[Title 40 CFR ]
[Code of Federal Regulations (annual edition) - July 1, 2007 Edition]
[From the U.S. Government Printing Office]



[[Page i]]

          

          40


          Parts 136 to 149

                         Revised as of July 1, 2007


          Protection of Environment
          



________________________

          Containing a codification of documents of general 
          applicability and future effect

          As of July 1, 2007
          With Ancillaries
                    Published by
                    Office of the Federal Register
                    National Archives and Records
                    Administration
                    A Special Edition of the Federal Register

[[Page ii]]

          U.S. GOVERNMENT OFFICIAL EDITION NOTICE

          Legal Status and Use of Seals and Logos
          
          
          The seal of the National Archives and Records Administration 
              (NARA) authenticates the Code of Federal Regulations (CFR) as 
              the official codification of Federal regulations established 
              under the Federal Register Act. Under the provisions of 44 
              U.S.C. 1507, the contents of the CFR, a special edition of the 
              Federal Register, shall be judicially noticed. The CFR is 
              prima facie evidence of the original documents published in 
              the Federal Register (44 U.S.C. 1510).

          It is prohibited to use NARA's official seal and the stylized Code 
              of Federal Regulations logo on any republication of this 
              material without the express, written permission of the 
              Archivist of the United States or the Archivist's designee. 
              Any person using NARA's official seals and logos in a manner 
              inconsistent with the provisions of 36 CFR part 1200 is 
              subject to the penalties specified in 18 U.S.C. 506, 701, and 
              1017.

          Use of ISBN Prefix

          This is the Official U.S. Government edition of this publication 
              and is herein identified to certify its authenticity. Use of 
              the 0-16 ISBN prefix is for U.S. Government Printing Office 
              Official Editions only. The Superintendent of Documents of the 
              U.S. Government Printing Office requests that any reprinted 
              edition clearly be labeled as a copy of the authentic work 
              with a new ISBN.

              
              
          U . S . G O V E R N M E N T P R I N T I N G O F F I C E

          ------------------------------------------------------------------

          U.S. Superintendent of Documents  Washington, DC 
              20402-0001

          http://bookstore.gpo.gov

          Phone: toll-free (866) 512-1800; DC area (202) 512-1800

[[Page iii]]




                            Table of Contents



                                                                    Page
  Explanation.................................................       v

  Title 40:
          Chapter I--Environmental Protection Agency 
          (Continued)                                                3
  Finding Aids:
      Material Approved for Incorporation by Reference........     909
      Table of CFR Titles and Chapters........................     935
      Alphabetical List of Agencies Appearing in the CFR......     953
      List of CFR Sections Affected...........................     963

[[Page iv]]





                     ----------------------------

                     Cite this Code: CFR
                     To cite the regulations in 
                       this volume use title, 
                       part and section number. 
                       Thus, 40 CFR 136.1 refers 
                       to title 40, part 136, 
                       section 1.

                     ----------------------------

[[Page v]]



                               EXPLANATION

    The Code of Federal Regulations is a codification of the general and 
permanent rules published in the Federal Register by the Executive 
departments and agencies of the Federal Government. The Code is divided 
into 50 titles which represent broad areas subject to Federal 
regulation. Each title is divided into chapters which usually bear the 
name of the issuing agency. Each chapter is further subdivided into 
parts covering specific regulatory areas.
    Each volume of the Code is revised at least once each calendar year 
and issued on a quarterly basis approximately as follows:

Title 1 through Title 16.................................as of January 1
Title 17 through Title 27..................................as of April 1
Title 28 through Title 41...................................as of July 1
Title 42 through Title 50................................as of October 1

    The appropriate revision date is printed on the cover of each 
volume.

LEGAL STATUS

    The contents of the Federal Register are required to be judicially 
noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie 
evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

    The Code of Federal Regulations is kept up to date by the individual 
issues of the Federal Register. These two publications must be used 
together to determine the latest version of any given rule.
    To determine whether a Code volume has been amended since its 
revision date (in this case, July 1, 2007), consult the ``List of CFR 
Sections Affected (LSA),'' which is issued monthly, and the ``Cumulative 
List of Parts Affected,'' which appears in the Reader Aids section of 
the daily Federal Register. These two lists will identify the Federal 
Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

    Each volume of the Code contains amendments published in the Federal 
Register since the last revision of that volume of the Code. Source 
citations for the regulations are referred to by volume number and page 
number of the Federal Register and date of publication. Publication 
dates and effective dates are usually not the same and care must be 
exercised by the user in determining the actual effective date. In 
instances where the effective date is beyond the cut-off date for the 
Code a note has been inserted to reflect the future effective date. In 
those instances where a regulation published in the Federal Register 
states a date certain for expiration, an appropriate note will be 
inserted following the text.

OMB CONTROL NUMBERS

    The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires 
Federal agencies to display an OMB control number with their information 
collection request.

[[Page vi]]

Many agencies have begun publishing numerous OMB control numbers as 
amendments to existing regulations in the CFR. These OMB numbers are 
placed as close as possible to the applicable recordkeeping or reporting 
requirements.

OBSOLETE PROVISIONS

    Provisions that become obsolete before the revision date stated on 
the cover of each volume are not carried. Code users may find the text 
of provisions in effect on a given date in the past by using the 
appropriate numerical list of sections affected. For the period before 
January 1, 2001, consult either the List of CFR Sections Affected, 1949-
1963, 1964-1972, 1973-1985, or 1986-2000, published in 11 separate 
volumes. For the period beginning January 1, 2001, a ``List of CFR 
Sections Affected'' is published at the end of each CFR volume.

INCORPORATION BY REFERENCE

    What is incorporation by reference? Incorporation by reference was 
established by statute and allows Federal agencies to meet the 
requirement to publish regulations in the Federal Register by referring 
to materials already published elsewhere. For an incorporation to be 
valid, the Director of the Federal Register must approve it. The legal 
effect of incorporation by reference is that the material is treated as 
if it were published in full in the Federal Register (5 U.S.C. 552(a)). 
This material, like any other properly issued regulation, has the force 
of law.
    What is a proper incorporation by reference? The Director of the 
Federal Register will approve an incorporation by reference only when 
the requirements of 1 CFR part 51 are met. Some of the elements on which 
approval is based are:
    (a) The incorporation will substantially reduce the volume of 
material published in the Federal Register.
    (b) The matter incorporated is in fact available to the extent 
necessary to afford fairness and uniformity in the administrative 
process.
    (c) The incorporating document is drafted and submitted for 
publication in accordance with 1 CFR part 51.
    Properly approved incorporations by reference in this volume are 
listed in the Finding Aids at the end of this volume.
    What if the material incorporated by reference cannot be found? If 
you have any problem locating or obtaining a copy of material listed in 
the Finding Aids of this volume as an approved incorporation by 
reference, please contact the agency that issued the regulation 
containing that incorporation. If, after contacting the agency, you find 
the material is not available, please notify the Director of the Federal 
Register, National Archives and Records Administration, Washington DC 
20408, or call 202-741-6010.

CFR INDEXES AND TABULAR GUIDES

    A subject index to the Code of Federal Regulations is contained in a 
separate volume, revised annually as of January 1, entitled CFR Index 
and Finding Aids. This volume contains the Parallel Table of Statutory 
Authorities and Agency Rules (Table I). A list of CFR titles, chapters, 
and parts and an alphabetical list of agencies publishing in the CFR are 
also included in this volume.
    An index to the text of ``Title 3--The President'' is carried within 
that volume.
    The Federal Register Index is issued monthly in cumulative form. 
This index is based on a consolidation of the ``Contents'' entries in 
the daily Federal Register.
    A List of CFR Sections Affected (LSA) is published monthly, keyed to 
the revision dates of the 50 CFR titles.

[[Page vii]]


REPUBLICATION OF MATERIAL

    There are no restrictions on the republication of textual material 
appearing in the Code of Federal Regulations.

INQUIRIES

    For a legal interpretation or explanation of any regulation in this 
volume, contact the issuing agency. The issuing agency's name appears at 
the top of odd-numbered pages.
    For inquiries concerning CFR reference assistance, call 202-741-6000 
or write to the Director, Office of the Federal Register, National 
Archives and Records Administration, Washington, DC 20408 or e-mail 
fedreg.info@nara.gov.

SALES

    The Government Printing Office (GPO) processes all sales and 
distribution of the CFR. For payment by credit card, call toll-free, 
866-512-1800 or DC area, 202-512-1800, M-F, 8 a.m. to 4 p.m. e.s.t. or 
fax your order to 202-512-2250, 24 hours a day. For payment by check, 
write to the Superintendent of Documents, Attn: New Orders, P.O. Box 
371954, Pittsburgh, PA 15250-7954. For GPO Customer Service call 202-
512-1803.

ELECTRONIC SERVICES

    The full text of the Code of Federal Regulations, the LSA (List of 
CFR Sections Affected), The United States Government Manual, the Federal 
Register, Public Laws, Public Papers, Weekly Compilation of Presidential 
Documents and the Privacy Act Compilation are available in electronic 
format at www.gpoaccess.gov/nara (``GPO Access''). For more information, 
contact Electronic Information Dissemination Services, U.S. Government 
Printing Office. Phone 202-512-1530, or 888-293-6498 (toll-free). E-
mail, gpoaccess@gpo.gov.
    The Office of the Federal Register also offers a free service on the 
National Archives and Records Administration's (NARA) World Wide Web 
site for public law numbers, Federal Register finding aids, and related 
information. Connect to NARA's web site at www.archives.gov/federal-
register. The NARA site also contains links to GPO Access.

                              Raymond A. Mosley,
                                    Director,
                          Office of the Federal Register.

July 1, 2007.

[[Page ix]]



                               THIS TITLE

    Title 40--Protection of Environment is composed of thirty-one 
volumes. The parts in these volumes are arranged in the following order: 
parts 1-49, parts 50-51, part 52 (52.01-52.1018), part 52 (52.1019-End), 
parts 53-59, part 60 (60.1-End), part 60 (Appendices), parts 61-62, part 
63 (63.1-63.599), part 63 (63.600-63.1199), part 63 (63.1200-63.1439), 
part 63 (63.1440-63.6175), part 63 (63.6580-63.8830), part 63 (63.8980-
End) parts 64-71, parts 72-80, parts 81-84, part 85-Sec.  86.599-99, 
part 86 (86.600-1-End), parts 87-99, parts 100-135, parts 136-149, parts 
150-189, parts 190-259, parts 260-265, parts 266-299, parts 300-399, 
parts 400-424, parts 425-699, parts 700-789, and part 790 to End. The 
contents of these volumes represent all current regulations codified 
under this title of the CFR as of July 1, 2007.

    Chapter I--Environmental Protection Agency appears in all thirty-one 
volumes. An alphabetical Listing of Pesticide Chemicals Index appears in 
parts 150-189, within part 180. Regulations issued by the Council on 
Environmental Quality, including an Index to Parts 1500 through 1508, 
appear in the volume containing part 790 to End. The OMB control numbers 
for title 40 appear in Sec.  9.1 of this chapter.

    For this volume, Cheryl E. Sirofchuck was Chief Editor. The Code of 
Federal Regulations publication program is under the direction of 
Frances D. McDonald, assisted by Ann Worley.


[[Page 1]]



                   TITLE 40--PROTECTION OF ENVIRONMENT




                  (This book contains parts 136 to 149)

  --------------------------------------------------------------------
                                                                    Part

chapter i--Environmental Protection Agency (Continued)......         136

[[Page 3]]



         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)




  --------------------------------------------------------------------


  Editorial Note: Nomenclature changes to chapter I appear at 65 FR 
47324, 47325, Aug. 2, 2000, and at 66 FR 34375, 34376, June 28, 2001.

                SUBCHAPTER D--WATER PROGRAMS (CONTINUED)
Part                                                                Page
136             Guidelines establishing test procedures for 
                    the analysis of pollutants..............           5
140             Marine sanitation device standard...........         363
141             National primary drinking water regulations.         367
142             National primary drinking water regulations 
                    implementation..........................         619
143             National secondary drinking water 
                    regulations.............................         678
144             Underground injection control program.......         682
145             State UIC program requirements..............         748
146             Underground injection control program: 
                    Criteria and standards..................         761
147             State underground injection control programs         793
148             Hazardous waste injection restrictions......         892
149             Sole source aquifers........................         902

[[Page 5]]



                 SUBCHAPTER D_WATER PROGRAMS (CONTINUED)



PART 136_GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF 

POLLUTANTS--Table of Contents




Sec.
136.1 Applicability.
136.2 Definitions.
136.3 Identification of test procedures.
136.4 Application for alternate test procedures.
136.5 Approval of alternate test procedures.
136.6 Method modifications and analytical requirements.

Appendix A to Part 136--Methods for Organic Chemical Analysis of 
          Municipal and Industrial Wastewater
Appendix B to Part 136--Definition and Procedure for the Determination 
          of the Method Detection Limit--Revision 1.11
Appendix C to Part 136--Inductively Coupled Plasma--Atomic Emission 
          Spectrometric Method for Trace Element Analysis of Water and 
          Wastes Method 200.7
Appendix D to Part 136--Precision and Recovery Statements for Methods 
          for Measuring Metals

    Authority: Secs. 301, 304(h), 307 and 501(a), Pub. L. 95-217, 91 
Stat. 1566, et seq. (33 U.S.C. 1251, et seq.) (the Federal Water 
Pollution Control Act Amendments of 1972 as amended by the Clean Water 
Act of 1977).



Sec. 136.1  Applicability.

    (a) The procedures prescribed herein shall, except as noted in Sec. 
136.5, be used to perform the measurements indicated whenever the waste 
constituent specified is required to be measured for:
    (1) An application submitted to the Administrator, or to a State 
having an approved NPDES program for a permit under section 402 of the 
Clean Water Act of 1977, as amended (CWA), and/or to reports required to 
be submitted under NPDES permits or other requests for quantitative or 
qualitative effluent data under parts 122 to 125 of title 40, and,
    (2) Reports required to be submitted by dischargers under the NPDES 
established by parts 124 and 125 of this chapter, and,
    (3) Certifications issued by States pursuant to section 401 of the 
CWA, as amended.
    (b) The procedure prescribed herein and in part 503 of title 40 
shall be used to perform the measurements required for an application 
submitted to the Administrator or to a State for a sewage sludge permit 
under section 405(f) of the Clean Water Act and for recordkeeping and 
reporting requirements under part 503 of title 40.

[72 FR 14224, Mar. 26, 2007]



Sec. 136.2  Definitions.

    As used in this part, the term:
    (a) Act means the Clean Water Act of 1977, Pub. L. 95-217, 91 Stat. 
1566, et seq. (33 U.S.C. 1251 et seq.) (The Federal Water Pollution 
Control Act Amendments of 1972 as amended by the Clean Water Act of 
1977).
    (b) Administrator means the Administrator of the U.S. Environmental 
Protection Agency.
    (c) Regional Administrator means one of the EPA Regional 
Administrators.
    (d) Director means the Director of the State Agency authorized to 
carry out an approved National Pollutant Discharge Elimination System 
Program under section 402 of the Act.
    (e) National Pollutant Discharge Elimination System (NPDES) means 
the national system for the issuance of permits under section 402 of the 
Act and includes any State or interstate program which has been approved 
by the Administrator, in whole or in part, pursuant to section 402 of 
the Act.
    (f) Detection limit means the minimum concentration of an analyte 
(substance) that can be measured and reported with a 99% confidence that 
the analyte concentration is greater than zero as determined by the 
procedure set forth at appendix B of this part.

[38 FR 28758, Oct. 16, 1973, as amended at 49 FR 43250, Oct. 26, 1984]



Sec. 136.3  Identification of test procedures.

    (a) Parameters or pollutants, for which methods are approved, are 
listed together with test procedure descriptions and references in 
Tables IA, IB, IC, ID, IE, IF, IG, and IH. In the event

[[Page 6]]

of a conflict between the reporting requirements of 40 CFR Parts 122 and 
125 and any reporting requirements associated with the methods listed in 
these tables, the provisions of 40 CFR Parts 122 and 125 are controlling 
and will determine a permittee's reporting requirements. The full text 
of the referenced test procedures are incorporated by reference into 
Tables IA, IB, IC, ID, IE, IF, IG, and IH. The incorporation by 
reference of these documents, as specified in paragraph (b) of this 
section, was approved by the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies of the 
documents may be obtained from the sources listed in paragraph (b) of 
this section. Documents may be inspected at EPA's Water Docket, EPA 
West, 1301 Constitution Avenue, NW., Room B102, Washington, DC 
(Telephone: 202-566-2426); or at the National Archives and Records 
Administration (NARA). For information on the availability of this 
material at NARA, call 202-741-6030, or go to: http://www.archives.gov/ 
federal--register/ code--of--federal--regulations/ ibr--locations.html. 
These test procedures are incorporated as they exist on the day of 
approval and a notice of any change in these test procedures will be 
published in the Federal Register. The discharge parameter values for 
which reports are required must be determined by one of the standard 
analytical test procedures incorporated by reference and described in 
Tables IA, IB, IC, ID, IE, IF, IG, and IH or by any alternate test 
procedure which has been approved by the Administrator under the 
provisions of paragraph (d) of this section and Sec. Sec. 136.4 and 
136.5. Under certain circumstances paragraph (c) of this section, Sec. 
136.5(a) through (d) or 40 CFR 401.13, other additional or alternate 
test procedures may be used.

