to allow or 
cause the aerosol to be routed to one of several channels.
    (c) Required facilities and test equipment. (1) Aerosol generation 
system, as specified in Sec. 53.62(c)(2).
    (2) Aerosol delivery system, as specified in Sec. 53.64(c)(2).
    (3) Particle size verification equipment, as specified in 
Sec. 53.62(c)(3).
    (4) Fluorometer, as specified in Sec. 53.62(c)(7).
    (5) Candidate test sampler, with the inlet and impactor or impactors 
removed, and with all internal surfaces of added components electroless 
nickel coated as specified in Sec. 53.64(d)(2).
    (6) Filters that are appropriate for use with fluorometric methods 
(e.g., glass fiber).
    (d) Calibration of test measurement instruments. Submit 
documentation showing evidence of appropriately recent calibration, 
certification of calibration accuracy, and NIST-traceability (if 
required) of all measurement instruments used in the tests. The accuracy 
of flow rate meters shall be verified at the highest and lowest 
pressures and temperatures used in the tests and shall be checked at 
zero and at least one flow rate within 3 percent of 16.7 L/
min within 7 days prior to use for this test. Where an instrument's 
measurements are to be recorded with an analog recording device, the 
accuracy of the entire instrument-recorder system shall be calibrated or 
verified.

[[Page 77]]

    (e) Test setup. (1) The candidate test sampler shall have its inlet 
and impactor or impactors removed. The lower end of the down tube shall 
be reconnected to the filter holder, using an extension of the downtube, 
if necessary. If the candidate sampler has a separate impactor for each 
channel, then for this test, the filter holder assemblies must be 
connected to the physical location on the sampler where the impactors 
would normally connect.
    (2) The test particle delivery system shall be connected to the 
sampler downtube so that the test aerosol is introduced at the top of 
the downtube.
    (f) Test procedure. (1) All surfaces of the added or modified 
component or components which come in contact with the aerosol flow 
shall be thoroughly washed with 0.01 N NaOH and then dried.
    (2) Generate aerosol. (i) Generate aerosol composed of oleic acid 
with a uranine fluorometric tag of 3 0.25 [mu]m aerodynamic 
diameter using a vibrating orifice aerosol generator according to 
conventions specified in Sec. 53.61(g).
    (ii) Check for the presence of satellites and adjust the generator 
to minimize their production.
    (iii) Calculate the aerodynamic particle size using the operating 
parameters of the vibrating orifice aerosol generator. The calculated 
aerodynamic diameter must be 3 0.25 [mu]m aerodynamic 
diameter.
    (3) Verify the particle size according to procedures specified in 
Sec. 53.62(d)(4)(i).
    (4) Collect particles on filters for a time period such that the 
relative error of the resulting measured fluorometric concentration for 
the active filter is less than 5 percent.
    (5) Determine the quantity of material collected on the active 
filter using a calibrated fluorometer. Record the mass of fluorometric 
material for the active filter as Mactive (i) where i = the 
active channel number.
    (6) Determine the quantity of material collected on each no-flow 
filter using a calibrated fluorometer. Record the mass of fluorometric 
material on each no-flow filter as Mno-flow.
    (7) Using 0.01 N NaOH, wash the surfaces of the added component or 
components which contact the aerosol flow. Determine the quantity of 
material collected using a calibrated fluorometer. Record the mass of 
fluorometric material collected in the wash as Mwash.
    (8) Calculate the aerosol transport as:

                               Equation 29
[GRAPHIC] [TIFF OMITTED] TR18JY97.091


where:

i = the active channel number.

    (9) Repeat paragraphs (f)(1) through (8) of this section for each 
channel, making each channel in turn the exclusive active channel.
    (g) Test results. The candidate Class I sampler passes the aerosol 
transport test if T(i) is at least 97 percent for each 
channel.
           Table E-1 to Subpart E of Part 53--Summary of Test 
    Requirements for Reference and Class I Equivalent Methods for 
                           PM2.5

----------------------------------------------------------------------------------------------------------------
                                                                                                     Part 50,
        Subpart E Procedure           Performance Test       Performance       Test Conditions      Appendix L
                                                            Specification                           Reference
----------------------------------------------------------------------------------------------------------------
Sec.  53.52 Sampler leak check      Sampler leak check   External leakage:   Controlled leak     Sec. 7.4.6
 test.                               facility             80 mL/min, max      flow rate of 80
                                                         Internal leakage:    mL/min
                                                          80 mL/min, max
----------------------------------------------------------------------------------------------------------------
Sec.  53.53 Base flow rate test...  Sample flow rate:    1. 16.67 5%, L/min     operational test   Sec. 7.4.2
                                    2. Regulation        2. 2%, max           plus flow rate     Sec. 7.4.3
                                    3. Meas. accuracy    3. 2%, max           cut-off test       Sec. 7.4.4
                                    4. CV accuracy       4. 0.3%, max        (b) Nominal         Sec. 7.4.5
                                    5. Cut-off           5. Flow rate cut-    conditions
                                                          off if flow rate   (c) Additional 55
                                                          deviates more       mm Hg pressure
                                                          than 10% from       drop to simulate
                                                          design flow rate    loaded filter
                                                          for 60   restriction used
                                                          30 seconds          for cut-off test
----------------------------------------------------------------------------------------------------------------

[[Page 78]]

 
Sec.  53.54 Power interruption      Sample flow rate:    1. 16.675%, L/min     operational test   Sec. 7.4.2
                                    2. Regulation        2. 2%, max          (b) Nominal         Sec. 7.4.3
                                    3. Meas. accuracy    3. 2%, max           conditions         Sec. 7.4.5
                                    4. CV accuracy       4. 0.3%, max        (c) Additional 55   Sec. 7.4.12
                                    5. Occurrence time   5. 2     mm Hg pressure     Sec. 7.4.13
                                     of power             min if 60 seconds       loaded filter      Sec. 7.4.15.5
                                    6. Elapsed sample    6. 20   (d) 6 power
                                     time                 seconds             interruptions of
                                    7. Sample volume     7. 2%,   various durations
                                                          max
----------------------------------------------------------------------------------------------------------------
Sec.  53.55 Temperature and line    Sample flow rate:    1. 16.675%, L/min     operational test   Sec. 7.4.2
                                    2. Regulation        2. 2 %, max         (b) Nominal         Sec. 7.4.3
                                    3. Meas. accuracy    3. 2 %, max          conditions         Sec. 7.4.5
                                    4. CV accuracy       4. 0.3 %, max       (c) Additional 55   Sec. 7.4.8
                                    5. Temperature       5. 2  deg.C          mm Hg pressure     Sec. 7.4.15.1
                                     meas. accuracy                           drop to simulate
                                    6. Proper operation                       loaded filter
                                                                             (d) Ambient
                                                                              temperature at -
                                                                              20 and +40  deg.C
                                                                             (e) Line voltage:
                                                                              105 Vac to 125
                                                                              Vac
----------------------------------------------------------------------------------------------------------------
Sec.  53.56 Barometric pressure     Sample flow rate:    1. 16.675%, L/min     operational test   Sec. 7.4.2
                                    2. Regulation        2. 2%, max          (b) Nominal         Sec. 7.4.3
                                    3. Meas. accuracy    3. 2%, max           conditions         Sec. 7.4.5
                                    4. CV accuracy       4. 0.3%, max        (c) Additional 55   Sec. 7.4.9
                                    5. Pressure meas.    5. 10 mm Hg          mm Hg pressure
                                     accuracy                                 drop to simulate
                                    6. Proper operation                       loaded filter
                                                                             (d) Barometric
                                                                              pressure at 600
                                                                              and 800 mm Hg.
----------------------------------------------------------------------------------------------------------------
Sec.  53.57 Filter temperature      1. Filter temp       1. 2  deg.C         (a) 4-hour          Sec. 7.4.8
 control test.                       meas. accuracy      2. 2  deg.C          simulated solar    Sec. 7.4.10
                                    2. Ambient temp.     3. Not more than 5   radiation,         Sec. 7.4.11
                                     meas. accuracy        deg.C above        sampling
                                    3. Filter temp        ambient temp. for  (b) 4-hour
                                     control accuracy,    more than 30 min    simulated solar
                                     sampling and non-                        radiation, non-
                                     sampling                                 sampling
                                                                             (c) Solar flux of
                                                                              10005
                                                                              0W/m2
----------------------------------------------------------------------------------------------------------------
Sec.  53.58 Field precision test..  1. Measurement       1. Pj <2 [mu]g/m3   (a) 3 collocated    Sec. 5.1
                                     precision            for conc. <40       samplers at 1      Sec. 7.3.5
                                    2. Storage            [mu]g/m3 (24-hr)    site for at least  Sec. 8
                                     deposition test      or <30 [mu]g/m3     10 days            Sec. 9
                                     for sequential       (48-hr); or        (b) PM2.5           Sec. 10
                                     samplers            RPj < 5% for conc.   conc.[ge]10 [mu]g/
                                                          >40 [mu]g/m3 (24-   m3
                                                          hr) or >30 [mu]g/  (c) 24- or 48-hour
                                                          m3 (48-hr)          samples
                                                         2. 50 [mu]g, max    (d) 5- or 10-day
                                                          weight gain         storage period
                                                                              for inactive
                                                                              stored filters
----------------------------------------------------------------------------------------------------------------
 
                  The Following Requirement is Applicable to Candidate Equivalent Methods Only
----------------------------------------------------------------------------------------------------------------
 
Sec.  53.59 Aerosol transport test  Aerosol transport    97%, min, for all   Determine aerosol
                                                          channels            transport through
                                                                              any new or
                                                                              modified
                                                                              components with
                                                                              respect to the
                                                                              reference method
                                                                              sampler before
                                                                              the filter for
                                                                              each channel.
----------------------------------------------------------------------------------------------------------------

[62 FR 38799, July 18, 1997; 63 FR 7714, Feb. 17, 1998]
           Table E-2 to Subpart E of Part 53--Spectral Energy 
    Distribution and Permitted Tolerance for Conducting Radiative 
                                 Tests

------------------------------------------------------------------------
                                       Spectral Region
  Characteristic   -----------------------------------------------------
                        Ultraviolet         Visible          Infrared
------------------------------------------------------------------------
Bandwidth ([mu]m)   0.28 to 0.32        0.40 to 0.78     0.78 to 3.00
                     0.32 to 0.40
Irradiance (W/m2)   5                   450 to 550       439
                        56
Allowed Tolerance    35%         10%
                               , Rev.
  Y      N      NA   to Sections of 40 CFR Part 53 or   , Rev.
                        40 CFR Part 50, Appendix L           Date)
------------------------------------------------------------------------
                     Performance Specification Tests
                     Sample flow rate coefficient of
                      variation (Sec.  53.53) (L-
                      7.4.3)
------------------------------------------------------------------------
                     Filter temperature control
                      (sampling) (Sec.  53.57) (L-
                      7.4.10)
------------------------------------------------------------------------
                     Elapsed sample time accuracy
                      (Sec.  53.54) (L-7.4.13)
------------------------------------------------------------------------
                     Filter temperature control (post
                      sampling) (Sec.  53.57) (L-
                      7.4.10)
------------------------------------------------------------------------
                     Application Specification Tests
------------------------------------------------------------------------
                     Field Precision (Sec.  53.58) (L-
                      5.1)
------------------------------------------------------------------------
                     Meets all Appendix L
                      requirements (part 53, subpart
                      A, Sec.  53.2(a)(3)) (part 53,
                      subpart E, Sec.  53.51(a),(d))
------------------------------------------------------------------------
                     Filter Weighing (L-8)
------------------------------------------------------------------------
                     Field Sampling Procedure (Sec.
                      53.30, .31, .34)
------------------------------------------------------------------------
                     Design Specification Tests
------------------------------------------------------------------------
                     Filter ( L-6)
------------------------------------------------------------------------
                     Range of Operational Conditions
                      (L-7.4.7)
------------------------------------------------------------------------
 
  The Following Requirements Apply Only to Class I Candidate Equivalent
                                 Methods
------------------------------------------------------------------------
 
                     Aerosol Transport (Sec.  53.59)
------------------------------------------------------------------------

       Figure E-2 to Subpart E of Part 53--Product Manufacturing 
                               Checklist

                     PRODUCT MANUFACTURING CHECKLIST

                  --------------------      --------------------      --
------------------
                          Auditee           Auditor signature            
     Date

------------------------------------------------------------------------
Compliance Status:    Y = Yes     N = No     NA = Not     Verification
               applicable/Not available                     Comments
------------------------------------------------------     (Includes
    Verification      Verified by Direct Observation    documentation of
--------------------    of Process or of Documented    who, what, where,
                     Evidence: Performance, Design or   when, why) (Doc.
                      Application Spec. Corresponding   , Rev.
  Y      N      NA   to Sections of 40 CFR Part 53 or   , Rev.
                        40 CFR Part 50, Appendix L           Date)
------------------------------------------------------------------------
                     Performance Specification Tests
------------------------------------------------------------------------
                       Assembled operational
                      performance (Burn-in test)
                      (Sec.  53.53)
------------------------------------------------------------------------
                       Sample flow rate (Sec.  53.53)
                      (L-7.4.1, L-7.4.2)
------------------------------------------------------------------------
                       Sample flow rate regulation
                      (Sec.  53.53) (L-7.4.3)
------------------------------------------------------------------------
                       Flow rate and average flow
                      rate measurement accuracy (Sec.
                       53.53) (L-7.4.5)
------------------------------------------------------------------------
                       Ambient air temperature
                      measurement accuracy (Sec.
                      53.55) (L-7.4.8)
------------------------------------------------------------------------

[[Page 80]]

 
                       Ambient barometric pressure
                      measurement accuracy (Sec.
                      53.56) (L-7.4.9)
------------------------------------------------------------------------
                       Sample flow rate cut-off (Sec.
                       53.53) (L-7.4.4)
------------------------------------------------------------------------
                       Sampler leak check facility
                      (Sec.  53.52) (L-7.4.6)
------------------------------------------------------------------------
                       Application Specification
                      Tests
------------------------------------------------------------------------
                       Flow rate calibration transfer
                      standard (L-9.2)
------------------------------------------------------------------------
                       Operational /Instructional
                      manual (L-7.4.18)
------------------------------------------------------------------------
                       Design Specification Tests
------------------------------------------------------------------------
                       Impactor (jet width) (Sec.
                      53.51(d)(1)) (L-7.3.4.1)
------------------------------------------------------------------------
                       Surface finish (Sec.  53.51(
                      d)(2)) (L-7.3.7)
------------------------------------------------------------------------

             Appendix A to Subpart E of Part 53--References

    (1) Quality systems--Model for quality assurance in design, 
development, production, installation and servicing, ISO 9001. July 
1994. Available from American Society for Quality Control, 611 East 
Wisconsin Avenue, Milwaukee, WI 53202.
    (2) American National Standard--Specifications and Guidelines for 
Quality Systems for Environmental Data Collection and Environmental 
Technology Programs. ANSI/ASQC E4-1994. January 1995. Available from 
American Society for Quality Control, 611 East Wisconsin Avenue, 
Milwaukee, WI 53202.
    (3) Copies of section 2.12 of the Quality Assurance Handbook for Air 
Pollution Measurement Systems, Volume II, Ambient Air Specific Methods, 
EPA/600/R-94/038b, are available from Department E (MD-77B), U.S. EPA, 
Research Triangle Park, NC 27711.
    (4) Military standard specification (mil. spec.) 8625F, Type II, 
Class 1 as listed in Department of Defense Index of Specifications and 
Standards (DODISS), available from DODSSP-Customer Service, 
Standardization Documents Order Desk, 700 Robbins Avenue, Building 4D, 
Philadelphia, PA 1911-5094.
    (5) Quality Assurance Handbook for Air Pollution Measurement 
Systems, Volume IV: Meteorological Measurements. Revised March, 1995. 
EPA-600/R-94-038d. Available from U.S. EPA, ORD Publications Office, 
Center for Environmental Research Information (CERI), 26 West Martin 
Luther King Drive, Cincinnati, Ohio 45268-1072 (513-569-7562).
    (6) Military standard specification (mil. spec.) 810-E as listed in 
Department of Defense Index of Specifications and Standards (DODISS), 
available from DODSSP-Customer Service, Standardization Documents Order 
Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 1911-5094.



 Subpart F--Procedures for Testing Performance Characteristics of Class 
               II Equivalent Methods for PM2.5

    Source: 62 FR 38814, July 18, 1997, unless otherwise noted.



Sec. 53.60   General provisions.

    (a) This subpart sets forth the specific requirements that a 
PM2.5 sampler associated with a candidate Class II equivalent 
method must meet to be designated as an equivalent method for 
PM2.5. This subpart also sets forth the explicit test 
procedures that must be carried out and the test results, evidence, 
documentation, and other materials that must be provided to EPA to 
demonstrate that a sampler meets all specified requirements for 
designation as an equivalent method.
    (b) A candidate method described in an application for a reference 
or equivalent method application submitted under Sec. 53.4 shall be 
determined by the EPA to be a Class II candidate equivalent method on 
the basis of the definition of a Class II equivalent method given in 
Sec. 53.1.
    (c) Any sampler associated with a Class II candidate equivalent 
method

[[Page 81]]

(Class II sampler) must meet all requirements for reference method 
samplers and Class I equivalent method samplers specified in subpart E 
of this part, as appropriate. In addition, a Class II sampler must meet 
the additional requirements as specified in paragraph (d) of this 
section.
    (d) Except as provided in paragraphs (d) (1), (2), and (3) of this 
section, all Class II samplers are subject to the additional tests and 
performance requirements specified in Sec. 53.62 (full wind tunnel 
test), Sec. 53.65 (loading test), and Sec. 53.66 (volatility test). 
Alternative tests and performance requirements, as described in 
paragraphs (d)(1), (2), and (3) of this section, are optionally 
available for certain Class II samplers which meet the requirements for 
reference method or Class I samplers given in 40 CFR part 50, appendix 
L, and in subpart E of this part, except for specific deviations of the 
inlet, fractionator, or filter.
    (1) Inlet deviation. A sampler which has been determined to be a 
Class II sampler solely because the design or construction of its inlet 
deviates from the design or construction of the inlet specified in 40 
CFR part 50, appendix L, for reference method samplers shall not be 
subject to the requirements of Sec. 53.62 (full wind tunnel test), 
provided that it meets all requirements of Sec. 53.63 (wind tunnel inlet 
aspiration test), Sec. 53.65 (loading test), and Sec. 53.66 (volatility 
test).
    (2) Fractionator deviation. A sampler which has been determined to 
be a Class II sampler solely because the design or construction of its 
particle size fractionator deviates from the design or construction of 
the particle size fractionator specified in 40 CFR part 50, appendix L 
for reference method samplers shall not be subject to the requirements 
of Sec. 53.62 (full wind tunnel test), provided that it meets all 
requirements of Sec. 53.64 (static fractionator test), Sec. 53.65 
(loading test), and Sec. 53.66 (volatility test).
    (3) Filter size deviation. A sampler which has been determined to be 
a Class II sampler solely because its effective filtration area deviates 
from that of the reference method filter specified in 40 CFR part 50, 
appendix L, for reference method samplers shall not be subject to the 
requirements of Sec. 53.62 (full wind tunnel test) nor Sec. 53.65 
(loading test), provided it meets all requirements of Sec. 53.66 
(volatility test).
    (e) The test specifications and acceptance criteria for each test 
are summarized in table F-1 of this subpart. The candidate sampler must 
demonstrate performance that meets the acceptance criteria for each 
applicable test to be designated as an equivalent method.
    (f) Overview of various test procedures for Class II samplers--(1) 
Full wind tunnel test. This test procedure is designed to ensure that 
the candidate sampler's effectiveness (aspiration of an ambient aerosol 
and penetration of the sub 2.5-micron fraction to its sample filter) 
will be comparable to that of a reference method sampler. The candidate 
sampler is challenged at wind speeds of 2 and 24 km/hr with monodisperse 
aerosols of the size specified in table F-2 of this subpart. The 
experimental test results are then integrated with three idealized 
ambient distributions (typical, fine, and coarse) to yield the expected 
mass concentration measurement for each. The acceptance criteria are 
based on the results of this numerical analysis and the particle 
diameter for which the sampler effectiveness is 50 percent.
    (2) Wind tunnel inlet aspiration test. The wind tunnel inlet 
aspiration test directly compares the inlet of the candidate sampler to 
the inlet of a reference method sampler with the single-sized, liquid, 
monodisperse challenge aerosol specified in table F-2 of this subpart at 
wind speeds of 2 km/hr and 24 km/hr. The acceptance criteria, presented 
in table F-1 of this subpart, is based on the relative aspiration 
between the candidate inlet and the reference method inlet.
    (3) Static fractionator test. The static fractionator test 
determines the effectiveness of the candidate sampler's 2.5-micron 
fractionator under static conditions for aerosols of the size specified 
in table F-2 of this subpart. The numerical analysis procedures and 
acceptance criteria are identical to those in the full wind tunnel test.
    (4) Loading test. The loading test is conducted to ensure that the 
performance of a candidate sampler is not significantly affected by the 
amount of

[[Page 82]]

particulate deposited on its interior surfaces between periodic 
cleanings. The candidate sampler is artificially loaded by sampling a 
test environment containing aerosolized, standard test dust. The 
duration of the loading phase is dependent on both the time between 
cleaning as specified by the candidate method and the aerosol mass 
concentration in the test environment. After loading, the candidate's 
performance must then be evaluated by Sec. 53.62 (full wind tunnel 
evaluation), Sec. 53.64 (wind tunnel inlet aspiration test), or 
Sec. 53.64 (static fractionator test). If the results of the appropriate 
test meet the criteria presented in table F-1 of this subpart, then the 
candidate sampler passes the loading test under the condition that it be 
cleaned at least as often as the cleaning frequency proposed by the 
candidate method and that has been demonstrated to be acceptable by this 
test.
    (5) Volatility test. The volatility test challenges the candidate 
sampler with a polydisperse, semi-volatile liquid aerosol. This aerosol 
is simultaneously sampled by the candidate method sampler and a 
reference method sampler for a specified time period. Clean air is then 
passed through the samplers during a blow-off time period. Residual mass 
is then calculated as the weight of the filter after the blow-off phase 
is subtracted from the initial weight of the filter. Acceptance criteria 
are based on a comparison of the residual mass measured by the candidate 
sampler (corrected for flow rate variations from that of the reference 
method) to the residual mass measured by the reference method sampler 
for several specified clean air sampling time periods.
    (g) Test data. All test data and other documentation obtained from 
or pertinent to these tests shall be identified, dated, signed by the 
analyst performing the test, and submitted to EPA as part of the 
equivalent method application. Schematic drawings of each particle 
delivery system and other information showing complete procedural 
details of the test atmosphere generation, verification, and delivery 
techniques for each test performed shall be submitted to EPA. All 
pertinent calculations shall be clearly presented. In addition, 
manufacturers are required to submit as part of the application, a 
Designation Testing Checklist (Figure F-1 of this subpart) which has 
been completed and signed by an ISO-certified auditor.



Sec. 53.61   Test conditions for PM2.5 reference method equivalency.

    (a) Sampler surface preparation. Internal surfaces of the candidate 
sampler shall be cleaned and dried prior to performing any Class II 
sampler test in this subpart. The internal collection surfaces of the 
sampler shall then be prepared in strict accordance with the operating 
instructions specified in the sampler's operating manual referred to in 
section 7.4.18 of 40 CFR part 50, appendix L.
    (b) Sampler setup. Set up and start up of all test samplers shall be 
in strict accordance with the operating instructions specified in the 
manual referred to in section 7.4.18 of 40 CFR part 50, appendix L, 
unless otherwise specified within this subpart.
    (c) Sampler adjustments. Once the test sampler or samplers have been 
set up and the performance tests started, manual adjustment shall be 
permitted only between test points for all applicable tests. Manual 
adjustments and any periodic maintenance shall be limited to only those 
procedures prescribed in the manual referred to in section 7.4.18 of 40 
CFR part 50, appendix L. The submitted records shall clearly indicate 
when any manual adjustment or periodic maintenance was made and shall 
describe the operations performed.
    (d) Sampler malfunctions. If a test sampler malfunctions during any 
of the applicable tests, that test run shall be repeated. A detailed 
explanation of all malfunctions and the remedial actions taken shall be 
submitted as part of the equivalent method application.
    (e) Particle concentration measurements. All measurements of 
particle concentration must be made such that the relative error in 
measurement is less than 5.0 percent. Relative error is defined as (s x 
100 percent)/(X), where s is the sample standard deviation of the 
particle concentration detector, X is the measured concentration, and 
the units of s and X are identical.

[[Page 83]]

    (f) Operation of test measurement equipment. All test measurement 
equipment shall be set up, calibrated, and maintained by qualified 
personnel according to the manufacturer's instructions. All appropriate 
calibration information and manuals for this equipment shall be kept on 
file.
    (g) Vibrating orifice aerosol generator conventions. This section 
prescribes conventions regarding the use of the vibrating orifice 
aerosol generator (VOAG) for the size-selective performance tests 
outlined in Secs. 53.62, 53.63, 53.64, and 53.65.
    (1) Particle aerodynamic diameter. The VOAG produces near-
monodisperse droplets through the controlled breakup of a liquid jet. 
When the liquid solution consists of a non-volatile solute dissolved in 
a volatile solvent, the droplets dry to form particles of near-
monodisperse size.
    (i) The physical diameter of a generated spherical particle can be 
calculated from the operating parameters of the VOAG as:

                               Equation 1
[GRAPHIC] [TIFF OMITTED] TR18JY97.094


where:

Dp = particle physical diameter, [mu]m;
Q = liquid volumetric flow rate, [mu]m3/sec;
Cvol = volume concentration (particle volume produced per 
drop volume), dimensionless; and
f = frequency of applied vibrational signal, 1/sec.

    (ii) A given particle's aerodynamic behavior is a function of its 
physical particle size, particle shape, and density. Aerodynamic 
diameter is defined as the diameter of a unit density ([rho]o 
= 1g/cm3) sphere having the same settling velocity as the 
particle under consideration. For converting a spherical particle of 
known density to aerodynamic diameter, the governing relationship is:

                               Equation 2
[GRAPHIC] [TIFF OMITTED] TR18JY97.095

where:

Dae = particle aerodynamic diameter, [mu]m;
[rho]p = particle density, g/cm3;
[rho]o = aerodynamic particle density = 1 g/cm3;
CDp = Cunningham's slip correction factor for physical 
particle diameter, dimensionless; and
CDae = Cunningham's slip correction factor for aerodynamic 
particle diameter, dimensionless.

    (iii) At room temperature and standard pressure, the Cunningham's 
slip correction factor is solely a function of particle diameter:

                               Equation 3
[GRAPHIC] [TIFF OMITTED] TR18JY97.096

or

                               Equation 4
[GRAPHIC] [TIFF OMITTED] TR18JY97.097

    (iv) Since the slip correction factor is itself a function of 
particle diameter, the aerodynamic diameter in equation 2 of paragraph 
(g)(1)(ii) of this section cannot be solved directly but must be 
determined by iteration.
    (2) Solid particle generation. (i) Solid particle tests performed in 
this subpart shall be conducted using particles composed of ammonium 
fluorescein. For use in the VOAG, liquid solutions of known volumetric 
concentration can be prepared by diluting fluorescein powder 
(C20H12O5, FW = 332.31, CAS 2321-07-5) 
with aqueous ammonia. Guidelines for preparation of fluorescein 
solutions of the desired volume concentration (Cvol) are 
presented by Vanderpool and Rubow (1988) (Reference 2 in appendix A of 
this subpart). For purposes of converting particle

[[Page 84]]

physical diameter to aerodynamic diameter, an ammonium fluorescein 
density of 1.35 g/cm3 shall be used.
    (ii) Mass deposits of ammonium fluorescein shall be extracted and 
analyzed using solutions of 0.01 N ammonium hydroxide.
    (3) Liquid particle generation. (i) Tests prescribed in Sec. 53.63 
for inlet aspiration require the use of liquid particle tests composed 
of oleic acid tagged with uranine to enable subsequent fluorometric 
quantitation of collected aerosol mass deposits. Oleic acid 
(C18H34O2, FW = 282.47, CAS 112-80-1) 
has a density of 0.8935 g/cm3. Because the viscosity of oleic 
acid is relatively high, significant errors can occur when dispensing 
oleic acid using volumetric pipettes. For this reason, it is recommended 
that oleic acid solutions be prepared by quantifying dispensed oleic 
acid gravimetrically. The volume of oleic acid dispensed can then be 
calculated simply by dividing the dispensed mass by the oleic acid 
density.
    (ii) Oleic acid solutions tagged with uranine shall be prepared as 
follows. A known mass of oleic acid shall first be diluted using 
absolute ethanol. The desired mass of the uranine tag should then be 
diluted in a separate container using absolute ethanol. Uranine 
(C20H10O5Na2, FW = 376.3, 
CAS 518-47-8) is the disodium salt of fluorescein and has a density of 
1.53 g/cm3. In preparing uranine tagged oleic acid particles, 
the uranine content shall not exceed 20 percent on a mass basis. Once 
both oleic acid and uranine solutions are properly prepared, they can 
then be combined and diluted to final volume using absolute ethanol.
    (iii) Calculation of the physical diameter of the particles produced 
by the VOAG requires knowledge of the liquid solution's volume 
concentration (Cvol). Because uranine is essentially 
insoluble in oleic acid, the total particle volume is the sum of the 
oleic acid volume and the uranine volume. The volume concentration of 
the liquid solution shall be calculated as:

                               Equation 5
[GRAPHIC] [TIFF OMITTED] TR18JY97.098

where:

Vu = uranine volume, ml;
Voleic = oleic acid volume, ml;
Vsol = total solution volume, ml;
Mu = uranine mass, g;
[rho]u = uranine density, g/cm3;
Moleic = oleic acid mass, g; and
[rho]oleic = oleic acid density, g/cm3.

    (iv) For purposes of converting the particles' physical diameter to 
aerodynamic diameter, the density of the generated particles shall be 
calculated as:

                               Equation 6
[GRAPHIC] [TIFF OMITTED] TR18JY97.099

    (v) Mass deposits of oleic acid shall be extracted and analyzed 
using solutions of 0.01 N sodium hydroxide.

[62 FR 38814, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.62   Test procedure: Full wind tunnel test.

    (a) Overview. The full wind tunnel test evaluates the effectiveness 
of the candidate sampler at 2 km/hr and 24 km/hr for aerosols of the 
size specified in table F-2 of this subpart (under the heading, ``Full 
Wind Tunnel Test''). For each wind speed, a smooth curve is fit to the 
effectiveness data and corrected for the presence of multiplets in the 
wind tunnel calibration aerosol. The cutpoint diameter (Dp50) 
at each wind speed is then determined from the corrected effectiveness 
curves. The two resultant penetration curves are then each numerically 
integrated with three idealized ambient particle size distributions to 
provide six estimates of measured mass concentration. Critical 
parameters for these idealized distributions are presented in table F-3 
of this subpart.
    (b) Technical definitions. Effectiveness is the ratio (expressed as 
a percentage) of the mass concentration of particles of a specific size 
reaching the sampler filter or filters to the mass concentration of 
particles of the same size approaching the sampler.
    (c) Facilities and equipment required--(1) Wind tunnel. The particle 
delivery system shall consist of a blower system

[[Page 85]]

and a wind tunnel having a test section of sufficiently large cross-
sectional area such that the test sampler, or portion thereof, as 
installed in the test section for testing, blocks no more than 15 
percent of the test section area. The wind tunnel blower system must be 
capable of maintaining uniform wind speeds at the 2 km/hr and 24 km/hr 
in the test section.
    (2) Aerosol generation system. A vibrating orifice aerosol generator 
shall be used to produce monodisperse solid particles of ammonium 
fluorescein with equivalent aerodynamic diameters as specified in table 
F-2 of this subpart. The geometric standard deviation for each particle 
size generated shall not exceed 1.1 (for primary particles) and the 
proportion of multiplets (doublets and triplets) in all test particle 
atmosphere shall not exceed 10 percent of the particle population. The 
aerodynamic particle diameter, as established by the operating 
parameters of the vibrating orifice aerosol generator, shall be within 
the tolerance specified in table F-2 of this subpart.
    (3) Particle size verification equipment. The size of the test 
particles shall be verified during this test by use of a suitable 
instrument (e.g., scanning electron microscope, optical particle sizer, 
time-of-flight apparatus). The instrument must be capable of measuring 
solid and liquid test particles with a size resolution of 0.1 [mu]m or 
less. The accuracy of the particle size verification technique shall be 
0.15 [mu]m or better.
    (4) Wind speed measurement. The wind speed in the wind tunnel shall 
be determined during the tests using an appropriate technique capable of 
a precision of 2 percent and an accuracy of 5 percent or better (e.g., 
hot-wire anemometry). For the wind speeds specified in table F-2 of this 
subpart, the wind speed shall be measured at a minimum of 12 test points 
in a cross-sectional area of the test section of the wind tunnel. The 
mean wind speed in the test section must be within 10 
percent of the value specified in table F-2 of this subpart, and the 
variation at any test point in the test section may not exceed 10 
percent of the measured mean.
    (5) Aerosol rake. The cross-sectional uniformity of the particle 
concentration in the sampling zone of the test section shall be 
established during the tests using an array of isokinetic samplers, 
referred to as a rake. Not less than five evenly spaced isokinetic 
samplers shall be used to determine the particle concentration spatial 
uniformity in the sampling zone. The sampling zone shall be a 
rectangular area having a horizontal dimension not less than 1.2 times 
the width of the test sampler at its inlet opening and a vertical 
dimension not less than 25 centimeters.
    (6) Total aerosol isokinetic sampler. After cross-sectional 
uniformity has been confirmed, a single isokinetic sampler may be used 
in place of the array of isokinetic samplers for the determination of 
particle mass concentration used in the calculation of sampling 
effectiveness of the test sampler in paragraph (d)(5) of this section. 
In this case, the array of isokinetic samplers must be used to 
demonstrate particle concentration uniformity prior to the replicate 
measurements of sampling effectiveness.
    (7) Fluorometer. A fluorometer used for quantifying extracted 
aerosol mass deposits shall be set up, maintained, and calibrated 
according to the manufacturer's instructions. A series of calibration 
standards shall be prepared to encompass the minimum and maximum 
concentrations measured during size-selective tests. Prior to each 
calibration and measurement, the fluorometer shall be zeroed using an 
aliquot of the same solvent used for extracting aerosol mass deposits.
    (8) Sampler flow rate measurements. All flow rate measurements used 
to calculate the test atmosphere concentrations and the test results 
must be accurate to within 2 percent, referenced to a NIST-
traceable primary standard. Any necessary flow rate measurement 
corrections shall be clearly documented. All flow rate measurements 
shall be performed and reported in actual volumetric units.
    (d) Test procedures--(1) Establish and verify wind speed. (i) 
Establish a wind speed specified in table F-2 of this subpart.
    (ii) Measure the wind speed at a minimum of 12 test points in a 
cross-sectional area of the test section of the

[[Page 86]]

wind tunnel using a device as described in paragraph (c)(4) of this 
section.
    (iii) Verify that the mean wind speed in the test section of the 
wind tunnel during the tests is within 10 percent of the value specified 
in table F-2 of this subpart. The wind speed measured at any test point 
in the test section shall not differ by more than 10 percent from the 
mean wind speed in the test section.
    (2) Generate aerosol. (i) Generate particles of a size specified in 
table F-2 of this subpart using a vibrating orifice aerosol generator.
    (ii) Check for the presence of satellites and adjust the generator 
as necessary.
    (iii) Calculate the physical particle size using the operating 
parameters of the vibrating orifice aerosol generator and record.
    (iv) Determine the particle's aerodynamic diameter from the 
calculated physical diameter and the known density of the generated 
particle. The calculated aerodynamic diameter must be within the 
tolerance specified in table F-2 of this subpart.
    (3) Introduce particles into the wind tunnel. Introduce the 
generated particles into the wind tunnel and allow the particle 
concentration to stabilize.
    (4) Verify the quality of the test aerosol. (i) Extract a 
representative sample of the aerosol from the sampling test zone and 
measure the size distribution of the collected particles using an 
appropriate sizing technique. If the measurement technique does not 
provide a direct measure of aerodynamic diameter, the geometric mean 
aerodynamic diameter of the challenge aerosol must be calculated using 
the known density of the particle and the measured mean physical 
diameter. The determined geometric mean aerodynamic diameter of the test 
aerosol must be within 0.15 [mu]m of the aerodynamic diameter calculated 
from the operating parameters of the vibrating orifice aerosol 
generator. The geometric standard deviation of the primary particles 
must not exceed 1.1.
    (ii) Determine the population of multiplets in the collected sample. 
The multiplet population of the particle test atmosphere must not exceed 
10 percent of the total particle population.
    (5) Aerosol uniformity and concentration measurement. (i) Install an 
array of five or more evenly spaced isokinetic samplers in the sampling 
zone (paragraph (c)(5) of this section). Collect particles on 
appropriate filters over a time period such that the relative error of 
the measured particle concentration is less than 5.0 percent.
    (ii) Determine the quantity of material collected with each 
isokinetic sampler in the array using a calibrated fluorometer. 
Calculate and record the mass concentration for each isokinetic sampler 
as:

                               Equation 7
[GRAPHIC] [TIFF OMITTED] TR18JY97.100

where:

i = replicate number;
j = isokinetic sampler number;
Miso = mass of material collected with the isokinetic 
sampler;
Q = isokinetic sampler volumetric flow rate; and
t = sampling time.

    (iii) Calculate and record the mean mass concentration as:

                               Equation 8
[GRAPHIC] [TIFF OMITTED] TR18JY97.101

where:

i = replicate number;
j = isokinetic sampler number; and
n = total number of isokinetic samplers.

    (iv) Precision calculation. (A) Calculate the coefficient of 
variation of the mass concentration measurements as:

                               Equation 9
[GRAPHIC] [TIFF OMITTED] TR18JY97.102

where:

i = replicate number;
j = isokinetic sampler number; and
n = total number of isokinetic samplers.


[[Page 87]]


    (B) If the value of CViso(i) for any replicate exceeds 10 
percent, the particle concentration uniformity is unacceptable and step 
5 must be repeated. If adjustment of the vibrating orifice aerosol 
generator or changes in the particle delivery system are necessary to 
achieve uniformity, steps 1 through 5 must be repeated. When an 
acceptable aerosol spatial uniformity is achieved, remove the array of 
isokinetic samplers from the wind tunnel.
    (6) Alternative measure of wind tunnel total concentration. If a 
single isokinetic sampler is used to determine the mean aerosol 
concentration in the wind tunnel, install the sampler in the wind tunnel 
with the sampler nozzle centered in the sampling zone (paragraph (c)(6) 
of this section).
    (i) Collect particles on an appropriate filter over a time period 
such that the relative error of the measured concentration is less than 
5.0 percent.
    (ii) Determine the quantity of material collected with the 
isokinetic sampler using a calibrated fluorometer.
    (iii) Calculate and record the mass concentration as 
Ciso(i) as in paragraph (d)(5)(ii) of this section.
    (iv) Remove the isokinetic sampler from the wind tunnel.
    (7) Measure the aerosol with the candidate sampler. (i) Install the 
test sampler (or portion thereof) in the wind tunnel with the sampler 
inlet opening centered in the sampling zone. To meet the maximum 
blockage limit of paragraph (c)(1) of this section or for convenience, 
part of the test sampler may be positioned external to the wind tunnel 
provided that neither the geometry of the sampler nor the length of any 
connecting tube or pipe is altered. Collect particles for a time period 
such that the relative error of the measured concentration is less than 
5.0 percent.
    (ii) Remove the test sampler from the wind tunnel.
    (iii) Determine the quantity of material collected with the test 
sampler using a calibrated fluorometer. Calculate and record the mass 
concentration for each replicate as:

                               Equation 10
[GRAPHIC] [TIFF OMITTED] TR18JY97.103

where:

i = replicate number;
Mcand = mass of material collected with the candidate 
sampler;
Q = candidate sampler volumetric flow rate; and
t = sampling time.

    (iv)(A) Calculate and record the sampling effectiveness of the 
candidate sampler as:

                               Equation 11
[GRAPHIC] [TIFF OMITTED] TR18JY97.104

where:

i = replicate number.

    (B) If a single isokinetic sampler is used for the determination of 
particle mass concentration, replace Ciso(i) with 
Ciso.
    (8) Replicate measurements and calculation of mean sampling 
effectiveness. (i) Repeat steps in paragraphs (d)(5) through (d)(7) of 
this section, as appropriate, to obtain a minimum of three valid 
replicate measurements of sampling effectiveness.
    (ii) Calculate and record the average sampling effectiveness of the 
test sampler for the particle size as:

                               Equation 12
[GRAPHIC] [TIFF OMITTED] TR18JY97.105

where:

i = replicate number; and
n = number of replicates.

    (iii) Sampling effectiveness precision. (A) Calculate and record the 
coefficient of variation for the replicate sampling effectiveness 
measurements of the test sampler as:

[[Page 88]]

                               Equation 13
[GRAPHIC] [TIFF OMITTED] TR18JY97.106

where:

i = replicate number, and
n = number of replicates.

    (B) If the value of CVE exceeds 10 percent, the test run 
(steps in paragraphs (d)(2) through (d)(8) of this section) must be 
repeated until an acceptable value is obtained.
    (9) Repeat steps in paragraphs (d)(2) through (d)(8) of this section 
until the sampling effectiveness has been measured for all particle 
sizes specified in table F-2 of this subpart.
    (10) Repeat steps in paragraphs (d)(1) through (d)(9) of this 
section until tests have been successfully conducted for both wind 
speeds of 2 km/hr and 24 km/hr.
    (e) Calculations--(1) Graphical treatment of effectiveness data. For 
each wind speed given in table F-2 of this subpart, plot the particle 
average sampling effectiveness of the candidate sampler as a function of 
aerodynamic particle diameter (Dae) on semi-logarithmic graph 
paper where the aerodynamic particle diameter is the particle size 
established by the parameters of the VOAG in conjunction with the known 
particle density. Construct a best-fit, smooth curve through the data by 
extrapolating the sampling effectiveness curve through 100 percent at an 
aerodynamic particle size of 0.5 [mu]m and 0 percent at an aerodynamic 
particle size of 10 [mu]m. Correction for the presence of multiplets 
shall be performed using the techniques presented by Marple, et al 
(1987). This multiplet-corrected effectiveness curve shall be used for 
all remaining calculations in this paragraph (e).
    (2) Cutpoint determination. For each wind speed determine the 
sampler Dp50 cutpoint defined as the aerodynamic particle 
size corresponding to 50 percent effectiveness from the multiplet 
corrected smooth curve.
    (3) Expected mass concentration calculation. For each wind speed, 
calculate the estimated mass concentration measurement for the test 
sampler under each particle size distribution (Tables F-4, F-5, and F-6 
of this subpart) and compare it to the mass concentration predicted for 
the reference sampler as follows:
    (i) Determine the value of corrected effectiveness using the best-
fit, multiplet-corrected curve at each of the particle sizes specified 
in the first column of table F-4 of this subpart. Record each corrected 
effectiveness value as a decimal between 0 and 1 in column 2 of table F-
4 of this subpart.
    (ii) Calculate the interval estimated mass concentration measurement 
by multiplying the values of corrected effectiveness in column 2 by the 
interval mass concentration values in column 3 and enter the products in 
column 4 of table F-4 of this subpart.
    (iii) Calculate the estimated mass concentration measurement by 
summing the values in column 4 and entering the total as the estimated 
mass concentration measurement for the test sampler at the bottom of 
column 4 of table F-4 of this subpart.
    (iv) Calculate the estimated mass concentration ratio between the 
candidate method and the reference method as:

                               Equation 14
[GRAPHIC] [TIFF OMITTED] TR18JY97.107

where:

Ccand(est) = estimated mass concentration measurement for the 
test sampler, [mu]g/m3; and
Cref(est) = estimated mass concentration measurement for the 
reference sampler, [mu]g/m3 (calculated for the reference 
sampler and specified at the bottom of column 7 of table F-4 of this 
subpart).

    (v) Repeat steps in paragraphs (e) (1) through (e)(3) of this 
section for tables F-5 and F-6 of this subpart.
    (f) Evaluation of test results. The candidate method passes the wind 
tunnel effectiveness test if the Rc value for each wind speed 
meets the specification in table F-1 of this subpart for each of the 
three particle size distributions.

[[Page 89]]



Sec. 53.63   Test procedure: Wind tunnel inlet aspiration test.

    (a) Overview. This test applies to a candidate sampler which differs 
from the reference method sampler only with respect to the design of the 
inlet. The purpose of this test is to ensure that the aspiration of a 
Class II candidate sampler is such that it representatively extracts an 
ambient aerosol at elevated wind speeds. This wind tunnel test uses a 
single-sized, liquid aerosol in conjunction with wind speeds of 2 km/hr 
and 24 km/hr. The test atmosphere concentration is alternately measured 
with the candidate sampler and a reference method device, both of which 
are operated without the 2.5-micron fractionation device installed. The 
test conditions are summarized in table F-2 of this subpart (under the 
heading of ``wind tunnel inlet aspiration test''). The candidate sampler 
must meet or exceed the acceptance criteria given in table F-1 of this 
subpart.
    (b) Technical definition. Relative aspiration is the ratio 
(expressed as a percentage) of the aerosol mass concentration measured 
by the candidate sampler to that measured by a reference method sampler.
    (c) Facilities and equipment required. The facilities and equipment 
are identical to those required for the full wind tunnel test 
(Sec. 53.62(c)).
    (d) Setup. The candidate and reference method samplers shall be 
operated with the PM2.5 fractionation device removed from the 
flow path throughout this entire test procedure. Modifications to 
accommodate this requirement shall be limited to removal of the 
fractionator and insertion of the filter holder directly into the 
downtube of the inlet.
    (e) Test procedure--(1) Establish the wind tunnel test atmosphere. 
Follow the procedures in Sec. 53.62(d)(1) through (d)(4) to establish a 
test atmosphere for one of the two wind speeds specified in table F-2 of 
this subpart.
    (2) Measure the aerosol concentration with the reference sampler. 
(i) Install the reference sampler (or portion thereof) in the wind 
tunnel with the sampler inlet opening centered in the sampling zone. To 
meet the maximum blockage limit of Sec. 53.62(c)(1) or for convenience, 
part of the test sampler may be positioned external to the wind tunnel 
provided that neither the geometry of the sampler nor the length of any 
connecting tube or pipe is altered. Collect particles for a time period 
such that the relative error of the measured concentration is less than 
5.0 percent.
    (ii) Determine the quantity of material collected with the reference 
method sampler using a calibrated fluorometer. Calculate and record the 
mass concentration as:

                               Equation 15
[GRAPHIC] [TIFF OMITTED] TR18JY97.108

where:

i = replicate number;
Mref = mass of material collected with the reference method 
sampler;
Q = reference method sampler volumetric flow rate; and
t = sampling time.

    (iii) Remove the reference method sampler from the tunnel.
    (3) Measure the aerosol concentration with the candidate sampler. 
(i) Install the candidate sampler (or portion thereof) in the wind 
tunnel with the sampler inlet centered in the sampling zone. To meet the 
maximum blockage limit of Sec. 53.62(c)(1) or for convenience, part of 
the test sampler may be positioned external to the wind tunnel provided 
that neither the geometry of the sampler nor the length of any 
connecting tube or pipe is altered. Collect particles for a time period 
such that the relative error of the measured concentration is less than 
5.0 percent.
    (ii) Determine the quantity of material collected with the candidate 
sampler using a calibrated fluorometer. Calculate and record the mass 
concentration as:

                               Equation 16
[GRAPHIC] [TIFF OMITTED] TR18JY97.109

where:

i = replicate number;
Mcand = mass of material collected with the candidate 
sampler;

[[Page 90]]

Q = candidate sampler volumetric flow rate; and
t = sampling time.

    (iii) Remove the candidate sampler from the wind tunnel.
    (4) Repeat steps in paragraphs (d) (2) and (d)(3) of this section. 
Alternately measure the tunnel concentration with the reference sampler 
and the candidate sampler until four reference sampler and three 
candidate sampler measurements of the wind tunnel concentration are 
obtained.
    (5) Calculations. (i) Calculate and record aspiration ratio for each 
candidate sampler run as:

                               Equation 17
[GRAPHIC] [TIFF OMITTED] TR18JY97.110

where:

i = replicate number.

    (ii) Calculate and record the mean aspiration ratio as:

                               Equation 18
[GRAPHIC] [TIFF OMITTED] TR18JY97.111

where:

i = replicate number; and
n = total number of measurements of aspiration ratio.

    (iii) Precision of the aspiration ratio. (A) Calculate and record 
the precision of the aspiration ratio measurements as the coefficient of 
variation as:

                               Equation 19
[GRAPHIC] [TIFF OMITTED] TR18JY97.112

where:

i = replicate number; and
n = total number of measurements of aspiration ratio.

    (B) If the value of CVA exceeds 10 percent, the entire 
test procedure must be repeated.
    (f) Evaluation of test results. The candidate method passes the 
inlet aspiration test if all values of A meet the acceptance criteria 
specified in table F-1 of this subpart.



Sec. 53.64   Test procedure: Static fractionator test.

    (a) Overview. This test applies only to those candidate methods in 
which the sole deviation from the reference method is in the design of 
the 2.5-micron fractionation device. The purpose of this test is to 
ensure that the fractionation characteristics of the candidate 
fractionator are acceptably similar to that of the reference method 
sampler. It is recognized that various methodologies exist for 
quantifying fractionator effectiveness. The following commonly-employed 
techniques are provided for purposes of guidance. Other methodologies 
for determining sampler effectiveness may be used contingent upon prior 
approval by the Agency.
    (1) Wash-off method. Effectiveness is determined by measuring the 
aerosol mass deposited on the candidate sampler's after filter versus 
the aerosol mass deposited in the fractionator. The material deposited 
in the fractionator is recovered by washing its internal surfaces. For 
these wash-off tests, a fluorometer must be used to quantitate the 
aerosol concentration. Note that if this technique is chosen, the 
candidate must be reloaded with coarse aerosol prior to each test point 
when reevaluating the curve as specified in the loading test.
    (2) Static chamber method. Effectiveness is determined by measuring 
the aerosol mass concentration sampled by the candidate sampler's after 
filter versus that which exists in a static chamber. A calibrated 
fluorometer shall be used to quantify the collected aerosol deposits. 
The aerosol concentration is calculated as the measured aerosol mass 
divided by the sampled air volume.
    (3) Divided flow method. Effectiveness is determined by comparing 
the aerosol concentration upstream of the candidate sampler's 
fractionator versus that concentration which exists downstream of the 
candidate fractionator. These tests may utilize either

[[Page 91]]

fluorometry or a real-time aerosol measuring device to determine the 
aerosol concentration.
    (b) Technical definition. Effectiveness under static conditions is 
the ratio (expressed as a percentage) of the mass concentration of 
particles of a given size reaching the sampler filter to the mass 
concentration of particles of the same size existing in the test 
atmosphere.
    (c) Facilities and equipment required--(1) Aerosol generation. 
Methods for generating aerosols shall be identical to those prescribed 
in Sec. 53.62(c)(2).
    (2) Particle delivery system. Acceptable apparatus for delivering 
the generated aerosols to the candidate fractionator is dependent on the 
effectiveness measurement methodology and shall be defined as follows:
    (i) Wash-off test apparatus. The aerosol may be delivered to the 
candidate fractionator through direct piping (with or without an in-line 
mixing chamber). Validation particle size and quality shall be conducted 
at a point directly upstream of the fractionator.
    (ii) Static chamber test apparatus. The aerosol shall be introduced 
into a chamber and sufficiently mixed such that the aerosol 
concentration within the chamber is spatially uniform. The chamber must 
be of sufficient size to house at least four total filter samplers in 
addition to the inlet of the candidate method size fractionator. 
Validation of particle size and quality shall be conducted on 
representative aerosol samples extracted from the chamber.
    (iii) Divided flow test apparatus. The apparatus shall allow the 
aerosol concentration to be measured upstream and downstream of the 
fractionator. The aerosol shall be delivered to a manifold with two 
symmetrical branching legs. One of the legs, referred to as the bypass 
leg, shall allow the challenge aerosol to pass unfractionated to the 
detector. The other leg shall accommodate the fractionation device.
    (3) Particle concentration measurement--(i) Fluorometry. Refer to 
Sec. 53.62(c)(7).
    (ii) Number concentration measurement. A number counting particle 
sizer may be used in conjunction with the divided flow test apparatus in 
lieu of fluorometric measurement. This device must have a minimum range 
of 1 to 10 [mu]m, a resolution of 0.1 [mu]m, and an accuracy of 0.15 
[mu]m such that primary particles may be distinguished from multiplets 
for all test aerosols. The measurement of number concentration shall be 
accomplished by integrating the primary particle peak.
    (d) Setup--(1) Remove the inlet and downtube from the candidate 
fractionator. All tests procedures shall be conducted with the inlet and 
downtube removed from the candidate sampler.
    (2) Surface treatment of the fractionator. Rinsing aluminum surfaces 
with alkaline solutions has been found to adversely affect subsequent 
fluorometric quantitation of aerosol mass deposits. If wash-off tests 
are to be used for quantifying aerosol penetration, internal surfaces of 
the fractionator must first be plated with electroless nickel. 
Specifications for this plating are specified in Society of Automotive 
Engineers Aerospace Material Specification (SAE AMS) 2404C, Electroless 
Nickel Plating (Reference 3 in appendix A of subpart F).
    (e) Test procedure: Wash-off method--(1) Clean the candidate 
sampler. Note: The procedures in this step may be omitted if this test 
is being used to evaluate the fractionator after being loaded as 
specified in Sec. 53.65.
    (i) Clean and dry the internal surfaces of the candidate sampler.
    (ii) Prepare the internal fractionator surfaces in strict accordance 
with the operating instructions specified in the sampler's operating 
manual referred to in section 7.4.18 of 40 CFR part 50, appendix L.
    (2) Generate aerosol. Follow the procedures for aerosol generation 
prescribed in Sec. 53.62(d)(2).
    (3) Verify the quality of the test aerosol. Follow the procedures 
for verification of test aerosol size and quality prescribed in 
Sec. 53.62(d)(4).
    (4) Determine effectiveness for the particle size being produced. 
(i) Collect particles downstream of the fractionator on an appropriate 
filter over a time period such that the relative error of the 
fluorometric measurement is less than 5.0 percent.

[[Page 92]]

    (ii) Determine the quantity of material collected on the after 
filter of the candidate method using a calibrated fluorometer. Calculate 
and record the aerosol mass concentration for the sampler filter as:

                               Equation 20
[GRAPHIC] [TIFF OMITTED] TR18JY97.113

where:

i = replicate number;
Mcand = mass of material collected with the candidate 
sampler;
Q = candidate sampler volumetric flowrate; and
t = sampling time.

    (iii) Wash all interior surfaces upstream of the filter and 
determine the quantity of material collected using a calibrated 
fluorometer. Calculate and record the fluorometric mass concentration of 
the sampler wash as:

                               Equation 21
[GRAPHIC] [TIFF OMITTED] TR18JY97.114

where:

i = replicate number;
Mwash = mass of material washed from the interior surfaces of 
the fractionator;
Q = candidate sampler volumetric flowrate; and
t = sampling time.

    (iv) Calculate and record the sampling effectiveness of the test 
sampler for this particle size as:

                               Equation 22
[GRAPHIC] [TIFF OMITTED] TR18JY97.115

where:

i = replicate number.

    (v) Repeat steps in paragraphs (e)(4) of this section, as 
appropriate, to obtain a minimum of three replicate measurements of 
sampling effectiveness. Note: The procedures for loading the candidate 
in Sec. 53.65 must be repeated between repetitions if this test is being 
used to evaluate the fractionator after being loaded as specified in 
Sec. 53.65.
    (vi) Calculate and record the average sampling effectiveness of the 
test sampler as:

                               Equation 23
[GRAPHIC] [TIFF OMITTED] TR18JY97.116

where:

i = replicate number; and
n = number of replicates.

    (vii)(A) Calculate and record the coefficient of variation for the 
replicate sampling effectiveness measurements of the test sampler as:

                               Equation 24
[GRAPHIC] [TIFF OMITTED] TR18JY97.117

where:

i = replicate number; and
n = total number of measurements.

    (B) If the value of CVE exceeds 10 percent, then steps in 
paragraphs (e) (2) through (e)(4) of this section must be repeated.
    (5) Repeat steps in paragraphs (e) (1) through (e)(4) of this 
section for each particle size specified in table F-2 of this subpart.
    (f) Test procedure: Static chamber method--(1) Generate aerosol. 
Follow the procedures for aerosol generation prescribed in 
Sec. 53.62(d)(2).
    (2) Verify the quality of the test aerosol. Follow the procedures 
for verification of test aerosol size and quality prescribed in 
Sec. 53.62(d)(4).
    (3) Introduce particles into chamber. Introduce the particles into 
the static chamber and allow the particle concentration to stabilize.
    (4) Install and operate the candidate sampler's fractionator and its 
after-filter and at least four total filters. (i) Install the 
fractionator and an array of four or more equally spaced total filter 
samplers such that the total filters surround and are in the same plane 
as the inlet of the fractionator.

[[Page 93]]

    (ii) Simultaneously collect particles onto appropriate filters with 
the total filter samplers and the fractionator for a time period such 
that the relative error of the measured concentration is less than 5.0 
percent.
    (5) Calculate the aerosol spatial uniformity in the chamber. (i) 
Determine the quantity of material collected with each total filter 
sampler in the array using a calibrated fluorometer. Calculate and 
record the mass concentration for each total filter sampler as:

                               Equation 25
[GRAPHIC] [TIFF OMITTED] TR18JY97.118

where:

i = replicate number;
j = total filter sampler number;
Mtotal = mass of material collected with the total filter 
sampler;
Q = total filter sampler volumetric flowrate; and
t = sample time.

    (ii) Calculate and record the mean mass concentration as:

                               Equation 26
[GRAPHIC] [TIFF OMITTED] TR18JY97.119

where:

n = total number of samplers;
i = replicate number; and
j = filter sampler number.

    (iii) (A) Calculate and record the coefficient of variation of the 
total mass concentration as:

                               Equation 27
[GRAPHIC] [TIFF OMITTED] TR18JY97.120

where:

i = replicate number;
j = total filter sampler number; and
n = number of total filter samplers.

    (B) If the value of CVtotal exceeds 10 percent, then the 
particle concentration uniformity is unacceptable, alterations to the 
static chamber test apparatus must be made, and steps in paragraphs 
(f)(1) through (f)(5) of this section must be repeated.
    (6) Determine the effectiveness of the candidate sampler. (i) 
Determine the quantity of material collected on the candidate sampler's 
after filter using a calibrated fluorometer. Calculate and record the 
mass concentration for the candidate sampler as:

                               Equation 28
[GRAPHIC] [TIFF OMITTED] TR18JY97.121

where:

i = replicate number;
Mcand = mass of material collected with the candidate 
sampler;
Q = candidate sampler volumetric flowrate; and
t = sample time.

    (ii) Calculate and record the sampling effectiveness of the 
candidate sampler as:

                               Equation 29
[GRAPHIC] [TIFF OMITTED] TR18JY97.122

where:

i = replicate number.

    (iii) Repeat step in paragraph (f)(4) through (f)(6) of this 
section, as appropriate, to obtain a minimum of three replicate 
measurements of sampling effectiveness.

[[Page 94]]

    (iv) Calculate and record the average sampling effectiveness of the 
test sampler as:

                               Equation 30
[GRAPHIC] [TIFF OMITTED] TR18JY97.123

where:

i= replicate number.

    (v)(A) Calculate and record the coefficient of variation for the 
replicate sampling effectiveness measurements of the test sampler as:

                               Equation 31
[GRAPHIC] [TIFF OMITTED] TR18JY97.124

where:

i = replicate number; and
n = number of measurements of effectiveness.

    (B) If the value of CVE exceeds 10 percent, then the test 
run (steps in paragraphs (f)(2) through (f)(6) of this section) is 
unacceptable and must be repeated.
    (7) Repeat steps in paragraphs (f)(1) through (f)(6) of this section 
for each particle size specified in table F-2 of this subpart.
    (g) Test procedure: Divided flow method--(1) Generate calibration 
aerosol. Follow the procedures for aerosol generation prescribed in 
Sec. 53.62(d)(2).
    (2) Verify the quality of the calibration aerosol. Follow the 
procedures for verification of calibration aerosol size and quality 
prescribed in Sec. 53.62(d)(4).
    (3) Introduce aerosol. Introduce the calibration aerosol into the 
static chamber and allow the particle concentration to stabilize.
    (4) Validate that transport is equal for the divided flow option. 
(i) With fluorometry as a detector:
    (A) Install a total filter on each leg of the divided flow 
apparatus.
    (B) Collect particles simultaneously through both legs at 16.7 L/min 
onto an appropriate filter for a time period such that the relative 
error of the measured concentration is less than 5.0 percent.
    (C) Determine the quantity of material collected on each filter 
using a calibrated fluorometer. Calculate and record the mass 
concentration measured in each leg as:

                               Equation 32
[GRAPHIC] [TIFF OMITTED] TR18JY97.125

where:

i = replicate number,
M = mass of material collected with the total filter; and
Q = candidate sampler volumetric flowrate.

    (D) Repeat steps in paragraphs (g)(4)(i)(A) through (g)(4)(i)(C) of 
this section until a minimum of three replicate measurements are 
performed.
    (ii) With an aerosol number counting device as a detector:
    (A) Remove all flow obstructions from the flow paths of the two 
legs.
    (B) Quantify the aerosol concentration of the primary particles in 
each leg of the apparatus.
    (C) Repeat steps in paragraphs (g)(4)(ii)(A) through (g)(4)(ii)(B) 
of this section until a minimum of three replicate measurements are 
performed.
    (iii) (A) Calculate the mean concentration and coefficient of 
variation as:

                               Equation 33
[GRAPHIC] [TIFF OMITTED] TR18JY97.126

                               Equation 34
[GRAPHIC] [TIFF OMITTED] TR18JY97.127

where:

i = replicate number; and
n = number of replicates.

    (B) If the measured mean concentrations through the two legs do not 
agree within 5 percent, then adjustments

[[Page 95]]

may be made in the setup, and this step must be repeated.
    (5) Determine effectiveness. Determine the sampling effectiveness of 
the test sampler with the inlet removed by one of the following 
procedures:
    (i) With fluorometry as a detector:
    (A) Prepare the divided flow apparatus for particle collection. 
Install a total filter into the bypass leg of the divided flow 
apparatus. Install the particle size fractionator with a total filter 
placed immediately downstream of it into the other leg.
    (B) Collect particles simultaneously through both legs at 16.7 L/min 
onto appropriate filters for a time period such that the relative error 
of the measured concentration is less than 5.0 percent.
    (C) Determine the quantity of material collected on each filter 
using a calibrated fluorometer. Calculate and record the mass 
concentration measured by the total filter and that measured after 
penetrating through the candidate fractionator as follows:

                               Equation 35
[GRAPHIC] [TIFF OMITTED] TR18JY97.128

                               Equation 36
[GRAPHIC] [TIFF OMITTED] TR18JY97.129

where:

i = replicate number.

    (ii) With a number counting device as a detector:
    (A) Install the particle size fractionator into one of the legs of 
the divided flow apparatus.
    (B) Quantify and record the aerosol number concentration of the 
primary particles passing through the fractionator as 
Ccand(i).
    (C) Divert the flow from the leg containing the candidate 
fractionator to the bypass leg. Allow sufficient time for the aerosol 
concentration to stabilize.
    (D) Quantify and record the aerosol number concentration of the 
primary particles passing through the bypass leg as 
Ctotal(i).
    (iii) Calculate and record sampling effectiveness of the candidate 
sampler as:

                               Equation 37
[GRAPHIC] [TIFF OMITTED] TR18JY97.130

where:

i = replicate number.

    (6) Repeat step in paragraph (g)(5) of this section, as appropriate, 
to obtain a minimum of three replicate measurements of sampling 
effectiveness.
    (7) Calculate the mean and coefficient of variation for replicate 
measurements of effectiveness. (i) Calculate and record the mean 
sampling effectiveness of the candidate sampler as:

                               Equation 38
[GRAPHIC] [TIFF OMITTED] TR18JY97.131

where:

i = replicate number.

    (ii)(A) Calculate and record the coefficient of variation for the 
replicate sampling effectiveness measurements of the candidate sampler 
as:

                               Equation 39
[GRAPHIC] [TIFF OMITTED] TR18JY97.132

where:

i = replicate number; and
n = number of replicates.

    (B) If the coefficient of variation is not less than 10 percent, 
then the test run must be repeated (steps in paragraphs (g)(1) through 
(g)(7) of this section).
    (8) Repeat steps in paragraphs (g)(1) through (g)(7) of this section 
for each particle size specified in table F-2 of this subpart.
    (h) Calculations--(1) Treatment of multiplets. For all measurements 
made

[[Page 96]]

by fluorometric analysis, data shall be corrected for the presence of 
multiplets as described in Sec. 53.62(f)(1). Data collected using a 
real-time device (as described in paragraph (c)(3)(ii)) of this section 
will not require multiplet correction.
    (2) Cutpoint determination. For each wind speed determine the 
sampler Dp50 cutpoint defined as the aerodynamic particle 
size corresponding to 50 percent effectiveness from the multiplet 
corrected smooth curve.
    (3) Graphical analysis and numerical integration with ambient 
distributions. Follow the steps outlined in Sec. 53.62 (e)(3) through 
(e)(4) to calculate the estimated concentration measurement ratio 
between the candidate sampler and a reference method sampler.
    (i) Test evaluation. The candidate method passes the static 
fractionator test if the values of Rc and Dp50 for each 
distribution meets the specifications in table F-1 of this subpart.

[62 FR 38814, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 53.65   Test procedure: Loading test.

    (a) Overview. (1) The loading tests are designed to quantify any 
appreciable changes in a candidate method sampler's performance as a 
function of coarse aerosol collection. The candidate sampler is exposed 
to a mass of coarse aerosol equivalent to sampling a mass concentration 
of 150 [mu]g/m3 over the time period that the manufacturer 
has specified between periodic cleaning. After loading, the candidate 
sampler is then evaluated by performing the test in Sec. 53.62 (full 
wind tunnel test), Sec. 53.63 (wind tunnel inlet aspiration test), or 
Sec. 53.64 (static fractionator test). If the acceptance criteria are 
met for this evaluation test, then the candidate sampler is approved for 
multi-day sampling with the periodic maintenance schedule as specified 
by the candidate method. For example, if the candidate sampler passes 
the reevaluation tests following loading with an aerosol mass equivalent 
to sampling a 150 [mu]g/m3 aerosol continuously for 7 days, 
then the sampler is approved for 7 day field operation before cleaning 
is required.
    (2) [Reserved]
    (b) Technical definition. Effectiveness after loading is the ratio 
(expressed as a percentage) of the mass concentration of particles of a 
given size reaching the sampler filter to the mass concentration of 
particles of the same size approaching the sampler.
    (c) Facilities and equipment required--(1) Particle delivery system. 
The particle delivery system shall consist of a static chamber or a low 
velocity wind tunnel having a sufficiently large cross-sectional area 
such that the test sampler, or portion thereof, may be installed in the 
test section. At a minimum, the system must have a sufficiently large 
cross section to house the candidate sampler inlet as well as a 
collocated isokinetic nozzle for measuring total aerosol concentration. 
The mean velocity in the test section of the static chamber or wind 
tunnel shall not exceed 2 km/hr.
    (2) Aerosol generation equipment. For purposes of these tests, the 
test aerosol shall be produced from commercially available, bulk Arizona 
road dust. To provide direct interlaboratory comparability of sampler 
loading characteristics, the bulk dust is specified as 0-10 [mu]m ATD 
available from Powder Technology Incorporated (Burnsville, MN). A 
fluidized bed aerosol generator, Wright dust feeder, or sonic nozzle 
shall be used to efficiently deagglomerate the bulk test dust and 
transform it into an aerosol cloud. Other dust generators may be used 
contingent upon prior approval by the Agency.
    (3) Isokinetic sampler. Mean aerosol concentration within the static 
chamber or wind tunnel shall be established using a single isokinetic 
sampler containing a preweighed high-efficiency total filter.
    (4) Analytic balance. An analytical balance shall be used to 
determine the weight of the total filter in the isokinetic sampler. The 
precision and accuracy of this device shall be such that the relative 
measurement error is less than 5.0 percent for the difference between 
the initial and final weight of the total filter. The identical analytic 
balance shall be used to perform both initial and final weighing of the 
total filter.

[[Page 97]]

    (d) Test procedure. (1) Calculate and record the target time 
weighted concentration of Arizona road dust which is equivalent to 
exposing the sampler to an environment of 150 [mu]g/m3 over 
the time between cleaning specified by the candidate sampler's 
operations manual as:

                               Equation 40
[GRAPHIC] [TIFF OMITTED] TR18JY97.133

where:

t = the number of hours specified by the candidate method prior to 
periodic cleaning.

    (2) Clean the candidate sampler. (i) Clean and dry the internal 
surfaces of the candidate sampler.
    (ii) Prepare the internal surfaces in strict accordance with the 
operating manual referred to in section 7.4.18 of 40 CFR part 50, 
appendix L.
    (3) Determine the preweight of the filter that shall be used in the 
isokinetic sampler. Record this value as InitWt.
    (4) Install the candidate sampler's inlet and the isokinetic sampler 
within the test chamber or wind tunnel.
    (5) Generate a dust cloud. (i) Generate a dust cloud composed of 
Arizona test dust.
    (ii) Introduce the dust cloud into the chamber.
    (iii) Allow sufficient time for the particle concentration to become 
steady within the chamber.
    (6) Sample aerosol with a total filter and the candidate sampler. 
(i) Sample the aerosol for a time sufficient to produce an equivalent 
TWC equal to that of the target TWC 15 percent.
    (ii) Record the sampling time as t.
    (7) Determine the time weighted concentration. (i) Determine the 
postweight of the isokinetic sampler's total filter.
    (ii) Record this value as FinalWt.
    (iii) Calculate and record the TWC as:

                               Equation 41
[GRAPHIC] [TIFF OMITTED] TR18JY97.134

where:

Q = the flow rate of the candidate method.

    (iv) If the value of TWC deviates from the target TWC 15 
percent, then the loaded mass is unacceptable and the entire test 
procedure must be repeated.
    (8) Determine the candidate sampler's effectiveness after loading. 
The candidate sampler's effectiveness as a function of particle 
aerodynamic diameter must then be evaluated by performing the test in 
Sec. 53.62 (full wind tunnel test). A sampler which fits the category of 
inlet deviation in Sec. 53.60(e)(1) may opt to perform the test in 
Sec. 53.63 (inlet aspiration test) in lieu of the full wind tunnel test. 
A sampler which fits the category of fractionator deviation in 
Sec. 53.60(e)(2) may opt to perform the test in Sec. 53.64 (static 
fractionator test) in lieu of the full wind tunnel test.
    (e) Test results. If the candidate sampler meets the acceptance 
criteria for the evaluation test performed in paragraph (d)(8) of this 
section, then the candidate sampler passes this test with the 
stipulation that the sampling train be cleaned as directed by and as 
frequently as that specified by the candidate sampler's operations 
manual.



Sec. 53.66   Test procedure: Volatility test.

    (a) Overview. This test is designed to ensure that the candidate 
method's losses due to volatility when sampling semi-volatile ambient 
aerosol will be comparable to that of a federal reference method 
sampler. This is accomplished by challenging the candidate sampler with 
a polydisperse, semi-volatile liquid aerosol in three distinct phases. 
During phase A of this test, the aerosol is elevated to a steady-state, 
test-specified mass concentration and the sample filters are conditioned 
and preweighed. In phase B, the challenge aerosol is simultaneously 
sampled by the candidate method sampler and a reference method sampler 
onto the preweighed filters for a specified time period. In phase C (the 
blow-off phase), aerosol and aerosol-vapor free air is sampled by the 
samplers for an additional time period to partially volatilize the 
aerosol on the filters. The candidate sampler passes the volatility test 
if the acceptance criteria presented in table F-1 of this subpart are 
met or exceeded.
    (b) Technical definitions. (1) Residual mass (RM) is defined as the 
weight of

[[Page 98]]

the filter after the blow-off phase subtracted from the initial weight 
of the filter.
    (2) Corrected residual mass (CRM) is defined as the residual mass of 
the filter from the candidate sampler multiplied by the ratio of the 
reference method flow rate to the candidate method flow rate.
    (c) Facilities and equipment required--(1) Environmental chamber. 
Because the nature of a volatile aerosol is greatly dependent upon 
environmental conditions, all phases of this test shall be conducted at 
a temperature of 22.0 0.5  deg.C and a relative humidity of 
40 3 percent. For this reason, it is strongly advised that 
all weighing and experimental apparatus be housed in an environmental 
chamber capable of this level of control.
    (2) Aerosol generator. The aerosol generator shall be a pressure 
nebulizer operated at 20 to 30 psig (140 to 207 kPa) to produce a 
polydisperse, semi-voltile aerosol with a mass median diameter larger 
than 1 [mu]m and smaller than 2.5 [mu]m. The nebulized liquid shall be 
A.C.S. reagent grade glycerol (C3H8O, FW = 92.09, 
CAS 56-81-5) of 99.5 percent minimum purity. For the purpose of this 
test the accepted mass median diameter is predicated on the stable 
aerosol inside the internal chamber and not on the aerosol emerging from 
the nebulizer nozzle. Aerosol monitoring and its stability are described 
in (c)(3) and (c)(4) of this section.
    (3) Aerosol monitoring equipment. The evaporation and condensation 
dynamics of a volatile aerosol is greatly dependent upon the vapor 
pressure of the volatile component in the carrier gas. The size of an 
aerosol becomes fixed only when an equilibrium is established between 
the aerosol and the surrounding vapor; therefore, aerosol size 
measurement shall be used as a surrogate measure of this equilibrium. A 
suitable instrument with a range of 0.3 to 10 [mu]m, an accuracy of 0.5 
[mu]m, and a resolution of 0.2 [mu]m (e.g., an optical particle sizer, 
or a time-of-flight instrument) shall be used for this purpose. The 
parameter monitored for stability shall be the mass median instrument 
measured diameter (i.e. optical diameter if an optical particle counter 
is used). A stable aerosol shall be defined as an aerosol with a mass 
median diameter that has changed less than 0.25 [mu]m over a 4 hour time 
period.
    (4) Internal chamber. The time required to achieve a stable aerosol 
depends upon the time during which the aerosol is resident with the 
surrounding air. This is a function of the internal volume of the 
aerosol transport system and may be facilitated by recirculating the 
challenge aerosol. A chamber with a volume of 0.5 m3 and a 
recirculating loop (airflow of approximately 500 cfm) is recommended for 
this purpose. In addition, a baffle is recommended to dissipate the jet 
of air that the recirculating loop can create. Furthermore, a HEPA 
filtered hole in the wall of the chamber is suggested to allow makeup 
air to enter the chamber or excess air to exit the chamber to maintain a 
system flow balance. The concentration inside the chamber shall be 
maintained at 1 mg/m3 20 percent to obtain 
consistent and significant filter loading.
    (5) Aerosol sampling manifold. A manifold shall be used to extract 
the aerosol from the area in which it is equilibrated and transport it 
to the candidate method sampler, the reference method sampler, and the 
aerosol monitor. The losses in each leg of the manifold shall be 
equivalent such that the three devices will be exposed to an identical 
aerosol.
    (6) Chamber air temperature recorders. Minimum range 15-25  deg.C, 
certified accuracy to within 0.2  deg.C, resolution of 0.1  deg.C. 
Measurement shall be made at the intake to the sampling manifold and 
adjacent to the weighing location.
    (7) Chamber air relative humidity recorders. Minimum range 30 - 50 
percent, certified accuracy to within 1 percent, resolution of 0.5 
percent. Measurement shall be made at the intake to the sampling 
manifold and adjacent to the weighing location.
    (8) Clean air generation system. A source of aerosol and aerosol-
vapor free air is required for phase C of this test. This clean air 
shall be produced by filtering air through an absolute (HEPA) filter.
    (9) Balance. Minimum range 0 - 200 mg, certified accuracy to within 
10 [mu]g, resolution of 1 [mu]g.