[[Page 7]]



                                     Table IA--List of Approved Biological Methods for Wastewater and Sewage Sludge
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           Standard methods
       Parameter and units            Method \1\              EPA          18th, 19th, 20th    Standard methods    AOAC, ASTM, USGS          Other
                                                                                  ed.               online
--------------------------------------------------------------------------------------------------------------------------------------------------------
Bacteria:
    1. Coliform (fecal), number   Most Probable       p. 132 \3\........  9221 C E..........  9221 C E-99.......
     per 100 mL or number per      Number (MPN),\5\   1680 \12,14\......
     gram dry weight.              tube 3 dilution,   1681 \12,19\......
                                   or
                                  Membrane filter     p. 124 \3\........  9222 D............  9222 D-97.........  B-0050-85 \5\.....
                                   (MF) \2\, single
                                   step.
    2. Coliform (fecal) in        MPN, 5 tube, 3      p. 132 \3\........  9221 C E..........  9221 C E-99.......
     presence of chlorine,         dilution, or
     number per 100 mL.
                                  MF \2\, single      p. 124 \3\........  9222 D............  9222 D-97.........
                                   step.
    3. Coliform (total), number   MPN, 5 tube, 3      p. 114 \3\........  9221 B............  9221 B-99.........
     per 100 mL.                   dilution, or
                                  MF \2\, single      p. 108 \3\........  9222 B............  9222 B-97.........  B-0025-8 \5\......
                                   step or two step.
    4. Coliform (total), in       MPN, 5 tube, 3      p. 114 \3\........  9221 B............  9221 B-99.........
     presence of chlorine,         dilution, or
     number per 100 mL.
                                  MF \2\ with         p. 111 \3\........  9222 (B+B.5c).....  9222 (B+B.5c)-97..
                                   enrichment.
    5. E. coli, number per 100    MPN \7,9,15\        ..................  9223 B \13\.......  9223 B-97 \13\....  991.15 \11\.......  Colilert[supreg]\1
     mL \20\.                      multiple tube/                                                                                      3,17\
                                   multiple well.                                                                                     Colilert-
                                                                                                                                       18[supreg]\13,16,
                                                                                                                                       17\
                                  MF \2,6,7,8,9\      1603 \21\.........  ..................  ..................  ..................  mColiBlue-
                                   single step.                                                                                        24[supreg]\18\
    6. Fecal streptococci,        MPN, 5 tube 3       p. 139 \3\........  9230 B............  9230 B-93.........
     number per 100 mL.            dilution,.
                                  MF \2\, or........  p. 136 \3\........  9230 C............  9230 C-93.........  B-0055-85 \5\.....
                                  Plate count.......  p. 143 \3\........
    7. Enterococci, number per    MPN \7,9\,          ..................  ..................  ..................  D6503-99 \10\.....  Enterolert[supreg]
     100 mL \20\.                  multiple tube/                                                                                      \13,23\
                                   multiple well.
                                  MF \2,6,7,8,9\      1600 \24\.........
                                   single step.
    8. Salmonella, number per     MPN multiple tube.  1682 \22\.........
     gram dry weight \12\.
Aquatic Toxicity:
    9. Toxicity, acute, fresh     Ceriodaphnia dubia  2002.0 \25\.......
     water organisms, LC 50,       acute.
     percent effluent.
                                  Daphnia puplex and  2021.0 \25\.......
                                   Daphnia magna
                                   acute.

[[Page 8]]

 
                                  Fathead Minnow,     2000.0 \25\.......
                                   Pimephales
                                   promelas, and
                                   Bannerfin shiner,
                                   Cyprinella
                                   leedsi, acute.
                                  Rainbow Trout,      2019.0 \25\.......
                                   Oncorhynchus
                                   mykiss, and brook
                                   trout, Salvelinus
                                   fontinalis, acute.
    10. Toxicity, acute,          Mysid, Mysidopsis   2007.0 \25\.......
     estuarine and marine          bahia, acute.
     organisms of the Atlantic
     Ocean and Gulf of Mexico,
     LC50, percent effluent.
                                  Sheepshead Minnow,  2004.0 \25\.......
                                   Cyprinodon
                                   variegatus, acute.
                                  Silverside,         2006.0 \25\.......
                                   Menidia
                                   beryllina,
                                   Menidia menidia,
                                   and Menidia
                                   peninsulae, acute.
    11. Toxicity, chronic, fresh  Fathead minnow,     1000.0 \26\.......
     water organisms, NOEC or      Pimephales
     IC25, percent effluent.       promelas, larval
                                   survival and
                                   growth.
                                  Fathead minnow,     1001.0 \26\.......
                                   Pimephales
                                   promelas, embryo-
                                   larval survival
                                   and
                                   teratogenicity.
                                  Daphnia,            1002.0 \26\.......
                                   Ceriodaphnia
                                   dubia, survival
                                   and reproduction.
                                  Green alga,         1003.0 \26\.......
                                   Selenastrum
                                   capricornutum,
                                   growth.

[[Page 9]]

 
    12. Toxicity, chronic,        Sheepshead minnow,  1004.0 \27\.......
     estuarine and marine          Cyprinodon
     organisms of the Atlantic     variegatus,
     Ocean and Gulf of Mexico,     larval survival
     NOEC or IC25, percent         and growth.
     effluent.
                                  Sheepshed minnow,   1005.0 \27\.......
                                   Cyprinodon
                                   variegatus,
                                   embryo-larval
                                   survival and
                                   teratogenicity.
                                  Inland silverside,  1006.0 \27\.......
                                   Menidia
                                   beryllina, larval
                                   survival and
                                   growth.
                                  Mysid, Mysidopsis   1007.0 \27\.......
                                   bahia, survival,
                                   growth, and
                                   fecundity.
                                  Sea urchin,         1008.0 \27\.......
                                   Arbacia
                                   punctulata,
                                   fertilization.
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ The method must be specified when results are reported.
\2\ A 0.45 [mu]m membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of
  extractables which could interfere with their growth.
\3\ USEPA. 1978. Microbiological Methods for Monitoring the Environment, Water, and Wastes. Environmental Monitoring and Support Laboratory, U.S.
  Environmental Protection Agency, Cincinnati, OH, EPA/600/8-78/017.
\4\ [Reserved]
\5\ USGS. 1989. U.S. Geological Survey Techniques of Water-Resource Investigations, Book 5, Laboratory Analysis, Chapter A4, Methods for Collection and
  Analysis of Aquatic Biological and Microbiological Samples, U.S. Geological Survey, U.S. Department of the Interior, Reston, VA.
\6\ Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to
  resolve any controversies.
\7\ Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes
  to account for the quality, character, consistency, and anticipated organism density of the water sample.
\8\ When the MF method has been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain
  organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of
  results.
\9\ To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the
  year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA
  alternate test procedure (ATP) guidelines.
\10\ ASTM. 2000, 1999, 1996. Annual Book of ASTM Standards--Water and Environmental Technology. Section 11.02. ASTM International. 100 Barr Harbor
  Drive, West Conshohocken, PA 19428.
\11\ AOAC. 1995. Official Methods of Analysis of AOAC International, 16th Edition, Volume I, Chapter 17. Association of Official Analytical Chemists
  International. 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417.
\12\ Recommended for enumeration of target organism in sewage sludge.
\13\ These tests are collectively known as defined enzyme substrate tests, where, for example, a substrate is used to detect the enzyme [beta]-
  glucuronidase produced by E. coli.
\14\ USEPA. July 2006. Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation Using Lauryl-Tryptose Broth (LTB) and EC
  Medium. US Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-012.

[[Page 10]]

 
\15\ Samples shall be enumerated by the multiple-tube or multiple-well procedure. Using multiple-tube procedures, employ an appropriate tube and
  dilution configuration of the sample as needed and report the Most Probable Number (MPN). Samples tested with Colilert[supreg] may be enumerated with
  the multiple-well procedures, Quanti-Tray[supreg] Quanti-Tray[supreg] 2000, and the MPN calculated from the table provided by the manufacturer.
\16\ Colilert-18[supreg] is an optimized formulation of the Colilert[supreg] for the determination of total coliforms and E. coli that provides results
  within 18 h of incubation at 35 [deg]C rather than the 24 h required for the Colilert[supreg] test and is recommended for marine water samples.
\17\ Descriptions of the Colilert[supreg], Colilert-18[supreg], Quanti-Tray[supreg], and Quanti-Tray[supreg]/2000 may be obtained from IDEXX
  Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092.
\18\ A description of the mColiBlue24[supreg] test, Total Coliforms and E. coli, is available from Hach Company, 100 Dayton Ave., Ames, IA 50010.
\19\ USEPA. July 2006. Method 1681: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using A-1 Medium. U.S. Environmental
  Protection Agency, Office of Water, Washington, DC EPA-821-R-06-013.
\20\ Recommended for enumeration of target organism in wastewater effluent.
\21\ USEPA. July 2006. Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli
  Agar (modified mTEC). U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-011.
\22\ USEPA. July 2006. Method 1682: Salmonella in Sewage Sludge (Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium. U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-014.
\23\ A description of the Enterolert[supreg] test may be obtained from IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092.
\24\ USEPA. July 2006. Method 1600: Enterococci in Water by Membrane Filtration Using membrane-Enterococcus Indoxyl-[beta]-D-Glucoside Agar (mEI). U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-009.
\25\ USEPA. October 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition.
  U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA/821/R-02/012.
\26\ USEPA. October 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Fourth
  Edition, U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA/821/R-02/013.
\27\ USEPA. October 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms.
  Third Edition. U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA/821/R-02/014.


                                                                      Table IB--List of Approved Inorganic Test Procedures
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                            Reference (method number or page)
                                                        ----------------------------------------------------------------------------------------------------------------------------------------
            Parameter                Methodology \58\                             Standard  methods      Standard  methods       Standard  methods
                                                               EPA 35, 52            (18th, 19th)              (20th)                 online                  ASTM             USGS/AOAC/other
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Acidity, as CaCO3, mg/L.......  Electrometric         .....................  2310 B(4a)...........  2310 B(4a)...........  2310 B(4a)-97.........  D1067-92, 02........  I-1020-85 \2\
                                    endpoint or
                                    phenolphthalein
                                    endpoint.
2. Alkalinity, as CaCO3, mg/L....  Electrometric or      .....................  2320 B...............  2320 B...............  2320 B-97.............  D1067-92, 02........  973.43 \3\, I-1030-
                                    Colorimetric                                                                                                                             85 \2\
                                    titration to pH
                                    4.5, manual, or
                                   automatic...........  310.2 (Rev. 1974) \1\  .....................  .....................  ......................  ....................  I-2030-85 \2\
3. Aluminum--Total,\4\ mg/L......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............  ....................  I-3051-85 \2\
                                    \36\.
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............

[[Page 11]]

 
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-9750
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14\3\
                                                          (1994).
                                   Direct Current        .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                    Plasma (DCP) \36\.
                                   Colorimetric          .....................  3500-Al D............  3500-Al B............  3500-Al B-01..........
                                    (Eriochrome cyanine
                                    R).
4. Ammonia (as N), mg/L..........  Manual, distillation  350.1, Rev. 2.0        4500-NH B3...........  4500-NH3 B...........  4500-NH3 B-97.........  ....................  973.49 \3\
                                    (at pH 9.5) \6\       (1993).
                                    followed by:
                                   Nesslerization......  .....................  4500-NH3 C (18th       .....................  ......................  D1426-98, 03 (A)....  973.49 \3\, I-3520-
                                                                                 only).                                                                                      85 \2\
                                   Titration...........  .....................  4500-NH3 C (19th) and  4500-NH3 C...........  4500-NH3 C-97.........
                                                                                 4500-NH3 E (18th).
                                   Electrode...........  .....................  4500-NH3 D or E        4500-NH3 D or E......  4500-NH3 D or E-97....  D1426-98, 03 (B)....
                                                                                 (19th) and 4500-NH3
                                                                                 F or G (18th).
                                   Automated phenate,    350.1 \60\, Rev. 2.0   4500-NH3 G (19th) and  4500-NH3 G...........  4500-NH3 G-97.........  ....................  I-4523-85 \2\
                                    or.                   (1993).                4500-NH3 H (18th).
                                   Automated electrode.  .....................  .....................  .....................  ......................  ....................  See footnote 7
                                   Ion Chromatography..  .....................  .....................  .....................  ......................  D6919-03............
5. Antimony--Total, \4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............
                                    \36\.
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
6. Arsenic--Total, \4\ mg/L......  Digestion \4\         206.5 (Issued 1978)
                                    followed by.          \1\.

[[Page 12]]

 
                                   AA gaseous hydride..  .....................  3114 B 4.d...........  .....................  3114 B 4.d-97.........  D2972-97, 03 (B)....  I-3062-85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D2972-97, 03 (C)....  I-4063-98 \49\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   Colorimetric (SDDC).  .....................  3500-As C............  3500-As B............  3500-As B-97..........  D2972-97, 03 (A)....  I-3060-85
7. Barium--Total,\4\ mg/L........  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............  ....................  I-3084-85 \2\
                                    \36\.
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D4382-95, 02........
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP \36\............  .....................  .....................  .....................  ......................  ....................  See footnote \34\
8. Beryllium--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............  D3645-93 (88), 03     I-3095-85 \2\
                                                                                                                                                       (A).
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D3645-93 (88), 03
                                                                                                                                                       (B).
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP, or.............  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\

[[Page 13]]

 
                                   Colorimetric          .....................  3500-Be D............
                                    (aluminon).
9. Biochemical oxygen demand       Dissolved Oxygen      .....................  5210 B...............  5210 B...............  5210 B-01.............  ....................  973.44,\3\ p.
 (BOD5), mg/L.                      Depletion.                                                                                                                               17.\9\, I-1578-78
                                                                                                                                                                             \8\
10. Boron--Total,\37\ mg/L.......  Colorimetric          .....................  4500-B B.............  4500-B B.............  4500-B B-00...........  ....................  I-3112-85 \2\
                                    (curcumin).
                                   ICP/AES, or.........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B 99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   DCP.................  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote 34
11. Bromide, mg/L................  Titrimetric.........  .....................  .....................  .....................  ......................  D1246-95, 99 (C)....  p. S44.\10\
                                   ....................  .....................  .....................  .....................  ......................  ....................  I-1125-85 \2\
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
12. Cadmium--Total,\4\ mg/L......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D3557-95, 02 (A or    974.27,\3\ p.
                                    \36\.                                                                                                              B).                   37.\9\, I-3135-85
                                                                                                                                                                             \2\ or I-3136-85
                                                                                                                                                                             \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D3557-95, 02 (D)....  I-4138-89 \51\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-1472-85\2\ or I-
                                                          (1994).                                                                                                            4471-97 \50\
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP \36\............  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Voltametry \11\, or.  .....................  .....................  .....................  ......................  D3557-95, 02 (C)....
                                   Colorimetric          .....................  3500-Cd D............
                                    (Dithizone).
13. Calcium--Total,\4\ mg/L......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  D511-93, 03(B)......  I-3152-85 \2\
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   DCP, or.............  .....................  .....................  .....................  ......................  ....................  See footnote \34\

[[Page 14]]

 
                                   Titrimetric (EDTA)..  .....................  3500-Ca D............  3500-Ca B............  3500-Ca B-97..........  D511-93, 03(A)......
                                   Ion Chromatography..  .....................  .....................  .....................  ......................  D6919-03............
14. Carbonaceous biochemical       Dissolved Oxygen      .....................  5210 B...............  5210 B...............  5210 B-01.............
 oxygen demand (CBOD5), mg/L \12\.  Depletion with
                                    nitrification
                                    inhibitor.
15. Chemical oxygen demand (COD),  Titrimetric.........  410.3 (Rev. 1978) \1\  5220 C...............  5220 C...............  5220 C-97.............  D1252-95, 00 (A)....  973.46 \3\, p. 17
 mg/L.                                                                                                                                                                       \9\ I-3560-85 \2\
                                   Spectrophotometric,   410.4, Rev. 2.0        5220 D...............  5220 D...............  5220 D-97.............  D1252-95, 00 (B)....  See footnotes \13,\
                                    manual or automatic.  (1993).                                                                                                            \14\. I-3561-85 \2\
16. Chloride, mg/L...............  Titrimetric: (silver  .....................  4500-Cl-B............  4500-Cl-B............  4500-Cl-B-97..........  D512-89(99) (B).....  I-1183-85 \2\
                                    nitrate) or.
                                   (Mercuric nitrate)..  .....................  4500-Cl-C............  4500-Cl-C............  4500-Cl-C-97..........  D512-89 (99) (A)....  973.51 \3\, I-1184-
                                                                                                                                                                             85 \2\
                                   Colorimetric: manual  .....................  .....................  .....................  ......................  ....................  I-1187-85 \2\
                                    or.
                                   Automated             .....................  4500-Cl-E............  4500-Cl-E............  4500-Cl-E-97..........  ....................  I-2187-85 \2\
                                    (Ferricyanide).
                                   Potentiometric        .....................  4500-Cl-D............  4500-Cl-D............  4500-Cl-D-97..........
                                    Titration.
                                   Ion Selective         .....................  .....................  .....................  ......................  D512-89(99)(C)......
                                    Electrode.
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
17. Chlorine--Total residual, mg/  Amperometric direct,  .....................  4500-Cl D............  4500-Cl D............  4500-Cl D-00..........  D1253-86 (96), 03...
 L; Titrimetric.                    or.
                                   Amperometric direct   .....................  4500-Cl E............  4500-Cl E............  4500-Cl E-00..........
                                    (low level).
                                   Iodometric direct...  .....................  4500-Cl B............  4500-Cl B............  4500-Cl B-00..........
                                   Back titration ether  .....................  4500-Cl C............  4500-Cl C............  4500-Cl C-00..........
                                    end-point \15\ or.
                                   DPD-FAS.............  .....................  4500-Cl F............  4500-Cl F............  4500-Cl F-00..........

[[Page 15]]

 
                                   Spectrophotometric,   .....................  4500-Cl G............  4500-Cl G............  4500-Cl G-00..........
                                    DPD or.
                                   Electrode...........  .....................  .....................  .....................  ......................  ....................  See footnote \16\
18. Chromium VI dissolved, mg/L..  0.45-micron
                                    Filtration followed
                                    by:
                                   AA chelation-         .....................  3111 C...............  .....................  3111 C-99.............  ....................  I-1232-85
                                    extraction or.
                                   Ion Chromatography..  218.6, Rev. 3.3        3500-Cr E............  3500-Cr C............  3500-Cr C-01..........  D5257-97............  993.23
                                                          (1994).
                                   Colorimetric          .....................  3500-Cr D............  3500-Cr B............  3500-Cr B-01..........  D1687-92, 02 (A)....  I-1230-85
                                    (Diphenyl-carbazide
                                    ).
19. Chromium--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  D1687-92, 02 (B)....  974.27 \3\, I-3236-
                                    \36\.                                                                                                                                    85 \2\
                                   AA chelation-         .....................  3111 C...............  .....................  3111 C-99.............
                                    extraction.
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D1687-92, 02 (C)....  I-3233-93 \46\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP,\36\ or.........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500-Cr D............  3500-Cr B............  3500-Cr B-01..........
                                    (Diphenyl-carbazide
                                    ).
20. Cobalt--Total,\4\ mg/L.......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D3558-94, 03 (A or    p. 37 \9\, I-3239-85
                                                                                                                                                       B).                   \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D3558-94, 03 (C)....  I-4243-89 \51\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP.................  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\

[[Page 16]]

 
21. Color, platinum cobalt units   Colorimetric (ADMI),  .....................  2120 E...............  2120 E...............  ......................  ....................  See footnote \18\
 or dominant wavelength, hue,       or.
 luminance purity.
                                   (Platinum cobalt),    .....................  2120 B...............  2120 B...............  2120 B-01.............  ....................  I-1250-85 \2\
                                    or.
                                   Spectrophotometric..  .....................  2120 C...............  2120 C...............
22. Copper--Total,\4\ mg/L.......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D1688-95, 02 (A or    974.27 \3\ p. 37 \9\
                                    \36\.                                                                                                              B).                   I-3270-85 \2\ or I-
                                                                                                                                                                             3271-85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D1688-95, 02 (C)....  I-4274-89 \51\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP \36\ or.........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500-Cu D............  3500-Cu B............  3500-Cu B-99..........
                                    (Neocuproine) or.
                                   (Bicinchoninate)....  .....................  3500-Cu E............  3500-Cu C............  3500-Cu C-99..........  ....................  See footnote \19\
23. Cyanide--Total, mg/L.........  Automated             .....................  .....................  .....................  ......................  ....................  Kelada-01 \55\
                                    Distillation and
                                    Colorimetry, or.
                                   Manual distillation   335.4, Rev. 1.0        4500-CN-C............  4500-CN-C............  ......................  D2036-98(A).........  10-204-00-1-X \56\
                                    with MgCl2 followed   (1993) \57\.
                                    by:
                                   Titrimetric or......  .....................  4500-CN-D............  4500-CN-D............  4500-CN-D-99..........  ....................  p. 22 \9\
                                   Spectrophotometric,   .....................  4500-CN-E............  4500-CN-E............  4500-CN-E-99..........  D2036-98(A).........  I-3300-85
                                    manual or.
                                   Automated \20\ or...  335.4, Rev. 1.0        .....................  .....................  ......................  ....................  10-204-00-1-X \56\,
                                                          (1993) \57\.                                                                                                       I-4302-85 \2\

[[Page 17]]

 
                                   Ion Selective         .....................  4500-CN-F............  4500-CN-F............  4500-CN-F-99..........  D2036-98(A).........
                                    Electrode.
24. Available Cyanide, mg/L......  Cyanide Amenable to   .....................  4500-CN-G............  4500-CN-G............  4500-CN-G-99..........  D2036-98(B).........
                                    Chlorination
                                    (CATC); Manual
                                    distillation with
                                    MgCl2 followed by
                                    Titrimetric or
                                    Spectrophotometric.
                                   Flow injection and    .....................  .....................  .....................  ......................  D6888-04............  OIA-1677 \44\
                                    ligand exchange,
                                    followed by
                                    amperometry \61\.
                                   Automated             .....................  .....................  .....................  ......................  ....................  Kelada-01 \55\
                                    Distillation and
                                    Colorimetry.
25. Fluoride--Total, mg/L........  Manual                .....................  4500-F-B.............  4500-F-B.............  4500-F-B-97...........
                                    distillation\6\
                                    followed by:
                                   Electrode, manual or  .....................  4500-F-B.............  4500-F-B.............  4500-F-C-97...........  D1179-93, 99 (B)....
                                   Automated...........  .....................  .....................  .....................  ......................  ....................  I-4327-85 \2\
                                   Colorimetric,         .....................  4500-F-D.............  4500-F-D.............  4500-F-D-97...........  D1179-93, 99 (A)....
                                    (SPADNS) or.
                                   Automated complexone  .....................  4500-F-E.............  4500-F-E.............  4500-F-E-97...........
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97,03.........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
26. Gold--Total,\4\ mg/L.........  Digestion \4\
                                    followed by:
                                   AA direct             .....................  3111 B...............  .....................  3111 B-99.............
                                    aspiration, or.
                                   AA furnace, or......  231.2 (Rev. 1978) \1\
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
27. Hardness--Total, as CaCO3, mg/ Automated             130.1 (Issued 1971)
 L.                                 colorimetric,.        \1\.
                                   Titrimetric (EDTA)    .....................  2340 B or C..........  2340 B or C..........  2340 B or C-97........  D1126-86(92), 02....  973.5 2B \3\, I-1338-
                                    or.                                                                                                                                      85\2\

[[Page 18]]

 
                                   Ca plus Mg as their
                                    carbonates, by
                                    inductively coupled
                                    plasma or AA direct
                                    aspiration. (See
                                    Parameters 13 and
                                    33)..
28. Hydrogen ion (pH), pH units..  Electrometric         .....................  4500-H+ B............  4500-H+ B............  4500-H+ B-00..........  D1293-84 (90), 99 (A  973.41.\3\, I-1586-
                                    measurement or.                                                                                                    or B).                85 \2\
                                   Automated electrode.  150.2 (Dec. 1982) \1\  .....................  .....................  ......................  ....................  See footnote\21\, I-
                                                                                                                                                                             2587-85\2\
29. Iridium--Total,\4\ mg/L......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............
                                    or.
                                   AA furnace..........  235.2 (Issued 1978)
                                                          \1\.
30. Iron--Total,\4\ mg/L.........  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D1068-96, 03 (A or    974.27 \3\, I-3381-
                                    \36\.                                                                                                              B).                   85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D1068-96, 03 (C)....
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   DCP \36\ or.........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500-Fe D............  3500-Fe B............  3500-Fe B-97..........  D1068-96, 03 (D)....  See footnote \22\
                                    (Phenanthroline).
31. Kjeldahl Nitrogen \5\--Total,  Digestion and         .....................  4500-Norg B or C and   4500-Norg B or C and   4500-Norg B or C-97     D3590-89, 02 (A)....
 (as N), mg/L.                      distillation                                 4500-NH3 B.            4500-NH3 B.            and 4500-NH3 B-97.
                                    followed by: \20\

[[Page 19]]

 
                                   Titration or........  .....................  4500-NH3 C (19th) and  4500-NH3 C...........  4500-NH3 C-97.........  D3590-89, 02 (A)....  973.48 \3\
                                                                                 4500-NH 3 E (18th).
                                   Nesslerization or...  .....................  4500-NH3 C (18th       .....................  ......................  D3590-89, 02 (A)....
                                                                                 Only).
                                   Electrode...........  .....................  4500-NH3 F or G        4500-NH3 D or E......  4500-NH3 D or E-97....
                                                                                 (18th) and 4500-NH3
                                                                                 D or E (19th).
                                   Automated phenate     351.1 (Rev. 1978) \1\  .....................  .....................  ......................  ....................  I-4551-78 \8\
                                    colorimetric.
                                   Semi-automated block  351.2, Rev. 2.0        .....................  .....................  ......................  D3590-89, 02 (B)....  I-4515-91 \45\
                                    digestor              (1993).
                                    colorimetric.
                                   Manual or block       .....................  .....................  .....................  ......................  D3590-89, 02 (A)....
                                    digestor
                                    potentiometric.
                                   Block digester,       .....................  .....................  .....................  ......................  ....................  See footnote \39\
                                    followed by Auto
                                    distillation and
                                    Titration, or.
                                   Nesslerization, or..  .....................  .....................  .....................  ......................  ....................  See footnote \40\
                                   Flow injection gas    .....................  .....................  .....................  ......................  ....................  See footnote \41\
                                    diffusion.
32. Lead--Total,\4\ mg/L.........  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D3559-96, 03 (A or    974.27 \3\, I-3399-
                                    \36\.                                                                                                              B).                   85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D3559-96, 03 (D)....  I-4403-89 \51\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP \36\............  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Voltametry \11\ or..  .....................  .....................  .....................  ......................  D3559-96, 03 (C)....
                                   Colorimetric          .....................  3500-Pb D............  3500-Pb B............  3500-Pb B-97..........
                                    (Dithizone).
33. Magnesium--Total,\4\ mg/L....  Digestion \4\
                                    followed by:

[[Page 20]]

 
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  D511-93, 03(B)......  974.27 \3\, I-3447-
                                                                                                                                                                             85 \2\
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   DCP or..............  .....................  .....................  .....................  ......................  ....................  See footnote \34\
                                   Gravimetric.........  .....................  3500-Mg D............
                                   Ion Chromatography..  .....................  .....................  .....................  ......................  D6919-03............
34. Manganese--Total,\4\ mg/L....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  D858-95, 02 (A or B)  974.27 \3\, I-3454-
                                    \36\.                                                                                                                                    85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D858-95, 02 (C).....
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP36, or...........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500--Mn D...........  3500-Mn B............  3500-Mn B-99..........  ....................  920.203 \3\
                                    (Persulfate), or.
                                   (Periodate).........  .....................  .....................  .....................  ......................  ....................  See footnote \23\
35. Mercury--Total \4\, mg/L.....  Cold vapor, manual    245.1, Rev. 3.0        3112 B...............  .....................  3112 B-99.............  D3223-97, 02........  977.22 \3\, I-3462-
                                    or.                   (1994).                                                                                                            85\2\
                                   Automated...........  245.2 (Issued 1974)..
                                   Cold vapor atomic     245.7 Rev. 2.0 (2005)
                                    fluorescence          \59\.
                                    spectrometry
                                    (CVAFS).
                                   Purge and Trap CVAFS  1631E \43\...........
36. Molybdenum--Total \4\, mg/L..  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............  ....................  I-3490-85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  ....................  I-3492-96 \47\

[[Page 21]]

 
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
37. Nickel--Total,\4\ mg/L.......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D1886-90, 94 (98) (A  I-3499-85 \2\
                                    \36\.                                                                                                              or B).
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D1886-90, 94 (98)     I-4503-89 \51\
                                                                                                                                                       (C).
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP \36\, or........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500-Ni D (17th
                                    (heptoxime).                                 Edition).
38. Nitrate (as N), mg/L.........  Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
                                   Ion Selective         .....................  4500-NO3 -D..........  4500-NO3 -D..........  4500-NO3 -D-00........
                                    Electrode.
                                   Colorimetric          352.1 \1\............  .....................  .....................  ......................  ....................  973.50 \3\, 419D
                                    (Brucine sulfate),                                                                                                                       \1,\ \7\, p. 28 \9\
                                    or.
                                   Nitrate-nitrite N
                                    minus Nitrite N
                                    (See parameters 39
                                    and 40)..
39. Nitrate-nitrite (as N), mg/L.  Cadmium reduction,    .....................  4500-NO3-E...........  4500-NO3-E...........  4500-NO3-E-00.........  D3867-99(B).........
                                    manual or.
                                   Automated, or.......  353.2, Rev. 2.0        4500-NO3-F...........  4500-NO3-F...........  4500-NO3-F-00.........  D3867-99(A).........  I-4545-85 \2\
                                                          (1993).
                                   Automated hydrazine.  .....................  4500-NO3-H...........  4500-NO3-H...........  4500-NO3-H-00.........
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97............  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).

[[Page 22]]

 
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
40. Nitrite (as N), mg/L.........  Spectrophotometric:   .....................  4500-NO2-B...........  4500-NO2-B...........  4500-NO2-B-00.........  ....................  See footnote \25\
                                    Manual or.
                                   Automated             .....................  .....................  .....................  ......................  ....................  I-4540-85 \2\
                                    (Diazotization).
                                   Automated (*bypass    353.2, Rev. 2.0        4500-NO3-F...........  4500-NO3-F...........  4500-NO3-F-00.........  D3867-99(A).........  I-4545-85 \2\
                                    cadmium reduction).   (1993).
                                   Manual (*bypass       .....................  4500-NO3-E...........  4500-NO3-E...........  4500-NO3-E-00.........  D3867-99(B).........
                                    cadmium reduction).
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev.2 \54\
41. Oil and grease--Total          Hexane extractable    1664A \42\...........  .....................  5520 B \38\..........  5520 B-01 \38\........
 recoverable, mg/L.                 material (HEM): n-
                                    Hexane extraction
                                    and gravimetry.
                                   Silica gel treated    1664A \42\...........
                                    HEM (SGT-HEM):
                                    Silica gel
                                    treatment and
                                    gravimetry..
42. Organic carbon--Total (TOC),   Combustion or         .....................  5310 B, C, or D......  5310 B, C, or D......  5310 B, C, or D-00....  D2579-93 (A or B)...  973.47,\3\ p. 14
 mg/L.                              oxidation.                                                                                                                               \24\
43. Organic nitrogen (as N), mg/L  Total Kjeldahl N
                                    (Parameter 31)
                                    minus ammonia N
                                    (Parameter 4).
44. Orthophosphate (as P), mg/L..  Ascorbic acid
                                    method:.
                                   Automated, or.......  365.1, Rev. 2.0        4500-P F.............  4500-P F.............  ......................  ....................  973.56 \3\, I-4601-
                                                          (1993).                                                                                                            85 \2\

[[Page 23]]

 
                                   Manual single         .....................  4500-P E.............  4500-P E.............  ......................  D515-88(A)..........  973.55 \3\
                                    reagent.
                                   Manual two reagent..  365.3 (Issued
                                                          1978)\1\.
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
45. Osmium--Total \4\, mg/L......  Digestion \4\
                                    followed by:
                                   AA direct             .....................  3111 D...............  .....................  3111 D-99.............
                                    aspiration, or.
                                   AA furnace..........  252.2 (Issued 1978)
                                                          \1\.
46. Oxygen, dissolved, mg/L......  Winkler (Azide        .....................  4500-O C.............  4500-O C.............  4500-O C-01...........  D888-92, 03 (A).....  973.4 5B \3\, I-1575-
                                    modification), or.                                                                                                                       78 \8\
                                   Electrode...........  .....................  4500-O G.............  4500-O G.............  4500-O G-01...........  D888-92, 03 (B).....  I-1576-78 \8\
47. Palladium--Total,\4\ mg/L....  Digestion \4\
                                    followed by:
                                   AA direct             .....................  3111 B...............  .....................  3111 B-99.............  ....................  p. S27 \10\
                                    aspiration, or.
                                   AA furnace..........  253.2 \1\ (Issued      .....................  .....................  ......................  ....................  p. S28 \10\
                                                          1978).
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
48. Phenols, mg/L................  Manual distillation   420.1 \1\ (Rev. 1978)  .....................  .....................  ......................  ....................  See footnote \27\
                                    \26\ Followed by:
                                   Colorimetric (4AAP)   420.1 \1\ (Rev. 1978)  .....................  .....................  ......................  ....................  See footnote \27\
                                    manual, or.
                                   Automated...........  420.4 Rev. 1.0 (1993)
49. Phosphorus (elemental), mg/L.  Gas-liquid            .....................  .....................  .....................  ......................  ....................  See footnote \28\
                                    chromatography.
50. Phosphorus--Total, mg/L......  Persulfate digestion  .....................  4500-P B.5...........  4500-P B.5...........  ......................  ....................  973.55 \3\
                                    followed by: \20\
                                   Manual or...........  365.3 \1\ (Issued      4500-P E.............  4500-P E.............  ......................  D515-88(A)..........
                                                          1978).
                                   Automated ascorbic    365.1 Rev. 2.0 (1993)  4500-P F.............  4500-P F.............  ......................  ....................  973.56 \3\, I-4600-
                                    acid reduction.                                                                                                                          85 \2\
                                   Semi-automated block  365.4 \1\ (Issued      .....................  .....................  ......................  D515-88(B)..........  I-4610-91 \48\
                                    digestor.             1974).

[[Page 24]]

 
51. Platinum--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............
                                   AA furnace..........  255.2 \1\............
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
52. Potassium--Total,\4\ mg/L....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  ....................  973.53 \3\, I-3630-
                                                                                                                                                                             85 \2\
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   Flame photometric,    .....................  3500-K D.............  3500-K B.............  3500-K B-97...........
                                    or.
                                   Colorimetric........  .....................  .....................  .....................  ......................  ....................  317 B \17\
                                   Ion Chromatography..  .....................  .....................  .....................  ......................  D6919-03............
53. Residue--Total, mg/L.........  Gravimetric, 103-     .....................  2540 B...............  2540 B...............  2540 B-97.............  ....................  I-3750-85 \2\
                                    105[deg].
54. Residue--filterable, mg/L....  Gravimetric,          .....................  2540 C...............  2540 C...............  2540 C-97.............  ....................  I-1750-85 \2\
                                    180[deg].
55. Residue--non-filterable        Gravimetric, 103-105  .....................  2540 D...............  2540 D...............  2540 D-97.............  ....................  I-3765-85 \2\
 (TSS), mg/L.                       [deg]C post washing
                                    of residue.
56. Residue--settleable, mg/L....  Volumetric, (Imhoff   .....................  2540 F...............  2540 F...............  2540 F-97.............
                                    cone), or
                                    gravimetric.
57. Residue--Volatile, mg/L......  Gravimetric, 550      160.4 \1\............  .....................  .....................  ......................  ....................  I-3753-85 \2\
                                    [deg]C.
58. Rhodium--Total,\4\ mg/L......  Digestion \4\
                                    followed by:
                                   AA direct             .....................  3111 B...............  .....................  3111 B-99.............
                                    aspiration, or.
                                   AA furnace..........  265.2 \1\............
59. Ruthenium--Total,\4\ mg/L....  Digestion \4\
                                    followed by:
                                   AA direct             .....................  3111 B...............  .....................  3111 B-99.............
                                    aspiration, or.