[[Page 99]]

    (d) Additional filter handling conditions. (1) Filter handling. 
Careful handling of the filter during sampling, conditioning, and 
weighing is necessary to avoid errors due to damaged filters or loss of 
collected particles from the filters. All filters must be weighed 
immediately after phase A dynamic conditioning and phase C.
    (2) Dynamic conditioning of filters. Total dynamic conditioning is 
required prior to the initial weight determined in phase A. Dynamic 
conditioning refers to pulling clean air from the clean air generation 
system through the filters. Total dynamic conditioning can be 
established by sequential filter weighing every 30 minutes following 
repetitive dynamic conditioning. The filters are considered sufficiently 
conditioned if the sequential weights are repeatable to 3 
[mu]g.
    (3) Static charge. The following procedure is suggested for 
minimizing charge effects. Place six or more Polonium static control 
devices (PSCD) inside the microbalance weighing chamber, (MWC). Two of 
them must be placed horizontally on the floor of the MWC and the 
remainder placed vertically on the back wall of the MWC. Taping two 
PSCD's together or using double-sided tape will help to keep them from 
falling. Place the filter that is to be weighed on the horizontal PSCDs 
facing aerosol coated surface up. Close the MWC and wait 1 minute. Open 
the MWC and place the filter on the balance dish. Wait 1 minute. If the 
charges have been neutralized the weight will stabilize within 30-60 
seconds. Repeat the procedure of neutralizing charges and weighing as 
prescribed above several times (typically 2-4 times) until consecutive 
weights will differ by no more than 3 micrograms. Record the last 
measured weight and use this value for all subsequent calculations.
    (e) Test procedure--(1) Phase A - Preliminary steps. (i) Generate a 
polydisperse glycerol test aerosol.
    (ii) Introduce the aerosol into the transport system.
    (iii) Monitor the aerosol size and concentration until stability and 
level have been achieved.
    (iv) Condition the candidate method sampler and reference method 
sampler filters until total dynamic conditioning is achieved as 
specified in paragraph (d)(2) of this section.
    (v) Record the dynamically conditioned weight as InitWtc 
and InitWtr where c is the candidate method sampler and r is 
the reference method sampler.
    (2) Phase B - Aerosol loading. (i) Install the dynamically 
conditioned filters into the appropriate samplers.
    (ii) Attach the samplers to the manifold.
    (iii) Operate the candidate and the reference samplers such that 
they simultaneously sample the test aerosol for 30 minutes.
    (3) Phase C - Blow-off. (i) Alter the intake of the samplers to 
sample air from the clean air generation system.
    (ii) Sample clean air for one of the required blow-off time 
durations (1, 2, 3, and 4 hours).
    (iii) Remove the filters from the samplers.
    (iv) Weigh the filters immediately and record this weight, 
FinalWtc and FinalWtr, where c is the candidate 
method sampler and r is the reference method sampler.
    (v) Calculate the residual mass for the reference method sampler:

                              Equation 41a
[GRAPHIC] [TIFF OMITTED] TR18JY97.135

where:

i = repetition number; and
j = blow-off time period.

    (vi) Calculate the corrected residual mass for the candidate method 
sampler as:

                              Equation 41b
[GRAPHIC] [TIFF OMITTED] TR18JY97.136

where:

i = repetition number;
j = blow-off time period;
Qc = candidate method sampler flow rate, and
Qr = reference method sampler flow rate.

    (4) Repeat steps in paragraph (e)(1) through (e)(3) of this section 
until three repetitions have been completed for each of the required 
blow-off time durations (1, 2, 3, and 4 hours).

[[Page 100]]

    (f) Calculations and analysis. (1) Perform a linear regression with 
the candidate method CRM as the dependent variable and the reference 
method RM as the independent variable.
    (2) Determine the following regression parameters: slope, intercept, 
and correlation coefficient (r).
    (g) Test results. The candidate method passes the volatility test if 
the regression parameters meet the acceptance criteria specified in 
table F-1 of this subpart.
             Table F-1 to Subpart F of Part 53--Performance 
       Specifications for PM2.5 Class II Equivalent 
                               Samplers

------------------------------------------------------------------------
                                                          Acceptance
        Performance Test            Specifications         Criteria
------------------------------------------------------------------------
Sec.  53.62 Full Wind Tunnel     Solid VOAG produced  Dp50 = 2.5 [mu]m
 Evaluation.                      aerosol at 2 km/hr   0.2
                                  and 24 km/hr.        [mu]m; Numerical
                                                       Analysis Results:
                                                       95%
                                                       [le]Rc[le]105%
Sec.  53.63 Wind Tunnel Inlet    Liquid VOAG          Relative
 Aspiration Test.                 produced aerosol     Aspiration: 95%
                                  at 2 km/hr and 24    [le]A[le]105%
                                  km/hr.
Sec.  53.64 Static Fractionator  Evaluation of the    Dp50 = 2.5 [mu]m
 Test.                            fractionator under   0.2
                                  static conditions.   [mu]m; Numerical
                                                       Analysis Results:
                                                       95%
                                                       [le]Rc[le]105%
Sec.  53.65 Loading Test.......  Loading of the       Acceptance
                                  clean candidate      criteria as
                                  under laboratory     specified in the
                                  conditions.          post-loading
                                                       evaluation test
                                                       (Sec.  53.62,
                                                       Sec.  53.63, or
                                                       Sec.  53.64)
Sec.  53.66 Volatility Test....  Polydisperse liquid  Regression
                                  aerosol produced     Parameters Slope
                                  by air               = 1 0.1,
                                  A.C.S. reagent       Intercept = 0
                                  grade glycerol,      0.15
                                  99.5% minimum        r [ge] 0.97
                                  purity.
------------------------------------------------------------------------

       Table F-2 to Subpart F of Part 53--Particle Sizes and Wind 
    Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration 
                     Test, and Static Chamber Test

----------------------------------------------------------------------------------------------------------------
                                         Full Wind Tunnel Test   Inlet Aspiration Test     Static
 Primary Partical Mean Size a ([mu]m)  ------------------------------------------------ Fractionator  Volatility
                                          2 km/hr    24 km/hr     2 km/hr    24 km/hr       Test         Test
----------------------------------------------------------------------------------------------------------------
1.50.25...................          S           S                                    S
2.00.25...................          S           S                                    S
2.20.25...................          S           S                                    S
2.50.25...................          S           S                                    S
2.80.25...................          S           S                                    S
3.00.25...................                                  L           L
3.50.25...................          S           S                                    S
4.00.5....................          S           S                                    S
Polydisperse Glycerol Aerosol.........                                                                        L
----------------------------------------------------------------------------------------------------------------
a Aerodynamic diameter.
S=Solid particles.
L=Liquid particles.

       Table F-3 to Subpart F of Part 53--Critical Parameters of 
             Idealized Ambient Particle Size Distributions

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                         Fine Particle Mode              Coarse Particle Mode                     FRM
                                                                 ------------------------------------------------------------------             Sampler
                                                                                                                                      PM2.5/    Expected
                     Idealized Distribution                                               Conc.                            Conc.       PM10       Mass
                                                                     MMD     Geo. Std.   ([mu]g/      MMD     Geo. Std.   ([mu]g/     Ratio      Conc.
                                                                   ([mu]m)      Dev.       m3)      ([mu]m)      Dev.       m3)                 ([mu]g/
                                                                                                                                                  m3)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Coarse..........................................................       0.50          2       12.0         10          2       88.0       0.27     13.814
``Typical''.....................................................       0.50          2       33.3         10          2       66.7       0.55     34.284
Fine............................................................       0.85          2       85.0         15          2       15.0       0.94     78.539
--------------------------------------------------------------------------------------------------------------------------------------------------------


[[Page 101]]

           Table F-4 to Subpart F of Part 53--Estimated Mass 
     Concentration Measurement of PM2.5 for Idealized 
                   Coarse Aerosol Size Distribution

----------------------------------------------------------------------------------------------------------------
                                   Test Sampler                                    Ideal Sampler
    Particle    ------------------------------------------------------------------------------------------------
  Aerodynamic                                     Estimated Mass                                  Estimated Mass
    Diameter        Fractional     Interval Mass   Concentration    Fractional     Interval Mass   Concentration
    ([mu]m)          Sampling      Concentration    Measurement      Sampling      Concentration    Measurement
                  Effectiveness     ([mu]g/m3)      ([mu]g/m3)     Effectiveness    ([mu]g/m3)      ([mu]g/m3)
----------------------------------------------------------------------------------------------------------------
      (1)              (2)              (3)             (4)             (5)             (6)             (7)
----------------------------------------------------------------------------------------------------------------
<0.500           1.000            6.001                           1.000           6.001           6.001
0.625                             2.129                           0.999           2.129           2.127
0.750                             0.982                           0.998           0.982           0.980
0.875                             0.730                           0.997           0.730           0.728
1.000                             0.551                           0.995           0.551           0.548
1.125                             0.428                           0.991           0.428           0.424
1.250                             0.346                           0.987           0.346           0.342
1.375                             0.294                           0.980           0.294           0.288
1.500                             0.264                           0.969           0.264           0.256
1.675                             0.251                           0.954           0.251           0.239
1.750                             0.250                           0.932           0.250           0.233
1.875                             0.258                           0.899           0.258           0.232
2.000                             0.272                           0.854           0.272           0.232
2.125                             0.292                           0.791           0.292           0.231
2.250                             0.314                           0.707           0.314           0.222
2.375                             0.339                           0.602           0.339           0.204
2.500                             0.366                           0.480           0.366           0.176
2.625                             0.394                           0.351           0.394           0.138
2.750                             0.422                           0.230           0.422           0.097
2.875                             0.449                           0.133           0.449           0.060
3.000                             0.477                           0.067           0.477           0.032
3.125                             0.504                           0.030           0.504           0.015
3.250                             0.530                           0.012           0.530           0.006
3.375                             0.555                           0.004           0.555           0.002
3.500                             0.579                           0.001           0.579           0.001
3.625                             0.602                           0.000000        0.602           0.000000
3.750                             0.624                           0.000000        0.624           0.000000
3.875                             0.644                           0.000000        0.644           0.000000
4.000                             0.663                           0.000000        0.663           0.000000
4.125                             0.681                           0.000000        0.681           0.000000
4.250                             0.697                           0.000000        0.697           0.000000
4.375                             0.712                           0.000000        0.712           0.000000
4.500                             0.726                           0.000000        0.726           0.000000
4.625                             0.738                           0.000000        0.738           0.000000
4.750                             0.750                           0.000000        0.750           0.000000
4.875                             0.760                           0.000000        0.760           0.000000
5.000                             0.769                           0.000000        0.769           0.000000
5.125                             0.777                           0.000000        0.777           0.000000
5.250                             0.783                           0.000000        0.783           0.000000
5.375                             0.789                           0.000000        0.789           0.000000
5.500                             0.794                           0.000000        0.794           0.000000
5.625                             0.798                           0.000000        0.798           0.000000
5.75                              0.801                           0.000000        0.801           0.000000
                                  Csam(exp)=                                      Cideal(exp)=    13.814
----------------------------------------------------------------------------------------------------------------

           Table F-5 to Subpart F of Part 53--Estimated Mass 
     Concentration Measurement of PM2.5 for Idealized 
             ``Typical'' Coarse Aerosol Size Distribution

----------------------------------------------------------------------------------------------------------------
                                   Test Sampler                                    Ideal Sampler
    Particle    ------------------------------------------------------------------------------------------------
  Aerodynamic                                     Estimated Mass                                  Estimated Mass
    Diameter        Fractional     Interval Mass   Concentration    Fractional     Interval Mass   Concentration
    ([mu]m)          Sampling      Concentration    Measurement      Sampling      Concentration    Measurement
                  Effectiveness     ([mu]g/m3)      ([mu]g/m3)     Effectiveness    ([mu]g/m3)      ([mu]g/m3)
----------------------------------------------------------------------------------------------------------------
      (1)              (2)              (3)             (4)             (5)             (6)             (7)
----------------------------------------------------------------------------------------------------------------
<0.500           1.000            16.651                          1.000           16.651          16.651
0.625                             5.899                           0.999           5.899           5.893

[[Page 102]]

 
0.750                             2.708                           0.998           2.708           2.703
0.875                             1.996                           0.997           1.996           1.990
1.000                             1.478                           0.995           1.478           1.471
1.125                             1.108                           0.991           1.108           1.098
1.250                             0.846                           0.987           0.846           0.835
1.375                             0.661                           0.980           0.661           0.648
1.500                             0.532                           0.969           0.532           0.516
1.675                             0.444                           0.954           0.444           0.424
1.750                             0.384                           0.932           0.384           0.358
1.875                             0.347                           0.899           0.347           0.312
2.000                             0.325                           0.854           0.325           0.277
2.125                             0.314                           0.791           0.314           0.248
2.250                             0.312                           0.707           0.312           0.221
2.375                             0.316                           0.602           0.316           0.190
2.500                             0.325                           0.480           0.325           0.156
2.625                             0.336                           0.351           0.336           0.118
2.750                             0.350                           0.230           0.350           0.081
2.875                             0.366                           0.133           0.366           0.049
3.000                             0.382                           0.067           0.382           0.026
3.125                             0.399                           0.030           0.399           0.012
3.250                             0.416                           0.012           0.416           0.005
3.375                             0.432                           0.004           0.432           0.002
3.500                             0.449                           0.001           0.449           0.000000
3.625                             0.464                           0.000000        0.464           0.000000
3.750                             0.480                           0.000000        0.480           0.000000
3.875                             0.494                           0.000000        0.494           0.000000
4.000                             0.507                           0.000000        0.507           0.000000
4.125                             0.520                           0.000000        0.520           0.000000
4.250                                                             0.000000        0.532           0.000000
4.375                                                             0.000000        0.543           0.000000
4.500                                                             0.000000        0.553           0.000000
4.625                                                             0.000000        0.562           0.000000
4.750                                                             0.000000        0.570           0.000000
4.875                                                             0.000000        0.577           0.000000
5.000                                                             0.000000        0.584           0.000000
5.125                                                             0.000000        0.590           0.000000
5.250                                                             0.000000        0.595           0.000000
5.375                                                             0.000000        0.599           0.000000
5.500                                                             0.000000        0.603           0.000000
5.625                                                             0.000000        0.605           0.000000
5.75                                                              0.000000        0.608           0.000000
                                  Csam(exp)=                                      Cideal(exp)=    34.284
----------------------------------------------------------------------------------------------------------------

           Table F-6 to Subpart F of Part 53--Estimated Mass 
     Concentration Measurement of PM2.5 for Idealized 
                    Fine Aerosol Size Distribution

----------------------------------------------------------------------------------------------------------------
                                   Test Sampler                                    Ideal Sampler
    Particle    ------------------------------------------------------------------------------------------------
  Aerodynamic                                     Estimated Mass                                  Estimated Mass
    Diameter        Fractional     Interval Mass   Concentration    Fractional     Interval Mass   Concentration
    ([mu]m)          Sampling      Concentration    Measurement      Sampling      Concentration    Measurement
                  Effectiveness     ([mu]g/m3)      ([mu]g/m3)     Effectiveness    ([mu]g/m3)      ([mu]g/m3)
----------------------------------------------------------------------------------------------------------------
      (1)              (2)              (3)             (4)             (5)             (6)             (7)
----------------------------------------------------------------------------------------------------------------
<0.500           1.000            18.868                          1.000           18.868          18.868
0.625                             13.412                          0.999           13.412          13.399
0.750                             8.014                           0.998           8.014           7.998
0.875                             6.984                           0.997           6.984           6.963
1.000                             5.954                           0.995           5.954           5.924
1.125                             5.015                           0.991           5.015           4.970
1.250                             4.197                           0.987           4.197           4.142
1.375                             3.503                           0.980           3.503           3.433
1.500                             2.921                           0.969           2.921           2.830
1.675                             2.438                           0.954           2.438           2.326
1.750                             2.039                           0.932           2.039           1.900

[[Page 103]]

 
1.875                             1.709                           0.899           1.709           1.536
2.000                             1.437                           0.854           1.437           1.227
2.125                             1.212                           0.791           1.212           0.959
2.250                             1.026                           0.707           1.026           0.725
2.375                             0.873                           0.602           0.873           0.526
2.500                             0.745                           0.480           0.745           0.358
2.625                             0.638                           0.351           0.638           0.224
2.750                             0.550                           0.230           0.550           0.127
2.875                             0.476                           0.133           0.476           0.063
3.000                             0.414                           0.067           0.414           0.028
3.125                             0.362                           0.030           0.362           0.011
3.250                             0.319                           0.012           0.319           0.004
3.375            ...............  0.282                           0.004           0.282           0.001
3.500                             0.252                           0.001           0.252           0.000000
3.625                             0.226                           0.000000        0.226           0.000000
3.750                             0.204                           0.000000        0.204           0.000000
3.875                             0.185                           0.000000        0.185           0.000000
4.000                             0.170                           0.000000        0.170           0.000000
4.125                             0.157                           0.000000        0.157           0.000000
4.250                             0.146                           0.000000        0.146           0.000000
4.375                             0.136                           0.000000        0.136           0.000000
4.500                             0.129                           0.000000        0.129           0.000000
4.625                             0.122                           0.000000        0.122           0.000000
4.750                             0.117                           0.000000        0.117           0.000000
4.875                             0.112                           0.000000        0.112           0.000000
5.000                             0.108                           0.000000        0.108           0.000000
5.125                             0.105                           0.000000        0.105           0.000000
5.250                             0.102                           0.000000        0.102           0.000000
5.375                             0.100                           0.000000        0.100           0.000000
5.500                             0.098                           0.000000        0.098           0.000000
5.625                             0.097                           0.000000        0.097           0.000000
5.75                              0.096                           0.000000        0.096           0.000000
                                  Csam(exp)=                                      Cideal(exp)=    78.539
----------------------------------------------------------------------------------------------------------------

        Figure E-1 to Subpart F of Part 53--Designation Testing 
                               Checklist

               DESIGNATION TESTING CHECKLIST FOR CLASS II

                --------------------      --------------------      ----
----------------
                    Auditee               Auditor signature              
 Date

------------------------------------------------------------------------
Compliance Status:    Y = Yes     N = No     NA
         = Not applicable/Not available
------------------------------------------------
     Verification          Verified by Direct     Verification Comments
-----------------------  Observation of Process  (Includes documentation
                            or of Documented       of who, what, where,
                         Evidence: Performance,  when, why) (Doc. , Rev. ,
   Y       N      NA     Spec. Corresponding to         Rev. Date)
                        Sections of 40 CFR Part
                          53, Subparts E and F
------------------------------------------------------------------------
                        Subpart E: Performance
                         Specification Tests
------------------------------------------------------------------------
                          Evaluation completed   .......................
                         according to Subpart E
                         Sec.  53.50 to Sec.
                         53.56
------------------------------------------------------------------------
                        Subpart E: Class I
                         Sequential Tests
------------------------------------------------------------------------
                        Class II samplers that
                         are also Class I
                         (sequentialized) have
                         passed the tests in
                         Sec.  53.57
------------------------------------------------------------------------
                        Subpart F: Performance
                         Spec/Test
------------------------------------------------------------------------

[[Page 104]]

 
                        Evaluation of Physical
                         Characteristics of
                         Clean Sampler - One of
                         these tests must be
                         performed:
                        Sec.  53.62 - Full Wind
                         Tunnel
                        Sec.  53.63 - Inlet
                         Aspiration
                        Sec.  53.64 - Static
                         Fractionator
------------------------------------------------------------------------
                        Evaluation of Physical
                         Characteristics of
                         Loaded Sampler
                        Sec.  53.65 Loading
                         Test
                        One of the following
                         tests must be
                         performed for
                         evaluation after
                         loading: Sec.  53.62,
                         Sec.  53.63, Sec.
                         53.64
------------------------------------------------------------------------
 
                          Evaluation of the
                         Volatile
                         Characteristics of the
                         Class II Sampler Sec.
                         53.66
------------------------------------------------------------------------

             Appendix A to Subpart F of Part 53--References

    (1) Marple, V.A., K.L. Rubow, W. Turner, and J.D. Spangler, Low Flow 
Rate Sharp Cut Impactors for Indoor Air Sampling: Design and 
Calibration., JAPCA, 37: 1303-1307 (1987).
    (2) Vanderpool, R.W. and K.L. Rubow, Generation of Large, Solid 
Calibration Aerosols, J. of Aer. Sci. and Tech., 9:65-69 (1988).
    (3) Society of Automotive Engineers Aerospace Material Specification 
(SAE AMS) 2404C, Electroless Nickel Planting, SAE, 400 Commonwealth 
Drive, Warrendale PA-15096, Revised 7-1-84, pp. 1-6.



PART 54--PRIOR NOTICE OF CITIZEN SUITS--Table of Contents




Sec.
54.1  Purpose.
54.2  Service of notice.
54.3  Contents of notice.

    Authority: Sec. 304 of the Clean Air Act, as amended (sec. 12, Pub. 
L. 91-604, 84 Stat. 1706).

    Source: 36 FR 23386, Dec. 9, 1971, unless otherwise noted.



Sec. 54.1  Purpose.

    Section 304 of the Clean Air Act, as amended, authorizes the 
commencement of civil actions to enforce the Act or to enforce certain 
requirements promulgated pursuant to the Act. The purpose of this part 
is to prescribe procedures governing the giving of notices required by 
subsection 304(b) of the Act (sec. 12, Pub. L. 91-604; 84 Stat. 1706) as 
a prerequisite to the commencement of such actions.



Sec. 54.2  Service of notice.

    (a) Notice to Administrator: Service of notice given to the 
Administrator under this part shall be accomplished by certified mail 
addressed to the Administrator, Environmental Protection Agency, 
Washington, DC 20460. Where notice relates to violation of an emission 
standard or limitation or to violation of an order issued with respect 
to an emission standard or limitation, a copy of such notice shall be 
mailed to the Regional Administrator of the Environmental Protection 
Agency for the Region in which such violation is alleged to have 
occurred.
    (b) Notice to State: Service of notice given to a State under this 
part regarding violation of an emission standard or limitation, or an 
order issued with respect to an emission standard or limitation shall be 
accomplished by certified mail addressed to an authorized representative 
of the State agency charged with responsibility for air pollution 
control in the State. A copy of such notice shall be mailed to the 
Governor of the State.
    (c) Notice to alleged violator: Service of notice given to an 
alleged violator under this part shall be accomplished by certified mail 
addressed to, or by personal service upon, the owner or managing agent 
of the building, plant,

[[Page 105]]

installation, or facility alleged to be in violation of an emission 
standard or limitation, or an order issued with respect to an emission 
standard or limitation. Where the alleged violator is a corporation, a 
copy of such notice shall be sent by certified mail to the registered 
agent, if any, of such corporation in the State in which such violation 
is alleged to have occurred.
    (d) Notice served in accordance with the provisions of this part 
shall be deemed given on the postmark date, if served by mail, or on the 
date of receipt, if personally served.



Sec. 54.3  Contents of notice.

    (a) Failure to act. Notice regarding a failure of the Administrator 
to perform an act or duty which is not discretionary shall identify the 
provisions of the Act which requires such act or creates such duty, 
shall describe with reasonable specificity the action taken or not taken 
by the Administrator which is claimed to constitute a failure to perform 
such act or duty, and shall state the full name and address of the 
person giving the notice.
    (b) Violation of standard, limitation or order. Notices to the 
Administrator, States, and alleged violators regarding violation of an 
emission standard or limitation or an order issued with respect to an 
emission standard or limitation, shall include sufficient information to 
permit the recipient to identify the specific standard, limitation, or 
order which has allegedly been violated, the activity alleged to be in 
violation, the person or persons responsible for the alleged violation, 
the location of the alleged violation, the date or dates of such 
violation, and the full name and address of the person giving the 
notice.



PART 55--OUTER CONTINENTAL SHELF AIR REGULATIONS--Table of Contents




Sec.
55.1  Statutory authority and scope.
55.2  Definitions.
55.3  Applicability.
55.4  Requirements to submit a notice of intent.
55.5  Corresponding onshore area designation.
55.6  Permit requirements.
55.7  Exemptions.
55.8  Monitoring, reporting, inspections, and compliance.
55.9  Enforcement.
55.10  Fees.
55.11  Delegation.
55.12  Consistency updates.
55.13  Federal requirements that apply to OCS sources.
55.14  Requirements that apply to OCS sources located within 25 miles of 
          States' seaward boundaries, by State.
55.15  Specific designation of corresponding onshore areas.

Appendix A to Part 55--Listing of State and Local Requirements 
          Incorporated by Reference Into Part 55, by State

    Authority: Section 328 of the Clean Air Act (42 U.S.C. 7401, et 
seq.) as amended by Public Law 101-549.

    Source: 57 FR 40806, Sept. 4, 1992, unless otherwise noted.



Sec. 55.1  Statutory authority and scope.

    Section 328(a)(1) of the Clean Air Act (``the Act''), requires the 
Environmental Protection Agency (``EPA'') to establish requirements to 
control air pollution from outer continental shelf (``OCS'') sources in 
order to attain and maintain Federal and State ambient air quality 
standards and to comply with the provisions of part C of title I of the 
Act. This part establishes the air pollution control requirements for 
OCS sources and the procedures for implementation and enforcement of the 
requirements, consistent with these stated objectives of section 
328(a)(1) of the Act. In implementing, enforcing and revising this rule 
and in delegating authority hereunder, the Administrator will ensure 
that there is a rational relationship to the attainment and maintenance 
of Federal and State ambient air quality standards and the requirements 
of part C of title I, and that the rule is not used for the purpose of 
preventing exploration and development of the OCS.



Sec. 55.2  Definitions.

    Administrator means the Administrator of the U.S. Environmental 
Protection Agency.
    Corresponding Onshore Area (COA) means, with respect to any existing 
or proposed OCS source located within 25 miles of a State's seaward 
boundary, the onshore area that is geographically

[[Page 106]]

closest to the source or another onshore area that the Administrator 
designates as the COA, pursuant to Sec. 55.5 of this part.
    Delegated agency means any agency that has been delegated authority 
to implement and enforce requirements of this part by the Administrator, 
pursuant to Sec. 55.11 of this part. It can refer to a State agency, a 
local agency, or an Indian tribe, depending on the delegation status of 
the program.
    Existing source or existing OCS source shall have the meaning given 
in the applicable requirements incorporated into Secs. 55.13 and 55.14 
of this part, except that for two years following the date of 
promulgation of this part the definition given in Sec. 55.3 of this part 
shall apply for the purpose of determining the required date of 
compliance with this part.
    Exploratory source or exploratory OCS source means any OCS source 
that is a temporary operation conducted for the sole purpose of 
gathering information. This includes an operation conducted during the 
exploratory phase to determine the characteristics of the reservoir and 
formation and may involve the extraction of oil and gas.
    Modification shall have the meaning given in the applicable 
requirements incorporated into Secs. 55.13 and 55.14 of this part, 
except that for two years following the date of promulgation of this 
part the definition given in section 111(a) of the Act shall apply for 
the purpose of determining the required date of compliance with this 
part, as set forth in Sec. 55.3 of this part.
    Nearest Onshore Area (NOA) means, with respect to any existing or 
proposed OCS source, the onshore area that is geographically closest to 
that source.
    New source or new OCS source shall have the meaning given in the 
applicable requirements of Secs. 55.13 and 55.14 of this part, except 
that for two years following the date of promulgation of this part, the 
definition given in Sec. 55.3 of this part shall apply for the purpose 
of determining the required date of compliance with this part.
    OCS source means any equipment, activity, or facility which:
    (1) Emits or has the potential to emit any air pollutant;
    (2) Is regulated or authorized under the Outer Continental Shelf 
Lands Act (``OCSLA'') (43 U.S.C. Sec. 1331 et seq.); and
    (3) Is located on the OCS or in or on waters above the OCS.
    This definition shall include vessels only when they are:
    (1) Permanently or temporarily attached to the seabed and erected 
thereon and used for the purpose of exploring, developing or producing 
resources therefrom, within the meaning of section 4(a)(1) of OCSLA (43 
U.S.C. Sec. 1331 et seq.); or
    (2) Physically attached to an OCS facility, in which case only the 
stationary sources aspects of the vessels will be regulated.
    Onshore area means a coastal area designated as an attainment, 
nonattainment, or unclassifiable area by EPA in accordance with section 
107 of the Act. If the boundaries of an area designated pursuant to 
section 107 of the Act do not coincide with the boundaries of a single 
onshore air pollution control agency, then onshore area shall mean a 
coastal area defined by the jurisdictional boundaries of an air 
pollution control agency.
    Outer continental shelf shall have the meaning provided by section 2 
of the OCSLA (43 U.S.C. Sec. 1331 et seq.).
    Potential emissions means the maximum emissions of a pollutant from 
an OCS source operating at its design capacity. Any physical or 
operational limitation on the capacity of a source to emit a pollutant, 
including air pollution control equipment and restrictions on hours of 
operation or on the type or amount of material combusted, stored, or 
processed, shall be treated as a limit on the design capacity of the 
source if the limitation is federally enforceable. Pursuant to section 
328 of the Act, emissions from vessels servicing or associated with an 
OCS source shall be considered direct emissions from such a source while 
at the source, and while enroute to or from the source when within 25 
miles of the source, and shall be included in the ``potential to emit'' 
for an OCS source. This definition does not alter or affect the use of 
this term for any other purposes under Secs. 55.13 or 55.14 of this 
part, except that vessel emissions must be

[[Page 107]]

included in the ``potential to emit'' as used in Secs. 55.13 and 55.14 
of this part.
    Residual emissions means the difference in emissions from an OCS 
source if it applies the control requirements(s) imposed pursuant to 
Sec. 55.13 or Sec. 55,14 of this part and emissions from that source if 
it applies a substitute control requirement pursuant to an exemption 
granted under Sec. 55.7 of this part.
    State means the State air pollution control agency that would be the 
permitting authority, a local air pollution permitting agency, or 
certain Indian tribes which can be the permitting authority for areas 
within their jurisdiction. State may also be used in the geographic 
sense to refer to a State, the NOA, or the COA.

[57 FR 40806, Sept. 4, 1992, as amended at 62 FR 46408, Sept. 2, 1997]



Sec. 55.3  Applicability.

    (a) This part applies to all OCS sources except those located in the 
Gulf of Mexico west of 87.5 degrees longitude.
    (b) OCS sources located within 25 miles of States' seaward 
boundaries shall be subject to all the requirements of this part, which 
include, but are not limited to, the Federal requirements as set forth 
in Sec. 55.13 of this part and the Federal, State, and local 
requirements of the COA (designated pursuant to Sec. 55.5 of this part), 
as set forth in Sec. 55.14 of this part.
    (c) The OCS sources located beyond 25 miles of States' seaward 
boundaries shall be subject to all the requirements of this part, except 
the requirements of Secs. 55.4, 55.5, 55.12 and 55.14 of this part.
    (d) New OCS sources shall comply with the requirements of this part 
by September 4, 1992 where a ``new OCS source'' means an OCS source that 
is a new source within the meaning of section 111(a) of the Act.
    (e) Existing sources shall comply with the requirements of this part 
by September 4, 1994, where an ``existing OCS source'' means any source 
that is not a new source within the meaning of section 111(a) of the 
Act.

[57 FR 40806, Sept. 4, 1992, as amended at 62 FR 46408, Sept. 2, 1997]



Sec. 55.4  Requirements to submit a notice of intent.

    (a) Prior to performing any physical change or change in method of 
operation that results in an increase in emissions, and not more than 18 
months prior to submitting an application for a preconstruction permit, 
the applicant shall submit a Notice of Intent (``NOI'') to the 
Administrator through the EPA Regional Office, and at the same time 
shall submit copies of the NOI to the air pollution control agencies of 
the NOA and onshore areas adjacent to the NOA. This section applies only 
to sources located within 25 miles of States' seaward boundaries.
    (b) The NOI shall include the following:
    (1) General company information, including company name and address, 
owner's name and agent, and facility site contact.
    (2) Facility description in terms of the proposed process and 
products, including identification by Standard Industrial Classification 
Code.
    (3) Estimate of the proposed project's potential emissions of any 
air pollutant, expressed in total tons per year and in such other terms 
as may be necessary to determine the applicability of requirements of 
this part. Potential emissions for the project must include all vessel 
emissions associated with the proposed project in accordance with the 
definition of potential emissions in Sec. 55.2 of this part.
    (4) Description of all emissions points including associated 
vessels.
    (5) Estimate of quantity and type of fuels and raw materials to be 
used.
    (6) Description of proposed air pollution control equipment.
    (7) Proposed limitations on source operations or any work practice 
standards affecting emissions.
    (8) Other information affecting emissions, including, where 
applicable, information related to stack parameters (including height, 
diameter, and plume temperature), flow rates, and equipment and facility 
dimensions.
    (9) Such other information as may be necessary to determine the 
applicability of onshore requirements.
    (10) Such other information as may be necessary to determine the 
source's impact in onshore areas.

[[Page 108]]

    (c) Exploratory sources and modifications to existing sources with 
designated COAs shall be exempt from the requirement in paragraph 
(b)(10) of this section.
    (d) The scope and contents of the NOI shall in no way limit the 
scope and contents of the required permit application or applicable 
requirements given in this part.



Sec. 55.5  Corresponding onshore area designation.

    (a) Proposed exploratory sources. The NOA shall be the COA for 
exploratory sources located within 25 miles of States' seaward 
boundaries. Paragraphs (b), (c), and (f) of this section are not 
applicable to these sources.
    (b) Requests for designation. (1) The chief executive officer of the 
air pollution control agency of an area that believes it has more 
stringent air pollution control requirements than the NOA for a proposed 
OCS source, may submit a request to be designated as the COA to the 
Administrator and at the same time shall send copies of the request to 
the chief executive officer of the NOA and to the proposed source. The 
request must be received by the Administrator within 60 days of the 
receipt of the NOI. If no requests are received by the Administrator 
within 60 days of the receipt of the NOI, the NOA will become the 
designated COA without further action.
    (2) No later than 90 days after the receipt of the NOI, a 
demonstration must be received by the Administrator showing that:
    (i) The area has more stringent requirements with respect to the 
control and abatement of air pollution than the NOA;
    (ii) The emissions from the source are or would be transported to 
the requesting area; and
    (iii) The transported emissions would affect the requesting area's 
efforts to attain or maintain a Federal or State ambient air quality 
standard or to comply with the requirements of part C of title I of the 
Act, taking into account the effect of air pollution control 
requirements that would be imposed if the NOA were designated as the 
COA.
    (c) Determination by the Administrator. (1) If no demonstrations are 
received by the Administrator within 90 days of the receipt of the NOI, 
the NOA will become the designated COA without further action.
    (2) If one or more demonstrations are received, the Administrator 
will issue a preliminary designation of the COA within 150 days of the 
receipt of the NOI, which shall be followed by a 30 day public comment 
period, in accordance with paragraph (f) of this section.
    (3) The Administrator will designate the COA for a specific source 
within 240 days of the receipt of the NOI.
    (4) When the Administrator designates a more stringent area as the 
COA with respect to a specific OCS source, the delegated agency in the 
COA will exercise all delegated authority. If there is no delegated 
agency in the COA, then EPA will issue the permit and implement and 
enforce the requirements of this part. The Administrator may retain 
authority for implementing and enforcing the requirements of this part 
if the NOA and the COA are in different States.
    (5) The Administrator shall designate the COA for each source only 
once in the source's lifetime.
    (d) Offset requirements. Offsets shall be obtained based on the 
applicable requirements of the COA, as set forth in Secs. 55.13 and 
55.14 of this part.
    (e) Authority to designate the COA. The authority to designate the 
COA for any OCS source shall not be delegated to a State or local 
agency, but shall be retained by the Administrator.
    (f) Administrative procedures and public participation. The 
Administrator will use the following public notice and comment 
procedures for processing a request for COA designation under this 
section:
    (1) Within 150 days from receipt of an NOI, if one or more 
demonstrations are received, the Administrator shall make a preliminary 
determination of the COA and shall:
    (i) Make available, in at least one location in the NOA and in the 
area requesting COA designation, a copy of all materials submitted by 
the requester, a copy of the Administrator's preliminary determination, 
and a copy or summary of other materials, if any, considered by the 
Administrator in

[[Page 109]]

making the preliminary determination; and
    (ii) Notify the public, by prominent advertisement in a newspaper of 
general circulation in the NOA and the area requesting COA designation, 
of a 30-day opportunity for written public comment on the available 
information and the Administrator's preliminary COA designation.
    (2) A copy of the notice required pursuant to paragraph (f)(1)(ii) 
of this section shall be sent to the requester, the affected source, 
each person from whom a written request of such notice has been 
received, and the following officials and agencies having jurisdiction 
over the COA and NOA: State and local air pollution control agencies, 
the chief executive of the city and county, the Federal Land Manager of 
potentially affected Class I areas, and any Indian governing body whose 
lands may be affected by emissions from the OCS source.
    (3) Public comments received in writing within 30 days after the 
date the public notice is made available will be considered by the 
Administrator in making the final decision on the request. All comments 
will be made available for public inspection.
    (4) The Administrator will make a final COA designation within 60 
days after the close of the public comment period. The Administrator 
will notify, in writing, the requester and each person who has requested 
notice of the final action and will set forth the reasons for the 
determination. Such notification will be made available for public 
inspection.

[57 FR 40806, Sept. 4, 1992, as amended at 61 FR 25151, May 20, 1996]



Sec. 55.6  Permit requirements.

    (a) General provisions--(1) Permit applications. (i) The owner or 
operator of an OCS source shall submit to the Administrator or delegated 
agency all information necessary to perform any analysis or make any 
determination required under this section.
    (ii) Any application submitted pursuant to this part by an OCS 
source shall include a description of all the requirements of this part 
and a description of how the source will comply with the applicable 
requirements. For identification purposes only, the application shall 
include a description of those requirements that have been proposed by 
EPA for incorporation into this part and that the applicant believes, 
after diligent research and inquiry, apply to the source.
    (2) Exemptions. (i) When an applicant submits any approval to 
construct or permit to operate application to the Administrator or 
delegated agency it shall include a request for exemption from 
compliance with any pollution control technology requirement that the 
applicant believes is technically infeasible or will cause an 
unreasonable threat to health and safety. The Administrator or delegated 
agency shall act on the request for exemption in accordance with the 
procedures established in Sec. 55.7 of this part.
    (ii) A final permit shall not be issued under this part until a 
final determination is made on any exemption request, including those 
appealed to the Administrator in accordance with Sec. 55.7 of this part.
    (3) Administrative procedures and public participation. The 
Administrator will follow the applicable procedures of 40 CFR part 124 
in processing applications under this part. Until 40 CFR part 124 has 
been modified to specifically reference permits issued under this part, 
the Administrator will follow the procedures in part 124 used to issue 
Prevention of Significant Deterioration (``PSD'') permits.
    (4) Source obligation. (i) Any owner or operator who constructs or 
operates an OCS source not in accordance with the application submitted 
pursuant to this part 55, or with any approval to construct or permit to 
operate, or any owner or operator of a source subject to the 
requirements of this part who commences construction after the effective 
date of this part without applying for and receiving approval under this 
part, shall be in violation of this part.
    (ii) Any owner or operator of a new OCS source who commenced 
construction prior to the promulgation date of this rule shall comply 
with the requirements of paragraph (e) of this section.
    (iii) Receipt of an approval to construct or a permit to operate 
from the Administrator or delegated agency

[[Page 110]]

shall not relieve any owner or operator of the responsibility to comply 
fully with the applicable provisions of any other requirements under 
Federal law.
    (iv) The owner or operator of an OCS source to whom the approval to 
construct or permit to operate is issued under this part shall notify 
all other owners and operators, contractors, and the subsequent owners 
and operators associated with emissions from the source, of the 
conditions of the permit issued under this part.
    (5) Delegation of authority. If the Administrator delegates any of 
the authority to implement and enforce the requirements of this section, 
the following provisions shall apply:
    (i) The applicant shall send a copy of any permit application 
required by this section to the Administrator through the EPA Regional 
Office at the same time as the application is submitted to the delegated 
agency.
    (ii) The delegated agency shall send a copy of any public comment 
notice required under this section or Secs. 55.13 or 55.14 to the 
Administrator through the EPA Regional Office.
    (iii) The delegated agency shall send a copy of any preliminary 
determination and final permit action required under this section or 
Secs. 55.13 or 55.14 to the Administrator through the EPA Regional 
Office at the time of the determination and shall make available to the 
Administrator any materials used in making the determination.
    (b) Preconstruction requirements for OCS sources located within 25 
miles of States' seaward boundaries. (1) No OCS source to which the 
requirements of Secs. 55.13 or 55.14 of this part apply shall begin 
actual construction after the effective date of this part without a 
permit that requires the OCS source to meet those requirements.
    (2) Any permit application required under this part shall not be 
submitted until the Administrator has determined whether a consistency 
update is necessary, pursuant to Sec. 55.12 of this part, and, if the 
Administrator finds an update to be necessary, has published a proposed 
consistency update.
    (3) The applicant may be required to obtain more than one 
preconstruction permit, if necessitated by partial delegation of this 
part or by the requirements of this section and Secs. 55.13 and 55.14 of 
this part.
    (4) An approval to construct shall become invalid if construction is 
not commenced within 18 months after receipt of such approval, if 
construction is discontinued for a period of 18 months or more, or if 
construction is not completed within a reasonable time. The 18-month 
period may be extended upon a showing satisfactory to the Administrator 
or the delegated agency that an extension is justified. Sources 
obtaining extensions are subject to all new or interim requirements and 
a reassessment of the applicable control technology when the extension 
is granted. This requirement shall not supersede a more stringent 
requirement under Secs. 55.13 or 55.14 of this part.
    (5) Any preconstruction permit issued to a new OCS source or 
modification shall remain in effect until it expires under paragraph 
(b)(4) of this section or is rescinded under the applicable requirements 
incorporated in Secs. 55.13 and 55.14 of this part.
    (6) Whenever any proposed OCS source or modification to an existing 
OCS source is subject to action by a Federal agency that might 
necessitate preparation of an environmental impact statement pursuant to 
the National Environmental Policy Act (42 U.S.C. 4321), review by the 
Administrator conducted pursuant to this section shall be coordinated 
with the environmental reviews under that Act to the extent feasible and 
reasonable.
    (7) The Administrator or delegated agency and the applicant shall 
provide written notice of any permit application from a source, the 
emissions from which may affect a Class I area, to the Federal Land 
Manager charged with direct responsibility for management of any lands 
within the Class I area. Such notification shall include a copy of all 
information contained in the permit application and shall be given 
within 30 days of receipt of the application and at least 60 days prior 
to any public hearing on the preconstruction permit.
    (8) Modification of existing sources. The preconstruction 
requirements above shall not apply to a particular modification, as 
defined in Sec. 55.13 or Sec. 55.14 of this part, of an existing OCS 
source if:

[[Page 111]]

    (i) The modification is necessary to comply with this part, and no 
other physical change or change in the method of operation is made in 
conjunction with the modification;
    (ii) The modification is made within 24 months of promulgation of 
this part; and
    (iii) The modification does not result in an increase, in excess of 
any de minimus levels contained in the applicable requirements of 
Secs. 55.13 and 55.14, of potential emissions or actual hourly emissions 
of a pollutant regulated under the Act.
    (9) Compliance plans. Sources intending to perform modifications 
that meet all of the criteria of paragraph (b)(8) of this section shall 
submit a compliance plan to the Administrator or delegated agency prior 
to performing the modification. The compliance shall describe the 
schedule and method the source will use to comply with the applicable 
OCS requirements within 24 months of the promulgation date of this part 
and shall include a request for any exemptions from compliance with a 
pollution control technology requirement that the applicant believes is 
technically infeasible or will cause an unreasonable threat to health 
and safety. The Administrator or delegated agency shall act on the 
request for exemption in accordance with the procedures established in 
Sec. 55.7 of this part.
    (i) The Administrator or delegated agency shall review the 
compliance plan and provide written comments to the source within 45 
days of receipt of such plan. The source shall provide a written 
response to such comments as required by the reviewing agency.
    (ii) Receipt and review of a compliance plan by the Administrator or 
delegated agency shall not relieve any owner or operator of an existing 
OCS source of the responsibility to comply fully with the applicable 
requirements of Secs. 55.13 and 55.14 of this part within 24 months of 
promulgation of this part.
    (c) Operating permit requirements for sources located within 25 
miles of States' seaward boundaries. (1) All applicable operating permit 
requirements listed in this section and incorporated into Secs. 55.13 
and 55.14 of this part shall apply to OCS sources.
    (2) The Administrator or delegated agency shall not issue a permit 
to operate to any existing OCS source that has not demonstrated 
compliance with all the applicable requirements of this part.
    (3) If the COA does not have an operating permits program approved 
pursuant to 40 CFR part 70 or if EPA has determined that the COA is not 
adequately implementing an approved program, the applicable requirements 
of 40 CFR part 71, the Federal operating permits program, shall apply to 
the OCS sources. The applicable requirements of 40 CFR part 71 will be 
implemented and enforced by the Administrator. The Administrator may 
delegate the authority to implement and enforce all or part of a Federal 
operating permits program to a State pursuant to Sec. 55.11 of this 
part.
    (d) Permit requirements for sources located beyond 25 miles of 
States' seaward boundaries. (1) OCS sources located beyond 25 miles of 
States' seaward boundaries shall be subject to the permitting 
requirements set forth in this section and Sec. 55.13 of this part.
    (2) The Administrator or delegated agency shall not issue a permit-
to-operate to any existing OCS source that has not demonstrated 
compliance with all the applicable requirements of this part.
    (e) Permit requirements for new sources that commenced construction 
prior to September 4, 1992--(1) Applicability. Sec. 55.6(e) applies to a 
new OCS source, as defined by section 328 of the Act, that commenced 
construction before September 4, 1992.
    (2) A source subject to Sec. 55.6(e) shall comply with the following 
requirements:
    (i) By October 5, 1992, the owner or operator of the source shall 
submit a transitional permit application (``TPA'') to the Administrator 
or the delegated agency. The TPA shall include the following:
    (A) The information specified in Secs. 55.4(b)(1) through 
Sec. 55.4(b)(9) of this part;
    (B) A list of all requirements applicable to the source under this 
part;
    (C) A request for exemption from compliance with any control 
technology requirement that the applicant

[[Page 112]]

believes is technically infeasible or will cause an unreasonable threat 
to health and safety;
    (D) An air quality screening analysis demonstrating whether the 
source has or is expected in the future to cause or contribute to a 
violation of any applicable State or Federal ambient air quality 
standard or exceed any applicable increment. If no air quality analysis 
is required by the applicable requirements of Secs. 55.13 and 55.14, 
this requirement does not apply;
    (E) Documentation that source emissions are currently being offset, 
or will be offset if the source has not commenced operation, at the 
ratio required under this part, and documentation that those offsets 
meet or will meet the requirements of this part; and
    (F) A description of how the source is complying with the applicable 
requirements of Secs. 55.13 and 55.14 of this part, including emission 
levels and corresponding control measures, including Best Available 
Control Technology (``BACT'') or Lowest Achievable Emission Rates 
(``LAER''), but excluding the requirements to have valid permits.
    (ii) The source shall expeditiously complete its permit application 
in compliance with the schedule determined by the Administrator or 
delegated agency.
    (iii) The source shall comply with all applicable requirements of 
this part except for the requirements of paragraph (a)(4)(i) of this 
section. The source shall comply with the control technology 
requirements (such as BACT or LAER) set forth in the TPA that would be 
applicable if the source had a valid permit.
    (iv) Any owner or operator subject to this subsection who continues 
to construct or operate an OCS source thirty days from promulgation of 
this part without submitting a TPA, or continues to construct or operate 
an OCS source not in accordance with the TPA submitted pursuant to 
paragraph (e) of this section, or constructs or operates an OCS source 
not in accordance with the schedule determined by the permitting 
authority, shall be in violation of this part.
    (3) Upon the submittal of a permit application deemed to be complete 
by the permitting authority, the owner or operator of the source shall 
be subject to the permitting requirements of Secs. 55.13 and 55.14 of 
this part that apply subsequent to the submission of a complete permit 
application. When a source receives the permit or permits required under 
this part, its TPA shall expire.
    (4) Until the date that a source subject to this subsection receives 
the permit or permits required under this part, that source shall cease 
operation if, based on projected or actual emissions, the permitting 
authority determines that the source is currently or may in the future 
cause or contribute to a violation of a State or Federal ambient air 
quality standard or exceed any applicable increment.

[57 FR 40806, Sept. 4, 1992, as amended at 61 FR 34228, July 1, 1996; 62 
FR 46409, Sept. 2, 1997]



Sec. 55.7  Exemptions.

    (a) Authority and criteria. The Administrator or the delegated 
agency may exempt a source from a control technology requirement of this 
part if the Administrator or the delegated agency finds that compliance 
with the control technology requirement is technically infeasible or 
will cause an unreasonable threat to health and safety.
    (b) Request for an exemption--(1) Permit application required. An 
applicant shall submit a request for an exemption from a control 
technology requirement at the same time as the applicant submits a 
preconstruction or operating permit application to the Administrator or 
delegated agency.
    (2) No permit application required. If no permit or permit 
modification is required, a request for an exemption must be received by 
the Administrator or delegated agency within 60 days from the date the 
control technology requirement is promulgated by EPA.
    (3) Compliance plan. An existing source that submits a compliance 
plan in accordance with Sec. 55.6(b) of this part shall submit all 
requests for exemptions at the same time as the compliance plan. For the 
purpose of applying Sec. 55.7 of this part, a request submitted with a 
compliance plan shall be treated in the same manner as a request that 
does not require a permit application.

[[Page 113]]

    (4) Content of request. (i) The request shall include information 
that demonstrates that compliance with a control technology requirement 
of this part would be technically infeasible or would cause an 
unreasonable threat to health and safety.
    (ii) The request shall include a proposed substitute requirement(s) 
as close in stringency to the original requirement as possible.
    (iii) The request shall include an estimate of emission reductions 
that would be achieved by compliance with the original requirement, an 
estimate of emission reductions that would be achieved by compliance 
with the proposed substitute requirement(s) and an estimate of residual 
emissions.
    (iv) The request shall identify emission reductions of a sufficient 
quantity to offset the estimated residual emissions. Sources located 
beyond 25 miles from States' seaward boundaries shall consult with the 
Administrator to identify suitable emission reductions.
    (c) Consultation requirement. If the authority to grant or deny 
exemptions has been delegated, the delegated agency shall consult with 
the Minerals Management Service of the U.S. Department of Interior and 
the U.S. Coast Guard to determine whether the exemption will be granted 
or denied.
    (1) The delegated agency shall transmit to the Administrator 
(through the Regional Office), the Minerals Management Service, and the 
U.S. Coast Guard, a copy of the permit application, or the request if no 
permit is required, within 5 days of its receipt.
    (2) Consensus. If the delegated agency, the Minerals Management 
Service, and the U.S. Coast Guard reach a consensus decision on the 
request within 90 days from the date the delegated agency received the 
request, the delegated agency may issue a preliminary determination in 
accordance with the applicable requirements of paragraph (f) of this 
section.
    (3) No consensus. If the delegated agency, the Minerals Management 
Service, and the U.S. Coast Guard do not reach a consensus decision 
within 90 days from the date the delegated agency received the request, 
the request shall automatically be referred to the Administrator who 
will process the referral in accordance with paragraph (f)(3) of this 
section. The delegated agency shall transmit to the Administrator, 
within 91 days of its receipt, the request and all materials submitted 
with the request, such as the permit application or the compliance plan, 
and any other information considered or developed during the 
consultation process.
    (4) If a request is referred to the Administrator and the delegated 
agency issues a preliminary determination on a permit application before 
the Administrator issues a final decision on the exemption, the 
delegated agency shall include a notice of the opportunity to comment on 
the Administrator's preliminary determination in accordance with the 
procedures of paragraph (f)(4) of this section.
    (5) The Administrator's final decision on a request that has been 
referred pursuant to paragraph (c) of this section shall be incorporated 
into the final permit issued by the delegated agency. If no permit is 
required, the Administrator's final decision on the request shall be 
implemented and enforced by the delegated agency.
    (d) Preliminary determination. The Administrator or delegated agency 
shall issue a preliminary determination in accordance with paragraph (f) 
of this section. A preliminary determination shall propose to grant or 
deny the request for exemption. A preliminary determination to grant the 
request shall include proposed substitute control requirements and 
offsets necessary to comply with the requirements of paragraph (e) of 
this section.
    (e) Grant of exemption. (1) The source shall comply with a 
substitute requirement(s), equal to or as close in stringency to the 
original requirement as possible, as determined by the Administrator or 
delegated agency.
    (2) An OCS source located within 25 miles of States' seaward 
boundaries shall offset residual emissions resulting from the grant of 
an exemption request in accordance with the requirements of the Act and 
the regulations thereunder. The source shall obtain offsets in 
accordance with the applicable requirements as follows:

[[Page 114]]

    (i) If offsets are required in the COA, a new source shall offset 
residual emissions in the same manner as all other new source emissions 
in accordance with the requirements of Sec. 55.5(d) of this part.
    (ii) If offsets are not required in the COA, a new source shall 
comply with an offset ratio of 1:1.
    (iii) An existing OCS source shall comply with an offset at a ratio 
of 1:1.
    (3) An OCS source located beyond 25 miles from States' seaward 
boundaries shall obtain emission reductions at a ratio determined by the 
Administrator to be adequate to protect State and Federal ambient air 
quality standards and to comply with part C of title I of the Act.
    (f) Administrative procedures and public participation--(1) Request 
submitted with a permit application. If a request is submitted with a 
permit application, the request shall be considered part of the permit 
application and shall be processed accordingly for the purpose of 
administrative procedures and public notice and comment requirements. 
The Administrator shall comply with the requirements of 40 CFR part 124 
and the requirements set forth at Sec. 55.6 of this part. If the 
Administrator has delegated authority to a State, the delegated agency 
shall use its own procedures as deemed adequate by the Administrator in 
accordance with Sec. 55.11 of this part. These procedures must provide 
for public notice and comment on the preliminary determination.
    (2) Request submitted without a permit or with a compliance plan. If 
a permit is not required, the Administrator or the delegated agency 
shall issue a preliminary determination within 90 days from the date the 
request was received, and shall use the procedures set forth at 
paragraph (f)(4) of this section for processing a request.
    (3) Referral. If a request is referred to the Administrator pursuant 
to paragraph (c) of this section, the Administrator shall make a 
preliminary determination no later than 30 days after receipt of the 
request and any accompanying materials transmitted by the delegated 
agency. The Administrator shall use the procedures set forth at 
paragraph (f)(4) of this section for processing a request.
    (4) The Administrator or the delegated agency shall comply with the 
following requirements for processing requests submitted without a 
permit, with a compliance plan, and requests referred to the 
Administrator:
    (i) Issue a preliminary determination to grant or deny the request. 
A preliminary determination by the Administrator to deny a request shall 
be considered a final decision and will be accompanied by the reasons 
for the decision. As such, it is not subject to any further public 
notice, comment, or hearings. Written notice of the denial shall be 
given to the requester.
    (ii) Make available, in at least one location in the COA and NOA, a 
copy of all materials submitted by the requester, a copy of the 
preliminary determination, and a copy or summary of other materials, if 
any, considered in making the preliminary determination.
    (iii) Notify the public, by prominent advertisement in a newspaper 
of general circulation in the COA and NOA, of a 30-day opportunity for 
written public comment on the information submitted by the owner or 
operator and on the preliminary determination.
    (iv) Send a copy of the notice required pursuant to paragraph 
(f)(4)(iii) of this section to the requester, the affected source, each 
person from whom a written request of such notice has been received, and 
the following officials and agencies having jurisdiction over the COA 
and NOA: State and local air pollution control agencies, the chief 
executive of the city and county, the Federal Land Manager of 
potentially affected Class I areas, and any Indian governing body whose 
lands may be affected by emissions from the OCS source.
    (v) Consider written public comments received within 30 days after 
the date the public notice is made available when making the final 
decision on the request. All comments will be made available for public 
inspection. At the time that any final decision is issued, the 
Administrator or delegated agency will issue a response to comments.
    (vi) Make a final decision on the request within 30 days after the 
close of the public comment period. The Administrator or the delegated 
agency

[[Page 115]]

will notify, in writing, the applicant and each person who has submitted 
written comments, or from whom a written request of such notice has been 
received, of the final decision and will set forth the reasons. Such 
notification will be made available for public inspection.
    (5) Within 30 days after the final decision has been made on a 
request, the requester, or any person who filed comments on the 
preliminary determination, may petition the Administrator to review any 
aspect of the decision. Any person who failed to file comments on the 
preliminary decision may petition for administrative review only on the 
changes from the preliminary to the final determination.



Sec. 55.8  Monitoring, reporting, inspections, and compliance.

    (a) The Administrator may require monitoring or reporting and may 
authorize inspections pursuant to section 114 of the Act and the 
regulations thereunder. Sources shall also be subject to the 
requirements set forth in Secs. 55.13 and 55.14 of this part.
    (b) All monitoring, reporting, inspection and compliance 
requirements authorized under the Act shall apply.
    (c) An existing OCS source that is not required to obtain a permit 
to operate within 24 months of the date of promulgation of this part 
shall submit a compliance report to the Administrator or delegated 
agency within 25 months of promulgation of this part. The compliance 
report shall specify all the applicable OCS requirements of this part 
and a description of how the source has complied with these 
requirements.
    (d) The Administrator or the delegated agency shall consult with the 
Minerals Management Service and the U.S. Coast Guard prior to 
inspections. This shall in no way interfere with the ability of EPA or 
the delegated agency to conduct unannounced inspections.

(Approved by the Office of Management and Budget under the control 
number 2060-0249)

[57 FR 40806, Sept. 4, 1992, as amended at 58 FR 16626, Mar. 30, 1993]



Sec. 55.9  Enforcement.

    (a) OCS sources shall comply with all requirements of this part and 
all permits issued pursuant to this part. Failure to do so shall be 
considered a violation of section 111(e) of the Act.
    (b) All enforcement provisions of the Act, including, but not 
limited to, the provisions of sections 113, 114, 120, 303 and 304 of the 
Act, shall apply to OCS sources.
    (c) If a facility is ordered to cease operation of any piece of 
equipment due to enforcement action taken by EPA or a delegated agency 
pursuant to this part, the shutdown will be coordinated by the enforcing 
agency with the Minerals Management Service and the U.S. Coast Guard to 
assure that the shutdown will proceed in a safe manner. No shutdown 
action will occur until after consultation with these agencies, but in 
no case will initiation of the shutdown be delayed by more than 24 
hours.



Sec. 55.10  Fees.

    (a) OCS sources located within 25 miles of States' seaward 
boundaries. (1) The EPA will calculate and collect operating permit fees 
from OCS sources in accordance with the requirements of 40 CFR part 71.
    (2) EPA will collect all other fees from OCS sources calculated in 
accordance with the fee requirements imposed in the COA if the fees are 
based on regulatory objectives, such as discouraging emissions. If the 
fee requirements are based on cost recovery objectives, however, EPA 
will adjust the fees to reflect the costs to EPA to issue permits and 
administer the permit program.
    (3) Upon delegation, the delegated agency will collect fees from OCS 
sources calculated in accordance with the fee requirements imposed in 
the COA. Upon delegation of authority to implement and enforce any 
portion of this part, EPA will cease to collect fees imposed in 
conjunction with that portion.
    (b) The OCS sources located beyond 25 miles of States' seaward 
boundaries. The EPA will calculate and collect operating permit fees 
from OCS sources in accordance with the requirements of 40 CFR part 71.

[57 FR 40806, Sept. 4, 1992, as amended at 61 FR 34228, July 1, 1996]

[[Page 116]]



Sec. 55.11  Delegation.

    (a) The Governor or the Governor's designee of any State adjacent to 
an OCS source subject to the requirements of this part may submit a 
request, purusant to section 328(a)(3) of the Act, to the Administrator 
for the authority to implement and enforce the requirements of this OCS 
program: Within 25 miles of the State's seaward boundary; and/or Beyond 
25 miles of the State's seaward boundary. Authority to implement and 
enforce Secs. 55.5, 55.11, and 55.12 of this part will not be delegated.
    (b) The Administrator will delegate implementation and enforcement 
authority to a State if the State has an adjacent OCS source and the 
Administrator determines that the State's regulations are adequate, 
including a demonstration by the State that the State has:
    (1) Adopted the appropriate portions of this part into State law;
    (2) Adequate authority under State law to implement and enforce the 
requirements of this part. A letter from the State Attorney General 
shall be required stating that the requesting agency has such authority;
    (3) Adequate resources to implement and enforce the requirements of 
this part; and
    (4) Adequate administrative procedures to implement and enforce the 
requirements of this part, including public notice and comment 
procedures.
    (c) The Administrator will notify in writing the Governor or the 
Governor's designee of the Administrator's final action on a request for 
delegation within 6 months of the receipt of the request.
    (d) If the Administrator finds that the State regulations are 
adequate, the Administrator will authorize the State to implement and 
enforce the OCS requirements under State law. If the Administrator finds 
that only part of the State regulations are adequate, he will authorize 
the State to implement and enforce only that portion of this part.
    (e) Upon delegation, a State may use any authority it possesses 
under State law to enforce any permit condition or any other requirement 
of this part for which the agency has delegated authority under this 
part. A State may use anyauthority it possesses under State law to 
require monitoring and reporting and to conduct inspections.
    (f) Nothing in this part shall prohibit the Administrator from 
enforcing any requirement of this part.
    (g) The Administrator will withdraw a delegation of any authority to 
implement and enforce any or all of this part if the Administrator 
determines that: (1) The requirements of this part are not being 
adequately implemented or enforced by the delegated agency, or (2) The 
delegated agency no longer has adequate regulations as required by 
Sec. 55.11(b) of this part.
    (h) Sharing of information. Any information obtained or used in the 
administration of a delegated program shall be made available to EPA 
upon request without restriction. If the information has been submitted 
to the delegated agency under a claim of confidentiality, the delegated 
agency must notify the source of this obligation and submit that claim 
to EPA. Any information obtained from a delegated agency accompanied by 
a claim of confidentiality will be treated in accordance with the 
requirements of 40 CFR part 2.
    (i) Grant of exemptions. A decision by a delegated agency to grant 
or deny an exemption request may be appealed to the Administrator in 
accordance with Sec. 55.7 of this part.
    (j) Delegated authority. The delegated agency in the COA for sources 
located within 25 miles of the State's seaward boundary or the delegated 
agency in the NOA for sources located beyond 25 miles of the State's 
seaward boundary will exercise all delegated authority. If there is no 
delegated agency in the COA for sources located within 25 miles of the 
State's seaward boundary, or in the NOA for sources located beyond 25 
miles of the State's seaward boundary, the EPA will issue the permit and 
implement and enforce the requirements of this part. For sources located 
within 25 miles of the State's seaward boundary, the Administrator may 
retain the authority for implementing and enforcing the requirements of 
this part if the NOA and COA are in different States.

[57 FR 40806, Sept. 4, 1992, as amended at 62 FR 46409, Sept. 2, 1997]

[[Page 117]]



Sec. 55.12  Consistency updates.

    (a) The Administrator will update this part as necessary to maintain 
consistency with the regulations of onshore areas in order to attain and 
maintain Federal and State ambient standards and comply with part C of 
title I of the Act.
    (b) Where an OCS activity is occurring within 25 miles of a State 
seaward boundary, consistency reviews will occur at least annually. In 
addition, in accordance with paragraphs (c) and (d) of this section, 
consistency reviews will occur upon receipt of an NOI and when a State 
or local agency submits a rule to EPA to be considered for incorporation 
by reference in this part 55.
    (1) Upon initiation of a consistency review, the Administrator will 
evaluate the requirements of part 55 to determine whether they are 
consistent with the current onshore requirements.
    (2) If the Administrator finds that part 55 is inconsistent with the 
requirements in effect in the onshore area, EPA will conduct a notice 
and comment rulemaking to update part 55 accordingly.
    (c) Consistency reviews triggered by receipt of an NOI. Upon receipt 
of an NOI, the Administrator will initiate a consistency review of 
regulations in the onshore area.
    (1) If the NOI is submitted by a source for which the COA has 
previously been assigned, EPA will publish a proposed consistency update 
in the Federal Register no later than 60 days after the receipt of the 
NOI, if an update is deemed necessary by the Administrator:
    (2) If the NOI is submitted by a source requiring a COA designation, 
EPA will publish a proposed consistency update in the Federal Register, 
if an update is deemed necessary by the Administrator:
    (i) No later than 75 days after receipt of the NOI if no adjacent 
areas submit a request for COA designation and the NOA becomes the COA 
by default, or
    (ii) No later than 105 days after receipt of the NOI if an adjacent 
area submits a request to be designated as COA but fails to submit the 
required demonstration within 90 days of receipt of the NOI, or
    (iii) No later than 15 days after the date of the final COA 
determination if one or more demonstrations are received.
    (d) Consistency reviews triggered by State and local air pollution 
control agencies submitting rules directly to EPA for inclusion into 
part 55. (1) EPA will propose in the Federal Register to approve 
applicable rules submitted by State or local regulatory agencies for 
incorporation by reference into Sec. 55.14 of this part by the end of 
the calendar quarter following the quarter in which the submittal is 
received by EPA.
    (2) State and local rules submitted for inclusion in part 55 must be 
rationally related to the attainment and maintenance of Federal or State 
ambient air quality standards or to the requirements of part C of title 
I of the Act. The submittal must be legible and unmarked, with the 
adoption date and the name of the agency on each page, and must be 
accompanied by proof of adoption.
    (e) No rule or regulation that EPA finds to be arbitrary or 
capricious will be incorporated into this part.
    (f) A source may not submit a complete permit application until any 
update the Administrator deems necessary to make part 55 consistent with 
the COA's rules has been proposed.



Sec. 55.13  Federal requirements that apply to OCS sources.

    (a) The requirements of this section shall apply to OCS sources as 
set forth below. In the event that a requirement of this section 
conflicts with an applicable requirement of Sec. 55.14 of this part and 
a source cannot comply with the requirements of both sections, the more 
stringent requirement shall apply.
    (b) In applying the requirements incorporated into this section:
    (1) New Source means new OCS source; and
    (2) Existing Source means existing OCS source; and
    (3) Modification means a modification to an OCS source.
    (4) For requirements adopted prior to promulgation of this part, 
language in such requirements limiting the applicability of the 
requirements to onshore

[[Page 118]]

sources or to sources within State boundaries shall not apply.
    (c) 40 CFR part 60 (NSPS) shall apply to OCS sources in the same 
manner as in the COA, except that any source determined to be an 
existing source pursuant to Sec. 55.3(e) of this part shall not be 
considered a ``new source'' for the purpose of NSPS adopted before 
December 5, 1991.
    (d) 40 CFR 52.21 (PSD) shall apply to OCS sources:
    (1) Located within 25 miles of a State's seaward boundary if the 
requirements of 40 CFR 52.21 are in effect in the COA;
    (2) Located beyond 25 miles of States' seaward boundaries.
    (e) 40 CFR part 61, together with any other provisions promulgated 
pursuant to section 112 of the Act, shall apply if rationally related to 
the attainment and maintenance of Federal or State ambient air quality 
standards or the requirements of part C of title I of the Act.
    (f) 40 CFR part 71 shall apply to OCS sources:
    (1) Located within 25 miles of States' seaward boundaries if the 
requirements of 40 CFR part 71 are in effect in the COA.
    (2) Located beyond 25 miles of States' seaward boundaries.
    (3) When an operating permits program approved pursuant to 40 CFR 
part 70 is in effect in the COA and a Federal operating permit is issued 
to satisfy an EPA objection pursuant to 40 CFR 71.4(e).
    (g) The provisions of 40 CFR 52.10, 40 CFR 52.24, and 40 CFR part 51 
and accompanying appendix S shall apply to OCS sources located within 25 
miles of States' seaward boundaries, if these requirements are in effect 
in the COA.
    (h) If the Administrator determines that additional requirements are 
necessary to protect Federal and State ambient air quality standards or 
to comply with part C of title I, such requirements will be incorporated 
in this part.

[57 FR 40806, Sept. 4, 1992, as amended at 61 FR 34228, July 1, 1996]



Sec. 55.14  Requirements that apply to OCS sources located within 25 miles of States' seaward boundaries, by State.

    (a) The requirements of this section shall apply to OCS sources as 
set forth below. In the event that a requirement of this section 
conflicts with an applicable requirement of Sec. 55.13 of this part and 
a source cannot comply with the requirements of both sections, the more 
stringent requirement shall apply.
    (b) In applying the requirements incorporated into this section:
    (1) New Source means new OCS source; and
    (2) Existing Source means existing OCS source; and
    (3) Modification means a modification to an existing OCS source.
    (4) For requirements adopted prior to promulgation of this part, 
language in such requirements limiting the applicability of the 
requirements to onshore sources or to sources within State boundaries 
shall not apply.
    (c) During periods of EPA implementation and enforcement of this 
section, the following shall apply:
    (1) Any reference to a State or local air pollution control agency 
or air pollution control officer shall mean EPA or the Administrator, 
respectively.
    (2) Any submittal to State or local air pollution control agency 
shall instead be submitted to the Administrator through the EPA Regional 
Office.
    (3) Nothing in this section shall alter or limit EPA's authority to 
administer or enforce the requirements of this part under Federal law.
    (4) EPA shall not be bound by any State or local administrative or 
procedural requirements including, but not limited to, requirements 
pertaining to hearing boards, permit issuance, public notice procedures, 
and public hearings. EPA will follow the applicable procedures set forth 
elsewhere in this part, in 40 CFR part 124, and in Federal rules 
promulgated pursuant to title V of the Act (as such rules apply in the 
COA), when administering this section.
    (5) Only those requirements of 40 CFR part 52 that are rationally 
related to the attainment and maintenance of Federal or State ambient 
air quality

[[Page 119]]

standards or part C of title I shall apply to OCS sources.
    (d) Implementation Plan Requirements.
    (1) [Reserved]
    (2) Alaska.
    (i) 40 CFR part 52, subpart C.
    (ii) [Reserved]
    (3) California.
    (i) 40 CFR part 52, subpart F.
    (ii) [Reserved]
    (4)-(5) [Reserved]
    (6) Florida.
    (i) 40 CFR part 52, subpart K.
    (ii) [Reserved]
    (7)-(16) [Reserved]
    (17) North Carolina.
    (i) 40 CFR part 52, subpart II.
    (ii) [Reserved]
    (18)-(23) [Reserved]
    (e) State and local requirements. State and local requirements 
promulgated by EPA as applicable to OCS sources located within 25 miles 
of States' seaward boundaries have been compiled into separate documents 
organized by State and local areas of jurisdiction. These documents, set 
forth below, are incorporated by reference. This incorporation by 
reference was approved by the Director of the Federal Register Office in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be 
inspected at the Office of the Federal Register, 800 North Capitol 
Street, NW., Suite 700, Washington, DC. Copies of rules pertaining to 
particular States or local areas may be inspected or obtained from the 
EPA Air Docket (A-91-76), U.S. EPA, room M-1500, 401 M St., SW., 
Washington, DC 20460 or the appropriate EPA regional offices: U.S. EPA, 
Region 4 (Florida and North Carolina), 345 Courtland Street, NE., 
Atlanta, GA 30365; U.S. EPA, Region 9 (California), 75 Hawthorne Street, 
San Francisco, CA 94105; and U.S. EPA, Region 10 (Alaska), 1200 Sixth 
Avenue, Seattle, WA 98101. For an informational listing of the State and 
local requirements incorporated into this part, which are applicable to 
sources of air pollution located on the OCS, see appendix A to this 
part.
    (1) [Reserved]
    (2) Alaska.
    (i) State requirements.
    (A) State of Alaska Requirements Applicable to OCS Sources, July 2, 
2000.
    (B) [Reserved]
    (ii) Local requirements.
    (A) South Central Alaska Clean Air Authority Requirements Applicable 
to OCS Sources, August 21, 1992.
    (B) [Reserved]
    (3) California.
    (i) State requirements.
    (A) State of California Requirements Applicable to OCS Sources.
    (ii) Local requirements.
    (A)-(D) [Reserved]
    (E) San Luis Obispo County Air Pollution Control District 
Requirements Applicable to OCS Sources, February 2000.
    (F) Santa Barbara County Air Pollution Control District Requirements 
Applicable to OCS Sources, February 2000.
    (G) South Coast Air Quality Management District Requirements 
Applicable to OCS Sources (Part I , II and Part III), February 2000.
    (H) Ventura County Air Pollution Control District Requirements 
Applicable to OCS Sources, February 2000.
    (4) and (5) [Reserved]
    (6) Florida.
    (i) State requirements.
    (A) State of Florida Requirements Applicable to OCS Sources, January 
11, 1995.
    (B) [Reserved]
    (ii) Local requirements.
    (A) [Reserved]
    (7)-(16) [Reserved]
    (17) North Carolina.
    (i) State requirements.
    (A) State of North Carolina Air Pollution Control Requirements 
Applicable to OCS Sources, August 21, 1992.
    (B) [Reserved]
    (ii) Local requirements.
    (A) [Reserved]
    (18)-(23) [Reserved]

[57 FR 40806, Sept. 4, 1992, as amended at 58 FR 16626, Mar. 30, 1993; 
58 FR 59173, Nov. 8, 1993; 59 FR 17270, Apr. 12, 1994; 59 FR 50846, Oct. 
6, 1994; 60 FR 47293, Sept. 12, 1995; 60 FR 55327, Oct. 31, 1995; 61 FR 
28758, June 6, 1996; 62 FR 41871, Aug. 4, 1997; 65 FR 15869, Mar. 24, 
2000; 66 FR 12984, Mar. 1, 2001; 67 FR 14648, Mar. 27, 2002]



Sec. 55.15  Specific designation of corresponding onshore areas.

    (a) California.
    (1) The South Coast Air Quality Management District is designated as 
the COA for the following OCS facilities: Edith, Ellen, Elly, and 
Eureka.

[[Page 120]]

    (2) The Ventura County Air Pollution Control District is designated 
as the COA for the following OCS facilities: Grace, Gilda, Gail and 
Gina.
    (3) The Santa Barbara County Air Pollution Control District is 
designated as the COA for the following OCS facilities: Habitat, 
Hacienda, Harmony, Harvest, Heather, Henry, Heritage, Hermosa, Hidalgo, 
Hillhouse, Hogan, Houchin, Hondo, Irene, Independence (formerly Iris), 
the OS and T, and Union A, B, and C.
    (b) [Reserved]

[58 FR 14159, Mar. 16, 1993]

     Appendix A to Part 55--Listing of State and Local Requirements 
            Incorporated by Reference Into Part 55, by State

    This appendix lists the titles of the State and local requirements 
that are contained within the documents incorporated by reference into 
40 CFR part 55.