[[Page 25]]

 
                                   AA furnace..........  267.2 \1\............
60. Selenium--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  D3859-98, 03 (B)....  I-4668-98 \49\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   AA gaseous hydride..  .....................  3114 B...............  .....................  3114 B-97.............  D3859-98, 03 (A)....  I-3667-85 \2\
61. Silica--Dissolved,\37\ mg/L..  0.45 micron
                                    filtration followed
                                    by:
                                   Colorimetric, Manual  .....................  4500-Si D............  4500-SiO2 C..........  4500-SiO2C-97.........  D859-94, 00.........  I-1700-85 \2\
                                    or.
                                   Automated             .....................  .....................  .....................  ......................  ....................  I-2700-85 \2\
                                    (Molybdosilicate),
                                    or.
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
62. Silver--Total,4, 31 mg/L.....  Digestion 4, 29
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  ....................  974.27 \3\, p. 37
                                                                                                                                                                             \9\, I-3720-85 \2\
                                   AA furnace..........  .....................  3113 B...............  .....................  3113 B-99.............  ....................  I-4724-89 \51\
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
63. Sodium--Total,\4\ mg/L.......  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  ....................  973.54 \3\, I-3735-
                                                                                                                                                                             85 \2\
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   DCP, or.............  .....................  .....................  .....................  ......................  ....................  See footnote \34\
                                   Flame photometric...  .....................  3500-Na D............  3500-Na B............  3500-Na B-97..........
                                   Ion Chromatography..  .....................  .....................  .....................  ......................  D 6919-03...........

[[Page 26]]

 
64. Specific conductance,          Wheatstone bridge...  120.1 \1\ (Rev. 1982)  2510 B...............  2510 B...............  2510 B-97.............  D1125-95 (99) (A)...  973.40 \3\, I-2781-
 micromhos/cm at 25 [deg]C.                                                                                                                                                  85 \2\
65. Sulfate (as SO4), mg/L.......  Automated             375.2, Rev. 2.0
                                    colorimetric.         (1993).
                                   Gravimetric.........  .....................  4500-SO4 \2\-C or D..  4500-SO4 \2\-C or D..  ......................  ....................  925.54 \3\
                                   Turbidimetric.......  .....................  .....................  .....................  ......................  D516-90, 02.........  426C \3\0
                                   Ion Chromatography..  300.0, Rev 2.1 (1993)  4110 B...............  4110 B...............  4110 B-00.............  D4327-97, 03........  993.30 \3\
                                                          and 300.1, Rev 1.0
                                                          (1997).
                                   CIE/UV..............  .....................  .....................  .....................  ......................  ....................  D6508, Rev. 2 \54\
66. Sulfide (as S), mg/L.........  Titrimetric           .....................  4500-S \2\-F (19th)    4500-S \2\-F.........  4500-S \2\-F-00.......  ....................  I-3840-85 \2\
                                    (iodine), or.                                4500-S \2\-E (18th).
                                   Colorimetric          .....................  4500-S \2\-D.........  4500-S \2\-D.........  4500-S \2\-D-00.......
                                    (methylene blue).
                                   Ion Selective         .....................  4500-S \2\-G.........  4500-S \2\-G.........  4500-S \2\-G-00.......  D4658-03............
                                    Electrode.
67. Sulfite (as SO3), mg/L.......  Titrimetric (iodine-  .....................  4500-SO3 \2\-B.......  4500-SO3 \2\-B.......  4500-SO3 \2\-B-00.....
                                    iodate).
68. Surfactants, mg/L............  Colorimetric          .....................  5540 C...............  5540 C...............  5540 C-00.............  D2330-88, 02........
                                    (methylene blue).
69. Temperature, [deg]C..........  Thermometric........  .....................  2550 B...............  2550 B...............  2550 B-00.............  ....................  See footnote \32\
70. Thallium--Total, \4\ mg/L....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............
                                   AA furnace..........  279.2 \1\ (Issued
                                                          1978).
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).

[[Page 27]]

 
71. Tin--Total,\4\ mg/L..........  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B...............  .....................  3111 B-99.............  ....................  I-3850-78 \8\
                                   AA furnace, or......  .....................  3113 B...............  .....................  3113 B-99.............
                                   STGFAA..............  200.9, Rev. 2.2
                                                          (1994).
                                   ICP/AES.............  200.7, Rev. 4.4
                                                          (1994).
72. Titanium--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............
                                   AA furnace..........  283.2 \1\ (Issued
                                                          1978).
                                   DCP.................  .....................  .....................  .....................  ......................  ....................  See footnote \34\
73. Turbidity, NTU \53\..........  Nephelometric.......  180.1, Rev. 2.0        2130 B...............  2130 B...............  2130 B-01.............  D1889-94, 00........  I-3860-85 \2\
                                                          (1993).
74. Vanadium--Total,\4\ mg/L.....  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 D...............  .....................  3111 D-99.............
                                   AA furnace..........  .....................  .....................  .....................  ......................  D3373-93, 03........
                                   ICP/AES.............  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99.............  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP, or.............  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric (Gallic  .....................  3500-V D.............  3500-V B.............  3500-V B-97...........
                                    Acid).
75. Zinc -Total \4\, mg/L........  Digestion \4\
                                    followed by:
                                   AA direct aspiration  .....................  3111 B or C..........  .....................  3111 B or C-99........  D1691-95, 02 (A or    974.27 \3\, p. 37
                                    \36\.                                                                                                              B).                   \9\, I-3900-85 \2\
                                   AA furnace..........  289.2 \1\ (Issued
                                                          1978).
                                   ICP/AES \36\........  200.7, Rev. 4.4        3120 B...............  3120 B...............  3120 B-99 \59\........  ....................  I-4471-97 \50\
                                                          (1994).
                                   ICP/MS..............  200.8, Rev. 5.4        .....................  .....................  ......................  D5673-03............  993.14 \3\
                                                          (1994).
                                   DCP,\36\ or.........  .....................  .....................  .....................  ......................  D4190-94, 99........  See footnote \34\
                                   Colorimetric          .....................  3500-Zn E............
                                    (Dithizone) or.
                                   (Zincon)............  .....................  3500-Zn F............  3500-Zn B............  3500-Zn B-97..........  ....................  See footnote \33\
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Table 1B Notes:

[[Page 28]]

 
\1\ ``Methods for Chemical Analysis of Water and Wastes,'' Environmental Protection Agency, Environmental Monitoring Systems Laboratory-Cincinnati (EMSL-CI), EPA-600/4-79-020 (NTIS PB 84-
  128677), Revised March 1983 and 1979 where applicable.
\2\ Fishman, M. J., et al. ``Methods for Analysis of Inorganic Substances in Water and Fluvial Sediments,'' U.S. Department of the Interior, Techniques of Water-Resource Investigations of the
  U.S. Geological Survey, Denver, CO, Revised 1989, unless otherwise stated.
\3\ ``Official Methods of Analysis of the Association of Official Analytical Chemists,'' Methods Manual, Sixteenth Edition, 4th Revision, 1998.
\4\ For the determination of total metals (which are equivalent to total recoverable metals) the sample is not filtered before processing. A digestion procedure is required to solubilize
  analytes in suspended material and to break down organic-metal complexes (to convert the analyte to a detectable form for colorimetric analysis). For non-platform graphite furnace atomic
  absorption determinations a digestion using nitric acid (as specified in Section 4.1.3 of Methods for the Chemical Analysis of Water and Wastes) is required prior to analysis. The procedure
  used should subject the sample to gentle, acid refluxing and at no time should the sample be taken to dryness. For direct aspiration flame atomic absorption determinations (FLAA) a
  combination acid (nitric and hydrochloric acids) digestion is preferred prior to analysis. The approved total recoverable digestion is described as Method 200.2 in Supplement I of ``Methods
  for the Determination of Metals in Environmental Samples'' EPA/600R-94/111, May, 1994, and is reproduced in EPA Methods 200.7, 200.8, and 200.9 from the same Supplement. However, when using
  the gaseous hydride technique or for the determination of certain elements such as antimony, arsenic, selenium, silver, and tin by non-EPA graphite furnace atomic absorption methods, mercury
  by cold vapor atomic absorption, the noble metals and titanium by FLAA, a specific or modified sample digestion procedure may be required and in all cases the referenced method write-up
  should be consulted for specific instruction and/or cautions. For analyses using inductively coupled plasma-atomic emission spectrometry (ICP-AES), the direct current plasma (DCP) technique
  or the EPA spectrochemical techniques (platform furnace AA, ICP-AES, and ICP-MS) use EPA Method 200.2 or an approved alternate procedure (e.g., CEM microwave digestion, which may be used
  with certain analytes as indicated in Table IB); the total recoverable digestion procedures in EPA Methods 200.7, 200.8, and 200.9 may be used for those respective methods. Regardless of the
  digestion procedure, the results of the analysis after digestion procedure are reported as ``total'' metals.
\5\ Copper sulfate may be used in place of mercuric sulfate.
\6\ Manual distillation is not required if comparability data on representative effluent samples are on file to show that this preliminary distillation step is not necessary: however, manual
  distillation will be required to resolve any controversies.
\7\ Ammonia, Automated Electrode Method, Industrial Method Number 379-75 WE, dated February 19, 1976, Bran & Luebbe (Technicon) Auto Analyzer II, Bran & Luebbe Analyzing Technologies, Inc.,
  Elmsford, NY 10523.
\8\ The approved method is that cited in ``Methods for Determination of Inorganic Substances in Water and Fluvial Sediments'', USGS TWRI, Book 5, Chapter A1 (1979).
\9\ American National Standard on Photographic Processing Effluents, April 2, 1975. Available from ANSI, 25 West 43rd st., New York, NY 10036.
\10\ ``Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency,'' Supplement to the Fifteenth Edition of Standard Methods for the Examination of
  Water and Wastewater (1981).
\11\ The use of normal and differential pulse voltage ramps to increase sensitivity and resolution is acceptable.
\12\ Carbonaceous biochemical oxygen demand (CBOD5) must not be confused with the traditional BOD5 test method which measures ``total BOD.'' The addition of the nitrification inhibitor is not
  a procedural option, but must be included to report the CBOD5 parameter. A discharger whose permit requires reporting the traditional BOD5 may not use a nitrification inhibitor in the
  procedure for reporting the results. Only when a discharger's permit specifically states CBOD5 is required can the permittee report data using a nitrification inhibitor.
\13\ OIC Chemical Oxygen Demand Method, Oceanography International Corporation, 1978, 512 West Loop, P.O. Box 2980, College Station, TX 77840.
\14\ Chemical Oxygen Demand, Method 8000, Hach Handbook of Water Analysis, 1979, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.
\15\ The back titration method will be used to resolve controversy.
\16\ Orion Research Instruction Manual, Residual Chlorine Electrode Model 97-70, 1977, Orion Research Incorporated, 840 Memorial Drive, Cambridge, MA 02138. The calibration graph for the Orion
  residual chlorine method must be derived using a reagent blank and three standard solutions, containing 0.2, 1.0, and 5.0 mL 0.00281 N potassium iodate/100 mL solution, respectively.
\17\ The approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 14th Edition, 1976.
\18\ National Council of the Paper Industry for Air and Stream Improvement, Inc., Technical Bulletin 253, December 1971.
\19\ Copper, Biocinchoinate Method, Method 8506, Hach Handbook of Water Analysis, 1979, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.
\20\ When using a method with block digestion, this treatment is not required.
\21\ Hydrogen ion (pH) Automated Electrode Method, Industrial Method Number 378-75WA, October 1976, Bran & Luebbe (Technicon) Autoanalyzer II. Bran & Luebbe Analyzing Technologies, Inc.,
  Elmsford, NY 10523.
\22\ Iron, 1,10-Phenanthroline Method, Method 8008, 1980, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.
\23\ Manganese, Periodate Oxidation Method, Method 8034, Hach Handbook of Wastewater Analysis, 1979, pages 2-113 and 2-117, Hach Chemical Company, Loveland, CO 80537.

[[Page 29]]

 
\24\ Wershaw, R. L.,et al., ``Methods for Analysis of Organic Substances in Water,'' Techniques of Water-Resources Investigation of the U.S. Geological Survey, Book 5, Chapter A3, (1972
  Revised 1987) p. 14.
\25\ Nitrogen, Nitrite, Method 8507, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.
\26\ Just prior to distillation, adjust the sulfuric-acid-preserved sample to pH 4 with 1 + 9 NaOH.
\27\ The approved method is cited in Standard Methods for the Examination of Water and Wastewater, 14th Edition. The colorimetric reaction is conducted at a pH of 10.00.2. The approved methods are given on pp 576-81 of the 14th Edition: Method 510A for distillation, Method 510B for the manual colorimetric procedure, or Method 510C for the manual
  spectrometric procedure.
\28\ R.F. Addison and R. G. Ackman, ``Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography,'' Journal of Chromatography, Vol. 47, No.3, pp. 421-426, 1970.
\29\ Approved methods for the analysis of silver in industrial wastewaters at concentrations of 1 mg/L and above are inadequate where silver exists as an inorganic halide. Silver halides such
  as the bromide and chloride are relatively insoluble in reagents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosulfate and sodium hydroxide to pH of 12.
  Therefore, for levels of silver above 1 mg/L, 20 mL of sample should be diluted to 100 mL by adding 40 mL each of 2 M Na2S2O3 and NaOH. Standards should be prepared in the same manner. For
  levels of silver below 1 mg/L the approved method is satisfactory.
\30\ The approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 15th Edition.
\31\ For samples known or suspected to contain high levels of silver (e.g., in excess of 4 mg/L), cyanogen iodide should be used to keep the silver in solution for analysis. Prepare a cyanogen
  iodide solution by adding 4.0 mL of concentrated NH4OH, 6.5 g of KCN, and 5.0 mL of a 1.0 N solution of I2 to 50 mL of reagent water in a volumetric flask and dilute to 100.0 mL. After
  digestion of the sample, adjust the pH of the digestate to >7 to prevent the formation of HCN under acidic conditions. Add 1 mL of the cyanogen iodide solution to the sample digestate and
  adjust the volume to 100 mL with reagent water (NOT acid). If cyanogen iodide is added to sample digestates, then silver standards must be prepared that contain cyanogen iodide as well.
  Prepare working standards by diluting a small volume of a silver stock solution with water and adjusting the pH>7 with NH4OH. Add 1 mL of the cyanogen iodide solution and let stand 1 hour.
  Transfer to a 100-mL volumetric flask and dilute to volume with water.
\32\ Stevens, H.H., Ficke, J. F., and Smoot, G. F., ``Water Temperature--Influential Factors, Field Measurement and Data Presentation,'' Techniques of Water-Resources Investigations of the
  U.S. Geological Survey, Book 1, Chapter D1, 1975.
\33\ Zinc, Zincon Method, Method 8009, Hach Handbook of Water Analysis, 1979, pages 2-231 and 2-333, Hach Chemical Company, Loveland, CO 80537.
\34\ ``Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes, Method AES0029,'' 1986--Revised 1991, Thermo Jarrell Ash Corporation,
  27 Forge Parkway, Franklin, MA 02038
\35\ Precision and recovery statements for the atomic absorption direct aspiration and graphite furnace methods, and for the spectrophotometric SDDC method for arsenic are provided in Appendix
  D of this part titled, ``Precision and Recovery Statements for Methods for Measuring Metals.''
\36\ Microwave-assisted digestion may be employed for this metal, when analyzed by this methodology. ``Closed Vessel Microwave Digestion of Wastewater Samples for Determination of Metals'',
  CEM Corporation, P.O. Box 200, Matthews, NC 28106-0200, April 16, 1992. Available from the CEM Corporation.
\37\ When determining boron and silica, only plastic, PTFE, or quartz laboratory ware may be used from start until completion of analysis.
\38\ Only use n-hexane extraction solvent when determining Oil and Grease parameters--Hexane Extractable Material (HEM), or Silica Gel Treated HEM (analogous to EPA Method 1664A). Use of other
  extraction solvents (e.g., those in the 18th and 19th editions) is prohibited.
\39\ Nitrogen, Total Kjeldahl, Method PAI-DK01 (Block Digestion, Steam Distillation, Titrimetric Detection), revised 12/22/94, OI Analytical/ALPKEM, P.O. Box 9010, College Station, TX 77842.
\40\ Nitrogen, Total Kjeldahl, Method PAI-DK02 (Block Digestion, Steam Distillation, Colorimetric Detection), revised 12/22/94, OI Analytical/ALPKEM, P.O. Box 9010, College Station, TX 77842.
\41\ Nitrogen, Total Kjeldahl, Method PAI-DK03 (Block Digestion, Automated FIA Gas Diffusion), revised 12/22/94, OI Analytical/ALPKEM, P.O. Box 9010, College Station, TX 77842.
\42\ Method 1664, Revision A ``n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and
  Gravimetry'' EPA-821-R-98-002, February 1999. Available at NTIS, PB-121949, U.S. Department of Commerce, 5285 Port Royal, Springfield, VA 22161.
\43\ USEPA. 2001. Method 1631, Revision E, ``Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry'' September 2002, Office of Water, U.S.
  Environmental Protection Agency (EPA-821-R-02-024). The application of clean techniques described in EPA's draft Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality
  Criteria Levels (EPA-821-R-96-011) are recommended to preclude contamination at low-level, trace metal determinations.
\44\ Available Cyanide, Method OIA-1677, ``Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry,'' ALPKEM, A Division of OI Analytical, P.O. Box 9010, College Station, TX
  77842-9010.
\45\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Ammonia Plus Organic Nitrogen by a Kjeldahl Digestion Method,'' Open File Report
  (OFR) 00-170.

[[Page 30]]

 
\46\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Chromium in Water by Graphite Furnace Atomic Absorption Spectrophotometry,'' Open
  File Report (OFR) 93-449.
\47\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Molybdenum by Graphite Furnace Atomic Absorption Spectrophotometry,'' Open File
  Report (OFR) 97-198.
\48\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Total Phosphorus by Kjeldahl Digestion Method and an Automated Colorimetric Finish
  That Includes Dialysis'' Open File Report (OFR) 92-146.
\49\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Arsenic and Selenium in Water and Sediment by Graphite Furnace-Atomic Absorption
  Spectrometry'' Open File Report (OFR) 98-639.
\50\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Elements in Whole-water Digests Using Inductively Coupled Plasma-Optical Emission
  Spectrometry and Inductively Coupled Plasma-Mass Spectrometry,'' Open File Report (OFR) 98-165.
\51\ ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Inorganic and Organic Constituents in Water and Fluvial Sediment,'' Open File
  Report (OFR) 93-125.
\52\ All EPA methods, excluding EPA Method 300.1, are published in ``Methods for the Determination of Metals in Environmental Samples,'' Supplement I, National Exposure Risk Laboratory-
  Cincinnati (NERL-CI), EPA/600/R-94/111, May 1994; and ``Methods for the Determination of Inorganic Substances in Environmental Samples,'' NERL-CI, EPA/600/R-93/100, August, 1993. EPA Method
  300.1 is available from http://www.epa.gov/ safewater/methods/ pdfs/met300.pdf.
\53\ Styrene divinyl benzene beads (e.g., AMCO-AEPA-1 or equivalent) and stabilized formazin (e.g., Hach StablCalTM or equivalent) are acceptable substitutes for formazin.
\54\ Method D6508, Rev. 2, ``Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte,'' available from
  Waters Corp, 34 Maple St., Milford, MA, 01757, Telephone: 508/482-2131, Fax: 508/482-3625.
\55\ Kelada-01, ``Kelada Automated Test Methods for Total Cyanide, Acid Dissociable Cyanide, and Thiocyanate,'' EPA 821-B-01-009, Revision 1.2, August 2001, National Technical Information
  Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 [Order Number PB 2001-108275]. The toll free telephone number is: 800-553-6847. Note: A 450-W UV lamp may be used in this method
  instead of the 550-W lamp specified if it provides performance within the quality control (QC) acceptance criteria of the method in a given instrument. Similarly, modified flow cell
  configurations and flow conditions may be used in the method, provided that the QC acceptance criteria are met.
\56\ QuikChem Method 10-204-00-1-X, ``Digestion and Distillation of Total Cyanide in Drinking and Wastewaters using MICRO DIST and Determination of Cyanide by Flow Injection Analysis'' is
  available from Lachat Instruments 6645 W. Mill Road, Milwaukee, WI 53218, Telephone: 414-358-4200.
\57\ When using sulfide removal test procedures described in Method 335.4, reconstitute particulate that is filtered with the sample prior to distillation.
\58\ Unless otherwise stated, if the language of this table specifies a sample digestion and/or distillation ``followed by'' analysis with a method, approved digestion and/or distillation are
  required prior to analysis.
\59\ Method 245.7, Rev. 2.0, ``Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry,'' February 2005, EPA-821-R-05-001, available from the U.S. EPA Sample Control Center (operated
  by CSC), 6101 Stevenson Avenue, Alexandria, VA 22304, Telephone: 703-461-2100, Fax: 703-461-8056.
\60\ The use of EDTA may decrease method sensitivity in some samples. Analysts may omit EDTA provided that all method specified quality control acceptance criteria are met.
\61\ Samples analyzed for available cyanide using Methods OIA-1677 or D6888-04 that contain particulate matter may be filtered only after the ligand exchange reagents have been added to the
  samples, because the ligand exchange process converts complexes containing available cyanide to free cyanide, which is not removed by filtration. Analysts are further cautioned to limit the
  time between the addition of the ligand exchange reagents and sample analysis to no more than 30 minutes to preclude settling of materials in samples.


                                                         Table IC--List of Approved Test Procedures for Non-Pesticide Organic Compounds
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                               EPA method number \2,\ \7\                                                       Other approved methods
                                  --------------------------------------------------------------------------------------------------------------------------------------------------------------
          Parameter \1\                                                                    Standard Methods
                                        GC               GC/MS              HPLC             [Edition(s)]         Standard Methods  Online             ASTM                      Other
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Acenaphthene..................           610  625, 1625B...........           610  6440 B [18th, 19th, 20th]  .........................  D4657-92 (99)............  See footnote \9\, p. 27

[[Page 31]]

 
2. Acenaphthylene................           610  625, 1625B...........           610  6410 B, 6440 B, [18th,     6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
3. Acrolein......................           603  624 \4\, 1624B.......
4. Acrylonitrile.................           603  624 \4\, 1624B.......
5. Anthracene....................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
6. Benzene.......................           602  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th,19th], 6200 C
                                                                                       [20th] and 6220 B
                                                                                       [18th,19th].
7. Benzidine.....................  ............  625 \5\, 1625B.......           605  .........................  .........................  .........................  See footnote \3\, p.1
8. Benzo(a)anthracene............           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
9. Benzo(a)pyrene................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
10. Benzo(b)fluoranthene.........           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
11. Benzo(g,h,i) perylene........           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
12. Benzo(k) fluoranthene........           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
13. Benzyl chloride..............  ............  .....................  ............  .........................  .........................  .........................  See footnote \3\, p. 130:
                                                                                                                                                                        See footnote \6\, p.
                                                                                                                                                                        S102
14. Benzyl butyl phthalate.......           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
15. Bis(2-chloroethoxy) methane..           611  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
16. Bis(2-chloroethyl) ether.....           611  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
17. Bis(2-ethylhexyl) phthalate..           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
18. Bromodichloro-methane........           601  624, 1624B...........  ............  6200 C [20th] and 6230 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 B
                                                                                       [20th] and 6210 B [18th,
                                                                                       19th].
19. Bromoform....................           601  624, 1624B...........  ............  6200 C [20th] and 6230 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 B
                                                                                       [20th] and 6210 B [18th,
                                                                                       19th].

[[Page 32]]

 
20. Bromomethane.................           601  624, 1624B...........  ............  6200 C [20th] and 6230 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 B
                                                                                       [20th] and 6210 B [18th,
                                                                                       19th].
21. 4-Bromophenyl phenyl ether...           611  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
22. Carbon tetrachloride.........           601  624, 1624B...........  ............  6200 C [20th] and 6230 B   6200 C-97................  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th].
23. 4-Chloro-3-methyl phenol.....           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
24. Chlorobenzene................      601, 602  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6220 B [18th,
                                                                                       19th], 6200 C [20th] and
                                                                                       6230 B [18th, 19th].
25. Chloroethane.................           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
26. 2-Chloroethylvinyl ether.....           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
27. Chloroform...................           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].

[[Page 33]]

 
28. Chloromethane................           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th] 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
29. 2-Chloronaph-thalene.........           612  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
30. 2-Chlorophenol...............           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B(00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
31. 4-Chlorophenyl phenyl ether..           611  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
32. Chrysene.....................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
33. Dibenzo(a,h)an-thracene......           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
34. Dibromochloro-methane........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th] 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
35. 1,2-Dichloro-benzene.........      601, 602  624, 1625B...........  ............  6200 C [20th] and 6220 B   6200 C-97................  .........................  See footnote \9\, p. 27
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
36. 1,3-Dichloro-benzene.........      601, 602  624, 1625B...........  ............  6200 C [20th] and 6220 B   6200 C-97................  .........................  See footnote \9\, p. 27
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
37. 1,4-Dichloro-benzene.........      601, 602  624, 1625B...........  ............  6200 C [20th] and 6220 B   6200 C-97................  .........................  See footnote \9\, p. 27
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
38. 3,3-Dichloro-benzidine.......  ............  625, 1625B...........           605  6410 B [18th, 19th, 20th]  6410 B-00................
39. Dichlorodifluoro-methane.....           601  .....................  ............  6200 C [20th] and 6230 B   6200 C-97................
                                                                                       [18th, 19th].

[[Page 34]]

 
40. 1,1-Dichloroethane...........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
41. 1,2-Dichloroethane...........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
42. 1,1-Dichloroethene...........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
43. trans-1,2-Dichloro-ethene....           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
44. 2,4-Dichlorophenol...........           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
45. 1,2-Dichloro-propane.........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
46. cis-1,3-Dichloro-propene.....           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
47. trans-1,3-Dichloro-propene...           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].

[[Page 35]]

 
48. Diethyl phthalate............           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
49. 2,4-Dimethylphenol...........           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
50. Dimethyl phthalate...........           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
51. Di-n-butyl phthalate.........           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
52. Di-n-octyl phthalate.........           606  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
53. 2,3-Dinitrophenol............           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  .........................
                                                                                       19th, 20th].
54. 2,4-Dinitrotoluene...........           609  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
55. 2,6-Dinitrotoluene...........           609  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
56. Epichlorohydrin..............  ............  .....................  ............  .........................  .........................  .........................  See footnote \3\, p. 130;
                                                                                                                                                                        See footnote \6\, p.
                                                                                                                                                                        S102
57. Ethylbenzene.................           602  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........  .........................  .........................
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6220 B [18th,
                                                                                       19th].
58. Fluoranthene.................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
59. Fluorene.....................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
60. 1,2,3,4,6,7,8-Heptachloro-     ............  1613B \10\...........
 dibenzofuran.
61. 1,2,3,4,7,8,9-Heptachloro-     ............  1613B \10\...........
 dibenzofuran.
62. 1,2,3,4,6,7,8-                 ............  1613B \10\...........
 Heptachlorodibenzo-p-dioxin.
63. Hexachlorobenzene............           612  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
64. Hexachloro-butadiene.........           612  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
65. Hexachlorocyclo-pentadiene...           612  625 \5\, 1625B.......  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27

[[Page 36]]

 
66. 1,2,3,4,7,8-                   ............  1613B \10\...........
 Hexachlorodibenzofuran.
67. 1,2,3,6,7,8-                   ............  1613B \10\...........
 Hexachlorodibenzofuran.
68. 1,2,3,7,8,9-                   ............  1613B \10\...........
 Hexachlorodibenzofuran.
69. 2,3,4,6,7,8-                   ............  1613B \10\...........
 Hexachlorodibenzofuran.
70. 1,2,3,4,7,8-Hexachlorodibenzo- ............  1613B \10\...........
 p-dioxin.
71. 1,2,3,6,7,8-Hexachlorodibenzo- ............  1613B \10\...........
 p-dioxin.
72. 1,2,3,7,8,9-Hexachlorodibenzo- ............  1613B \10\...........
 p-dioxin 1613B \10\.
73. Hexachloroethane.............           612  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
74. Ideno(1,2,3-cd) pyrene.......           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
75. Isophorone...................           609  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
76. Methylene chloride...........           601  624, 1624B...........  ............  6200 C [20th] and 6230 B   6200 C-97................  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th].
77. 2-Methyl-4,6-dinitrophenol...           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
78. Naphthalene..................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
79. Nitrobenzene.................           609  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27

[[Page 37]]

 
80. 2-Nitrophenol................           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
81. 4-Nitrophenol................           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
82. N-Nitrosodimethylamine.......           607  6255, 1625B..........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
83. N-Nitrosodi-n-propylamine....           607  6255, 1625B..........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
84. N-Nitrosodiphenylamine.......           607  6255, 1625B..........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \9\, p. 27
85. Octachlorodibenzofuran.......  ............  1613B \10\*..........
86. Octachlorodibenzo-p-dioxin...  ............  1613B \10\...........
87. 2,2'-Oxybis(2-chloropropane)            611  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................
 [also known as bis(2-
 chloroisopropyl) ether].
88. PCB-1016.....................           608  625..................  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 43;
                                                                                                                                                                        See footnote \8\
89. PCB-1221.....................           608  625..................  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 43;
                                                                                                                                                                        See footnote \8\
90. PCB-1232.....................           608  625..................  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 43;
                                                                                                                                                                        See footnote \8\
91. PCB-1242.....................           608  625..................  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 43;
                                                                                                                                                                        See footnote \8\
92. PCB-1248.....................           608  625..................
93. PCB-1254.....................           608  625..................  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 43;
                                                                                                                                                                        See footnote \8\
94. PCB-1260.....................           608  625..................  ............  6410 B, 6630 B [18th,      6410 B-00................  .........................  See footnote 3, p. 43;
                                                                                       19th, 20th].                                                                     See footnote 8
95. 1,2,3,7,8-Pentachloro-         ............  1613B\10\............
 dibenzofuran.
96. 2,3,4,7,8-Pentachloro-         ............  1613B\10\............
 dibenzofuran.
97. 1,2,3,7,8,-Pentachlorodibenzo- ............  1613B\10\............
 p-dioxin.

[[Page 38]]

 
98. Pentachlorophenol............           604  625, 1625B...........  ............  6410 B, 6630 B [18th,      6410 B-00................  .........................  See footnote \3\, p. 140;
                                                                                       19th, 20th].                                                                     See footnote \9\, p. 27
99. Phenanthrene.................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
100. Phenol......................           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
101. Pyrene......................           610  625, 1625B...........           610  6410 B, 6440 B [18th,      6410 B-00................  D4657-92 (99)............  See footnote \9\, p. 27
                                                                                       19th, 20th].
102. 2,3,7,8-Tetra-                ............  1613B10..............
 chlorodibenzofuran.
103. 2,3,7,8-Tetra-chlorodibenzo-  ............  613, 625 \5a\, 1613B
 p-dioxin.                                        \10\.
104. 1,1,2,2-Tetra-chloro ethane.           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
105. Tetrachloroethene...........           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........  .........................  See footnote \3\, p. 130
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
106. Toluene.....................           602  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6220 B [18th,
                                                                                       19th].
107. 1,2,4-Trichloro-benzene.....           612  625, 1625B...........  ............  6410 B [18th, 19th, 20th]  6410 B-00................  .........................  See footnote \3\, p. 130;
                                                                                                                                                                        See footnote \9\, p. 27
108. 1,1,1-Trichloro-ethane......           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].

[[Page 39]]

 
109. 1,1,2-Trichloro-ethane......           601  624, 1624B...........        6200 B  6200 B and C-97..........  .........................  See footnote \3\, p. 130.
                                                                          [20th] and
                                                                              6210 B
                                                                              [18th,
                                                                         19th], 6200
                                                                        C [20th] and
                                                                              6230 B
                                                                        [18th, 19th]
110. Trichloroethene.............           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
111. Trichlorofluoro-methane.....           601  624..................  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C
                                                                                       [20th] and 6230 B [18th,
                                                                                       19th].
112. 2,4,6-Trichlorophenol.......           604  625, 1625B...........  ............  6410 B, 6420 B [18th,      6410 B-00, 6420 B-00.....  .........................  See footnote \9\, p. 27
                                                                                       19th, 20th].
113. Vinyl chloride..............           601  624, 1624B...........  ............  6200 B [20th] and 6210 B   6200 B and C-97..........
                                                                                       [18th, 19th], 6200 C [20th] and
                                                                                       6230 B [18th, 19th].
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ All parameters are expressed in micrograms per liter ([mu]g/L) except for Method 1613B in which the parameters are expressed in picograms per liter (pg/L).
\2\ The full text of Methods 601-613, 624, 625, 1624B, and 1625B, are given at Appendix A, ``Test Procedures for Analysis of Organic Pollutants,'' of this Part 136. The full text of Method
  1613B is incorporated by reference into this Part 136 and is available from the National Technical Information Services as stock number PB95-104774. The standardized test procedure to be
  used to determine the method detection limit (MDL) for these test procedures is given at Appendix B, ``Definition and Procedure for the Determination of the Method Detection Limit,'' of this
  Part 136.
\3\ ``Methods for Benzidine: Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater,'' U.S. Environmental Protection Agency, September, 1978.
\4\ Method 624 may be extended to screen samples for Acrolein and Acrylonitrile. However, when they are known to be present, the preferred method for these two compounds is Method 603 or
  Method 1624B.
\5\ Method 625 may be extended to include benzidine, hexachlorocyclopentadiene, N-nitrosodimethylamine, and N-nitrosodiphenylamine. However, when they are known to be present, Methods 605,
  607, and 612, or Method 1625B, are preferred methods for these compounds.
\5a\ 625, screening only.
\6\ ``Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency,'' Supplement to the Fifteenth Edition of Standard Methods for the Examination of
  Water and Wastewater (1981).
\7\ Each analyst must make an initial, one-time demonstration of their ability to generate acceptable precision and accuracy with Methods 601-603, 624, 625, 1624B, and 1625B (See Appendix A of
  this Part 136) in accordance with procedures each in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis must spike and analyze 10% (5% for methods 624
  and 625 and 100% for methods 1624B and 1625B) of all samples to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of
  any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect. The results should be reported, but cannot be used to
  demonstrate regulatory compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
\8\ ``Organochlorine Pesticides and PCBs in Wastewater Using EmporeTM Disk'' 3M Corporation Revised 10/28/94.
\9\ USGS Method 0-3116-87 from ``Methods of Analysis by U.S. Geological Survey National Water Quality Laboratory--Determination of Inorganic and Organic Constituents in Water and Fluvial
  Sediments,'' U.S. Geological Survey, Open File Report 93-125.

[[Page 40]]

 
\10\ Analysts may use Fluid Management Systems, Inc. PowerPrep system in place of manual cleanup provided that the analysis meet the requirements of Method 1613B (as specified in Section 9 of
  the method) and permitting authorities.