                                 Alaska

    (a) State requirements.
    (1) The following State of Alaska requirements are applicable to OCS 
Sources, July 2, 2000. Alaska Administrative Code--Department of 
Environmental Conservation. The following sections of Title 18, Chapter 
50:

                Article 1. Ambient Air Quality Management

18 AAC 50.005. Purpose and Applicability of Chapter. (effective 1/18/
          1997)
18 AAC 50.010. Ambient Air Quality Standards. (effective 6/21/1998)
18 AAC 50.015. Air Quality Designations, Classifications, And Control 
          Regions. (effective 1/18/1997)
    Table 1. Air Quality Classifications
18 AAC 50.020. Baseline Dates, Maximum Allowable Increases, And Maximum 
          Allowable Ambient Concentrations. (effective 6/21/1998)
    Table 2. Baseline Dates
    Table 3. Maximum Allowable Increases
18 AAC 50.025. Visibility and Other Special Protection Areas. (effective 
          1/18/1997)
    (a) [untitled]
18 AAC 50.030. State Air Quality Control Plan. (effective 9/04/1998)
18 AAC 50.035. Documents, Procedures, and Methods Adopted by Reference. 
          (effective 7/02/2000)
18 AAC 50.045. Prohibitions. (effective 1/18/1997)
18 AAC 50.050. Incinerator Emission Standards. (effective 1/18/1997)
    Table 4. Particulate Matter Standards for Incinerators
18 AAC 50.055. Industrial Processes and Fuel-burning Equipment. 
          (effective 11/04/1999)
18 AAC 50.065. Open Burning. (effective 1/18/1997)
    (a) General Requirements.
    (b) Black Smoke Prohibited.
    (c) Toxic and Acid Gases and Particulate Matter Prohibited.
    (d) Adverse Effects Prohibited.
    (e) Air Quality Advisory.
    (i) Firefighter Training: Fuel Burning.
    (j) Public Notice.
    (k) Complaints.
18 AAC 50.070. Marine Vessel Visible Emission Standards. (effective 6/
          21/1998)
18 AAC 50.080. Ice Fog Standards. (effective 1/18/1997)
18 AAC 50.100. Nonroad engines. (effective 1/18/1997)
18 AAC 50.110. Air Pollution Prohibited. (effective 5/26/1972)

                    Article 2. Program Administration

18 AAC 50.201. Ambient Air Quality Investigation. (effective 1/18/1997)
18 AAC 50.205. Certification. (effective 1/18/1997)
18 AAC 50.210. Potential to Emit. (effective 1/18/1997)
18 AAC 50.215. Ambient Air Quality Analysis Methods. (effective 6/21/
          1998)
18 AAC 50.220. Enforceable Test Methods. (effective 1/18/1997)
18 AAC 50.225. Owner-requested Limits. (effective 6/21/1998)
18 AAC 50.230. Preapproved Limits. (effective 6/21/1998)
18 AAC 50.235. Unavoidable Emergencies and Malfunctions. (effective 6/
          14/1998)
18 AAC 50.240. Excess Emissions. (effective 1/18/1997)

              Article 3. Permit Procedures and Requirements

18 AAC 50.300. Construction Permits: Classifications. (effective 6/21/
          1998)
    (a) [untitled]
    (b) Ambient Air Quality Facilities.
    (c) Prevention of Significant Deterioration Major Facilities.
    (d) Nonattainment Major Facilities.
    (e) Major Facility Near a Nonattainment Area.
    (f) Hazardous Air Contaminant Major Facilities.
    (h) Modifications. (paragraphs 1 through 10)
18 AAC 50.305. Construction Permit Provisions Requested by the Owner or 
          Operator. (effective 1/18/97)
18 AAC 50.310. Construction Permits: Application. (effective 1/18/1997)
    (a) Application Required.
    (b) Operating Permit Coordination.
    (c) General Information.
    (d) Prevention of Significant Deterioration Information. Table 6. 
Significant Concentrations

[[Page 121]]

    (e) Excluded Ambient Air Monitoring.
    (f) Nonattainment Information.
    (g) Demonstration Required Near A Nonattainment Area.
    (h) Hazardous Air Contaminant Information.
    (j) Nonattainment Air Contaminant Reductions.
    (k) Revising Permit Terms.
    (l) Requested Limits.
    (m) Stack Injection.
    (n) Ambient Air Quality Information.
18 AAC 50.320. Construction Permits: Content and Duration. (effective 1/
          18/1997)
18 AAC 50.325. Operating Permits: Classifications. (effective 6/21/1998)
18 AAC 50.330. Operating Permits: Exemptions. (effective 1/18/1997)
18 AAC 50.335. Operating Permits: Application. (effective 6/21/1998)
    (a) Application Required.
    (b) Identification.
    (c) General Emission Information.
    (d) Fees.
    (e) Regulated Source Information.
    (f) Facility-wide Information: Ambient Air Quality.
    (g) Facility-wide Information: Owner Requested Limits.
    (h) Facility-wide Information: Emissions Trading.
    (i) Compliance Information.
    (j) Proposed Terms and Conditions.
    (k) Compliance Certifications.
    (l) Permit Shield.
    (m) Supporting Documentation.
    (n) Additional Information.
    (o) Certification of Accuracy and Completeness.
    (p) Renewals.
    (q) Insignificant Sources.
    (r) Insignificant Sources: Emission Rate Basis.
    (s) Insignificant Sources: Category Basis.
    (t) Insignificance Sources: Size or Production Rate Basis.
    (u) Insignificant Sources: Case-by-Case Basis.
    (v) Administratively Insignificant Sources.
18 AAC 50.340. Operating Permits: Review and Issuance. (effective 1/18/
          1997)
    (a) Review of Completeness.
    (b) Evaluation of Complete Applications.
    (c) Expiration of Application Shield.
18 AAC 50.341. Operating Permits: Reopenings. (paragraphs a, b, c, f, 
          and g)(effective 6/14/1998)
18 AAC 50.345. Operating Permits: Standard Conditions. (effective 6/21/
          1998)
18 AAC 50.350. Operating Permits: Content. (effective 6/21/1998)
    (a) Purpose of Section
    (b) Standard Requirements.
    (c) Fee Information.
    (d) Source-Specific Permit Requirements.
    (e) Facility-Wide Permit Requirements.
    (f) Other Requirements.
    (g) Monitoring Requirements.
    (h) Records.
    (i) Reporting Requirements.
    (j) Compliance Certification.
    (k) Compliance Plan and Schedule.
    (l) Permit Shield.
    (m) Insignificant Sources.
18 AAC 50.355. Changes to a Permitted Facility. (effective 1/18/1997)
18 AAC 50.360. Facility Changes that Violate a Permit Condition. 
          (effective 1/18/1997)
18 AAC 50.365. Facility Changes that do not Violate a Permit Condition. 
          (effective 6/14/1998)
18 AAC 50.370. Administrative Revisions. (effective 6/14/1998)
18 AAC 50.375. Minor and Significant Permit Revisions. (effective 6/21/
          1998)
18 AAC 50.380. General Operating Permits. (effective 6/14/1998)
18 AAC 50.385. Permit-by-rule for Certain Small Storage Tanks. 
          (effective 6/21/1998)

                          Article 5. User Fees

18 AAC 50.400. Permit Administration Fees. (effective 6/21/1998)
18 AAC 50.410. Emission Fees. (effective 1/18/1997)
18 AAC 50.420. Billing Procedures. (effective 1/18/1997)

                      Article 9. General Provisions

18 AAC 50.910. Establishing Level of Actual Emissions. (effective 1/18/
          1997)
18 AAC 50.990. Definitions. (effective 1/01/2000)

                               California

    (a) State requirements.
    (1) The following requirements are contained in State of California 
Requirements Applicable to OCS Sources, February 2000.

Barclays California Code of Regulations

    The following sections of Title 17 Subchapter 6:
17 Sec. 92000  Definitions (Adopted 5/31/91)
17 Sec. 92100  Scope and Policy (Adopted 5/31/91)
17 Sec. 92200  Visible Emission Standards (Adopted 5/31/91)
17 Sec. 92210  Nuisance Prohibition (Adopted 5/31/91)
17 Sec. 92220  Compliance with Performance Standards (Adopted 5/31/91)
17 Sec. 92400  Visible Evaluation Techniques (Adopted 5/31/91)
17 Sec. 92500  General Provisions (Adopted 5/31/91)
17 Sec. 92510  Pavement Marking (Adopted 5/31/91)
17 Sec. 92520  Stucco and Concrete (Adopted 5/31/91)
17 Sec. 92530  Certified Abrasive (Adopted 5/31/91)
17 Sec. 92540  Stucco and Concrete (Adopted 5/31/91)

Health and Safety Code


[[Page 122]]


    The following section of Division 26, Part 4, Chapter 4, Article 1: 
Health and Safety Code Sec. 42301.13 of seq. Stationary sources: 
demolition or removal (chaptered 7/25/96)

    (b) Local requirements.
    (1)-(4) [Reserved]
    (5) The following requirements are contained in San Luis Obispo 
County Air Pollution Control District Requirements Applicable to OCS 
Sources, February 2000:
Rule 103  Conflicts Between District, State and Federal Rules (Adopted 
8/6/76)
Rule 105  Definitions (Adopted 1/24/96)
Rule 106  Standard Conditions (Adopted 8/6/76)
Rule 108  Severability (Adopted 11/13/84)
Rule 113  Continuous Emissions Monitoring, except F. (Adopted 7/5/77)
Rule 201  Equipment not Requiring a Permit, except A.1.b. (Revised 4/26/
95)
Rule 202  Permits, except A.4. and A.8. (Adopted 11/5/91)
Rule 203  Applications, except B. (Adopted 11/5/91)
Rule 204  Requirements, except B.3. and C. (Adopted 8/10/93)
Rule 209  Provision for Sampling and Testing Facilities (Adopted 11/5/
91)
Rule 210  Periodic Inspection, Testing and Renewal of Permits to Operate 
(Adopted 11/5/91)
Rule 213  Calculations, except E.4. and F. (Adopted 8/10/93)
Rule 302  Schedule of Fees (Adopted 6/18/97)
Rule 305  Fees for Major Non-Vehicular Sources (Adopted 9/15/92)
Rule 401  Visible Emissions (Adopted 8/6/76)
Rule 403  Particulate Matter Emissions (Adopted 8/6/76)
Rule 404  Sulfur Compounds Emission Standards, Limitations and 
Prohibitions (Revised 12/6/76)
Rule 405  Nitrogen Oxides Emission Standards, Limitations and 
Prohibitions (Adopted 11/16/93)
Rule 406  Carbon Monoxide Emission Standards, Limitations and 
Prohibitions (Adopted 11/14/84)
Rule 407  Organic Material Emission Standards, Limitations and 
Prohibitions (Adopted 5/22/96)
Rule 411  Surface Coating of Metal Parts and Products (Adopted 1/28/98)
Rule 416  Degreasing Operations (Adopted 6/18/79)
Rule 417  Control of Fugitive Emissions of Volatile Organic Compounds 
(Adopted 2/9/93)
Rule 419  Petroleum Pits, Ponds, Sumps, Well Cellars, and Wastewater 
Separators (Revised 7/12/94)
Rule 422  Refinery Process Turnarounds (Adopted 6/18/79)
Rule 425  Storage of Volatile Organic Compounds (Adopted 7/12/94)
Rule 427  Marine Tanker Loading (Adopted 4/26/95)
Rule 429  Oxides of Nitrogen and Carbon Monoxide Emissions from Electric 
Power Generation Boilers (Revised 11/12/97)
Rule 430  Control of Oxides of Nitrogen from Industrial, Institutional, 
Commercial Boilers, Steam Generators, and Process Heaters (Adopted 7/26/
95)
Rule 431  Stationary Internal Combustion Engines (Adopted 11/13/96)
Rule 501  General Burning Provisions (Adopted 1/10/89)
Rule 503  Incinerator Burning, except B.1.a. (Adopted 2/7/89)
Rule 601  New Source Performance Standards (Adopted 5/28/97)

    (6) The following requirements are containing in Santa Barbara 
County Air Pollution Control District Requirements Applicable to OCS 
Sources, February 2000:
Rule 102  Definitions (Adopted 5/20/99)
Rule 103  Severability (Adopted 10/23/78)
Rule 106  Notice to Comply for Minor Violations (Adopted 7/15/99)
Rule 201  Permits Required (Adopted 4/17/97)
Rule 202  Exemptions to Rule 201 (Adopted 4/17/97)
Rule 203  Transfer (Adopted 4/17/97)
Rule 204  Applications (Adopted 4/17/97)
Rule 205  Standards for Granting Applications (Adopted 4/17/97)
Rule 206  Conditional Approval of Authority to Construct or Permit to 
Operate (Adopted 10/15/91)
Rule 207  Denial of Application (Adopted 10/23/78)
Rule 210  Fees (Adopted 4/17/97)
Rule 212  Emission Statements (Adopted 10/20/92)
Rule 301  Circumvention (Adopted 10/23/78)
Rule 302  Visible Emissions (Adopted 10/23/78)
Rule 304  Particulate Matter-Northern Zone (Adopted 10/23/78)
Rule 305  Particulate Matter Concentration-Southern Zone (Adopted 10/23/
78)
Rule 306  Dust and Fumes-Northern Zone (Adopted 10/23/78)
Rule 307  Particulate Matter Emission Weight Rate-Southern Zone (Adopted 
10/23/78)
Rule 308  Incinerator Burning (Adopted 10/23/78)
Rule 309  Specific Contaminants (Adopted 10/23/78)
Rule 310  Odorous Organic Sulfides (Adopted 10/23/78)
Rule 311  Sulfur Content of Fuels (Adopted 10/23/78)
Rule 312  Open Fires (Adopted 10/2/90)
Rule 316  Storage and Transfer of Gasoline (Adopted 4/17/97)
Rule 317  Organic Solvents (Adopted 10/23/78)
Rule 318  Vacuum Producing Devices or Systems-Southern Zone (Adopted 10/
23/78)
Rule 321  Solvent Cleaning Operations (Adopted 9/18/97)

[[Page 123]]

Rule 322  Metal Surface Coating Thinner and Reducer (Adopted 10/23/78)
Rule 323  Architectural Coatings (Adopted 7/18/96)
Rule 324  Disposal and Evaporation of Solvents (Adopted 10/23/78)
Rule 325  Crude Oil Production and Separation (Adopted 1/25/94)
Rule 326  Storage of Reactive Organic Liquid Compounds (Adopted 12/14/
93)
Rule 327  Organic Liquid Cargo Tank Vessel Loading (Adopted 12/16/85)
Rule 328  Continuous Emission Monitoring (Adopted 10/23/78)
Rule 330  Surface Coating of Miscellaneous Metal Parts and Products 
(Adopted 4/21/95)
Rule 331  Fugitive Emissions Inspection and Maintenance (Adopted 12/10/
91)
Rule 332  Petroleum Refinery Vacuum Producing Systems, Wastewater 
Separators and Process Turnarounds (Adopted 6/11/79)
Rule 333  Control of Emissions from Reciprocating Internal Combustion 
Engines (Adopted 4/17/97)
Rule 342  Control of Oxides of Nitrogen (NOX) from Boilers, 
Steam Generators and Process Heaters) (Adopted 4/17/97)
Rule 343  Petroleum Storage Tank Degassing (Adopted 12/14/93)
Rule 344  Petroleum Sumps, Pits, and Well Cellars (Adopted 11/10/94)
Rule 352  Natural Gas-Fired Fan-Type Central Furnaces and Residential 
Water Heaters (Adopted 9/16/99)
Rule 353  Adhesives and Sealants (Adopted 8/19/99)
Rule 359  Flares and Thermal Oxidizers (6/28/94)
Rule 370  Potential to Emit--Limitations for Part 70 Sources (Adopted 6/
15/95)
Rule 505  Breakdown Conditions Sections A., B.1,. and D. only (Adopted 
10/23/78)
Rule 603  Emergency Episode Plans (Adopted 6/15/81)
Rule 702  General Conformity (Adopted 10/20/94)
Rule 801  New Source Review (Adopted 4/17/97)
Rule 802  Nonattainment Review (Adopted 4/17/97)
Rule 803  Prevention of Significant Deterioration (Adopted 4/17/97)
Rule 804  Emission Offsets (Adopted 4/17/97)
Rule 805  Air Quality Impact Analysis and Modeling (Adopted 4/17/97)
Rule 808  New Source Review for Major Sources of Hazardous Air 
Pollutants (Adopted 5/20/99)
Rule 1301  Part 70 Operating Permits--General Information (Adopted 4/17/
97)
Rule 1302  Part 70 Operating Permits--Permit Application (Adopted 11/09/
93)
Rule 1303  Part 70 Operating Permits--Permits (Adopted 11/09/93)
Rule 1304  Part 70 Operating Permits--Issuance, Renewal, Modification 
and Reopening (Adopted 11/09/93)
Rule 1305  Part 70 Operating Permits--Enforcement (Adopted 11/09/93)

    (7) The following requirements are contained in South Coast Air 
Quality Management District Requirements Applicable to OCS Sources (Part 
I, II and III), February 2000:

Rule 102  Definition of Terms (Adopted 6/13/97)
Rule 103  Definition of Geographical Areas (Adopted 1/9/76)
Rule 104  Reporting of Source Test Data and Analyses (Adopted 1/9/76)
Rule 108  Alternative Emission Control Plans (Adopted 4/6/90)
Rule 109  Recordkeeping for Volatile Organic Compound Emissions (Adopted 
3/6/92)
Rule 118  Emergencies (Adopted 12/7/95)
Rule 201  Permit to Construct (Adopted 1/5/90)
Rule 201.1  Permit Conditions in Federally Issued Permits to Construct 
(Adopted 1/5/90)
Rule 202  Temporary Permit to Operate (Adopted 5/7/76)
Rule 203  Permit to Operate (Adopted 1/5/90)
Rule 204  Permit Conditions (Adopted 3/6/92)
Rule 205  Expiration of Permits to Construct (Adopted 1/5/90)
Rule 206  Posting of Permit to Operate (Adopted 1/5/90)
Rule 207  Altering or Falsifying of Permit (Adopted 1/9/76)
Rule 208  Permit for Open Burning (Adopted 1/5/90)
Rule 209  Transfer and Voiding of Permits (Adopted 1/5/90)
Rule 210  Applications (Adopted 1/5/90)
Rule 212  Standards for Approving Permits (Adopted 12/7/95) except 
(c)(3) and (e)
Rule 214  Denial of Permits (Adopted 1/5/90)
Rule 217  Provisions for Sampling and Testing Facilities (Adopted 1/5/
90)
Rule 218  Stack Monitoring (Adopted 8/7/81)
Rule 219  Equipment Not Requiring a Written Permit Pursuant to 
Regulation II (Adopted 12/13/96)
Rule 220  Exemption--Net Increase in Emissions (Adopted 8/7/81)
Rule 221  Plans (Adopted 1/4/85)
Rule 301  Permit Fees (Adopted 5/9/97) except (e)(6) and Table IV
Rule 304  Equipment, Materials, and Ambient Air Analyses (Adopted 5/9/
97)
Rule 304.1  Analyses Fees (Adopted 5/9/97)
Rule 305  Fees for Acid Deposition (Adopted 10/4/91)
Rule 306  Plan Fees (Adopted 5/9/97)
Rule 309  Fees for Regulation XVI Plans (Adopted 5/9/97)
Rule 401  Visible Emissions (Adopted 4/7/89)
Rule 403  Fugitive Dust (Adopted 2/14/97)
Rule 404  Particulate Matter--Concentration (Adopted 2/7/86)
Rule 405  Solid Particulate Matter--Weight (Adopted 2/7/86)
Rule 407  Liquid and Gaseous Air Contaminants (Adopted 4/2/82)

[[Page 124]]

Rule 408  Circumvention (Adopted 5/7/76)
Rule 409  Combustion Contaminants (Adopted 8/7/81)
Rule 429  Start-Up and Shutdown Provisions for Oxides of Nitrogen 
(Adopted 12/21/90)
Rule 430  Breakdown Provisions, (a) and (e) only (Adopted 7/12/96)
Rule 431.1  Sulfur Content of Gaseous Fuels (Adopted 11/17/95)
Rule 431.2  Sulfur Content of Liquid Fuels (Adopted 5/4/90)
Rule 431.3  Sulfur Content of Fossil Fuels (Adopted 5/7/76)
Rule 441  Research Operations (Adopted 5/7/76)
Rule 442  Usage of Solvents (Adopted 3/5/82)
Rule 444  Open Fires (Adopted 10/2/87)
Rule 463  Organic Liquid Storage (Adopted 3/11/94)
Rule 465  Vacuum Producing Devices or Systems (Adopted 11/1/91)
Rule 468  Sulfur Recovery Units (Adopted 10/8/76)
Rule 473  Disposal of Solid and Liquid Wastes (Adopted 5/7/76)
Rule 474  Fuel Burning Equipment-Oxides of Nitrogen (Adopted 12/4/81)
Rule 475  Electric Power Generating Equipment (Adopted 8/7/78)
Rule 476  Steam Generating Equipment (Adopted 10/8/76)
Rule 480  Natural Gas Fired Control Devices (Adopted 10/7/77); Addendum 
to Regulation IV (Effective 1977)
Rule 518  Variance Procedures for Title V Facilities (Adopted 8/11/95)
Rule 518.1  Permit Appeal Procedures for Title V Facilities (Adopted 8/
11/95)
Rule 518.2  Federal Alternative Operating Conditions (Adopted 1/12/96)
Rule 701  Air Pollution Emergency Contingency Actions (Adopted 6/13/97)
Rule 702  Definitions (Adopted 7/11/80)
Rule 704  Episode Declaration (Adopted 7/9/82)
Rule 707  Radio--Communication System (Adopted 7/11/80)
Rule 708  Plans (Adopted 7/9/82)
Rule 708.1  Stationary Sources Required to File Plans (Adopted 4/4/80)
Rule 708.2  Content of Stationary Source Curtailment Plans (Adopted 4/4/
80)
Rule 708.4  Procedural Requirements for Plans (Adopted 7/11/80)
Rule 709  First Stage Episode Actions (Adopted 7/11/80)
Rule 710  Second Stage Episode Actions (Adopted 7/11/80)
Rule 711  Third Stage Episode Actions (Adopted 7/11/80)
Rule 712  Sulfate Episode Actions (Adopted 7/11/80)
Rule 715  Burning of Fossil Fuel on Episode Days (Adopted 8/24/77)
Regulation IX--New Source Performance Standards (Adopted 1/9/98)
Rule 1106  Marine Coatings Operations (Adopted 1/13/95)
Rule 1107  Coating of Metal Parts and Products (Adopted 3/8/96)
Rule 1109  Emissions of Oxides of Nitrogen for Boilers and Process 
Heaters in Petroleum Refineries (Adopted 8/5/88)
Rule 1110  Emissions from Stationary Internal Combustion Engines 
(Demonstration) (Adopted 11/14/97)
Rule 1110.1  Emissions from Stationary Internal Combustion Engines 
(Adopted 10/4/85)
Rule 1110.2  Emissions from Gaseous- and Liquid-Fueled Internal 
Combustion Engines (Adopted 11/14/97)
Rule 1113  Architectural Coatings (Adopted 11/8/96)
Rule 1116.1  Lightering Vessel Operations-Sulfur Content of Bunker Fuel 
(Adopted 10/20/78)
Rule 1121  Control of Nitrogen Oxides from Residential-Type Natural Gas-
Fired Water Heaters (Adopted 3/10/95)
Rule 1122  Solvent Degreasers (Adopted 7/11/97)
Rule 1123  Refinery Process Turnarounds (Adopted 12/7/90)
Rule 1129  Aerosol Coatings (rescinded 3/8/96)
Rule 1134  Emissions of Oxides of Nitrogen from Stationary Gas Turbines 
(Adopted 8/8/97)
Rule 1136  Wood Products Coatings (Adopted 6/14/96)
Rule 1140  Abrasive Blasting (Adopted 8/2/85)
Rule 1142  Marine Tank Vessel Operations (Adopted 7/19/91)
Rule 1146  Emissions of Oxides of Nitrogen from Industrial, 
Institutional, and Commercial Boilers, Steam Generators, and Process 
Heaters (Adopted 5/13/94)
Rule 1146.1  Emission of Oxides of Nitrogen from Small Industrial, 
Institutional, and Commercial Boilers, Steam Generators, and Process 
Heaters (Adopted 5/13/94)
Rule 1146.2  Emissions of Oxides of Nitrogen from Large Water Heaters 
and Small Boilers (Adopted 1/9/98)
Rule 1148  Thermally Enhanced Oil Recovery Wells (Adopted 11/5/82)
Rule 1149  Storage Tank Degassing (Adopted 7/14/95)
Rule 1168  Adhesive Applications (Adopted 2/13/98)
Rule 1171  Solvent Cleaning Operations (Adopted 9/13/96)
Rule 1173  Fugitive Emissions of Volatile Organic Compounds (Adopted 5/
13/94)
Rule 1176  VOC Emissions from Wastewater Systems (Adopted 9/13/96)
Rule 1301  General (Adopted 12/7/95)
Rule 1302  Definitions (Adopted 12/7/95)
Rule 1303  Requirements (Adopted 5/10/96)
Rule 1304  Exemptions (Adopted 6/14/96)
Rule 1306  Emission Calculations (Adopted 6/14/96)

[[Page 125]]

Rule 1313  Permits to Operate (Adopted 12/7/95)
Rule 1403  Asbestos Emissions from Demolition/Renovation Activities 
(Adopted 4/8/94)
Rule 1605  Credits for the Voluntary Repair of On-Road Vehicles 
Identified Through Remote Sensing Devices (Adopted 10/11/96)
Rule 1610  Old-Vehicle Scrapping (Adopted 5/9/97)
Rule 1612  Credits for Clean On-Road Vehicles (Adopted 9/8/95)
Rule 1620  Credits for Clean Off-Road Mobile Equipment (Adopted 9/8/95)
Rule 1701  General (Adopted 1/6/89)
Rule 1702  Definitions (Adopted 1/6/89)
Rule 1703  PSD Analysis (Adopted 10/7/88)
Rule 1704  Exemptions (Adopted 1/6/89)
Rule 1706  Emission Calculations (Adopted 1/6/89)
Rule 1713  Source Obligation (Adopted 10/7/88)
Regulation XVII Appendix (effective 1977)
Rule 1901  General Conformity (Adopted 9/9/94)
Rule 2000  General (Adopted 4/11/97)
Rule 2001  Applicability (Adopted 2/14/97)
Rule 2002  Allocations for Oxides of Nitrogen (NOX) and 
Oxides of Sulfur (Sox) Emissions (Adopted 2/14/97)
Rule 2004  Requirements (Adopted 7/12/96) except (l)
Rule 2005  New Source Review for RECLAIM (Adopted 2/14/97) except (i)
Rule 2006  Permits (Adopted 12/7/95)
Rule 2007  Trading Requirements (Adopted 12/7/95)
Rule 2008  Mobile Source Credits (Adopted 10/15/93)
Rule 2010  Administrative Remedies and Sanctions (Adopted 10/15/93)
Rule 2011  Requirements for Monitoring, Reporting, and Recordkeeping for 
Oxides of Sulfur (SOX) Emissions (Adopted 4/11/97)
Appendix A  Volume IV--(Protocol for oxides of sulfur) (Adopted 3/10/95)
Rule 2012  Requirements for Monitoring, Reporting, and Recordkeeping for 
Oxides of Nitrogen (NOX) Emissions (Adopted 4/11/97)
Appendix A  Volume V--(Protocol for oxides of nitrogen) (Adopted 3/10/
95)
Rule 2015  Backstop Provisions (Adopted 2/14/97) except (B)(1)(G) and 
(b)(3)(B)
Rule 2100  Registration of Portable Equipment (Adopted 7/11/97)
XXX  Title V Permits
Rule 3000  General (Adopted 11/14/97)
Rule 3001  Applicability (Adopted 11/14/97)
Rule 3002  Requirements (Adopted 11/14/97)
Rule 3003  Applications (Adopted 11/14/97)
Rule 3004  Permit Types and Content (Adopted 11/14/97)
Rule 3005  Permit Revisions (Adopted 11/14/97)
Rule 3006  Public Participation (Adopted 11/14/97)
Rule 3007  Effect of Permit (Adopted 10/8/93)
XXXI  Acid Rain Permit Program (Adopted 2/10/95)

    (8) The following requirements are contained in Ventura County Air 
Pollution Control District Requirements Applicable to OCS Sources, 
February 2000:

Rule 2  Definitions (Adopted 11/10/98)
Rule 5  Effective Date (Adopted 5/23/72)
Rule 6  Severability (Adopted 11/21/78)
Rule 7  Zone Boundaries (Adopted 6/14/77)
Rule 10  Permits Required (Adopted 6/13/95)
Rule 11  Definition for Regulation II (Adopted 6/13/95)
Rule 12  Application for Permits (Adopted 6/13/95)
Rule 13  Action on Applications for an Authority to Construct (Adopted 
6/13/95)
Rule 14  Action on Applications for a Permit to Operate (Adopted 6/13/
95)
Rule 15.1  Sampling and Testing Facilities (Adopted 10/12/93)
Rule 16  BACT Certification (Adopted 6/13/95)
Rule 19  Posting of Permits (Adopted 5/23/72)
Rule 20  Transfer of Permit (Adopted 5/23/72)
Rule 23  Exemptions from Permits (Adopted 7/9/96)
Rule 24  Source Recordkeeping, Reporting, and Emission Statements 
(Adopted 9/15/92)
Rule 26  New Source Review (Adopted 10/22/91)
Rule 26.1  New Source Review--Definitions (Adopted 1/13/98)
Rule 26.2  New Source Review--Requirements (Adopted 1/13/98)
Rule 26.3  New Source Review--Exemptions (Adopted 1/13/98)
Rule 26.6  New Source Review--Calculations (Adopted 1/13/98)
Rule 26.8  New Source Review--Permit To Operate (Adopted 10/22/91)
Rule 26.10  New Source Review--PSD (Adopted 1/13/98)
Rule 28  Revocation of Permits (Adopted 7/18/72)
Rule 29  Conditions on Permits (Adopted 10/22/91)
Rule 30  Permit Renewal (Adopted 5/30/89)
Rule 32  Breakdown Conditions: Emergency Variances, A., B.1., and D. 
only. (Adopted 2/20/79)
Rule 33  Part 70 Permits--General (Adopted 10/12/93)
Rule 33.1  Part 70 Permits--Definitions (Adopted 10/12/93)
Rule 33.2  Part 70 Permits--Application Contents (Adopted 10/12/93)
Rule 33.3  Part 70 Permits--Permit Content (Adopted 10/12/93)
Rule 33.4  Part 70 Permits--Operational Flexibility (Adopted 10/12/93)
Rule 33.5  Part 70 Permits--Time frames for Applications, Review and 
Issuance (Adopted 10/12/93)
Rule 33.6  Part 70 Permits--Permit Term and Permit Reissuance (Adopted 
10/12/93)
Rule 33.7  Part 70 Permits--Notification (Adopted 10/12/93)

[[Page 126]]

Rule 33.8  Part 70 Permits--Reopening of Permits (Adopted 10/12/93)
Rule 33.9  Part 70 Permits--Compliance Provisions (Adopted 10/12/93)
Rule 33.10  Part 70 Permits--General Part 70 Permits (Adopted 10/12/93)
Rule 34  Acid Deposition Control (Adopted 3/14/95)
Rule 35  Elective Emission Limits (Adopted 11/12/96)
Rule 36  New Source Review--Hazardous Air Pollutants (Adopted 10/6/98)
Rule 42  Permit Fees (Adopted 6/22/99)
Rule 44  Exemption Evaluation Fee (Adopted 9/10/96)
Rule 45  Plan Fees (Adopted 6/19/90)
Rule 45.2  Asbestos Removal Fees (Adopted 8/4/92)
Rule 47  Source Test, Emission Monitor, and Call-Back Fees (Adopted 6/
22/99)
Rule 50  Opacity (Adopted 2/20/79)
Rule 52  Particulate Matter-Concentration (Adopted 5/23/72)
Rule 53  Particulate Matter-Process Weight (Adopted 7/18/72)
Rule 54  Sulfur Compounds (Adopted 6/14/94)
Rule 56  Open Fires (Adopted 3/29/94)
Rule 57  Combustion Contaminants--Specific (Adopted 6/14/77)
Rule 60  New Non-Mobile Equipment-Sulfur Dioxide, Nitrogen Oxides, and 
Particulate Matter (Adopted 7/8/72)
Rule 62.7  Asbestos--Demolition and Renovation (Adopted 6/16/92)
Rule 63  Separation and Combination of Emissions (Adopted 11/21/78)
Rule 64  Sulfur Content of Fuels (Adopted 4/13/99)
Rule 67  Vacuum Producing Devices (Adopted 7/5/83)
Rule 68  Carbon Monoxide (Adopted 6/14/77)
Rule 71  Crude Oil and Reactive Organic Compound Liquids (Adopted 12/13/
94)
Rule 71.1  Crude Oil Production and Separation (Adopted 6/16/92)
Rule 71.2  Storage of Reactive Organic Compound Liquids (Adopted 9/26/
89)
Rule 71.3  Transfer of Reactive Organic Compound Liquids (Adopted 6/16/
92)
Rule 71.4  Petroleum Sumps, Pits, Ponds, and Well Cellars (Adopted 6/8/
93)
Rule 71.5  Glycol Dehydrators (Adopted 12/13/94)
Rule 72  New Source Performance Standards (NSPS) (Adopted 9/10/96)
Rule 74  Specific Source Standards (Adopted 7/6/76)
Rule 74.1  Abrasive Blasting (Adopted 11/12/91)
Rule 74.2  Architectural Coatings (Adopted 08/11/92)
Rule 74.6  Surface Cleaning and Degreasing (Adopted 11/10/98)
Rule 74.6.1  Cold Cleaning Operations (Adopted 7/9/96)
Rule 74.6.2  Batch Loaded Vapor Degreasing Operations (Adopted 7/9/96)
Rule 74.7  Fugitive Emissions of Reactive Organic Compounds at Petroleum 
Refineries and Chemical Plants (Adopted 10/10/95)
Rule 74.8  Refinery Vacuum Producing Systems, Waste-water Separators and 
Process Turnarounds (Adopted 7/5/83)
Rule 74.9  Stationary Internal Combustion Engines (Adopted 12/21/93)
Rule 74.10  Components at Crude Oil Production Facilities and Natural 
Gas Production and Processing Facilities (Adopted 3/10/98)
Rule 74.11  Natural Gas-Fired Residential Water Heaters-Control of 
NOX (Adopted 4/9/85)
Rule 74.11.1  Large Water Heaters and Small Boilers (Adopted 9/14/99)
Rule 74.12  Surface Coating of Metal Parts and Products (Adopted 9/10/
96)
Rule 74.15  Boilers, Steam Generators and Process Heaters (5MM BTUs and 
greater) (Adopted 11/8/94)
Rule 74.15.1  Boilers, Steam Generators and Process Heaters (1-5MM BTUs) 
(Adopted 6/13/95)
Rule 74.16  Oil Field Drilling Operations (Adopted 1/8/91)
Rule 74.20  Adhesives and Sealants (Adopted 1/14/97)
Rule 74.23  Stationary Gas Turbines (Adopted 10/10/95)
Rule 74.24  Marine Coating Operations (Adopted 9/10/96)
Rule 74.24.1  Pleasure Craft Coating and Commercial Boatyard Operations 
(Adopted 11/10/98)
Rule 74.26  Crude Oil Storage Tank Degassing Operations (Adopted 11/8/
94)
Rule 74.27  Gasoline and ROC Liquid Storage Tank Degassing Operations 
(Adopted 11/8/94)
Rule 74.28  Asphalt Roofing Operations (Adopted 5/10/94)
Rule 74.30  Wood Products Coatings (Adopted 9/10/96)
Rule 75  Circumvention (Adopted 11/27/78)
Rule 76  Federally Enforceable Limits on Potential to Emit (Adopted 10/
10/95)
Rule 100  Analytical Methods (Adopted 7/18/72)
Rule 101  Sampling and Testing Facilities (Adopted 5/23/72)
Rule 102  Source Tests (Adopted 11/21/78)
Rule 103  Continuous Monitoring Systems (Adopted 2/9/99)
Rule 154  Stage 1 Episode Actions (Adopted 9/17/91)
Rule 155  Stage 2 Episode Actions (Adopted 9/17/91)
Rule 156  Stage 3 Episode Actions (Adopted 9/17/91)
Rule 158  Source Abatement Plans (Adopted 9/17/91)
Rule 159  Traffic Abatement Procedures (Adopted 9/17/91)
Rule 220  General Conformity (Adopted 5/9/95)


[[Page 127]]



                                 Florida

    (1) The following requirements are contained in State of Florida 
Requirements Applicable to OCS Sources, January 11, 1995:
    Florida Administrative Code-Department of Environmental Protection. 
The following sections of Chapter 62:
4.001 Scope of Part I (Adopted 8/31/88)
4.020 Definitions (Adopted 7/11/93)
4.021 Transferability of Definitions (Adopted 8/31/88)
4.030 General Prohibitions (Adopted 8/31/88)
4.040 Exemptions (Adopted 8/31/88)
4.050 Procedure to Obtain Permit; Application, except (4)(b) through 
(4)(l) and 4(r) (Adopted 11/23/94)
4.070 Standards for Issuing or Denying Permits; Issuance; Denial 
(Adopted 3/28/91)
4.080 Modification of Permit Conditions (Adopted 3/19/90)
4.090 Renewals (Adopted 7/11/93)
4.100 Suspension and Revocation (Adopted 8/31/88)
4.110 Financial Responsibility (Adopted 8/31/88)
4.120 Transfer of Permits (Adopted 3/19/90)
4.130 Plant Operation--Problems (Adopted 8/31/88)
4.160 Permit Conditions, except (16) and (17) (Adopted 7/11/93)
4.200 Scope of Part II (Adopted 8/31/88)
4.210 Construction Permits (Adopted 8/31/88)
4.220 Operation Permits for New Sources (Adopted 8/31/88)
4.510 Scope of Part III (Adopted 8/31/88)
4.520 Definitions (Adopted 7/11/90)
4.530 Procedures (Adopted 3/19/90)
4.540 General Conditions for all General Permits (Adopted 8/31/88)
210.100 Purpose and Scope (Adopted 11/23/94)
210.200 Definitions (Adopted 11/23/94)
210.300 Permits Required (Adopted 11/23/94)
210.360 Administrative Permit Corrections (Adopted 11/23/94)
210.370 Reports (Adopted 11/23/94)
210.400 Emission Estimates (Adopted 11/23/94)
210.500 Air Quality Models (Adopted 11/23/94)
210.550 Stack Height Policy (Adopted 11/23/94)
210.600 Enhanced Monitoring (Adopted 11/23/94)
210.650 Circumvention (Adopted 9/25/92)
210.700 Excess Emissions (Adopted 11/23/94)
210.900 Forms (Adopted 11/23/94)
210.980 Severability (Adopted 9/25/92)
212.100 Purpose and Scope (Adopted 2/2/93)
212.200 Definitions (Adopted 2/2/93)
212.300 Sources Not Subject to Prevention of Significant Deterioration 
or Nonattainment Requirements (Adopted 9/25/92)
212.400 Prevention of Significant Deterioration (Adopted 2/2/93)
212.410 Best Available Control Technology (BACT) (Adopted 9/25/92)
212.500 New Source Review for Nonattainment Areas (Adopted 2/2/93)
212.510 Lowest Achievable Emission Rate (LAER) (Adopted 9/25/92)
212.600 Source Specific New Source Review Requirements (Adopted 9/25/92)
212.700 Source Reclassification (Adopted 9/25/92)
256.100 Declaration and Intent (Adopted 11/30/94)
256.200 Definitions (Adopted 11/30/94)
256.300 Prohibitions (Adopted 11/30/94)
256.450 Open Burning Allowed (Adopted 6/27/91)
256.600 Industrial, Commercial, Municipal and Research Open Burning 
(Adopted 8/26/87)
256.700 Open Burning Allowed (Adopted 11/30/94)
272.100 Purpose and Scope (Adopted 11/23/94)
272.200 Definitions (Adopted 11/23/94)
272.300 Ambient Air Quality Standards (Adopted 11/23/94)
272.500 Maximum Allowable Increases (Prevention of Significant 
Deterioration) (Adopted 11/23/94)
272.750 DER Ambient Test Methods (Adopted 9/25/92)
273.200 Definitions (Adopted 9/25/92)
273.300 Air Pollution Episodes (Adopted 9/25/92)
273.400 Air Alert (Adopted 9/25/92)
273.500 Air Warning (Adopted 9/25/92)
273.600 Air Emergency (Adopted 9/25/92)
296.100 Purpose and Scope (Adopted 11/23/94)
296.200 Definitions (Adopted 11/23/94)
296.310 General Particulate Emission Limiting Standards (Adopted 11/23/
94)
296.320 General Pollutant Emission Limiting Standards, except (2) 
(Adopted 2/2/93)
296.330 Best Available Control Technology (BACT) (Adopted 11/23/94)
296.400 Specific Emission Limiting and Performance Standards (Adopted 
11/23/94)
296.500 Reasonably Available Control Technology (RACT)--Volatile Organic 
Compounds (VOC) and Nitrogen Oxides (NOX) Emitting Facilities 
(Adopted 11/23/94)
296.570 Reasonably Available Control Technology (RACT)--Requirements for 
Major VOC- and NOX-Emitting Facilities (Adopted 11/23/94)
296.600 Reasonably Available Control Technology (RACT)--Lead (Adopted 8/
8/94)
296.601 Lead Processing Operations in General (Adopted 8/8/94)
296.700 Reasonably Available Control Technology (RACT)--Particulate 
Matter, except (2)(f) (Adopted 11/23/94)
296.800 Standards of Performance for New Stationary Sources (NSPS) 
(Adopted 11/23/94)
296.810 National Emission Standards for Hazardous Air Pollutants 
(NESHAP)--Part 61 (Adopted 11/23/94)
296.820 National Emission Standards for Hazardous Air Pollutants 
(NESHAP)--Part 63 (Adopted 11/23/94)
297.100 Purpose and Scope (Adopted 11/23/94)
297.200 Definitions (Adopted 11/23/94)

[[Page 128]]

297.310 General Test Requirements (Adopted 11/23/94)
297.330 Applicable Test Procedures (Adopted 11/23/94)
297.340 Frequency of Compliance Tests (Adopted 11/23/94)
297.345 Stack Sampling Facilities Provided by the Owner of an Air 
Pollution Point Source (Adopted 11/23/94)
297.350 Determination of Process Variables (Adopted 11/23/94)
297.400 EPA Methods Adopted by Reference (Adopted 11/23/94)
297.401 EPA Test Procedures (Adopted 11/23/94)
297.411 DER Method 1 (Adopted 11/23/94)
297.412 DER Method 2 (Adopted 12/2/92)
297.413 DER Method 3 (Adopted 12/2/92)
297.414 DER Method 4 (Adopted 12/2/92)
297.415 DER Method 5 (Adopted 11/23/94)
297.416 DER Method 5A (Adopted 12/2/92)
297.417 DER Method 6 (Adopted 11/23/94)
297.418 DER Method 7 (Adopted 12/2/92)
297.419 DER Method 8 (Adopted 12/2/92)
297.420 DER Method 9 (Adopted 11/23/94)
297.421 DER Method 10 (Adopted 12/2/92)
297.422 DER Method 11 (Adopted 12/2/92)
297.423 DER Method 12--Determination of Inorganic Lead Emissions from 
Stationary Sources (Adopted 11/23/94)
297.424 DER Method 13 (Adopted 12/2/92)
297.440 Supplementary Test Procedures (Adopted 11/23/94)
297.450 EPA VOC Capture Efficiency Test Procedures (Adopted 11/23/94)
297.520 EPA Performance Specifications (Adopted 11/23/94)
297.570 Test Report (Adopted 11/23/94)
297.620 Exceptions and Approval of Alternate Procedures and Requirements 
(Adopted 11/23/94)

    (b) Local requirements.
    (1) [Reserved]

                             North Carolina

    (a) State requirements.
    (1) The following requirements are contained in State of North 
Carolina Air Pollution Control Requirements Applicable to OCS Sources, 
August 21, 1992: The following sections of Subchapters 2D and 2H:

2D.0101 Definitions (Adopted 12/1/89)
2D.0104 Adoption by Reference Updates (Adopted 10/1/89)
2D.0201 Classification of Air Pollution Sources (Adopted 7/1/84)
2D.0202 Registration of Air Pollution Sources (Adopted 6/1/85)
2D.0303 Emission Reduction Plans (Adopted 7/1/84)
2D.0304 Preplanned Abatement Program (Adopted 7/1/88)
2D.0305 Emission Reduction Plan; Alert Level (Adopted 7/1/84)
2D.0306 Emission Reduction Plan; Warning Level (Adopted 7/1/84)
2D.0307 Emission Reduction Plan; Emergency Level (Adopted 7/1/84)
2D.0401 Purpose (Adopted 10/1/89)
2D.0501 Compliance with Emission Control Standards (Adopted 10/1/89)
2D.0502 Purpose (Adopted 6/1/85)
2D.0503 Particulates from Fuel Burning Indirect Heat Exchanger (Adopted 
6/1/85)
2D.0505 Control of Particulate from Incinerators (Adopted 7/1/87)
2D.0510 Particulates: Sand, Gravel and Crushed Stone Operations (Adopted 
1/1/85)
2D.0511 Particulates, SO2 from Lightweight Aggregate 
Processes (Adopted 10/1/89)
2D.0515 Particulates from Miscellaneous Industrial Processes (Adopted 1/
1/85)
2D.0516 Sulfur Dioxide Emissions Combustion Sources (Adopted 10/1/89)
2D.0518 Miscellaneous Volatile Organic Compound Emissions (Adopted 2/1/
83)
2D.0519 Control of Nitrogen Dioxide Emissions (Adopted 10/1/89)
2D.0520 Control and Prohibition of Open Burning (Adopted 1/1/85)
2D.0521 Control of Visible Emissions (Adopted 8/1/87)
2D.0530 Prevention of Significant Deterioration (Adopted 10/1/89)
2D.0531 Sources in Nonattainment Area (Adopted 12/1/89)
2D.0532 Sources Contributing to an Ambient Violation (Adopted 10/1/89)
2D.0533 Stack Height (Adopted 7/1/87)
2D.0535 Excess Emissions Reporting and Malfunctions, (a) and (f) only. 
(Adopted 5/1/90)
2D.0537 Control of Mercury Emissions (Adopted 6/1/85)
2D.0601 Purpose and Scope (Adopted 7/1/84)
2D.0602 Definitions (Adopted 7/1/84)
2D.0604 Sources Covered by Implementation Plan Requirements (Adopted 7/
1/88)
2D.0606 Other Coal or Residual Oil Burners (Adopted 5/1/85)
2D.0607 Exceptions to Monitoring and Reporting (Adopted 7/1/84)
2D.0901 Definitions (Adopted 12/1/89)
2D.0902 Applicability (Adopted 5/1/90)
2D.0903 Recordkeeping, Reporting, Monitoring (Adopted 12/1/89)
2D.0906 Circumvention (Adopted 1/1/85)
2D.0912 General Provisions on Test Methods and Procedures (Adopted 12/1/
89)
2D.0914 Determination of VOC Emission Control System Efficiency (Adopted 
1/1/85)
2D.0925 Petroleum Liquid Storage (Adopted 12/1/89)
2D.0933 Petroleum Liquid Storage in External Floating Roof Tanks 
(Adopted 12/1/89)
2D.0939 Determination of Volatile Organic Compound Vapor Emissions 
(Adopted 7/1/88)
2D.1101 Purpose (Adopted 5/1/90)
2D.1102 Applicability (Adopted 5/1/90)
2D.1103 Definition (Adopted 5/1/90)
2D.1104 Toxic Air Pollutant Guidelines (Adopted 5/1/90)

[[Page 129]]

2D.1105 Facility Reporting, Recordkeeping (Adopted 5/1/90)
2D.1106 Determination of Ambient Air Concentrations (Adopted 5/1/90)
2D.1107 Multiple Facilities (Adopted 5/1/90)
2D.1108 Multiple Pollutants (Adopted 5/1/90)
2H.0601 Purpose and Scope (Adopted 10/1/89)
2H.0602 Definitions (Adopted 5/1/90)
2H.0603 Applications (Adopted 12/1/89)
2H.0609 Permit Fees (Adopted 8/1/88)
2H.0610 Permit Requirements for Toxic Air Pollutants (Adopted 5/1/90)

    (b) Local requirements.
    (1) [Reserved]

[57 FR 40806, Sept. 4, 1992, as amended at 58 FR 16626, Mar. 30, 1993; 
58 FR 59173, Nov. 8, 1993; 59 FR 17271, Apr. 12, 1994; 59 FR 50846, Oct. 
6, 1994; 60 FR 47293, Sept. 12, 1995; 60 FR 55328, Oct. 31, 1995; 61 FR 
28758, June 6, 1996; 62 FR 41871, Aug.4, 1997; 65 FR 15870, Mar. 24, 
2000; 66 FR 12984, Mar. 1, 2001; 67 FR 14648, Mar. 27, 2002]



PART 56--REGIONAL CONSISTENCY--Table of Contents




Sec.
56.1  Definitions.
56.2  Scope.
56.3  Policy.
56.4  Mechanisms for fairness and uniformity--Responsibilities of 
          Headquarters employees.
56.5  Mechanisms for fairness and uniformity--Responsibilities of 
          Regional Office employees.
56.6  Dissemination of policy and guidance.
56.7  State agency performance audits.

    Authority: Sec. 301(a)(2) of the Clean Air Act as amended (42 U.S.C. 
7601).

    Source: 45 FR 85405, Dec. 24, 1980, unless otherwise noted.



Sec. 56.1  Definitions.

    As used in this part, all terms not defined herein have the meaning 
given them in the Clean Air Act.
    Act means the Clean Air Act as amended (42 U.S.C. 7401 et seq.).
    Administrator, Deputy Administrator, Assistant Administrator, 
General Counsel, Associate General Counsel, Deputy Assistant 
Administrator, Regional Administrator, Headquarters, Staff Office, 
Operational Office, and Regional Office are described in part 1 of this 
title.
    Mechanism means an administrative procedure, guideline, manual, or 
written statement.
    Program directive means any formal written statement by the 
Administrator, the Deputy Administrator, the Assistant Administrator, a 
Staff Office Director, the General Counsel, a Deputy Assistant 
Administrator, an Associate General Counsel, or a division Director of 
an Operational Office that is intended to guide or direct Regional 
Offices in the implementation or enforcement of the provisions of the 
act.
    Responsible official means the EPA Administrator or any EPA employee 
who is accountable to the Administrator for carrying out a power or duty 
delegated under section 301(a)(1) of the act, or is accountable in 
accordance with EPA's formal organization for a particular program or 
function as described in part 1 of this title.



Sec. 56.2  Scope.

    This part covers actions taken by:
    (a) Employees in EPA Regional Offices, including Regional 
Administrators, in carrying out powers and duties delegated by the 
Administrator under section 301(a)(1) of the act; and
    (b) EPA employees in Headquarters to the extent that they are 
responsible for developing the procedures to be employed or policies to 
be followed by Regional Offices in implementing and enforcing the act.



Sec. 56.3  Policy.

    It is EPA's policy to:
    (a) Assure fair and uniform application by all Regional Offices of 
the criteria, procedures, and policies employed in implementing and 
enforcing the act;
    (b) Provide mechanisms for identifying and correcting 
inconsistencies by standardizing criteria, procedures, and policies 
being employed by Regional Office employees in implementing and 
enforcing the act; and
    (c) Insure an adequate quality audit for each State's performance in 
implementing and enforcing the act.



Sec. 56.4  Mechanisms for fairness and uniformity--Responsibilities of Headquarters employees.

    (a) The Administrator shall include, as necessary, with any rule or 
regulation proposed or promulgated under

[[Page 130]]

parts 51 and 58 of this chapter 1 mechanisms to assure that 
the rule or regulation is implemented and enforced fairly and uniformly 
by the Regional Offices.
---------------------------------------------------------------------------

    \1\ Part 51 is entitled, ``Requirements for Preparation, Adoption, 
and Submittal of Implementation Plans.'' Part 58 is entitled, ``Ambient 
Air Quality Surveillance.''
---------------------------------------------------------------------------

    (b) The determination that a mechanism required under paragraph (a) 
of this section is unnecessary for a rule or regulation shall be 
explained in writing by the responsible EPA official and included in the 
supporting documentation or the relevant docket.



Sec. 56.5  Mechanisms for fairness and uniformity--Responsibilities of Regional Office employees.

    (a) Each responsible official in a Regional Office, including the 
Regional Administrator, shall assure that actions taken under the act:
    (1) Are carried out fairly and in a manner that is consistent with 
the Act and Agency policy as set forth in the Agency rules and program 
directives,
    (2) Are as consistent as reasonably possible with the activities of 
other Regional Offices, and
    (3) Comply with the mechanisms developed under Sec. 56.4 of this 
part.
    (b) A responsible official in a Regional Office shall seek 
concurrence from the appropriate EPA Headquarters office on any 
interpretation of the Act, or rule, regulation, or program directive 
when such interpretation may result in inconsistent application among 
the Regional Offices of the act or rule, regulation, or program 
directive.
    (c) In reviewing State Implementation Plans, the Regional Office 
shall follow the provisions of the guideline, revisions to State 
Implementation Plans--Procedures for Approval/Disapproval Actions, OAQPS 
No. 1.2-005A, or revision thereof. Where regulatory actions may involve 
inconsistent application of the requirements of the act, the Regional 
Offices shall classify such actions as special actions.



Sec. 56.6  Dissemination of policy and guidance.

    The Assistant Administrators of the Offices of Air, Noise and 
Radiation, and of Enforcement, and the General Counsel shall establish 
as expeditiously as practicable, but no later than one year after 
promulgation of this part, systems to disseminate policy and guidance. 
They shall distribute material under foregoing systems to the Regional 
Offices and State and local agencies, and shall make the material 
available to the public. Air programs policy and guideline systems shall 
contain the following:
    (a) Compilations of relevant EPA program directives and guidance, 
except for rules and regulations, concerning the requirements under the 
Act.
    (b) Procedures whereby each Headquarters program office and staff 
office will enter new and revised guidance into the compilations and 
cause superseded guidance to be removed.
    (c) Additional guidance aids such as videotape presentations, 
workshops, manuals, or combinations of these where the responsible 
Headquarters official determines they are necessary to inform Regional 
Offices, State and local agencies, or the public about EPA actions.



Sec. 56.7  State agency performance audits.

    (a) EPA will utilize the provisions of subpart B, Program Grants, of 
part 35 of this chapter, which require yearly evaluations of the manner 
in which grantees use Federal monies, to assure that an adequate 
evaluation of each State's performance in implementing and enforcing the 
act is performed.
    (b) Within 60 days after comment is due from each State grantee on 
the evaluation report required by Sec. 35.538 of this chapter, the 
Regional Administrator shall incorporate or include any comments, as 
appropriate, and publish notice of availability of the evaluation report 
in the Federal Register.



PART 57--PRIMARY NONFERROUS SMELTER ORDERS--Table of Contents




                           Subpart A--General

Sec.
57.101  Purpose and scope.
57.102  Eligibility.
57.103  Definitions.
57.104  Amendment of the NSO.

[[Page 131]]

57.105  Submittal of required plans, proposals, and reports.
57.106  Expiration date.
57.107  The State or local agency's transmittal to EPA.
57.108  Comparable existing SIP provisions.
57.109  Maintenance of pay.
57.110  Reimbursement of State or local agency.
57.111  Severability of provisions.

             Subpart B--The Application and the NSO Process

57.201  Where to apply.
57.202  How to apply.
57.203  Contents of the application.
57.204  EPA action on second period NSOs which have already been issued.
57.205  Submission of supplementary information upon relaxation of an 
          SO2 SIP emission limitation.

          Subpart C--Constant Controls and Related Requirements

57.301  General requirements.
57.302  Performance level of interim constant controls.
57.303  Total plantwide emission limitation.
57.304  Bypass, excess emissions and malfunctions.
57.305  Compliance monitoring and reporting.

          Subpart D--Supplementary Control System Requirements

57.401  General requirements.
57.402  Elements of the supplementary control system.
57.403  Written consent.
57.404  Measurements, records, and reports.
57.405  Formulation, approval, and implementation of requirements.

           Subpart E--Fugitive Emission Evaluation and Control

57.501  General requirements.
57.502  Evaluation.
57.503  Control measures.
57.504  Continuing evaluation of fugitive emission control measures.
57.505  Amendments of the NSO.

            Subpart F--Research and Development Requirements

57.601  General requirements.
57.602  Approval of proposal.
57.603  Criteria for approval.
57.604  Evaluation of projects.
57.605  Consent.
57.606  Confidentiality.

               Subpart G--Compliance Schedule Requirements

57.701  General requirements.
57.702  Compliance with constant control emission limitation.
57.703  Compliance with the supplementary control system requirements.
57.704  Compliance with fugitive emission evaluation and control 
          requirements.
57.705  Contents of SIP Compliance Schedule required by Sec. 57.201(d) 
          (2) and (3).

Subpart H--Waiver of Interim Requirement for Use of Continuous Emission 
                          Reduction Technology

57.801  Purpose and scope.
57.802  Request for waiver.
57.803  Issuance of tentative determination; notice.
57.804  Request for hearing; request to participate in hearing.
57.805  Submission of written comments on tentative determination.
57.806  Presiding Officer.
57.807  Hearing.
57.808  Opportunity for cross-examination.
57.809  Ex parte communications.
57.810  Filing of briefs, proposed findings, and proposed 
          recommendations.
57.811  Recommended decision.
57.812  Appeal from or review of recommended decision.
57.813  Final decision.
57.814  Administrative record.
57.815  State notification.
57.816  Effect of negative recommendation.

Appendix A to Part 57--Primary Nonferrous Smelter Order (NSO) 
          Application

    Authority: Secs. 110, 114, 119, 301, Clean Air Act, as amended (42 
U.S.C. 7410, 7414, 7419, and 7601); sec. 406 of Pub. L. 95-95.

    Source: 50 FR 6448, Feb. 15, 1985, unless otherwise noted.



                           Subpart A--General



Sec. 57.101  Purpose and scope.

    (a) Applicability of the regulations. The regulations in subparts A 
through H govern:
    (1) The eligibility of smelters for a Primary Nonferrous Smelter 
Order (NSO) under section 119 of the Clean Air Act;
    (2) The procedures through which an NSO can be approved or issued by 
EPA; and
    (3) The minimum contents of each NSO required for EPA issuance or 
approval under section 119. Subpart I et

[[Page 132]]

seq., will contain NSOs in effect for individual smelters.
    (b) State authority to adopt more stringent requrements. Nothing in 
this part shall preclude a State from imposing more stringent 
requirements, as provided by section 116 of the Clean Air Act.



Sec. 57.102  Eligibility.

    (a) A primary copper, lead, zinc, molybdenum, or other nonferrous 
smelter is eligible for an NSO if it meets the following conditions:
    (1) The smelter was in existence and operating on August 7, 1977;
    (2) The smelter is subject to an approved or promulgated sulfur 
dioxide (SO2) State Implementation Plan (SIP) emission 
limitation which is adequate to ensure that National Ambient Air Quality 
Standards (NAAQS) for SO2 are achieved without the use of any 
unauthorized dispersion techniques; and
    (3) The Administrator determines, based on a showing by the smelter 
owner, that no means of emission limitation applicable to the smelter 
which would enable it to comply with its SIP stack emission limitation 
for SO2 has been adequately demonstrated to be reasonably 
available (taking into account the cost of compliance, nonair quality 
health and environmental impact, and energy considerations) in 
accordance with Sec. 57.201(d)(1).
    (b) For the purposes of these regulations:
    (1) The following means of emission limitation shall be considered 
adequately demonstrated for nonferrous smelters. (Taking into account 
nonair quality health and environmental impact and energy 
considerations, but not the cost of compliance).
    (i) Retrofit control technologies.
    (A) Sulfuric acid plant in conjunction with an adequately 
demonstrated replacement technology or process modification;
    (B) Magnesium oxide (concentration) scrubbing;
    (C) Lime/limestone scrubbing; and
    (D) Ammonia scrubbing.
    (ii) Replacement or process modifications.
    (A) Flash smelting;
    (B) Oxygen enrichment;
    (C) Supplemental sulfur burning in conjunction with acid plant;
    (D) Electric Furnace;
    (E) Noranda process;
    (F) Fluid bed roaster;
    (G) Continuous smelting (Mitsubishi) process; and
    (H) Strong stream/weak stream gas blending.
    (2) Each adequately demonstrated means of emission limitation which 
would enable a smelter to comply with its SIP emission limitation for 
SO2 shall be considered applicable to the smelter unless the 
smelter operator demonstrates that the use of a particular system at 
that smelter is technically unreasonable, for reasons specific to that 
site.
    (3) An applicable means of emission limitation which would enable a 
smelter to comply with its SIP emission limitation for SO2 
shall be considered adequately demonstrated to be reasonably available 
to the smelter (taking into account the cost of compliance) if the 
information submitted under Secs. 57.107(a) and 57.203(b) (plus any 
necessary supplemental information) shows, according to the criteria, 
procedures, and tests contained in appendix A to this part and in 
accordance with Sec. 57.201(d)(1), that both of the following two tests 
are met.
    (i) The rate of return test. The present value of the smelter's 
future net cash flow (during and after investment in constant control 
technology) is more than book value of the smelter's net investment in 
constant dollars.
    (ii) The profit protection test. The constant control technology 
expenditure reduces the present value of the smelter's forecast pretax 
profits by less than 50%.
    (c) When applying for an NSO, a smelter must establish, for purposes 
of applying the financial eligibility tests, which adequately 
demonstrated constant control technology applicable to that smelter is 
the most economically feasible for use at that smelter.

[50 FR 6448, Feb. 15, 1985, as amended at 51 FR 10211, Mar. 25, 1986]



Sec. 57.103  Definitions.

    (a) The Act means the Clean Air Act, as amended.

[[Page 133]]

    (b) Active use refers to an SO2 constant control system 
installed at a smelter before August 7, 1977 and not totally removed 
from regular service by that date.
    (c) Adequate SO2 emission limitation means a SIP emission 
limitation which was approved or promulgated by EPA as adequate to 
attain and maintain the NAAQS in the areas affected by the stack 
emissions without the use of any unauthorized dispersion technique.
    (d) Administrative Law Judge means an administrative law judge 
appointed under 5 U.S.C. 3105 (see also 5 CFR part 930, as amended by 37 
FR 16787), and is synonymous with the term ``Hearing Examiner'' as 
formerly used in Title 5 of the U.S. Code.
    (e) The Administrator means the Administrator of the U.S. 
Environmental Protection Agency, or the Administrator's authorized 
representative.
    (f) Ambient air shall have the meaning given by 40 CFR 50.1(e), as 
that definition appears upon promulgation of this subpart, or as 
hereafter amended.
    (g) Ambient air quality refers only to concentrations of sulfur 
dioxide in the ambient air, unless otherwise specified.
    (h) An approved measure refers to one contained in an NSO which is 
in effect.
    (i) Assistant Administrator for Air and Radiation means the 
Assistant Administrator for Air and Radiation of the U.S. Environmental 
Protection Agency.
    (j) Constant controls, control technology, and continuous emission 
reduction technology mean systems which limit the quantity, rate, or 
concentration, excluding the use of dilution, and emissions of air 
pollutants on a continuous basis.
    (k) Effective date of an NSO means the effective date listed in the 
Federal Register publication of EPA's issuance or approval of an NSO.
    (l) EPA and the Agency means the Administrator of the U.S. 
Environmental Protection Agency, or the Administrator's authorized 
representative.
    (m) Fugitive emissions means any air pollutants emitted to the 
atmosphere other than from a stack.
    (n) Issuance of an NSO means the final transmittal of the NSO 
pursuant to Sec. 57.107(a) by an issuing agency (other than EPA) to EPA 
for approval, or the publication of an NSO issued by EPA in the Federal 
Register.
    (o) Issuing agency, unless otherwise specifically indicated, means 
the State or local air pollution control agency to which a smelter's 
owner has applied for an NSO, or which has issued the NSO, or EPA, when 
the NSO application has been made to EPA. Any showings or demonstrations 
required to be made under this part to the issuing agency, when not EPA, 
are subject to independent determinations by EPA.
    (p) Malfunction means any unanticipated and unavoidable failure of 
air pollution control equipment or process equipment or of a process to 
operate in a normal or usual manner. Failures that are caused entirely 
or in part by poor design, poor maintenance, careless operation, or any 
other preventable upset condition or preventable equipment breakdown 
shall not be considered malfunctions. A malfunction exists only for the 
minimum time necessary to implement corrective measures.
    (q) Maximum production capacity means either the maximum 
demonstrated rate at which a smelter has produced its principal metallic 
final product under the process equipment configuration and operating 
procedures prevailing on or before August 7, 1977, or a rate which the 
smelter is able to demonstrate by calculation is attainable with process 
equipment existing on August 7, 1977. The rate may be expressed as a 
concentrate feed rate to the smelter.
    (r) NAAQS and National Ambient Air Quality Standards, unless 
otherwise specified, refer only to the National Primary and Secondary 
Ambient Air Quality Standards for sulfur dioxide.
    (s) Scheduled maintenance means any periodic procedure, necessary to 
maintain the integrity or reliability of emissions control performance, 
which can be anticipated and scheduled in advance. In sulfuric acid 
plants, it includes among other items the screening or replacement of 
catalyst, the re-tubing of heat exchangers, and the routine repair and 
cleaning of gas handling/cleaning equipment.
    (t) Smelter owner and operator means the owner or operator of the 
smelter, without distinction.

[[Page 134]]

    (u) Supplementary control system (SCS) means any technique for 
limiting the concentration of a pollutant in the ambient air by varying 
the emissions of that pollutant according to atmospheric conditions. For 
the purposes of this part, the term supplementary control system does 
not include any dispersion technique based solely on the use of a stack 
the height of which exceeds good engineering practice (as determined 
under regulations implementing section 123 of the Act).
    (v) Unauthorized dispersion technique refers to any dispersion 
technique which, under section 123 of the Act and the regulations 
promulgated pursuant to that section, may not be used to reduce the 
degree of emission limitation otherwise required in the applicable SIP.
    (w) Unless otherwise specified in this part, all terms shall have 
the same meaning given them by the Act.

[50 FR 6448, Feb. 15, 1985, as amended at 57 FR 5328, Feb. 13, 1992]



Sec. 57.104  Amendment of the NSO.

    An NSO shall be amended whenever necessary for compliance with the 
requirements and purposes of this part.
    (a)(1) Issuance of amendment. A State or local issuing agency may 
issue an amendment of any NSO it has issued. Any amendment issued by a 
State or local issuing agency shall be subject to approval by EPA to the 
same extent as was the original NSO. Any smelter owner may apply to the 
agency which originally issued its NSO for an amendment of the NSO at 
any time. Such an application shall be accompanied by whatever 
documentation is required by that agency (or EPA) to support the 
requested amendment.
    (2)(i) Notwithstanding the requirements of paragraph (a)(1) of this 
section, amendments to SIP compliance schedule interim compliance dates 
in State-issued NSO's need not be submitted for EPA approval if the 
amendment does not delay the interim date by more than three months from 
the date as approved by the Administrator and if the final compliance 
date is unchanged. Delays longer than 3 months shall be handled 
according to the provisions of Sec. 57.104(a)(1).
    (ii) Changes made in accordance with this subparagraph may be 
effective immediately but must be submitted to EPA within seven days. 
EPA will give public notice of receipt of such changes by publication of 
a Notice in the Federal Register.
    (3) In any case in which the issuing agency fails to issue an 
amendment necessary for compliance with the requirements and purposes of 
this part, EPA may, after first giving the issuing Agency notice, issue 
such amendment.
    (b) Revision of SCS Manual. Operation in accordance with the revised 
provisions of an SCS operational manual (see Sec. 57.402(e)) shall not 
be considered a violation of an NSO while the application for approval 
of those revisions as NSO amendments is pending before the issuing 
agency (or EPA) for approval: Provided, that:
    (1) No violations of NAAQS occur in the smelter's Designated 
Liability Area during that time; and
    (2) The smelter operator has not been informed by the issuing agency 
or EPA that its application is not adequately documented, unless such 
deficiency has been remedied promptly.
    (c) Notice and opportunity for hearing. Notice and opportunity for 
public hearing shall be provided before issuance of all major 
amendments.



Sec. 57.105  Submittal of required plans, proposals, and reports.

    (a) The failure of a smelter owner to submit any plan, report, 
document or proposal as required by its NSO or by this part shall 
constitute a violation of its NSO.
    (b) If the Administrator determines that a nonferrous smelter is in 
violation of a requirement contained in an NSO approved under these 
regulations, the Administrator shall, as provided by section 119(f) of 
the Act:
    (1) Enforce such requirement under section 113 (a), (b), or (c) of 
the Act;
    (2) Revoke the order after notice and opportunity for hearing;
    (3) Give notice of noncompliance and commence action under section 
120 of the act; or
    (4) Take any appropriate combinations of these actions.
    (c) Under section 304 of the Act, any person may commence a civil 
action

[[Page 135]]

against an owner or operator of a smelter which is alleged to be in 
violation or any order approved under this part.



Sec. 57.106  Expiration date.

    Each NSO shall state its expiration date. No NSO issued under this 
regulation shall expire later than January 1, 1988.



Sec. 57.107  The State or local agency's transmittal to EPA.

    (a) Content and bases of the State or local agency's NSO. Issuance 
of an NSO by a State or local agency shall be completed by the issuing 
agency's transmittal to the appropriate EPA Regional Office of:
    (1) The text of the NSO;
    (2) The application submitted by the smelter owner, except for 
appendix A to this part, all correspondence between the issuing agency 
and the applicant relating to the NSO, and any material submitted in 
support of the application;
    (3) A concise statement of the State or local agency's findings and 
their bases; and
    (4) All documentation or analyses prepared by or for the issuing 
agency in support of the NSO.
    (b) The State or local agency's enforcement plan. The transmittal 
under paragraph (a) of this section shall be accompanied by a 
description of the issuing agency's plans for monitoring compliance with 
and enforcement of the NSO. The transmittal shall also include a 
description of the resources which will be used to implement those 
plans. If the enforcement plans appear inadequate, EPA may require that 
the NSO be modified such that the NSO will be adequately enforced.



Sec. 57.108  Comparable existing SIP provisions.

    Notwithstanding any other provision of this part, an NSO may contain 
provisions to which the affected smelter is subject under the applicable 
EPA-approved State Implementation Plan (SIP) for sulfur dioxide in lieu 
of the corresponding provisions which would otherwise be required under 
this part if the Administrator determines that those SIP provisions are 
substantially equivalent to the corresponding NSO provisions which would 
otherwise be required, and if the Administrator determines that the 
smelter is in substantial compliance with those SIP provisions. For the 
purposes of this section, provisions to which the affected smelter is 
subject under the applicable EPA-approved State Implementation Plan are 
those which became effective before the smelter owner applied for the 
NSO.



Sec. 57.109  Maintenance of pay.

    The Administrator will not approve or issue an NSO for any smelter 
unless he has approved or promulgated SIP provisions which are 
applicable to the smelter and which satisfy the requirements of section 
110(a)(6) of the Clean Air Act.



Sec. 57.110  Reimbursement of State or local agency.

    As a condition of issuing an NSO, any issuing agency may require the 
smelter operator to pay a fee to the State or local agency sufficient to 
defray the issuing agency's expenses in issuing and enforcing the NSO.



Sec. 57.111  Severability of provisions.

    The provisions promulgated in this part and the various applications 
thereof are distinct and severable. If any provision of this part or the 
application thereof to any person or circumstances is held invalid, such 
invalidity shall not affect other provisions, or the application of such 
provisions to other persons or circumstances, which can be given effect 
without the invalid provision of application.



             Subpart B--The Application and the NSO Process



Sec. 57.201  Where to apply.

    Any eligible smelter may apply for an NSO to the appropriate EPA 
Regional Office or to the appropriate State or local air pollution 
control agency.
    (a) When application is made to EPA, all parts of the application 
required to be submitted under this subpart shall be sent directly to 
the Director, Stationary Source Compliance Division

[[Page 136]]

(EN-341), U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., 
NW., Washington, DC 20460, Attention: Confidential Information Unit. In 
addition, the smelter owner shall send a copy of the application, except 
that part required to be submitted under Sec. 57.203(b) (eligibility), 
directly to the appropriate EPA Regional Office.
    (b) When application is made to the appropriate State or local 
agency, the smelter owner shall submit one complete copy of all parts of 
the application required to be submitted under this subpart to that 
agency, in addition to the application requirements contained in 
paragraph (a) of this section. If the smelter owner is requesting an 
advance eligibility determination pursuant to Sec. 57.203(b), such 
request must be made in writing and shall accompany the copy of the 
application being sent to the Director of the Stationary Source 
Compliance Division of the Environmental Protection Agency.
    (c) If the smelter owner is requesting a waiver of the interim 
constant control requirement of Sec. 57.301, such request must be sent 
directly to the Director, Stationary Source Compliance Division, at the 
time of application, in accordance with Sec. 57.802.
    (d) The NSO Process. (1) A smelter desiring an NSO shall apply for 
an NSO by submitting an application under subpart B including the 
financial information required in appendix A and including the 
information necessary to make the determinations required by this 
subparagraph and Sec. 57.201(d)(2). The issuing agency shall analyze the 
financial information according to the financial eligibility test 
prescribed by subpart A and described in appendix A. The issuing Agency 
shall then determine whether the smelter is able to comply with its SIP 
on or before the date required in the SIP by installing adequately 
demonstrated technology which is reasonably available. See also 
Sec. 57.102(a)(3). If the test demonstrates that adequately demonstrated 
technology is not reasonably available to the smelter to allow it to 
comply with the SIP by the required compliance date, the smelter is 
eligible for an NSO.
    (2)(i) If the smelter is determined to be eligible for an NSO under 
paragraph (d)(1) of this section, the issuing Agency shall apply the 
appendix A financial eligibility tests again before issuing an NSO in 
order to determine if the smelter can comply with its SIP requirements 
on or before January 1, 1988 by installing adequately demonstrated 
technology which is reasonably available.
    (ii) If application of the tests shows that the smelter could comply 
by or before January 1, 1988, the issuing agency shall notify the 
smelter of this determination, and shall not issue an NSO to the smelter 
unless the NSO contains a SIP compliance schedule meeting the 
requirements of Sec. 57.705. Such a compliance schedule must provide for 
compliance with the smelter's SO2 SIP as expeditiously as 
practicable and in no case later than January 1, 1988. A smelter must 
submit to the issuing agency information necessary to determine a 
compliance schedule meeting the requirements of Sec. 57.705. This 
information shall be submitted by a smelter within thirty days after the 
smelter is notified by the issuing agency that a SIP compliance schedule 
is required. The Administrator may consider an NSO application to be 
withdrawn for SIP enforcement purposes if a smelter fails to submit such 
information within the time required under this paragraph.
    (iii) If no adequately demonstrated technology is found to be 
reasonably available to enable a smelter to comply by January 1, 1988, 
it would be excused from the compliance schedule requirement in 
Sec. 57.201(d)(2)(ii), but it would be subject to reevaluation of its 
ability to comply by that date at any time during the term of the NSO. 
(See Sec. 57.201(d)(3)).
    (3) At any time during the term of an NSO which does not contain a 
SIP compliance schedule, EPA or the issuing agency may reevaluate the 
availability of technology to the smelter. If EPA or the issuing agency 
determines that adequately demonstrated technology is reasonably 
available to permit the smelter to comply with its SIP by or before 
January 1, 1988, the NSO shall be amended within 3 months time after 
such determination. The amendment shall require compliance with all SIP 
requirements by or before January 1, 1988, and shall include a

[[Page 137]]

compliance schedule meeting the requirements of Sec. 57.705. The 
determination that adequately demonstrated technology is reasonably 
available shall be made by reapplying the same appendix A financial 
eligibility tests required by subpart B, updated by economic data 
reflecting current operating conditions and currently demonstrated 
control technology. Any such determination and amendment shall be 
governed by the provisions of this part and section 119 of the Clean Air 
Act.
    (4) Notice and opportunity for public hearing in accordance with 
section 119 of the Clean Air Act must be provided before issuance of any 
NSO.
    (e) A smelter that does not have any constant SO2 
controls or whose existing constant SO2 controls when in full 
operation and optimally maintained are not sufficient to treat all 
strong SO2 streams may apply for a waiver of the requirements 
of subpart C to install interim constant controls by submitting an 
application under subpart H. A waiver may be granted only with respect 
to the requirement to eliminate bypass of constant controls through the 
installation of new constant control equipment, not with respect to the 
requirements for optimum maintenance and operation of existing 
equipment. EPA shall then determine the smelter's ability to afford 
installation of the required additional interim constant SO2 
control equipment at the smelter based on financial eligibility 
information analyzed according to the financial test prescribed in 
appendix A. A waiver of the requirement for additional interim constant 
controls will be granted if EPA determines in accordance with the 
procedures of subpart H that imposition of this requirement would 
necessitate closure of the smelter for at least one year.