                                                                  Table ID--List of Approved Test Procedures for Pesticides \1\
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                           EPA \2,\    Standard Methods 18th,
            Parameter                     Method             \7\           19th, 20th Ed.       Standard Methods  Online            ASTM                                Other
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Aldrin........................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96 (2002).........   27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
2. Ametryn.......................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\, p
                                                                                                                                                     S68
3. Aminocarb.....................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 94; See footnote \6\,
                                                                                                                                                     p. S16
4. Atraton.......................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68
5. Atrazine......................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68; See footnote \9\
6. Azinphos methyl...............  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 25; See footnote \6\,
                                                                                                                                                     p. S51
7. Barban........................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
8. [alpha]-BHC...................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \8\
                                                                                                                          D5812-96(02)............
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
9. [beta]-BHC....................  GC..................          608  6630 C..................  ........................  D3086-90,...............  See footnote \8\
                                                                                                                          D5812-96(02)............
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
10. [delta]-BHC..................  GC..................          608  6630 C..................  ........................  D3086-90,...............  See footnote \8\
                                                                                                                          D5812-96(02)............
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
11. [gamma]-BHC (Lindane)........  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
                                   ....................
12. Captan.......................  GC..................  ...........  6630 B..................  ........................  D3086-90,...............  See footnote \3\, p. 7
                                                                                                                          D5812-96(02)............
13. Carbaryl.....................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 94, See footnote \6\,
                                                                                                                                                     p. S60
14. Carbo-phenothion.............  GC..................  ...........  ........................  ........................  ........................  See footnote \4\, p. 27; See footnote \6\,
                                                                                                                                                     p. S73
15. Chlordane....................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\

[[Page 41]]

 
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
16. Chloro-propham...............  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64.
17. 2,4-D........................  GC..................  ...........  6640 B..................  ........................  ........................  See footnote \3\, p. 115; See footnote \4\,
                                                                                                                                                     p. 40
18. 4,4[min]-DDD.................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
19. 4,4[min]-DDE.................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
20. 4,4[min]-DDT.................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
21. Demeton-O....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 25; See footnote \6\,
                                                                                                                                                     p. S51
22. Demeton-S....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 25; See footnote \6\,
                                                                                                                                                     p. S51
23. Diazinon.....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 25; See footnote \4\,
                                                                                                                                                     p. 27; See footnote \6\, p. S51
24. Dicamba......................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 115
25. Dichlofen-thion..............  GC..................  ...........  ........................  ........................  ........................  See footnote \4\, p. 27; See footnote \6\,
                                                                                                                                                     p. S73
26. Dichloran....................  GC..................  ...........  6630 B & C..............  ........................  ........................  See footnote \3\, p. 7
27. Dicofol......................  GC..................  ...........  ........................  ........................  D3086-90,...............
                                                                                                                          D5812-96(02)............
28. Dieldrin.....................  GC..................          608  6630 B & C..............  ........................  ........................  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                                                     27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
29. Dioxathion...................  GC..................  ...........  ........................  ........................  ........................  See footnote \4\, p. 27; See footnote \6\,
                                                                                                                                                     p. S73
30. Disulfoton...................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 25; See footnote \6\,
                                                                                                                                                     p. S51
31. Diuron.......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
32. Endosulfan I.................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
33. Endosulfan II................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \8\
                                                                                                                          D5812-96(02)............
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
34. Endosulfan Sulfate...........  GC..................          608  6630 C..................  ........................  ........................  See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............

[[Page 42]]

 
35. Endrin.......................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                          D5812-96(02)............   27; See footnote \8\
                                   GC/MS...............      625 \5\  6410 B..................  6410 B-00...............
36. Endrin aldehyde..............  GC..................          608  ........................  ........................  ........................  See footnote \8\
                                   GC/MS...............          625
37. Ethion.......................  GC..................  ...........  ........................  ........................  ........................  See footnote \4\, p. 27; See footnote \6\,
                                                                                                                                                     p. S73
38. Fenuron......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
39. Fenuron-TCA..................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
40. Heptachlor...................  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                   GC/MS...............          625  6410 B..................  6410 B-00...............  D5812-96(02)............   27; See footnote \8\
41. Heptachlor epoxide...........  GC..................          608  6630 B & C..............  ........................  D3086-90,...............  See footnote \3\, p. 7; See footnote \4\, p.
                                   GC/MS...............          625  6410 B..................  6410 B-00...............  D5812- 96(02)...........   27; See footnote \6\, p. S73; See footnote
                                                                                                                                                     \8\
42. Isodrin......................  GC..................  ...........  ........................  ........................  ........................  See footnote \4\, p. 27; See footnote \6\,
                                                                                                                                                     p. S73
43. Linuron......................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
44. Malathion....................  GC..................  ...........  6630 C..................  ........................  ........................  See footnote \3\, p. 25; See footnote \4\,
                                                                                                                                                     p. 27; See footnote \6\, p. S51
45. Methiocarb...................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 94; See footnote \6\,
                                                                                                                                                     p. S60
46. Methoxy-chlor................  GC..................  ...........  6630 B & C..............  ........................  D3086-90, D5812-96(02)..  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                                                     27; See footnote \8\
47. Mexacar-bate.................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 94; See footnote \6\,
                                                                                                                                                     p. S60
48. Mirex........................  GC..................  ...........  6630 B & C..............  ........................  ........................  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                                                     27
49. Monuron......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
50. Monuron-TCA..................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
51. Nuburon......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
52. Parathion methyl.............  GC..................  ...........  6630 C..................  ........................  ........................  See footnote \3\, p. 25; See footnote \4\,
                                                                                                                                                     p. 27

[[Page 43]]

 
53. Parathion ethyl..............  GC..................  ...........  6630 C..................  ........................  ........................  See footnote \3\, p. 25; See footnote \4\,
                                                                                                                                                     p. 27
54. PCNB.........................  GC..................  ...........  6630 B & C..............  ........................  ........................  See footnote \3\, p. 7
55. Perthane.....................  GC..................  ...........  ........................  ........................  D3086-90, D5812-96(02)..  See footnote \4\, p. 27
56. Prometon.....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68; See footnote \9\
57. Prometryn....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68; See footnote \9\
58. Propazine....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68; See footnote \9\
59. Propham......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
60. Propoxur.....................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 94; See footnote \6\,
                                                                                                                                                     p. S60
61. Secbumeton...................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68
62. Siduron......................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
63. Simazine.....................  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68; See footnote \9\
64. Strobane.....................  GC..................  ...........  6630 B & C..............  ........................  ........................  See footnote \3\, p. 7
65. Swep.........................  TLC.................  ...........  ........................  ........................  ........................  See footnote \3\, p. 104; See footnote \6\,
                                                                                                                                                     p. S64
66. 2,4,5-T......................  GC..................  ...........  6640 B..................  ........................  ........................  See footnote \3\, p. 115; See footnote \4\,
                                                                                                                                                     p. 40
67. 2,4,5-TP (Silvex)............  GC..................  ...........  6640 B..................  ........................  ........................  See footnote \3\, p. 115; See footnote \4\,
                                                                                                                                                     p. 40
68. Terbuthylazine...............  GC..................  ...........  ........................  ........................  ........................  See footnote \3\, p. 83; See footnote \6\,
                                                                                                                                                     p. S68
69. Toxaphene....................  GC..................          608  6630 B & C..............  ........................  D3086-90, D5812-96(02)..  See footnote \3\, p. 7; See footnote \4\, p.
                                                                                                                                                     27; See footnote \8\
                                   GC/MS...............          625  6410 B..................  6410 B-00...............
70. Trifluralin..................  GC..................  ...........  6630 B..................  ........................  ........................  See footnote \3\, p. 7; See footnote \9\
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Pesticides are listed in this table by common name for the convenience of the reader. Additional pesticides may be found under Table IC, where entries are listed by chemical name.
\2\ The full text of Methods 608 and 625 are given at Appendix A, ``Test Procedures for Analysis of Organic Pollutants,'' of this Part 136. The standardized test procedure to be used to
  determine the method detection limit (MDL) for these test procedures is given at Appendix B, ``Definition and Procedure for the Determination of the Method Detection Limit,'' of this Part
  136.
\3\ ``Methods for Benzidine, Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater,'' U.S. Environmental Protection Agency, September 1978. This EPA
  publication includes thin-layer chromatography (TLC) methods.
\4\``Methods for Analysis of Organic Substances in Water and Fluvial Sediments,'' Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3 (1987).
\5\ The method may be extended to include [alpha]-BHC, [gamma]-BHC, endosulfan I, endosulfan II, and endrin. However, when they are known to exist, Method 608 is the preferred method.
\6\ ``Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency.'' Supplement to the Fifteenth Edition of Standard Methods for the Examination of
  Water and Wastewater (1981).

[[Page 44]]

 
\7\ Each analyst must make an initial, one-time, demonstration of their ability to generate acceptable precision and accuracy with Methods 608 and 625 (See Appendix A of this Part 136) in
  accordance with procedures given in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis, must spike and analyze 10% of all samples analyzed with Method
  608 or 5% of all samples analyzed with Method 625 to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter
  falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect. The results should be reported, but cannot be used to demonstrate regulatory
  compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
\8\ ``Organochlorine Pesticides and PCBs in Wastewater Using EmporeTM Disk'', 3M Corporation, Revised 10/28/94.
\9\ USGS Method 0-3106-93 from ``Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of Triazine and Other Nitrogen-containing Compounds by Gas
  Chromatography with Nitrogen Phosphorus Detectors'' U.S. Geological Survey Open File Report 94-37.


                                                                   Table IE--List of Approved Radiologic Test Test Procedures
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                             Reference (method number or page)
                                                          --------------------------------------------------------------------------------------------------------------------------------------
        Parameter and units                 Method                                  Standard Methods 18th,
                                                                  EPA \1\               19th, 20th Ed.          Standard Methods Online              ASTM                      USGS \2\
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Alpha-Total, pCi per liter.....  Proportional or        900.0................  7110 B....................  7110 B-00.................  D1943-90, 96..............  pp. 75 and 78 \3\
                                     scintillation
                                     counter.
2. Alpha-Counting error, pCi per    Proportional or        Appendix B...........  7110 B....................  7110 B-00.................  D1943-90, 96..............  p. 79
 liter.                              scintillation
                                     counter.
3. Beta-Total, pCi per liter......  Proportional counter.  900.0................  7110 B....................  7110 B-00.................  D1890-90, 96..............  pp. 75 and 78 \3\
4. Beta-Counting error, pCi.......  Proportional counter.  Appendix B...........  7110 B....................  7110 B-00.................  D1890-90, 96..............  p. 79
5. (a) Radium Total pCi per liter.  Proportional counter.  903.0................  7500-Ra B.................  7500-Ra B-01..............  D2460-90, 97..............  ..........................
(b) Ra, pCi per liter.............
                                    Scintillation counter  903.1................  7500-Ra C.................  7500-Ra C-01..............  D3454-91, 97..............  p. 81
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032 (1980), U.S. Environmental Protection Agency, August 1980.
\2\ Fishman, M. J. and Brown, Eugene, ``Selected Methods of the U.S. Geological Survey of Analysis of Wastewaters,'' U.S. Geological Survey, Open-File Report 76-177 (1976).
\3\ The method found on p. 75 measures only the dissolved portion while the method on p. 78 measures only the suspended portion. Therefore, the two results must be added to obtain the
  ``total.''


[[Page 45]]


                        Table IF--List of Approved Methods for Pharmaceutical Pollutants
----------------------------------------------------------------------------------------------------------------
   Pharmaceuticals pollutants              CAS registry No.                    Analytical method number
----------------------------------------------------------------------------------------------------------------
acetonitrile...................  75-05-8............................  1666/1671/D3371/D3695.
n-amyl acetate.................  628-63-7...........................  1666/D3695.
n-amyl alcohol.................  71-41-0............................  1666/D3695
benzene........................  71-43-2............................  D4763/D3695/502.2/524.2.
n-butyl-acetate................  123-86-4...........................  1666/D3695.
tert-butyl alcohol.............  75-65-0............................  1666.
chlorobenzene..................  108-90-7...........................  502.2/524.2.
chloroform.....................  67-66-3............................  502.2/524.2/551.
o-dichlorobenzene..............  95-50-1............................  1625C/502.2/524.2.
1,2-dichloroethane.............  107-06-2...........................  D3695/502.2/524.2.
diethylamine...................  109-89-7...........................  1666/1671.
dimethyl sulfoxide.............  67-68-5............................  1666/1671.
ethanol........................  64-17-5............................  1666/1671/D3695.
ethyl acetate..................  141-78-6...........................  1666/D3695.
n-heptane......................  142-82-5...........................  1666/D3695.
n-hexane.......................  110-54-3...........................  1666/D3695.
isobutyraldehyde...............  78-84-2............................  1666/1667.
isopropanol....................  67-63-0............................  1666/D3695.
isopropyl acetate..............  108-21-4...........................  1666/D3695.
isopropyl ether................  108-20-3...........................  1666/D3695.
methanol.......................  67-56-1............................  1666/1671/D3695.
Methyl Cellosolve [Delta]......  109-86-4...........................  1666/1671
methylene chloride.............  75-09-2............................  502.2/524.2
methyl formate.................  107-31-3...........................  1666.
4-methyl-2-pentanone (MIBK)....  108-10-1...........................  1624C/1666/D3695/D4763/524.2.
phenol.........................  108-95-2...........................  D4763.
n-propanol.....................  71-23-8............................  1666/1671/D3695.
2-propanone (acetone)..........  67-64-1............................  D3695/D4763/524.2.
tetrahydrofuran................  109-99-9...........................  1666/524.2.
toluene........................  108-88-3...........................  D3695/D4763/502.2/524.2.
triethlyamine..................  121-44-8...........................  1666/1671.
xylenes........................  (Note 1)...........................  1624C/1666.
----------------------------------------------------------------------------------------------------------------
Table 1F note:
1. 1624C: m-xylene 108-38-3, o,p-xylene E-14095 (Not a CAS number; this is the number provided in the
  Environmental Monitoring Methods Index (EMMI) database.); 1666: m,p-xylene 136777-61-2, o-xylene 95-47-6.


                             Table IG--Test Methods for Pesticide Active Ingredients
----------------------------------------------------------------------------------------------------------------
  EPA Survey Code          Pesticide name           CAS No.               EPA Analytical Method No.(s)
----------------------------------------------------------------------------------------------------------------
8..................  Triadimefon..............      43121-43-3  507/633/525.1/1656
12.................  Dichlorvos...............         62-73-7  1657/507/622/525.1
16.................  2,4-D; 2,4-D Salts and            94-75-7  1658/515.1/615/515.2/555
                      Esters [2,4-Dichloro-
                      phenoxyacetic acid].
17.................  2,4-DB; 2,4-DB Salts and          94-82-6  1658/515.1/615/515.2/555
                      Esters [2,4-
                      Dichlorophenoxybutyric
                      acid].
22.................  Mevinphos................       7786-34-7  1657/507/622/525.1
25.................  Cyanazine................      21725-46-2  629/507
26.................  Propachlor...............       1918-16-7  1656/508/608.1/525.1
27.................  MCPA; MCPA Salts and              94-74-6  1658/615/555
                      Esters [2-Methyl-4-
                      chlorophenoxyacetic
                      acid].
30.................  Dichlorprop; Dichlorprop         120-36-5  1658/515.1/615/515.2/555
                      Salts and Esters [2-(2,4-
                      Dichlorophenoxy)
                      propionic acid].
31.................  MCPP; MCPP Salts and              93-65-2  1658/615/555
                      Esters [2-(2-Methyl-4-
                      chlorophenoxy) propionic
                      acid].
35.................  TCMTB [2-                      21564-17-0  637
                      (Thiocyanomethylthio)
                      benzo-thiazole].
39.................  Pronamide................      23950-58-5  525.1/507/633.1
41.................  Propanil.................        709-98-8  632.1/1656
45.................  Metribuzin...............      21087-64-9  507/633/525.1/1656
52.................  Acephate.................      30560-19-1  1656/1657

[[Page 46]]

 
53.................  Acifluorfen..............      50594-66-6  515.1/515.2/555
54.................  Alachlor.................      15972-60-8  505/507/645/525.1/1656
55.................  Aldicarb.................        116-06-3  531.1
58.................  Ametryn..................        834-12-8  507/619/525.1
60.................  Atrazine.................       1912-24-9  505/507/619/525.1/1656
62.................  Benomyl..................      17804-35-2  631
68.................  Bromacil; Bromacil Salts         314-40-9  507/633/525.1/1656
                      and Esters.
69.................  Bromoxynil...............       1689-84-5  1625/1661
69.................  Bromoxynil octanoate.....       1689-99-2  1656
70.................  Butachlor................      23184-66-9  507/645/525.1/1656
73.................  Captafol.................       2425-06-1  1656
75.................  Carbaryl [Sevin].........         63-25-2  531.1/632/553
76.................  Carbofuran...............       1563-66-2  531.1/632
80.................  Chloroneb................       2675-77-6  1656/508/608.1/525.1
82.................  Chlorothalonil...........       1897-45-6  508/608.2/525.1/1656
84.................  Stirofos.................        961-11-5  1657/507/622/525.1
86.................  Chlorpyrifos.............       2921-88-2  1657/508/622
90.................  Fenvalerate..............      51630-58-1  1660
103................  Diazinon.................        333-41-5  1657/507/614/622/525.1
107................  Parathion methyl.........        298-00-0  1657/614/622
110................  DCPA [Dimethyl 2,3,5,6-         1861-32-1  508/608.2/525.1/515.1/515.2/1656
                      tetrachloro-
                      terephthalate].
112................  Dinoseb..................         88-85-7  1658/515.1/615/515.2/555
113................  Dioxathion...............         78-34-2  1657/614.1
118................  Nabonate [Disodium               138-93-2  630.1
                      cyanodithio-
                      imidocarbonate].
119................  Diuron...................        330-54-1  632/553
123................  Endothall................        145-73-3  548/548.1
124................  Endrin...................         72-20-8  1656/505/508/608/617/525.1
125................  Ethalfluralin............      55283-68-6  1656/627 See footnote 1
126................  Ethion...................        563-12-2  1657/614/614.1
127................  Ethoprop.................      13194-48-4  1657/507/622/525.1
132................  Fenarimol................      60168-88-9  507/633.1/525.1/1656
133................  Fenthion.................         55-38-9  1657/622
138................  Glyphosate                      1071-83-6  547
                      [N(Phosphonomethyl)
                      glycine].
140................  Heptachlor...............         76-44-8  1656/505/508/608/617/525.1
144................  Isopropalin..............      33820-53-0  1656/627
148................  Linuron..................        330-55-2  553/632
150................  Malathion................        121-75-5  1657/614
154................  Methamidophos............      10265-92-6  1657
156................  Methomyl.................      16752-77-5  531.1/632
158................  Methoxychlor.............         72-43-5  1656/505/508/608.2/617/525.1
172................  Nabam....................        142-59-6  630/630.1
173................  Naled....................        300-76-5  1657/622
175................  Norflurazon..............      27314-13-2  507/645/525.1/1656
178................  Benfluralin..............       1861-40-1  11656/1627
182................  Fensulfothion............        115-90-2  1657/622
183................  Disulfoton...............        298-04-4  1657/507/614/622/525.1
185................  Phosmet..................        732-11-6  1657/622.1
186................  Azinphos Methyl..........         86-50-0  1657/614/622
192................  Organo-tin pesticides....      12379-54-3  Ind-01/200.7/200.9
197................  Bolstar..................      35400-43-2  1657/622
203................  Parathion................         56-38-2  1657/614
204................  Pendimethalin............      40487-42-1  1656
205................  Pentachloronitrobenzene..         82-68-8  1656/608.1/617
206................  Pentachlorophenol........         87-86-5  625/1625/515.2/555/515.1/ 525.1
208................  Permethrin...............      52645-53-1  608.2/508/525.1/1656/1660
212................  Phorate..................        298-02-2  1657/622
218................  Busan 85 [Potassium              128-03-0  630/630.1
                      dimethyldithiocarbamate].

[[Page 47]]

 
219................  Busan 40 [Potassium N-         51026-28-9  630/630.1
                      hydroxymethyl-N-
                      methyldithiocarbamate].
220................  KN Methyl [Potassium N-          137-41-7  630/630.1
                      methyl-dithiocarbamate].
223................  Prometon.................       1610-18-0  507/619/525.1
224................  Prometryn................       7287-19-6  507/619/525.1
226................  Propazine................        139-40-2  507/619/525.1/1656
230................  Pyrethrin I..............        121-21-1  1660
232................  Pyrethrin II.............        121-29-9  1660
236................  DEF [S,S,S-Tributyl               78-48-8  1657
                      phosphorotrithioate].
239................  Simazine.................        122-34-9  505/507/619/525.1/1656
241................  Carbam-S [Sodium                 128-04-1  630/630.1
                      dimethyldithiocarbanate].
243................  Vapam [Sodium                    137-42-8  630/630.1
                      methyldithiocarbamate].
252................  Tebuthiuron..............      34014-18-1  507/525.1
254................  Terbacil.................       5902-51-2  507/633/525.1/1656
255................  Terbufos.................      13071-79-9  1657/507/614.1/525.1
256................  Terbuthylazine...........       5915-41-3  619/1656
257................  Terbutryn................        886-50-0  507/619/525.1
259................  Dazomet..................        533-74-4  630/630.1/1659
262................  Toxaphene................       8001-35-2  1656/505/508/608/617/525.1
263................  Merphos [Tributyl                150-50-5  1657/507/525.1/622
                      phosphorotrithioate].
264................  Trifluralin..............       1582-09-8  1656/508/617/627/525.1
268................  Ziram [Zinc                      137-30-4  630/630.1
                      dimethyldithiocarbamate].
----------------------------------------------------------------------------------------------------------------
\1\ Monitor and report as total Trifluralin.


[[Page 48]]


                                          Table IH--List of Approved Microbiological Methods for Ambient Water
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           Standard  methods
       Parameter and units            Method \1\              EPA          18th, 19th, 20th    Standard methods    AOAC, ASTM, USGS          Other
                                                                                  Ed.               online
--------------------------------------------------------------------------------------------------------------------------------------------------------
Bacteria:
    1. E. coli, number per 100    MPN \6,8,14\        ..................  9221 B.1/9221 F     9221 B.1-99/9221 F
     mL.                           multiple tube,                          \11,13\.            \11,13\.
                                  Multiple tube/      ..................  9223 B \12\.......  9223 B-97 \12\....  991.15 \10\.......  Colilert[supreg]
                                   multiple well,                                                                                      \12,16\ Colilert-
                                                                                                                                       18[supreg]
                                                                                                                                       \12,15,16\.
                                  MF \2,5,6,7,8\ two  1103.1 \19\.......  9222 B/9222 G       9222 B-97/9222 G    D5392-93 \9\......
                                   step, or                                \18\, 9213 D.       \18\.
                                  Single step.......  1603 \20\, 1604     ..................  ..................  ..................  mColiBlue-
                                                       \21\.                                                                           24[supreg] \17\.
    2. Enterococci, number per    MPN \6,8\ multiple  ..................  9230 B............  9230 B-93.........
     100 mL.                       tube,
                                  Multiple tube/      ..................  ..................  ..................  D6503-99 \9\......  Enterolert[supreg]
                                   multiple well.                                                                                      \12,22\.
                                  MF \2,5,6,7,8\ two  1106.1 \23\.......  9230 C............  9230 C-93.........  D5259-92 \9\......
                                   step.
                                  Single step, or...  1600 \24\.........
                                  Plate count.......  p. 143 \3\........
Protozoa:
    3. Cryptosporidium..........  Filtration/IMS/FA.  1622 \25,\1623
                                                       \26\.
    4. Giardia..................  Filtration/IMS/FA.  1623 \26\.........
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ The method must be specified when results are reported.
\2\ A 0.45 [mu]m membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of
  extractables which could interfere with their growth.
\3\ USEPA. 1978. Microbiological Methods for Monitoring the Environment, Water, and Wastes. Environmental Monitoring and Support Laboratory, U.S.
  Environmental Protection Agency, Cincinnati, OH. EPA/600/8-78/017.
\4\ [Reserved]
\5\ Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to
  resolve any controversies.
\6\ Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes
  to account for the quality, character, consistency, and anticipated organism density of the water sample.
\7\ When the MF method has not been used previously to test waters with high turbidity, large number of noncoliform bacteria, or samples that may
  contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and
  comparability of results.
\8\ To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the
  year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA
  alternate test procedure (ATP) guidelines.
\9\ ASTM. 2000, 1999, 1996. Annual Book of ASTM Standards--Water and Environmental Technology. Section 11.02. ASTM International. 100 Barr Harbor Drive,
  West Conshohocken, PA 19428.
\10\ AOAC. 1995. Official Methods of Analysis of AOAC International, 16th Edition, Volume I, Chapter 17. Association of Official Analytical Chemists
  International. 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417.
\11\ The multiple-tube fermentation test is used in 9221B.1. Lactose broth may be used in lieu of lauryl tryptose broth (LTB), if at least 25 parallel
  tests are conducted between this broth and LTB using the water samples normally tested, and this comparison demonstrates that the false-positive rate
  and false-negative rate for total coliform using lactose broth is less than 10 percent. No requirement exists to run the completed phase on 10 percent
  of all total coliform-positive tubes on a seasonal basis.
\12\ These tests are collectively known as defined enzyme substrate tests, where, for example, a substrate is used to detect the enzyme [beta]-
  glucuronidase produced by E. coli.
\13\ After prior enrichment in a presumptive medium for total coliform using 9221B.1, all presumptive tubes or bottles showing any amount of gas, growth
  or acidity within 48 h  3 h of incubation shall be submitted to 9221F. Commercially available EC-MUG media or EC media
  supplemented in the laboratory with 50 [mu]g/mL of MUG may be used.
\14\ Samples shall be enumerated by the multiple-tube or multiple-well procedure. Using multiple-tube procedures, employ an appropriate tube and
  dilution configuration of the sample as needed and report the Most Probable Number (MPN). Samples tested with Colilert[supreg] may be enumerated with
  the multiple-well procedures, Quanti-Tray[supreg] or Quanti-Tray[supreg] 2000, and the MPN calculated from the table provided by the manufacturer.
\15\ Colilert-18[supreg] is an optimized formulation of the Colilert[supreg] for the determination of total coliforms and E. coli that provides results
  within 18 h of incubation at 35 [deg]C rather than the 24 h required for the Colilert[supreg] test and is recommended for marine water samples.
\16\ Descriptions of the Colilert[supreg], Colilert-18[supreg], Quanti-Tray[supreg], and Quanti-Tray[supreg]/2000 may be obtained from IDEXX
  Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092.
\17\ A description of the mColiBlue24[supreg] test, Total Coliforms and E. coli, is available from Hach Company, 100 Dayton Ave., Ames, IA 50010.
\18\ Subject total coliform positive samples determined by 9222B or other membrane filter procedure to 9222G using NA-MUG media.

[[Page 49]]

 
\19\ USEPA. July 2006. Method 1103.1: Escherichia coli (E. coli) in Water by Membrane Filtration Using membrane-Thermotolerant Escherichia coli Agar
  (mTEC). U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-010.
\20\ USEPA. July 2006. Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli
  Agar (Modified mTEC). U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-011.
\21\ Preparation and use of MI agar with a standard membrane filter procedure is set forth in the article, Brenner et al. 1993. ``New Medium for the
  Simultaneous Detection of Total Coliform and Escherichia coli in Water.'' Appl. Environ. Microbiol. 59:3534-3544 and in USEPA. September 2002.: Method
  1604: Total Coliforms and Escherichia coli (E. coli) in Water by Membrane Filtration by Using a Simultaneous Detection Technique (MI Medium). U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA 821-R-02-024.
\22\ A description of the Enterolert[supreg] test may be obtained from IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092.
\23\ USEPA. July 2006. Method 1106.1: Enterococci in Water by Membrane Filtration Using membrane-Enterococcus-Esculin Iron Agar (mE-EIA). U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-008.
\24\ USEPA. July 2006. Method 1600: Enterococci in Water by Membrane Filtration Using membrane-Enterococcus Indoxyl-[beta]-D-Glucoside Agar (mEI). U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-06-009.
\25\ Method 1622 uses filtration, concentration, immunomagnetic separation of oocysts from captured material, immunofluorescence assay to determine
  concentrations, and confirmation through vital dye staining and differential interference contrast microscopy for the detection of Cryptosporidium.
  USEPA. 2001. Method 1622: Cryptosporidium in Water by Filtration/IMS/FA. U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA-821-
  R-01-026.
\26\ Method 1623 uses filtration, concentration, immunomagnetic separation of oocysts and cysts from captured material, immunofluorescence assay to
  determine concentrations, and confirmation through vital dye staining and differential interference contrast microscopy for the simultaneous detection
  of Cryptosporidium and Giardia oocysts and cysts. USEPA. 2001. Method 1623. Cryptosporidium and Giardia in Water by Filtration/IMS/FA. U.S.
  Environmental Protection Agency, Office of Water, Washington, DC EPA-821-R-01-025.


[[Page 50]]

    (b) The full texts of the methods from the following references 
which are cited in Tables IA, IB, IC, ID, IE, IF, IG and IH are 
incorporated by reference into this regulation and may be obtained from 
the source identified. All costs cited are subject to change and must be 
verified from the indicated source. The full texts of all the test 
procedures cited are available for inspection at the National Archives 
and Records Administration (NARA). For information on the availability 
of this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/ federal--register/code--of--federal--regulations/ 
ibr--locations.html.

            References, Sources, Costs, and Table Citations:

    (1) The full texts of Methods 601-613, 624, 625, 1613, 1624, and 
1625 are printed in appendix A of this part 136. The full text for 
determining the method detection limit when using the test procedures is 
given in appendix B of this part 136. The full text of Method 200.7 is 
printed in appendix C of this part 136. Cited in: Table IB, Note 5; 
Table IC, Note 2; and Table ID, Note 2.
    (2) USEPA. 1978. Microbiological Methods for Monitoring the 
Environment, Water, and Wastes. Environmental Monitoring and Support 
Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA/
600/8-78/017. Available at http://www.epa.gov/clariton/srch.htm or from: 
National Technical Information Service, 5285 Port Royal Road, 
Springfield, Virginia 22161, Pub. No. PB-290329/A.S. Table IA, Note 3; 
Table IH, Note 3.
    (3) ``Methods for Chemical Analysis of Water and Wastes,'' U.S. 
Environmental Protection Agency, EPA-600/4-79-020, March 1979, or 
``Methods for Chemical Analysis of Water and Wastes,'' U.S. 
Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983. 
Available from: ORD Publications, CERI, U.S. Environmental Protection 
Agency, Cincinnati, Ohio 45268, Table IB, Note 1.
    (4) ``Methods for Benzidine, Chlorinated Organic Compounds, 
Pentachlorophenol and Pesticides in Water and Wastewater,'' U.S. 
Environmental Protection Agency, 1978. Available from: ORD Publications, 
CERI, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, 
Table IC, Note 3; Table D, Note 3.
    (5) ``Prescribed Procedures for Measurement of Radioactivity in 
Drinking Water,'' U.S. Environmental Protection Agency, EPA-600/4-80-
032, 1980. Available from: ORD Publications, CERI, U.S. Environmental 
Protection Agency, Cincinnati, Ohio 45268, Table IE, Note 1.
    (6) American Public Health Association. 1992, 1995, and 1998. 
Standard Methods for the Examination of Water and Wastewater. 18th, 
19th, and 20th Edition (respectively). Available from: American Public 
Health Association, 1015 15th Street, NW., Washington, DC 20005. 
Standard Methods Online is available through the Standard Methods Web 
site (http://www.standardmethods.org). Tables IA, IB, IC, ID, IE, and 
IH.
    (7) Ibid, 15th Edition, 1980. Table IB, Note 30; Table ID.
    (8) Ibid, 14th Edition, 1975. Table IB, Notes 17 and 27.
    (9) ``Selected Analytical Methods Approved and Cited by the United 
States Environmental Protection Agency,'' Supplement to the 15th Edition 
of Standard Methods for the Examination of Water and Wastewater, 1981. 
Available from: American Public Health Association, 1015 Fifteenth 
Street NW., Washington, DC 20036. Cost available from publisher. Table 
IB, Note 10; Table IC, Note 6; Table ID, Note 6.
    (10) ASTM International. Annual Book of ASTM Standards, Water, and 
Environmental Technology, Section 11, Volumes 11.01 and 11.02, 1994, 
1996, 1999, Volume 11.02, 2000, and individual standards published after 
2000. Available from: ASTM International, 100 Barr Harbor Drive, P.O. 
Box C700, West Conshohocken, PA 19428-2959, or http://www.astm.org. 
Tables IA, IB, IC, ID, IE, and IH.
    (11) USGS. 1989. U.S. Geological Survey Techniques of Water-
Resources Investigations, Book 5, Laboratory Analysis, Chapter A4, 
Methods for Collection and Analysis of Aquatic Biological and 
Microbiological Samples, U.S. Geological Survey, U.S. Department of the 
Interior, Reston, Virginia. Available

[[Page 51]]

from USGS Books and Open-File Reports Section, Federal Center, Box 
25425, Denver, Colorado 80225. Table IA, Note 5; Table IH.
    (12) ``Methods for Determination of Inorganic Substances in Water 
and Fluvial Sediments,'' by M.J. Fishman and Linda C. Friedman, 
Techniques of Water-Resources Investigations of the U.S. Geological 
Survey, Book 5 Chapter A1 (1989). Available from: U.S. Geological 
Survey, Denver Federal Center, Box 25425, Denver, CO 80225. Cost: 
$108.75 (subject to change). Table IB, Note 2.
    (13) ``Methods for Determination of Inorganic Substances in Water 
and Fluvial Sediments,'' N.W. Skougstad and others, editors. Techniques 
of Water-Resources Investigations of the U.S. Geological Survey, Book 5, 
Chapter A1 (1979). Available from: U.S. Geological Survey, Denver 
Federal Center, Box 25425, Denver, CO 80225. Cost: $10.00 (subject to 
change), Table IB, Note 8.
    (14) ``Methods for the Determination of Organic Substances in Water 
and Fluvial Sediments,'' Wershaw, R.L., et al, Techniques of Water-
Resources Investigations of the U.S. Geological Survey, Book 5, Chapter 
A3 (1987). Available from: U.S. Geological Survey, Denver Federal 
Center, Box 25425, Denver, CO 80225. Cost: $0.90 (subject to change). 
Table IB, Note 24; Table ID, Note 4.
    (15) ``Water Temperature--Influential Factors, Field Measurement and 
Data Presentation,'' by H.H. Stevens, Jr., J. Ficke, and G.F. Smoot, 
Techniques of Water-Resources Investigations of the U.S. Geological 
Survey, Book 1, Chapter D1, 1975. Available from: U.S. Geological 
Survey, Denver Federal Center, Box 25425, Denver, CO 80225. Cost: $1.60 
(subject to change). Table IB, Note 32.
    (16) ``Selected Methods of the U.S. Geological Survey of Analysis of 
Wastewaters,'' by M.J. Fishman and Eugene Brown; U.S. Geological Survey 
Open File Report 76-77 (1976). Available from: U.S. Geological Survey, 
Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202. 
Cost: $13.50 (subject to change). Table IE, Note 2.
    (17) AOAC-International. Official Methods of Analysis of AOAC-
International, 16th Edition, (1995). Available from: AOAC-International, 
481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877. Table IB, 
See footnote 3.
    (18) ``American National Standard on Photographic Processing 
Effluents,'' April 2, 1975. Available from: American National Standards 
Institute, 1430 Broadway, New York, New York 10018. Table IB, Note 9.
    (19) ``An Investigation of Improved Procedures for Measurement of 
Mill Effluent and Receiving Water Color,'' NCASI Technical Bulletin No. 
253, December 1971. Available from: National Council of the Paper 
Industry for Air and Stream Improvements, Inc., 260 Madison Avenue, New 
York, NY 10016. Cost available from publisher. Table IB, Note 18.
    (20) Ammonia, Automated Electrode Method, Industrial Method Number 
379-75WE, dated February 19, 1976. Technicon Auto Analyzer II. Method 
and price available from Technicon Industrial Systems, Tarrytown, New 
York 10591. Table IB, Note 7.
    (21) Chemical Oxygen Demand, Method 8000, Hach Handbook of Water 
Analysis, 1979. Method price available from Hach Chemical Company, P.O. 
Box 389, Loveland, Colorado 80537. Table IB, Note 14.
    (22) OIC Chemical Oxygen Demand Method, 1978. Method and price 
available from Oceanography International Corporation, 512 West Loop, 
P.O. Box 2980, College Station, Texas 77840. Table IB, Note 13.
    (23) ORION Research Instruction Manual, Residual Chlorine Electrode 
Model 97-70, 1977. Method and price available from ORION Research 
Incorporation, 840 Memorial Drive, Cambridge, Massachusetts 02138. Table 
IB, Note 16.
    (24) Bicinchoninate Method for Copper. Method 8506, Hach Handbook of 
Water Analysis, 1979, Method and price available from Hach Chemical 
Company, P.O. Box 300, Loveland, Colorado 80537. Table IB, Note 19.
    (25) Hydrogen Ion (pH) Automated Electrode Method, Industrial Method 
Number 378-75WA. October 1976. Bran & Luebbe (Technicon) Auto Analyzer 
II. Method and price available from Bran & Luebbe Analyzing 
Technologies, Inc. Elmsford, N.Y. 10523. Table IB, Note 21.
    (26) 1,10-Phenanthroline Method using FerroVer Iron Reagent for 
Water,