Sec. 57.202  How to apply.

    (a) Letter of intent. To initiate an application for an NSO, the 
owner or operator of a smelter shall send a letter of intent to an 
appropriate air pollution control agency. The letter of intent shall 
contain a statement of the owner's intent to apply for an NSO, and an 
agreement to provide any information required under this part. The 
letter of intent shall be signed by a corporate official authorized to 
make such commitments. Upon receipt of any letter of intent by the 
issuing agency, the SIP emission limitation for sulfur dioxide, as to 
that applicant, shall be deemed suspended for 60 days. The 60 day 
suspension may be extended for good cause at the discretion of the 
Administrator.
    (b) Complete application. (1) Within the period referred to in 
paragraph (a) of this section, the smelter owner shall submit its 
completed application pursuant to Sec. 57.201. Receipt of all parts of a 
substantially complete application postmarked within the original or 
extended application period shall be deemed to continue the suspension 
of the SIP emission limitation for SO2 until the issuing 
agency issues or declines to issue an NSO. This suspension shall in all 
cases terminate, however, 90 days after receipt of the substantially 
completed application, unless extended for good cause at the discretion 
of the Administrator. If, in the Administrator's judgment, good faith 
effort has been made to submit a complete application, additional time 
may be granted to allow for correction of minor deficiencies.
    (2) If an issuing agency transmits an NSO to EPA for approval before 
the expiration of the suspension of the Federal SIP emission limitation, 
the suspension shall continue until EPA approves or disapproves the NSO.



Sec. 57.203  Contents of the application.

    (a) Claim of confidentiality. The smelter owner may make a business 
confidentiality claim covering all or part of the information in the NSO 
application in accordance with 40 CFR part 2, subpart B (41 FR 36906 et 
seq., Sept. 1, 1976 as amended by 43 FR 39997 et seq., Sept. 8, 1978). A 
claim is effective only if it is made at the time the material is 
submitted to the issuing agency or EPA. A claim shall be made by 
attaching to the information a notice of confidentiality. Information 
claimed as confidential will be handled by EPA under the provisions of 
40 CFR part 2, subpart B. If no claim accompanies the information, it 
may be made available to the public without further notice.

[[Page 138]]

    (b) Each smelter owner shall make the showing required by 
Sec. 57.102(a)(3) by completing and submitting appendix A to this part 
and any necessary supplemental information to the issuing agency as a 
part of its application. Each smelter shall also submit as part of its 
application the information which, in conjunction with the information 
required by appendix A, is necessary for the issuing agency to make the 
determination required by Sec. 57.201(d)(2). Any smelter owner or State 
may, at its option, simultaneously submit this material to EPA for an 
advance eligibility determination.
    (c) Current operating information. A complete NSO application shall 
also contain the following information:
    (1) A process flow diagram of the smelter, including current process 
and instrumentation diagrams for all processes or equipment which may 
emit or affect the emission of sulfur dioxide; the characteristics of 
all gas streams emitted from the smelter's process equipment (flow 
rates, temperature, volumes, compositions, and variations over time); 
and a list of all monitoring data and strip charts, including all data, 
charts, logs or sheets kept with respect to the operation of any process 
equipment which may emit or affect the emission of sulfur dioxide;
    (2) The smelter's maximum daily production capacity (as defined in 
Sec. 57.103(r)), the operational rate (in pounds of concentrate charged 
to the smelting furnace per hour) of each major piece of process 
equipment when the smelter is operating at that capacity; and the 
smelter's average and maximum daily production rate for each product, 
co-product, or by-product, by year, for the past four years;
    (3) The optimal conversion efficiency (defined in terms of percent 
of total SO2 removed from the input flow stream) of any acid 
plant or other sulfur dioxide control system under the normal process 
operating conditions (excluding malfunctions) most conducive to optimal 
conversion efficiency;
    (4) The average conversion efficiency of any acid plant or other 
sulfur dioxide control system during normal process operations 
(excluding malfunctions), by month, during the past four years.
    (5) The percent of the time the acid plant or other control system 
was available for service during each month for the past four years, 
excluding downtime for scheduled maintenance, and a full explanation of 
any major or recurring problems with the system during that time;
    (6) The frequency and duration of times during the past four years 
when the SO2 system was unavailable because of scheduled 
maintenance of the system;
    (7) A description of all scheduled, periodic, shutdowns of the 
smelter during the past four years, including their purpose, frequency 
and duration; and the same information with respect to unscheduled 
shutdowns;
    (8) The gas volume, rates, and SO2 concentration which 
the control system was actually designed to accommodate, taking into 
account any modifications made after its installation;
    (9) The average monthly sulfur balance across the process and 
control equipment, including fugitive emissions, for the past 4 years; 
and
    (10) A description of engineering techniques now in use at the 
smelter to prevent the release of fugitive emissions into the atmosphere 
at low elevations.
    (d) The smelter owner's proposals. The smelter owner shall submit as 
part of its application, draft NSO provisions which would implement the 
requirements of subparts C through G of this part. The issuing agency 
may use these proposals as the basis for any NSO that may be granted, or 
may modify these proposals in any way it deems necessary in order to 
comply with the requirements of this part.
    (e) A smelter may submit as part of its application, information 
necessary to determine any SIP compliance schedule which might be 
required under Sec. 57.201(d)(2).
    (f) Additional information. The smelter owner shall designate in its 
application a corporate officer responsible and authorized to supply 
supplemental technical and economic information and explanations as 
required by the issuing agency during the formulation of the

[[Page 139]]

NSO. Failure to supply such information and explanations shall 
constitute a failure to submit a complete application.
    (g) Request for a waiver of constant controls. Any request for a 
waiver of the requirement interim constant control of all strpmg streams 
of Sec. 57.301 shall be made in accordance with Sec. 57.802. The 
criteria and procedures for granting the waiver are governed by subpart 
H of this part.
    (h) Unless a smelter applies for a waiver in accordance with subpart 
H, a smelter shall submit as part of its application a proposed schedule 
for compliance with the interim constant control requirements of subpart 
C which satisfies the requirements of Sec. 57.702.



Sec. 57.204  EPA action on second period NSOs which have already been issued.

    (a) EPA may approve a second period NSO issued by a State before the 
date of publication of these regulations in the Federal Register, 
without requiring a complete reapplication under this subpart and new 
State proceedings, provided:
    (1) The second period NSO was issued by the State consistent with 
the procedural requirements of section 119 of the Clean Air Act;
    (2) EPA can make a determination that the smelter is eligible for a 
second period NSO and whether the smelter can comply with its 
SO2 SIP limits on or before January 1, 1988 under the 
financial eligibility tests in these regulations on the basis of 
available information and such supplementary information as the Agency 
may request the smelter to submit; and
    (3) The provisions of the NSO are consistent with the requirements 
of these regulations.
    (b) Should EPA require a smelter to submit information before taking 
final action on an NSO referred to in paragraph (a), of this section, it 
shall specify a reasonable period for submission of such information in 
light of the nature of the information being required. The duration of 
such period shall not exceed the period allowed for submission of a 
complete application under Sec. 57.202 (a) and (b).
    (c) The Agency shall consider the SIP emission limitation for 
SO2 to be suspended with respect to a smelter which received 
an NSO described in subpart A until EPA takes final action on such NSO. 
Such suspension shall terminate if the smelter does not submit 
supplementary information within the time specified under paragraph (b).



Sec. 57.205  Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    (a) In the event an SO2 SIP limit is relaxed subsequent 
to EPA approval or issuance of a second period NSO, the smelter issued 
the NSO shall submit to the issuing agency and EPA such supplementary 
information that EPA considers appropriate for purposes of determining 
whether the means of compliance with the new SIP limit are adequately 
demonstrated to be reasonably available under the financial eligibility 
tests specified in Sec. 57.102(b)(3). The smelter shall submit such 
information within sixty days of notification by EPA. This time limit 
may be extended by EPA for good cause.
    (b) Upon receipt of any supplementary information required under 
paragraph (a), the issuing agency shall promptly reevaluate the 
availability of the means of compliance with the new SIP limit under the 
NSO eligibility tests specified in Sec. 57.102(b)(3). If the issuing 
agency determines that the demonstrated control technology necessary to 
attain the new SO2 SIP limit is adequately demonstrated to be 
reasonably available under the eligibility tests, so as to permit the 
smelter to comply with the new SIP limit on or before January 1, 1988, 
the NSO shall be amended within the time contemplated by Sec. 57.202(a) 
after receipt of the supplementary information. Such amendment shall 
require compliance with the new SO2 SIP limit as 
expeditiously as practicable in accordance with Sec. 57.201(d)(3). The 
issuing agency, if not EPA, shall promptly submit its determination and 
any necessary NSO amendments to EPA.
    (c) EPA shall take action to approve or disapprove the issuing 
agency's determination and NSO amendment, if

[[Page 140]]

any, within a reasonable time after receipt of such determination and 
amendment.
    (d) If EPA disapproves the issuing agency's determination or NSO 
amendment, or if a smelter fails to submit any supplementary information 
as required under paragraph (a), EPA and/or the issuing agency shall 
take appropriate remedial action. EPA shall take appropriate remedial 
action if the issuing agency does not make any determination and 
amendment required by this section within the time contemplated by 
Sec. 57.202(a).



          Subpart C--Constant Controls and Related Requirements



Sec. 57.301  General requirements.

    Each NSO shall require an interim level of sulfur dioxide constant 
controls to be operated at the smelter, unless a waiver of this 
requirement has been granted to the owner under subpart H of this part. 
Except as otherwise provided in Sec. 57.304, the interim constant 
controls shall be properly operated and maintained at all times. The NSO 
shall require the following gas streams to be treated by interim 
constant controls:
    (a) In copper smelters, off-gases from fluidized bed roasters, flash 
furnaces, NORANDA reactors, electric furnaces and copper converters;
    (b) In lead smelters, off-gases from the front end of the sintering 
machine and any other sinter gases which are recirculated;
    (c) In zinc smelters, off-gases from mult-hearth roasters, flash 
roasters and fluidized bed roasters; and
    (d) In all primary nonferrous smelters, all other strong 
SO2 streams.
    (e) In all primary nonferrous smelters, any other process streams 
which were regularly or intermittently treated by constant controls at 
the smelter as of August 7, 1977.



Sec. 57.302  Performance level of interim constant controls.

    (a) Maximum feasible efficiency. Each NSO shall require: that the 
smelter operate its interim constant control systems at their maximum 
feasible efficiency, including the making of any improvements necessary 
to correct the effects of any serious deficiencies; that the process and 
control equipment be maintained in the way best designed to ensure such 
operation; and that process operations be scheduled and coordinated to 
facilitate treatment of process gas streams to the maximum possible 
extent. Maximum feasible efficiency shall be expressed in the NSO in the 
form of a limitation on the concentration of SO2 in the tail 
gas of each individual control system in combination with an appropriate 
averaging period, as provided below in paragraphs (b) and (c) of this 
section.
    (b) The limitation level for SO2 concentration in the 
control system tail gas. The level at which the concentration limitation 
is set shall take into account fluctuations in the strength and volume 
of process off-gases to the extent that those fluctuations affect the 
SO2 content of the tail gas and cannot be avoided by improved 
scheduling and coordination of process operations. The limitation shall 
exclude the effect of any increase in emissions caused by process or 
control equipment malfunction. The limitation shall take into account 
unavoidable catalyst deterioration in sulfuric acid plants, but may 
prescribe the frequency of catalyst screening or replacement. The NSO 
shall also prohibit the smelter owner from using dilution air to meet 
the limitation.
    (c) Averaging period. (1) The averaging period shall be derived in 
combination with the concentration limitation and shall take into 
account the same factors described in paragraph (b). The averaging 
period established under this paragraph should generally not exceed the 
following:
    (i) For sulfuric acid plants on copper smelters, 12-hour running 
average;
    (ii) For sulfuric acid plants on lead smelters, 6-hour running 
average;
    (iii) For sulfuric acid plants on zinc smelters, 2-hour running 
average;
    (iv) For dimethylaniline (DMA) scrubbing units on copper smelters, 
2-hour running average.
    (2) A different averaging period may be established if the applicant 
demonstrates that such a period is necessary in order to account for the 
factors described in paragraph (b) of this

[[Page 141]]

section: Provided, that the period is enforceable and satisfies the 
criteria of paragraph (a) of this section.
    (d) Improved performance. (1) The performance level representing 
maximum feasible efficiency for any existing control system (e.g., a 
sulfuric acid plant or a DMA scrubber) shall require the correction of 
the effects of any serious deficiencies in the system. For the purpose 
of this paragraph, at least the following problems shall constitute 
serious deficiencies in acid plants:
    (i) Heat exchangers and associated equipment inadequate to sustain 
efficient, autothermal operation at the average gas strengths and 
volumes received by the acid plant during routine process equipment 
operation;
    (ii) Failure to completely fill all available catalyst bed stages 
with sufficient catalyst;
    (iii) Inability of the gas pre-treatment system to prevent unduly 
frequent plugging or fouling (deterioration) of catalyst or other 
components of the acid plant; or
    (iv) Blower capacity inadequate to permit the treatment of the full 
volume of gas which the plant could otherwise accommodate, or in-leakage 
of air into the flues leading to the plant, to the extent that this 
inadequacy results in bypassing of gas around the plant.
    (2) Notwithstanding any contrary provisions of Sec. 57.304(c) 
(malfunction demonstration), no excess emissions (as defined in 
Sec. 57.304(a)) shall be considered to have resulted from a malfunction 
in the constant control system if the smelter owner has not upgraded 
serious deficiencies in the constant control system in compliance with 
the requirements of Sec. 57.302(d)(1), unless the smelter owner 
demonstrates under Sec. 57.304(c) that compliance with those 
requirements would not have affected the magnitude of the emission.
    (e) Multiple control devices. (1) At any smelter where off-gas 
streams are treated by various existing control systems (e.g., multiple 
acid plants or a DMA scrubber and an acid plant), the NSO shall require 
the use of those systems in the combination that will result in the 
maximum feasible net SO2 removal.
    (2) To the extent that compliance with this requirement is 
demonstrated by the smelter operator to result in excess emissions 
during unavoidable start up and shut down of the control systems, those 
excess emissions shall not constitute violations of the NSO.



Sec. 57.303  Total plantwide emission limitation.

    (a) Calculation of the emission limitation. Each NSO shall contain a 
requirement limiting the total allowable emissions from the smelter to 
the level which would have been associated with production at the 
smelter's maximum production capacity (as defined in Sec. 57.103(r)) as 
of August 7, 1977. This limitation shall be expressed in units of mass 
per time and shall be calculated as the sum of uncontrolled process and 
fugitive emissions, and emissions from any control systems (operating at 
the efficiency prescribed under Sec. 57.302). These emission rates may 
be derived from either direct measurements or appropriately documented 
mass balance calculations.
    (b) Compliance with the emission limitation. Each NSO shall require 
the use of specific, enforceable testing methods and measurement periods 
for determining compliance with the limitation established under 
paragraph (a) of this section.



Sec. 57.304  Bypass, excess emissions and malfunctions.

    (a) Definition of excess emissions. For the purposes of this 
subpart, any emissions greater than those permitted by the NSO 
provisions established under Sec. 57.302 (performance level of interim 
constant controls) or Sec. 57.303 (plantwide emission limitation) of 
this subpart shall constitute excess emissions. Emission of any gas 
stream identified under Sec. 57.301 (a), (b), (c), (d) or (e) of this 
subpart that is not treated by a sulfur dioxide constant control system 
shall also constitute an excess emission under this subpart.
    (b) The excess emission report. Each NSO shall require the smelter 
to report all excess emissions to the issuing agency, as provided in 
Sec. 57.305(b). The report shall include the following:

[[Page 142]]

    (1) Identity of the stack or other emission points where the excess 
emissions occurred;
    (2) Magnitude of the excess emissions expressed in the units of each 
applicable emission limitation, as well as the operating data, 
documents, and calculations used in determining the magnitude of the 
excess emissions;
    (3) Time and duration of the excess emissions;
    (4) Identity of the equipment causing the excess emissions;
    (5) Nature and cause of such excess emissions;
    (6) Steps taken to limit the excess emissions, and when those steps 
were commenced;
    (7) If the excess emissions were the result of a malfunction, the 
steps taken to remedy the malfunction and to prevent the recurrence of 
such malfunction; and
    (8) At the smelter owner's election, the demonstration specified in 
paragraph (c) of this section.
    (c) Malfunction demonstration. Except as provided in 
Sec. 57.302(e)(2) or in paragraph (d) or (e) of this section, any excess 
emission shall be a violation of the NSO unless the owner demonstrates 
in the excess emissions report required under paragraph (b) of this 
section that the excess emission resulted from a malfunction (or an 
unavoidable start up and shut down resulting from a malfunction) and 
that:
    (1) The air pollution control systems, process equipment, or 
processes were at all times maintained and operated, to the maximum 
extent practicable, in a manner consistent with good practice for 
minimizing emissions;
    (2) Repairs were made as expeditiously as practicable, including the 
use of off-shift labor and overtime;
    (3) The amount and duration of the excess emissions were minimized 
to the maximum extent practicable during periods of such emissions; and
    (4) The excess emissions were not part of a recurring pattern 
indicative of serious deficiencies in, or inadequate operation, design, 
or maintenance of, the process or control equipment.
    (d) Scheduled maintenance exception. Excess emissions occurring 
during scheduled maintenance shall not constitute violations of the NSO 
to the extent that:
    (1) The expected additional annual sulfur dioxide removal by any 
control system (including associated process changes) for which 
construction had not commenced (as defined in 40 CFR 60.2 (g) and (i)) 
as of August 7, 1977 and which the smelter owner agrees to install and 
operate under subpart F, would have offset such excess emissions if the 
system had been in operation throughout the year in which the 
maintenance was performed;
    (2) The system is installed and operated as provided in the NSO 
provisions established under subpart F; and
    (3) The system performs at substantially the expected efficiency and 
reliability subsequent to its initial break-in period.
    (e) An NSO may provide that excess emissions which occur during acid 
plant start-up as the result of the cooling of acid plant catalyst due 
to the unavailability of process gas to an acid plant during a prolonged 
SCS curtailment or scheduled maintenance are not excess emissions. If 
the NSO does so provide, it shall also require the use of techniques or 
practices designed to minimize these excess emissions, such as the 
sealing of the acid plant during prolonged curtailments, the use of 
auxiliary heat or SO2 injected during the curtailment, or the 
preheating of the acid plant before start-up of the process equipment it 
serves.
    (f) Requirements for a smelter with constant controls that applies 
for a waiver.
    (1) If a smelter that has some interim constant controls applies for 
a waiver in accordance with subpart H, the following requirements shall 
apply pending action on the waiver application and following final 
action granting or approving a waiver:
    (i) The NSO shall require the smelter to implement maintenance and 
operation measures designed to reduce to the maximum extent feasible the 
potential for bypass of existing interim constant controls.

[[Page 143]]

    (ii) Upon application for a waiver under subpart H, the smelter 
shall submit to the issuing agency for its approval and to EPA proposed 
maintenance and operation measures for compliance with the requirements 
of paragraph (i).
    (iii) The remainder of this subpart shall apply except that: (A) The 
emission limitations required under this subpart shall be based only on 
existing constant control equipment as upgraded through the improved 
maintenance and operation required by this paragraph, and (B) bypass of 
existing controls shall not constitute excess emissions, provided the 
maintenance and operation requirements and emission limitations 
prescribed by the NSO are satisfied.
    (2) After any denial of a waiver by the issuing Agency, or any 
disapproval by EPA of a waiver granted by the issuing agency, the NSO 
shall be amended consistent with the requirements of this subpart and 
Sec. 57.702.



Sec. 57.305  Compliance monitoring and reporting.

    (a) Monitoring. (1) Each NSO shall require compliance with the 
control system performance requirements established pursuant to this 
subpart to be determined through the use of continuous monitors for 
measuring SO2 concentration.
    (i) Such monitors must be installed, operated and maintained in 
accordance with the performance specifications and other requirements 
contained in appendix D to 40 CFR part 52 or part 60. The monitors must 
take and record at least one measurement of SO2 concentration 
from the effluent of each control system in each 15-minute period. 
Failure of the monitors to record at least 95% of the 15-minute periods 
in any 30-day period shall constitute a violation of the NSO.
    (ii) The sampling point shall be located at least 8 stack diameters 
(diameter measured at sampling point) downstream and 2 diameters 
upstream from any flow disturbance such as a bend, expansion, 
constriction, or flame, unless another location is approved by the 
Administrator.
    (iii) The sampling point for monitoring emissions shall be in the 
duct at the centroid of the cross section if the cross sectional area is 
less than 4.645m2 (50 ft2) or at a point no closer 
to the wall than 0.914m (3 ft) if the cross sectional area is 
4.645m2 (50 ft2) or more. The monitor sample point 
shall be in an area of small spatial concentration gradient and shall be 
representative of the concentration in the duct.
    (iv) The measurement system(s) installed and used pursuant to this 
paragraph shall be subject to the manufacturer's recommended zero 
adjustment and calibration procedures at least once per 24-hour 
operating period unless the manufacturer specifies or recommends 
calibration at shorter intervals, in which case such specifications or 
recommendations shall be followed. Records of these procedures shall be 
made which clearly show instrument readings before and after zero 
adjustment and calibration.
    (2) Each NSO shall require the monitoring of any ducts or flues used 
to bypass gases, required under this subpart to be treated by constant 
controls, around the smelter's sulfur dioxide constant control system(s) 
for ultimate discharge to the atmosphere. Such monitoring shall be 
adequate to disclose the time of the bypass, its duration, and the 
approximate volume and SO2 concentration of gas bypassed.
    (b) Reporting. (1) Each NSO shall require that the smelter maintain 
a record of all measurements required under paragraph (a) of this 
section. Results shall be summarized monthly and shall be submitted to 
the issuing agency within 15 days after the end of each month. The 
smelter owner shall retain a record of such measurements for one year 
after the NSO period terminates.
    (2) Each NSO shall require that the smelter maintain a record of all 
measurements and calculations required under Sec. 57.303(b). Results 
shall be summarized on a monthly basis and shall be submitted to the 
issuing agency at 6-month intervals. The smelter owner shall retain a 
record of such measurements and calculations for at least one year after 
the NSO terminates.
    (3) The report required under Sec. 57.304(b) shall accompany the 
report required under paragraph (b)(1) of this section.

[[Page 144]]

    (c) Quality assurance and continuous data--(1) Quality assurance. 
Each NSO shall require that the smelter submit a plan for quality 
assurance to the issuing agency for approval and that all monitoring 
performed by continuous monitors shall be verified for quality assurance 
by the smelter. Such plans must follow current EPA guidelines for 
quality assurance, in order to be approvable.
    (2) Continuous data. Manual source testing methods equivalent to 40 
CFR part 60, appendix A shall be used to determine compliance if the 
continuous monitoring system malfunctions.



          Subpart D--Supplementary Control System Requirements



Sec. 57.401  General requirements.

    Except as provided in subpart E, each NSO shall require the smelter 
owner to prevent all violations of the NAAQS in the smelter's designated 
liability area (DLA) through the operation of an approved supplementary 
control system (SCS).



Sec. 57.402  Elements of the supplementary control system.

    Each supplementary control system shall contain the following 
elements:
    (a) Air quality monitoring network. An approvable SCS shall include 
the use of appropriate ambient air quality monitors to continuously 
measure the concentration of sulfur dioxide in the air in the smelter's 
DLA.
    (1) The monitors shall be located at all points of expected 
SO2 concentrations necessary to anticipate and prevent 
possible violations of NAAQS anywhere in the smelter's DLA. The 
determination of the locations where such concentrations may occur shall 
take into account all recorded or probable meteorological and operating 
conditions (including bypassing of control equipment), as well as the 
presence of other sources of SO2 significantly affecting 
SO2 concentrations in the DLA.
    (2) The number and location of sites shall be based on dispersion 
modeling, measured ambient air quality data, meteorological information, 
and the results of the continuing review required by paragraph (f) of 
this section. The system shall include the use of at least 7 fixed 
monitors unless the issuing agency determines, on the basis of a 
demonstration by the smelter owner, that the use of fewer monitors would 
not limit coverage of points of high SO2 concentration or 
otherwise reduce the capability of the smelter owner to prevent any 
violations of the NAAQS in the smelter's DLA.
    (3) All monitors shall be continuously operated and maintained and 
shall meet the performance specifications contained in 40 CFR part 53. 
The monitors shall be capable of routine real time measurement of 
maximum expected SO2 concentrations for the averaging times 
of SO2 NAAQS.
    (b) Meteorological network. The SCS must have a meteorological 
assessment capability adequate to predict and identify local conditions 
requiring emission curtailment to prevent possible violations of the 
NAAQS. The meteorological assessment capability shall provide all 
forecast and current information necessary for successful use of the SCS 
operational manual required by paragraph (e) of this section.
    (c) Designated liability area. The system shall be required to 
prevent all violations of the NAAQS within the smelter's DLA. The DLA of 
any smelter is the area within which the smelter's emissions may cause 
or significantly contribute to violations of the NAAQS for 
SO2 when the smelter is operating at its maximum production 
capacity under any recorded or probable meterological conditions. The 
boundaries of that area shall be specified in the NSO.
    (1) Unless an acceptable demonstration is made under paragraph 
(c)(2) of this section, the DLA shall be a circle with a center point at 
the smelter's tallest stack and a minimum radius as given in the 
following table:

       Radius for SO2 Emissions at Maximum Production Capacity \1\
------------------------------------------------------------------------
                                         Emission rate in      Radius in
   Emissions rate in tons per hour        grains per sec.     kilometers
------------------------------------------------------------------------
16 or less..........................  4,000 or less.........         11
24..................................  6,000.................         16
32..................................  8,000.................         24
40..................................  10,000................         32

[[Page 145]]

 
48 or more..........................  12,000 or more........         40
------------------------------------------------------------------------
\1\ Maximum emission rates for periods not to exceed 24 hours. Minimum
  radii may be determined from the table by linear interpolation.

    (2) The NSO may provide for a DLA with different boundaries if the 
smelter owner can demonstrate through the use of appropriate dispersion 
modeling and ambient air quality monitoring data that the smelter's 
controlled emissions could not cause or significantly contribute to a 
violation of the NAAQS beyond the boundaries of such a different area 
under any recorded or probable meteorological conditions.
    (3) A violation of the NAAQS in the DLA of any smelter shall 
constitute a violation of that smelter's NSO, unless the issuing agency 
determines on the basis of a showing by the smelter owner that the 
smelter owner had taken all emission curtailment action indicated by the 
SCS operational manual and that the violation was caused in significant 
part by:
    (i) Emissions of another source(s) which were in excess of the 
maximum permissible emissions applicable to such source(s),
    (ii) Fugitive emissions of another source(s), or
    (iii) The smelter's own fugitive emissions: Provided, that the 
smelter is in compliance with all requirements of or under subpart E of 
this part.
    (4) For the purposes of this section, maximum permissible emissions 
for other sources are the highest of:
    (i) SIP emission limitation;
    (ii) Orders in effect under section 113(d) of the Clean Air Act; or
    (d) Overlapping designated liability areas. Notwithstanding any 
other provisions of this subpart, the following requirements shall apply 
whenever the designated liability areas of 2 or more smelters do, or 
may, overlap:
    (1) In the case of any NSO applicant that would have a DLA which 
would overlap with the DLA of any other smelter that has applied for an 
NSO or has an NSO in effect, the NSO applicant shall include in its 
application an enforceable joint plan, agreed to by such other 
smelter(s). In determining whether a joint plan is required, the NSO 
applicant shall calculate its DLA according to the table in paragraph 
(c)(1) of this section. The DLA of the other smelter shall be calculated 
according to the table in paragraph (c)(1) unless the other smelter has 
an NSO in effect, in which case the boundaries in that NSO shall be 
used. The enforceable joint plan shall provide for:
    (i) Emission curtailment adequate to ensure that the NAAQS will not 
be violated in any areas of overlapping DLAs; and
    (ii) Conclusive prospective allocation of legal liability in the 
event that the NAAQS are violated in the area of overlapping DLAs.

Such plans may, but need not, include the operation of a joint SCS 
system. Each NSO shall require adherence by the NSO applicant owner to 
the joint plan for emission curtailment and allocation of liability, 
unless the issuing agency determines, pursuant to the provisions of 
paragraph (c)(2) of this section, that the NSO applicant's DLA does not 
overlap with that of any other smelter.
    (2) In the case of any NSO applicant that would have a DLA which 
would overlap with the DLA of any other smelter whose owner has not 
applied for an NSO (and does not have an NSO in effect), the NSO 
applicant's submittal shall contain a written consent, signed by a 
corporate official empowered to do so. The consent shall state that if, 
at any time thereafter, the owner of the other smelter applies for an 
NSO, and the other smelter's DLA would overlap with the NSO applicant's 
DLA, the NSO applicant will negotiate and submit an enforceable joint 
plan for emission curtailment and allocation of liability (as described 
in paragraph (d)(1) of this section). In determining whether it is 
necessary to submit such a consent, each smelter's DLA shall be 
calculated according to the table set forth in paragraph (c)(1) of this 
section. The consent shall state that a joint plan shall be submitted 
within 90 days of the issuing agency's notification to the NSO applicant 
of receipt of the other smelter's letter of intent, unless the issuing 
agency determines that the DLAs do not overlap.

[[Page 146]]

Failure of the NSO applicant to submit such a plan shall constitute 
grounds for denial of its NSO application or a violation of an effective 
NSO, as applicable.
    (e) The SCS operational manual. Each NSO shall require the smelter 
to be operated in accordance with the provisions of an SCS operational 
manual approved by the issuing agency. The SCS operational manual shall 
describe the circumstances under which, the extent to which, and the 
procedures through which emissions shall be curtailed to prevent 
violations of the NAAQS in the smelter's DLA. Failure to curtail 
emissions when and as much as indicated by the manual or to follow the 
provisions of the manual implementing the requirements of paragraph 
(e)(3) of this section shall constitute a violation of the NSO.
    (1) The operational manual shall prescribe emission curtailment 
decisions based on the use of real time information from the air quality 
monitoring network dispersion model estimates of the effect of emissions 
on air quality, and meteorological observations and predictions.
    (2) The operational manual shall also provide for emission 
curtailment to prevent violation of the NAAQS within the smelter's DLA 
which may be caused in part by stack emissions, and to the extent 
practicable fugitive emissions, from any other source (unless that other 
source is a smelter subject to an NSO).
    (3) The SCS operational manual shall include (but not be limited 
to):
    (i) A clear delineation of the authority of the SCS operator to 
require all other smelter personnel to implement the operator's 
curtailment decisions;
    (ii) The maintenance and calibration procedures and schedules for 
all SCS equipment;
    (iii) A description of the procedures to be followed for the regular 
acquisition of all meteorological information necessary to operate the 
system;
    (iv) The ambient concentrations and meteorological conditions that 
will be used as criteria for determining the need for various degrees of 
emission curtailment;
    (v) The meteorological variables as to which judgments may be made 
in applying the criteria stated pursuant to paragraph (e)(3)(iv) of this 
section;
    (vi) The procedures through which and the maximum time period within 
which a curtailment decision will be made and implemented by the SCS 
operator;
    (vii) The method for immediately evaluating the adequacy of a 
particular curtailment decision, including the factors to be considered 
in that evaluation;
    (viii) The procedures through which and the time within which 
additional necessary curtailment will immediately be effected; and
    (ix) The procedures to be followed to protect the NAAQS in the event 
of a mechanical failure in any element of the SCS.
    (f) Continuing review and improvement of the SCS. Each NSO shall 
require the smelter owner to conduct an active program to continuously 
review the design and operation of the SCS to determine what measures 
may be available for improving the performance of the system. Among the 
elements of this program shall be measures to locate and examine 
possible places both inside and outside the DLA where unmonitored NAAQS 
violations may be occurring. Such measures shall include the use of 
modeling as appropriate and mobile ambient air quality monitors, 
following up on information and complaints from members of the public, 
and other appropriate activities. The NSO shall also require the 
submission of a semi-annual report to the issuing agency detailing the 
results of this review and specifying measures implemented to prevent 
the recurrence of any violations of NAAQS.



Sec. 57.403  Written consent.

    (a) The consent. The NSO shall include a written consent, signed by 
a corporate official empowered to do so, in the following form:

    As a condition of receiving a Primary Nonferrous Smelter Order (NSO) 
under Section 119 of the Clean Air Act, for the smelter operated by 
(name of company) at (location), the undersigned official, being 
empowered to do so, consents for the company as follows:
    (1) In any civil proceeding (judicial or administrative) to enforce 
the NSO, the company will not contest:

[[Page 147]]

    (a) Liability for any violation of the National Ambient Air Quality 
Standards for sulfur dioxide in the smelter's designated liability area 
(DLA), except on the ground that a determination under 40 CFR 
57.402(c)(3) was clearly wrong; or
    (b) The conclusive allocation of liability under NSO provisions 
satisfying 40 CFR 57.402(d)(1) between the company's smelter and any 
other smelter(s) for any violation of the National Ambient Air Quality 
Standards for sulfur dioxide in an area of overlapping DLAs.
    (2) The issuing agency (as defined in 40 CFR 57.103) will be allowed 
unrestricted access at reasonable times to inspect, verify calibration 
of, and obtain data from ambient air quality monitors operated by the 
company under the requirements of the NSO.

    (b) Rights not waived by the consent. This consent shall not be 
deemed to waive any right(s) to judicial review of any provisions of an 
NSO that are otherwise available to the smelter owner or operator under 
section 307(b) of the Clean Air Act.



Sec. 57.404  Measurements, records, and reports.

    (a) Measurements. Each NSO shall require the smelter owner to 
install, operate, and maintain a measurement system(s) for continuously 
monitoring sulfur dioxide emissions and stack gas volumetric flow rates 
in each stack (except a stack used exclusively for bypassing control 
equipment) which could emit 5 percent or more of the smelter's total 
potential (uncontrolled) hourly sulfur dioxide emissions.
    (1) Such monitors shall be installed, operated, and maintained in 
accordance with the performance specifications and other requirements 
contained in appendices D and E to 40 CFR part 52. The monitors must 
take and record at least one measurement of sulfur dioxide concentration 
and stack gas flow rate from the effluent of each affected stack in each 
fifteen-minute period. (The NSO shall require the smelter operator to 
devise and implement any procedures necessary for compliance with these 
performance specifications.)
    (2) The sampling point shall be located at least eight stack 
diameters (diameter measured at sampling point) downstream and two 
diameters upstream from any flow disturbance such as a bend, expansion, 
constriction, or flame, unless another location is approved by the 
Administrator.
    (3) The sampling point for monitoring emissions shall be in the duct 
at the centroid of the cross section if the cross sectional area is less 
than 4.645 m2 (50 ft 2) or at a point no closer to 
the wall than 0.914m (3 ft) if the cross sectional area is 4.645 
m2 (50 ft2) or more. The monitor sample point 
shall be in an area of small spatial concentration gradient and shall 
provide a sample which is representative of the concentration in the 
duct.
    (4) The measurement system(s) installed and used pursuant to this 
paragraph shall be subject to the manufacturer's recommended zero 
adjustment and calibration procedures at least once per 24-hour 
operating period unless the manufacturer specifies or recommends 
calibration at shorter intervals, in which case such specifications or 
recommendations shall be followed. Records of these procedures shall be 
made which clearly show instrument readings before and after zero 
adjustment and calibration.
    (5) The results of such monitoring, calibration, and maintenance 
shall be submitted in the form and with the frequency specified in the 
NSO.
    (b) Records. Each NSO shall require the smelter owner to maintain 
records of the air quality measurements made, meteorological information 
acquired, emission curtailment ordered (including the identity of the 
persons making such decisions), and calibration and maintenance 
performed on SCS monitors during the operation of the SCS. These records 
shall be maintained for the duration of the NSO.
    (c) Reports. Each NSO shall require the smelter owner to:
    (1) Submit a monthly summary indicating all places and times at 
which the NAAQS for SO2 were violated in the smelter's DLA, 
and stating the SO2 concentrations at such times;
    (2) Immediately notify EPA and the State agency any time 
concentrations of SO2 in the ambient air in the smelter's DLA 
reaches 0.3 part per million (800 micrograms/cubic meter), 24-hour 
average, or exceed the warning stage in any more stringent emergency 
plan in the applicable State Implementation Plan; and

[[Page 148]]

    (3) Make such other reports as may be specified in the NSO.



Sec. 57.405  Formulation, approval, and implementation of requirements.

    (a) SCS content of the application. The requirements of 
Sec. 57.203(d) shall be satisfied with respect to this subpart as 
follows:
    (1) Each NSO application shall include a complete description of any 
supplementary control system in operation at the smelter at the time of 
application and a copy of any SCS operational manual in use with that 
system.
    (2) Each NSO application shall contain proposed NSO provisions for 
compliance with the requirements of Secs. 57.401, 57.402 (c), (d), and 
(f), 57.403, 57.404, and 57.405 (b)(2).
    (3) Each NSO application shall include a specific plan for the 
development of a system fulfilling the requirements of Sec. 57.402(a), 
(b), and (e) (covering air quality monitoring network, meteorological 
network, and the SCS operational manual).
    (b) SCS content of the order. (1) Each NSO shall include an approved 
version of the plan described in paragraph (a)(3) of this section and 
shall provide increments of progress towards its completion. Each NSO 
shall require, upon completion of the measures specified in the approved 
plan, submission of a report which describes each element of the SCS and 
explains why the elements satisfy the requirements of the plan and 
submission of a copy of the SCS operational manual developed under the 
plan.
    (2) Each NSO shall require the submission of a final report, within 
6 months of the required date for completion of the measures specified 
in the approved plan evaluating the performance and adequacy of the SCS 
developed pursuant to the approved plan. The report shall include:
    (i) A detailed description of how the criteria that form the basis 
for particular curtailment decisions were derived;
    (ii) A complete description of each SCS element listed in 
Sec. 57.402 (a) through (d) (covering monitoring, meteorology, and the 
DLA), and an explanation of why the elements fulfill the requirements of 
those sections;
    (iii) A reliability study demonstrating that the SCS will prevent 
violations of the NAAQS in the smelter's DLA at all times. The 
reliability study shall include a comprehensive analysis of the system's 
operation during one or more three-month seasonal periods when 
meteorological conditions creating the most serious risk of NAAQS 
violations are likely to occur. Where it is impossible, because of time 
restraints, to include in such a study and analysis of the three month 
seasonal period with meteorological conditions creating the most serious 
risk of NAAQS violations, the study shall analyze the system's operation 
on the basis of all available information. The NSO shall provide that in 
such case, a supplemental reliability study shall be submitted after the 
end of the worst case three-month period as a part of the next semi-
annual report required under Sec. 57.402(f).
    (iv) A copy of the current SCS operational manual.
    (c) Amendment of the NSO. Each NSO shall be amended, if necessary, 
within 3 months of completion of the measures required under the SCS 
development plan and also, if necessary, within three months of 
submission of the final report or any supplement to the final report 
required under paragraph (b)(2) of this section, to reflect the most 
current approved elements of the SCS and, as appropriate, to fulfill all 
other requirements of this subpart. Each NSO shall also be subsequently 
amended (as provided in Sec. 57.104) whenever necessary as a result of 
the program required by Sec. 57.402(f) or to reflect improved SCS 
operating procedures or other system requirements.



           Subpart E--Fugitive Emission Evaluation and Control



Sec. 57.501  General requirements.

    (a) Each NSO shall require the smelter owner to use such control 
measures as may be necessary to ensure that the smelter's fugitive 
emissions do not result in violations of the NAAQS for SO2 in 
the smelter's DLA.

[[Page 149]]

    (b) A smelter which is operating under an NSO containing a SIP 
compliance schedule established in accordance with Sec. 57.705 is 
required to be making progress toward compliance with any fugitive 
control requirements contained in its respective SIP and need not meet 
the other requirements contained in this subpart.
    (c) A smelter which is subject to an NSO which does not contain a 
SIP compliance schedule must meet the provisions of Secs. 57.502 and 
57.503.



Sec. 57.502  Evaluation.

    (a) Evaluation at the time of application. Any smelter owner may 
demonstrate at the time of application for an NSO that the smelter's 
SO2 fugitive emissions will not cause or significant 
contribute to violations of the NAAQS in the smelter's DLA. If such 
demonstration is not made, the smelter owner shall submit the design and 
workplan for a study adequate to assess the sources of significant 
fugitive emissions from the smelter and their effects upon ambient air 
quality.
    (b) Evaluation during the first 6 months of the NSO. The design and 
workplan of the study shall be approved, if adequate, by the issuing 
agency and included in the NSO. The study shall commence no later than 
the date when the NSO becomes effective and an analysis of its results 
shall be submitted to the issuing agency within 6 months of the 
effective date of the NSO. The study shall include an appropriate period 
during which the ambient air shall be monitored to determine the impact 
of fugitive emissions of sulfur dioxide, arsenic (at copper smelters 
only), lead (at lead and zinc smelters only), and total suspended 
particulates on the ambient air quality in the smelter's DLA.



Sec. 57.503  Control measures.

    The NSO of any smelter subject to the requirements of Sec. 57.502(b) 
shall be amended, if necessary, within 6 months of EPA's receipt of the 
analysis specified in Sec. 57.502(b), as provided in Sec. 57.704(c) to 
implement the requirement of Sec. 57.501. Measures required to be 
implemented may include:
    (a) Additional supplementary control. The use of the supplementary 
control system, if the additional use of the system does not interfere 
with the smelter owner's ability to meet the requirements of subpart D; 
and
    (b) Engineering and maintenance techniques. The use of engineering 
and maintenance techniques to detect and prevent leaks and capture and 
vent fugitive emissions through appropriate stacks. These techniques 
include but are not limited to:
    (1) For reactors, installation and proper operation of primary 
hoods;
    (2) For roasters, installation and proper operation of primary hoods 
on all hot calcine transfer points;
    (3) For furnaces, installation and proper operation of primary hoods 
on all active matte tap holes, matte launders, slag skim bays, and 
transfer points;
    (4) For converters, installation and proper operation of primary 
hoods for blowing operations, and where appropriate, secondary hoods for 
charging and pouring operations;
    (5) For sintering machines, installation and proper operation of 
primary hoods on the sinter bed, all hot sinter ignition points, all 
concentrate laydown points, and all hot sinter transfer points;
    (6) For blast furnaces, installation and proper operation of primary 
hoods on all active slag and lead bullion furnace tap holes and transfer 
points;
    (7) For dross reverberatory furnaces, installation and proper 
operation of primary hoods on all active charging and discharging 
points;
    (8) Maintenance of all ducts, flues and stacks in a leak-free 
condition to the maximum extent possible;
    (9) Maintenance of all process equipment under normal operating 
conditions in such a fashion that out-leakage of fugitive gases will be 
prevented to the maximum extent possible;
    (10) Secondary or tertiary hooding on process equipment where 
necessary; and
    (11) Partial or complete building evacuation as appropriate.



Sec. 57.504  Continuing evaluation of fugitive emission control measures.

    Each NSO shall require the smelter owner to conduct an active 
program to continuously review the effectiveness

[[Page 150]]

of the fugitive emission control measures implemented pursuant to 
Sec. 57.503 in maintaining the NAAQS and, if such measures are not 
sufficiently effective, to evaluate what additional measures should be 
taken to assure that the NAAQS will be maintained with a reasonably 
degree of reliability. The NSO shall also require submission of a semi-
annual report to the issuing Agency detailing the results of this review 
and evaluation. Such a report may be submitted as part of the report 
required under Sec. 57.402(f).



Sec. 57.505  Amendments of the NSO.

    An NSO shall be amended within three months of submission of any 
report required under Sec. 57.504 so as to require additional fugitive 
emission control measures if such report establishes that such 
additional measures are necessary to assure that the NAAQS will be 
maintained with a reasonable degree of reliability.



            Subpart F--Research and Development Requirements



Sec. 57.601  General requirements.

    (a) This subpart is not applicable to NSOs which contain a SIP 
compliance schedule in accordance with Sec. 57.705.
    (b) The requirements of this subpart may be waived with respect to a 
smelter if the owner of that smelter submits with its NSO application a 
written certification by a corporate official authorized to make such a 
certification that the smelter will either comply with its 
SO2 SIP limits by January 2, 1988 or close after January 1, 
1988 until it can comply with such limits.
    (c) Except as provided in paragraphs (a) and (b), each NSO shall 
require the smelter to conduct or participate in a specific research and 
development program designed to develop more effective means of 
compliance with the sulfur dioxide control requirements of the 
applicable State Implementation Plan than presently exist.



Sec. 57.602  Approval of proposal.

    (a) The smelter owner's proposal. The smelter owner's NSO 
application shall include a proposed NSO provision for implementing the 
requirement of Sec. 57.601, a fully documented supporting analysis of 
the proposed program, and an evaluation of the consistency of the 
proposed program with the criteria listed in Sec. 57.603. The 
application shall also specify:
    (1) The design and substantive elements of the research and 
development program, including the expected amount of time required for 
their implementation;
    (2) The annual expected capital, operating, and other costs of each 
element in the program;
    (3) The smelter's current production processes, pollution control 
equipment, and emissions which are likely to be affected by the program;
    (4) Potential or expected benefits of the program;
    (5) The basis upon which the results of the program will be 
evaluated; and
    (6) The names, positions, and qualifications of the individuals 
responsible for conducting and supervising the project.
    (b) EPA approval. (1) If the issuing agency will not be EPA, the 
smelter owner or the issuing agency may also submit to EPA the 
information specified in paragraph (a) of this section at the same time 
the information is submitted to the issuing agency. As soon as possible 
after the receipt of the information described in paragraph (a) of this 
section, EPA shall certify to the issuing agency and to the applicant 
whether or not in the judgment of the Administrator the smelter owner's 
final proposals are approvable. If EPA does not receive an advance copy 
of the proposal, the ultimate approval will occur when the NSO is 
approved rather than in advance of receipt of the NSO.
    (2) A prerequisite for approval of an R&D proposal by EPA and any 
issuing agency is that the planned work must yield the most cost 
effective technology possible.
    (c) Optional preproposal. The smelter owner may, at its option, 
submit to EPA for its approval and comment a preproposal generally 
describing the project the owner intends to propose under paragraph (a) 
of this section. A preproposal may be submitted to EPA any time prior to 
the submission of a proposal under paragraph (a) of this section. As 
soon as possible after the

[[Page 151]]

receipt of a preproposal, EPA shall certify to the applicant (and to any 
other issuing agency, as applicable) whether or not the project would be 
approvable. This certification may include comments indicating necessary 
modifications which would make the project approvable.



Sec. 57.603  Criteria for approval.

    The approvability of any proposed research and development program 
shall be judged primarily according to the following criteria:
    (a) The likelihood that the project will result in the use of more 
effective means of emission limitation by the smelter within a 
reasonable period of time and that the technology can be implemented at 
the smelter in question, should the smelter be placed on a SIP 
compliance schedule at some future date when adequately demonstrated 
technology is reasonably available;
    (b) Whether the proposed funding and staffing of the project appear 
adequate for its successful completion;
    (c) Whether the proposed level of funding for the project is 
consistent with the research and development expenditure levels for 
pollution control found in other industries;
    (d) The potential that the project may yield industrywide pollution 
control benefits;
    (e) Whether the project may also improve control of other pollutants 
of both occupational and environmental significance;
    (f) The potential effects of the project on energy conservation; and
    (g) Other non-air quality health and environmental considerations.



Sec. 57.604  Evaluation of projects.

    The research and development proposal shall include a provision for 
the employment of a qualified independent engineering firm to prepare 
written reports at least annually which evaluate each completed 
significant stage of the research and development program, including all 
relevant information and data generated by the program. All reports 
required by this paragraph shall be submitted to EPA and also to the 
issuing agency if it is not EPA.



Sec. 57.605  Consent.

    Each NSO shall incorporate by reference a binding written consent, 
signed by a corporate official empowered to do so, requiring the smelter 
owner to:
    (a) Carry out the approved research and development program;
    (b) Grant each issuing agency and EPA and their contractors access 
to any information or data employed or generated in the research and 
development program, including any process, emissions, or financial 
records which such agency determines are needed to evaluate the 
technical or economic merits of the program;
    (c) Grant physical access to representatives and contractors of each 
issuing agency to each facility at which such research is conducted;
    (d) Grant the representatives and contractors of EPA and the issuing 
agency reasonable access to the persons conducting the program on behalf 
of the smelter owner for discussions of progress, interpretation of data 
and results, and any other similar purposes as deemed necessary by EPA 
or any issuing agency.



Sec. 57.606  Confidentiality.

    The provisions of section 114 of the Act and 40 CFR part 2 shall 
govern the confidentiality of any data or information provided to EPA 
under this subpart.



               Subpart G--Compliance Schedule Requirements



Sec. 57.701  General requirements.

    This section applies to all smelters applying for an NSO. Each NSO 
shall require the smelter owner to meet all of the requirements within 
the NSO as expeditiously as practicable but in no case later than the 
deadlines contained in this subpart or any other section of these 
regulations. For requirements not immediately effective, the NSO shall 
provide increments of progress and a schedule for compliance. Each 
schedule must reflect the extent to which any required equipment or 
systems are already in place and the extent to which any required 
reports or studies have already been completed.

[[Page 152]]

Requirements for smelters to submit compliance schedules and the 
procedures which they must follow are outlined below.



Sec. 57.702  Compliance with constant control emission limitation.

    (a) This section applies to all smelters which receive an NSO, but 
only to the extent this section is compatible with any SIP compliance 
schedule required by Secs. 57.201(d)(2) and 57.705.
    (b) Any NSO issued to a smelter not required to immediately comply 
with the requirements of subpart G under Sec. 57.701 shall contain a 
schedule for compliance with those requirements as expeditiously as 
practicable but in no case later than 6 months from the effective date 
of the NSO, except as follows: Where a waiver is requested in accordance 
with subpart H, an NSO may be issued without a schedule for compliance 
with the requirements for which a waiver is being considered consistent 
with subpart H, pending a final decision on the request under subpart H. 
If a waiver is requested in accordance with subpart H, compliance with 
the requirements of subpart C which were deferred as a result of such 
request shall be achieved as expeditiously as practicable after, but in 
no case later than 6 months from a final decision by the issuing agency 
to deny a waiver under subpart H or disapproval by EPA of a waiver 
granted by the issuing agency. The time limits specified herein may be 
extended only if a smelter operator demonstrates that special 
circumstances warrant more time, in which case the compliance schedule 
shall require compliance as expeditiously as practicable. An NSO which 
does not contain a schedule for compliance with all the requirements of 
subpart C because a waiver has been requested in accordance with subpart 
H shall be amended in accordance with Sec. 57.104 within three months 
after a final decision under subpart H so as to either grant a waiver of 
any remaining requirements of subpart C, or deny such a waiver and place 
the smelter on a compliance schedule for meeting those requirements. If 
the issuing agency grants a waiver and such waiver is disapproved by 
EPA, the issuing agency shall promptly amend the NSO so as to place the 
smelter on a compliance schedule meeting any remaining requirements of 
subpart C.
    (c) Any schedule required under this section shall contain the 
following information and increments of progress to the extent 
applicable:
    (1) Description of the overall design of the SO2 control 
system(s) to be installed;
    (2) Descriptions of specific process hardware to be used in 
achieving compliance with interim SO2 constant controls 
including gas capacity values;
    (3) The date by which contracts will be let or purchase orders 
issued to accomplish any necessary performance improvements;
    (4) The date for initiating on-site construction or installation of 
necessary equipment;
    (5) The date by which on-site construction or installation of 
equipment is to be completed; and
    (6) The date for achievement of final compliance with interim 
emission limitations.



Sec. 57.703  Compliance with the supplementary control system requirements.

    This section applies to all nonferrous smelters applying for an NSO.
    (a) Schedules for smelters with existing SCS. Each NSO shall require 
immediately upon issuance of the NSO operation of any existing 
supplementary control system and immediately upon the effective date of 
the NSO the assumption of liability for all violations of the NAAQS 
detected by any monitor in the SCS system. Each NSO shall require that 
within six months of the effective date of the NSO the smelter complete 
any measures specified in the smelter's approved SCS development plan 
not implemented at the time the NSO is issued, and assume liability for 
all violations of the NAAQS detected anywhere in the DLA (except as 
provided in subpart D of these regulations). Other requirements of 
subpart D such as the requirements for submission of reports records, 
and for ongoing evaluation of the SCS shall be complied with at the 
times specified in subpart D and Sec. 57.701.
    (b) Compliance schedule for smelters with no existing SCS system. 
Where a

[[Page 153]]

smelter has no SCS at the time of issuance of the NSO, the NSO shall 
require compliance with the requirements of subpart D according to the 
following schedule:
    (1) Within six months after the effective date of the NSO the 
smelter shall install all operating elements of the SCS system, begin 
operating the system, complete all other measures specified in its 
approved SCS development plan, begin compliance with the requirements of 
Sec. 57.404, and assume liability for any violations of the NAAQS within 
its designated liability area (except as provided by subpart D), 
detected by the SCS monitors in place.
    (2) Within nine months thereafter the smelter shall submit the SCS 
Report, assume liability for all violations of the NAAQS detected 
anywhere within its designated liability area, and comply with all other 
requirements of subpart D, except for those which subpart D specifies 
are to be satisfied at or after the close of such nine-month period, 
including requirements for submission of studies, reports, and records, 
and the requirements for continued review and evaluation of the SCS.



Sec. 57.704  Compliance with fugitive emission evaluation and control requirements.

    This section applies only to smelters not required to submit SIP 
Compliance Schedules under Sec. 57.705. Each NSO shall require that 
smelters satisfy each of the requirements of subpart E as expeditiously 
as practicable, taking into account the extent to which those 
requirements have already been satisfied, and in any event, within any 
deadlines specified below.
    (a) Plan for fugitive emission control. The NSO shall provide that 
within a reasonable period after the submission of the report on the 
fugitive emission control study required by Sec. 57.502, but within a 
period allowing sufficient time for compliance with the requirement of 
Sec. 57.503 for amendment of the NSO, the smelter owner shall submit to 
the issuing agency for its approval a proposed fugitive emission control 
plan, including increments of progress, for compliance with the 
requirements of Secs. 57.501 and 57.503.
    (b) SCS Report. If the fugitive emission control plan submitted 
under paragraph (a) of this section proposes to meet the requirements of 
Secs. 57.501 and 57.503 through the additional use of a supplementary 
control system, the plan shall demonstrate that the use of supplementary 
controls at that smelter to prevent violations of the NAAQS resulting 
from fugitive emissions is practicable, adequate, reliable, and 
enforceable. The plan shall contain increments of progress providing for 
completion of the implementation of each additional measure, and for 
corresponding compliance with the requirements of pararaphs (b) and (c) 
of Sec. 57.404, within four months of approval of the plan by the 
issuing agency. The plan shall also provide that within three months 
after completion of implementation of those additional measures, the 
smelter shall fully comply with the requirements of Secs. 57.401 and 
57.501 (including the assumption of liability for violations of NAAQS 
within its designated liability area), and shall submit and additional 
SCS report for the approval of the issuing agency. This additional final 
report shall correspond to that submitted under Sec. 57.405(b)(2), 
except that it need not contain the 3-month study described in 
Sec. 57.405(b)(2)(iii).
    (c) NSO amendment. The amendments of the NSO required under 
Sec. 57.503 shall be affected by the issuing agency as follows:
    (1) With respect to the additional use of SCS, upon approval or 
promulgation of the plan submitted under paragraph (a) of this section 
and upon approval or promulgation of the requirements for the system 
described in the additional SCS Report under paragraph (b) of this 
section;
    (2) With respect to the additional use of engineering techniques, 
upon approval or promulgation of the compliance schedule required by 
paragraph (a) of this section.



Sec. 57.705  Contents of SIP Compliance Schedule required by Sec. 57.201(d) (2) and (3).

    This section applies to smelters which are required to submit a SIP 
Compliance Schedule as discussed below.

[[Page 154]]

    (a) Each SIP Compliance Schedule required by Sec. 57.201(d) (2) and 
(3) must contain the following elements:
    (1) Description of the overall design of the SO2 control 
system(s) to be installed;
    (2) Descriptions of specific process hardware to be used in 
achieving compliance with the SIP emission limitation including gas 
capacity values;
    (3) The date by which contracts will be let or purchase orders 
issued to accomplish any necessary performance improvements;
    (4) The date for initiating on-site construction or installation of 
necessary equipment;
    (5) The date by which on-site construction or installation of 
equipment is to be completed;
    (6) The date for achievement of final compliance with SIP emission 
limitations; and
    (7) Any other measures necessary to assure compliance with all SIP 
requirements as expeditiously as practicable.
    (b) Operations of SCS. Smelters to which Sec. 57.705 is applicable 
must comply with all elements of Sec. 57.703.



Subpart H--Waiver of Interim Requirement for Use of Continuous Emission 
                          Reduction Technology



Sec. 57.801  Purpose and scope.

    (a) This subpart shall govern all proceedings for the waiver of the 
interim requirement that each NSO provide for the use of constant 
controls.
    (b) In the absence of specific provisions in this subpart, and where 
appropriate, questions arising at any stage of the proceeding shall be 
resolved at the discretion of the Presiding Officer or the 
Administrator, as appropriate.



Sec. 57.802  Request for waiver.

    (a) General. (1) Each smelter owner requesting a waiver shall 
complete, sign, and submit appendix A (Test for Eligibility for Interim 
Waiver). Copies of appendix A may be obtained from any EPA Regional 
Administrator, or from the Director, Stationary Source Compliance 
Division (EN-341), U.S. Environmental Protection Agency, 1200 
Pennsylvania Ave., NW., Washington, DC 20460. Claims of confidentiality 
shall be made as provided in Sec. 57.203.
    (2) The smelter owner shall append to the completed and signed 
appendix A full copies of all documents, test results, studies, reports, 
scientific literature and assessments required by appendix A. To the 
extent that the material consists of generally available published 
material, the smelter owner may cite to the material in lieu of 
appending it to appendix A. The smelter owner shall specificially 
designate those portions of any documents relied upon and the facts or 
conclusions in appendix A to which they relate.
    (b) Effect of submitting incomplete application. (1) The 
Administrator, or a person designated by him to review applications for 
waivers, may advise the smelter owner in writing whenever he determines 
that additional information is needed in order to make the waiver 
eligibility determinations required by section 119(d)(2) of the Act. The 
smelter owner shall promptly supply such information. All additional 
information requested under this paragraph and filed in the manner 
required by paragraph (d) shall be deemed part of appendix A.
    (2) Failure to comply with the requirements of paragraphs (a) and 
(b)(1) of this section shall be grounds for denial of the requested 
waiver.
    (c) Time for requesting waivers. Any request for a waiver must be 
submitted to the Administrator by the smelter owner at the time of the 
application for an NSO from the State or the Administrator, as the case 
may be. Where a smelter was issued a second period NSO by a State before 
these regulations went into effect, a request for a waiver shall be made 
and a completed appendix A shall be submitted, within sixty days of the 
effective date of these regulations, unless an extension is granted by 
the Administrator, or his designee, for good cause.
    (d) Submission of request. A copy of appendix A (plus attachments) 
which has been completed for the purpose of requesting a waiver of 
constant control requirements shall be filed with the Administrator, 
addressed as follows:

[[Page 155]]

Director, Stationary Source Compliance Division (EN-341), U.S. 
Environmental Protection Agency, 1200 Pennsylvania Ave., NW., 
Washington, DC 20460, Attn: Confidential Information Unit.
    (e) Eligibility. A smelter shall be eligible for consideration under 
this subpart only if it establishes that (1) its existing strong stream 
controls, if any, lack the capacity while in full operation to treat all 
strong stream sulfur dioxide emissions and (2) bypass of strong stream 
controls due to excess strong stream sulfur dioxide emissions cannot be 
avoided with improved operation and maintenance of existing strong 
stream controls and process equipment.
    (f) Criteria for decision. The Administrator shall grant or approve 
a waiver, whichever is appropriate, for any eligible smelter as to which 
he finds, in accordance with the methods and procedures specified in 
appendix A, that:
    (1) The higher of the two net present values of future cash flows 
completed under the two alternative sets of assumptions set forth in the 
instructions to schedule D.6 in appendix A in less than liquidation 
(salvage) value; or
    (2) The smelter's average variable costs at all relevant levels of 
production (after installation of interim constant control equipment) 
would exceed the weighted average price of smelter output for one year 
or more.



Sec. 57.803  Issuance of tentative determination; notice.

    (a) Tentative determination. (1) The EPA staff shall formulate and 
prepare:
    (i) A ``Staff Computational Analysis,'' using the financial 
information submitted by the smelter owner under Sec. 57.802 to evaluate 
the economic circumstances of the smelter for which the waiver is 
sought;
    (ii) A tentative determination as to whether an interim requirement 
for the use of constant controls would be so costly as to necessitate 
permanent or prolonged temporary cessation of operations at the smelter 
for which the waiver is requested. The tentative determination shall 
contain a ``Proposed Report and Findings'' summarizing the conclusions 
reached in the Staff Computational Analysis, discussing the estimated 
cost of interim controls, and assessing the effect upon the smelter of 
requiring those controls. The tentative determination shall also contain 
a proposed recommendation that the waiver be granted or denied, based 
upon the Proposed Report and Findings, and stating any additional 
considerations supporting the proposed recommendation. This tentative 
determination shall be a public document.
    (2) In preparing the Proposed Report and Findings, the EPA staff 
shall attempt to the maximum extent feasible to avoid revealing 
confidential information which, if revealed, might damage the legitimate 
business interests of the applicant. The preceding sentence 
notwithstanding, the tentative determination shall be accompanied by a 
listing of all materials considered by EPA staff in developing the 
tentative determination. Subject to the provisions of Sec. 57.814(a), 
full copies of all such materials shall be included in the 
administrative record under Sec. 57.814, except that, to the extent the 
material consists of published material which is generally available, 
full citations to that material may be given instead.
    (b) Public notice. Public notice of EPA's tentative determination to 
grant or deny an application for a waiver shall be given by:
    (1) Publication at least once in a daily newspaper of general 
circulation in the area in which the smelter is located; and
    (2) Posting in the principal office of the municipality in which the 
smelter is located.
    (c) Individual notice. Individual notice of EPA's tentative 
determination to grant or deny an application for a waiver shall be 
mailed to the smelter owner by certified mail, return receipt requested, 
and to the air pollution control agency for the State in which the 
smelter is located.
    (d) Request for individual notice. EPA shall mail notice of its 
tentative determination to grant or deny an application for waiver to 
any person upon request. Each such request shall be submitted to the 
Administrator in writing, shall state that the request is for individual 
notice of tentative determination to grant or deny any application for a 
waiver under section 119(d) of

[[Page 156]]

the Clean Air Act, and shall describe the notice or types of notices 
desired (e.g., all notices, notices for a particular Region, notices for 
a particular State, notice for a particular city).
    (e) Form of notice. The notice of tentative determination required 
to be distributed under paragraphs (b), (c), and (d) of this section 
shall include, in addition to any other materials, the following:
    (1) A summary of the information contained in appendix A;
    (2) The tentative determination prepared under paragraph (a) of this 
section: Provided, that except in the case of the smelter owner, a 
summary of the basis for the grant or denial of the waiver may be 
provided in lieu of the formal determinations required by paragraph 
(a)(1) of this section;
    (3) A brief description of the procedures set forth in Sec. 57.804 
for requesting a public hearing on the waiver request, including a 
statement that such request must be filed within 30 days of the date of 
the notice;
    (4) A statement that written comments on the tentative determination 
submitted to EPA within 60 days of the date of the notice will be 
considered by EPA in making a final decision on the application; and
    (5) The location of the administrative record and the location at 
which interested persons may obtain further information on the tentative 
determination, including a copy of the index to the record, the 
tentative determination prepared under paragraph (a) of this section, 
and any other nonconfidential record materials.



Sec. 57.804  Request for hearing; request to participate in hearing.

    (a) Request for hearing. Within 30 days of the date of publication 
or receipt of the notice required by Sec. 57.803, any person may request 
the Administrator to hold a hearing on the tentative determination by 
submitting a written request containing the following:
    (1) Identification of the person requesting the hearing and his 
interest in the proceeding;
    (2) A statement of any objections to the tentative determination; 
and
    (3) A statement of the issues which such person proposes to raise 
for consideration at such hearing.
    (b) Grant or denial of hearing; notification. Whenever (1) the 
Administrator has received a written request satisfying the requirements 
of paragraph (a) of this section which presents genuine issues as to the 
effect on the smelter of the requirement for use of constant controls, 
or (2) the Administrator determines in his discretion that a hearing is 
necessary or appropriate the Administrator shall give written notice of 
his determination to each person requesting such hearing and the smelter 
owner, and shall provide public notice of his determination in 
accordance with Sec. 57.803(b). If the Administrator determines that a 
request filed under paragraph (a) of this section does not comply with 
the requirements of paragraph (a) or does not present genuine issues, he 
shall be given written notice of his decision to deny a hearing to the 
person requesting the hearing.
    (c) Form of notice of hearing. Each notice of hearing disseminated 
under paragraph (b) of this section shall contain:
    (1) A statement of the time and place of the hearing;
    (2) A statement identifying the place at which the official record 
on the application for waiver is located, the hours during which it will 
be open for public inspection, and the documents contained in the record 
as of the date of the notice of hearing;
    (3) The due date for filing a written request to participate in the 
hearing under paragraph (d) of this section;
    (4) The due date for making written submissions under 57.805; and
    (5) The name, address, and office telephone number of the hearing 
Clerk for the hearing.
    (d) Request to participate in hearing. Each person desiring to 
participate in any hearing granted under this section, including any 
person requesting such a hearing, shall file a written request to 
participate with the Hearing Clerk by the deadline set forth in the 
notice of hearing. The request shall include:
    (1) A brief statement of the interest of the person in the 
proceeding;
    (2) A brief outline of the points to be addressed;

[[Page 157]]

    (3) An estimate of the time required; and
    (4) If the request is submitted by an organization, a nonbinding 
list of the persons to take part in the presentation. As soon as 
practicable, but in no event later than two weeks before the scheduled 
date of the hearing, the Hearing Clerk shall make available to the 
public and shall mail to each person who asked to participate in the 
hearing a hearing schedule.
    (e) Effect of denial of or absence of request for hearing. If no 
request for a hearing is made under this section, or if all such 
requests are denied under paragraph (b) of this section, the tentative 
determination issued under Sec. 57.803 shall be treated procedurally as 
if it were a recommended decision issued under Sec. 57.811(b)(2), except 
that for purposes of Secs. 57.812 and 57.813 the term ``hearing 
participant'' shall be construed to mean the smelter owner and any 
person who submitted comments under Sec. 57.803(e)(4).



Sec. 57.805  Submission of written comments on tentative determination.

    (a) Main comments. Each person who has filed a request to particpate 
in the hearing shall file with the Hearing Clerk no later than 30 days 
before the scheduled start of the hearing (or such other date as may be 
set forth in the notice of hearing) any comments which he has on the 
request for waiver and EPA's tentative determination, based on 
information which is or reasonably could have been available to that 
person at the time.
    (b) Reply comments. Not later than two weeks after a full transcript 
of the hearing becomes available (or such other date as may be set forth 
in the notice of hearing), each person who has filed a request to 
participate in the hearing shall file with the Hearing Clerk any 
comments he may have on:
    (1) Written comments submitted by other participants pursuant to 
paragraph (a) of this section;
    (2) Written comments submitted in response to the notice of hearing;
    (3) Material in the hearing record; and
    (4) Material which was not and could not reasonably have been 
available prior to the deadline for submission of main comments under 
paragraph (a) of this section.
    (c) Form of comments. All comments should be submitted in 
quadruplicate and shall include any affidavits, studies, tests or other 
materials relied upon for making any factual statements in the comments.
    (d) Use of comments. (1) Written comments filed under this section 
shall constitute the bulk of the evidence submitted at the hearing. Oral 
statements at the hearing should be brief, and restricted either to 
points that could not have been made in written comments, or to 
emphasizing points which are made in the comments, but which the 
participant believes can be more forcefully urged in the hearing 
context.
    (2) Notwithstanding the foregoing, within two weeks prior to either 
deadline specified by paragraph (a) of this section for the filing of 
main comments, any person who has filed a request to participate in the 
hearing may file a request with the Presiding Officer to submit all or 
part of his main comments orally at the hearing in lieu of submitting 
written comments. The Presiding Officer shall, within one week, grant 
such request if he finds that such person will be prejudiced if he is 
required to submit such comments in written form.



Sec. 57.806  Presiding Officer.

    (a) Assignment of Presiding Officer. (1) The Administrator shall, as 
soon as practicable after the granting of a request for hearing under 
Sec. 57.803, request that the Chief Administrative Law Judge assign an 
Administrative Law Judge as Presiding Officer. The Chief Administrative 
Law Judge shall thereupon make the assignment.
    (2) If the parties to the hearing waive their right to have the 
Agency or an Administrative Law Judge preside at the hearing, the 
Administrator shall appoint an EPA employee who is an attorney to serve 
as presiding officer.
    (b) Powers and duties of Presiding Officer. It shall be the duty of 
the Presiding Officer to conduct a fair and impartial hearing, assure 
that the facts are fully elicited, and avoid delay. The Presiding 
Officer shall have authority to:

[[Page 158]]

    (1) Chair and conduct administrative hearings held under this 
subpart;
    (2) Administer oaths and affirmations;
    (3) Receive relevant evidence: Provided, that the administrative 
record, as defined in Sec. 57.814, shall be received in evidence;
    (4) Consider and rule upon motions, dispose of procedural requests, 
and issue all necessary orders;
    (5) Hold conferences for the settlement or simplification of the 
issues or the expediting of the proceedings; and
    (6) Do all other acts and take all measures necessary for the 
maintenance of order and for the efficient, fair and impartial conduct 
of proceedings under this subpart.

[50 FR 6448, Feb. 15, 1985, as amended at 57 FR 5328, Feb. 13, 1992]



Sec. 57.807  Hearing.

    (a) Composition of hearing panel. The Presiding Officer shall 
preside at the hearing held under this subpart. An EPA panel shall also 
take part in the hearing. In general, the membership of the panel shall 
consist of EPA employees having special expertise in areas related to 
the issues to be addressed at the hearing, including economists and 
engineers. For this reason, the membership of the panel may change as 
different issues are presented for discussion.
    (b) Additional hearing participants. Either before or during the 
hearing, the Presiding Officer, after consultation with the panel, may 
request that a person not then scheduled to participate in the hearing 
(including an EPA employee or a person identified by any scheduled 
hearing participant as having knowledge concerning the issues raised for 
discussion at the hearing) make a presentation or make himself available 
for cross-examination at the hearing.
    (c) Questioning of hearing participants. The panel members may 
question any person participating in the hearing. Cross-examination by 
persons other than panel members shall not be permitted at this stage of 
the proceeding except where the Presiding Officer determines, after 
consultation with the panel, that circumstances compel such cross-
examination. However, persons in the hearing audience, including other 
hearing participants, may submit written questions to the Presiding 
Officer for the Presiding Officer to ask the participants, and the 
Presiding Officer may, after consultation with the panel, and in his 
sole discretion, ask these questions.
    (d) Submission of additional material. Participants in the hearing 
shall submit for the hearing record such additional material as the 
hearing panel may request within 10 days following the close of the 
hearing, or such other period of time as is ordered by the Presiding 
Officer. Participants may also submit additional information for the 
hearing record on their own accord within 10 days after the close of the 
hearing.
    (e) Transcript. A verbatim transcript shall be made of the hearing.



Sec. 57.808  Opportunity for cross-examination.

    (a) Request for cross-examination. After the close of the panel 
hearing conducted under this part, any participant in that hearing may 
submit a written request for cross-examination. The request shall be 
received by EPA within one week after a full transcript of the hearing 
becomes available and shall specify:
    (1) The disputed issue(s) of material fact as to which cross-
examination is requested. This shall include an explanation of why the 
questions at issue are factual, rather than of an analytical or policy 
nature; the extent to which they are in dispute in the light of the 
record made thus far, and the extent to which and why they can 
reasonably be considered material to the decision on the application for 
a waiver; and
    (2) The person(s) the participant desires to cross-examine, and an 
estimate of the time necessary. This shall include a statement as to why 
the cross-examination requested can be expected to result in full and 
true disclosure resolving the issue of material fact involved.
    (b) Order granting or denying request for cross-examination. As 
expeditiously as practicable after receipt of all requests for cross-
examination under

[[Page 159]]

paragraph (a) of this section, the Presiding Officer, after consultation 
with the hearing panel, shall issue an order either granting or denying 
each such request, which shall be disseminated to all persons requesting 
cross-examination and all persons to be cross-examined. If any request 
for cross-examination is granted, the order shall specify:
    (1) The issues as to which cross-examination is granted;
    (2) The persons to be cross-examined on each issue;
    (3) The persons allowed to conduct cross-examination;
    (4) Time limits for the examination of witnesses; and
    (5) The date, time and place of the supplementary hearing at which 
cross-examination shall take place. In issuing this ruling, the 
Presiding Officer may determine that one or more participants have the 
same or similar interests and that to prevent unduly repetitious cross-
examination, they should be required to choose a single representative 
for purposes of cross-examination. In such a case, the order shall 
simply assign time for cross-examination by that single representative 
without identifying the representative further.
    (c) Supplementary hearing. The Presiding Officer and at least one 
member of the original hearing panel shall preside at the supplementary 
hearing. During the course of the hearing, the Presiding Officer shall 
have authority to modify any order issued under paragraph (b) of this 
section. A verbatim transcript shall be made of this hearing.
    (d) Alternatives to cross-examination. (1) No later than the time 
set for requesting cross-examination, a hearing participant may request 
that alternative methods of clarifying the record (such as the submittal 
of additional written information) be used in lieu of or in addition to 
cross-examination. The Presiding Officer shall issue an order granting 
or denying such request at the time he issues (or would have issued) an 
order under paragraph (b) of this section. If the request is granted, 
the order shall specify the alternative provided and any other relevant 
information (e.g., the due date for submitting written information).
    (2) In passing on any request for cross-examination submitted under 
paragraph (a) of this section, the Presiding Officer may, as a 
precondition to ruling on the merits of such request, require that 
alternative means of clarifying the record be used whether or not a 
request to do so has been made under the preceding paragraph. The person 
requesting cross-examination shall have one week to comment on the 
results of utilizing such alternative means, following which the 
Presiding Officer, as soon as practicable, shall issue an order granting 
or denying such person's request for cross-examination.



Sec. 57.809  Ex parte communications.

    (a) General. (1) No interested person outside the Agency or member 
of the Agency trial staff shall make or knowingly cause to be made to 
any member of the decisional body an ex parte communication relevant to 
the merits of the proceedings.
    (2) No member of the decisional body shall make or knowingly cause 
to be made to any interested person outside the Agency or member of the 
Agency trial staff an ex parte communication relevant to the merits of 
the proceedings.
    (b) Effect of receipt of ex parte communication. (1) A member of the 
decisional body who receives or who makes or knowingly causes to be made 
a communication prohibited by this subsection shall place in the record 
all written communications or memoranda stating the substance of all 
oral communications together with all written responses and memoranda 
stating the substance of all responses.
    (2) Upon receipt by any member of the decisionmaking body of an ex 
parte communication knowingly made or knowingly caused to be made by a 
party or representative of a party in violation of this section, the 
person presiding at the stage of the hearing then in progress may, to 
the extent consistent with justice and the policy of the Clean Air Act, 
require the party to show cause why its claim or interest in the 
proceedings should not be dismissed, denied, disregarded, or otherwise 
adversely affected on account of such violation.

[[Page 160]]

    (c) Definitions. For purposes of this section, the following 
definitions shall apply:
    (1) Agency trial staff means those Agency employees, whether 
temporary or permanent, who have been designated by the Agency as 
available to investigate, litigate, and present the evidence arguments 
and position of the Agency in the evidentiary hearing or non-adversary 
panel hearing. Appearance as a witness does not necessarily require a 
person to be designated as a member of the Agency trial staff;
    (2) Decisional body means any Agency employee who is or may be 
reasonably expected to be involved in the decisional process of the 
proceeding including the Administrator, Presiding Officer, the Regional 
Administrator (if he does not designate himself as a member of the 
Agency trial staff), and any of their staff participating in the 
decisional process. In the case of a non-adversary panel hearing, the 
decisional body shall also include the panel members whether or not 
permanently employed by the Agency;
    (3) Ex parte communication means any communication, written or oral, 
relating to the merits of the proceeding between the decisional body and 
an interested person outside the Agency or the Agency trial staff which 
was not originally filed or stated in the administrative record or in 
the hearing. Ex parte communications do not include:
    (i) Communications between Agency employees other than between the 
Agency trial staff and the member of the decisional body;
    (ii) Discussions between the decisional body and either:
    (A) Interested persons outside the Agency, or;
    (B) The Agency trial staff if all parties have received prior 
written notice of such proposed communications and have been given the 
opportunity to be present and participate therein.
    (4) Interested person outside the Agency includes the smelter owner, 
any person who filed written comments in the proceeding, any person who 
requested the hearing, any person who requested to participate or 
intervene in the hearing, any participant or party in the hearing and 
any other interested person not employed by the Agency at the time of 
the communications, and the attorney of record for such persons.

[50 FR 6448, Feb. 15, 1985, as amended at 57 FR 5328, Feb. 13, 1992]



Sec. 57.810  Filing of briefs, proposed findings, and proposed recommendations.

    Unless otherwise ordered by the Presiding Officer, each hearing 
participant may, within 20 days after reply comments are submitted under 
Sec. 57.805(b), or if a supplementary hearing for the purpose of cross-
examination has been held under Sec. 57.808(c), within 20 days after the 
transcript of such supplemental hearing becomes available or if 
alternative methods of clarifying the record have been used under 
Sec. 57.808(d), within 20 days after the alternative methods have been 
employed, file with the Hearing Clerk and serve upon all other hearing 
participants proposed findings and proposed recommendations to replace 
in whole or in part the findings and recommendations contained in the 
tentative determination. Any such person may also file, at the same 
time, a brief in support of his proposals, together with references to 
relevant pages of transcript and to relevant exhibits. Within 10 days 
thereafter each participant may file a reply brief concerning 
alternative proposals. Oral argument may be held at the discretion of 
the Presiding Officer on motion of any hearing participant or sua 
sponte.



Sec. 57.811  Recommended decision.

    As soon as practicable after the conclusion of the hearing, one or 
more responsible employees of the Agency shall evaluate the record for 
preparation of a recommended decision and shall prepare and file a 
recommended decision with the Hearing Clerk. The employee(s) preparing 
the decision will generally be members of the hearing panel and may 
include the Presiding Officer. Such employee(s) may consult with and 
receive assistance from any member of the hearing panel in drafting a 
recommended decision and may also delegate the preparation of the 
recommended decision to the panel or to any member or members of it. 
This decision shall contain the same elements as the tentative 
determination.

[[Page 161]]

After the recommended decision has been filed, the Hearing Clerk shall 
serve a copy of such decision on each hearing participant and upon the 
Administrator.



Sec. 57.812  Appeal from or review of recommended decision.

    (a) Exceptions. (1) Within 20 days after service of the recommended 
decision, any hearing participant may take exception to any matter set 
forth in such decision or to any adverse order or ruling of the 
Presiding Officer prior to or during the hearing to which such 
participant objected, and may appeal such exceptions to the 
Administrator by filing them in writing with the Hearing Clerk. Such 
exceptions shall contain alternative findings and recommendations, 
together with references to the relevant pages of the record and 
recommended decision. A copy of each document taking exception to the 
recommended decision shall be served upon every other hearing 
participant. Within the same period of time each party filing exceptions 
shall file with the Administrator and shall serve upon all hearing 
participants a brief concerning each of the exceptions being appealed. 
Each brief shall include page references to the relevant portions of the 
record and to the recommended decision.
    (2) Within 10 days of the service of exceptions and briefs under 
paragraph (a)(1) of this section, any hearing participant may file and 
serve a reply brief responding to exceptions or arguments raised by any 
other hearing participant together with references to the relevant 
portions of the record, recommended decision, or opposing brief. Reply 
briefs shall not, however, raise additional exceptions.
    (b) Sua sponte review by the Administrator. Whenever the 
Administrator determines sua sponte to review a recommended decision, 
notice of such intention shall be served upon the parties by the Hearing 
Clerk within 30 days after the date of service of the recommended 
decision. Such notice shall include a statement of issues to be briefed 
by the hearing participants and a time schedule for the service and 
filing of briefs.
    (c) Scope of appeal or review. The appeal of the recommended 
decision shall be limited to the issues raised by the appellant, except 
when the Administrator determines that additional issues should be 
briefed or argued. If the Administrator determines that briefing or 
argument of additional issues is warranted, all hearing participants 
shall be given reasonable written notice of such determination to permit 
preparation of adequate argument.
    (d) Argument before the Administrator. The Administrator may, upon 
request by a party or sua sponte, set a matter for oral argument. The 
time and place for such oral argument shall be assigned after giving 
consideration to the convenience of the parties.



Sec. 57.813  Final decision.

    (a) After review. As soon as practicable after all appeal or other 
review proceedings have been completed, the Administrator shall issue 
his final decision. Such a final decision shall include the same 
elements as the recommended decision, as well as any additional reasons 
supporting his decisions on exceptions filed by hearing participants. 
The final decision may accept or reject all or part of the recommended 
decision. The Administrator may consult with the Presiding Officer, 
members of the hearing panel or any other EPA employee in preparing his 
final decision. The Hearing Clerk shall file a copy of the decision on 
all hearing participants.
    (b) In the absence of review. If no party appeals a recommended 
decision to the Administrator and if the Administrator does not review 
it sua sponte, he shall be deemed to have adopted the recommended 
decision as the final decision of the Agency upon the expiration of the 
time for filing any exceptions under Sec. 57.812(a).
    (c) Timing of judicial review. For purposes of judicial review, 
final Agency action on a request for a waiver of the interim requirement 
that each NSO provide for the use of constant controls shall not occur 
until EPA approves or disapproves the issuance of an NSO to the source 
requesting such a waiver.

[[Page 162]]



Sec. 57.814  Administrative record.

    (a) Establishment of record. (1) Upon receipt of request for a 
waiver, an administrative record for that request shall be established, 
and a Record and Hearing Clerk appointed to supervise the filing of 
documents in the record and to carry out all other duties assigned to 
him under this subpart.
    (2) All material required to be included in the record shall be 
added to the record as soon as feasible after its receipt by EPA. All 
material in the record shall be appropriately indexed. The Hearing Clerk 
shall make appropriate arrangements to allow members of the public to 
copy all nonconfidential record materials during normal EPA business 
hours.
    (3) Confidential record material shall be indexed under paragraph 
(a)(2). Confidential record material shall, however, be physically 
maintained in a separate location from public record material.
    (4) Confidential record material shall consist of the following:
    (i) Any material submitted pursuant to Sec. 57.802 for which a 
proper claim of confidentiality has been made under section 114(c) of 
the Act and 40 CFR part 2; and
    (ii) The Staff Computational Anaylsis prepared under Sec. 57.803
    (b) Record for issuing tentative determination. The administrative 
record for issuing the tentative determination required by Sec. 57.803 
shall consist of the material submitted under Sec. 57.802 and any 
additional materials supporting the tentative determination.
    (c) Record for acting on requests for cross-examination. The 
administrative record for acting on requests for cross-examination under 
Sec. 57.808 shall consist of the record for issuing the tentative 
determination, all comments timely submitted under Secs. 57.803(e)(4) 
and 57.805, the transcript of the hearing, and any additional material 
timely submitted under Sec. 57.807(d).
    (d) Record for preparation of recommended decision. The 
administrative record for preparation of the recommended decision 
required by Sec. 57.811 shall consist of the record for acting on 
request for cross-examination, the transcript of any supplementary 
hearing held under Sec. 57.808(c), any materials timely submitted in 
lieu of or in addition to cross-examination under Sec. 57.808(d), and 
all briefs, proposed findings of fact and proposed recommendations 
timely submitted under Sec. 57.810.
    (e) Record for issuance of final decision. (1) Where no hearing has 
been held, the administrative record for issuance of the Administrator's 
final decision shall consist of the record for issuing the tentative 
determination, any comments timely submitted under Sec. 57.803(e)(4), 
any briefs or reply briefs timely submitted under Sec. 57.812 (a) 
through (c), and the transcript of any oral argument granted under 
Sec. 57.812(d).
    (2) Where a hearing has been held, the administrative record for 
issuance of the Administrator's final decision shall consist of the 
record of preparation of the recommended decision, any briefs or reply 
briefs submitted under Sec. 57.812 (a) through (c), and the transcript 
of any oral argument granted under Sec. 57.812(d).



Sec. 57.815  State notification.

    The Administrator shall give notice of the final decision in writing 
to the air pollution control agency of the State in which the smelter is 
located.



Sec. 57.816  Effect of negative recommendation.

    No waiver of the interim requirement for the use of constant 
controls shall be granted by the Administrator or a State unless the 
Administrator or a State first takes into account the Administrator's 
report, findings, and recommendations as to whether the use of constant 
controls would be so costly as to necessitate permanent or prolonged 
temporary cessations of operation of the smelter.

     Appendix A to Part 57--Primary Nonferrous Smelter Order (NSO) 
                               Application

                              Instructions

1. General Instructions
1.1 Purpose of the Application
1.2 NSO Financial Tests
1.3 Confidentiality
2. NSO Financial Reporting Overview
2.1 Revenue and Cost Assignment
2.2 Transfer Prices on Affiliated Party Transactions
2.3 Forecasting Requirements
2.4 EPA Furnished Forecast Data

[[Page 163]]

2.5 Applicant Generated Forecasts
2.6 Weighted Average Cost of Capital for Nonferrous Metal Producers
2.7 Horizon Value
2.8 Data Entry
2.9 Use of Schedules
2.10 Use of Exhibits

                 Detailed Instructions for Each Schedule

A.1 Historical Revenue Data
A.2 Historical Cost Data
A.3 Historical Profit and Loss Summary
A.4 Historical Capital Investment Summary
B.1 Pre-Control Revenue Forecast
B.2 Pre-Control Cost Forecast
B.3 Pre-Control Forecast Profit and Loss Summary
B.4 Constant Controls Revenue Forecast
B.5 Constant Controls Cost Forecast
B.6 Constant Controls Forecast Profit and Loss Summary for the Profit 
          Protection Test
B.7 Profit Protection Test
C.1 Constant Controls Forecast Profit and Loss Summary for the Rate of 
          Return Test
C.2 Constant Controls Sustaining Capital Investment Forecast
C.3 Historical Capital Investment in Constant Dollars
C.4 Rate of Return Test
C.5 Horizon Value of Cash Flows for the Rate of Return Test
D.1 Interim Controls Revenue Forecast
D.2 Interim Controls Cost Forecast
D.3 Interim Controls Forecast Profit and Loss Summary
D.4 Interim Controls Sustaining Capital Investment Forecast
D.5 Cash Proceeds from Liquidation
D.6 Permanent Waiver from Interim Controls Test
D.7 Horizon Value of Cash Flows for the Interim Controls Test

                         1. General Instructions

    1.1 Purpose of the application. This application provides financial 
reporting schedules and the accompanying instructions for EPA's 
determination of eligibility for a nonferrous smelter order (NSO), and 
for a waiver of the interim constant controls requirement of an NSO. 
Although the determination of eligiblity for an NSO is prequisite for 
the determination of a waiver, appendix A, as a matter of convenience to 
applicants, includes both the NSO and waiver tests and reporting 
schedules.
    In order to support an NSO eligibility determination, the applicant 
must submit operating and financial data as specified by the schedules 
included in this application. Specific instructions for completing each 
schedule are provided in subsequent sections of the instructions. In 
general, applicants must provide:
    (a) Annual income statements, balance sheets and supporting data 
covering the five most recent fiscal years for the smelter for which the 
NSO requested.
    (b) Forecasts of operating revenues, operating costs, net income 
from operations and capital investments for the firm's smelter 
operations subject to this application, on the basis of anticipated 
smelter operations without any sulfur dioxide air pollution control 
facilities that have not been installed as of the NSO application date.
    (c) Forecasts of operating revenues, operating costs, net income 
from operations and capital investments for the firm's smelter 
operations subject to this application, on the basis of anticipated 
smelter operations with expected additional sulfur dioxide control 
facilities required to comply with the smelter's SIP emission 
limitation.
    (d) For smelters applying for a waiver of interim constant controls, 
forecasts of operating revenues, operating costs, and capital 
investments for the firm's smelter operations prepared on the basis of 
two alternative assumptions: (1) Installation of additional pollution 
control facilities required to comply with interim constant control 
requirements, no installation of any additional SO2 controls 
that the smelter would otherwise be required to install but for the 
issuance of an NSO, and closure of the smelter after January 1, 1988; 
and (2) installation of additional pollution control facilities required 
to comply with interim constant control requirements, installation of 
any additional SO2 controls required to comply with the 
smelter's SIP emission limitation by January 2, 1988, and continued 
operation of the smelter after January 1, 1988.
    1.2 NSO financial tests. EPA will use separate tests to determine 
eligibility for an NSO and to evaluate applications for a waiver of the 
interim constant control requirement. The two tests for NSO eligibility 
employ a present value approach for determining the reasonable 
availability of constant control technology that will enable an 
applicant to achieve full compliance with its SIP sulfur dioxide 
emission limitation. The tests for the waiver of the interim constant 
control requirements employ variable costing and discounted cash flow 
standards for evaluating an applicant's economic capability to implement 
those requirements.
    1.2.1 NSO Eligibility Tests. Each applicant must establish that the 
system of production and/or constant control technology that will enable 
the smelter to achieve full compliance with its SIP SO2 
emission limitation standard is not reasonably available. An applicant 
will determine financial eligibility for an NSO by passing at least one 
of the following two tests.
    (a) Profit Protection Test. The smelter will experience a reduction 
in pre-tax profits of 50

[[Page 164]]

percent or more after undertaking the required installation of constant 
controls.
    (b) Rate of Return Test. The smelter will earn a rate of return on 
historical net investment, expressed in constant dollars, below the 
industry average cost of capital after undertaking the required 
installation of constant controls.
    1.2.2 Temporary Waiver from Interim Controls. Applicants that do not 
have an existing constant control system or whose constant controls are 
not sufficient when in operation and optimally maintained to treat all 
strong streams in accordance with subpart C, may apply for a waiver of 
the requirements of subpart C with respect to any interim constant 
controls not already installed. Applicants will be eligible for a 
temporary waiver of the requirement for interim constant controls not 
already installed, if they can establish pursuant to the procedures in 
this application that the imposition of such control requirements would 
economically necessitate closure of the smelter facility for a period of 
one year or longer. The economic justification for a non-permanent 
closure under this temporary waiver test is defined as a situation in 
which the smelter's projected operating revenues for one or more years 
during which the NSO is in effect are inadequate to cover variable 
operating costs anticipated after installing the required interim 
control technology. Temporary waivers will be granted for only the 
period of time over which applicants can establish an inability by the 
firm to cover its variable operating costs. Interim control waiver 
requests based on the smelter's projected inability to earn adequate 
income after installation of interim pollution control equipment will be 
subject to the permanent waiver test.
    1.2.3 Permanent Waiver from Interim Controls. Applicants that do not 
have an existing constant control system or whose constant controls are 
not sufficient when in operation and optimally maintained to treat all 
strong streams in accordance with subpart C, may apply for a waiver of 
the requirements of subpart C with respect to any interim constant 
controls not already installed. Applicants will be eligible for a 
permanent waiver of the requirement for interim constant controls not 
already installed, if they can establish pursuant to the procedures in 
this application that an imposition of such control requirements would 
necessitate permanent closure of the smelter. Economic justification for 
a permanent closure is defined as a situation in which the present value 
of future cash flows anticipated from the smelter after installing the 
required interim control technology is less than the smelter's current 
salvage value under an orderly plan of liquidation. Future cash flows 
are determined under two alternative assumptions. The higher present 
value of cash flows computed under these assumptions is then compared to 
salvage value.
    1.2.4 EPA Contact for NSO Inquiries. Inquiries concerning this 
portion of the requirements for NSO application should be addressed to 
Laxmi M. Kesari, Environmental Protection Agency, EN 341, 1200 
Pennsylvania Ave., NW., Washington, DC 20460.
    1.2.5 Certification. The NSO Certification Statement must be signed 
by an authorized officer of the applicant firm.
    1.3 Confidentiality. Applicants may request that information 
contained in this application be treated as confidential. Agency 
regulations concerning claims of confidentiality of business information 
are contained in 40 CFR part 2, subpart B (41 FR 36902 et seq., 
September 1, 1976, as amended by 43 FR 39997 et seq., September 8, 
1978). The regulations provide that a business may, if it desires, 
assert a business confidentiality claim covering part or all of the 
information furnished to EPA. The claim must be made at the same time 
the applicable information is submitted. The manner of asserting such 
claims is specified in 40 CFR 2.203(b). Information covered by such a 
claim will be handled by the Agency in accordance with procedures set 
forth in the subpart B regulations. EPA will not disclose information on 
a business that has made a claim of confidentiality, except to the 
extent of and in accordance with 40 CFR part 2, subpart B. However, if 
no claim of confidentiality is made when information is furnished to 
EPA, the information may be made available to the public without notice 
to the business.

                   2. NSO Financial Reporting Overview

    2.1 Revenue and Cost Assignment. The amounts assigned to operations 
of the smelter subject to this NSO application should include (1) 
revenues and costs directly attributable to the smelter's operating 
activities and (2) indirect operating costs shared with other segments 
of the firm to the extent that a specific causal and beneficial 
relationship can be identified for the allocation of such costs to the 
smelter. Do not allocate revenues and costs associated with central 
administrative activities for which specifc causal and beneficial 
relationships to the activities of the smelter cannot be established. 
Nonallocable items include, but are not restricted to, amounts such as 
dividend and interest income on centrally administered portfolio 
investments, central corporate administrative office expenses and, 
except for schedules supporting the Profit Protection Test, interest on 
long-term debt financing arrangements. Provide a detailed explanation of 
amounts classified as nontraceable on a separate schedule and attach as 
part of Exhibit B.

[[Page 165]]

    2.2 Transfer Prices on Affiliated Part Transactions. Certain 
transactions by the smelter subject to an NSO application may reflect 
sales to or purchases from ``affiliated'' customers or suppliers with 
whom the smelter has a common bond of ownership and/or managerial 
control. In preparing this application, affiliated party transactions 
shall be defined as transactions with any entity that the firm, or its 
owners, controls directly or indirectly either through an ownership of 
10 percent or more of the entity's voting interests or through an 
exercise of managerial responsibility. Applicants must attach as part of 
Exhibit B supporting schedules explaining the pricing policies 
established on affiliated party transactions incorporated in the 
financial reporting schedules.
    Prices on inter-segment material and product transfers within a 
firm, or on external purchases from and sales to other affiliated 
suppliers and customers, may differ from the prices on comparable 
transactions with unaffiliated suppliers and customers. In this event, 
applicants also must present in the Exhibit B supporting schedules and 
incorporate in the NSO financial reporting schedules appropriate 
adjustments for restating affiliated party transactions. Affiliated 
party transactions must be restated at either (a) equivalent prices on 
comparable transactions with unaffiliated parties if such price 
quotations can be obtained or (b) prices that provide the selling entity 
with a normal profit margin above its cost of sales if a meaningful 
comparison with unaffiliated transaction prices cannot be established.
    A ``normal'' profit margin is defined as the gross operating profit 
per dollar of operating revenue that will provide an average after-tax 
rate of return on permanent capital (total assets less current 
liabilities). This average rate of return is defined differently for the 
historical and forecast periods. The applicant must use a rate of return 
of 8.0 percent for the historical period. This figure is based on a 
historoical average earned rate of return for the nonferrous metals 
industry.1 EPA may update this figure periodically. The 
updates will be available in the rulemaking docket or from the 
INFORMATION CONTACT noted in the Federal Register. For the forecast 
period, the applicant must use a rate of return equal to the current 
weighted average cost of capital for the nonferrous metals industry, as 
computed in Section 2.6.
---------------------------------------------------------------------------

    \1\ The derivation of this figure is explained in two memoranda to 
EPA (Item Nos. II-A-1 and IV-A-6a in EPA Docket No. A-82-35).
---------------------------------------------------------------------------

    Forecast smelting charges for integrated smelters can be computed 
from forecast market smelting charges. Integrated copper smelters may 
use as the basis of their forecast revenues the forecast copper smelting 
charges provided by EPA, adjusted as described in Section 2.4.1. An 
applicant may submit other forecasts, providing the forecast methodology 
is in accordance with the guidelines in Section 2.5 and fully documented 
as part of Exhibit B.
    2.3 Forecasting Requirements. NSO applicants must provide the Agency 
with financial forecasts in Schedules B.1 through B.6 and C.1 through 
C.2. Applicants requesting either a temporary or permanent waiver from 
interim constant control requirements also must provide an additional 
set of financial forecasts in Schedules D.1 through D.4.
    2.3.1 Forecast Period. The forecast period must include at least two 
full years following completion and startup of the required pollution 
control system. The forecast period shall be from 1984 through 1990 for 
an NSO application filed in 1984. If an application is filed in a later 
year, the 1984 through 1990 period should be adjusted accordingly. All 
references in this appendix to the period 1984 through 1990 should be 
interpreted accordingly.
    2.3.2 Forecast Adjustment by Control Case. Some line items that have 
the same title in several schedules may contain different information 
because they are based on different assumptions regarding pollution 
controls. Production interruptions or curtailments due to the 
installation of pollution control facilities may require adjustmens to 
certain revenue and cost estimates in the repective control cases. For 
example, production curtailments associated with supplementary control 
systems may be the basis for the pre-control case, yet are eliminated 
when constant controls replace supplementary control systems in the 
constant controls case. The application of pollution control techniques 
that involve process changes in the smelter's operations (e.g., 
conversion to flash smelting) also may require specific forecasts by 
applications of associated impacts on incremental operating revenues and 
costs.
    2.3.3 Nominal Dollar Basis. Applicants must make their financial 
forecasts in terms of nominal dollars. Forecasts of selected parameters 
provided by EPA will furnish quidelines to an applicant in preparing the 
required cost and revenue estimates. In particular, copper smelting 
charges provided in nominal-dollar terms must be used dierctly by the 
applicant as given; i.e., the stipulated charge estimates should not be 
inflated.
    2.3.4 Tolling Service Equivalent Basis. Applicants must express all 
revenue forecasts on a tolling service equivalent basis. Thus, forecast 
revenues are computed as the product of the forecast quantity of 
processed concentrate, the forecast average product grade of the 
concentrate (the percent of metal in the concentrate), and the forecast 
smelting charge. Smelters that are not tolling smelters and that do not 
use the copper smelting

[[Page 166]]

charges provided by EPA (as described in Section 2.4.1) can forecast a 
smelting charge from forecast product grade of the concentrate, percent 
recovery, and product and concentrate prices. The forecast prices and 
derivation of the smelting charge must be in accordance with the 
guidelines in Section 2.5, and the methodology must be fully documented 
in Exhibit B.
    2.4 EPA Furnished Forecast Data. In making projection for the period 
1984 through 1990, applicants must, except as noted below, use the 
indices provided by EPA. The table below presents yearly values for each 
index (expressed as annual percentage rates of change) to be used by 
smelters applying for an NSO before January 1, 1985. If forecasts are 
needed for 1991 and EPA has not provided new forecasts, applicants 
should use the Data Resources, Inc. forecasts for 1991 (Docket Item No. 
IV-A-6c) and the average of CRU's forecasts for 1989 and 1990 (expressed 
in 1991 dollars).

----------------------------------------------------------------------------------------------------------------
                                                           1984    1985    1986    1987    1988    1989    1990
----------------------------------------------------------------------------------------------------------------
Copper smelting charge \1\ (cents per pound)............    14.5    14.6    16.0    15.3    15.3    15.5    15.4
            Annual Percentage Rates of Change
Wages...................................................     5.0     5.7     5.8     6.1     6.4     6.7     7.0
Energy prices:
    Electricity.........................................     7.0     8.8     8.1     8.3     7.1     4.9     5.5
    Natural gas.........................................     3.6     5.7     9.3     8.7     9.2     8.0     8.4
    Coal................................................     5.1     7.0     8.9     9.0     9.7     9.7     9.7
    Fuel oil............................................     1.6     4.2     7.7     6.8     9.8     9.5     9.9
GNP price deflator......................................     4.8     5.0     5.0     5.2     5.8     5.8     5.9
----------------------------------------------------------------------------------------------------------------
\1\ Reference charge for calculating smelter-specific copper smelting charges as described in Section 2.4.1.
 

    2.4.1 Copper smelting charge. EPA will supply a forecast of 
reference copper smelting charges. These charges, which are f.o.b. U.S. 
mine, are based on an estimate of export smelting charges and on the 
differential value of copper in the U.S. and the world market. They must 
be used in forecasting unaffiliated party revenues for the period 
following the expiration of existing contracts and in forecasting 
affiliated party revenues for the entire forecast period. The applicant 
may submit its own smelting charge forecast for the post-contract 
period, provided that such forecast is in accordance with the guidelines 
in Section 2.5 and fully documented and substantiated as part of Exhibit 
B.
    The EPA forecast export charge represents the world market copper 
smelting charge with copper valued at the London Metal Exchange (LME) 
copper price. This charge serves as the reference charge for the 
applicant copper smelter in calculating its smelting charges. Applicant 
copper smelters must derive their smelting charges from this world 
market charge as described in paragraph (a) below.
    The applicant may adjust the derived smelter-specific smelting 
charge to account for other factors, provided the adjustments are fully 
documented as part of Exhibit B. An example of such a factor is the unit 
deduction for metallurgical losses in smelting. Adjustment for this 
factor is discussed in paragraph (b) below.
    (a) The derivation of a smelter-specific smelting charge from the 
world market charge is based on assumptions regarding transportation 
costs and the U.S. producer-world copper price differential. The EPA 
forecast export charge is the forecast smelting charge available at a 
Japanese smelter, with copper valued at the London Metal Exchange copper 
price. The charge includes no freight costs, which must be paid by the 
mine. A U.S. smelter determines its smelting charge to a mine by meeting 
the combined world market smelting charge, adjusted to reflect copper 
valued at the U.S. producer price, and the transportation charge from 
the mine to the Japanese smelter. This combined price is the highest 
that a mine is willing to pay for smelting.
    The smelter's net smelting charge is equal to the combined world 
smelting charge, adjusted to the U.S. producer price for copper (i.e., 
the export forecast charge plus the U.S. producer price premium), and 
the transportation cost between the mine and a Far East smelter, minus 
the cost of transporting the concentrate between the mine and the 
applicant smelter.
    The applicant smelter's net smelting charge for concentrate from an 
individual mine is computed by first adding the U.S. producer Price-LME 
world price differential to the EPA-supplied forecast. The cost of 
transporting copper from the U.S. mine to the Far East is then added to 
this figure. The net smelting charge is obtained by subtracting from 
this total the cost of transporting copper from the mine to the 
applicant smelter. In making these calculations, an applicant must 
supply (and fully document in Exhibit B), the freight cost between the 
mine and the Far East and between the mine and the smelter. This freight 
cost must be converted to nominal dollars of the respective forecast 
years by applying the GNP percentage price change forecasts supplied

[[Page 167]]

by EPA or smelter-provided forecasts of transportation price changes. 
The smelter-provided forecasts of transportation price changes must 
comply with guidelines regarding such forecasts in Section 2.5.
    An applicant must use a 3 cent per pound U.S. producer price premium 
(relative to the LME price) in calculating the smelter's net smelting 
charge. The applicant may substitute its own forecasts of the U.S. 
producer price premium if it can substantiate such forecasts in 
accordance with the guidelines in Section 2.5 regarding applicant-
provided smelting charge forecasts of principal products. All supporting 
documentation for such applicant-supplied forecasts must be supplied in 
Exhibit B. Any updates of the producer price premium will be available 
in the rulemaking docket or from the INFORMATION CONTACT noted in the 
Federal Register.
    The following two representative examples illustrate this 
methodology for making the transportation and U. S. producer price 
premium adjustment.
    (1) The applicant smelter, located in Arizona, obtains concentrate 
from an adjacent mine. The freight charge from mine to smelter is zero. 
The mine is willing to pay the applicant smelter an amount no higher 
than the sum of the world market smelting charge (adjusted for the 
copper value differential) and the transportation cost of shipping 
copper from the mine to the Far East. This combined cost is the net 
charge received by the applicant smelter. If the export smelting charge 
is 12 cents per pound and the freight cost between the mine and the Far 
East is 13 cents per pound, the applicant smelter would calculate a net 
smelting charge equal to 28 cents: 12 cents plus 3 cents (for the U.S. 
producer price premium) plus 13 cents (for the freight cost between the 
mine and the Far East).
    (2) The applicant smelter obtains concentrate from a nonadjacent 
mine. The mine will pay a charge no higher than the total market 
smelting charge, valued at the U.S. producer price, and the 
transportation costs between the mine and a Far East smelter. The 
applicant's net smelting charge is equal to this combined cost minus the 
transportation costs for shipping the concentrate between mine and 
applicant smelter.
    Suppose that the mine to Far East freight charge is 13 cents per 
pound and the mine to applicant smelter freight charge is 4 cents per 
pound. If the export smelting charge is 12 cents per pound, the net 
smelting charge is equal to 24 cents per pound: 12 cents plus 3 cents 
(for the U.S. producer price premium) plus 13 cents (for the freight 
cost to the Far East) minus 4 cents (for the freight cost to the 
applicant smelter).
    (b) The EPA forecast charges are based on a one unit deduction for 
metallurgical losses. This means that if a concentrate grades 25 percent 
copper, the mine is only credited with 24 percent for metal return. The 
one unit deduction on 25 percent concentrate is equivalent to a 96 
percent payment for contained copper. Should a smelter recover less than 
96 percent, its revenue would be less than the EPA forecast smelting 
charge. Should a smelter recover more than 96 percent, its revenue would 
be greater than the EPA forecast smelting charge.
    2.4.2 Indices (Annual Percentage Changes). These indices, which are 
expressed as annual percentage rate changes in price (wages, energy 
prices, and GNP price deflator) must be used only for estimating the 
rate of price increases for the forecast period following the expiration 
of the applicant's current contracts. The applicant may use alternative 
forecasts of annual percentage changes for the forecast period following 
the expiration of current contracts, if justification is provided. Any 
such alternative forecasts must be prepared by a widely-recognized 
forecasting authority with expertise comparable to that of the 
forecaster relied upon by EPA. In addition, the documentation of these 
forecasts must be comparable to that provided by EPA's forecaster.
    The wage indices are to be applied to wage paid to manufacturing 
labor. The energy price indices are to be applied to prices of the 
respective energy products. The GNP price deflators are to be applied to 
prices for non-metal, non-labor, and non-energy inputs.
    2.5 Applicant Generated Forecasts. Within the specified limitations, 
applicants may submit a method of forecasting smelting charges and by-
product, co-product and other prices. The method selected must be 
explained and unit prices or costs provided where applicable. The 
forecast elements must be compatible with an applicant's historical cost 
and revenue elements to permit direct comparisons of historical and 
forecast data. Applicants must attach as part of Exhibit B appropriate 
schedules explaining variances between forecast and historical unit 
costs for the smelter.
    Forecasts of the smelting charges of the smelter's principal product 
(i.e., copper, lead, zinc, etc.) may be prepared either by an 
independent forecasting authority or by the smelter's in-house 
personnel. If the forecasts are prepared by an independent forecasting 
authority, the following conditions must be satisfied: (1) The 
forecasting authority must have expertise comparable to that of the 
forecaster relied upon by EPA. (2) As much documentation of the 
forecasting methodology as can reasonably be obtained must be made 
available to EPA. Such documentation must, at a minimum, be comparable 
to the

[[Page 168]]

documentation supporting EPA smelting charge forecasts. \2\
---------------------------------------------------------------------------

    \2\ Documentation of the EPA forecasts is provided as part of Item 
NO. IV-A-2 in EPA Docket No. A-82-35.
---------------------------------------------------------------------------

    If the smelting charge forecasts are prepared by in-house personnel, 
the following conditions must be met: (1) The in-house forecasts must be 
certified as being based on sound methodology by an independent 
forecasting authority with expertise comparable to that of the 
forecaster who prepared the EPA-supplied smelting charges. The 
independent forecasting authority shall also provide a brief explanation 
of the basis for the conclusion reached in the certification. (2) The 
smelter owner shall provide EPA with the documentation of the 
forecasting methodology employed, which must at a minimum be comparable 
to the extent of documentation supporting EPA's smelting charge 
forecasts. The smelter owner shall also make available upon request by 
EPA such additional documentation of the methodology and underlying data 
as EPA considers appropriate for evaluation of the forecasts.
    Forecasts of freight cost changes, which are applied to the freight 
costs used in calculating a smelter's net smelting charges, must be 
prepared by a widely-recognized forecasting authority. The forecaster's 
expertise must be comparable to that of the forecaster relied upon by 
EPA in forecasting the annual percentage changes in wages, energy 
prices, and GNP. The documentation of these forecasts must be comparable 
to that provided by EPA's forecaster.
    To the maximum extent practicable, by-product, co-product and (when 
applicable) unaffiliated smelting charges must be stated at market 
prices adjusted to f.o.b. smelter. Adjustments of these pricing bases 
must be made to reflect differences in grades and types of production. 
All adjustments must be consistent with expected sales, grades and types 
of concentrate processed. Applicants must attach as part of Exhibit B 
schedules describing and explaining the methods used to forecast these 
revenue items and the adjustments required for these revenue forecasts.
    Applicants must explain fully any changes from the historical data 
that are required to forecast labor productivity, ore-concentrate grade 
and composition, materials and energy consumption per unit of output, 
yield rates and other physical input/output relationships.
    Existing contractual terms must be used in forecasting those sales 
or input costs or prices to which the applicant is committed by 
contracts. The use of contract-dictated prices must be disclosed and 
supported by attaching as part of Exhibit B the terms and duration of 
labor and other supplier arrangements.
    Cost of compliance estimates need not be to the accuracy of final 
design/bid estimates; feasibility grade estimates will be acceptable. 
Updated cost of compliance estimates used in internal five year plans or 
specially prepared estimates of costs of compliance will generally be 
satisfactory.
    2.6 Weighted Average Cost of Capital for Nonferrous Metal Producers. 
The industry average cost of capital is a weighted average of the rates 
of return for equity and debt. Its components are the interest rate and 
the return on equity specific to the nonferrous metals industry.
    2.6.1 Computation.\3\ The applicant must compute the cost of capital 
according to the following formula:
---------------------------------------------------------------------------

    \3\ The derivation of the formula and the basis of the parameters 
are explained in two memoranda to EPA (Item Nos. II-A-1 and IV-A-6a in 
EPA Docket No. A-82-35).
---------------------------------------------------------------------------

R = (0.65xE)+(0.182xI)

where

R = weighted average cost of capital
E = return on equity
I = interest rate.

The components are calculated as follows.
    (a) Return on equity for the nonferrous metals industry. The 20 year 
Treasury bond yield to maturity plus a risk premium of 8.6 percent.
    (b) Interest Rate. The 20 year Treasury bond yield to maturity plus 
a risk premium of 3.0 percent.
    (c) Source of the 20 Year Treasury bond yield. Federal Reserve 
Bulletin, most recent monthly issue. Use the average yield for the most 
recent full month.
    2.6.2 Discount Factor. The discount factor corresponding to the 
weighted average cost of capital for any forecast year is computed 
according to the following equation:
[GRAPHIC] [TIFF OMITTED] TC09NO91.029

where

DF = discount factor
R = weighted average cost of capital
N = the number of years in the future (e.g., for the applicant applying 
in 1984, N = for the forecast year 1985).

    The horizon value, which is described in Section 2.7, is computed as 
of 1990, the end of the detailed forecast period. The discount factor to 
be applied to the horizon value is the same as for any other 1990 
figure. For example, if the application is made in 1984, the value of N 
is 7.
    2.7 Horizon Value. The horizon value is the present value of a 
stream of cash flows or net income for 15 years beyond the last forecast

[[Page 169]]

year. Applicants must compute the horizon value by capitalizing the 
average forecast value of the last two forecast years using the current 
real weighted cost of capital. The line item instructions for schedules 
having a horizon value entry will specify the values to be capitalized.
    The applicant averages the values of the last two years after 
expressing both values in terms of the last year's dollars. The two-year 
average value is then multiplied by 9.6. This is the factor associated 
with capitalizing a 15 year value stream at the current real weighted 
cost of capital of 6.2 percent.
    Applicants must use a separate schedule to calculate the horizon 
value for the Rate of Return Test and the Interim Controls Test 
(Schedule C.5 and D.7, respectively). These separate schedules adjust 
for potential overstatements in the horizon value cash flows that may be 
caused by control equipment depreciation reported for tax purposes.
    2.8 Data Entry
    2.8.1 Rounding. All amounts (including both dollar values and 
physical units) reported in the schedules and exhibits accompanying this 
application must be rounded to the nearest thousand and expressed in 
thousands of dollars or units unless otherwise indicated in the 
instructions.
    2.8.2 Estimates. Where an applicant's records cannot produce the 
specific data required by this application, the use of estimates will be 
allowed if a meaningful estimate can be made without significant 
distortion of the reported results. Data estimates must be supported by 
attaching on a separate sheet of paper as a part of Exhibit B an 
explanation identifying where such estimates are used and showing 
explicitly how the estimates were made.
    2.8.3 Missing Data. Applicants must provide, where applicable, all 
operating and financial data requested by this application. Only 
substantially complete applications can be accepted for processing by 
the Agency. Questions concerning data entries for which information is 
not provided by or cannot reasonably be estimated from the applicant's 
existing accounting records should be addressed to the EPA Contact for 
NSO Inquiries.
    2.8.4 Historical Period. The annual data requested in the historical 
schedules, Schedules A.1 through A.4, must be reported for each of the 
five fiscal years immediately preceding the year in which this 
application is filed. The historical period shall be from fiscal years 
1979 through 1983 for an NSO application filed in 1984. If an 
application is filed in a later year, the references in this appendix to 
the period 1979 through 1983 should be interpreted accordingly.
    2.9 Use of schedules. All applicants must complete Schedules A.1 
through A.4, which record historical revenues, cost, and capital 
investment data. These schedules will be used by EPA to assist in 
evaluating forecast data. Completion of the remaining schedules depends 
on the test required of the applicant.
    2.9.1 NSO Eligibility. An NSO applicant must pass one of the 
following two tests and complete the corresponding schedules.
    (a) Profit Protection Test. The applicant must complete Schedules 
B.1 through B.7 to determine eligibility under the Profit Protection 
Test. Schedules B.1 and B.2 report the base case (without constant 
controls) revenue and cost forecast, respectively, and Schedule B.3 
summarizes Schedules B.1 and B.2. Base case production forecasts should 
reflect any production curtailments associated with interim controls 
currently (preforecast) installed on smelters. Schedules B.4 and B.5 
report the revenue and cost forecast, respectively, for the constant 
controls case, and Schedule B.6 summarizes Schedules B.4 and B.5 for the 
Profit Protection Test.
    Schedule B.7 presents the calculations for the Profit Protection 
Test. The applicant enters the forecast profits from Schedules B.3 and 
B.6. The present value of the forecast profits is then computed for each 
case. If the present value of forecast pre-tax profits with constant 
controls is less than 50 percent of the present value of forecast pre-
tax profits without controls (base case) the smelter passes the test and 
is eligible for an NSO. The smelter also passes the test if the present 
value of forecast pre-tax profits without controls (base case) is 
negative.
    (b) Rate of Return Test. The applicant must complete Schedules B.4, 
B.5, and C.1 through C.5 to determine eligibility under the Rate of 
Return Test. Schedules B.4 and B.5 report the revenue and cost forecast, 
respectively, for the constant controls case, and Schedule C.1 
summarizes Schedules B.4 and B.5 for the Rate of Return Test. Schedule 
C.2 reports forecast sustaining capital investment for the constant 
controls case. Schedule C.3 reports historical net investment for the 
most recent fiscal year expressed in constant dollars, i.e., dollars of 
the year in which the application is made.
    Schedule C.4 presents the calculations for the Rate of Return Test. 
The applicant reports in Schedule C.4 the forecast cash flows from 
Schedules C.1 and C.2 and the horizon value from Schedule C.5, computes 
their present value, and subtracts the value of invested capital in 
constant dollars (taken from Schedule C.3) to yield net present value. 
If the net present value is less than zero, the smelter passes the test 
and is eligible to receive an NSO. This result indicates that the 
smelter is expected to earn a rate of return less than the industry 
average cost of capital.
    2.9.2 Interim Control Waivers. An applicant for a waiver from 
interim controls must complete either a portion or all of Schedules D.1 
through D.7, depending on whether the

[[Page 170]]

application is for a temporary or permanent waiver.
    (a) Temporary Waiver from Interim Controls Test. The applicant must 
complete Schedules D.1 through D.3 to establish eligibility for a 
temporary waiver from interim controls. Schedules D.1 and D.2 report 
forecast revenue and cost data under the assumption of installation of 
interim constant control equipment and no installation of any additional 
SO2 controls that the smelter would otherwise be required to 
install but for the issuance of the NSO. Schedule D.3 summarizes 
Schedules D.1 and D.2 and calculates gross operating profit. If gross 
operating profit is negative for any year during which the NSO is in 
effect, the applicant is eligible for a temporary waiver.
    (b) Permanent Waiver from Interim Controls Test. The applicant must 
complete Schedules D.1 through D.7. All schedules except for Schedule 
D.5 must be completed twice, based on two alternative assumptions: (1) 
installation of interim constant control equipment, no installation of 
any additional SO2 controls that the smelter would otherwise 
be required to install but for the issuance of the NSO, and closure of 
the smelter after January 1, 1988; and (2) installation of interim 
constant control equipment, installation of any additional 
SO2 controls required to comply with the smelter's SIP 
emission limitation by January 2, 1988, and continued operation of the 
smelter after January 1, 1988.
    Schedules D.1 and D.2 report forecast revenue and cost data under 
each assumption. Schedule D.3 summarizes Schedules D.1 and D.2, and 
Schedule D.4 reports forecast sustaining capital under each assumption. 
Schedule D.5 reports cash proceeds from liquidation.
    Schedule D.6 presents the calculations for the permanent waiver 
test. In Schedule D.6, the applicant reports cash flow projections from 
Schedules D.3 and D.4 and the horizon value from Schedule D.7, computes 
their present value and subtracts the current salvage value (taken from 
Schedule D.5) to yield net present value. The higher of the two net 
present value figures computed under the two alternative assumptions 
must be used in the test. If the higher net present value figure is 
negative, the applicant is eligible for a permanent waiver.
    2.10 Use of exhibits. In addition to data required by the schedules 
included in this application, the following information must be attached 
as exhibits.
    2.10.1 Exhibit A. Background information on the firm's 
organizational structure and its associated accounting and financial 
reporting systems for primary nonferrous activities. This information 
must include, where applicable, the firm's:
    (a) Operating association with an ownership control in consolidated 
subsidiaries, unconsolidated subsidiaries, joint ventures and other 
affiliated companies.
    (b) Organizational subdivision of its primary nonferrous activities 
into profit centers, cost centers and/or related financial reporting 
entities employed to control the operation of its mines, concentrators, 
smelters, refineries and other associated facilities.
    (c) Material and product flows among the smelter subject to this NSO 
application, other integrated facilities and its affiliated suppliers 
and/or customers. In the case of integrated facilities, applicants must 
provide process flow diagrams depicting the operating interrelationships 
among its mines, concentrators, smelters, refineries and other 
integrated facilities. For both integrated and nonintegrated facilities, 
applicants also must describe the proportion contributed to its primary 
nonferrous activities by material purchases from and product sales to 
affiliated suppliers and customers.
    (d) Annual operating capacity over the five most recent fiscal years 
for the smelter subject to this application. Operating capacity must be 
defined in terms of the total quantity of throughput that could have 
been processed with the available facilities after giving appropriate 
allowance to normal downtime requirements for maintenance and repairs. 
Operating capacity data also must consider both capacity balancing 
requirements among processing steps and annual processing yield rates 
attainable for each facility.
    (e) Weighted average analysis of concentrates processed and tonnage 
produced annually over each of the five most recent fiscal years by the 
smelter subject to this application.
    (f) Accounting system and policies for recording investment 
expenditures, operating revenues, operating costs and income taxes 
associated with its primary nonferrous activities. Applicants also must 
provide a complete description of allocation techniques employed for 
assigning investments, revenues, costs and taxes to individual profit, 
cost of departmental centers for which costs are accumulated. Applicants 
must further indicate the relationship of cost and/or departmental 
accounting entities to the firm's established profit centers.
    (g) Annual five-year operating and capital expenditure plans (or 
budgets) by individual nonferrous profit center. These documents must 
include previous plans prepared for the five preceding fiscal years as 
well as the current one-year and five-year operating and capital 
expenditure plans. At least the current one-year and five-year plans 
must provide a specific breakdown of investment expenditures and 
operating costs associated with the operation and maintenance of each 
profit center's existing and proposed pollution control facilities.

[[Page 171]]

    2.10.2 Exhibit B. Supplemental description and explanation of items 
appearing in the financial reporting schedules. Other parts of Section 2 
and the detailed instructions for the Schedules specify the information 
required in Exhibit B.
    2.10.3 Exhibit C. Financial data documentation. Applicants must 
document annual balance sheet, income statement and supporting data 
reported for the firm's preceding five fiscal years or for that portion 
of the past five years during which the firm engaged in smelter 
operations. This documentation must be provided by attaching to the 
application:
    (a) SEC 10-K reports filed by the parent corporation for each of the 
preceding five fiscal years.
    (b) Certified financial statements prepared on a consolidated basis 
for the parent corporation and its consolidated subsidiaries. This 
requirement may be omitted for those years in which SEC 10-K reports 
have been attached to this Exhibit.
    (c) Business Segment Information reports filed with the Securities 
and Exchange Commission by the firm for each of the preceding five years 
(as available).

                  Schedule A.1--Historical Revenue Data

    General. Use Schedule A.1 to report annual historical revenue data 
for fiscal years 1979 through 1983. Revenues include product sales and 
associated operating revenues, net of returns and allowances, from 
smelter sales and/or transfers of copper, lead, zinc and molybdenum or 
other nonferrous metal products and tolling services to both 
unaffiliated and affiliated customers. The line items in Schedule A.1 
are explained in the following instructions.

    Lines 01, 14, 27 and 40--Primary Nonferrous Product Sales. Report 
for each year the total quantity of copper, lead, zinc and molybdenum or 
other nonferrous metal product sales.
    Lines 02, 15, 28 and 41--Unaffiliated Customer Sales. Report for 
each year the respective quantities of copper, lead, zinc and molybdenum 
or other nonferrous metal product sales to unaffiliated customers.
    Lines 03, 16, 29 and 42--Unaffiliated Customer Revenues. Report for 
each year the total operating revenues derived from smelter sales of 
copper, lead, zinc and molybdenum or other nonferrous metals to 
unaffiliated customers.
    Lines 04, 17, 30 and 43--Unaffiliated Customer Prices. Report for 
each year the average unit price received on smelter sales of copper, 
lead, zinc and molybdenum or other nonferrous metals to unaffiliated 
customers. The prices are computed as operating revenues reported on 
Lines 03, 16, 29 and 42 divided by the quantities reported on Lines 02, 
15, 28 and 41, respectively.
    Lines 05, 18, 31 and 44--Average Product Quality Grade. Report for 
each year the average quality rating assigned to copper, lead, zinc and 
molybdenum or other nonferrous metal products purchased by the smelter's 
unaffiliated customers.
    Lines 06, 19, 32 and 45--Affiliated Customers Sales. Report for each 
year the respective quantities of copper, lead, zinc and molybdenum or 
other nonferrous metal product sales to affiliated customers.
    Lines 07, 20, 33 and 46--Affiliated Customer Revenues. Report for 
each year the total operating revenues derived from smelter sales of 
copper, lead, zinc and molybdenum or other nonferrous metals to 
affiliated customers. These revenues should be stated at prices 
equivalent to those received on comparable sales to unaffiliated 
customers as described in Section 2.2. Attach as part of Exhibit B an 
explanation of the methodology used to state affiliated customer 
revenues.
    Lines 08, 21, 34 and 47--Affiliated Customer Prices. Report for each 
year the average unit price received on smelter sales of copper, lead, 
zinc and molybdenum or other nonferrous metals to affiliated customers. 
The prices are computed as operating revenues reported on Lines 07, 20, 
33 and 46 divided by the quantities reported on Lines 06, 19, 32 and 45, 
respectively.
    Lines 09, 22, 35 and 48--Average Product Quality Grade. Report for 
each year the average quality rating assigned to copper, lead, zinc and 
molybdenum or other nonferrous metal products purchased by the smelter's 
affiliated customers.
    Lines 10, 23, 36 and 49--Total Primary Product Revenues. Report for 
each year total operating revenues derived from the smelter's sales to 
unaffiliated and affiliated customers of copper (Lines 03+07), lead 
(Lines 16+20), zinc (Lines 29+33) and molybdenum or other nonferrous 
metals (Lines 42+46).
    Lines 11, 24, 37 and 50--Transfer Price Adjustments. Report for each 
year operating revenue adjustments required to equate affiliated 
customer transfer prices with unaffiliated customer market prices on 
smelter sales of copper, lead, zinc and molybdenum or other nonferrous 
metals. Attach as part of Exhibit B an explanation of the method used 
for restating transfer prices where such adjustments are necessary.
    Lines 12, 25, 38 and 51--Other Revenue Adjustments. Report for each 
year sales returns and allowances and other adjustments applicable to 
the smelter's revenues derived from copper, lead, zinc and molybdenum or 
other nonferrous metal product sales. Attach as part of Exhibit B a 
schedule reporting the types and amounts of such adjustments.
    Lines 13, 26, 39 and 52--Adjusted Product Revenues. Enter for each 
year the sums of Lines 10 through 12 for adjusted copper sales (Line 
13), Lines 23 through 25 for adjusted lead sales (Line 26), Lines 36 
through 38 for

[[Page 172]]

adjusted zinc sales (Line 39) and Lines 49 through 51 for adjusted 
molybdenum or other nonferrous metal sales (Line 52).
    Line 53--Primary Metal Revenues. Enter for each year the sum of 
Lines 13, 26, 39 and 52.
    Line 54--Toll Concentrates Processed. Report for each year the total 
quantity of toll concentrates processed.
    Lines 55 to 58--Customer Toll Revenues. Report for each year the 
quantity of toll concentrates processed for unaffiliated customers (Line 
55), total operating revenues derived from this processing (Line 56), 
average price charged per ton of concentrate processed (Line 57=Line 56/
55) and the average quality rating assigned to toll concentrates 
processed for unaffiliated customers (Line 58).
    Lines 59 to 62--Affiliated Customer Toll Revenues. Report for each 
year the quantity of toll concentrates processed for affiliated 
customers (Line 59), total operating revenues derived from such 
processing (Line 60), average price charged per ton of concentrate 
processed (Line 61=Line 60/59) and the average quality rating (Line 62) 
assigned to toll concentrates processed for affiliated customers.
    Line 63--Tolling Service Revenues. Enter for each year the total of 
amounts reported on Lines 56 and 60.
    Line 64--Transfer Price Adjustments. Report for each year operating 
revenue adjustments required to equate affiliated customer transfer 
prices with market prices charged to unaffiliated customers on the 
smelter's tolling services. Attach as part of Exhibit B an explanation 
of the method used for restating transfer prices where such adjustments 
are necessary.
    Line 65--Other Revenue Adjustments. Report for each year other 
adjustments applicable to the smelter's tolling service revenues. Attach 
as part of Exhibit B a schedule reporting the types and amounts of such 
adjustments.
    Line 66--Adjusted Tolling Service Revenues. Enter for each year the 
total of Lines 63 through 65.
    Line 67--Co-Product Revenues. Report for each year the net revenues 
from sales of co-products derived from the smelter's operations. Attach 
as part of Exhibit B a schedule showing by individual type of co-
product, the quantity produced and sold, market price per unit of sales 
and total revenues derived from the co-product sales.
    Line 68--Pollution Control By-product Revenues. Report for each year 
revenues from the sale of by-products derived from operation of the 
smelter's pollution control facilities. Attach as part of Exhibit B a 
schedule showing by type of by-product produced, the quantity of output, 
market price received per unit of output sold and total revenue derived 
from the by-product sales.
    Line 69--Other By-product Revenues. Report for each year revenues 
from the sales of gold, silver and other by-products derived from the 
smelter's operations. Attach as part of Exhibit B a schedule providing 
additional documentation as specified in the instruction for Line 68.
    Line 70--Total Co-product and By-product Revenues. Enter for each 
year the total of Lines 67 through 69.

                   Schedule A.2--Historical Cost Data

    General. Use Schedule A.2 to report annual historical cost and input 
quantities for smelter operations for fiscal years 1979 through 1983. 
The line items in Schedule A.2 are explained in the following 
instructions.

    Line 01--Total Quantity Purchased. Report for each year the total 
quantity of concentrates purchased by the smelter. This will be sum of 
Lines 02 and 06. Do not include the quantity of toll concentrates.
    Line 02--Quantity Purchased. Report for each year the total quantity 
of concentrates purchased from unaffiliated suppliers by the smelter. 
Attach as a part of Exhibit B a description of the types and grades of 
these concentrates. Do not include the quantity of toll concentrates.
    Line 03--Concentrate Cost. Report for each year the outlays paid to 
unaffiliated suppliers for concentrates. Attach as part of Exhibit B an 
explanation of the method(s) used in determining these outlays and 
relationship between concentrate prices and the types and grades of 
concentrates purchased from unaffiliated suppliers.
    Line 04--Average Unit Price. Report for each year the average unit 
price paid for purchases of concentrates from unaffiliated suppliers. 
Generally, this value will be equivalent to Line 03 divided by Line 02. 
If this equivalency does not hold, attach as a part of Exhibit B an 
explanation of the variance.
    Line 05--Average Concentrate Grade. Report for each year the average 
concentrate grade of concentrates purchased from unaffiliated suppliers. 
Attach as part of Exhibit B an explanation of this average. The average 
should correspond to the average price reported in Line 04.
    Line 06--Quantity Purchased. Report for each year the total quantity 
of concentrates purchased from affiliated suppliers by the smelter. 
Attach as part of Exhibit B a description of the types and grades of 
these concentrates. Do not include the quantity of toll concentrates.
    Line 07--Concentrate Cost. Report for each year the actual outlays 
paid to affiliated suppliers for concentrates. Attach as part of Exhibit 
B an explanation of the method(s) used in determining these outlays and 
relationship between concentrate prices and the types and grades of 
concentrates purchased

[[Page 173]]

from affiliated suppliers. Do not reflect any adjustments to market 
prices here.
    Line 08--Average Unit Price. Report for each year the average unit 
price paid for purchases of concentrates from affiliated suppliers. 
Generally, this value will be equivalent to Line 07 divided by Line 06. 
If this equivalency does not hold, attach as part of Exhibit B an 
explanation of the variance.
    Line 09--Average Concentrate Grade. Report for each year the average 
concentrate grade of concentrates purchased from affiliated suppliers. 
Attach as part of Exhibit B an explanation of this average. The average 
should correspond to the average price reported in Line 08.
    Line 10--Total Concentrate Cost. Enter for each year the sum of 
Lines 03 and 07.
    Line 11--Transfer Price Adjustments. Enter for each year the amounts 
required to adjust outlays paid to affiliated suppliers to market value. 
Refer to Section 2.2 for instructions on the restatement of affiliated 
party transactions. Attach as part of Exhibit B a description and the 
computations of any required cost adjustments.
    Line 12--Other Cost Adjustments. Enter for each year the amounts of 
any other cost adjustments required such as freight or allowances. 
Attach as part of Exhibit B the identification and the derivation of 
these adjustments.
    Line 13--Adjusted Concentrate Cost. Enter for each year the adjusted 
concentrate cost reflecting the adjustments reported in Lines 11 and 12.
    Line 14--Direct Labor Hours. Report for each year the quantity of 
direct labor hours required to support the processing levels previously 
reported. Attach as part of Exhibit B an explanation of the labor 
productivity factor involved.
    Line 15--Average Hourly Wage Rate. Report for each year the average 
wage rate paid per unit of direct labor input. Attach as part of Exhibit 
B a description of direct labor costs factors under existing labor 
contracts and an explanation of the method(s) used to determine wage 
rates.
    Line 16--Total Wage Payments. Enter for each year the product of 
Lines 14 and 15.
    Line 17--Supplemental Employee Benefits. Report adjustments required 
to direct labor costs for other employee compensation under supplemental 
benefit plans. Attach as part of Exhibit B a description of such plans 
and their costs and an explanation of the method(s) used to determine 
such costs.
    Line 18--Total Production Labor Cost. Enter for each year the total 
of Lines 16 and 17.
    Lines 19, 22, 25, 28 and 31--Energy Quantities. Report for each year 
the quantity of energy by type required to support the processing levels 
reported in the smelter's revenue. Attach as part of Exhibit B, an 
explanation of energy use factors and qualities considered in 
determining the smelter's energy requirements.
    Lines 20, 23, 26, 29 and 32--Unit Prices. Report for each year a 
price paid per unit of energy input by type of energy. Attach as part of 
Exhibit B, a description of the energy price factors under existing 
energy contracts and an explanation of the method(s) used to determine 
unit energy prices.
    Lines 21, 24, 27, 30 and 33--Total Payments. Enter for each year the 
products of quantity and prices paid for electricity (Lines 19x20), 
natural gas (Lines 22x23), coal (Lines 25x26), fuel oil (Lines 28x29), 
and other (Lines 31x32).
    Line 34--Total Energy Costs. Enter for each year the total of Lines 
21, 24, 27, 30 and 33.

            Schedule A.3--Historical Profit and Loss Summary

    General. Use Schedule A.3 to report annual revenues, cost and income 
taxes assignable to operation of the smelter subject to this NSO 
application for fiscal years 1979 through 1983. Assignable revenues and 
costs should include only the results of transactions either (1) 
directly associated with smelter operations or (2) for which the 
applicant can establish a causal and beneficial relationship with 
smelter operations pursuant to instructions in Section 2.1. The line 
items in Schedule A.3 are explained in the following instructions.
    Line 01--Primary Metal Sales. Enter the totals reported in Schedule 
A.1, Line 40.
    Line 02--Co-Product and By-Product Sales. Report for each year 
annual revenues, net or returns and allowances, derived from smelter 
sales and/or transfers of co-products and by-products to both 
unaffiliated and affiliated customers. Attach as part of Exhibit B a 
supporting schedule for each major co-product and by-product component 
of smelter revenues. Segregate the revenues reported by major co-product 
and by-product components into their unaffiliated customer and 
affiliated customer elements. Report for each component's unaffiliated 
and affiliated customer revenue elements the (1) average grade of 
product sold, (2) actual quantity sold, (3) average price per unit, and 
(4) total smelter revenues. Also show for each product line any 
adjustments required to restate transfer prices and explain the basis 
for such adjustments. Refer to Section 2.2 for instructions on the 
restatement of affiliated customer revenues.
    Line 03--Tolling Service Revenues. Enter the totals reported in 
Schedule A.1, Line 53.
    Line 04--Other Operating Revenues. Report for each year annual 
revenues directly associated with smelter operations that have not 
previously been reported on Lines 01 through 03. Attach as part of 
Exhibit B a schedule showing the types and amounts of sales reported as 
other operating revenue. The following non-operating revenue and income

[[Page 174]]

items should not be included as other operating revenue or as a part of 
revenues reported on Lines 01 through 03.

Royalties, licensing fees and other income from intangibles.
Interest and dividend income on portfolio investments.
Equity in income (loss) of unconsolidated subsidiaries and affiliates.
Gain (loss) from discontinued operations and disposal of property.
Minority interest adjustment to consolidated subsidiary income.
Extraordinary items.

    Line 05--Total Operating Revenue. Enter for each year the total of 
Lines 01 through 04.
    Line 06--Concentrates Processed. Report the cost of concentrates 
processed and sold or transferred to unaffiliated and affiliated 
customers from Schedule A.2, Line 13. Concentrates purchased from 
unaffiliated suppliers should be valued at the actual prices paid. 
Concentrates purchased from affiliated suppliers should be valued at or, 
if necessary, restated to equivalent prices quoted by unaffiliated 
suppliers. If prices used to report revenues are c.i.f. and concentrate 
costs are f.o.b. smelter, all transportation charges paid on the 
smelter's or buyer's account should be excluded from smelter expense. 
Attach as part of Exhibit B supporting schedules showing the:

Annual value of concentrate purchases classified according to purchases 
from unaffiliated and affiliated suppliers.
Cost of sales adjustments to concentrate purchases for net annual 
additions to or withdrawals from concentrate inventories, freight-in on 
concentrate purchases and inventory spoilage.
Impact on cost of sales for restating, where applicable, the cost of 
concentrate purchases from affiliated suppliers to the equivalent prices 
paid to unaffiliated suppliers.
Volumes, grades and net prices of concentrate purchases from 
unaffiliated and affiliated suppliers by type of concentrate purchased.
Volumes, grades and net prices associated with toll concentrates 
processed by type of concentrate.

    Line 07--Other Materials Costs. Report for each year annual costs 
incurred for flux, refractories, coke and other materials used by the 
smelter in its processing of concentrates. Materials purchased from 
unaffiliated suppliers should be valued at the actual prices paid after 
adjustment for transportation costs incurred. Materials purchased from 
affiliated suppliers should be valued at or, if necessary, restated to 
equivalent prices quoted by unaffiliated suppliers. Include in Exhibit B 
supporting schedules showing the:

Annual value of material purchases classified according to purchases 
from unaffiliated and affiliated suppliers.
Cost of sales adjustments to material purchases for net annual additions 
to or withdrawals from material inventories, freight costs on material 
purchases and inventory loss.
Impact on cost of sales for restating, where applicable, the costs of 
material purchases from affiliated suppliers to equivalent prices paid 
to unaffiliated suppliers.
Classification of other material costs by major cost factors for each 
cost component that exceeds 20 percent of any line item in the cost of 
sales schedule.

    Line 08--Production Labor Costs. Report for each year total direct 
labor costs incurred by the smelter for processing purchased and toll 
concentrates, Schedule A.2, Line 18. Include in Exhibit B supporting 
schedules showing the:

Manhours and wage rates for major labor classifications.
Potential impact on wage rates of provision in the smelter's current 
labor contracts.
Explanation of major variances observed in direct labor costs over the 
five-year period as a result of factors such as strikes or new labor 
contracts.

    Line 09--Energy Costs. Enter the totals reported in Schedule A.2, 
Line 34.
    Line 10--Pollution Control Costs. Report for each year expenses 
incurred for operating and maintaining pollution control facilities. All 
by-product credits associated with pollution control facility operations 
should be eliminated and reported on Line 02. Depreciation and 
amortization charges against the smelter's pollution control facilities 
should be reported separately on Line 18. Attach as part of Exhibit B 
supporting schedules showing the:

Major pollution control cost elements with their values classified 
according to direct and indirect cost factors.
Techniques used to allocate indirect pollution control costs to major 
cost pools.

    Line 11--Production Overhead. Report for each year the total costs 
for indirect labor, indirect materials and other production overhead 
costs associated with the smelter. Attach as part of Exhibit B a 
schedule showing annual overhead costs by major cost components 
associated with the smelter's operations. For each cost component, where 
appropriate, identify the quantity and unit price element of overhead 
costs.
    Line 12--Other Production Costs. Report for each year annual smelter 
overhead and other production costs not previously reported on Lines 06 
through 11. By-product credits, if any, should be eliminated and 
reported on Line 02 as operating revenues. Attach as part of Exhibit B 
supporting schedules showing the:


[[Page 175]]


Major cost elements classified according to direct and indirect 
production costs.
Disaggregation of major overhead cost components into their fixed and 
variable cost elements.
Allocation techniques used in assigning indirect overload costs to the 
major cost components.
Elements of overhead costs represented by purchases from affiliated 
suppliers and adjustments, if any, required to restate these costs on 
the basis of equivalent prices paid to unaffiliated supplier.

    Line 13--Total Cost of Sales. Enter for each year the total of Lines 
06 through 12.
    Line 14--Gross Operating Profit. Enter for each year the difference 
between Lines 05 and 13.
    Line 15--Selling, General & Administrative (SG&A) Expenses. Report 
for each year SG&A expenses attributable to the smelter's annual 
operating activities. Exclude those operating costs to be reported 
separately on Lines 16 through 21 and those costs for which causal and 
beneficial relationships to the smelter cannot be established. Attach as 
part of Exhibit B supporting schedules (1) segregating SG&A expenses by 
major expense components, (2) classifying the major expense components 
according to those costs incurred directly by smelter operations and 
costs allocated to the smelter from indirect cost pools, and (3) 
explaining the basis used for indirect cost allocations.
    Line 16--Taxes, Other Than Income Tax. Report for each year all 
taxes (exclusive of Federal, State, local and foreign income taxes) 
assignable to the smelter's operations. Attach as part of Exhibit B, a 
schedule that (1) segregates these operating taxes by major component, 
(2) classifies each component according to direct and indirect cost 
elements, and (3) explains the basis used for indirect cost allocations.
    Line 17--Research Costs. Report for each year research costs 
(exclusive of capitalized costs reported in Schedule A.4) that are 
assignable to the smelter's annual operations. Attach as part of Exhibit 
B a schedule (1) segregating exploration and research costs by major 
expense components, (2) classifying each expense component according to 
direct and indirect cost elements, and (3) explaining the basis used for 
indirect cost allocations.
    Line 18--Pollution Control Depreciation and Amortization. Report for 
each year annual depreciation and amortization charges attributable to 
the smelter's investment in pollution control facilities and equipment. 
Reported charges should be computed in accordance with depreciation and 
amortization methods adopted for tax reporting purposes by the firm. 
Attach explanatory supporting schedules as part of Exhibit B.
    Line 19--Other Facility Depreciation and Amortization. Report for 
each year annual depreciation and amortization charges (exclusive of 
charges reported on Line 18) assignable to the smelter's operations. 
Attach explanatory supporting schedules as part of Exhibit B.
    Line 20--Interest on Short-Term Debt. Report for each year interest 
expense and associated financial charges on current liabilities in 
accordance with the assignment instructions in Section 2.1. Do not 
include interest on the portion of long-term debt due within the current 
year for each reporting period.
    Line 21--Miscellaneous Operating Expenses. Report for each year any 
additional expenses assignable to the smelter's annual operations. 
Attach as part of Exhibit B a schedule (1) segregating these additional 
expenses into major expense components, (2) classifying each expense 
component according to costs incurred directly by the smelter and costs 
allocated to the smelter from indirect cost pools, and (3) explaining 
the basis used for indirect cost allocations.
    Line 22--Total Other Operating Expenses. Enter for each year the 
total of Lines 15 through 21.
    Line 23--Income from Operations. Enter for each year the difference 
between Lines 14 and 22.
    Line 24--Gain/(Loss) from Disposition of Property. Report net gains 
or losses recognized during each year from disposition of property, 
plant and equipment. Report such gains or losses in accordance with the 
firm's normal practice for certified financial statement reporting. If 
such gains or losses are not significant and are classified otherwise, 
no reclassification need be made. A note to this effect must be included 
in Exhibit B.
    Line 25--Miscellaneous Income and Expenses. Report minority interest 
in income, foreign currency translation effects, and other non-operating 
income and expenses directly assignable to the smelter and not 
recognized elsewhere on this schedule. Report such items in accordance 
with the accounting methods used for certified financial reporting 
purposes.
    Line 26--Total Other Income and Expenses. Enter for each year the 
sum of Lines 24 and 25.
    Line 27--Net Taxable Income. Enter for each year the difference 
between Lines 23 and 26.

           Schedule A.4--Historical Capital Investment Summary

    General. Use Schedule A.4 to report annual end-of-period asset 
investments and current liabilities for fiscal years 1979 through 1983. 
These figures must correspond with the revenues and costs associated 
with operation of the smelter subject to this NSO application as 
reported in Schedule A.3.
    The amounts assigned to the subject smelter should include both (1) 
investments and liabilities directly identifiable with the smelter's 
operating activities and (2) asset

[[Page 176]]

investments shared with other segments to the extent that a specific 
causal and beneficial relationship can be established for the 
intersegment allocation of such investments. Do not allocate to the 
smelter the costs of assets maintained for general corporate purposes. 
Provide a detailed explanation of amounts classified as nontraceable on 
a separate schedule and attach as part of Exhibit B.
    Applicants shall also restate trade receivables and payables for 
transfer price adjustments on the smelter's transactions with affiliated 
customers. The line items in Schedule A.4 are explained in the following 
instructions.
    Line 01--Cash on Hand and Deposit. Report for each year total cash 
balances assignable to the smelter's operations at the end of each year 
on the basis of causal and beneficial relationships with total corporate 
activities. Attach as part of Exhibit B in explanation of the basis used 
for allocation.
    Line 02--Temporary Cash Investments. Report for each year temporary 
cash investments in time deposits or other short-term securities. 
Include only those investments either held by the smelter to meet 
current-period tax payments or other budgeted expenditures specifically 
identifiable with the smelter's continued operation. Exclude any 
temporary cash investments for which no specific future outlay 
requirement can be identified.
    Attach as part of Exhibit B a schedule classifying temporary cash 
investments according to identifiable budgeted expenditure requirements.
    Lines 03 and 04--Net Trade Receivables. Report for each year trade 
accounts and notes, net of reserves for uncollectible items, assignable 
to the smelter in relation to its unaffiliated (Line 03) and affiliated 
(Line 04) customer sales and transfers. Trade receivables reported by 
the smelter as due from affiliated customers should be stated or, if 
necessary, restated on credit terms equivalent to those received by 
unaffiliated customers on a sale of comparable products. Attach as part 
of Exhibit B a schedule showing adjustments in the smelter's receivables 
investments required to equate trade credit terms extended to affiliated 
and unaffiliated customers.
    Lines 05 and 06--Inventory Investments. Report for each year 
respective end-of-period investments in raw material, work-in-process 
and finished good inventories held to support the smelter's production 
and sale of products (Line 05) and associated inventories of other 
materials and supplies (Line 06). These inventories must be valued at 
current market prices. Inventory purchases from affiliated suppliers 
should also be stated at current market prices or, if necessary, 
restated at current market prices prevailing on purchases from 
unaffiliated suppliers. Attach explanatory supporting schedules as part 
of Exhibit B.
    Line 07--Other Current Assets. Report for each year prepaid 
expenses, deferred charges, non-trade notes and accounts receivable, and 
other assets classified as current for certified financial statement 
reporting purposes that are assignable to the smelter's operations. 
Attach as part of Exhibit B a schedule classifying these other current 
assets according to their types and amounts.
    Line 08--Total Current Assets. Enter for each year the total of 
Lines 01 through 07.
    Lines 09 to 14--Property, Plant and Equipment. Report for each year 
by individual line item property, plant and equipment investments 
assignable to smelter operations. Include in gross facility investments 
at the end of each period both (1) property, plant and equipment 
directly associated with the smelter's operations and (2) facilities 
shared with other operating segments to the extent that a causal and 
beneficial relationship can be established for the inter-segment 
allocation of such facility investments.
    Attach as part of Exhibit B a schedule reporting by individual line 
item the annual capital expenditures on additional property, plant and 
equipment investments in the smelter's operations. Further classify 
these annual capital expenditures into both (1) investments required to 
maintain the smelter versus investments in smelter expansion and 
improvement and (2) direct facility versus joint-use facility 
investments. Explain the method used for allocating capital expenditures 
on joint-use facilities to the smelter's operations. Refer to Line 17 
instructions for additional reporting requirements on the smelter's 
facility investments.
    Line 15--Total Smelter Investment. Enter for each year the total of 
Lines 09 through 14.
    Line 16--Accumulated Depreciation and Amortization. Report for each 
year accumulated depreciation, amortization and other valuation charges 
recorded for certified financial statement reporting purposes in 
relation to smelter investment as reported on Line 15. Other valuation 
charges are defined in Financial Accounting Standards Board (FASB) 
Statement No. 19 as losses recognized in connection with an impairment 
in the value of an unimproved property below its acquisition cost. Refer 
to Line 17 instructions for additional reporting requirements on smelter 
facility investments.
    Line 17--Net Smelter Investment. Enter for each year the difference 
between Lines 15 and 16. Attach as part of Exhibit B a schedule 
classifying gross facility investments, accumulated depreciation, 
amortization charges, and net facility investments by major pollution 
control and non-pollution control components. Identify for each asset 
component the direct versus joint-use investments assigned to the 
smelter and explain

[[Page 177]]

the basis used to allocate amounts associated with joint-use facilities 
to the smelter.
    Line 18--Other Non-Current Assets. Report for each year other assets 
assignable to the smelter's operations. Attach as part of Exhibit B a 
schedule reporting by type and amount the major components of such 
investments.
    Line 19--Total Smelter Capital Investment. Enter for each year the 
total of Lines 08, 17 and 18.
    Line 20 and 21--Trade Accounts and Notes Payable. Report for each 
year trade accounts and notes due on the smelter's purchases from 
unaffiliated suppliers (Line 20) and on its intersegment transfers or 
purchases from affiliated suppliers (Line 21). Trade payables reported 
by the smelter as due to affiliated suppliers should be stated or, if 
necessary, restated on terms equivalent to those received from 
unaffiliated suppliers on a purchase of comparable materials. Attach as 
part of Exhibit B a schedule showing adjustments required on the 
smelter's trade payables to equate trade credit terms received from 
affiliated and unaffiliated suppliers.
    Line 22--Other Expense Accruals. Report for each year payments 
classified as current for salaries and wages, other employee benefits, 
operating taxes and related operating expenses assignable to the 
smelter's operations. Attach as part of Exhibit B a schedule classifying 
by type and amount the major components of such accruals.
    Line 23--Current Notes Payable. Report for each year payments due to 
nontrade creditors on short-term financing arrangements directly 
associated with the smelter's operations. Exclude current installments 
due on long-term debt financing arrangements, notes due to offices and 
directors, intersegment loans or advances and loans or advances from 
affiliated operating segments.
    Line 24--Other Current Liabilities. Report for each year other 
nontrade payables classified as current obligations assignable to the 
smelter's operations.
    Line 25--Total Current Liabilities. Enter for each year the total of 
Lines 20 through 24.
    Line 26--Net Smelter Capital Investment. Enter for each year the 
difference between Lines 19 and 25.

               Schedule B.1--Pre-Control Revenue Forecast

    General. Use Schedule B.1 to report annual forecasts of operating 
revenues anticipated during the years 1984 through 1990 from operation 
of the smelter subject to this NSO application. These pre-control 
revenue projections should be based on revenues and production 
associated with operating the smelter without any SO2 air 
pollution controls that have not been installed as of the NSO 
application date. Forecast smelter revenues should be expressed on a 
tolling service equivalent basis as described in Section 2.3.4.
    Copper smelters that will process concentrates containing an average 
of 1,000 pounds per hour or more of arsenic during the forecast period 
should assume that they will use best engineering techniques to control 
fugitive emissions of arsenic. All smelters should also assume that they 
will be required to meet all other regulatory requirements in effect at 
the time the application is made.
    The line items in Schedule B.1 are explained in the following 
instructions. Attach as part of Exhibit B schedules to (1) explain the 
methods used to make the required forecasts, (2) explain differences, if 
any, between historical trends and the forecasts and (3) provide data 
and information to support the forecasts.
    Lines 01 and 05--Concentrates Processed. Report for each year the 
forecast quantity of concentrates processed for unaffiliated parties 
(Line 01) and affiliated parties (Line 05).
    Lines 02 and 06--Smelting Charge. Report for each year the forecast 
smelting charge for unaffiliated parties (Line 02) and affiliated 
parties (Line 06). See Section 2.4 for forecast copper smelting charges 
furnished by EPA.
    Lines 03 and 07--Total Smelter Revenues. Report for each year the 
forecast total operating revenues derived from processing concentrates. 
The total for unaffiliated parties (Line 03) is equal to the product of 
Lines 01, 02, and 04, and for affiliated parties (Line 07), the product 
of Lines 05, 06, and 08.
    Lines 04 and 08--Average Product Grade. Report for each year the 
forecast average quality rating assigned to concentrates processed for 
unaffiliated parties (Line 04) and affiliated parties (Line 08).
    Line 09--Total Co-Product Revenues. Report for each year the 
forecast net revenues from sales of co-products derived from the 
smelter's operations. Attach as part of Exhibit B a schedule showing by 
individual type of co-product, the forecast quantity produced and sold, 
forecast market price per unit of sales, and forecast total revenues 
derived from the co-product sales.
    Line 10--Total By-product Revenues From Pollution Control 
Facilities. Report for each year forecast revenues from the sale of by-
products derived from operation of the smelter's pollution control 
facilities, excluding any SO2 air pollution controls that 
have not been installed as of the NSO application date. Attach as part 
of Exhibit B a schedule showing by type of by-product produced (e.g., 
sulfuric acid) the forecast quantity of output, forecast market price 
per unit of output sold, and forecast total revenue derived from the by-
product sales.
    Line 11--Total By-product Revenues From Other Smelter Processing. 
Report forecast revenues from the sales of gold, silver, and other by-
products derived from the smelter's operations. Attach as part of 
Exhibit B a

[[Page 178]]

schedule providing additional documentation as specified in the 
instructions for Line 10.
    Line 12--Total Co-product and By-product Revenues. Enter for each 
year the total of Lines 09 through 11.

                 Schedule B.2--Pre-Control Cost Forecast

    General. Use Schedule B.2 to report annual forecasts of operating 
costs anticipated during the years 1984 through 1990 from operation of 
the smelter subject to this NSO application. These pre-control cost 
projections should be based on costs and production associated with 
operating the smelter without any SO2 air pollution controls 
that have not been installed as of the NSO application date.
    Copper smelters that will process concentrates containing an average 
of 1,000 pounds per hour or more of arsenic during the forecast period 
should assume that they will use best engineering techniques to control 
fugitive emissions of arsenic. All smelters should also assume that they 
will be required to meet all other regulatory requirements in effect at 
the time the application is made.
    The line items in Schedule B.2 are explained in the following 
instructions. Attach as part of Exhibit B schedules to (1) explain the 
methods used to make the required forecasts, (2) explain differences, if 
any, between historical trends and the forecasts, and (3) provide data 
and information to support the forecasts.
    Line 01--Direct Labor Hours. Report for each year the quantity of 
direct labor hours required to support the processing levels previously 
reported. Attach as part of Exhibit B an explanation of the labor 
productivity factors involved.
    Line 02--Average Hourly Wage Rate. Report for each year the forecast 
average wage rate per unit of direct labor input. Attach as part of 
Exhibit B a description of direct labor cost factors under any existing 
labor contracts that extend to the forecast period and an explanation of 
the methodology used to forecast wage rates. EPA-provided forecast wage 
indices are reported in Section 2.4.
    Line 03--Total Wage Payments. Enter for each year the product of 
Lines 01 and 02.
    Line 04--Supplemental Employee Benefits. Report for each year 
adjustments required to direct labor costs for other employee 
compensation under supplemental benefit plans. Attach as part of Exhibit 
B a description of such plans and their costs and an explanation of the 
methodology used to forecast such costs. EPA-provided forecast wage 
indices are reported in Section 2.4.
    Line 05--Total Production Labor Cost. Enter for each year the total 
of Lines 03 and 04.
    Lines 06, 09, 12, 15 and 18--Energy Quantities. Report for each year 
the quantity of energy by type required to support the processing levels 
reported in the smelter's revenue. Attach as part of Exhibit B an 
explanation of energy characteristics and use factors considered in 
forecasting the smelter's future energy requirements.
    Lines 07, 10, 13, 16, and 19--Unit Prices. Report for each year the 
forecast price per unit of energy input by type of energy. Attach as 
part of Exhibit B a description of the energy price factors under any 
existing energy contracts that extend to the forecast period and an 
explanation of the methodology used to forecast unit energy prices. EPA-
provided forecast energy indices are reported in Section 2.4.
    Lines 08, 11, 14, 17, and 20--Total Payments. Enter for each year 
the products of quantity and prices paid for electricity (Lines 06x07), 
natural gas (Lines 09x10), coal (Lines 12x13), fuel oil (Lines 15x16), 
and other (Lines 18x19).
    Line 21--Total Energy Costs. Enter for each year the total of Lines 
08, 11, 14, 17, and 20.

       Schedule B.3--Pre-Control Forecast Profit and Loss Summary

    General. Use Schedule B.3 to report annual forecasts of operating 
revenues and operating costs derived in Schedules B.1 and B.2 for the 
years 1984 through 1990. The transfer of line items from Schedules B.1 
and B.2 to this Schedule is explained in the following instructions.
    Line 01--Smelter Revenues-Unaffiliated Parties. Enter the totals 
reported in Schedule B.1, Line 03.
    Line 02--Smelter Revenues-Affiliated Parties. Enter the totals 
reported in Schedule B.1, Line 07.
    Line 03--Co-product and By-product Sales Revenues. Enter the totals 
reported in Schedule B.1, Line 12.
    Line 04--Other Operating Revenues. Report operating revenues 
anticipated from sources not accounted for under Lines 01 through 03. 
Refer to instructions for Line 04 of Schedule A.3 for items that should 
not be included in ``Other Operating Revenues.'' Attach as part of 
Exhibit B a schedule showing annual amounts forecast by individual 
revenue component for ``other'' operating revenues associated with the 
smelter's forecast pre-control operations. Identify in the supporting 
schedule any differences in the ``other'' revenue components reported in 
this Schedule and Schedule A.3 and explain the reasons for such 
differences.
    Line 05--Total Operating Revenues. Enter for each year the total of 
Lines 01 through 04.
    Line 06--Material Costs. Report total costs forecast for flux, 
refractories, coke and other materials directly associated with the 
smelter's processing of concentrates. Attach as part of Exhibit B a 
schedule showing the annual amounts forecast by major material cost 
components. For each cost component, identify the forecast quantity and 
unit price elements of material cost and explain the basis for 
forecasting these quantity and price

[[Page 179]]

elements. Identify in the supporting schedule any differences in the 
``other'' material cost components shown in this Schedule and Schedule 
A.3 and explain the reasons for such differences.
    Line 07--Production Labor Costs. Enter the totals reported in 
Schedule B.2, Line 05.
    Line 08--Energy Costs. Enter the totals reported in Schedule B.2, 
Line 21.
    Line 09--Pollution Control Costs. Report the total costs forecast 
for expenses identifiable with operation and maintenance of all 
pollution control equipment and facilities except any SO2 air pollution 
controls that have not been installed as of the NSO application date. 
By-product credits associated with operation of the pollution control 
facilities should be eliminated from the cost accounts, reclassified to 
Schedule B.1, Line 10 and included in Line 03 of this Schedule. Attach a 
schedule as part of Exhibit B classifying pollution control costs by 
major cost components. Explain the basis used for estimating each of the 
cost components.
    Line 10--Production Overhead Costs. Report the total costs forecast 
for indirect labor, indirect materials and other production overhead 
costs associated with the smelter's operations. Attach as part of 
Exhibit B a schedule showing annual overhead costs projected by major 
cost components associated with the smelter's operations. For each cost 
component, where appropriate, identify the forecast quantity and unit 
price elements of overhead costs and explain the basis for estimating 
these quantity and price elements. Also identify in the supporting 
schedule any differences in production overhead cost classifications 
used in this Schedule and Schedule A.3 and explain the reasons for such 
differences.
    Line 11--Other Production Costs. Report other forecast production 
costs not previously reported on Lines 06 through 10. Attach as part of 
Exhibit B supporting schedules showing the basis of the forecasts.
    Line 12--Total Cost of Sales. Enter for each year the sum of 
operating costs reported on Lines 06 through 11.
    Line 13--Gross Operating Profit. Enter for each year the difference 
between Lines 05 and 12.
    Line 14--Selling, General and Administrative Expenses. Report the 
total costs forecast for administrative, marketing and general corporate 
overhead functions that directly or indirectly support the smelter's 
operations. Refer to the NSO Financial Reporting Overview for a general 
discussion of indirect cost allocations from overhead cost pools. Attach 
as part of Exhibit B a schedule classifying selling, general and 
administrative expenses into major cost components. Indicate whether 
each component represents costs directly assignable to the smelter or 
indirect costs allocated from other business segments to the smelter. 
Explain the basis used for estimating the amount of expected costs 
included in each component and the basis used for allocating indirect 
cost elements to the smelter. Identify and explain any differences 
between the selling, general and administrative cost classification used 
in this Schedule and that used in Line 15 of Schedule A.3.
    Line 15--Taxes, Other than Income Taxes. Report the total costs 
forecast for property taxes and associated levies paid to governmental 
units by or for the benefits of the smelter operation. Attach as part of 
Exhibit B a schedule classifying operating taxes by major component. 
Indicate whether each component represents taxes directly assignable to 
the smelter or taxes that have been allocated among more than one 
facility. Explain the basis used for estimating taxes and the basis for 
any allocation of taxes to the smelter. Identify and explain any 
differences between the component classifications used in this Schedule 
and those used in Line 16 of Schedule A.3.
    Line 16--Research Costs. Report the estimates of research costs 
incurred directly by or for the benefit of the smelter operations. 
Attach as part of Exhibit B a schedule classifying the costs by major 
direct and indirect assigned components. Explain the basis for 
estimating the costs assigned to each component. Identify and explain 
any differences between classifications used in this Schedule and those 
used in Line 17 of Schedule A.3.
    Line 17--Pollution Control Facility Depreciation and Amortization. 
Report the estimates of depreciation and amortization charges associated 
with the smelter's actual and forecast investment in all pollution 
control equipment and facilities except any SO2 air pollution 
controls that have not been installed as of the NSO application date. 
Reported charges should be computed in accordance with depreciation and 
amortization methods adopted for certified financial statement reporting 
purposes by the firm. Attach explanatory supporting schedules as part of 
Exhibit B.
    Line 18--Other Smelter Facility Depreciation and Amortization. 
Report the pro forma estimates of depreciation and amortization charges 
associated with the smelter's investment in equipment and facilities 
other than those classified as pollution control facilities. Attach 
explanatory supporting schedules as part of Exhibit B.
    Line 19--Interests. Report the estimates of interest and other 
financing charges on the smelter's current and long-term liabilities. 
Attach as part of Exhibit B a schedule showing the interest-bearing debt 
contracts identifiable with the smelter's operations, the interest rate 
projected for these contracts, and the estimated annual interest 
charges.
    Line 20--Miscellaneous Operating Expenses. Report only the total 
operating expenses associated with or allocated to the smelter

[[Page 180]]

that cannot be appropriately classsified in one of the preceding line 
items. Attach as part of Exhibit B a schedule showing the classification 
of these residual operating expenses into major cost components. Explain 
the basis used for forecasting the cost under each component. Identify 
each cost component in terms of direct or indirect cost and explain the 
basis used for allocating the indirect costs to smelter operations. 
Identify and explain any differences between cost classifications 
included in this Schedule and those used in Line 21 of Schedule A.3.
    Line 21--Total Other Operating Expenses. Enter for each year the sum 
of operating costs reported on Lines 14 through 20.
    Line 22--Income From Operations. Enter for each year the difference 
between Lines 21 and 13.

            Schedule B.4--Constant Controls Revenue Forecast

    General. Use Schedule B.4 to report annual forecasts of operating 
revenues anticipated during the years 1984 through 1990 from operation 
of the smelter subject to this NSO application. These constant controls 
revenue forecasts should be based on an assumption that the applicant 
immediately implements a program of additional pollution control 
facility investments sufficient to achieve full compliance with the 
smelter's SIP stack emission limitations for sulfur dioxide. Forecast 
smelter revenues should be expressed on a tolling service equivalent 
basis as described in Section 2.3.4.
    The assumed investment program should be based on whichever 
adequately demonstrated system, applicable to the smelter, that would be 
most economically beneficial subsequent to installation of the system. 
For this purpose, adequately demonstrated systems include those 
specified in Section 57.102(b)(1).
    Copper smelters that will process concentrates containing an average 
of 1,000 pounds per hour or more of arsenic during the forecast period 
should assume that they will use best engineering techniques to control 
fugitive emissions of arsenic. All smelters should also assume that they 
will be required to meet all other regulatory requirements in effect at 
the time the application is made.
    The line items in Schedule B.4 are explained in the following 
instructions. Attach as part of Exhibit B schedules to (1) explain the 
methods used to make the required forecasts, (2) explain differences, if 
any, between historical trends and the forecasts, and (3) provide data 
and information to support the forecasts.
    Lines 01 and 05--Concentrates Processed. Report for each year the 
forecast quantity of concentrates processed for unaffiliated parties 
(Line 01) and affiliated parties (Line 05).
    Lines 02 and 06--Smelting Charge. Report for each year the forecast 
smelting charge for unaffiliated parties (Line 02) and affiliated 
parties (Line 06). See Section 2.4 for forecast copper smelting charges 
furnished by EPA.
    Lines 03 and 07--Total Smelter Revenues. Report for each year the 
forecast total operating revenues derived from processing concentrates. 
The total for unaffiliated parties (Line 03) is equal to the product of 
Lines 01, 02, and 04, and for affiliated parties (Line 07), the product 
of Lines 05, 06, and 08.
    Lines 04 and 08--Average Product Grade. Report for each year the 
forecast average quality rating assigned to concentrates processed for 
unaffiliated parties (Line 04) and affiliated parties (Line 08).
    Line 09--Total Co-Product Revenues. Report for each year the 
forecast net revenues from sales of co-products derived from the 
smelter's operations. Attach as part of Exhibit B a schedule showing by 
individual type of co-product, the forecast quantity produced and sold, 
forecast market price per unit of sales, and forecast total revenues 
derived from the co-product sales.
    Line 10--Total By-product Revenues From Pollution Control 
Facilities. Report for each year forecast revenues from the sale of by-
products derived from operation of the smelter's pollution control 
facilities. Attach as part of Exhibit B a schedule showing by type of 
by-product produced (e.g., sulfuric acid) the forecast quantity of 
output, forecast market price per unit of output sold, and forecast 
total revenue derived from the by-product sales.
    Line 11--Total By-product Revenues From Other Smelter Processing. 
Report forecast revenues from the sales of gold, silver, and other by-
products derived from the smelter's operations. Attach as part of 
Exhibit B a schedule providing additional documentation as specified in 
the instructions for Line 10.
    Line 12--Total Co-product and By-product Revenues. Enter for each 
year the total of Lines 09 through 11.

              Schedule B.5--Constant Controls Cost Forecast

    General. Use Schedule B.5 to report annual forecasts of operating 
costs anticipated during the years 1984 through 1990 from operation of 
the smelter subject to this NSO application. These constant controls 
cost forecasts should be based on an assumption that the applicant 
immediately implements a program of additional pollution control 
facility investments sufficient to achieve full compliance with the 
smelter's SIP stack emission limitations for sulfur dioxide.
    The assumed investment program should be based on whichever 
adequately demonstrated system, applicable to the smelter, would be most 
economically beneficial subsequent to installation of the system. For

[[Page 181]]

this purpose, adequately demonstrated systems include those specified in 
Sec. 57.102(b)(1).
    Copper smelters that will process concentrates containing an average 
of 1,000 pounds per hour or more of arsenic during the forecast period 
should assume that they will use best engineering techniques to control 
fugitive emissions of arsenic. All smelters should also assume that they 
will be required to meet all other regulatory requirements in effect at 
the time the application is made.
    The line items in Schedule B.5 are explained in the following 
instructions. Attach as part of Exhibit B schedules to (1) explain the 
methods used to make the required forecasts, (2) explain differences, if 
any, between historical trends and the forecasts, and (3) provide data 
and information to support the forecasts.
    Line 01--Direct Labor Hours. Report for each year the quantity of 
direct labor hours required to support the processing levels previously 
reported. Attach as part of Exhibit B an explanation of the labor 
productivity factors involved.
    Line 02--Average Hourly Wage Rate. Report for each year the forecast 
average wage rate per unit of direct labor input. Attach as part of 
Exhibit B a description of direct labor cost factors under any existing 
labor contracts that extend to the forecast period and an explanation of 
the methodology used to forecast wage rates. EPA-provided forecast wage 
indices are reported in Section 2.4.
    Line 03--Total Wage Payments. Enter for each year the product of 
Lines 01 and 02.
    Line 04--Supplemental Employee Benefits. Report for each year 
adjustments required to direct labor costs for other employee 
compensation under supplemental benefit plans. Attach as part of 
Exhibits B a description of such plans and their costs and an 
explanation of the methodology used to forecast such costs. EPA-provided 
forecast wage indices are reported in Section 2.4.
    Lines 05--Total Production Labor Cost. Enter for each year the total 
of Lines 03 and 04.
    Lines 06, 09, 12, 15 and 18--Energy Quantities. Report for each year 
the quantity of energy by type required to support the processing levels 
reported in the smelter's revenue. Attach as part of Exhibit B an 
explanation of energy characteristics and use factors considered in 
forecasting the smelter's future energy requirements.
    Lines 07, 10, 13, 16, and 19--Unit Prices. Report for each year the 
forecast price per unit of energy input by type of energy. Attach as 
part of Exhibit B a description of the energy price factors under any 
existing energy contracts that extend to the forecast period and an 
explanation of the methodology used to forecast unit energy prices. EPA-
provided forecast energy indices are reported in Section 2.4.
    Lines 08, 11, 14, 17, and 20--Total Payments. Enter for each year 
the products of quantity and prices paid for electricity (Lines 06x07), 
natural gas (Lines 09x10), coal (Lines 12x13), fuel oil (Lines 15x16), 
and other (Lines 18x19).
    Lines 21--Total Energy Costs. Enter for each year the total of Lines 
08, 11, 14, 17, and 20.

Schedule B.6--Constant Controls Forecast Profit and Loss Summary for the 
                         Profit Protection Test

    General. Use Schedule B.6 to report annual forecasts of operating 
revenues and operating costs derived in Schedules B.4 and B.5 for the 
years 1984 through 1990. These constant controls forecasts should be 
based on an assumption that the applicant immediately implements a 
program of additional pollution control facility investments sufficient 
to achieve full compliance with the smelter's SIP stack emission 
limitations for sulfur dioxide. The transfer of line items from 
Schedules B.4 and B.5 to this Schedule is explained in the following 
instructions.
    Line 01--Smelter Revenues-Unaffiliated Parties. Enter the totals 
reported in Schedule B.4, Line 03.
    Line 02--Smelter Revenues-Affiliated Parties. Enter the totals 
reported in Schedule B.4, Line 07.
    Line 03--Co-product and By-product Sales Revenues. Enter the totals 
reported in Schedule B.4, Line 12.
    Line 04--Other Operating Revenues. Report operating revenues 
anticipated from sources not accounted for under Lines 01 through 03. 
Refer to instructions for Line 04 of Schedule A.3 for items that should 
not be included in ``Other Operating Revenues.'' Attach as part of 
Exhibit B a schedule showing annual amounts forecast by individual 
revenue component for ``other'' operating revenues associated with the 
smelter's forecast constant controls operations. Identify in the 
supporting schedule any differences in the ``other'' revenue components 
reported in this Schedule and Schedule A.3 and explain the reasons for 
such differences.
    Line 05--Total Operating Revenues. Enter for each year the total of 
Lines 01 through 04.
    Line 06--Material Costs. Report total costs forecast for flux, 
refractories, coke and other materials directly associated with the 
smelter's processing of concentrates. Attach as part of Exhibit B a 
schedule showing the annual amounts forecast by major material cost 
components. For each cost component, identify the forecast quantity and 
unit price elements of material cost and explain the basis for 
forecasting these quantity and price elements. Identify in the 
supporting schedule any differences in the ``other'' material cost 
components shown in this Schedule and Schedule A.3 and explain the 
reasons for such differences.
    Line 07--Production Labor Costs. Enter the totals reported in 
Schedule B.5, Line 05.

[[Page 182]]

    Line 08--Energy Costs. Enter the totals reported in Schedule B.5, 
Line 21.
    Line 09--Pollution Control Costs. Report the total costs forecast 
for expenses identifiable with operation and maintenance of all 
pollution control equipment and facilities. By-product credits 
associated with operation of the pollution control facilities should be 
eliminated from the cost accounts, reclassified to Schedule B.4, Line 10 
and included in Line 03 of this Schedule. Attach a schedule as part of 
Exhibit B classifying pollution control costs by major cost components. 
Explain the basis used for estimating each of the cost components.
    Line 10--Production Overhead Costs. Report the total costs forecast 
for indirect labor, indirect materials and other production overhead 
costs associated with the smelter's constant controls forecasts. Attach 
as part of Exhibit B a schedule showing annual overhead costs projected 
by major cost components associated with the smelter's operations. For 
each cost component, where appropriate, identify the forecast quantity 
and unit price elements of overhead costs and explain the basis for 
estimating these quantity and price elements. Also identify in the 
supporting schedule any differences in production overhead cost 
classifications used in this Schedule and Schedule A.3 and explain the 
reasons for such differences.
    Line 11--Other Production Costs. Report other forecast production 
costs not previously reported on Lines 06 through 10. Attach as part of 
Exhibit B supporting schedules showing the basis of the forecasts.
    Line 12--Total Cost of Sales. Enter for each year the sum of 
operating costs reported on Lines 06 through 11.
    Line 13--Gross Operating Profit. Enter for each year the difference 
between Lines 05 and 12.
    Line 14--Selling, General and Administrative Expenses. Report the 
total costs forecast for administrative, marketing and general corporate 
overhead functions that directly or indirectly support the smelter's 
operations. Refer to the NSO financial Reporting Overview for a general 
discussion of indirect cost allocations from overhead cost pools. Attach 
as part of Exhibit B a schedule classifying selling, general and 
administrative expenses into major cost components. Indicate whether 
each component represents costs directly assignable to the smelter or 
indirect costs allocated from other business segments to the smelter. 
Explain the basis used for estimating the amount of expected costs 
included in each component and the basis used for allocating indirect 
cost elements to the smelter. Identify and explain any differences 
between the selling, general and administrative cost classification used 
in this Schedule and that used in Line 15 of Schedule A.3.
    Line 15--Taxes, Other than Income Taxes. Report the total costs 
forecast for property taxes and associated levies paid to governmental 
units by or for the benefit of the smelter operation. Attach as part of 
Exhibit B a schedule classifying operating taxes by major component. 
Indicate whether each component represents taxes directly assignable to 
the smelter or taxes that have been allocated among more than one 
facility. Explain the basis used for estimating taxes and the basis for 
any allocation of taxes to the smelter. Identify and explain any 
differences between the component classifications used in this Schedule 
and those used in Line 16 of Schedule A.3.
    Line 16--Research Costs. Report the estimates of research costs 
incurred directly by or for the benefit of the smelter operations. 
Attach as part of Exhibit B a schedule classifying the costs by major 
direct and indirect cost components. Explain the basis for estimating 
the costs assigned to each component. Identify and explain any 
differences between classifications used in this Schedule and those used 
in Line 17 of Schedule A.3.
    Line 17--Pollution Control Facility Depreciation and Amortization. 
Report the estimates of depreciation and amortization charges associated 
with the smelter's actual and forecast investment in all pollution 
control equipment and facilities. Reported charges should be completed 
in accordance with depreciation and amortization methods adopted for 
certified financial statement reporting purposes by the firm. Attach 
explanatory supporting schedules as part of Exhibit B.
    Line 18--Other Smelter Facility Depreciation and Amortization. 
Report the pro forma estimates of depreciation and amortization charges 
associated with the smelter's investment in equipment and facilities 
other than those classified as pollution control facilities. Attach 
explanatory supporting schedules as part of Exhibit B.
    Line 19--Interest. Report the estimates of interest and other 
financing charges on the smelter's current and long-term liabilities. 
Attach as part of Exhibit B a schedule showing the interest-bearing debt 
contracts identifiable with the smelter's operations, the interest rate 
projected for these contracts, and the estimated annual interest 
charges.
    Line 20--Miscellaneous Operating Expenses. Report only the total 
operating expenses associated with or allocated to the smelter that 
cannot be appropriately classified in one of the preceding line items. 
Attach as part of Exhibit B a schedule showing the classification of 
these residual operating expenses into major cost components. Explain 
the basis used for forecasting the cost under each component. Identify 
each cost component in terms of direct or indirect cost and explain the 
basis used for allocating the indirect costs to smelter operations. 
Identify and explain any differences between cost classifications 
included in this Schedule and those used in Line 21 of Schedule A.3.

[[Page 183]]

    Line 21--Total Other Operating Expenses. Enter for each year the sum 
of operating costs reported on Lines 14 through 20.
    Line 22--Income From Operations. Enter for each year the difference 
between Lines 21 and 13.

                  Schedule B.7--Profit Protection Test

    General. Applicants must complete this Schedule and/or Schedule C.4 
and the accompanying schedules if they seek eligibility for an NSO. The 
line items in Schedule B.7 are explained in the following instructions.
    Line 01--Net Income from Operations. Enter for each year the amounts 
reported in Schedule B.3, Line 22.
    Line 02--Discount Factors. Enter the discount factor for each year, 
computed as described in the instructions under Section 2.6.
    Line 03--Present Value of Future Net Income. Enter for each year the 
product of Lines 01 and 02.
    Line 04--Horizon Value. Enter under the Total column, the estimated 
horizon value of the smelter. This shall be computed by capitalizing the 
forecast net income from operations in Line 01 as described in the 
instructions under Section 2.7.
    Line 05--Discount Factor. Enter under the Total column the 
appropriate discount factor corresponding to the weighted cost of 
capital, computed as described in the instructions under Section 2.6.
    Line 06--Present Value of Horizon Value. Enter under the Total 
column the product of Lines 04 and 05.
    Line 07--Present Value of Future Net Income. Enter under the Total 
Column the sum of amounts previously reported on Line 03 for 1984 
through 1990.
    Line 08--Total Present Value. Enter for each year the sum of Lines 
06 and 07.
    Line 09--Net Income from Operations. Enter for each year the amount 
reported in Schedule B.6, Line 22.
    Line 10--Discount Factors. Follow the instructions for Line 02.
    Line 11--Present Value of Future Net Income. Enter for each year the 
product of Lines 09 and 10.
    Line 12--Horizon Value. Enter under the Total column, the estimated 
horizon value of the smelter. This shall be computed by capitalizing the 
forecast net income from operations in Line 09 as described in the 
instructions under Section 2.7.
    Line 13--Discount Factor. Follow the instructions for Line 05.
    Line 14--Present Value of Horizon Value. Enter under the Total 
column the product of Lines 12 and 13.
    Line 15--Present Value of Future Net Income. Enter under the Total 
column the sum of amounts previously reported on Line 11 for 1984 
through 1990.
    Line 16--Total Present Value. Enter the sum of Lines 14 and 15.
    Line 17--Ratio for Total Present Value of Constant Controls Case to 
Total Present Value of Pre-Control Case. Enter the ratio of Lines 16 to 
08. If this ratio is less than .50, the smelter passes the Profit 
Protection Test. An applicant also passes the Profit Protection Test if 
the reported total present value of pre-tax profits for the pre-control 
case on Line 08 is a negative value.

Schedule C.1--Constant Controls Forecast Profit and Loss Summary for the 
                           Rate of Return Test

    General. Use Schedule C.1 to report forecast revenue and cost 
information derived in Schedules B.4 and B.5 for the years 1984 through 
1990. These constant controls forecasts should be based on an assumption 
that the applicant immediately implements a program of additional 
pollution control facility investments sufficient to achieve full 
compliance with the smelter's SIP stack emission limitations for sulfur 
dioxide. The transfer of line items from Schedules B.4 and B.5 to this 
Schedule is explained in the following instructions.
    Line 01--Smelter Revenues-Unaffiliated Parties. Enter the totals 
reported in Schedule B.4, Line 03.
    Line 02--Smelter Revenues-Affiliated Parties. Enter the totals 
reported in Schedule B.4, Line 07.
    Line 03--Co-product and By-product Sales Revenues. Enter the totals 
reported in Schedule B.4, Line 12.
    Line 04--Other Operating Revenues. Report operating revenues 
anticipated from sources not accounted for under Lines 01 through 03. 
Refer to instructions for Line 04 of Schedule A.3 for items that should 
not be included in ``Other Operating Revenues.'' Attach as part of 
Exhibit B a schedule showing annual amounts forecast by individual 
revenue component for ``other'' operating revenues associated with the 
smelter's forecast constant controls operations. Identify in the 
supporting schedule any differences in the ``other'' revenue components 
reported in this Schedule and Schedule A.3 and explain the reasons for 
such differences.
    Line 05--Total Operating Revenues. Enter for each year the total of 
Lines 01 through 04.
    Line 06--Material Costs. Report total costs forecast for flux, 
refractories, coke and other materials directly associated with the 
smelter's processing of concentrates. Attach as part of Exhibit B a 
schedule showing the annual amounts forecast by major material cost 
components. For each cost component, identify the forecast quantity and 
unit price elements of material cost and explain the basis for 
forecasting these quantity and price elements. Identify in the 
supporting schedule any differences in the ``other'' material cost 
components shown in this Schedule and Schedule A.3 and explain the 
reasons for such differences.

[[Page 184]]

    Line 07--Production Labor Costs. Enter the totals reported in 
Schedule B.5, Line 05.
    Line 08--Energy Costs. Enter the totals reported in Schedule B.5, 
Line 21.
    Line 09--Pollution Control Costs. Report the total costs forecast 
for expenses identifiable with operation and maintenance of all 
pollution control equipment and facilities. By-product credits 
associated with operation of the pollution control facilities should be 
eliminated from the cost accounts, reclassified to Schedule B.4, Line 10 
and included in Line 03 of this Schedule. Attach a schedule as part of 
Exhibit B classifying pollution control costs by major cost components. 
Explain the basis used for estimating each of the cost components.
    Line 10--Production Overhead Costs. Report the total costs forecast 
for indirect labor, indirect materials and other production overhead 
costs associated with the smelter's constant controls forecasts. Attach 
as part of Exhibit B a schedule showing annual overhead costs projected 
by major cost components associated with the smelter's operations. For 
each cost component, where appropriate, identify the forecast quantity 
and unit price elements of overhead costs and explain the basis for 
estimating these quantity and price elements. Also identify in the 
supporting schedule any differences in production overhead cost 
classifications used in this Schedule and Schedule A.3 and explain the 
reasons for such differences.
    Line 11--Other Production Costs. Report other forecast production 
costs not previously reported on Lines 06 through 10. Attach as part of 
Exhibit B supporting schedules showing the basis of the forecasts.
    Line 12--Total Cost of Sales. Enter for each year the sum of 
operating costs reported on Lines 06 through 10.
    Line 13--Gross Operating Profit. Enter for each year the difference 
between Lines 05 and 12.
    Line 14--Selling, General and Administrative Expenses. Report the 
total costs forecast for administrative, marketing and general corporate 
overhead functions that directly or indirectly support the smelter's 
operations. Refer to the NSO Financial Reporting Overview for a general 
discussion of indirect cost allocations from overhead cost pools. Attach 
as part of Exhibit B a schedule classifying selling, general and 
administrative expenses into major cost components. Indicate whether 
each component represents costs directly assignable to the smelter or 
indirect costs allocated from other business segments to the smelter. 
Explain the basis used for estimating the amount of expected costs 
included in each component and the basis used for allocating indirect 
cost elements to the smelter. Identify and explain any differences 
between the selling, general and administrative cost classification used 
in this Schedule and that used in Line 15 of Schedule A.3.
    Line 15--Taxes, Other than Income Taxes. Report the total costs 
forecast for property taxes and associated levies paid to governmental 
units by or for the benefit of the smelter operation. Attach as part of 
Exhibit B a schedule classifying operating taxes by major component. 
Indicate whether each component represents taxes directly assignable to 
the smelter or taxes that have been allocated among more than one 
facility. Explain the basis used for estimating taxes and the basis for 
any allocation of taxes to the smelter. Identify and explain any 
differences between the component classifications used in this Schedule 
and those used in Line 16 of Schedule A.3.
    Line 16--Research Costs. Report the estimates of research costs 
incurred directly by or for the benefit of the smelter operations. 
Attach as part of Exhibit B a schedule classifying the costs by major 
direct and indirect costs components. Explain the basis for estimating 
the costs assigned to each component. Identify and explain any 
differences between classifications used in this Schedule and those used 
in Line 17 of Schedule A.3.
    Line 17--Pollution Control Facility Depreciation and Amortization. 
Report the estimates of depreciation and amortization charges associated 
with the smelter's actual and forecast investment in all pollution 
control equipment and facilities. Reported charges should be computed in 
accordance with depreciation and amortization methods adopted for tax 
reporting purposes by the firm. Attach explanatory supporting schedules 
as part of Exhibit B.
    Line 18--Other Smelter Facility Depreciation and Amortization. 
Report the pro forma estimates of depreciation and amortization charge 
associated with the smelter's investment in equipment and facilities 
other than those classified as pollution control facilities. Attach 
explanatory supporting schedules as part of Exhibit B.
    Line 19--Interest on Short-Term Debt. Report the estimates of 
interest and other financing charges on forecast short-term obligations 
as classified in the smelter's current liabilities on Schedule A.4. 
Interest and associated financing charges on long-term debt should not 
be included as an expense identifiable with the smelter's operations. 
Attach as part of Exhibit B a schedule showing the interest-bearing, 
short-term debt contracts identifiable with the smelter's operations, 
the interest rate projected for these contracts, and the estimated 
annual interest charges. Identify and explain any differences between 
the classifications used in this Schedule and those used in Line 20 of 
Schedule A.3.
    Line 20--Miscellaneous Operating Expenses. Report only the total 
operating expenses associated with or allocated to the smelter that 
cannot be appropriately classified in one of the preceding line items. 
Attach as

[[Page 185]]

part of Exhibit B a schedule showing the classification of these 
residual operating expenses into major cost components. Explain the 
basis used for forecasting the cost under each component. Identify each 
cost component in terms of direct or indirect cost and explain the basis 
used for allocating the indirect costs to smelter operations. Identify 
and explain any differences between cost classification included in this 
Schedule and those used in Line 21 of Schedule A.3.
    Line 21--Total Other Operating Expenses. Enter for each year the sum 
of operating costs reported on Lines 14 through 20.
    Line 22--Income From Operations. Enter for each year the difference 
between Lines 21 and 13.
    Line 23--Income Taxes. Enter the product of income from operations 
(Line 22) and the sum of the Federal, State and local marginal tax 
rates. Attach as part of Exhibit B a schedule detailing the estimated 
marginal tax rate by taxing entity.
    Line 24--Net Income From Operations. Enter for each year the 
difference between Lines 23 and 22.

 Schedule C.2--Constant Controls Sustaining Capital Investment Forecast

    General. The applicant should estimate and report, in Schedule C.2, 
yearly sustaining capital outlays for maintenance of the smelter's 
existing productive capability. These estimates should be forecast under 
the assumption that full compliance with SIP emission limitations for 
SO2 will be achieved. Major elements of these outlays should 
be disclosed, as well as the total of such outlays. Estimates shall be 
restricted to those items that will be capitalized for tax purposes. 
These outlays shall primarily be for plant replacement, although outlays 
for improvements and expansion may be included to the extent that 
improvements and/or expansion, exclusive of required pollution control 
outlays, can be justified as economically feasible. Estimates of 
sustaining capital shall exclude any incremental investment for constant 
control requirements. Sustaining capital investments in facilities 
shared with other operating segments shall be allocated in accordance 
with the instructions given below.
    Estimates of sustaining capital shall be compatible with productive 
capacity and pollution control requirements underlying the operating 
revenue and cost forecasts incorporated in Schedule C.1.
    Lines 01 to 06--Sustaining Capital. Report for each year by 
individual line item property, plant and equipment sustaining capital 
investments assignable to smelter operations. Include both (1) property, 
plant and equipment directly associated with the smelter's operations 
and (2) facilities shared with other operating segments to the extent 
that a causal and beneficial relationship can be established for the 
intersegment allocations of such facility investments.
    Attach as part of Exhibit B an explanatory schedule disclosing and 
supporting by individual line item the major elements of annual capital 
expenditures for sustaining capital. Further classify these annual 
capital expenditures into both (1) investments required to maintain the 
smelter versus investments in smelter expansion and improvements and (2) 
direct facility versus joint-use facility investments. Explain the 
method used for allocating capital expenditures on joint-use facilities 
to the smelter's operations.
    Line 07--Total Smelter Sustaining Capital. Enter for each year the 
total of Lines 01 through 06. Transfer the reported total for each year 
to Schedule C.4, Line 06.

     Schedule C.3--Historical Capital Investment In Constant Dollars

    General. Use Schedule C.3 to report the end-of-period asset 
investments and current liabilities for the most recent fiscal year: (a) 
expressed in nominal dollars as of the date of the original transaction, 
and (b) expressed in the current year's dollars, i.e. 1984 dollars. The 
value of net investment in constant dollars (1984 dollars for smelters 
applying for an NSO in 1984) is used in Schedule C.4 as the benchmark of 
the Rate of Return Test.
    Applicants should complete Schedule C.3 according to the following 
instructions. Transfer into the first column of Schedule C.3 the 
historical cost figures that are reported in the last (1983) column of 
Table A.4. In the second column of Schedule C.3, report the figures from 
the first column of Schedule C.3, expressed in constant (1984) dollars.
    Convert each nominal dollar figure of the first column into constant 
(1984) dollars in accordance with the historical cost/constant dollar 
accounting method defined in Financial Accounting Standards Board (FASB) 
Statement No. 33 (Docket Item No. IV-A-6d), with the following 
exception: the applicant must not report the lower recoverable amount as 
required by FASB No. 33. Attach explanatory supporting schedules as part 
of Exhibit B.

                    Schedule C.4--Rate of Return Test

    General. Applicants must complete this Schedule and/or Schedule B.7 
and the accompanying schedules if they seek eligibility for an NSO. The 
line items in Schedule C.4 are explained in the following instructions.
    Line 01--Net Income from Operations. Enter for each year the amounts 
reported in Schedule C.1, Line 24.
    Lines 02 and 03--Depreciation and Amortization. Enter for each year 
the amounts reported in Schedule C.1, Lines 17 and 18, respectively.

[[Page 186]]

    Line 04--Operating Cash Flow. Enter for each year the total of 
amounts reported on Lines 01 through 03.
    Line 05--Constant Controls Capital Investment. Enter the estimated 
capital outlays for constant controls for the years during which outlays 
would be made. These values shall correspond to the constant control 
investment estimates shown in the supporting schedules for Line 17 of 
Schedule C.1. Changes in working capital investment due to investment in 
constant controls facilities may be added to the capital investment 
estimates shown in the supporting schedules for Schedule C.1.
    Line 06--Sustaining Capital. Enter for each year the amounts 
reported in Schedule C.2, Line 07.
    Line 07--Total. Enter for each year the sum of Lines 05 and 06.
    Line 08--Net Cash Flow Projections. Enter for each year the 
difference between Lines 04 and 07.
    Line 09--Discount Factors. Enter the discount factor for each year, 
computed as described in the instructions under Section 2.6.
    Line 10--Present Value of Future Cash Flows. Enter for each year the 
product of Lines 08 and 09.
    Line 11--Horizon Value. Enter under the Total column the estimated 
horizon value of the smelter reported in Schedule C.5, Line 16.
    Line 12--Discount Factor. Enter under the Total column the 
appropriate discount factor, computed as described in the instructions 
under Section 2.6.
    Line 13--Present Value of Horizon Value. Enter under the Total 
column the product of Lines 11 and 12.
    Line 14--Present Value of Future Cash Flows. Enter under the Total 
column the sum of amounts previously reported on Line 10 for 1984 
through 1990.
    Line 15--Total Present Value. Enter the sum of Lines 13 and 14.
    Line 16--Net Smelter Capital Investment in Constant Dollars. Enter 
under the Total column the amount reported in the second (Constant 
Dollar) column of Schedule C.3, Line 26 if the value is greater than 
zero. If the value is zero or less, enter zero.
    Line 17--Net Present Value. Enter the difference between Lines 15 
and 16. Applicants reporting a negative net present value will pass the 
Rate of Return Test.

  Schedule C.5--Horizon Value of Cash Flows for the Rate of Return Test

    General. The applicant should use Schedule C.5 to calculate the 
horizon value of net cash flow projections for the Rate of Return Test. 
This horizon value is used in Schedule C.4. The computation of the 
horizon value is different for this test than for the Profit Protection 
Test because this test requires the reporting of depreciation for tax 
purposes.
    In Schedule C.5, the applicant removes the tax savings of constant 
controls depreciation from the cash flows for the last two forecast 
years. A depreciation-free horizon value is then calculated from these 
depreciation-free cash flows. The tax savings of constant controls 
depreciation during the horizon years are then calculated separately. 
The final horizon value is equal to the sum of the depreciation-free 
horizon value and the tax savings from depreciation of constant controls 
accruing over the horizon years. The line items in Schedule C.5 are 
explained in the following instructions.
    Line 01--Net Cash Flow Projections. Enter for each of the final two 
forecast years the values in Schedule C.4, Line 08, for the 
corresponding years.
    Line 02--Depreciation and Amortization. Enter for each of the final 
two forecast years the value in Schedule C.4, Line 02, for the 
corresponding years.
    Line 03--Marginal Tax Rate. Enter for each of the final two forecast 
years the marginal income tax rate applicable to the smelter. This rate 
should incorporate both Federal and State tax liability.
    Line 04--Tax Savings. Enter for each of the final two forecast years 
the product of Lines 02 and 03.
    Line 05--Nominal Dollar Values. Enter for each of the final two 
forecast years the difference between Lines 01 and 04.
    Line 06--1990 Dollar Values. For each of the final two forecast 
years the nominal dollar values must be expressed in the last forecast 
year's dollars (1990 dollars). Transfer the 1990 amount in Line 05 
directly to Line 06. Inflate the 1989 amount to 1990 dollars using the 
forecast GNP price deflator.
    Line 07--Average. Enter under the Total column the average of the 
two values in Line 06.
    Line 08--Horizon Factor. Enter under the Total column the horizon 
factor provided in Section 2.7.
    Line 09--Depreciation-free Horizon Value. Enter under the Total 
column the product of Lines 07 and 08.
    Line 10--Depreciation and Amortization. Enter for each year of the 
horizon period depreciation charges associated with the smelter's 
investment in equipment and facilities related to pollution controls. 
These investments should include those actually made and those required 
to be made by the end of the forecast period. Reported charges should be 
computed in accordance with depreciation and amortization methods 
adopted for tax reporting purposes by the firm. Attach as part of 
Exhibit B supporting schedules consistent with those supporting Line 17 
in Schedule C.1.
    Line 11--Marginal Tax Rate. Enter for each year of the horizon 
period the marginal income tax rate applicable to the smelter. This

[[Page 187]]

rate should incorporate both Federal and State tax liability.
    Line 12--Tax Savings. Enter for each year of the horizon period the 
product of Lines 10 and 11.
    Line 13--Discount Factors. Enter the discount factor for each year 
of the horizon period. This shall be computed according to the 
instructions under Section 2.6, except that the variable N found in the 
discount factor formula represents the number of years in the future, 
counting from the last forecast year. For example, N=1 for the first 
year of the horizon period.
    Line 14--Present Value of Tax Savings. Enter for each year of the 
horizon period the product of Lines 12 and 13.
    Line 15--Total Present Value of Tax Savings. Enter under the Total 
column the sum of values on Line 14 for the horizon years.
    Line 16--Horizon Value. Enter under the Total column the sum of 
Lines 09 and 15.

             Schedule D.1--Interim Controls Revenue Forecast

    General. Use Schedule D.1 to report annual forecasts of operating 
revenues anticipated during the years 1984 through 1990 from operation 
of the smelter applying for an interim controls waiver. The applicant 
applying for a permanent waiver should complete Schedule D.1 twice, with 
revenue and production projections based on two alternative assumptions: 
(1) Installation of interim constant control equipment, no installation 
of any additional SO2 controls that the smelter would 
otherwise be required to install but for the issuance of an NSO, and 
closure after January 1, 1988, and (2) installation of interim constant 
control equipment and any additional SO2 controls required to 
comply with the smelter's SIP emission limitation by January 2, 1988, so 
that the smelter will remain open through the horizon period. The 
applicant applying for a temporary waiver should use only the first 
assumption. For a smelter that has no continuous emission controls, the 
assumed interim control investment program should be based on the 
installation and operation of a well-designed sulfuric acid plant to 
treat all strong gas streams. For a smelter that already has some 
continuous emission controls, the assumed interim constant control 
investment should be based on the installation and operation of any 
additional acid plant capacity that would be necessary for treatment of 
all strong streams with interim constant controls. The interim controls 
projections should account for other regulatory requirements on the same 
basis as provided for in the NSO eligibility tests.
    Forecast smelter revenues should be expressed on a tolling service 
equivalent basis as described in Section 2.3.4. The line items in 
Schedule D.1 are explained in the following instructions. Attach as part 
of Exhibit B schedules to (1) explain the methods used to make the 
required forecasts, (2) explain differences, if any, between historical 
trends and the forecasts, and (3) provide data and information to 
support the forecasts.
    Lines 01 and 05--Concentrates Processed. Report for each year the 
forecast quantity of concentrates processed for unaffiliated parties 
(Line 01) and affiliated parties (Line 05).
    Lines 02 and 06--Smelting Charge. Report for each year the forecast 
smelting charge for unaffiliated parties (Line 02) and affiliated 
parties (Line 06). See Section 2.4 for forecast copper smelting charges 
furnished by EPA.
    Lines 03 and 07--Total Smelter Revenues. Report for each year the 
forecast total operating revenues derived from processing concentrates. 
The total for unaffiliated parties (Line 03) is equal to the product of 
Lines 01, 02, and 04, and for affiliated parties (Line 07), the product 
of Lines 05, 06, and 08.
    Lines 04 and 08--Average Product Grade. Report for each year the 
forecast average quality rating assigned to concentrates processed for 
unaffiliated parties (Line 04) and affiliated parties (Line 08).
    Line 09--Total Co-Product Revenues. Report for each year the 
forecast net revenues from sales of co-products derived from the 
smelter's operations. Attach as part of Exhibit B a schedule showing by 
individual type of co-product the forecast quantity produced and sold, 
forecast market price per unit of sales, and forecast total revenues 
derived from the co-product sales.
    Line 10--Total By-product Revenues From Pollution Control 
Facilities. Report for each year forecast revenues from the sale of by-
products derived from operation of the smelter's pollution control 
facilities. Attach as part of Exhibit B a schedule showing by type of 
by-product produced (e.g., sulfuric acid) the forecast quantity of 
output, forecast market price per unit of output sold, and forecast 
total revenue derived from the by-product sales.
    Line 11--Total By-product Revenues From Other Smelter Processing. 
Report forecast revenues from the sales of gold, silver, and other by-
products derived from the smelter's operations. Attach as part of 
Exhibit B a schedule providing additional documentation as specified in 
the instructions for Line 10.
    Line 12--Total Co-product and By-product Revenues. Enter for each 
year the total of Lines 09 through 11.

              Schedule D.2--Interim Controls Cost Forecast

    General. Use Schedule D.2 to report annual forecasts of operating 
costs anticipated during the years 1984 through 1990 from operation of 
the smelter applying for an interim controls waiver. The applicant 
applying for a permanent waiver should complete Schedule D.2 twice, with 
cost and production projections based on two alternative assumptions:

[[Page 188]]

(1) Installation of interim constant control equipment, no installation 
of any additional SO2 controls that the smelter would 
otherwise be required to install but for the issuance of an NSO, and 
closure after January 1, 1988, and (2) installation of interim constant 
control equipment and any additional SO2 controls required to 
comply with the smelter's SIP emission limitation by January 2, 1988, so 
that the smelter will remain open through the horizon period. For a 
smelter that has no continuous emission controls, the assumed interim 
control investment program should be based on the installation and 
operation of a well-designed sulfuric acid plant to treat all strong gas 
streams. For a smelter that already has some continuous emission 
controls, the assumed interim constant control investment should be 
based on the installation and operation of any additional acid plant 
capacity that would be necessary for treatment of all strong streams 
with interim constant controls. The interim controls projections should 
account for other regulatory requirements on the same basis as provided 
for in the NSO eligibility tests.
    The line items in Schedule D.2 are explained in the following 
instructions. Attach as part of Exhibit B schedules to (1) explain the 
methods used to make the required forecasts, (2) explain differences, if 
any, between historical trends and the forecasts, and (3) provide data 
and information to support the forecasts.
    Line 01--Direct Labor Hours. Report for each year the quantity of 
direct labor hours required to support the processing levels previously 
reported. Attach as part of Exhibit B an explanation of the labor 
productivity factors involved.
    Line 02--Average Hourly Wage Rate. Report for each year the forecast 
average wage rate per unit of direct labor input. Attach as part of 
Exhibit B a description of direct labor cost factors under any existing 
labor contracts that extend to the forecast period and an explanation of 
the methodology used to forecast wage rates. EPA-provided forecast wage 
indices are reported in Section 2.4.
    Line 03--Total Wage Payments. Enter for each year the product of 
Lines 01 and 02.
    Line 04--Supplemental Employee Benefits. Report for each year 
adjustments required to direct labor costs for other employee 
compensation under supplemental benefit plans. Attach as part of Exhibit 
B a description of such plans and their costs and an explanation of the 
methodology used to forecast such costs. EPA-provided forecast wage 
indices are reported in Section 2.4.
    Line 05--Total Production Labor Costs. Enter for each year the total 
of Lines 03 and 04.
    Lines 06, 09, 12, 15, and 18--Energy Quantities. Report for each 
year the quantity of energy by type required to support the processing 
levels reported in the smelter's revenue. Attach as part of Exhibit B an 
explanation of energy characteristics and use factors considered in 
forecasting the smelter's future energy requirements.
    Lines 07, 10, 13, 16, and 19--Unit Prices. Report for each year the 
forecast price per unit of energy input by type of energy. Attach as 
part of Exhibit B a description of the energy price factors under any 
existing energy contracts that extend to the forecast period and an 
explanation of the methodology used to forecast unit energy prices. EPA-
provided forecast energy indices are reported in Section 2.4.
    Lines 08, 11, 14, 17, and 20--Total Payments. Enter for each year 
the products of quantity and prices paid for electricity (Lines 06x07), 
natural gas (Lines 09x10), coal (Lines 12x13), fuel oil (Lines 15x16), 
and other (Lines 18x19).
    Line 21--Total Energy Costs. Enter for each year the total of Lines 
08, 11, 14, 17, and 20.

     Schedule D.3--Interim Controls Forecast Profit and Loss Summary

    General. Use Schedule D.3 to report forecast revenue and cost 
information summed in Schedules D.1 and D.2 for the years 1984 through 
1990. Applicants applying for a permanent waiver must complete Schedule 
D.3 twice. Forecast revenues and costs in Schedule D.3 shall be 
compatible with productive capacity and pollution control assumptions 
underlying the operating revenue and cost forecasts incorporated into 
each set of Schedules D.1 and D.2. Applicants applying for a temporary 
waiver should use only the first assumption: installation of interim 
constant control equipment and no installation of any additional SO2 
controls that the smelter would otherwise be required to install but for 
the issuance of an NSO. The transfer of line items from Schedules D.1 
and D.2 to this Schedule is explained in the following instructions.
    Line 01--Smelter Revenues--Unaffiliated Parties. Enter the totals 
reported in Schedule D.1, Line 03.
    Line 02--Smelter Revenues-Affiliated Parties. Enter the totals 
reported in Schedule D.1, Line 07.
    Line 03--Co-product and By-product Sales Revenues. Enter the totals 
reported in Schedule D.1, Line 12.
    Line 04--Other Operating Revenues. Report operating revenues 
anticipated from sources not accounted for under Lines 01 through 03. 
Refer to instructions for Line 04 of Schedule A.3 for items that should 
not be included in ``Other Operating Revenues.'' Attach as part of 
Exhibit B a schedule showing annual amounts forecast by individual 
revenue component for ``other'' operating revenues associated with the 
smelter's forecast interim controls operations. Identify in the 
supporting schedule any differences in the ``other'' revenue components 
reported in this

[[Page 189]]

Schedule and Schedule A.3 and explain the reasons for such differences.
    Line 05--Total Operating Revenues. Enter for each year the total of 
Lines 01 through 04.
    Line 06--Material Costs. Report total costs forecast for flux, 
refractories, coke and other materials directly associated with the 
smelter's processing of concentrates. Attach as part of Exhibit B a 
schedule showing the annual amounts forecast by major material cost 
components. For each cost component, identify the forecast quantity and 
unit price elements of material cost and explain the basis for 
forecasting these quantity and price elements. Identify in the 
supporting schedule any differences in the ``other'' material cost 
components shown in this Schedule and Schedule A.3 and explain the 
reasons for such differences.
    Line 07--Production Labor Costs. Enter the totals reported in 
Schedule D.2, Line 05.
    Line 08--Energy Costs. Enter the totals reported in Schedule D.2, 
Line 21.
    Line 09--Pollution Control Costs. Report the total costs forecast 
for operation and maintenance of all pollution control equipment and 
facilities under the two alternative sets of assumptions made in 
corresponding Schedules D.1 and D.2. Byproduct credits associated with 
operation of the pollution control facilities should be eliminated from 
the cost accounts, reclassified to Schedule D.1, Line 10 and included in 
Line 03 of this Schedule. Attach a schedule as part of Exhibit B 
classifying pollution control costs by major cost components. Explain 
the basis used for estimating each of the cost components.
    Line 10--Production Overhead Costs. Report the total costs forecast 
for indirect labor, indirect materials and other production overhead 
costs associated with the smelter's constant controls forecasts. Attach 
as part of Exhibit B a schedule showing annual overhead costs projected 
by major cost components associated with the smelter's operations. For 
each cost component, where appropriate, identify the forecast quantity 
and unit price elements of overhead costs and explain the basis for 
estimating these quantity and price elements. Also identify in the 
supporting schedule any differences in production overhead cost 
classifications used in this Schedule and Schedule A.3 and explain the 
reasons for such differences.
    Line 11--Other Production Costs. Report other forecast production 
costs not previously reported on lines 06 through 10. Attach as part of 
Exhibit B supporting schedules showing the basis of the forecasts.
    Line 12--Total Cost of Sales. Enter for each year the sum of 
operating costs reported on Lines 06 through 11.
    Line 13--Gross Operating Profit. Enter for each year the difference 
between Lines 05 and 12.
    Line 14--Selling, General and Administrative Expenses. Report the 
total costs forecast for administrative, marketing and general corporate 
overhead functions that directly or indirectly support the smelter's 
operations. Refer to the NSO Financial Reporting Overview for general 
discussion of indirect cost allocations from overhead cost pools. Attach 
as part of Exhibit B a schedule classifying selling, general and 
administrative expenses into major cost components. Indicate whether 
each component represents costs directly assignable to the smelter or 
indirect costs allocated from other business segments to the smelter. 
Explain the basis used for estimating the amount of expected costs 
included in each component and the basis used for allocating indirect 
cost elements to the smelter. Identify and explain any differences 
between the selling, general and administrative cost classification used 
in this Schedule and that used in Line 15 of Schedule A.3.
    Line 15--Taxes, Other than Income Taxes. Report the total costs 
forecast for property taxes and associated levies paid to governmental 
units by or for the benefit of the smelter operation. Attach as part of 
Exhibit B a schedule classifying operating taxes by major component. 
Indicate whether each component represents taxes directly assignable to 
the smelter or taxes that have been allocated among more than one 
facility. Explain the basis used for estimating taxes and the basis for 
any allocation of taxes to the smelter. Identify and explain any 
differences between the component classifications used in this Schedule 
and those used in Line 16 of Schedule A.3.
    Line 16--Research Costs. Report the estimates of research costs 
incurred directly by or for the benefit of the smelter operations. 
Attach as part of Exhibit B a schedule classifying the costs by major 
direct and indirect cost components. Explain the basis for estimating 
the costs assigned to each component. Identify and explain any 
differences between classifications used in this Schedule and those used 
in Line 17 of Schedule A.3.
    Line 17--Pollution Control Facility Depreciation and Amortization. 
Report the estimates of depreciation and amortization charges associated 
with the smelter's actual and forecast investment in all pollution 
control equipment and facilities under the two alternative sets of 
assumptions made in corresponding Schedules D.1 and D.2. Reported 
charges should be computed in accordance with depreciation and 
amortization methods adopted for tax reporting purposes by the firm. 
Attach explanatory supporting schedules as part of Exhibit B.
    Line 18--Other Smelter Facility Depreciation and Amortization. 
Report the pro forma estimates of depreciation and amortization charges 
associated with the smelter's investment in equipment and facilities 
other than those classified as pollution control facilities. Attach 
explanatory supporting schedules as part of Exhibit B.

[[Page 190]]

    Line 19--Interest on Short-Term Debt. Report the estimates of 
interest and other financing charges on forecast short-term obligations 
as classified in the smelter's current liabilities on Schedule A.4. 
Interest and associated financing charges on long-term debt should not 
be included as an expense identifiable with the smelter's operations. 
Attach as part of Exhibit B a schedule showing the interest-bearing, 
short-term debt contracts identifiable with the smelter's operations, 
the interest rate projected for these contracts, and the estimated 
annual interest charges. Identify and explain any differences between 
the classifications used in this Schedule and those used in Line 20 of 
Schedule A.3.
    Line 20--Miscellaneous Operating Expenses. Report only the total 
operating expenses associated with or allocated to the smelter that 
cannot be appropriately classified in one of the preceding line items. 
Attach as part of Exhibit B a schedule showing the classification of 
these residual operating expenses into major cost components. Explain 
the basis used for forecasting the cost under each component. Identify 
each cost component in terms of direct or indirect cost and explain the 
basis used for allocating the indirect costs to smelter operations. 
Identify and explain any differences between cost classifications 
included in this Schedule and those used in Line 21 of Schedule A.3.
    Line 21--Total Other Operating Expenses. Enter for each year the sum 
of operating costs reported on Lines 14 through 20.
    Line 22--Income From Operations. Enter for each year the difference 
between Lines 21 and 13.
    Line 23--Income Taxes. Enter the product of income from operations 
(Line 22) and the sum of the Federal, State and local marginal tax 
rates. Attach as part of Exhibit B a schedule detailing the estimated 
marginal tax rate by taxing entity.
    Line 24--Net Income From Operations. Enter for each year the 
difference between Lines 23 and 22.
    The temporary waiver from interim controls test is on Line 13 of 
Schedule D.3 that was completed under the assumption of installation of 
interim constant control equipment and no installation of any additional 
SO2 controls that the smelter would otherwise be required to 
install but for the issuance of an NSO. Applicants will be eligible for 
a temporary waiver from the interim development of constant control 
technology for sulfur dioxide emissions if the reported gross operating 
profit on Line 13 is a negative value for one or more years during which 
the NSO is in effect.

  Schedule D.4--Interim Controls Sustaining Capital Investment Forecast

    General. Use Schedule D.4 to report yearly sustaining capital 
outlays for maintenance of the smelter's existing productive capability. 
The applicant should complete Schedule D.4 twice, under two alternative 
assumptions: (1) Installation of interim constant control equipment, no 
installation of any additional SO2 controls that the smelter 
would otherwise be required to install but for the issuance of an NSO, 
and closure after January 1, 1988, and (2) installation of interim 
constant equipment and any additional SO2 controls required 
to comply with the smelter's SIP emission limitation by January 2, 1988, 
so that the smelter will remain open through the horizon period.
    Major elements of these outlays should be disclosed, as well as the 
total of such outlays. Estimates shall be restricted to those items that 
will be capitalized for tax purposes. These outlays shall primarily be 
for plant replacement, although outlays for improvements and expansion 
may be included to the extent that improvements and/or expansion, 
exclusive of required pollution control outlays, can be justified as 
economically feasible. Estimates of sustaining capital investments shall 
exclude any incremental investment for sulfur dioxide emission controls 
reported in Line 06 of Schedule D.6. Sustaining capital investments in 
facilities shared with other operating segments shall be allocated in 
accordance with the instructions given below.
    Estimates of sustaining capital shall be compatible with productive 
capacity and pollution control requirements underlying the operating 
revenue and cost forecasts incorporated in Schedule D.3.
    Line 01 to 06--Sustaining Capital. Report for each year by 
individual line item property, plant and equipment sustaining capital 
investments assignable to smelter operations. Include both (1) property, 
plant and equipment directly associated with the smelter's operations 
and (2) facilities shared with other operating segments to the extent 
that a causal and beneficial relationship can be established for the 
intersegment allocations of such facility investments.
    Attach as part of Exhibit B an explanatory schedule disclosing and 
supporting by individual line item the major elements of annual capital 
expenditures for sustaining capital. Further classify these annual 
capital expenditures into both (1) investments required to maintain the 
smelter versus investments in smelter expansion and improvements and (2) 
direct facility versus joint-use facility investments. Explain the 
method used for allocating capital expenditures on joint-use facilities 
to the smelter's operations.
    Line 07--Total Smelter Sustaining Capital. Enter for each year the 
total of Lines 01 through 06. Transfer the reported total for each year 
to Schedule D.6, Line 06.

[[Page 191]]

              Schedule D.5--Cash Proceeds From Liquidation

    General. Use Schedule D.5 to calculate cash proceeds from 
liquidation. Applicants should determine the current salvage value of 
their existing investment in the smelter as the net proceeds that could 
be derived through an orderly liquidation of the smelter's assets. The 
net cash proceeds should be reported after an appropriate allowance for 
disposal costs, contractual claims against the smelter (e.g., labor 
termination penalties), and income tax effects on the corporation of 
such liquidation costs.
    The applicant must stipulate the most advantageous alternative 
market (use) for the smelter's facilities. Generally, this market will 
be:

    Secondary market for used plant and equipment.
    Sale for scrap.
    Abandonment where the disposal cost exceeds scrap value.

    The current net salvage value should be disaggregated into the same 
property, plant and equipment asset groups reported under the historical 
capital investment summary, Schedule A.4. The line items in Schedule D.5 
are explained in the following instructions.
    Line 01--Current Assets. Enter in Columns 1 and 2, the value of 
total current assets shown in Line 08 of Schedule A.4 (Historical 
Capital Investment Summary) for 1983. No gain or loss should be reported 
in Columns 3 through 5 for the liquidation of current asset investments.
    Lines 02-07--Property Plant and Equipment. Enter in Column 1 the 
appraised liquidation value (in terms of pretax cash proceeds) of the 
smelter by asset group. This estimate should be certified by a qualified 
third party professional appraiser and shall represent the best use and 
highest alternative value of these assets. The liquidation value of any 
assets which are jointly used by the smelter and other operating 
segments shall be excluded if, upon closure of the smelter, such assets 
would continue in service for the non-smelter activity.
    In Column 2, report the net book value of these assets for which 
liquidation values have been reported in Column 1. The reported values 
should correspond with amounts reported for 1982 in lines 09 through 15 
in Schedule A.4 as adjusted for appropriate eliminations of joint-use 
facilities and reconciliation to a net book value as reported for income 
taxes. Attach as part of Exhibit B supporting schedules showing all 
adjustments and conversion of the net book value as reported on the 
financial statements, to net book value that would be used for income 
tax purposes.
    Compute Column 3 as Column 1 less Column 2. The gain (or loss) shown 
in Column 3 shall be segregated into ordinary income and capital gains 
components subject to taxation pursuant to applicable income tax rules. 
Enter ordinary income in Column 4 and capital gains in Column 5.
    Line 08--Total Smelter Investment. Enter the sum of Lines 02 through 
07 for each of the columns.
    Line 09--Other Non-current Assets. In Column 1, report the appraised 
value of other non-current assets in accordance with the instructions 
for Line 18, Schedule A.4, except that any joint asset(s) that would 
continue in the event of smelter liquidation shall be excluded. This 
estimate shall be certified by a qualified third-party professional 
appraiser.
    In Column 2, report the net book value of the non-current assets 
directly corresponding to those assets included in the liquidation value 
estimated under Column 1.
    The remaining columns shall be completed in accordance with the 
instructions given above for Lines 02 and 06.
    Line 10--Total Smelter Value. Enter the sum of Lines 01, 08 and 09.
    Line 11--Total Current Liabilities. Report in both Columns 1 and 2, 
the value of total current liabilities shown in Line 25 of Schedule A.4 
for 1983.
    Line 12--Gross Liquidation Value. Enter the difference between Lines 
10 and 11.
    Line 13--Liquidation Costs. In Columns 1, 3 and 4, report the value 
of any liquidation costs such as labor contract termination penalties, 
severance pay and related costs, associated with closure of the smelter.
    Line 14--Taxable Gain (or Loss). Enter in Columns 4 and 5, the 
differences between Lines 12 and 13.
    Line 15--Income Tax Rate. Enter the sum of the Federal, State and 
local marginal tax rates of the firm for ordinary income and capital 
gains in Columns 4 and 5, respectively. Attach as part of Exhibit B a 
schedule detailing the estimated marginal tax rate by taxing entity.
    Line 16--Income Tax on Gain (or Loss). In Columns 4 and 5, enter the 
product of Line 14 and the marginal income tax rates reported in Line 
15. In Column 1, enter the sum of Columns 4 and 5.
    Line 17--After Tax Cash Proceeds. Enter in Column 1 the difference 
between Line 12 and the sum of Lines 13 and 16.

        Schedule D.6--Permanent Waiver from Interim Controls Test

    General. Applicants must complete this Schedule and its supporting 
schedules if they seek a permanent waiver from interim control 
requirements. The applicant should complete Schedule D.6 twice, with 
revenue and production projections based on two alternative assumptions: 
(1) Installation of interim constant control equipment, no installation 
of any additional SO2 controls that the smelter would 
otherwise be required to

[[Page 192]]

install but for the issuance of an NSO, and closure after January 1, 
1988, and (2) installation of interim constant control equipment and any 
additional SO2 controls required to comply with the smelter's 
SIP emission limitation by January 2, 1988, so that the smelter will 
remain open through the horizon period. Forecasts in Schedule D.6 shall 
be compatible with assumptions and forecasts in each set of Schedules 
D.1 through D.4. The line items in Schedule D.6 are explained in the 
following instructions.
    Line 01--Net Income from Operations. Enter for each year the amounts 
reported in Schedule D.3, Line 24.
    Line 02--Net Income Adjustments. Enter any adjustments to net income 
not included in Schedule D.3. When assuming closure after January 1, 
1988, the applicant must include the proceeds from liquidation in 1988. 
The applicant must estimate liquidation value as of 1988 using one of 
two methods: (1) the applicant may complete Schedule D.5 assuming 
liquidation in 1988 and report the value of after-tax cash proceeds in 
Line 17; or (2) the applicant may use the value of after-tax cash 
proceeds in Line 17 of Schedule D.5, as already completed, assuming 
liquidation in the current (application) year, and expressing values in 
1988 dollars. The current liquidation value must be inflated to 1988 
dollars by applying the appropriate forecast percentage rate changes in 
the GNP price deflator. Attach explanatory supporting schedules in 
Exhibit B.
    Lines 03 and 04--Depreciation and Amortization. Enter for each year 
the amounts reported in Schedule D.3, Lines 17 and 18, respectively.
    Line 05--Operating Cash Flow. Enter for each year the total of 
amounts reported on Lines 01 through 04.
    Line 06--Pollution Controls Capital Investment. Enter the estimated 
pollution control capital outlays projected to be made under the two 
alternative sets of assumptions described in the General section of this 
schedule. These controls shall include only interim control equipment 
for the first set of assumptions and both interim control equipment and 
any additional SO2 controls required to comply with the 
smelter's SIP emission limitation by January 2, 1988, for the second set 
of assumptions. The values assumed in this schedule shall correspond to 
the investment estimates shown in each set of supporting schedules for 
Line 17 of Schedule D.3. For purposes of allocating costs of the 
additional SO2 controls under the second set of assumptions, 
applicants must provide information establishing the period over which 
capital outlays for such controls would be made if installation of the 
controls begins the latest date that would still allow compliance to be 
achieved by January 2, 1988. Changes in working capital investment due 
to investment in control facilities may be added to the capital 
investment estimates shown in the corresponding supporting schedules for 
Schedule D.3.
    Line 07--Sustaining Capital. Enter for each year the amounts 
reported in Schedule D.4, Line 07.
    Line 08--Total. Enter for each year the sum of Lines 05 and 06.
    Line 09--Net Cash Flow Projections. Enter for each year the 
difference between Lines 04 and 07.
    Line 10--Discount Factors. Enter the discount factor for each year, 
computed as described in the instructions under Section 2.6.
    Line 11--Present Value of Future Cash Flows. Enter for each year the 
product of Lines 08 and 09.
    Line 12--Horizon Value. Enter under the Total column the estimated 
horizon value of the smelter reported in Schedule D.7, Line 16.
    Line 13--Discount Factor. Enter under the Total column the 
appropriate discount factor, computed as described in the instructions 
under Section 2.6.
    Line 14--Present Value of Horizon Value. Enter under the Total 
column the product of Lines 11 and 12.
    Line 15--Present Value of Future Cash Flows. Enter under the Total 
column the sum of amounts previously reported on Line 10 for 1984 
through 1990.
    Line 16--Total Present Value. Enter the sum of Lines 13 and 14.
    Line 17--Current Salvage Value. Enter the amount reported in 
Schedule D.5, Line 17, if the value is greater than zero. If the value 
is zero or less, enter zero.
    Line 18--Net Present Value. Enter the difference between Lines 16 
and 17. In determining eligibility for a permanent waiver from interim 
control requirements, an applicant must use the higher of the two net 
present value figures computed under the two alternative assumptions. 
Applicants reporting a negative value for the higher net present value 
figure will be eligible for a permanent waiver from interim use of a 
constant control system for sulfur dioxide emissions.

 Schedule D.7--Horizon Value of Cash Flows for the Interim Controls Test

    General. Use Schedule D.7 to calculate the horizon value of net cash 
flow projections for the Interim Controls Test. This horizon value is 
used in Schedule D.6. The computation of the horizon value is different 
for this test than for the Profit Protection Test because this test 
requires the reporting of depreciation for tax purposes.
    In Schedule D.7, the applicant removes the tax savings of control 
equipment depreciation from the cash flows for the last two forecast 
years. A depreciation-free horizon

[[Page 193]]

value is then calculated from these depreciation-free cash flows. The 
tax savings of constant controls depreciation during the horizon years 
are then calculated separately. The final horizon value is equal to the 
sum of the depreciation-free horizon value and the tax savings from 
depreciation of constant controls accruing over the horizon years. The 
line items in Schedule D.7 are explained in the following instruction.
    Line 01--Net Cash Flow Projections. Enter for each of the final two 
forecast years the values in Schedule D.6, Line 09, for the 
corresponding years.
    Line 02--Depreciation and Amortization. Enter for each of the final 
two forecast years the value in Schedule D.6, Line 03, for the 
corresponding years.
    Line 03--Marginal Tax Rate. Enter for each of the final two forecast 
years the marginal income tax rate applicable to the smelter. This rate 
should incorporate both Federal and State tax liability.
    Line 04--Tax Savings. Enter for each of the final two forecast years 
the product of Lines 02 and 03.
    Line 05--Nominal Dollar Values. Enter for each of the final two 
forecast years the difference between Lines 01 and 04.
    Line 06--1990 Dollar Values. For each of the final two forecast 
years the nominal dollar values must be expressed in the last forecast 
year's dollars (1990 dollars). Transfer the 1990 amount in Line 05 
directly to Line 06. Inflate the 1989 amount to 1990 dollars using the 
forecast GNP price deflator.
    Line 07--Average. Enter under the Total column the average of the 
two values in Line 06.
    Line 08--Horizon Factor. Enter under the Total column the horizon 
factor provided in Section 2.7.
    Line 09--Depreciation-free Horizon Value. Enter under the Total 
column the product of Lines 07 and 08.
    Line 10--Depreciation and Amortization. Enter for each year of the 
horizon period depreciation charges associated with the smelter's 
investment in equipment and facilities related to pollution controls. 
These investments should include those actually made and those forecast 
to be made by the end of the forecast period. Reported charges should be 
computed in accordance with depreciation and amortization methods 
adopted for tax reporting purposes by the firm. Attach as part of 
exhibit B supporting schedules consistent with those supporting Line 17 
in Schedule D.3.
    Line 11--Marginal Tax Rate. Enter for each year of the horizon 
period the marginal income tax rate applicable to the smelter. This rate 
should incorporate both Federal and State tax liability.
    Line 12--Tax Savings. Enter for each year of the horizon period the 
product of Lines 10 and 11.
    Line 13--Discount Factors. Enter the discount factor for each year 
of the horizon period. This shall be computed according to the 
instructions under Section 2.6, except that the variable N found in the 
discount factor formula represents the number of years in the future, 
counting from the last forecast year. For example, N=1 for the first 
year of the horizon period.
    Line 14--Present Value of Tax Savings. Enter for each year of the 
horizon period the product of Lines 12 and 13.
    Line 15--Total Present Value of Tax Savings. Enter under the Total 
column the sum of values on Line 14 for the horizon years.
    Line 16--Horizon Value. Enter under the Total column the sum of 
Lines 09 and 15.

                     Environmental Protection Agency

              Primary Nonferrous Smelter Order Application

                   Part I--Identification Information

1. Firm name____________________________________________________________
2. Street/Box/RFD_______________________________________________________
3. City_________________________________________________________________
4. State________________________________________________________________
5. Zip Code_____________________________________________________________
6. IRS Employer Identification No.______________________________________
7. SEC 1934 Act Registration No.________________________________________
8. Smelter Name_________________________________________________________
9. Street/Box/RFD_______________________________________________________
10. City________________________________________________________________
11. State_______________________________________________________________
12. Zip Code____________________________________________________________
13. Contact Person______________________________________________________
14. Title_______________________________________________________________
15. Street/Box/RFD______________________________________________________
16. City________________________________________________________________
17. State_______________________________________________________________
18. Zip Code____________________________________________________________
19. Telephone___________________________________________________________

                         Part II--Certification

    I certify that the information provided herein and appended hereto 
is true and accurate to the best of my knowledge. I understand that this 
information is being required, in part, under the authority of Section 
114 of the Clean Air Act, 42 U.S.C. 7414.

Name____________________________________________________________________
Title___________________________________________________________________
Signature_______________________________________________________________
Date

[[Page 194]]

________________________________________________________________________

                                      Schedule A.1--Historical Revenue Data
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                              Line     1979     1980     1981     1982     1983
----------------------------------------------------------------------------------------------------------------
A. Copper product sales:
    1. Total quantity sold................................       01  .......  .......  .......  .......  .......
    2. Unaffiliated customer sales:
        a. Quantity sold..................................        2  .......  .......  .......  .......  .......
        b. Operating revenue..............................       03  .......  .......  .......  .......  .......
        c. Average unit price.............................       04  .......  .......  .......  .......  .......
        d. Average product grade..........................       05  .......  .......  .......  .......  .......
    3. Affiliated customers sales:
        a. Quantity sold..................................       06  .......  .......  .......  .......  .......
        b. Operating revenue..............................       07  .......  .......  .......  .......  .......
        c. Average unit price.............................       08  .......  .......  .......  .......  .......
        d. Average product grade..........................       09  .......  .......  .......  .......  .......
    4. Adjusted copper revenues:
        a. Total copper revenues..........................       10  .......  .......  .......  .......  .......
        b. Transfer price adjustment......................       11  .......  .......  .......  .......  .......
        c. Other revenue adjustments......................       12  .......  .......  .......  .......  .......
        d. Adjusted copper revenues.......................       13  .......  .......  .......  .......  .......
B. Lead product sales:
    1. Total quantity sold................................       14  .......  .......  .......  .......  .......
    2. Unaffiliated customer sales:
        a. Quantity sold..................................       15  .......  .......  .......  .......  .......
        b. Operating revenue..............................       16  .......  .......  .......  .......  .......
        c. Average unit price.............................       17  .......  .......  .......  .......  .......
        d. Average product grade..........................       18  .......  .......  .......  .......  .......
    3. Affiliated customer sales:
        a. Quantity sold..................................       19  .......  .......  .......  .......  .......
        b. Operating revenue..............................       20  .......  .......  .......  .......  .......
        c. Average unit price.............................       21  .......  .......  .......  .......  .......
        d. Average product grade..........................       22  .......  .......  .......  .......  .......
    4. Adjusted lead revenues:
        a. Total lead revenues............................       23  .......  .......  .......  .......  .......
        b. Transfer price adjustment......................       24  .......  .......  .......  .......  .......
        c. Other revenue adjustments......................       25  .......  .......  .......  .......  .......
        d. Adjusted lead revenues.........................       26  .......  .......  .......  .......  .......
C. Zinc product sales:
    1. Total quantity sold................................       27  .......  .......  .......  .......  .......
    2. Unaffiliated customer sales:
        a. Quantity sold..................................       28  .......  .......  .......  .......  .......
        b. Operating revenue..............................       29  .......  .......  .......  .......  .......
        c. Average unit price.............................       30  .......  .......  .......  .......  .......
        d. Average product grade..........................       31  .......  .......  .......  .......  .......
    3. Affiliated customer sales:
        a. Quantity sold..................................       32  .......  .......  .......  .......  .......
        b. Operating revenue..............................       33  .......  .......  .......  .......  .......
        c. Average unit price.............................       34  .......  .......  .......  .......  .......
        d. Average product grade..........................       35  .......  .......  .......  .......  .......
    4. Adjusted zinc revenues:
        a. Total zinc revenues............................       36  .......  .......  .......  .......  .......
        b. Transfer price adjustment......................       37  .......  .......  .......  .......  .......
        c. Other revenue adjustments......................       38  .......  .......  .......  .......  .......
        d. Adjusted zinc revenues.........................       39  .......  .......  .......  .......  .......
D. Molybdenum or other nonferrous metal sales:
    1. Total quantity sold................................       40  .......  .......  .......  .......  .......
    2. Unaffiliated customer sales:
        a. Quantity sold..................................       41  .......  .......  .......  .......  .......
        b. Operating revenue..............................       42  .......  .......  .......  .......  .......
        c. Average unit price.............................       43  .......  .......  .......  .......  .......
        d. Average product grade..........................       44  .......  .......  .......  .......  .......
    3. Affiliated customer sales:
        a. Quantity sold..................................       45  .......  .......  .......  .......  .......
        b. Operating revenue..............................       46  .......  .......  .......  .......  .......
        c. Average unit price.............................       47  .......  .......  .......  .......  .......
        d. Average product grade..........................       48  .......  .......  .......  .......  .......
    4. Adjusted molybdenum or other nonferrous metal
     revenues:
        a. Total molybdenum or other nonferrous metal            49  .......  .......  .......  .......  .......
         revenues.........................................
        b. Transfer price adjustment......................       50  .......  .......  .......  .......  .......
        c. Other revenue adjustments......................       51  .......  .......  .......  .......  .......
        d. Adjusted molybdenum or other nonferrous metal         52  .......  .......  .......  .......  .......
         revenues.........................................
E. Primary metal revenues.................................       53  .......  .......  .......  .......  .......
F. Tolling service revenues:
    1. Total toll concentrates processed..................       54  .......  .......  .......  .......  .......

[[Page 195]]

 
    2. Unaffiliated customer revenues:
        a. Concentrates processed.........................       55  .......  .......  .......  .......  .......
        b. Operating revenue..............................       56  .......  .......  .......  .......  .......
        c. Average unit price.............................       57  .......  .......  .......  .......  .......
        d. Average product grade..........................       58  .......  .......  .......  .......  .......
    3. Affiliated customer revenues:
        a. Concentrates processed.........................       59  .......  .......  .......  .......  .......
        b. Operating revenue..............................       60  .......  .......  .......  .......  .......
        c. Average unit price.............................       61  .......  .......  .......  .......  .......
        d. Average product grade..........................       62  .......  .......  .......  .......  .......
    4. Adjusted tolling service revenues:
        a. Total tolling service revenue..................       63  .......  .......  .......  .......  .......
        b. Transfer price adjustment......................       64  .......  .......  .......  .......  .......
        c. Other revenue adjustments......................       65  .......  .......  .......  .......  .......
        d. Adjusted tolling service revenues..............       66  .......  .......  .......  .......  .......
G. Coproduct and byproduct sales:
    1. Total coproduct revenues...........................       67  .......  .......  .......  .......  .......
    2. Total byproduct revenues:
        a. Pollution control facilities...................       68  .......  .......  .......  .......  .......
        b. Other smelter processing.......................       69  .......  .......  .......  .......  .......
    3. Total coproduct and byproduct revenues.............       70  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                                       Schedule A.2--Historical Cost Data
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                              Line     1979     1980     1981     1982     1983
----------------------------------------------------------------------------------------------------------------
A. Concentrate costs:
    1. Total quantity purchased...........................       01  .......  .......  .......  .......  .......
    2. Unaffiliated purchases:
        a. Quantity purchased.............................       02  .......  .......  .......  .......  .......
        b. Concentrate cost...............................       03  .......  .......  .......  .......  .......
        c. Average unit price.............................       04  .......  .......  .......  .......  .......
        d. Average concentrate grade......................       05  .......  .......  .......  .......  .......
    3. Affiliated purchases:
        a. Quantity purchased.............................       06  .......  .......  .......  .......  .......
        b. Concentrate cost...............................       07  .......  .......  .......  .......  .......
        c. Average unit price.............................       08  .......  .......  .......  .......  .......
        d. Average concentrate grade......................       09  .......  .......  .......  .......  .......
    4. Adjusted concentrate costs:
        a. Total concentrate costs........................       10  .......  .......  .......  .......  .......
        b. Transfer price adjustment......................       11  .......  .......  .......  .......  .......
        c. Other cost adjustments.........................       12  .......  .......  .......  .......  .......
        d. Adjusted concentrate cost......................       13  .......  .......  .......  .......  .......
B. Production labor cost:
    1. Direct labor hours.................................       14  .......  .......  .......  .......  .......
    2. Average hourly wage rate...........................       15  .......  .......  .......  .......  .......
    3. Total wage payments................................       16  .......  .......  .......  .......  .......
    4. Supplemental employee benefits.....................       17  .......  .......  .......  .......  .......
    5. Total production labor cost........................       18  .......  .......  .......  .......  .......
C. Energy costs:
    1. Electricity:
        a. Quantity in kilowatt hours.....................       19  .......  .......  .......  .......  .......
        b. Price per kwh..................................       20  .......  .......  .......  .......  .......
        c. Total electricity payments.....................       21  .......  .......  .......  .......  .......
    2. Natural gas:
        a. Quantity in mcf................................       22  .......  .......  .......  .......  .......
        b. Price per mcf..................................       23  .......  .......  .......  .......  .......
        c. Total natural gas payments.....................       24  .......  .......  .......  .......  .......
    3. Coal:
        a. Quantity in tons...............................       25  .......  .......  .......  .......  .......
        b. Price per ton..................................       26  .......  .......  .......  .......  .......
        c. Total coal payments............................       27  .......  .......  .......  .......  .......
    4. Fuel oil:
        a. Quantity in gallons............................       28  .......  .......  .......  .......  .......
        b. Price per gallon...............................       29  .......  .......  .......  .......  .......
        c. Total fuel oil payments........................       30  .......  .......  .......  .......  .......
    5. Other (specify):
        a. Quantity (specific units)......................       31  .......  .......  .......  .......  .......
        b. Price per unit.................................       32  .......  .......  .......  .......  .......

[[Page 196]]

 
        c. Total payments.................................       33  .......  .......  .......  .......  .......
    6. Total energy costs.................................       34  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                                Schedule A.3--Historical Profit and Loss Summary
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                              Line     1979     1980     1981     1982     1983
----------------------------------------------------------------------------------------------------------------
A. Operating revenues:
    1. Primary metal sales................................       01  .......  .......  .......  .......  .......
    2. Coproduct and byproduct sales......................       02  .......  .......  .......  .......  .......
    3. Tolling service revenues...........................       03  .......  .......  .......  .......  .......
    4. Other operating revenues...........................       04  .......  .......  .......  .......  .......
    5. Total operating revenues...........................       05  .......  .......  .......  .......  .......
B. Cost of sales:
    1. Concentrates processed.............................       06  .......  .......  .......  .......  .......
    2. Other materials....................................       07  .......  .......  .......  .......  .......
    3. Production labor...................................       08  .......  .......  .......  .......  .......
    4. Energy costs.......................................       09  .......  .......  .......  .......  .......
    5. Pollution control cost.............................       10  .......  .......  .......  .......  .......
    6. Production overhead................................       11  .......  .......  .......  .......  .......
    7. Other production costs.............................       12  .......  .......  .......  .......  .......
    8. Total cost of sales................................       13  .......  .......  .......  .......  .......
C. Gross operating profit.................................       14  .......  .......  .......  .......  .......
D. Other operating expenses:
    1. Selling general and administrative.................       15  .......  .......  .......  .......  .......
    2. Taxes, other than income tax.......................       16  .......  .......  .......  .......  .......
    3. Research costs.....................................       17  .......  .......  .......  .......  .......
    4. Depreciation and amortization:
        a. Pollution control facilities...................       18  .......  .......  .......  .......  .......
        b. Other smelter facilities.......................       19  .......  .......  .......  .......  .......
    5. Interest on short term debt........................       20  .......  .......  .......  .......  .......
    6. Miscellaneous operating expenses...................       21  .......  .......  .......  .......  .......
    7. Total other operating expenses.....................       22  .......  .......  .......  .......  .......
E. Income from operations.................................       23  .......  .......  .......  .......  .......
F. Other income and (expense):
    1. Gain/(loss) on disposition of property.............       24  .......  .......  .......  .......  .......
    2. Miscellaneous other income and (expense)...........       25  .......  .......  .......  .......  .......
    3. Total other income and (expense)...................       26  .......  .......  .......  .......  .......
G. Net taxable income.....................................       27  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                               Schedule A.4--Historical Capital Investment Summary
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                              Line     1979     1980     1981     1982     1983
----------------------------------------------------------------------------------------------------------------
A. Current assets:
    1. Cash on hand and deposit...........................       01  .......  .......  .......  .......  .......
    2. Temporary cash investments.........................       02  .......  .......  .......  .......  .......
    3. Trade receivables, net:
        a. Unaffiliated customers.........................       03  .......  .......  .......  .......  .......
        b. Affiliated customers...........................       04  .......  .......  .......  .......  .......
    4. Inventories:
        a. Raw materials and products.....................       05  .......  .......  .......  .......  .......
        b. Other materials and supplies...................       06  .......  .......  .......  .......  .......
    5. Other current assets...............................       07  .......  .......  .......  .......  .......
    6. Total current assets...............................       08  .......  .......  .......  .......  .......
B. Property, plant and equipment:
    1. Land...............................................       09  .......  .......  .......  .......  .......
    2. Buildings and improvements.........................       10  .......  .......  .......  .......  .......
    3. Machinery and equipment............................       11  .......  .......  .......  .......  .......
    4. Transportation equipment...........................       12  .......  .......  .......  .......  .......
    5. Pollution control facilities.......................       13  .......  .......  .......  .......  .......
    6. Other fixed assets.................................       14  .......  .......  .......  .......  .......
    7. Total smelter investment...........................       15  .......  .......  .......  .......  .......
    8. Less: Accumulated depreciation and amortization....       16  .......  .......  .......  .......  .......
    9. Net smelter investment.............................       17  .......  .......  .......  .......  .......
C. Other noncurrent assets................................       18  .......  .......  .......  .......  .......
D. Total smelter capital investment.......................       19  .......  .......  .......  .......  .......

[[Page 197]]

 
E. Current liabilities:
    1. Trade accounts and notes payable:
        a. Unaffiliated suppliers.........................       20  .......  .......  .......  .......  .......
        b. Affiliated suppliers...........................       21  .......  .......  .......  .......  .......
    2. Other expense accruals.............................       22  .......  .......  .......  .......  .......
    3. Notes payable, current.............................       23  .......  .......  .......  .......  .......
    4. Other current liabilities..........................       24  .......  .......  .......  .......  .......
    5. Total current liabilities..........................       25  .......  .......  .......  .......  .......
F. Net smelter capital investment.........................       26  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                                    Schedule B--Pre-Control Revenue Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast smelter revenues--
 unaffiliated parties:
    1. Concentrates processed...........       01  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       02  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       03  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       04  .......  .......  .......  .......  .......  .......  .......
B. Forecast smelter revenues--affiliated
 parties:
    1. Concentrates processed...........       05  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       06  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       07  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       08  .......  .......  .......  .......  .......  .......  .......
C. Forecast co-product and by-product
 sales:
    1. Total co-product revenues........       09  .......  .......  .......  .......  .......  .......  .......
    2. Total by-product revenues from:
        a. Pollution control facilities.       10  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter processing.....       11  .......  .......  .......  .......  .......  .......  .......
    3. Total co-product and by-product         12  .......  .......  .......  .......  .......  .......  .......
     revenues...........................
----------------------------------------------------------------------------------------------------------------


                                     Schedule B.2--Pre-Control Cost Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast production labor cost:
    1. Direct labor hours...............       01  .......  .......  .......  .......  .......  .......  .......
    2. Average hourly wage rate.........       02  .......  .......  .......  .......  .......  .......  .......
    3. Total wage payments..............       03  .......  .......  .......  .......  .......  .......  .......
    4. Supplemental employee benefits...       04  .......  .......  .......  .......  .......  .......  .......
    5. Total production labor cost......       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast energy costs:
    1. Electricity:
        a. Quantity in kilowatt hours...       06  .......  .......  .......  .......  .......  .......  .......
        b. Price per kwh................       07  .......  .......  .......  .......  .......  .......  .......
        c. Total electricity payments...       08  .......  .......  .......  .......  .......  .......  .......
    2. Natural gas:
        a. Quantity in mcf..............       09  .......  .......  .......  .......  .......  .......  .......
        b. Price per mcf................       10  .......  .......  .......  .......  .......  .......  .......
        c. Total natural gas payments...       11  .......  .......  .......  .......  .......  .......  .......
    3. Coal:
        a. Quantity in tons.............       12  .......  .......  .......  .......  .......  .......  .......
        b. Price per ton................       13  .......  .......  .......  .......  .......  .......  .......
        c. Total coal payments..........       14  .......  .......  .......  .......  .......  .......  .......
    4. Fuel oil:
        a. Quantity in gallons..........       15  .......  .......  .......  .......  .......  .......  .......
        b. Price per gallon.............       16  .......  .......  .......  .......  .......  .......  .......
        c. Total fuel oil payments......       17  .......  .......  .......  .......  .......  .......  .......
    5. Other (specify):
        a. Quantity (specific units)....       18  .......  .......  .......  .......  .......  .......  .......
        b. Price per unit...............       19  .......  .......  .......  .......  .......  .......  .......
        c. Total payments...............       20  .......  .......  .......  .......  .......  .......  .......
    6. Total energy costs...............       21  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


[[Page 198]]


                           Schedule B.3--Pre-Control Forecast Profit and Loss Summary
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast operating revenues:
    1. Smelter revenues--unaffiliated          01  .......  .......  .......  .......  .......  .......  .......
     parties............................
    2. Smelter revenues--affiliated            02  .......  .......  .......  .......  .......  .......  .......
     parties............................
    3. Co-product and by-product sales..       03  .......  .......  .......  .......  .......  .......  .......
    4. Other operating revenues.........       04  .......  .......  .......  .......  .......  .......  .......
    5. Total operating revenues.........       05  .......  .......  .......  .......  .......  .......
B. Forecast cost of sales:
    1. Material costs...................       06  .......  .......  .......  .......  .......  .......  .......
    2. Production labor costs...........       07  .......  .......  .......  .......  .......  .......
    3. Energy costs.....................       08  .......  .......  .......  .......  .......  .......  .......
    4. Pollution control costs..........       09  .......  .......  .......  .......  .......  .......  .......
    5. Production overhead..............       10  .......  .......  .......  .......  .......  .......  .......
    6. Other production costs...........       11  .......  .......  .......  .......  .......  .......  .......
    7. Total cost of sales..............       12  .......  .......  .......  .......  .......  .......  .......
C. Forecast gross operating profit......       13  .......  .......  .......  .......  .......  .......  .......
D. Forecast other operating expenses:
    1. Selling, general and                    14  .......  .......  .......  .......  .......  .......  .......
     administrative expenses............
    2. Taxes, other than income tax.....       15  .......  .......  .......  .......  .......  .......  .......
    3. Research costs...................       16  .......  .......  .......  .......  .......  .......  .......
    4. Depreciation and amortization:
        a. Pollution control facilities.       17  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter facilities.....       18  .......  .......  .......  .......  .......  .......  .......
    5. Interest.........................       19  .......  .......  .......  .......  .......  .......  .......
    6. Miscellaneous operating expenses.       20  .......  .......  .......  .......  .......  .......  .......
    7. Total other operating expenses...       21  .......  .......  .......  .......  .......  .......  .......
E. Forecast income from operations......       22  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                                Schedule B.4--Constant Controls Revenue Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast smelter revenues--
 unaffiliated parties:
    1. Concentrates processed...........       01  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       02  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       03  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       04  .......  .......  .......  .......  .......  .......  .......
B. Forecast smelter revenues--affiliated
 parties:
    1. Concentrates processed...........       05  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       06  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       07  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       08
C. Forecast co-product and by-product
 sales:
    1. Total co-product revenues........       09  .......  .......  .......  .......  .......  .......  .......
    2. Total by-product revenues from:
        a. Pollution control faciltites.       10  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter processing.....       11  .......  .......  .......  .......  .......  .......  .......
    3. Total co-product and by-product         12  .......  .......  .......  .......  .......  .......  .......
     revenues...........................
----------------------------------------------------------------------------------------------------------------


                                  Schedule B.5--Constant Controls Cost Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast production labor cost:
    1. Direct labor hours...............       01  .......  .......  .......  .......  .......  .......  .......
    2. Average hourly wage rate.........       02  .......  .......  .......  .......  .......  .......  .......
    3. Total wage payments..............       03  .......  .......  .......  .......  .......  .......  .......
    4. Supplemental employee benefits...       04  .......  .......  .......  .......  .......  .......  .......
    5. Total production labor cost......       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast energy costs:
    1. Electricity:
        a. Quantity in kilowatt hours...       06  .......  .......  .......  .......  .......  .......  .......
        b. Price per kwh................       07  .......  .......  .......  .......  .......  .......  .......
        c. Total electricity payments...       08  .......  .......  .......  .......  .......  .......  .......
    2. Natural gas:
        a. Quantity in mcf..............       09  .......  .......  .......  .......  .......  .......  .......

[[Page 199]]

 
        b. Price per mcf................       10  .......  .......  .......  .......  .......  .......  .......
        c. Total natural gas payments...       11  .......  .......  .......  .......  .......  .......  .......
    3. Coal:
        a. Quantity in tons.............       12  .......  .......  .......  .......  .......  .......  .......
        b. Price per ton................       13  .......  .......  .......  .......  .......  .......  .......
        c. Total coal payments..........       14  .......  .......  .......  .......  .......  .......  .......
    4. Fuel oil:
        a. Quantity in gallons..........       15  .......  .......  .......  .......  .......  .......  .......
        b. Price per gallon.............       16  .......  .......  .......  .......  .......  .......  .......
        c. Total fuel oil payments......       17  .......  .......  .......  .......  .......  .......  .......
    5. Other (specify):
        a. Quantity (specific units)....       18  .......  .......  .......  .......  .......  .......  .......
        b. Price per unit...............       19  .......  .......  .......  .......  .......  .......  .......
        c. Total payments...............       20  .......  .......  .......  .......  .......  .......  .......
    6. Total energy costs...............       21  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


             Schedule B.6--Constant Controls Profit and Loss Summary for the Profit Protection Test
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast operating revenues:
    1. Smelter revenues--unaffiliated          01  .......  .......  .......  .......  .......  .......  .......
     parties............................
    2. Smelter revenues--affiliated            02  .......  .......  .......  .......  .......  .......  .......
     parties............................
    3. Co-product and by-product sales..       03  .......  .......  .......  .......  .......  .......  .......
    4. Other operating revenues.........       04  .......  .......  .......  .......  .......  .......  .......
    5. Total operating revenues.........       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast cost of sales:
    1. Material costs...................       06  .......  .......  .......  .......  .......  .......  .......
    2. Production labor costs...........       07  .......  .......  .......  .......  .......  .......  .......
    3. Energy costs.....................       08  .......  .......  .......  .......  .......  .......  .......
    4. Pollution control costs..........       09  .......  .......  .......  .......  .......  .......  .......
    5. Production overhead..............       10  .......  .......  .......  .......  .......  .......  .......
    6. Other production costs...........       11  .......  .......  .......  .......  .......  .......  .......
    7. Total cost of sales..............       12  .......  .......  .......  .......  .......  .......  .......
C. Forecast gross operating profit......       13  .......  .......  .......  .......  .......  .......  .......
D. Forecast other operating expenses:
    1. Selling, general and                    14  .......  .......  .......  .......  .......  .......  .......
     administrative expenses............
    2. Taxes, other than income tax.....       15  .......  .......  .......  .......  .......  .......  .......
    3. Research costs...................       16  .......  .......  .......  .......  .......  .......  .......
    4. Depreciation and amortization:
        a. Pollution control facilities.       17  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter facilities.....       18  .......  .......  .......  .......  .......  .......  .......
    5. Interest.........................       19  .......  .......  .......  .......  .......  .......  .......
    6. Miscellaneous operating expenses.       20  .......  .......  .......  .......  .......  .......  .......
    7. Total other operating expenses...       21  .......  .......  .......  .......  .......  .......  .......
E. Forecast income from operations......       22  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                                      Schedule B.7--Profit Protection Test
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                   Line     1984     1985     1986     1987     1988     1989     1990    Total
----------------------------------------------------------------------------------------------------------------
A. Pre-control case:
    1. Net income from                01  .......  .......  .......  .......  .......  .......  .......     XXXX
     operations................
    2. Discount factors........       02  .......  .......  .......  .......  .......  .......  .......     XXXX
    3. Present value of future        03  .......  .......  .......  .......  .......  .......  .......     XXXX
     net income................
    4. Horizon value...........       04     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    5. Discount factor.........       05     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    6. Present value of horizon       06     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     value.....................
    7. Present value of future        07     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     net income................
    8. Total present value.....       08     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
B. Constant controls case:
    1. Net income from                09  .......  .......  .......  .......  .......  .......  .......     XXXX
     operations................

[[Page 200]]

 
    2. Discount factors........       10  .......  .......  .......  .......  .......  .......  .......     XXXX
    3. Present value of future        11  .......  .......  .......  .......  .......  .......  .......     XXXX
     net income................
    4. Horizon value...........       12     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    5. Discount factor.........       13     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    6. Present value of horizon       14     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     value.....................
    7. Present value of future        15     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     net income................
    8. Total present value.....       16     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
C. Ratio of total present value       17     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
 of constant controls case to
 total, present value of base
 case..........................
----------------------------------------------------------------------------------------------------------------


               Schedule C.1--Constant Controls Profit and Loss Summary for the Rate of Return Test
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast operating revenues:
    1. Smelter revenues--unaffilated           01  .......  .......  .......  .......  .......  .......  .......
     parties............................
    2. Smelter revenues--affiliated            02  .......  .......  .......  .......  .......  .......  .......
     parties............................
    3. Co-product and by-product sales..       03  .......  .......  .......  .......  .......  .......  .......
    4. Other operating revenues.........       04  .......  .......  .......  .......  .......  .......  .......
    5. Total operating revenues.........       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast cost of sales:
    1. Material costs...................       06  .......  .......  .......  .......  .......  .......  .......
    2. Production labor costs...........       07  .......  .......  .......  .......  .......  .......  .......
    3. Energy costs.....................       08  .......  .......  .......  .......  .......  .......  .......
    4. Pollution control costs..........       09  .......  .......  .......  .......  .......  .......  .......
    5. Production overhead..............       10  .......  .......  .......  .......  .......  .......  .......
    6. Other production costs...........       11  .......  .......  .......  .......  .......  .......  .......
    7. Total cost of sales..............       12  .......  .......  .......  .......  .......  .......  .......
C. Forecast gross operating profit......       13  .......  .......  .......  .......  .......  .......  .......
D. Forecast other operating expenses:
    1. Selling, general and                    14  .......  .......  .......  .......  .......  .......  .......
     administrative expenses............
    2. Taxes, other than income tax.....       15  .......  .......  .......  .......  .......  .......  .......
    3. Research costs...................       16  .......  .......  .......  .......  .......  .......  .......
    4. Depreciation and amortization
        a. Pollution control facilities.       17  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter facilities.....       18  .......  .......  .......  .......  .......  .......  .......
    5. Interest on short-term debt......       19  .......  .......  .......  .......  .......  .......  .......
    6. Miscellaneous operating expenses.       20  .......  .......  .......  .......  .......  .......  .......
    7. Total other operating expenses...       21  .......  .......  .......  .......  .......  .......  .......
E. Forecast income from operations......       22  .......  .......  .......  .......  .......  .......  .......
F. Forecast income taxes................       23  .......  .......  .......  .......  .......  .......  .......
G. Forecast net income from operations..       24  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                     Schedule C.2--Constant Controls Sustaining Capital Investment Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
           Sustaining capital               Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
1. Land.................................       01  .......  .......  .......  .......  .......  .......  .......
2. Buildings and improvements...........       02  .......  .......  .......  .......  .......  .......  .......
2. Machinery and equipment..............       03  .......  .......  .......  .......  .......  .......  .......
4. Transportation equipment.............       04  .......  .......  .......  .......  .......  .......  .......
5. Pollution control facilities.........       05  .......  .......  .......  .......  .......  .......  .......
6. Other fixed assets...................       06  .......  .......  .......  .......  .......  .......  .......
7. Total smelter sustaining capital.....       07  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


[[Page 201]]


                         Schedule C.3--Historical Capital Investment in Constant Dollars
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                                                             Nominal    Constant
                         Items from 1983 balance sheet                              Line     dollars    dollars
----------------------------------------------------------------------------------------------------------------
A. Current assets:
    1. Cash on hand and deposit................................................         01  .........  .........
    2. Temporary cash investments..............................................         02  .........  .........
    3. Trade receivables, net:
        a. Unaffiliated customers..............................................         03  .........  .........
        b. Affiliated customers................................................         04  .........  .........
    4. Inventories:
        a. Raw materials and products..........................................         05  .........  .........
        b. Other materials and supplies........................................         06  .........  .........
    5. Other current assets....................................................         07  .........  .........
    6. Total current assets....................................................         08  .........  .........
B. Property, plant and equipment:
    1. Land....................................................................         09  .........  .........
    2. Buildings and improvements..............................................         10  .........  .........
    3. Machinery and equipment.................................................         11  .........  .........
    4. Transportation equipment................................................         12  .........  .........
    5. Pollution control facilities............................................         13  .........  .........
    6. Other fixed assets......................................................         14  .........  .........
    7. Total smelter investments...............................................         15  .........  .........
    8. Less: Accumulated depreciation and amortization.........................         16  .........  .........
    9. Net smelter investment..................................................         17  .........  .........
C. Other noncurrent assets.....................................................         18  .........  .........
D. Total smelter capital investment............................................         19  .........  .........
E. Current liabilities:
    1. Trade accounts and notes payable:
        a. Unaffiliated suppliers..............................................         20  .........  .........
        b. Affiliated suppliers................................................         21  .........  .........
    2. Other expense accruals..................................................         22  .........  .........
    3. Notes payable, current..................................................         23  .........  .........
    4. Other current liabilities...............................................         24  .........  .........
    5. Total current liabilities...............................................         25  .........  .........
F. Net smelter capital investment..............................................         26  .........  .........
----------------------------------------------------------------------------------------------------------------


                                        Schedule C.4--Rate of Return Test
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                   Line     1984     1985     1986     1987     1988     1989     1990    Total
----------------------------------------------------------------------------------------------------------------
A. Operating cash flow
 projection:
    1. Net income from                01  .......  .......  .......  .......  .......  .......  .......     XXXX
     operations................
    2. Depreciation and
     amortization:
        a. Pollution control          02  .......  .......  .......  .......  .......  .......  .......     XXXX
         facilities............
        b. Other smelter              03  .......  .......  .......  .......  .......  .......  .......     XXXX
         facilities............
    3. Operating cash flow.....       04  .......  .......  .......  .......  .......  .......  .......     XXXX
    4. Capital expenditure
     projections:
        a. Constant controls...       05  .......  .......  .......  .......  .......  .......  .......     XXXX
        b. Sustaining capital..       06  .......  .......  .......  .......  .......  .......  .......     XXXX
        c. Total...............       07  .......  .......  .......  .......  .......  .......  .......     XXXX
    5. Net cash flow                  08  .......  .......  .......  .......  .......  .......  .......     XXXX
     projections...............
    6. Discount factors........       09  .......  .......  .......  .......  .......  .......  .......     XXXX
    7. Present value of future        10  .......  .......  .......  .......  .......  .......  .......     XXXX
     cash flows................
B. Net present value:
    1. Horizon value...........       11     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    2. Discount factor.........       12     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    3. Present value of horizon       13     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     value.....................
    4. Present value of future        14     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     cash flows................
    5. Total present value.....       15     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    6. Net smelter capital            16     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     investment in constant
     dollars...................
    7. Net present value.......       17     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
----------------------------------------------------------------------------------------------------------------


[[Page 202]]


                                    Schedule C.5--Horizon Value of Cash Flows
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                           Final forecast                       Horizon years
                                                years      -----------------------------------------------------
                                   Line  ------------------
                                            1989     1990     1991     1992     1993     1994     1995    Total
----------------------------------------------------------------------------------------------------------------
A. Depreciation-free horizon
 value:
    1. Net cash flow                  01  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
     projections...............
    2. Depreciation tax
     savings:
        a. Depreciation and           02  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
         amortization..........
        b. Marginal tax rate...       03  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
        c. Tax savings.........       04  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
    3. Depreciation-free net
     cash flows:
        a. Nominal dollar             05  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
         values................
        b. 1990 dollar values..       06  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
        c. Average.............       07     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    4. Horizon factor..........       08     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    5. Depreciation-free              09     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     horizon value.............
B. Depreciation tax savings
 over the horizon period:
    1. Depreciation and               10     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
     amortization..............
    2. Marginal tax rate.......       11     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    3. Tax savings.............       12     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    4. Discount factors........       13     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    5. Present value of tax           14     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
     savings...................
    6. Total present value of         15     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     tax savings...............
C. Horizon Value...............       16     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
----------------------------------------------------------------------------------------------------------------


                                 Schedule D.1--Interim Controls Revenue Forecast
                                            [Smelter Identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast smelter revenues--
 unaffiliated parties:
    1. Concentrates processed...........       01  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       02  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       03  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       04  .......  .......  .......  .......  .......  .......  .......
B. Forecast smelter revenues--affiliated
 parties:
    1. Concentrates processed...........       05  .......  .......  .......  .......  .......  .......  .......
    2. Smelting charge..................       06  .......  .......  .......  .......  .......  .......  .......
    3. Total smelter revenues...........       07  .......  .......  .......  .......  .......  .......  .......
    4. Average product grade............       08  .......  .......  .......  .......  .......  .......  .......
C. Forecast co-product and by-product
 sales:
    1. Total co-product revenues........       09  .......  .......  .......  .......  .......  .......  .......
    2. Total by-product revenues from:
        a. Pollution control facilities.       10  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter processing.....       11  .......  .......  .......  .......  .......  .......  .......
    3. Total co-product and by-product         12  .......  .......  .......  .......  .......  .......  .......
     revenues:..........................
----------------------------------------------------------------------------------------------------------------


                                  Schedule D.2--Interim Controls Cost Forecast
                                            [Smelter Identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast production labor cost:
    1. Direct labor hours...............       01  .......  .......  .......  .......  .......  .......  .......
    2. Average hourly wage rate.........       02  .......  .......  .......  .......  .......  .......  .......
    3. Total wage payments..............       03  .......  .......  .......  .......  .......  .......  .......
    4. Supplemental employee benefits...       04  .......  .......  .......  .......  .......  .......  .......
    5. Total production labor cost......       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast energy costs:
    1. Electricity:
        a. Quantity in kilowatt hours...       06  .......  .......  .......  .......  .......  .......  .......
        b. Price per kwh................       07  .......  .......  .......  .......  .......  .......  .......
        c. Total electricity payments...       08  .......  .......  .......  .......  .......  .......  .......
    2. Natural gas:
        a. Quantity in mcf..............       09  .......  .......  .......  .......  .......  .......  .......

[[Page 203]]

 
        b. Price per mcf................       10  .......  .......  .......  .......  .......  .......  .......
        c. Total natural gas payments...       11  .......  .......  .......  .......  .......  .......  .......
    3. Coal:
        a. Quantity in tons.............       12  .......  .......  .......  .......  .......  .......  .......
        b. Price per ton................       13  .......  .......  .......  .......  .......  .......  .......
        c. Total coal payments..........       14  .......  .......  .......  .......  .......  .......  .......
    4. Fuel oil:
        a. Quantity in gallons..........       15  .......  .......  .......  .......  .......  .......  .......
        b. Price per gallon.............       16  .......  .......  .......  .......  .......  .......  .......
        c. Total fuel oil payments......       17  .......  .......  .......  .......  .......  .......  .......
    5. Other (specify):
        a. Quantity (specific units)....       18  .......  .......  .......  .......  .......  .......  .......
        b. Price per unit...............       18  .......  .......  .......  .......  .......  .......  .......
        c. Total payments...............       20  .......  .......  .......  .......  .......  .......  .......
    6. Total energy costs...............       21  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                         Schedule D.3--Interim Controls Forecast Profit and Loss Summary
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                            Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
A. Forecast operating revenues:
    1. Smelter revenues--unaffiliated          01  .......  .......  .......  .......  .......  .......  .......
     parties............................
    2. Smelter revenues--affiliated            02  .......  .......  .......  .......  .......  .......  .......
     parties............................
    3. Co-product and by-product sales..       03  .......  .......  .......  .......  .......  .......  .......
    4. Other operating revenues.........       04  .......  .......  .......  .......  .......  .......  .......
    5. Total operating revenues.........       05  .......  .......  .......  .......  .......  .......  .......
B. Forecast cost of sales:
    1. Material costs...................       06  .......  .......  .......  .......  .......  .......  .......
    2. Production labor costs...........       07  .......  .......  .......  .......  .......  .......  .......
    3. Energy costs.....................       08  .......  .......  .......  .......  .......  .......  .......
    4. Pollution control costs..........       09  .......  .......  .......  .......  .......  .......  .......
    5. Production overhead..............       10  .......  .......  .......  .......  .......  .......  .......
    6. Other production costs...........       11  .......  .......  .......  .......  .......  .......  .......
    7. Total cost of sales..............       12  .......  .......  .......  .......  .......  .......  .......
C. Forecast gross operating profit......       13  .......  .......  .......  .......  .......  .......  .......
D. Forecast other operating expenses:
    1. Selling, general and                    14  .......  .......  .......  .......  .......  .......  .......
     administrative expenses............
    2. Taxes, other than income tax.....       15  .......  .......  .......  .......  .......  .......  .......
    3. Research costs...................       16  .......  .......  .......  .......  .......  .......  .......
    4. Depreciation and amortization:
        a. Pollution control facilities.       17  .......  .......  .......  .......  .......  .......  .......
        b. Other smelter facilities.....       18  .......  .......  .......  .......  .......  .......  .......
    5. Interest on short-term debt......       19  .......  .......  .......  .......  .......  .......  .......
    6. Miscellaneous operating expenses.       20  .......  .......  .......  .......  .......  .......  .......
    7. Total other operating expenses...       21  .......  .......  .......  .......  .......  .......  .......
E. Forecast income from operations......       22  .......  .......  .......  .......  .......  .......  .......
F. Forecast income taxes................       23  .......  .......  .......  .......  .......  .......  .......
G. Forecast net income from operations..       24  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


                      Schedule D.4--Interim Control Sustaining Capital Investment Forecast
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
           Sustaining capital               Line     1984     1985     1986     1987     1988     1989     1990
----------------------------------------------------------------------------------------------------------------
1. Land.................................       01  .......  .......  .......  .......  .......  .......  .......
2. Buildings and improvements...........       02  .......  .......  .......  .......  .......  .......  .......
3. Machinery and equipment..............       03  .......  .......  .......  .......  .......  .......  .......
4. Transportation equipment.............       04  .......  .......  .......  .......  .......  .......  .......
5. Pollution control facilities.........       05  .......  .......  .......  .......  .......  .......  .......
6. Other fixed assets...................       06  .......  .......  .......  .......  .......  .......  .......
7. Total smelter sustaining capital.....       07  .......  .......  .......  .......  .......  .......  .......
----------------------------------------------------------------------------------------------------------------


[[Page 204]]


                                  Schedule D.5--Cash Proceeds From Liquidation
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                                                                             Gain (loss) subject
                                                               (1)          (2)       (3)      to taxation as--
                                                            Estimated    Reported    Total  --------------------
                                                    Line   Liquidation   net book     gain       (4)       (5)
                                                              value        value     (loss)   Ordinary   Capital
                                                                                               income      gain
----------------------------------------------------------------------------------------------------------------
A. Total current assets.........................       01  ...........  ..........    XXXXX       XXXXX    XXXXX
B. Property, plant and equipment:
    1. Land.....................................       02  ...........  ..........  .......  ..........  .......
    2. Buildings and improvements...............       03  ...........  ..........  .......  ..........  .......
    3. Machinery and equipment..................       04  ...........  ..........  .......  ..........  .......
    4. Transportation equipment.................       05  ...........  ..........  .......  ..........  .......
    5. Pollution control facilities.............       06  ...........  ..........  .......  ..........  .......
    6. Other fixed assets.......................       07  ...........  ..........  .......  ..........  .......
    7. Total....................................       08  ...........  ..........  .......  ..........  .......
C. Other noncurrent assets......................       09  ...........  ..........  .......  ..........  .......
D. Total smelter value..........................       10  ...........  ..........  .......  ..........  .......
E. Total current liabilities....................       11  ...........  ..........    XXXXX       XXXXX    XXXXX
F. Gross liquidation value......................       12  ...........  ..........  .......  ..........  .......
G. Liquidation costs............................       13  ...........       XXXXX  .......  ..........    XXXXX
H. Net Taxable Gain (or loss)...................       14        XXXXX       XXXXX    XXXXX  ..........  .......
I. Income tax rate..............................       15        XXXXX       XXXXX    XXXXX  ..........  .......
J. Income tax on gain (loss)....................       16        XXXXX       XXXXX    XXXXX  ..........  .......
K. After tax cash proceeds from liquidation.....       17  ...........       XXXXX    XXXXX       XXXXX    XXXXX
----------------------------------------------------------------------------------------------------------------


                            Schedule D.6--Permanent Waiver From Interim Controls Test
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                   Line     1984     1985     1986     1987     1988     1989     1990    Total
----------------------------------------------------------------------------------------------------------------
A. Operating Cash flow
 projection:
    1. Net income from                01  .......  .......  .......  .......  .......  .......  .......     XXXX
     operations................
    2. Net income adjustments..       02  .......  .......  .......  .......  .......  .......  .......     XXXX
    3. Depreciation and
     amortization:
        a. Pollution control          03  .......  .......  .......  .......  .......  .......  .......     XXXX
         facilities............
        b. Other smelter              04  .......  .......  .......  .......  .......  .......  .......     XXXX
         facilities............
    4. Operating cash flow.....       05  .......  .......  .......  .......  .......  .......  .......     XXXX
    5. Capital expenditure
     projections:
        a. Interim controls....       06  .......  .......  .......  .......  .......  .......  .......     XXXX
        b. Sustaining capital..       07  .......  .......  .......  .......  .......  .......  .......     XXXX
        c. Total...............       08  .......  .......  .......  .......  .......  .......  .......     XXXX
    6. Net cash flow                  09  .......  .......  .......  .......  .......  .......  .......     XXXX
     projections...............
    7. Discount factors........       10  .......  .......  .......  .......  .......  .......  .......     XXXX
    8. Present value of future        11  .......  .......  .......  .......  .......  .......  .......     XXXX
     cash flows................
B. Net present value:
    1. Horizon value...........       12     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    2. Discount factor.........       13     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    3. Present value of horizon       14     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     value.....................
    4. Present value of future        15     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     cash flows................
    5. Total present value.....       16     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    6. Current salvage value...       17     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    7. Net present value.......       18     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
----------------------------------------------------------------------------------------------------------------


                                    Schedule D.7--Horizon Value of Cash Flows
                                            [Smelter identification]
----------------------------------------------------------------------------------------------------------------
                                           Final forecast                  Horizon years
                                                years      ---------------------------------------------
                                   Line  ------------------                                               Total
                                            1989     1990     1991     1992     1993     1994     1995
----------------------------------------------------------------------------------------------------------------
A. Depreciation-free horizon
 value:
    1. Net cash flow                  01  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
     projections...............
    2. Depreciation tax
     savings:
        a. Depreciation and           02  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
         amortization..........
        b. Marginal tax rate...       03  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
        c. Tax savings.........       04  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX

[[Page 205]]

 
    3. Depreciation-free net
     cash flows:
        a. Nominal dollar             05  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
         values................
        b. 1990 dollar values..       06  .......  .......     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX
        c. Average.............       07     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    4. Horizon factor..........       08     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
    5. Depreciation-free              09     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     horizon value.............
B. Depreciation tax savings
 over the horizon period:
    1. Depreciation and               10     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
     amortization..............
    2. Marginal tax rate.......       11     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    3. Tax savings.............       12     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    4. Discount factors........       13     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
    5. Present value of tax           14     XXXX     XXXX  .......  .......  .......  .......  .......     XXXX
     savings...................
    6. Total present value of         15     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
     tax savings...............
C. Horizon Value...............       16     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX     XXXX  .......
----------------------------------------------------------------------------------------------------------------



PART 58--AMBIENT AIR QUALITY SURVEILLANCE--Table of Contents




                      Subpart A--General Provisions

Sec.
58.1  Definitions.
58.2  Purpose.
58.3  Applicability.

                     Subpart B--Monitoring Criteria

58.10  Quality assurance.
58.11  Monitoring methods.
58.12  Siting of instruments or instrument probes.
58.13  Operating schedule.
58.14  Special purpose monitors.

       Subpart C--State and Local Air Monitoring Stations (SLAMS)

58.20  Air quality surveillance: plan content.
58.21  SLAMS network design.
58.22  SLAMS methodology.
58.23  Monitoring network completion.
58.24  [Reserved]
58.25  System modification.
58.26  Annual State air monitoring report.
58.27  Compliance date for air quality data reporting.
58.28  SLAMS data submittal.

           Subpart D--National Air Monitoring Stations (NAMS)

58.30  NAMS network establishment.
58.31  NAMS network description.
58.32  NAMS approval.
58.33  NAMS methodology.
58.34  NAMS network completion.
58.35  NAMS data submittal.
58.36  System modification.

     Subpart E--Photochemical Assessment Monitoring Stations (PAMS)

58.40  PAMS network establishment.
58.41  PAMS network description.
58.42  PAMS approval.
58.43  PAMS methodology.
58.44  PAMS network completion.
58.45  PAMS data submittal.
58.46  System modification.

                 Subpart F--Air Quality Index Reporting

58.50  Index reporting.

                      Subpart G--Federal Monitoring

58.60  Federal monitoring.
58.61  Monitoring other pollutants.

Appendix A to Part 58--Quality Assurance Requirements for State and 
          Local Air Monitoring Stations (SLAMS)
Appendix B to Part 58--Quality Assurance Requirements for Prevention of 
          Significant Deterioration (PSD) Air Monitoring
Appendix C to Part 58--Ambient Air Quality Monitoring Methodology
Appendix D to Part 58--Network Design for State and Local Air Monitoring 
          Stations (SLAMS), National Air Monitoring Stations (NAMS), and 
          Photochemical Assessment Monitoring Stations (PAMS)
Appendix E to Part 58--Probe and Monitoring Path Siting Criteria for 
          Ambient Air Quality Monitoring
Appendix F to Part 58--Annual SLAMS Air Quality Information

[[Page 206]]

Appendix G to Part 58--Uniform Air Quality Index (AQI) and Daily 
          Reporting

    Authority: 42 U.S.C. 7410, 7601(a), 7613, and 7619.

    Source: 44 FR 27571, May 10, 1979, as amended at 59 FR 41628, Aug. 
12, 1994.



                      Subpart A--General Provisions



Sec. 58.1  Definitions.

    As used in this part, all terms not defined herein have the meaning 
given them in the Act:
    Act means the Clean Air Act as amended (42 U.S.C. 7401, et seq.).
    Administrator means the Administrator of the Environmental 
Protection Agency (EPA) or his or her authorized representative.
    Aerometric Information Retrieval System (AIRS)-Air Quality Subsystem 
(AQS) is EPA's computerized system for storing and reporting of 
information relating to ambient air quality data.
    Annual State air monitoring report is an annual report, prepared by 
control agencies and submitted to EPA for approval, that consists of an 
annual data summary report for all pollutants and a detailed report 
describing any proposed changes to their air quality surveillance 
network.
    CO means carbon monoxide.
    Community Monitoring Zone (CMZ) means an optional averaging area 
with established, well defined boundaries, such as county or census 
block, within a MPA that has relatively uniform concentrations of annual 
PM2.5 as defined by appendix D of this part. Two or more core 
SLAMS and other monitors within a CMZ that meet certain requirements as 
set forth in Appendix D of this part may be averaged for making 
comparisons to the annual PM2.5 NAAQS.
    Consolidated Metropolitan Statistical Area (CMSA) means the most 
recent area as designated by the U.S. Office of Management and Budget 
and population figures from the Bureau of the Census. The Department of 
Commerce provides that within metropolitan complexes of 1 million or 
more population, separate component areas are defined if specific 
criteria are met. Such areas are designated primary metropolitan 
statistical areas (PMSAs; and any area containing PMSAs is designated 
CMSA.
    Core PM2.5 SLAMS means community-oriented monitoring 
sites representative of community-wide exposures that are the basic 
component sites of the PM2.5 SLAMS regulatory network. Core 
PM2.5 SLAMS include community-oriented SLAMS monitors, and 
sites collocated at PAMS.
    Corrected concentration pertains to the result of an accuracy or 
precision assessment test of an open path analyzer in which a high-
concentration test or audit standard gas contained in a short test cell 
is inserted into the optical measurement beam of the instrument. When 
the pollutant concentration measured by the analyzer in such a test 
includes both the pollutant concentration in the test cell and the 
concentration in the atmosphere, the atmospheric pollutant concentration 
must be subtracted from the test measurement to obtain the corrected 
concentration test result. The corrected concentration is equal to the 
measured concentration minus the average of the atmospheric pollutant 
concentrations measured (without the test cell) immediately before and 
immediately after the test.
    Correlated acceptable continuous (CAC) PM analyzer means an optional 
fine particulate matter analyzer that can be used to supplement a 
PM2.5 reference or equivalent sampler, in accordance with the 
provisions of Sec. 58.13(f).
    Effective concentration pertains to testing an open path analyzer 
with a high-concentration calibration or audit standard gas contained in 
a short test cell inserted into the optical measurement beam of the 
instrument. Effective concentration is the equivalent ambient-level 
concentration that would produce the same spectral absorbance over the 
actual atmospheric monitoring path length as produced by the high-
concentration gas in the short test cell. Quantitatively, effective 
concentration is equal to the actual concentration of the gas standard 
in the test cell multiplied by the ratio of the path length of the test 
cell to the actual atmospheric monitoring path length.
    Equivalent method means a method of sampling and analyzing the 
ambient

[[Page 207]]

air for an air pollutant that has been designated as an equivalent 
method in accordance with part 53 of this chapter; it does not include a 
method for which an equivalent method designation has been canceled in 
accordance with Sec. 53.11 or Sec. 53.16 of this chapter.
    Indian Governing Body means the governing body of any tribe, band, 
or group of Indians subject to the jurisdiction of the United States and 
recognized by the United States as possessing power of self-government.
    Indian Reservation means any Federally recognized reservation 
established by treaty, agreement, executive order, or act of Congress.
    Local agency means any local government agency, other than the State 
agency, which is charged with the responsibility for carrying out a 
portion of the plan.
    Meteorological measurements means measurements of wind speed, wind 
direction, barometric pressure, temperature, relative humidity, and 
solar radiation.
    Metropolitan Statistical Area (MSA) as designated by the most recent 
decennial U.S. Census of Population Report.
    Monitor is a generic term for an instrument, sampler, analyzer, or 
other device that measures or assists in the measurement of atmospheric 
air pollutants and which is acceptable for use in ambient air 
surveillance under the provisions of appendix C to this part, including 
both point and open path analyzers that have been designated as either 
reference or equivalent methods under part 53 of this chapter and air 
samplers that are specified as part of a manual method that has been 
designated as a reference or equivalent method under part 53 of this 
chapter.
    Monitoring path for an open path analyzer is the actual path in 
space between two geographical locations over which the pollutant 
concentration is measured and averaged.
    Monitoring path length of an open path analyzer is the length of the 
monitoring path in the atmosphere over which the average pollutant 
concentration measurement (path-averaged concentration) is determined. 
See also, optical measurement path length.
    Monitoring Planning Area (MPA) means a contiguous geographic area 
with established, well defined boundaries, such as a metropolitan 
statistical area, county or State, having a common area that is used for 
planning monitoring locations for PM2.5. MPAs may cross State 
boundaries, such as the Philadelphia PA-NJ MSA, and be further 
subdivided into community monitoring zones. MPAs are generally oriented 
toward areas with populations greater than 200,000, but for convenience, 
those portions of a State that are not associated with MSAs can be 
considered as a single MPA. MPAs must be defined, where applicable, in a 
State PM monitoring network description.
    NAMS means National Air Monitoring Station(s). Collectively the NAMS 
are a subset of the SLAMS ambient air quality monitoring network.
    NO2 means nitrogen dioxide. NO means nitrogen oxide. 
NOX means oxides of nitrogen and is defined as the sum of the 
concentrations of NO2 and NO.
    O3 means ozone.
    Open path analyzer is an automated analytical method that measures 
the average atmospheric pollutant concentration in situ along one or 
more monitoring paths having a monitoring path length of 5 meters or 
more and that has been designated as a reference or equivalent method 
under the provisions of part 53 of this chapter.
    Optical measurement path length is the actual length of the optical 
beam over which measurement of the pollutant is determined. The path-
integrated pollutant concentration measured by the analyzer is divided 
by the optical measurement path length to determine the path-averaged 
concentration. Generally, the optical measurement path length is:
    (1) Equal to the monitoring path length for a (bistatic) system 
having a transmitter and a receiver at opposite ends of the monitoring 
path;
    (2) Equal to twice the monitoring path length for a (monostatic) 
system having a transmitter and receiver at one end of the monitoring 
path and a mirror or retroreflector at the other end; or
    (3) Equal to some multiple of the monitoring path length for more 
complex systems having multiple passes of

[[Page 208]]

the measurement beam through the monitoring path.
    PAMS means Photochemical Assessment Monitoring Stations.
    Particulate matter monitoring network description, required by 
Sec. 58.20(f), means a detailed plan, prepared by control agencies and 
submitted to EPA for approval, that describes their PM2.5 and 
PM10 air quality surveillance network.
    Pb means lead.
    Plan means an implementation plan, approved or promulgated pursuant 
to section 110 of the Clean Air Act.
    PM2.5 means particulate matter with an aerodynamic 
diameter less than or equal to a nominal 2.5 micrometers as measured by 
a reference method based on 40 CFR part 50, Appendix L, and designated 
in accordance with part 53 of this chapter or by an equivalent method 
designated in accordance with part 53 of this chapter.
    PM10 means particulate matter with an aerodynamic 
diameter less than or equal to a nominal 10 micrometers as measured by a 
reference method based on appendix J of part 50 of this chapter and 
designated in accordance with part 53 of this chapter or by an 
equivalent method designated in accordance with part 53 of this chapter.
    Point analyzer is an automated analytical method that measures 
pollutant concentration in an ambient air sample extracted from the 
atmosphere at a specific inlet probe point and that has been designated 
as a reference or equivalent method in accordance with part 53 of this 
chapter.
    Population-oriented monitoring (or sites) applies to residential 
areas, commercial areas, recreational areas, industrial areas, and other 
areas where a substantial number of people may spend a significant 
fraction of their day.
    Primary Metropolitan Statistical Area (PMSA) is a separate component 
of a consolidated metropolitan statistical area. For the purposes of 
this part, PMSA is used interchangeably with MSA.
    Probe is the actual inlet where an air sample is extracted from the 
atmosphere for delivery to a sampler or point analyzer for pollutant 
analysis.
    PSD station means any station operated for the purpose of 
establishing the effect on air quality of the emissions from a proposed 
source for purposes of prevention of significant deterioration as 
required by Sec. 51.24(n) of part 51 of this chapter.
    Reference method means a method of sampling and analyzing the 
ambient air for an air pollutant that will be specified as a reference 
method in an appendix to part 50 of this chapter, or a method that has 
been designated as a reference method in accordance with this part; it 
does not include a method for which a reference method designation has 
been canceled in accordance with Sec. 53.11 or Sec. 53.16 of this 
chapter.
    Regional Administrator means the Administrator of one of the ten EPA 
Regional Offices or his or her authorized representative.
    SAROAD site identification form is one of the several forms in the 
SAROAD system. It is the form which provides a complete description of 
the site (and its surroundings) of an ambient air quality monitoring 
station.
    SLAMS means State or Local Air Monitoring Station(s). The SLAMS make 
up the ambient air quality monitoring network which is required by 
Sec. 58.20 to be provided for in the State's implementation plan. This 
definition places no restrictions on the use of the physical structure 
or facility housing the SLAMS. Any combination of SLAMS and any other 
monitors (Special Purpose, NAMS, PSD) may occupy the same facility or 
structure without affecting the respective definitions of those 
monitoring station.
    SO2 means sulfur dioxide.
    Special Purpose Monitor (SPM) is a generic term used for all 
monitors other than SLAMS, NAMS, PAMS, and PSD monitors included in an 
agency's monitoring network for monitors used in a special study whose 
data are officially reported to EPA.
    State agency means the air pollution control agency primarily 
responsible for development and implementation of a plan under the Act.
    Storage and Retrieval of Aerometric Data (SAROAD) system is a 
computerized system which stores and reports information relating to 
ambient air quality. The SAROAD system has been replaced with the AIRS-
AQS system; however, the SAROAD data reporting

[[Page 209]]

format continues to be used by some States and local air pollution 
agencies as an interface to AIRS on an interim basis.
    Traceable means that a local standard has been compared and 
certified, either directly or via not more than one intermediate 
standard, to a National Institute of Standards and Technology (NIST)-
certified primary standard such as a NIST-Traceable Reference Material 
(NTRM) or a NIST-certified Gas Manufacturer's Internal Standard (GMIS).
    TSP (total suspended particulates) means particulate matter as 
measured by the method described in appendix B of part 50 of this 
chapter,
    Urban area population means the population defined in the most 
recent decennial U.S. Census of Population Report.
    VOC means volatile organic compounds.

[44 FR 27571, May 10, 1979, as amended at 48 FR 2529, Jan. 20, 1983; 51 
FR 9586, Mar. 19, 1986; 52 FR 24739, July 1, 1987; 58 FR 8467, Feb. 12, 
1993; 59 FR 41628, 41629, Aug. 12, 1994; 60 FR 52319, Oct. 6, 1995; 62 
FR 38830, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 58.2  Purpose.

    (a) This part contains criteria and requirements for ambient air 
quality monitoring and requirements for reporting ambient air quality 
data and information. The monitoring criteria pertain to the following 
areas:
    (1) Quality assurance procedures for monitor operation and data 
handling.
    (2) Methodology used in monitoring stations.
    (3) Operating schedule.
    (4) Siting parameters for instruments or instrument probes.
    (b) The requirements pertaining to provisions for an air quality 
surveillance system in the State Implementation Plan are contained in 
this part.
    (c) This part also acts to establish a national ambient air quality 
monitoring network for the purpose of providing timely air quality data 
upon which to base national assessments and policy decisions. This 
network will be operated by the States and will consist of certain 
selected stations from the States' SLAMS networks. These selected 
stations will remain as SLAMS and will continue to meet any applicable 
requirements on SLAMS. The stations, however, will also be designated as 
National Air Monitoring Stations (NAMS) and will be subject to 
additional data reporting and monitoring methodology requirements as 
contained in subpart D of this part.
    (d) This section also acts to establish a Photochemical Assessment 
Monitoring Stations (PAMS) network as a subset of the State's SLAMS 
network for the purpose of enhanced monitoring in O3 
nonattainment areas listed as serious, severe, or extreme. The PAMS 
network will be subject to the data reporting and monitoring methodology 
requirements as contained in subpart E of this part.
    (e) Requirements for the daily reporting of an index of ambient air 
quality, to insure that the population of major urban areas are informed 
daily of local air quality conditions, are also included in this part.

[44 FR 27571, May 10, 1979, as amended at 58 FR 8467, Feb. 12, 1993]



Sec. 58.3  Applicability.

    This part applies to:
    (a) State air pollution control agencies.
    (b) Any local air pollution control agency or Indian governing body 
to which the State has delegated authority to operate a portion of the 
State's SLAMS network.
    (c) Owners or operators of proposed sources.



                     Subpart B--Monitoring Criteria



Sec. 58.10  Quality assurance.

    (a) Appendix A to this part contains quality assurance criteria to 
be followed when operating the SLAMS network.
    (b) Appendix B to this part contains the quality assurance criteria 
to be followed by the owner or operator of a proposed source when 
operating a PSD station.



Sec. 58.11  Monitoring methods.

    Appendix C to this part contains the criteria to be followed in 
determining acceptable monitoring methods or instruments for use in 
SLAMS.

[[Page 210]]



Sec. 58.12  Siting of instruments or instrument probes.

    Appendix E to this part contains criteria for siting instruments or 
instrument probes for SLAMS.



Sec. 58.13  Operating schedule.

    Ambient air quality data collected at any SLAMS must be collected as 
follows:
    (a) For continuous analyzers--consecutive hourly averages except 
during:
    (1) Periods of routine maintenance,
    (2) Periods of instrument calibration, or
    (3) Periods or seasons exempted by the Regional Administrator.
    (b) For manual methods (excluding PM10 samplers, 
PM2.5 samplers, and PAMS VOC samplers), at least one 24-hour 
sample must be obtained every sixth day except during periods or seasons 
exempted by the Regional Administrator.
    (c) For PAMS VOC samplers, samples must be obtained as specified in 
sections 4.3 and 4.4 of appendix D to this part. Area-specific PAMS 
operating schedules must be included as part of the network description 
required by Sec. 58.40 and must be approved by the Administrator.
    (d) For PM10 samplers--a 24-hour sample must be taken a 
minimum of every third day, except during periods or seasons exempted by 
the Regional Administrator.
    (e) For PM2.5 samplers, a 24-hour sample is required 
everyday for certain core SLAMS, including certain PAMS, as described in 
section 2.8.1.3 of appendix D of this part, except during seasons or 
periods of low PM2.5 as otherwise exempted by the Regional 
Administrator. A waiver of the everyday sampling schedule for SLAMS may 
be granted by the Regional Administrator or designee, and for NAMS by 
the Administrator or designee, for 1 calendar year from the time a 
PM2.5 sequential sampler (FRM or Class I equivalent) has been 
approved by EPA. A 24-hour sample must be taken a minimum of every third 
day for all other SLAMS, including NAMS, as described in section 2.8.1.3 
of appendix D of this part, except when exempted by the Regional 
Administrator in accordance with forthcoming EPA guidance. During 
periods for which exemptions to every third day or every day sampling 
are allowed for core PM2.5 SLAMS, a minimum frequency of one 
in 6-day sampling is still required. However, alternative sampling 
frequencies are allowed for SLAMS sites that are principally intended 
for comparisons to the 24-hour NAAQS. Such modifications must be 
approved by the Regional Administrator.
    (f) Alternatives to everyday sampling at sites with correlated 
acceptable continuous analyzers. (1) Certain PM2.5 core SLAMS 
sites located in monitoring planning areas (as described in section 2.8 
of appendix D of this part) are required to sample every day with a 
reference or equivalent method operating in accordance with part 53 of 
this chapter and section 2 of appendix C of this part. However, in 
accordance with the monitoring priority as defined in paragraph (f)(2) 
of this section, established by the control agency and approved by EPA, 
a core SLAMS monitor may operate with a reference or equivalent method 
on a 1 in 3-day schedule and produce data that may be compared to the 
NAAQS, provided that it is collocated with an acceptable continuous fine 
particulate PM analyzer that is correlated with the reference or 
equivalent method. If the alternative sampling schedule is selected by 
the control agency and approved by EPA, the alternative schedule shall 
be implemented on January 1 of the year in which everyday sampling is 
required. The selection of correlated acceptable continuous PM analyzers 
and procedures for correlation with the intermittent reference or 
equivalent method shall be in accordance with procedures approved by the 
Regional Administrator. Unless the continuous fine particulate analyzer 
satisfies the requirements of section 2 of appendix C of this part, 
however, the data derived from the correlated acceptable continuous 
monitor are not eligible for direct comparisons to the NAAQS in 
accordance with part 50 of this chapter.
    (2) A Metropolitan Statistical Area (MSA) (or primary metropolitan 
statistical area) with greater than 1 million population and high 
concentrations of PM2.5 (greater than or equal to 80 percent 
of the NAAQS) shall be a Priority

[[Page 211]]

1 PM monitoring area. Other monitoring planning areas may be designated 
as Priority 2 PM monitoring areas.
    (3) Core SLAMS having a correlated acceptable continuous analyzer 
collocated with a reference or equivalent method in a Priority 1 PM 
monitoring area may operate on the 1 in 3 sampling frequency only after 
reference or equivalent data are collected for at least 2 complete 
years.
    (4) In all monitoring situations, with a correlated acceptable 
continuous alternative, FRM samplers or filter-based equivalent 
analyzers should preferably accompany the correlated acceptable 
continuous monitor.

[44 FR 27571, May 10, 1979, as amended at 52 FR 24739, July 1, 1987; 58 
FR 8467, Feb. 12, 1993; 62 FR 38831, July 18, 1997; 63 FR 7714, Feb. 17, 
1998]



Sec. 58.14  Special purpose monitors.

    (a) Except as specified in paragraph (b) of this section, any 
ambient air quality monitoring station other than a SLAMS or PSD station 
from which the State intends to use the data as part of a demonstration 
of attainment or nonattainment or in computing a design value for 
control purposes of the National Ambient Air Quality Standards (NAAQS) 
must meet the requirements for SLAMS as described in Sec. 58.22 and, 
after January 1, 1983, must also meet the requirements for SLAMS 
described in Sec. 58.13 and Appendices A and E of this part.
    (b) Based on the need, in transitioning to a PM2.5 
standard that newly addresses the ambient impacts of fine particles, to 
encourage a sufficiently extensive geographical deployment of 
PM2.5 monitors and thus hasten the development of an adequate 
PM2.5 ambient air quality monitoring infrastructure, 
PM2.5 NAAQS violation determinations shall not be exclusively 
made based on data produced at a population-oriented SPM site during the 
first 2 complete calendar years of its operation. However, a notice of 
NAAQS violations resulting from population-oriented SPMs shall be 
reported to EPA in the State's annual monitoring report and be 
considered by the State in the design of its overall SLAMS network; 
these population-oriented SPMs should be considered to become a 
permanent SLAMS during the annual network review in accordance with 
Sec. 58.25.
    (c) Any ambient air quality monitoring station other than a SLAMS or 
PSD station from which the State intends to use the data for SIP-related 
functions other than as described in paragraph (a) of this section is 
not necessarily required to comply with the requirements for a SLAMS 
station under paragraph (a) of this section but must be operated in 
accordance with a monitoring schedule, methodology, quality assurance 
procedures, and probe or instrument-siting specifications approved by 
the Regional Administrator.

[62 FR 38832, July 18, 1997]



       Subpart C--State and Local Air Monitoring Stations (SLAMS)



Sec. 58.20  Air quality surveillance: plan content.

    By January 1, 1980, the State shall adopt and submit to the 
Administrator a revision to the plan which will:
    (a) Provide for the establishment of an air quality surveillance 
system that consists of a network of monitoring stations designated as 
State and Local Air Monitoring Stations (SLAMS) which measure ambient 
concentrations of those pollutants for which standards have been 
established in part 50 of this chapter. SLAMS (including NAMS) 
designated as PAMS will also obtain ambient concentrations of speciated 
VOC and NOX, and meteorological measurements. PAMS may 
therefore be located at existing SLAMS or NAMS sites when appropriate.
    (b) Provide for meeting the requirements of appendices A, C, D, and 
E to this part.
    (c) Provide for the operation of at least one SLAMS per criteria 
pollutant except Pb during any stage of an air pollution episode as 
defined in the plan.
    (d) Provide for the review of the air quality surveillance system on 
an annual basis to determine if the system meets the monitoring 
objectives defined in appendix D of this part. Such

[[Page 212]]

review must identify needed modifications to the network such as 
termination or relocation of unnecessary stations or establishment of 
new stations that are necessary. For PM2.5, the review must 
identify needed changes to core SLAMS, monitoring planning areas, the 
chosen community monitoring approach including optional community 
monitoring zones, SLAMS, or SPMs.
    (e) Provide for having a SLAMS network description available for 
public inspection and submission to the Administrator upon request. The 
network description must be available at the time of plan revision 
submittal and must contain the following information for each SLAMS:
    (1) The AIRS site identification form for existing stations.
    (2) The proposed location for scheduled stations.
    (3) The sampling and analysis method.
    (4) The operating schedule.
    (5) The monitoring objective and spatial scale of representativeness 
as defined in appendix D to this part.
    (6) A schedule for:
    (i) Locating, placing into operation, and making available the AIRS 
site identification form for each SLAMS which is not located and 
operating at the time of plan revision submittal,
    (ii) Implementing quality assurance procedures of appendix A to this 
part for each SLAMS for which such procedures are not implemented at the 
time of plan revision submittal, and
    (iii) Resiting each SLAMS which does not meet the requirements of 
appendix E to this part at the time of plan revision submittal.
    (f) Provide for having a PM monitoring network description available 
for public inspection which must provide for monitoring planning areas, 
and the community monitoring approach involving core monitors and 
optional community monitoring zones for PM2.5. The PM 
monitoring network description for PM10 and PM2.5 
must be submitted to the Regional Administrator for approval by July 1, 
1998, and must contain the following information for each PM SLAMS and 
PM2.5 SPM:
    (1) The AIRS site identification form for existing stations.
    (2) The proposed location for scheduled stations.
    (3) The sampling and analysis method.
    (4) The operating schedule.
    (5) The monitoring objective, spatial scale of representativeness, 
and additionally for PM2.5, the monitoring planning area, 
optional community monitoring zone, and the site code designation to 
identify which site will be identified as core SLAMS; and SLAMS or 
population-oriented SPMs, if any, that are microscale or middle scale in 
their representativeness as defined in appendix D of this part.
    (6) A schedule for:
    (i) Locating, placing into operation, and making available the AIRS 
site identification form for each SLAMS which is not located and 
operating at the time of plan revision submittal.
    (ii) Implementing quality assurance procedures of appendix A of this 
part for each SLAMS for which such procedures are not implemented at the 
time of plan revision submittal.
    (iii) Resiting each SLAMS which does not meet the requirements of 
appendix E of this part at the time of plan revision submittal.
    (g) Provide for having a list of all PM2.5 monitoring 
locations including SLAMS, NAMS, PAMS and population-oriented SPMs, that 
are included in the State's PM monitoring network description and are 
intended for comparison to the NAAQS, available for public inspection.
    (h) Within 9 months after;
    (1) February 12, 1993; or
    (2) Date of redesignation or reclassification of any existing 
O3 nonattainment area to serious, severe, or extreme; or
    (3) The designation of a new area and classification to serious, 
severe, or extreme, affected States shall adopt and submit a plan 
revision to the Administrator.
    (i) The plan revision will provide for the establishment and 
maintenance of PAMS. Each PAMS site will provide for the monitoring of 
ambient concentrations of criteria pollutants (O3, 
NO2), and non-criteria pollutants (NOX, NO, and 
speciated VOC) as stipulated in section 4.2 of appendix D, and 
meteorological measurements. The PAMS

[[Page 213]]

network is part of the SLAMS network, and the plan provisions in 
paragraphs (a) through (h) of this section will apply to the revision. 
Since NAMS sites are also part of the SLAMS network, some PAMS sites may 
be coincident with NAMS sites and may be designated as both PAMS and 
NAMS.

[44 FR 27571, May 10, 1979, as amended at 46 FR 44164, Sept. 3, 1981; 52 
FR 24740, July 1, 1987; 58 FR 8467, Feb. 12, 1993; 59 FR 41628, Aug. 12, 
1994; 62 FR 38832, July 18, 1997]



Sec. 58.21  SLAMS network design.

    The design criteria for SLAMS contained in appendix D to this part 
must be used in designing the SLAMS network. The State shall consult 
with the Regional Administrator during the network design process. The 
final network design will be subject to the approval of the Regional 
Administrator.



Sec. 58.22  SLAMS methodology.

    Each SLAMS must meet the monitoring methodology requirements of 
appendix C to this part at the time the station is put into operation as 
a SLAMS.



Sec. 58.23  Monitoring network completion.

    With the exception of the PM10 monitoring networks that 
shall be in place by March 16, 1998 and with the exception of the 
PM2.5 monitoring networks as described in paragraph (c) of 
this section:
    (a) Each station in the SLAMS network must be in operation, be sited 
in accordance with the criteria in appendix E to this part, and be 
located as described on the station's AIRS site identification form, and
    (b) The quality assurance requirements of appendix A to this part 
must be fully implemented.
    (c) Each PM2.5 station in the SLAMS network must be in 
operation in accordance with the minimum requirements of appendix D of 
this part, be sited in accordance with the criteria in appendix E of 
this part, and be located as described on the station's AIRS site 
identification form, according to the following schedule:
    (1) Within 1 year after September 16, 1997, at least one required 
core PM2.5 SLAMS site in each MSA with population greater 
than 500,000, plus one site in each PAMS area, (plus at least two 
additional SLAMS sites per State) must be in operation.
    (2) Within 2 years after September 16, 1997, all other required 
SLAMS, including all required core SLAMS, required regional background 
and regional transport SLAMS, continuous PM monitors in areas with 
greater than 1 million population, and all additional required 
PM2.5 SLAMS must be in operation.
    (3) Within 3 years after September 16, 1997, all additional sites 
(e.g., sites classified as SLAMS/SPM to complete the mature network) 
must be in operation.

[44 FR 27571, May 10, 1979, as amended at 52 FR 24740, July 1, 1987; 59 
FR 41628, Aug. 12, 1994; 62 FR 38832, July 18, 1997]



Sec. 58.24  [Reserved]



Sec. 58.25  System modification.

    The State shall annually develop and implement a schedule to modify 
the ambient air quality monitoring network to eliminate any unnecessary 
stations or to correct any inadequacies indicated by the result of the 
annual review required by Sec. 58.20(d). The State shall consult with 
the Regional Administrator during the development of the schedule to 
modify the monitoring program. The final schedule and modifications will 
be subject to the approval of the Regional Administrator. Nothing in 
this section will preclude the State, with the approval of the Regional 
Administrator, from making modifications to the SLAMS network for 
reasons other than those resulting from the annual review.



Sec. 58.26  Annual State air monitoring report.

    (a) The State shall submit to the Administrator (through the 
appropriate Regional Office) an annual summary report of all the ambient 
air quality monitoring data from all monitoring stations designated 
State and Local Air Monitoring Stations (SLAMS). The annual report must 
be submitted by July 1 of each year for data collected from January 1 to 
December 31 of the previous year.

[[Page 214]]

    (b) The SLAMS annual data summary report must contain:
    (1) The information specified in appendix F,
    (2) The location, date, pollution source, and duration of each 
incident of air pollution during which ambient levels of a pollutant 
reached or exceeded the level specified by Sec. 51.16(a) of this chapter 
as a level which could cause significant harm to the health of persons.
    (c) The senior air pollution control officer in the State or his 
designee shall certify that the annual summary report is accurate to the 
best of his knowledge.
    (d) For PM monitoring and data--
    (1) The State shall submit a summary to the appropriate Regional 
Office (for SLAMS) or Administrator (through the Regional Office) (for 
NAMS) that details proposed changes to the PM Monitoring Network 
Description and to be in accordance with the annual network review 
requirements in Sec. 58.25. This shall discuss the existing PM networks, 
including modifications to the number, size or boundaries of monitoring 
planning areas and optional community monitoring zones; number and 
location of PM10 and PM2.5 SLAMS; number and 
location of core PM2.5 SLAMS; alternative sampling 
frequencies proposed for PM2.5 SLAMS (including core 
PM2.5 SLAMS and PM2.5 NAMS), core PM2.5 
SLAMS to be designated PM2.5 NAMS; and PM10 and 
PM2.5 SLAMS to be designated PM10 and 
PM2.5 NAMS respectively.
    (2) The State shall submit an annual summary to the appropriate 
Regional Office of all the ambient air quality monitoring PM data from 
all special purpose monitors that are described in the State's PM 
monitoring network description and are intended for SIP purposes. These 
include those population-oriented SPMs that are eligible for comparison 
to the PM2.5 NAAQS. The State shall certify the data in 
accordance with paragraph (c) of this section.
    (e) The Annual State Air Monitoring Report shall be submitted to the 
Regional Administrator by July 1 or by an alternative annual date to be 
negotiated between the State and Regional Administrator. The Region 
shall provide review and approval/disapproval within 60 days. After 3 
years following September 16, 1997, the schedule for submitting the 
required annual revised PM2.5 monitoring network description 
may be altered based on a new schedule determined by the Regional 
Administrator. States may submit an alternative PM monitoring network 
description in which it requests exemptions from specific required 
elements of the network design (e.g., required number of core sites, 
other SLAMS, sampling frequency, etc.). After 3 years following 
September 16, 1997 or once a monitoring area has been determined to 
violate the NAAQS, then changes to an MPA monitoring network affecting 
the violating locations shall require public review and notification.

[44 FR 27571, May 10, 1979, as amended at 51 FR 9586, Mar. 19, 1986; 62 
FR 38833, July 18, 1997; 63 FR 7714, Feb. 17, 1998]



Sec. 58.27  Compliance date for air quality data reporting.

    The annual air quality data reporting requirements of Sec. 58.26 
apply to data collected after December 31, 1980. Data collected before 
January 1, 1981, must be reported under the reporting procedures in 
effect before the effective date of subpart C of this part.



Sec. 58.28  SLAMS data submittal.

    The State shall submit all of the SLAMS data according to the same 
data submittal requirements as defined for NAMS in section 58.35. The 
State shall also submit any portion or all of the SLAMS data to the 
appropriate Regional Administrator upon request.

[59 FR 41628, Aug. 12, 1994]



           Subpart D--National Air Monitoring Stations (NAMS)



Sec. 58.30  NAMS network establishment.

    (a) By January 1, 1980, with the exception of PM10 and 
PM2.5 samplers, which shall be by July 1, 1998, the State 
shall:
    (1) Establish, through the operation of stations or through a 
schedule for locating and placing stations into operation, that portion 
of a National Ambient Air Quality Monitoring Network which is in that 
State, and

[[Page 215]]

    (2) Submit to the Administrator (through the appropriate Regional 
Office) a description of that State's portion of the network.
    (b) Hereinafter, the portion of the national network in any State 
will be referred to as the NAMS network.
    (c) The stations in the NAMS network must be stations from the SLAMS 
network required by Sec. 58.20.
    (d) The requirements of appendix D to this part must be met when 
designing the NAMS network. The process of designing the NAMS network 
must be part of the process of designing the SLAMS network as explained 
in appendix D to this part.

[44 FR 27571, May 10, 1979, as amended at 46 FR 44164, Sept. 3, 1981; 52 
FR 24740, July 1, 1987; 62 FR 38833, July 18, 1997]



Sec. 58.31  NAMS network description.

    The NAMS network description required by Sec. 58.30 must contain the 
following for all stations, existing or scheduled:
    (a) The AIRS site identification number for existing stations.
    (b) The proposed location for scheduled stations.
    (c) Identity of the urban area represented.
    (d) The sampling and analysis method.
    (e) The operating schedule.
    (f) The monitoring objective, spatial scale of representativeness, 
and for PM2.5, the monitoring planning area and community 
monitoring zones, as defined in appendix D of this part.
    (g) A schedule for:
    (1) Locating, placing into operation, and submitting the AIRS site 
identification form for each NAMS which is not located and operating at 
the time of network description submittal,
    (2) Implementing quality assurance procedures of appendix A to this 
part for each NAMS for which such procedures are not implemented at the 
time of network description submittal, and
    (3) Resiting each NAMS which does not meet the requirements of 
appendix E to this part at the time of network description submittal.

[44 FR 27571, May 10, 1979, as amended at 59 FR 41628, Aug. 12, 1994; 62 
FR 38833, July 18, 1997; 63 FR 7714, Feb. 17, 1998; 64 FR 3034, Jan. 20, 
1999]]



Sec. 58.32  NAMS approval.

    The NAMS network required by Sec. 58.30 is subject to the approval 
of the Administrator. Such approval will be contingent upon completion 
of the network description as outlined in Sec. 58.31 and upon 
conformance to the NAMS design criteria contained in appendix D to this 
part.



Sec. 58.33  NAMS methodology.

    Each NAMS must meet the monitoring methodology requirements of 
appendix C to this part applicable to NAMS at the time the station is 
put into operation as a NAMS.



Sec. 58.34  NAMS network completion.

    With the exception of PM10 samplers, which shall be by 1 
year after September 16, 1997, and PM2.5, which shall be by 3 
years after September 16, 1997:
    (a) Each NAMS must be in operation, be sited in accordance with the 
criteria in Appendix E to this part, and be located as described in the 
AIRS database; and
    (b) The quality assurance requirements of appendix A to this part 
must be fully implemented for all NAMS.

[44 FR 27571, May 10, 1979, as amended at 46 FR 44164, Sept. 3, 1981; 52 
FR 24740, July 1, 1987; 59 FR 41628, Aug. 12, 1994; 62 FR 38833, July 
18, 1997; 64 FR 3034, Jan. 20, 1999]



Sec. 58.35  NAMS data submittal.

    (a) The requirements of this section apply to those stations 
designated as both SLAMS and NAMS by the network description required by 
Secs. 58.20 and 58.30.
    (b) The State shall report to the Administrator all ambient air 
quality data for SO2, CO, O3, NO2, Pb, 
PM10, and PM2.5, and information specified by the 
AIRS Users Guide (Volume II, Air Quality Data Coding, and Volume III, 
Air Quality Data Storage) to be coded into the AIRS-AQS format. Such air 
quality data and information must be submitted directly to the AIRS-AQS 
via either electronic transmission or magnetic tape, in the format of 
the AIRS-AQS, and in accordance with the quarterly schedule described in 
paragraph (c) of this section.
    (c) The specific quarterly reporting periods are January 1-March 31, 
April

[[Page 216]]

1-June 30, July 1-September 30, and October 1-December 31. The data and 
information reported for each reporting period must:
    (1) Contain all data and information gathered during the reporting 
period.
    (2) Be received in the AIRS-AQS within 90 days after the end of the 
quarterly reporting period. For example, the data for the reporting 
period January 1-March 31, 1994 are due on or before June 30, 1994.
    (d) Air quality data submitted for each reporting period must be 
edited, validated, and entered into the AIRS-AQS for updating (within 
the time limits specified in paragraph (c) of this section) pursuant to 
appropriate AIRS-AQS procedures. The procedures for editing and 
validating data are described in the AIRS Users Guide, Volume II Air 
Quality Data Coding.
    (e) This section does not permit a State to exempt those SLAMS which 
are also designated as NAMS from all or any of the reporting 
requirements applicable to SLAMS in Sec. 58.26.

[44 FR 27571, May 10, 1979, as amended at 46 FR 44164, Sept. 3, 1981; 51 
FR 9586, Mar. 19, 1986; 52 FR 24740, July 1, 1987; 59 FR 41628, Aug. 12, 
1994; 62 FR 38833, July 18, 1997]



Sec. 58.36  System modification.

    During the annual SLAMS Network Review specified in Sec. 58.20, any 
changes to the NAMS network identified by the EPA and/or proposed by the 
State and agreed to by the EPA will be evaluated. These modifications 
should address changes invoked by a new census and changes to the 
network due to changing air quality levels, emission patterns, etc. The 
State shall be given one year (until the next annual evaluation) to 
implement the appropriate changes to the NAMS network.

[51 FR 9586, Mar. 19, 1986]



     Subpart E--Photochemical Assessment Monitoring Stations (PAMS)

    Source: 58 FR 8468, Feb. 12, 1993, unless otherwise noted.



Sec. 58.40  PAMS network establishment.

    (a) In addition to the plan revision, the State shall submit a 
photochemical assessment monitoring network description including a 
schedule for implementation to the Administrator within 6 months after;
    (1) February 12, 1993; or
    (2) Date of redesignation or reclassification of any existing 
O3 nonattainment area to serious, severe, or extreme; or
    (3) The designation of a new area and classification to serious, 
severe, or extreme O3 nonattainment.

The network description will apply to all serious, severe, and extreme 
O3 nonattainment areas within the State. Some O3 
nonattainment areas may extend beyond State or Regional boundaries. In 
instances where PAMS network design criteria as defined in appendix D to 
this part require monitoring stations located in different States and/or 
Regions, the network description and implementation schedule should be 
submitted jointly by the States involved. When appropriate, such 
cooperation and joint network design submittals are preferred. Network 
descriptions shall be submitted through the appropriate Regional 
Office(s). Alternative networks, including different monitoring 
schedules, periods, or methods, may be submitted, but they must include 
a demonstration that they satisfy the monitoring data uses and fulfill 
the PAMS monitoring objectives described in sections 4.1 and 4.2 of 
appendix D to this part.
    (b) For purposes of plan development and approval, the stations 
established or designated as PAMS must be stations from the SLAMS 
network or become part of the SLAMS network required by Sec. 58.20.
    (c) The requirements of appendix D to this part applicable to PAMS 
must be met when designing the PAMS network.



Sec. 58.41  PAMS network description.

    The PAMS network description required by Sec. 58.40 must contain the 
following:
    (a) Identification of the monitoring area represented.
    (b) The AIRS site identification number for existing stations.
    (c) The proposed location for scheduled stations.

[[Page 217]]

    (d) Identification of the site type and location within the PAMS 
network design for each station as defined in appendix D to this part 
except that during any year, a State may choose to submit detailed 
information for the site scheduled to begin operation during that year's 
PAMS monitoring season, and defer submittal of detailed information on 
the remaining sites until succeeding years. Such deferred network design 
phases should be submitted to EPA for approval no later than January 1 
of the first year of scheduled operation. As a minimum, general 
information on each deferred site should be submitted each year until 
final approval of the complete network is obtained from the 
Administrator.
    (e) The sampling and analysis method for each of the measurements.
    (f) The operating schedule for each of the measurements.
    (g) An O3 event forecasting scheme, if appropriate.
    (h) A schedule for implementation. This schedule should include the 
following:
    (1) A timetable for locating and submitting the AIRS site 
identification form for each scheduled PAMS that is not located at the 
time of submittal of the network description;
    (2) A timetable for phasing-in operation of the required number and 
type of sites as defined in appendix D to this part; and
    (3) A schedule for implementing the quality assurance procedures of 
appendix A to this part for each PAMS.

[58 FR 8468, Feb. 12, 1993, as amended at 64 FR 3035, Jan. 20, 1999]



Sec. 58.42  PAMS approval.

    The PAMS network required by Sec. 58.40 is subject to the approval 
of the Administrator. Such approval will be contingent upon completion 
of each phase of the network description as outlined in Sec. 58.41 and 
upon conformance to the PAMS network design criteria contained in 
appendix D to this part.



Sec. 58.43  PAMS methodology.

    PAMS monitors must meet the monitoring methodology requirements of 
appendix C to this part applicable to PAMS.



Sec. 58.44  PAMS network completion.

    (a) The complete, operational PAMS network will be phased in as 
described in appendix D to this part over a period of 5 years after;
    (1) February 12, 1993; or
    (2) Date of redesignation or reclassification of any existing 
O3 nonattainment area to serious, severe, or extreme; or
    (3) The designation of a new area and classification to serious, 
severe, or extreme O3 nonattainment.
    (b) The quality assurance criteria of appendix A to this part must 
be implemented for all PAMS.



Sec. 58.45  PAMS data submittal.

    (a) The requirements of this section apply only to those stations 
designated as PAMS by the network description required by Sec. 58.40.
    (b) All data shall be submitted to the Administrator in accordance 
with the format, reporting periods, reporting deadlines, and other 
requirements as specified for NAMS in Sec. 58.35.
    (c) The State shall report NO and NOX data consistent 
with the requirements of Sec. 58.35 for criteria pollutants.
    (d) The State shall report VOC data and meteorological data within 6 
months following the end of each quarterly reporting period.



Sec. 58.46  System modification.

    (a) Any proposed changes to the PAMS network description will be 
evaluated during the annual SLAMS Network Review specified in 
Sec. 58.20. Changes proposed by the State must be approved by the 
Administrator. The State will be allowed 1 year (until the next annual 
evaluation) to implement the appropriate changes to the PAMS network.
    (b) PAMS network requirements are mandatory only for serious, 
severe, and extreme O3 nonattainment areas. When any such 
area is redesignated to attainment, the State may revise its PAMS 
monitoring program subject to approval by the Administrator.

[[Page 218]]



                 Subpart F--Air Quality Index Reporting



Sec. 58.50  Index reporting.

    (a) The State shall report to the general public through prominent 
notice an air quality index in accordance with the requirements of 
appendix G to this part.
    (b) Reporting is required by all Metropolitan Statistical Areas with 
a population exceeding 350,000.
    (c) The population of a Metropolitan Statistical Area for purposes 
of index reporting is the most recent decennial U.S. census population.

[64 FR 42547, Aug. 4, 1999]



                      Subpart G--Federal Monitoring

    Source: 44 FR 27571, May 10, 1979. Redesignated at 58 FR 8467, Feb. 
12, 1993.



Sec. 58.60  Federal monitoring.

    The Administrator may locate and operate an ambient air monitoring 
station if the State fails to locate, or schedule to be located, during 
the initial network design process or as a result of the annual review 
required by Sec. 58.20(d):
    (a) A SLAMS at a site which is necessary in the judgment of the 
Regional Administrator to meet the objectives defined in appendix D to 
this part, or
    (b) A NAMS at a site which is necessary in the judgment of the 
Administrator for meeting EPA national data needs.



Sec. 58.61  Monitoring other pollutants.

    The Administrator may promulgate criteria similar to that referenced 
in subpart B of this part for monitoring a pollutant for which a 
National Ambient Air Quality Standard does not exist. Such an action 
would be taken whenever the Administrator determines that a nationwide 
monitoring program is necessary to monitor such a pollutant.

  Appendix A to Part 58--Quality Assurance Requirements for State and 
                  Local Air Monitoring Stations (SLAMS)

1. General Information.
    1.1 This appendix specifies the minimum quality assurance/quality 
control (QA/QC) requirements applicable to SLAMS air monitoring data 
submitted to EPA. State and local agencies are encouraged to develop and 
maintain quality assurance programs more extensive than the required 
minimum.
    1.2 To assure the quality of data from air monitoring measurements, 
two distinct and important interrelated functions must be performed. One 
function is the control of the measurement process through broad quality 
assurance activities, such as establishing policies and procedures, 
developing data quality objectives, assigning roles and 
responsibilities, conducting oversight and reviews, and implementing 
corrective actions. The other function is the control of the measurement 
process through the implementation of specific quality control 
procedures, such as audits, calibrations, checks, replicates, routine 
self-assessments, etc. In general, the greater the control of a given 
monitoring system, the better will be the resulting quality of the 
monitoring data. The results of quality assurance reviews and 
assessments indicate whether the control efforts are adequate or need to 
be improved.
    1.3 Documentation of all quality assurance and quality control 
efforts implemented during the data collection, analysis, and reporting 
phases is important to data users, who can then consider the impact of 
these control efforts on the data quality (see reference 1 of this 
appendix). Both qualitative and quantitative assessments of the 
effectiveness of these control efforts should identify those areas most 
likely to impact the data quality and to what extent.
    1.4 Periodic assessments of SLAMS data quality are required to be 
reported to EPA. To provide national uniformity in this assessment and 
reporting of data quality for all SLAMS networks, specific assessment 
and reporting procedures are prescribed in detail in sections 3, 4, and 
5 of this appendix. On the other hand, the selection and extent of the 
QA and QC activities used by a monitoring agency depend on a number of 
local factors such as the field and laboratory conditions, the 
objectives for monitoring, the level of the data quality needed, the 
expertise of assigned personnel, the cost of control procedures, 
pollutant concentration levels, etc. Therefore, the quality system 
requirements, in section 2 of this appendix, are specified in general 
terms to allow each State to develop a quality assurance program that is 
most efficient and effective for its own circumstances while achieving 
the Ambient Air Quality Programs data quality objectives.
2. Quality System Requirements.
    2.1 Each State and local agency must develop a quality system 
(reference 2 of this appendix) to ensure that the monitoring results:

[[Page 219]]

    (a) Meet a well-defined need, use, or purpose.
    (b) Satisfy customers' expectations.
    (c) Comply with applicable standards specifications.
    (d) Comply with statutory (and other) requirements of society.
    (e) Reflect consideration of cost and economics.
    (f) Implement a quality assurance program consisting of policies, 
procedures, specifications, standards, and documentation necessary to:
    (1) Provide data of adequate quality to meet monitoring objectives, 
and
    (2) Minimize loss of air quality data due to malfunctions or out-of-
control conditions. This quality assurance program must be described in 
detail, suitably documented in accordance with Agency requirements 
(reference 4 of this appendix), and approved by the appropriate Regional 
Administrator, or the Regional Administrator's designee. The Quality 
Assurance Program will be reviewed during the systems audits described 
in section 2.5 of this appendix.
    2.2 Primary requirements and guidance documents for developing the 
quality assurance program are contained in references 2 through 7 of 
this appendix, which also contain many suggested and required 
procedures, checks, and control specifications. Reference 7 of this 
appendix describes specific guidance for the development of a QA Program 
for SLAMS. Many specific quality control checks and specifications for 
methods are included in the respective reference methods described in 
part 50 of this chapter or in the respective equivalent method 
descriptions available from EPA (reference 8 of this appendix). 
Similarly, quality control procedures related to specifically designated 
reference and equivalent method analyzers are contained in the 
respective operation or instruction manuals associated with those 
analyzers. Quality assurance guidance for meteorological systems at PAMS 
is contained in reference 9 of this appendix. Quality assurance 
procedures for VOC, NOx (including NO and NO2), 
O3, and carbonyl measurements at PAMS must be consistent with 
reference 15 of this appendix. Reference 4 of this appendix includes 
requirements for the development of quality assurance project plans, and 
quality assurance and control programs, and systems audits demonstrating 
attainment of the requirements.
    2.3 Pollutant Concentration and Flow Rate Standards.
    2.3.1 Gaseous pollutant concentration standards (permeation devices 
or cylinders of compressed gas) used to obtain test concentrations for 
CO, SO2, NO, and NO2 must be traceable to either a 
National Institute of Standards and Technology (NIST) NIST-Traceable 
Reference Material (NTRM) or a NIST-certified Gas Manufacturer's 
Internal Standard (GMIS), certified in accordance with one of the 
procedures given in reference 10 of this appendix.
    2.3.2 Test concentrations for O3 must be obtained in 
accordance with the UV photometric calibration procedure specified in 40 
CFR part 50, appendix D, or by means of a certified ozone transfer 
standard. Consult references 11 and 12 of this appendix for guidance on 
primary and transfer standards for O3.
    2.3.3 Flow rate measurements must be made by a flow measuring 
instrument that is traceable to an authoritative volume or other 
applicable standard. Guidance for certifying some types of flowmeters is 
provided in reference 7 of this appendix.
    2.4 National Performance Audit Program (NPAP). Agencies operating 
SLAMS are required to participate in EPA's NPAP. These audits are 
described in reference 7 of this appendix. For further instructions, 
agencies should contact either the appropriate EPA Regional QA 
Coordinator at the appropriate EPA Regional Office location, or the NPAP 
Coordinator, Emissions Monitoring and Analysis Division (MD-14), U.S. 
Environmental Protection Agency, Research Triangle Park, NC 27711.
    2.5 Systems Audit Programs. Systems audits of the ambient air 
monitoring programs of agencies operating SLAMS shall be conducted at 
least every 3 years by the appropriate EPA Regional Office. Systems 
audit programs are described in reference 7 of this appendix. For 
further instructions, agencies should contact either the appropriate EPA 
Regional QA Coordinator or the Systems Audit QA Coordinator, Office of 
Air Quality Planning and Standards, Emissions Monitoring and Analysis 
Division (MD-14), U.S. Environmental Protection Agency, Research 
Triangle Park, NC 27711.
3. Data Quality Assessment Requirements.
    3.0.1 All ambient monitoring methods or analyzers used in SLAMS 
shall be tested periodically, as described in this section, to 
quantitatively assess the quality of the SLAMS data. Measurement 
uncertainty is estimated for both automated and manual methods. 
Terminology associated with measurement uncertainty are found within 
this appendix and includes:
    (a) Precision. A measurement of mutual agreement among individual 
measurements of the same property usually under prescribed similar 
conditions, expressed generally in terms of the standard deviation;
    (b) Accuracy. The degree of agreement between an observed value and 
an accepted reference value, accuracy includes a combination of random 
error (precision) and systematic error (bias) components which are due 
to sampling and analytical operations;
    (c) Bias. The systematic or persistent distortion of a measurement 
process which causes errors in one direction. The individual

[[Page 220]]

results of these tests for each method or analyzer shall be reported to 
EPA as specified in section 4 of this appendix. EPA will then calculate 
quarterly assessments of measurement uncertainty applicable to the SLAMS 
data as described in section 5 of this appendix. Data assessment results 
should be reported to EPA only for methods and analyzers approved for 
use in SLAMS monitoring under appendix C of this part.
    3.0.2 Estimates of the data quality will be calculated on the basis 
of single monitors and reporting organizations and may also be 
calculated for each region and for the entire Nation. A reporting 
organization is defined as a State, subordinate organization within a 
State, or other organization that is responsible for a set of stations 
that monitors the same pollutant and for which data quality assessments 
can be pooled. States must define one or more reporting organizations 
for each pollutant such that each monitoring station in the State SLAMS 
network is included in one, and only one, reporting organization.
    3.0.3 Each reporting organization shall be defined such that 
measurement uncertainty among all stations in the organization can be 
expected to be reasonably homogeneous, as a result of common factors.
    (a) Common factors that should be considered by States in defining 
reporting organizations include:
    (1) Operation by a common team of field operators.
    (2) Common calibration facilities.
    (3) Oversight by a common quality assurance organization.
    (4) Support by a common laboratory or headquarters.
    (b) Where there is uncertainty in defining the reporting 
organizations or in assigning specific sites to reporting organizations, 
States shall consult with the appropriate EPA Regional Office. All 
definitions of reporting organizations shall be subject to final 
approval by the appropriate EPA Regional Office.
    3.0.4 Assessment results shall be reported as specified in section 4 
of this appendix. Table A-1 of this appendix provides a summary of the 
minimum data quality assessment requirements, which are described in 
more detail in the following sections.
    3.1 Precision of Automated Methods Excluding PM2.5.
    3.1.1 Methods for SO2, NO2, O3 and 
CO. A one- point precision check must be performed at least once every 2 
weeks on each automated analyzer used to measure SO2, 
NO2, O3 and CO. The precision check is made by 
challenging the analyzer with a precision check gas of known 
concentration (effective concentration for open path analyzers) between 
0.08 and 0.10 ppm for SO2, NO2, and O3 
analyzers, and between 8 and 10 ppm for CO analyzers. To check the 
precision of SLAMS analyzers operating on ranges higher than 0 to 1.0 
ppm SO2, NO2, and O3, or 0 to 100 ppm 
for CO, use precision check gases of appropriately higher concentration 
as approved by the appropriate Regional Administrator or their designee. 
However, the results of precision checks at concentration levels other 
than those specified above need not be reported to EPA. The standards 
from which precision check test concentrations are obtained must meet 
the specifications of section 2.3 of this appendix.
    3.1.1.1 Except for certain CO analyzers described below, point 
analyzers must operate in their normal sampling mode during the 
precision check, and the test atmosphere must pass through all filters, 
scrubbers, conditioners and other components used during normal ambient 
sampling and as much of the ambient air inlet system as is practicable. 
If permitted by the associated operation or instruction manual, a CO 
point analyzer may be temporarily modified during the precision check to 
reduce vent or purge flows, or the test atmosphere may enter the 
analyzer at a point other than the normal sample inlet, provided that 
the analyzer's response is not likely to be altered by these deviations 
from the normal operational mode. If a precision check is made in 
conjunction with a zero or span adjustment, it must be made prior to 
such zero or span adjustments. Randomization of the precision check with 
respect to time of day, day of week, and routine service and adjustments 
is encouraged where possible.
    3.1.1.2 Open path analyzers are tested by inserting a test cell 
containing a precision check gas concentration into the optical 
measurement beam of the instrument. If possible, the normally used 
transmitter, receiver, and as appropriate, reflecting devices should be 
used during the test, and the normal monitoring configuration of the 
instrument should be altered as little as possible to accommodate the 
test cell for the test. However, if permitted by the associated 
operation or instruction manual, an alternate local light source or an 
alternate optical path that does not include the normal atmospheric 
monitoring path may be used. The actual concentration of the precision 
check gas in the test cell must be selected to produce an effective 
concentration in the range specified in section 3.1.1. Generally, the 
precision test concentration measurement will be the sum of the 
atmospheric pollutant concentration and the precision test 
concentration. If so, the result must be corrected to remove the 
atmospheric concentration contribution. The corrected concentration is 
obtained by subtracting the average of the atmospheric concentrations 
measured by the open path instrument under test immediately before and 
immediately after the precision check test from the precision test

[[Page 221]]

concentration measurement. If the difference between these before and 
after measurements is greater than 20 percent of the effective 
concentration of the test gas, discard the test result and repeat the 
test. If possible, open path analyzers should be tested during periods 
when the atmospheric pollutant concentrations are relatively low and 
steady.
    3.1.1.3 Report the actual concentration (effective concentration for 
open path analyzers) of the precision check gas and the corresponding 
concentration measurement (corrected concentration, if applicable, for 
open path analyzers) indicated by the analyzer. The percent differences 
between these concentrations are used to assess the precision of the 
monitoring data as described in section 5.1. of this appendix.
    3.1.2 Methods for Particulate Matter Excluding PM2.5. A 
one-point precision check must be performed at least once every 2 weeks 
on each automated analyzer used to measure PM10. The 
precision check is made by checking the operational flow rate of the 
analyzer. If a precision flow rate check is made in conjunction with a 
flow rate adjustment, it must be made prior to such flow rate 
adjustment. Randomization of the precision check with respect to time of 
day, day of week, and routine service and adjustments is encouraged 
where possible.
    3.1.2.1 Standard procedure: Use a flow rate transfer standard 
certified in accordance with section 2.3.3 of this appendix to check the 
analyzer's normal flow rate. Care should be used in selecting and using 
the flow rate measurement device such that it does not alter the normal 
operating flow rate of the analyzer. Report the actual analyzer flow 
rate measured by the transfer standard and the corresponding flow rate 
measured, indicated, or assumed by the analyzer.
    3.1.2.2 Alternative procedure:
    3.1.2.2.1 It is permissible to obtain the precision check flow rate 
data from the analyzer's internal flow meter without the use of an 
external flow rate transfer standard, provided that:
    3.1.2.2.1.1 The flow meter is audited with an external flow rate 
transfer standard at least every 6 months.
    3.1.2.2.1.2 Records of at least the three most recent flow audits of 
the instrument's internal flow meter over at least several weeks confirm 
that the flow meter is stable, verifiable and accurate to 
4%.
    3.1.2.2.1.3 The instrument and flow meter give no indication of 
improper operation.
    3.1.2.2.2 With suitable communication capability, the precision 
check may thus be carried out remotely. For this procedure, report the 
set-point flow rate as the actual flow rate along with the flow rate 
measured or indicated by the analyzer flow meter.
    3.1.2.2.3 For either procedure, the percent differences between the 
actual and indicated flow rates are used to assess the precision of the 
monitoring data as described in section 5.1 of this appendix (using flow 
rates in lieu of concentrations). The percent differences between these 
concentrations are used to assess the precision of the monitoring data 
as described in section 5.1. of this appendix.
    3.2 Accuracy of Automated Methods Excluding PM2.5.
    3.2.1 Methods for SO2, NO2, O3, or 
CO.
    3.2.1.1 Each calendar quarter (during which analyzers are operated), 
audit at least 25 percent of the SLAMS analyzers that monitor for 
SO2, NO2, O3, or CO such that each 
analyzer is audited at least once per year. If there are fewer than four 
analyzers for a pollutant within a reporting organization, randomly 
reaudit one or more analyzers so that at least one analyzer for that 
pollutant is audited each calendar quarter. Where possible, EPA strongly 
encourages more frequent auditing, up to an audit frequency of once per 
quarter for each SLAMS analyzer.
    3.2.1.2 (a) The audit is made by challenging the analyzer with at 
least one audit gas of known concentration (effective concentration for 
open path analyzers) from each of the following ranges applicable to the 
analyzer being audited:

------------------------------------------------------------------------
                                          Concentration Range, PPM
            Audit Level           --------------------------------------
                                     SO2, O3        NO2           CO
------------------------------------------------------------------------
1................................    0.03-0.08    0.03-0.08          3-8
2................................    0.15-0.20    0.15-0.20        15-20
3................................    0.35-0.45    0.35-0.45        35-45
4................................    0.80-0.90  ...........        80-90
------------------------------------------------------------------------

    (b) NO2 audit gas for chemiluminescence-type 
NO2 analyzers must also contain at least 0.08 ppm NO.
    3.2.1.3 NO concentrations substantially higher than 0.08 ppm, as may 
occur when using some gas phase titration (GPT) techniques, may lead to 
audit errors in chemiluminescence analyzers due to inevitable minor NO-
NOx channel imbalance. Such errors may be atypical of routine 
monitoring errors to the extent that such NO concentrations exceed 
typical ambient NO concentrations at the site. These errors may be 
minimized by modifying the GPT technique to lower the NO concentrations 
remaining in the NO2 audit gas to levels closer to typical 
ambient NO concentrations at the site.
    3.2.1.4 To audit SLAMS analyzers operating on ranges higher than 0 
to 1.0 ppm for SO2, NO2, and O3 or 0 to 
100 ppm for CO, use audit gases of appropriately higher concentration as 
approved by the appropriate Regional Administrator or the 
Administrators's designee. The results of audits at concentration levels 
other than those shown in the above table need not be reported to EPA.
    3.2.1.5 The standards from which audit gas test concentrations are 
obtained must meet

[[Page 222]]

the specifications of section 2.3 of this appendix. The gas standards 
and equipment used for auditing must not be the same as the standards 
and equipment used for calibration or calibration span adjustments. The 
auditor should not be the operator or analyst who conducts the routine 
monitoring, calibration, and analysis.
    3.2.1.6 For point analyzers, the audit shall be carried out by 
allowing the analyzer to analyze the audit test atmosphere in its normal 
sampling mode such that the test atmosphere passes through all filters, 
scrubbers, conditioners, and other sample inlet components used during 
normal ambient sampling and as much of the ambient air inlet system as 
is practicable. The exception provided in section 3.1 of this appendix 
for certain CO analyzers does not apply for audits.
    3.2.1.7 Open path analyzers are audited by inserting a test cell 
containing the various audit gas concentrations into the optical 
measurement beam of the instrument. If possible, the normally used 
transmitter, receiver, and, as appropriate, reflecting devices should be 
used during the audit, and the normal monitoring configuration of the 
instrument should be modified as little as possible to accommodate the 
test cell for the audit. However, if permitted by the associated 
operation or instruction manual, an alternate local light source or an 
alternate optical path that does not include the normal atmospheric 
monitoring path may be used. The actual concentrations of the audit gas 
in the test cell must be selected to produce effective concentrations in 
the ranges specified in this section 3.2 of this appendix. Generally, 
each audit concentration measurement result will be the sum of the 
atmospheric pollutant concentration and the audit test concentration. If 
so, the result must be corrected to remove the atmospheric concentration 
contribution. The corrected concentration is obtained by subtracting the 
average of the atmospheric concentrations measured by the open path 
instrument under test immediately before and immediately after the audit 
test (or preferably before and after each audit concentration level) 
from the audit concentration measurement. If the difference between the 
before and after measurements is greater than 20 percent of the 
effective concentration of the test gas standard, discard the test 
result for that concentration level and repeat the test for that level. 
If possible, open path analyzers should be audited during periods when 
the atmospheric pollutant concentrations are relatively low and steady. 
Also, the monitoring path length must be reverified to within 
3 percent to validate the audit, since the monitoring path 
length is critical to the determination of the effective concentration.
    3.2.1.8 Report both the actual concentrations (effective 
concentrations for open path analyzers) of the audit gases and the 
corresponding concentration measurements (corrected concentrations, if 
applicable, for open path analyzers) indicated or produced by the 
analyzer being tested. The percent differences between these 
concentrations are used to assess the accuracy of the monitoring data as 
described in section 5.2 of this appendix.
    3.2.2 Methods for Particulate Matter Excluding PM2.5.
    3.2.2.1 Each calendar quarter, audit the flow rate of at least 25 
percent of the SLAMS PM10 analyzers such that each 
PM10 analyzer is audited at least once per year. If there are 
fewer than four PM10 analyzers within a reporting 
organization, randomly re-audit one or more analyzers so that at least 
one analyzer is audited each calendar quarter. Where possible, EPA 
strongly encourages more frequent auditing, up to an audit frequency of 
once per quarter for each SLAMS analyzer.
    3.2.2.2 The audit is made by measuring the analyzer's normal 
operating flow rate, using a flow rate transfer standard certified in 
accordance with section 2.3.3 of this appendix. The flow rate standard 
used for auditing must not be the same flow rate standard used to 
calibrate the analyzer. However, both the calibration standard and the 
audit standard may be referenced to the same primary flow rate or volume 
standard. Great care must be used in auditing the flow rate to be 
certain that the flow measurement device does not alter the normal 
operating flow rate of the analyzer. Report the audit (actual) flow rate 
and the corresponding flow rate indicated or assumed by the sampler. The 
percent differences between these flow rates are used to calculate 
accuracy (PM10) as described in section 5.2 of this appendix.
    3.3 Precision of Manual Methods Excluding PM2.5.
    3.3.1 For each network of manual methods other than for 
PM2.5, select one or more monitoring sites within the 
reporting organization for duplicate, collocated sampling as follows: 
for 1 to 5 sites, select 1 site; for 6 to 20 sites, select 2 sites; and 
for over 20 sites, select 3 sites. Where possible, additional collocated 
sampling is encouraged. For purposes of precision assessment, networks 
for measuring TSP and PM10 shall be considered separately 
from one another. PM10 and TSP sites having annual mean 
particulate matter concentrations among the highest 25 percent of the 
annual mean concentrations for all the sites in the network must be 
selected or, if such sites are impractical, alternative sites approved 
by the Regional Administrator may be selected.
    3.3.2 In determining the number of collocated sites required for 
PM10, monitoring networks for lead should be treated 
independently from networks for particulate matter, even though the 
separate networks may share one or more common samplers.

[[Page 223]]

However, a single pair of samplers collocated at a common-sampler 
monitoring site that meets the requirements for both a collocated lead 
site and a collocated particulate matter site may serve as a collocated 
site for both networks.
    3.3.3 The two collocated samplers must be within 4 meters of each 
other, and particulate matter samplers must be at least 2 meters apart 
to preclude airflow interference. Calibration, sampling, and analysis 
must be the same for both collocated samplers and the same as for all 
other samplers in the network.
    3.3.4 For each pair of collocated samplers, designate one sampler as 
the primary sampler whose samples will be used to report air quality for 
the site, and designate the other as the duplicate sampler. Each 
duplicate sampler must be operated concurrently with its associated 
routine sampler at least once per week. The operation schedule should be 
selected so that the sampling days are distributed evenly over the year 
and over the seven days of the week. A six-day sampling schedule is 
required. Report the measurements from both samplers at each collocated 
sampling site. The calculations for evaluating precision between the two 
collocated samplers are described in section 5.3 of this appendix.
    3.4 Accuracy of Manual Methods Excluding PM2.5. The 
accuracy of manual sampling methods is assessed by auditing a portion of 
the measurement process.
    3.4.1 Procedures for PM10 and TSP.
    3.4.1.1 Procedures for flow rate audits for PM10. Each 
calendar quarter, audit the flow rate of at least 25 percent of the 
PM10 samplers such that each PM10 sampler is 
audited at least once per year. If there are fewer than four 
PM10 samplers within a reporting organization, randomly 
reaudit one or more samplers so that one sampler is audited each 
calendar quarter. Audit each sampler at its normal operating flow rate, 
using a flow rate transfer standard certified in accordance with section 
2.3.3 of this appendix. The flow rate standard used for auditing must 
not be the same flow rate standard used to calibrate the sampler. 
However, both the calibration standard and the audit standard may be 
referenced to the same primary flow rate standard. The flow audit should 
be scheduled so as to avoid interference with a scheduled sampling 
period. Report the audit (actual) flow rate and the corresponding flow 
rate indicated by the sampler's normally used flow indicator. The 
percent differences between these flow rates are used to calculate 
accuracy and bias as described in section 5.4.1 of this appendix.
    3.4.1.2 Great care must be used in auditing high-volume particulate 
matter samplers having flow regulators because the introduction of 
resistance plates in the audit flow standard device can cause abnormal 
flow patterns at the point of flow sensing. For this reason, the flow 
audit standard should be used with a normal filter in place and without 
resistance plates in auditing flow-regulated high-volume samplers, or 
other steps should be taken to assure that flow patterns are not 
perturbed at the point of flow sensing.
    3.4.2 SO2 Methods.
    3.4.2.1 Prepare audit solutions from a working sulfite-
tetrachloromercurate (TCM) solution as described in section 10.2 of the 
SO2 Reference Method (40 CFR part 50, appendix A). These 
audit samples must be prepared independently from the standardized 
sulfite solutions used in the routine calibration procedure. Sulfite-TCM 
audit samples must be stored between 0 and 5  deg.C and expire 30 days 
after preparation.
    3.4.2.2 Prepare audit samples in each of the concentration ranges of 
0.2-0.3, 0.5-0.6, and 0.8-0.9 [mu]g SO2/ml. Analyze an audit 
sample in each of the three ranges at least once each day that samples 
are analyzed and at least twice per calendar quarter. Report the audit 
concentrations (in [mu]g SO2/ml) and the corresponding 
indicated concentrations (in [mu]g SO2/ml). The percent 
differences between these concentrations are used to calculate accuracy 
as described in section 5.4.2 of this appendix.
    3.4.3 NO2 Methods. Prepare audit solutions from a working 
sodium nitrite solution as described in the appropriate equivalent 
method (see reference 8 of this appendix). These audit samples must be 
prepared independently from the standardized nitrite solutions used in 
the routine calibration procedure. Sodium nitrite audit samples expire 
in 3 months after preparation. Prepare audit samples in each of the 
concentration ranges of 0.2-0.3, 0.5-0.6, and 0.8-0.9 [mu]g 
NO2/ml. Analyze an audit sample in each of the three ranges 
at least once each day that samples are analyzed and at least twice per 
calendar quarter. Report the audit concentrations (in [mu]g 
NO2/ml) and the corresponding indicated concentrations (in 
[mu]g NO2/ml). The percent differences between these 
concentrations are used to calculate accuracy as described in section 
5.4.2 of this appendix.
    3.4.4 Pb Methods.
    3.4.4.1 For the Pb Reference Method (40 CFR part 50, appendix G), 
the flow rates of the high-volume Pb samplers shall be audited as part 
of the TSP network using the same procedures described in section 3.4.1 
of this appendix. For agencies operating both TSP and Pb networks, 25 
percent of the total number of high-volume samplers are to be audited 
each quarter.
    3.4.4.2 Each calendar quarter, audit the Pb Reference Method 
analytical procedure using glass fiber filter strips containing a known 
quantity of Pb. These audit sample strips are prepared by depositing a 
Pb solution on unexposed glass fiber filter strips of dimensions

[[Page 224]]

1.9 cm by 20.3 cm (3/4 inch by 8 inch) and allowing them to dry 
thoroughly. The audit samples must be prepared using batches of reagents 
different from those used to calibrate the Pb analytical equipment being 
audited. Prepare audit samples in the following concentration ranges:

------------------------------------------------------------------------
                                                           Equivalent
                                             Pb            Ambient Pb
                Range                  Concentration,    Concentration,
                                         [mu]g/Strip      [mu]g/m3 \1\
------------------------------------------------------------------------
1...................................           100-300           0.5-1.5
2...................................          600-1000           3.0-5.0
------------------------------------------------------------------------
\1\ Equivalent ambient Pb concentration in [mu]g/m3 is based on sampling
  at 1.7 m3/min for 24 hours on a 20.3 cmx25.4 cm (8 inchx10 inch) glass
  fiber filter.

    3.4.4.3 Audit samples must be extracted using the same extraction 
procedure used for exposed filters.
    3.4.4.4 Analyze three audit samples in each of the two ranges each 
quarter samples are analyzed. The audit sample analyses shall be 
distributed as much as possible over the entire calendar quarter. Report 
the audit concentrations (in [mu]g Pb/strip) and the corresponding 
measured concentrations (in [mu]g Pb/strip) using unit code 77. The 
percent differences between the concentrations are used to calculate 
analytical accuracy as described in section 5.4.2 of this appendix.
    3.4.4.5 The accuracy of an equivalent Pb method is assessed in the 
same manner as for the reference method. The flow auditing device and Pb 
analysis audit samples must be compatible with the specific requirements 
of the equivalent method.
    3.5 Measurement Uncertainty for Automated and Manual 
PM2.5 Methods. The goal for acceptable measurement 
uncertainty has been defined as 10 percent coefficient of variation (CV) 
for total precision and  10 percent for total bias 
(reference 14 of this appendix).
    3.5.1 Flow Rate Audits.
    3.5.1.1 Automated methods for PM2.5. A one-point 
precision check must be performed at least once every 2 weeks on each 
automated analyzer used to measure PM2.5. The precision check 
is made by checking the operational flow rate of the analyzer. If a 
precision flow rate check is made in conjunction with a flow rate 
adjustment, it must be made prior to such flow rate adjustment. 
Randomization of the precision check with respect to time of day, day of 
week, and routine service and adjustments is encouraged where possible.
    3.5.1.1.1 Standard procedure: Use a flow rate transfer standard 
certified in accordance with section 2.3.3 of this appendix to check the 
analyzer's normal flow rate. Care should be used in selecting and using 
the flow rate measurement device such that it does not alter the normal 
operating flow rate of the analyzer. Report the actual analyzer flow 
rate measured by the transfer standard and the corresponding flow rate 
measured, indicated, or assumed by the analyzer.
    3.5.1.1.2 Alternative procedure: It is permissible to obtain the 
precision check flow rate data from the analyzer's internal flow meter 
without the use of an external flow rate transfer standard, provided 
that the flow meter is audited with an external flow rate transfer 
standard at least every 6 months; records of at least the three most 
recent flow audits of the instrument's internal flow meter over at least 
several weeks confirm that the flow meter is stable, verifiable and 
accurate to 4%; and the instrument and flow meter give no 
indication of improper operation. With suitable communication 
capability, the precision check may thus be carried out remotely. For 
this procedure, report the set-point flow rate as the actual flow rate 
along with the flow rate measured or indicated by the analyzer flow 
meter.
    3.5.1.1.3 For either procedure, the differences between the actual 
and indicated flow rates are used to assess the precision of the 
monitoring data as described in section 5.5 of this appendix.
    3.5.1.2 Manual methods for PM2.5. Each calendar quarter, 
audit the flow rate of each SLAMS PM2.5 analyzer. The audit 
is made by measuring the analyzer's normal operating flow rate, using a 
flow rate transfer standard certified in accordance with section 2.3.3 
of this appendix. The flow rate standard used for auditing must not be 
the same flow rate standard used to calibrate the analyzer. However, 
both the calibration standard and the audit standard may be referenced 
to the same primary flow rate or volume standard. Great care must be 
used in auditing the flow rate to be certain that the flow measurement 
device does not alter the normal operating flow rate of the analyzer. 
Report the audit (actual) flow rate and the corresponding flow rate 
indicated or assumed by the sampler. The procedures used to calculate 
measurement uncertainty PM2.5 are described in section 5.5 of 
this appendix.
    3.5.2 Measurement of Precision using Collocated Procedures for 
Automated and Manual Methods of PM2.5.
    (a) For PM2.5 sites within a reporting organization each 
EPA designated Federal reference method (FRM) or Federal equivalent 
method (FEM) must:
    (1) Have 25 percent of the monitors collocated (values of .5 and 
greater round up).
    (2) Have at least 1 collocated monitor (if the total number of 
monitors is less than 4). The first collocated monitor must be a 
designated FRM monitor.
    (b) In addition, monitors selected must also meet the following 
requirements:
    (1) A monitor designated as an EPA FRM shall be collocated with a 
monitor having the same EPA FRM designation.
    (2) For each monitor designated as an EPA FEM, 50 percent of the 
designated monitors

[[Page 225]]

shall be collocated with a monitor having the same method designation 
and 50 percent of the monitors shall be collocated with an FRM monitor. 
If there are an odd number of collocated monitors required, the 
additional monitor shall be an FRM. An example of this procedure is 
found in table A-2 of this appendix.
    (c) For PM2.5 sites during the initial deployment of the 
SLAMS network, special emphasis should be placed on those sites in areas 
likely to be in violation of the NAAQS. Once areas are initially 
determined to be in violation, the collocated monitors should be 
deployed according to the following protocol:
    (1) Eighty percent of the collocated monitors should be deployed at 
sites with concentrations [ge] ninety percent of the annual 
PM2.5 NAAQS (or 24-hour NAAQS if that is affecting the area); 
one hundred percent if all sites have concentrations above either NAAQS, 
and each area determined to be in violation should be represented by at 
least one collocated monitor.
    (2) The remaining 20 percent of the collocated monitors should be 
deployed at sites with concentrations < ninety percent of the annual 
PM2.5 NAAQS (or 24-hour NAAQS if that is affecting the area)
    (3) If an organization has no sites at concentration ranges [ge] 
ninety percent of the annual PM2.5 NAAQS (or 24-hour NAAQS if 
that is affecting the area), 60 percent of the collocated monitors 
should be deployed at those sites with the annual mean PM2.5 
concentrations (or 24-hour NAAQS if that is affecting the area) among 
the highest 25 percent for all PM2.5 sites in the network.
    3.5.2.1 In determining the number of collocated sites required for 
PM2.5, monitoring networks for visibility should not be 
treated independently from networks for particulate matter, as the 
separate networks may share one or more common samplers. However, for 
class I visibility areas, EPA will accept visibility aerosol mass 
measurement instead of a PM2.5 measurement if the latter 
measurement is unavailable. Any PM2.5 monitoring site which 
does not have a monitor which is an EPA federal reference or equivalent 
method is not required to be included in the number of sites which are 
used to determine the number of collocated monitors.
    3.5.2.2 The two collocated samples must be within 4 meters of each 
other, and particulate matter samplers must be at least 2 meters apart 
(1 meter apart for samplers having flow rates less than 200 liters/min.) 
to preclude airflow interference. Calibration, sampling, and analysis 
must be the same for both collocated samplers and the same as for all 
other samplers in the network.
    3.5.2.3 For each pair of collocated samplers, designate one sampler 
as the primary sampler whose samples will be used to report air quality 
for the site, and designate the other as the duplicate sampler. Each 
duplicate sampler must be operated concurrently with its associated 
primary sampler. The operation schedule should be selected so that the 
sampling days are distributed evenly over the year and over the 7 days 
of the week and therefore, a 6-day sampling schedule is required. Report 
the measurements from both samplers at each collocated sampling site. 
The calculations for evaluating precision between the two collocated 
samplers are described in section 5.5 of this appendix.
    3.5.3 Measurement of Bias using the FRM Audit Procedures for 
Automated and Manual Methods of PM2.5.
    3.5.3.1 The FRM audit is an independent assessment of the total 
measurement system bias. These audits will be performed under the 
National Performance Audit Program (section 2.4 of this appendix) or a 
comparable program. Twenty-five percent of the SLAMS monitors within 
each reporting organization will be assessed with an FRM audit each 
year. Additionally, every designated FRM or FEM within a reporting 
organization must:
    (a) Have at least 25 percent of each method designation audited, 
including collocated sites (even those collocated with FRM instruments), 
(values of .5 and greater round up).
    (b) Have at least one monitor audited.
    (c) Be audited at a frequency of four audits per year.
    (d) Have all FRM or FEM samplers subject to an FRM audit at least 
once every 4 years. Table A-2 illustrates the procedure mentioned above.
    3.5.3.2 For PM2.5 sites during the initial deployment of 
the SLAMS network, special emphasis should be placed on those sites in 
areas likely to be in violation of the NAAQS. Once areas are initially 
determined to be in violation, the FRM audit program should be 
implemented according to the following protocol:
    (a) Eighty percent of the FRM audits should be deployed at sites 
with concentrations [ge] ninety percent of the annual PM2.5 
NAAQS (or 24-hour NAAQS if that is affecting the area); one hundred 
percent if all sites have concentrations above either NAAQS, and each 
area determined to be in violation should implement an FRM audit at a 
minimum of one monitor within that area.
    (b) The remaining 20 percent of the FRM audits should be implemented 
at sites with concentrations < ninety percent of the annual 
PM2.5 NAAQS (or 24-hour NAAQS if that is affecting the area).
    (c) If an organization has no sites at concentration ranges [ge] 
ninety percent of the annual PM2.5 NAAQS (or 24-hour NAAQS if 
that is affecting the area), 60 percent of the FRM audits should be 
implemented at those sites with the annual mean PM2.5 
concentrations (or 24-hour NAAQS if that is affecting the area) among 
the highest 25 percent for all

[[Page 226]]

PM2.5 sites in the network. Additional information concerning 
the FRM audit program is contained in reference 7 of this appendix. The 
calculations for evaluating bias between the primary monitor and the FRM 
audit are described in section 5.5.
4. Reporting Requirements.
    (a) For each pollutant, prepare a list of all monitoring sites and 
their AIRS site identification codes in each reporting organization and 
submit the list to the appropriate EPA Regional Office, with a copy to 
AIRS-AQS. Whenever there is a change in this list of monitoring sites in 
a reporting organization, report this change to the Regional Office and 
to AIRS-AQS.
    4.1 Quarterly Reports. For each quarter, each reporting organization 
shall report to AIRS-AQS directly (or via the appropriate EPA Regional 
Office for organizations not direct users of AIRS) the results of all 
valid precision, bias and accuracy tests it has carried out during the 
quarter. The quarterly reports of precision, bias and accuracy data must 
be submitted consistent with the data reporting requirements specified 
for air quality data as set forth in Sec. 58.35(c). EPA strongly 
encourages early submittal of the QA data in order to assist the State 
and Local agencies in controlling and evaluating the quality of the 
ambient air SLAMS data. Each organization shall report all QA/QC 
measurements. Report results from invalid tests, from tests carried out 
during a time period for which ambient data immediately prior or 
subsequent to the tests were invalidated for appropriate reasons, and 
from tests of methods or analyzers not approved for use in SLAMS 
monitoring networks under appendix C of this part. Such data should be 
flagged so that it will not be utilized for quantitative assessment of 
precision, bias and accuracy.
    4.2 Annual Reports.
    4.2.1 When precision, bias and accuracy estimates for a reporting 
organization have been calculated for all four quarters of the calendar 
year, EPA will calculate and report the measurement uncertainty for the 
entire calendar year. These limits will then be associated with the data 
submitted in the annual SLAMS report required by Sec. 58.26.
    4.2.2 Each reporting organization shall submit, along with its 
annual SLAMS report, a listing by pollutant of all monitoring sites in 
the reporting organization.
5. Calculations for Data Quality Assessment.
    (a) Calculations of measurement uncertainty are carried out by EPA 
according to the following procedures. Reporting organizations should 
report the data for individual precision, bias and accuracy tests as 
specified in sections 3 and 4 of this appendix even though they may 
elect to perform some or all of the calculations in this section on 
their own.
    5.1 Precision of Automated Methods Excluding PM2.5. 
Estimates of the precision of automated methods are calculated from the 
results of biweekly precision checks as specified in section 3.1 of this 
appendix. At the end of each calendar quarter, an integrated precision 
probability interval for all SLAMS analyzers in the organization is 
calculated for each pollutant.
    5.1.1 Single Analyzer Precision.
    5.1.1.1 The percent difference (di) for each precision 
check is calculated using equation 1, where Yi is the 
concentration indicated by the analyzer for the I-th precision check and 
Xi is the known concentration for the I-th precision check, 
as follows:

                               Equation 1
[GRAPHIC] [TIFF OMITTED] TR18JY97.138

    5.1.1.2 For each analyzer, the quarterly average (dj) is 
calculated with equation 2, and the standard deviation (Sj) 
with equation 3, where n is the number of precision checks on the 
instrument made during the calendar quarter. For example, n should be 6 
or 7 if precision checks are made biweekly during a quarter. Equation 2 
and 3 follow:

                               Equation 2
[GRAPHIC] [TIFF OMITTED] TR18JY97.139

                               Equation 3
[GRAPHIC] [TIFF OMITTED] TR18JY97.140

    5.1.2 Precision for Reporting Organization.
    5.1.2.1 For each pollutant, the average of averages (D) and the 
pooled standard deviation (Sa) are calculated for all 
analyzers audited for the pollutant during the quarter, using either 
equations 4 and 5 or 4a and 5a, where k is the number of analyzers 
audited within the reporting organization for a single pollutant, as 
follows:

                               Equation 4
[GRAPHIC] [TIFF OMITTED] TR18JY97.141

                               Equation 4a
[GRAPHIC] [TIFF OMITTED] TR18JY97.142


[[Page 227]]



                               Equation 5
[GRAPHIC] [TIFF OMITTED] TR18JY97.143

                               Equation 5a
[GRAPHIC] [TIFF OMITTED] TR18JY97.144

    5.1.2.2 Equations 4 and 5 are used when the same number of precision 
checks are made for each analyzer. Equations 4a and 5a are used to 
obtain a weighted average and a weighted standard deviation when 
different numbers of precision checks are made for the analyzers.
    5.1.2.3 For each pollutant, the 95 Percent Probability Limits for 
the precision of a reporting organization are calculated using equations 
6 and 7, as follows:

                               Equation 6
[GRAPHIC] [TIFF OMITTED] TR18JY97.145

                               Equation 7
[GRAPHIC] [TIFF OMITTED] TR18JY97.146

    5.2 Accuracy of Automated Methods Excluding PM2.5. 
Estimates of the accuracy of automated methods are calculated from the 
results of independent audits as described in section 3.2 of this 
appendix. At the end of each calendar quarter, an integrated accuracy 
probability interval for all SLAMS analyzers audited in the reporting 
organization is calculated for each pollutant. Separate probability 
limits are calculated for each audit concentration level in section 3.2 
of this appendix.
    5.2.1 Single Analyzer Accuracy. The percentage difference 
(di) for each audit concentration is calculated using 
equation 1, where Yi is the analyzer's indicated 
concentration measurement from the I-th audit check and Xi is 
the actual concentration of the audit gas used for the I-th audit check.
    5.2.2 Accuracy for Reporting Organization.
    5.2.2.1 For each audit concentration level of a particular 
pollutant, the average (D) of the individual percentage differences 
(di) for all n analyzers audited during the quarter is 
calculated using equation 8, as follows:

                               Equation 8
[GRAPHIC] [TIFF OMITTED] TR18JY97.147

    5.2.2.2 For each concentration level of a particular pollutant, the 
standard deviation (Sa) of all the individual percentage 
differences for all n analyzers audited during the quarter is 
calculated, using equation 9, as follows:

                               Equation 9
[GRAPHIC] [TIFF OMITTED] TR18JY97.148

    5.2.2.3 For reporting organizations having four or fewer analyzers 
for a particular pollutant, only one audit is required each quarter. For 
such reporting organizations, the audit results of two consecutive 
quarters are required to calculate an average and a standard deviation, 
using equations 8 and 9. Therefore, the reporting of probability limits 
shall be on a semiannual (instead of a quarterly) basis.
    5.2.2.4 For each pollutant, the 95 Percent Probability Limits for 
the accuracy of a reporting organization are calculated at each audit 
concentration level using equations 6 and 7.
    5.3 Precision of Manual Methods Excluding PM2.5. 
Estimates of precision of manual methods are calculated from the results 
obtained from collocated samplers as described in section 3.3 of this 
appendix. At the end of each calendar quarter, an integrated precision 
probability interval for all collocated samplers operating in the 
reporting organization is calculated for each manual method network.
    5.3.1 Single Sampler Precision.
    5.3.1.1 At low concentrations, agreement between the measurements of 
collocated samplers, expressed as percent differences,

[[Page 228]]

may be relatively poor. For this reason, collocated measurement pairs 
are selected for use in the precision calculations only when both 
measurements are above the following limits:
    (a) TSP: 20 [mu]g/m3.
    (b) SO2: 45 [mu]g/m3.
    (c) NO2: 30 [mu]g/m3.
    (d) Pb: 0.15 [mu]g/m3.
    (e) PM10: 20 [mu]g/m3.
    5.3.1.2 For each selected measurement pair, the percent difference 
(di) is calculated, using equation 10, as follows:

                               Equation 10
[GRAPHIC] [TIFF OMITTED] TR18JY97.149

where:

Yi is the pollutant concentration measurement obtained from 
the duplicate sampler; and
Xi is the concentration measurement obtained from the primary 
sampler designated for reporting air quality for the site.

    (a) For each site, the quarterly average percent difference 
(dj) is calculated from equation 2 and the standard deviation 
(Sj) is calculated from equation 3, where n= the number of 
selected measurement pairs at the site.
    5.3.2 Precision for Reporting Organization.
    5.3.2.1 For each pollutant, the average percentage difference (D) 
and the pooled standard deviation (Sa) are calculated, using 
equations 4 and 5, or using equations 4a and 5a if different numbers of 
paired measurements are obtained at the collocated sites. For these 
calculations, the k of equations 4, 4a, 5 and 5a is the number of 
collocated sites.
    5.3.2.2 The 95 Percent Probability Limits for the integrated 
precision for a reporting organization are calculated using equations 11 
and 12, as follows:

                               Equation 11
[GRAPHIC] [TIFF OMITTED] TR18JY97.150

                               Equation 12
[GRAPHIC] [TIFF OMITTED] TR18JY97.151

    5.4 Accuracy of Manual Methods Excluding PM2.5. Estimates 
of the accuracy of manual methods are calculated from the results of 
independent audits as described in section 3.4 of this appendix. At the 
end of each calendar quarter, an integrated accuracy probability 
interval is calculated for each manual method network operated by the 
reporting organization.
    5.4.1 Particulate Matter Samplers other than PM2.5 
(including reference method Pb samplers).
    5.4.1.1 Single Sampler Accuracy. For the flow rate audit described 
in section 3.4.1 of this appendix, the percentage difference 
(di) for each audit is calculated using equation 1, where 
Xi represents the known flow rate and Yi 
represents the flow rate indicated by the sampler.
    5.4.1.2 Accuracy for Reporting Organization. For each type of 
particulate matter measured (e.g., TSP/Pb), the average (D) of the 
individual percent differences for all similar particulate matter 
samplers audited during the calendar quarter is calculated using 
equation 8. The standard deviation (Sa) of the percentage 
differences for all of the similar particulate matter samplers audited 
during the calendar quarter is calculated using equation 9. The 95 
Percent Probability Limits for the integrated accuracy for the reporting 
organization are calculated using equations 6 and 7. For reporting 
organizations having four or fewer particulate matter samplers of one 
type, only one audit is required each quarter, and the audit results of 
two consecutive quarters are required to calculate an average and a 
standard deviation. In that case, probability limits shall be reported 
semi-annually rather than quarterly.
    5.4.2 Analytical Methods for SO2, NO2, and Pb.
    5.4.2.1 Single Analysis-Day Accuracy. For each of the audits of the 
analytical methods for SO2, NO2, and Pb described 
in sections 3.4.2, 3.4.3, and 3.4.4 of this appendix, the percentage 
difference (dj) at each concentration level is calculated 
using equation 1, where Xj represents the known value of the 
audit sample and Yj represents the value of SO2, 
NO2, or Pb indicated by the analytical method.
    5.4.2.2 Accuracy for Reporting Organization. For each analytical 
method, the average (D) of the individual percent differences at each 
concentration level for all audits during the calendar quarter is 
calculated using equation 8. The standard deviation (Sa) of 
the percentage differences at each concentration level for all audits 
during the calendar quarter is calculated using equation 9. The 95 
Percent Probability Limits for the accuracy for the reporting 
organization are calculated using equations 6 and 7.
    5.5 Precision, Accuracy and Bias for Automated and Manual 
PM2.5 Methods.
    (a) Reporting organizations are required to report the data that 
will allow assessments of the following individual quality control 
checks and audits:
    (1) Flow rate audit.
    (2) Collocated samplers, where the duplicate sampler is not an FRM 
device.
    (3) Collocated samplers, where the duplicate sampler is an FRM 
device.

[[Page 229]]

    (4) FRM audits.
    (b) EPA uses the reported results to derive precision, accuracy and 
bias estimates according to the following procedures.
    5.5.1 Flow Rate Audits. The reporting organization shall report both 
the audit standard flow rate and the flow rate indicated by the sampling 
instrument. These results are used by EPA to calculate flow rate 
accuracy and bias estimates.
    5.5.1.1 Accuracy of a Single Sampler - Single Check (Quarterly) 
Basis (di). The percentage difference (di) for a 
single flow rate audit di is calculated using equation 13, 
where Xi represents the audit standard flow rate (known) and 
Yi represents the indicated flow rate, as follows:

                               Equation 13
[GRAPHIC] [TIFF OMITTED] TR18JY97.152

    5.5.1.2 Bias of a Single Sampler - Annual Basis (Dj). For 
an individual particulate sampler j, the average (Dj) of the 
individual percentage differences (di) during the calendar 
year is calculated using equation 14, where nj is the number 
of individual percentage differences produced for sampler j during the 
calendar year, as follows:

                               Equation 14
[GRAPHIC] [TIFF OMITTED] TR18JY97.153

    5.5.1.3 Bias for Each EPA Federal Reference and Equivalent Method 
Designation Employed by Each Reporting Organization - Quarterly Basis 
(Dk,q). For method designation k used by the reporting 
organization, quarter q's single sampler percentage differences 
(di) are averaged using equation 16, where nk,q is 
the number of individual percentage differences produced for method 
designation k in quarter q, as follows:

                               Equation 15
[GRAPHIC] [TIFF OMITTED] TR18JY97.154

    5.5.1.4 Bias for Each Reporting Organization - Quarterly Basis 
(Dq). For each reporting organization, quarter q's single 
sampler percentage differences (di) are averaged using 
equation 16, to produce a single average for each reporting 
organization, where nq is the total number of single sampler 
percentage differences for all federal reference or equivalent methods 
of samplers in quarter q, as follows:

                               Equation 16
[GRAPHIC] [TIFF OMITTED] TR18JY97.155

    5.5.1.5 Bias for Each EPA Federal Reference and Equivalent Method 
Designation Employed by Each Reporting Organization - Annual Basis 
(Dk). For method designation k used by the reporting 
organization, the annual average percentage difference, Dk, 
is derived using equation 17, where Dk,q is the average 
reported for method designation k during the qth quarter, and 
nk,q is the number of the method designation k's monitors 
that were deployed during the qth quarter, as follows:

                               Equation 17
[GRAPHIC] [TIFF OMITTED] TR18JY97.156

    5.5.1.6 Bias for Each Reporting Organization - Annual Basis (D). For 
each reporting organization, the annual average percentage difference, 
D, is derived using equation 18, where Dq is the average 
reported for the reporting organization during the qth quarter, and 
nq is the total number monitors that were deployed during the 
qth quarter. A single annual average is produced for each reporting 
organization. Equation 18 follows:

                               Equation 18
[GRAPHIC] [TIFF OMITTED] TR18JY97.157

    5.5.2 Collocated Samplers, Where the Duplicate Sampler is not an FRM 
Device. (a) At low concentrations, agreement between the measurements of 
collocated samplers may be relatively poor. For this reason, collocated 
measurement pairs are selected for use in the precision calculations 
only when both measurements are above the following limits:
              PM2.5 : 6 [mu]g/m3
(b) Collocated sampler results are used to assess measurement system 
precision. A collocated sampler pair consists of a primary sampler (used 
for routine monitoring) and a duplicate sampler (used as a quality 
control check). Quarterly precision estimates are

[[Page 230]]

calculated by EPA for each pair of collocated samplers and for each 
method designation employed by each reporting organization. Annual 
precision estimates are calculated by EPA for each primary sampler, for 
each EPA Federal reference method and equivalent method designation 
employed by each reporting organization, and nationally for each EPA 
Federal reference method and equivalent method designation.
    5.5.2.1 Percent Difference for a Single Check (di). The 
percentage difference, di, for each check is calculated by 
EPA using equation 19, where Xi represents the concentration 
produced from the primary sampler and Yi represents 
concentration reported for the duplicate sampler, as follows:

                               Equation 19
[GRAPHIC] [TIFF OMITTED] TR18JY97.158

    5.5.2.2 Coefficient of Variation (CV) for a Single Check 
(CVi). The coefficient of variation, CVi, for each 
check is calculated by EPA by dividing the absolute value of the 
percentage difference, di, by the square root of two as shown 
in equation 20, as follows:

                               Equation 20
[GRAPHIC] [TIFF OMITTED] TR18JY97.159

    5.5.2.3 Precision of a Single Sampler - Quarterly Basis 
(CVj,q).
    (a) For particulate sampler j, the individual coefficients of 
variation (CVj,q) during the quarter are pooled using 
equation 21, where nj,q is the number of pairs of 
measurements from collocated samplers during the quarter, as follows:

                               Equation 21
[GRAPHIC] [TIFF OMITTED] TR18JY97.160

    (b) The 90 percent confidence limits for the single sampler's CV are 
calculated by EPA using equations 22 and 23, where X2 
0.05,df and X2 0.95,df are the 0.05 and 
0.95 quantiles of the chi-square (X2) distribution with 
nj,q degrees of freedom, as follows:

                               Equation 22
[GRAPHIC] [TIFF OMITTED] TR18JY97.161

                               Equation 23
[GRAPHIC] [TIFF OMITTED] TR18JY97.162

    5.5.2.4 Precision of a Single Sampler - Annual Basis. For 
particulate sampler j, the individual coefficients of variation, 
CVi, produced during the calendar year are pooled using 
equation 21, where nj is the number of checks made during the 
calendar year. The 90 percent confidence limits for the single sampler's 
CV are calculated by EPA using equations 22 and 23, where X2 
0.05,df and X2 0.95,df are the 0.05 and 
0.95 quantiles of the chi-square (X2) distribution with 
nj degrees of freedom.
    5.5.2.5 Precision for Each EPA Federal Reference Method and 
Equivalent Method Designation Employed by Each Reporting Organization - 
Quarterly Basis (CVk,q).
    (a) For each method designation k used by the reporting 
organization, the quarter's single sampler coefficients of variation, 
CVj,qs, obtained from equation 21, are pooled using equation 
24, where nk,q is the number of collocated primary monitors 
for the designated method (but not collocated with FRM samplers) and 
nj,q is the number of degrees of freedom associated with 
CVj,q, as follows:

                               Equation 24
[GRAPHIC] [TIFF OMITTED] TR18JY97.163

    (b) The number of method CVs produced for a reporting organization 
will equal the number of different method designations having more than 
one primary monitor employed by the organization during the quarter. 
(When exactly one monitor of a specified designation is used by a 
reporting organization, it will be collocated with an FRM sampler.)
    5.5.2.6 Precision for Each Method Designation Employed by Each 
Reporting Organization - Annual Basis (CVk). For each method

[[Page 231]]

designation k used by the reporting organization, the quarterly 
estimated coefficients of variation, CVk,q, are pooled using 
equation 25, where nk,q is the number of collocated primary 
monitors for the designated method during the qth quarter and also the 
number of degrees of freedom associated with the quarter's precision 
estimate for the method designation, CVk,q, as follows:

                               Equation 25
[GRAPHIC] [TIFF OMITTED] TR18JY97.164

    5.5.3 Collocated Samplers, Where the Duplicate Sampler is an FRM 
Device. At low concentrations, agreement between the measurements of 
collocated samplers may be relatively poor. For this reason, collocated 
measurement pairs are selected for use in the precision calculations 
only when both measurements are above the following limits: 
PM2.5: 6 [mu]g/m3. These duplicate sampler results 
are used to assess measurement system bias. Quarterly bias estimates are 
calculated by EPA for each primary sampler and for each method 
designation employed by each reporting organization. Annual precision 
estimates are calculated by EPA for each primary monitor, for each 
method designation employed by each reporting organization, and 
nationally for each method designation.
    5.5.3.1 Accuracy for a Single Check (d'i). The percentage 
difference, d'i, for each check is calculated by EPA using 
equation 26, where Xi represents the concentration produced 
from the FRM sampler taken as the true value and Yi 
represents concentration reported for the primary sampler, as follows:

                               Equation 26
[GRAPHIC] [TIFF OMITTED] TR18JY97.165

    5.5.3.2 Bias of a Single Sampler - Quarterly Basis 
(D'j,q).
    (a) For particulate sampler j, the average of the individual 
percentage differences during the quarter q is calculated by EPA using 
equation 27, where nj,q is the number of checks made for 
sampler j during the calendar quarter, as follows:

                               Equation 27
[GRAPHIC] [TIFF OMITTED] TR18JY97.166

    (b) The standard error, s'j,q, of sampler j's percentage 
differences for quarter q is calculated using equation 28, as follows:

                               Equation 28
[GRAPHIC] [TIFF OMITTED] TR17FE98.007

    (c) The 95 Percent Confidence Limits for the single sampler's bias 
are calculated using equations 29 and 30 where t0.975,df is 
the 0.975 quantile of Student's t distribution with df = 
nj,q-1 degrees of freedom, as follows:

                               Equation 29
[GRAPHIC] [TIFF OMITTED] TR18JY97.168

                               Equation 30
[GRAPHIC] [TIFF OMITTED] TR18JY97.169

    5.5.3.3 Bias of a Single Sampler - Annual Basis (D'j).
    (a) For particulate sampler j, the mean bias for the year is derived 
from the quarterly bias estimates, D'j,q, using equation 31, 
where the variables are as defined for equations 27 and 28, as follows:

                               Equation 31
[GRAPHIC] [TIFF OMITTED] TR18JY97.170

    (b) The standard error of the above estimate, sej' is 
calculated using equation 32, as follows:

[[Page 232]]

                               Equation 32
[GRAPHIC] [TIFF OMITTED] TR18JY97.171

    (c) The 95 Percent Confidence Limits for the single sampler's bias 
are calculated using equations 33 and 34, where t0.975,df is 
the 0.975 quantile of Student's t distribution with df = 
(nj,1 + nj,2 + nj,3 + nj,4-
4) degrees of freedom, as follows:

                               Equation 33
[GRAPHIC] [TIFF OMITTED] TR18JY97.172

                               Equation 34
[GRAPHIC] [TIFF OMITTED] TR18JY97.173

    5.5.3.4 Bias for a Single Reporting Organization (D') - Annual 
Basis. The reporting organizations mean bias is calculated using 
equation 35, where variables are as defined in equations 31 and 32, as 
follows:

                               Equation 35
[GRAPHIC] [TIFF OMITTED] TR18JY97.174

    5.5.4 FRM Audits. FRM Audits are performed once per quarter for 
selected samplers. The reporting organization reports concentration data 
from the primary sampler. Calculations for FRM Audits are similar to 
those for collocated samplers having FRM samplers as duplicates. The 
calculations differ because only one check is performed per quarter.
    5.5.4.1 Accuracy for a Single Sampler, Quarterly Basis 
(di). The percentage difference, di, for each 
check is calculated using equation 26, where Xi represents 
the concentration produced from the FRM sampler and Yi 
represents the concentration reported for the primary sampler. For 
quarter q, the bias estimate for sampler j is denoted Dj,q.
    5.5.4.2 Bias of a Single Sampler - Annual Basis (D'j). 
For particulate sampler j, the mean bias for the year is derived from 
the quarterly bias estimates, Dj,q, using equation 31, where 
nj,q equals 1 because one FRM audit is performed per quarter.
    5.5.4.3. Bias for a Single Reporting Organization - Annual Basis 
(D'). The reporting organizations mean bias is calculated using equation 
35, where variables are as defined in equations 31 and 32.

                   References in Appendix A of Part 58

    (1) Rhodes, R.C. Guideline on the Meaning and Use of Precision and 
Accuracy Data Required by 40 CFR part 58, Appendices A and B. EPA-600/4-
83/023. U.S. Environmental Protection Agency, Research Triangle Park, NC 
27711, June, 1983.
    (2) American National Standard--Specifications and Guidelines for 
Quality Systems for Environmental Data Collection and Environmental 
Technology Programs. ANSI/ASQC E4-1994. January 1995. Available from 
American Society for Quality Control, 611 East Wisconsin Avenue, 
Milwaukee, WI 53202.
    (3) EPA Requirements for Quality Management Plans. EPA QA/R-2. 
August 1994. Available from U.S. Environmental Protection Agency, ORD 
Publications Office, Center for Environmental Research Information 
(CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268.
    (4) EPA Requirements for Quality Assurance Project Plans for 
Environmental Data Operations. EPA QA/R-5. August 1994. Available from 
U.S. Environmental Protection Agency, ORD Publications Office, Center 
for Environmental Research Information (CERI), 26 W. Martin Luther King 
Drive, Cincinnati, OH 45268.
    (5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. 
September 1994. Available from U.S. Environmental Protection Agency, ORD 
Publications Office, Center for Environmental Research Information 
(CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268.
    (6) Quality Assurance Handbook for Air Pollution Measurement 
Systems, Volume 1--A Field Guide to Environmental Quality Assurance. 
EPA-600/R-94/038a. April 1994. Available from U.S. Environmental 
Protection Agency, ORD Publications Office, Center for Environmental 
Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, 
OH 45268.
    (7) Quality Assurance Handbook for Air Pollution Measurement 
Systems, Volume II--Ambient Air Specific Methods EPA-600/R-94/038b. 
Available from U.S. Environmental Protection Agency, ORD Publications 
Office, Center for Environmental Research Information (CERI), 26 W. 
Martin Luther King Drive, Cincinnati, OH 45268.
    (7a) Copies of section 2.12 of the Quality Assurance Handbook for 
Air Pollution Measurement Systems, are available from Department E (MD-
77B), U.S. EPA, Research Triangle Park, NC 27711.
    (8) List of Designated Reference and Equivalent Methods. Available 
from U.S. Environmental Protection Agency, National Exposure Research 
Laboratory, Quality Assurance Branch, MD-77B, Research Triangle Park, NC 
27711.
    (9) Technical Assistance Document for Sampling and Analysis of Ozone 
Precursors.

[[Page 233]]

Atmospheric Research and Exposure Assessment Laboratory, U.S. 
Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 
600/8-91-215. October 1991.
    (10) EPA Traceability Protocol for Assay and Certification of 
Gaseous Calibration Standards. EPA-600/R-93/224. September 1993. 
Available from U.S. Environmental Protection Agency, ORD Publications 
Office, Center for Environmental Research Information (CERI), 26 W. 
Martin Luther King Drive, Cincinnati, OH 45268.
    (11) Paur, R.J. and F.F. McElroy. Technical Assistance Document for 
the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. 
Environmental Protection Agency, Research Triangle Park, NC 27711, 
September, 1979.
    (12) McElroy, F.F. Transfer Standards for the Calibration of Ambient 
Air Monitoring Analyzers for Ozone. EPA-600/4-79-056. U.S. Environmental 
Protection Agency, Research Triangle Park, NC 27711, September, 1979.
    (13) Musick, D.R. The Ambient Air Precision and Accuracy Program: 
1995 Annual Report. EPA-454/R97001. U.S. Environmental Protection 
Agency, Research Triangle Park, NC 27711, February 1997.
    (14) Papp, M.L., J,B., Elkins, D.R., Musick and M.J., Messner, Data 
Quality Objectives for the PM2.5. Monitoring Data, U.S. 
Environmental Protection Agency, Research Triangle Park, NC 27711. In 
preparation.
    (15) Photochemical Assessment Monitoring Stations Implementation 
Manual. EPA-454/B-93-051, U.S. Environmental Protection Agency, Research 
Triangle Park, NC 27711, March 1994.

                          Table A-1 to Appendix A--Minimum Data Assessment Requirements
----------------------------------------------------------------------------------------------------------------
        Method           Assessment Method           Coverage          Minimum Frequency     Parameters Reported
----------------------------------------------------------------------------------------------------------------
Precision:
    Automated Methods  Response check at      Each analyzer          Once per 2 weeks       Actual concentration
     for SO2, NO2,      concentration                                                        \2\ and measured
     O3, and CO         between .08 and .10                                                  concentration \3\
                        ppm (8 & 10 ppm for
                        CO) \2\
 
    Manual Methods:    Collocated samplers    1 site for 1-5 sites   Once every six days    Particle mass
     All methods                              2 sites for 6-20                               concentration
     except PM2.5                              sites                                         indicated by
                                              3 sites 20                          sampler and by
                                               sites (sites with                             collocated sampler
                                               highest conc.)
Accuracy:
    Automated Methods  Response check at      1. Each analyzer       1. Once per year       Actual concentration
     for SO2, NO2,     .03-.08 ppm1,2         2. 25% of analyzers    2. Each calendar        \2\ and measured
     O3, and CO        .15-.20 ppm1,2          (at least 1)           quarter                (indicated)
                       .35-.45 ppm1,2                                                        concentration \3\
                       80-.90 ppm1,2 (if                                                     for each level
                        applicable)
 
    Manual Method