[[Page 52]]

Hach Method 8008, 1980. Method and price available from Hach Chemical 
Company, P.O. Box 389 Loveland, Colorado 80537. Table IB, Note 22.
    (27) Periodate Oxidation Method for Manganese, Method 8034, Hach 
Handbook for Water Analysis, 1979. Method and price available from Hach 
Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB, Note 
23.
    (28) Nitrogen, Nitrite--Low Range, Diazotization Method for Water 
and Wastewater, Hach Method 8507, 1979. Method and price available from 
Hach Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB, 
Note 25.
    (29) Zincon Method for Zinc, Method 8009. Hach Handbook for Water 
Analysis, 1979. Method and price available from Hach Chemical Company, 
P.O. Box 389, Loveland, Colorado 80537. Table IB, Note 33.
    (30) ``Direct Determination of Elemental Phosphorus by Gas-Liquid 
Chromatography,'' by R.F. Addison and R.G. Ackman, Journal of 
Chromatography, Volume 47, No. 3, pp. 421-426, 1970. Available in most 
public libraries. Back volumes of the Journal of Chromatography are 
available from Elsevier/North-Holland, Inc., Journal Information Centre, 
52 Vanderbilt Avenue, New York, NY 10164. Cost available from publisher. 
Table IB, Note 28.
    (31) ``Direct Current Plasma (DCP) Optical Emission Spectrometric 
Method for Trace Elemental Analysis of Water and Wastes'', Method AES 
0029, 1986-Revised 1991, Fison Instruments, Inc., 32 Commerce Center, 
Cherry Hill Drive, Danvers, MA 01923. Table B, Note 34.
    (32) ``Closed Vessel Microwave Digestion of Wastewater Samples for 
Determination of Metals, CEM Corporation, P.O. Box 200, Matthews, North 
Carolina 28106-0200, April 16, 1992. Available from the CEM Corporation. 
Table IB, Note 36.
    (33) ``Organochlorine Pesticides and PCBs in Wastewater Using Empore 
\TM\ Disk'' Test Method 3M 0222, Revised 10/28/94. 3M Corporation, 3M 
Center Building 220-9E-10, St. Paul, MN 55144-1000. Method available 
from 3M Corporation. Table IC, Note 8 and Table ID, Note 8.
    (34) USEPA. October 2002. Methods for Measuring the Acute Toxicity 
of Effluents and Receiving Waters to Freshwater and Marine Organisms. 
Fifth Edition. U.S. Environmental Protection Agency, Office of Water, 
Washington, DC EPA 821-R-02-012. Available at http://www.epa.gov/ 
epahome/index/ sources.htm or from National Technical Information 
Service, 5285 Port Royal Road, Springfield, Virginia 22161, Pub. No. 
PB2002-108488. Table IA, Note 25.
    (35) ``Nitrogen, Total Kjeldahl, Method PAI-DK01 (Block Digestion, 
Steam Distillation, Titrimetric Detection)'', revised 12/22/94. 
Available from Perstorp Analytical Corporation, 9445 SW Ridder Rd., 
Suite 310, P.O. Box 648, Wilsonville, OK 97070. Table IB, Note 39.
    (36) ``Nitrogen, Total Kjeldahl, Method PAI-DK02 (Block Digestion, 
Steam Distillation, Colorimetric Detection)'', revised 12/22/94. 
Available from Perstorp Analytical Corporation, 9445 SW Ridder Rd., 
Suite 310, P.O. Box 648, Wilsonville, OK 97070. Table IB, Note 40.
    (37) ``Nitrogen, Total Kjeldahl, Method PAI-DK03 (Block Digestion, 
Automated FIA Gas Diffusion)'', revised 12/22/94. Available from 
Perstorp Analytical Corporation, 9445 SW Ridder Rd., Suite 310, P.O. Box 
648, Wilsonville, OK 97070. Table IB, Note 41.
    (38) USEPA. October 2002. Short-Term Methods for Measuring the 
Chronic Toxicity of Effluents and Receiving Waters to Freshwater 
Organisms. Fourth Edition. U.S. Environmental Protection Agency, Office 
of Water, Washington, DC EPA 821-R-02-013. Available at http://
www.epa.gov/ epahome/ index/ sources.htm or from National Technical 
Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, 
Pub. No. PB2002-108489. Table IA, Note 26.
    (39) USEPA. October 2002. Short-Term Methods for Measuring the 
Chronic Toxicity of Effluents and Receiving Waters to Marine and 
Estuarine Organisms. Third Edition. U.S. Environmental Protection 
Agency, Office of Water, Washington, DC EPA 821-R-02-014. Available at 
http://www.epa.gov/ epahome/ index/ sources.htm or from National 
Technical Information Service, 5285 Port Royal Road, Springfield, 
Virginia 22161, Pub. No. PB2002-108490. Table IA, Note 27.

[[Page 53]]

    (40) EPA Methods 1666, 1667, and 1671 listed in the table above are 
published in the compendium titled Analytical Methods for the 
Determination of Pollutants in Pharmaceutical Manufacturing Industry 
Wastewaters (EPA 821-B-98-016). EPA Methods 502.2 and 524.2 have been 
incorporated by reference into 40 CFR 141.24 and are in Methods for the 
Determination of Organic Compounds in Drinking Water, EPA-600/4-88-039, 
December 1988, Revised, July 1991, and Methods for the Determination of 
Organic Compounds in Drinking Water-Supplement II, EPA-600/R-92-129, 
August 1992, respectively. These EPA test method compendia are available 
from the National Technical Information Service, NTIS PB91-231480 and 
PB92-207703, U.S. Department of Commerce, 5285 Port Royal Road, 
Springfield, Virginia 22161. The toll-free number is 800-553-6847. ASTM 
test methods D3371, D3695, and D4763 are available from the American 
Society for Testing and Materials, 100 Barr Harbor Drive, West 
Conshohocken, PA 19428-2959.
    (41) USEPA. 2002. Method 1631, Revision E, ``Mercury in Water by 
Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence 
Spectrometry.'' September 2002. Office of Water, U.S. Environmental 
Protection Agency (EPA-821-R-02-019). Available from: National Technical 
Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. 
Publication No. PB2002-108220. Cost: $25.50 (subject to change).
    (42) [Reserved]
    (43) Method OIA-1677, Available Cyanide by Flow Injection, Ligand 
Exchange, and Amperometry. August 1999. ALPKEM, OI Analytical, Box 648, 
Wilsonville, Oregon 97070 (EPA-821-R-99-013). Available from: National 
Technical Information Service, 5285 Port Royal Road, Springfield, 
Virginia 22161. Publication No. PB99-132011. Cost: $22.50. Table IB, 
Note 44.
    (44) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory Determination of Ammonium Plus Organic Nitrogen 
by a Kjeldahl Digestion Method and an Automated Photometric Finish that 
Includes Digest Cleanup by Gas Diffusion'', Open File Report (OFR) 00-
170. Available from: U.S. Geological Survey, Denver Federal Center, Box 
25425, Denver, CO 80225. Table IB, Note 45.
    (45) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Chromium in Water by Graphite 
Furnace Atomic Absorption Spectrophotometry'', Open File Report (OFR) 
93-449. Available from: U.S. Geological Survey, Denver Federal Center, 
Box 25425, Denver, CO 80225. Table IB, Note 46.
    (46) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Molybdenum in Water by 
Graphite Furnace Atomic Absorption Spectrophotometry'', Open File Report 
(OFR) 97-198. Available from: U.S. Geological Survey, Denver Federal 
Center, Box 25425, Denver, CO 80225. Table IB, Note 47.
    (47) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Total Phosphorus by Kjeldahl 
Digestion Method and an Automated Colorimetric Finish That Includes 
Dialysis'' Open File Report (OFR) 92-146. Available from: U.S. 
Geological Survey, Denver Federal Center, Box 25425, Denver, CO 80225. 
Table IB, Note 48.
    (48) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Arsenic and Selenium in Water 
and Sediment by Graphite Furnace--Atomic Absorption Spectrometry'' Open 
File Report (OFR) 98-639. Table IB, Note 49.
    (49) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Elements in Whole-Water 
Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry 
and Inductively Coupled Plasma-Mass Spectrometry'' , Open File Report 
(OFR) 98-165. Available from: U.S. Geological Survey, Denver Federal 
Center, Box 25425, Denver, CO 80225. Table IB, Note 50.
    (50) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Triazine and Other Nitrogen-
containing Compounds by Gas Chromatography with Nitrogen Phosphorus 
Detectors'' U.S.Geological Survey Open File Report 94-37. Available 
from: U.S.

[[Page 54]]

Geological Survey, Denver Federal Center, Box 25425, Denver, CO 80225. 
Table ID, Note 9.
    (51) ``Methods of Analysis by the U.S. Geological Survey National 
Water Quality Laboratory--Determination of Inorganic and Organic 
Constituents in Water and Fluvial Sediments'', Open File Report (OFR) 
93-125. Available from: U.S. Geological Survey, Denver Federal Center, 
Box 25425, Denver, CO 80225. Table IB, Note 51; Table IC, Note 9.
    (52) IDEXX Laboratories, Inc. 2002. Description of Colilert[reg], 
Colilert-18[reg], Quanti-Tray[reg], Quanti-Tray[reg]/2000, 
Enterolert[reg] methods are available from IDEXX Laboratories, Inc., One 
Idexx Drive, Westbrook, Maine 04092. Table IA, Notes 17 and 23; Table 
IH, Notes 16 and 22.
    (53) Hach Company, Inc. Revision 2, 1999. Description of m-
ColiBlue24[reg] Method, Total Coliforms and E. coli, is available from 
Hach Company, 100 Dayton Ave, Ames IA 50010. Table IA, Note 18; Table 
IH, Note 17.
    (54) USEPA. July 2006. Method 1103.1: Escherichia coli (E. coli) in 
Water by Membrane Filtration Using membrane-Thermotolerant Escherichia 
coli Agar (mTEC). U.S. Environmental Protection Agency, Office of Water, 
Washington DC EPA-621-R-06-010. Available at http://www.epa.gov/
waterscience/methods/. Table IH, Note 19.
    (55) USEPA. July 2006. Method 1106.1: Enterococci in Water by 
Membrane Filtration Using membrane-Enterococcus-Esculin Iron Agar (mE-
EIA). U.S. Environmental Protection Agency, Office of Water, Washington 
DC EPA-621-R-06-008. Available at http://www.epa.gov/waterscience/
methods/. Table IH, Note 23
    (56) USEPA. July 2006. Method 1603: Escherichia coli (E. coli) in 
Water by Membrane Filtration Using Modified membrane-Thermotolerant 
Escherichia coli Agar (Modified mTEC). U.S. Environmental Protection 
Agency, Office of Water, Washington DC EPA-821-R-06-011. Available at 
http://www.epa.gov/waterscience/methods/. Table IH, Note 19; Table IH, 
Note 20.
    (57) Brenner et al. 1993. New Medium for the Simultaneous Detection 
of Total Coliforms and Escherichia coli in Water. Appl. Environ. 
Microbiol. 59:3534-3544. Available from the American Society for 
Microbiology, 1752 N Street NW., Washington DC 20036. Table IH, Note 21.
    (58) USEPA. September 2002. Method 1604: Total Coliforms and 
Escherichia coli (E. coli) in Water by Membrane Filtration Using a 
Simultaneous Detection Technique (MI Medium). U.S. Environmental 
Protection Agency, Office of Water, Washington DC EPA-821-R-02-024. 
Available at http://www.epa.gov/waterscience/methods/. Table IH, Note 
20.
    (59) USEPA. July 2006. Method 1600: Enterococci in Water by Membrane 
Filtration Using membrane-Enterococcus Indoxyl-[beta]-D-Glucoside Agar 
(mEI). U.S. Environmental Protection Agency, Office of Water, Washington 
DC EPA-821-R-06-009. Available at http://www.epa.gov/waterscience/
methods/. Table IA, Note 24; Table IH, Note 24.
    (60) USEPA. April 2001. Method 1622: Cryptosporidium in Water by 
Filtration/IMS/FA. U.S. Environmental Protection Agency, Office of 
Water, Washington DC EPA-821-R-01-026. Available at http://www.epa.gov/
waterscience/methods/. Table IH, Note 25.
    (61) USEPA. April 2001. Method 1623: Cryptosporidium and Giardia in 
Water by Filtration/IMS/FA. U.S. Environmental Protection Agency, Office 
of Water, Washington DC. EPA-821-R-01-025. Available at http://
www.epa.gov/waterscience/methods/. Table IH, Note 26.
    (62) AOAC. 1995. Official Methods of Analysis of AOAC International, 
16th Edition, Volume I, Chapter 17. AOAC International, 481 North 
Frederick Avenue, Suite 500, Gaithersburg, Maryland 20877-2417. Table 
IA, Note 11; Table IH.
    (63) Waters Corporation. Method D6508, Rev. 2, ``Test Method for 
Determination of Dissolved Inorganic Anions in Aqueous Matrices Using 
Capillary Ion Electrophoresis and Chromate Electrolyte,'' available from 
Waters Corp, 34 Maple Street, Milford, MA 01757, Telephone: 508/482-
2131, Fax: 508/482-3625, Table IB, See footnote 54.
    (64) Kelada-01, ``Kelada Automated Test Methods for Total Cyanide, 
Acid Dissociable Cyanide, and Thiocyanate,'' EPA 821-B-01-009 Revision 
1.2, August 2001 is available from

[[Page 55]]

National Technical Information Service (NTIS), 5285 Port Royal Road, 
Springfield, VA 22161 [Order Number PB 2001-108275]. Telephone: 800-553-
6847. Table IB, See footnote 55.
    (65) QuikChem Method 10-204-00-1-X, ``Digestion and Distillation of 
Total Cyanide in Drinking and Wastewaters using MICRO DIST and 
Determination of Cyanide by Flow Injection Analysis'' Revision 2.2, 
March 2005 is available from Lachat Instruments 6645 W. Mill Road, 
Milwaukee, WI 53218, Telephone: 414-358-4200. Table IB, See footnote 56.
    (66) ``Methods for the Determination of Metals in Environmental 
Samples,'' Supplement I, National Exposure Risk Laboratory-Cincinnati 
(NERL-CI), EPA/600/R-94/111, May 1994; and ``Methods for the 
Determination of Inorganic Substances in Environmental Samples,'' NERL-
CI, EPA/600/R-93/100, August, 1993 are available from National Technical 
Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161. 
Telephone: 800-553-6847. Table IB.
    (67) ``Determination of Inorganic Ions in Drinking Water by Ion 
Chromatography,'' Rev. 1.0, 1997 is available from from http://
www.epa.gov/safetwater/methods/met300.pdf. Table IB.
    (68) Table IG Methods are available in ``Methods For The 
Determination of Nonconventional Pesticides In Municipal and Industrial 
Wastewater, Volume I,'' EPA 821-R-93-010A, August 1993 Revision I, and 
``Methods For The Determination of Nonconventional Pesticides In 
Municipal and Industrial Wastewater, Volume II,'' EPA 821-R-93-010B 
(August 1993) are available from National Technical Information Service 
(NTIS), 5285 Port Royal Road, Springfield, VA 22161. Telephone: 800-553-
6847.
    (69) Method 245.7, Rev. 2.0, ``Mercury in Water by Cold Vapor Atomic 
Fluorescence Spectrometry,'' February 2005, EPA-821-R-05-001, available 
from the U.S. EPA Sample Control Center (operated by CSC), 6101 
Stevenson Avenue, Alexandria, VA 22304, Telephone: 703-461-8056. Table 
IB, See footnote 59.
    (70) USEPA. July 2006. Method 1680: Fecal Coliforms in Sewage Sludge 
(Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth 
(LTB) and EC Medium. U.S. Environmental Protection Agency, Office of 
Water, Washington DC. EPA 821-R-06-012. Available at http://www.epa.gov/
waterscience/methods/.
    (71) USEPA. July 2006. Method 1681: Fecal Coliforms in Sewage Sludge 
(Biosolids) by Multiple-Tube Fermentation using A-1 Medium. U.S. 
Environmental Protection Agency, Office of Water, Washington DC. EPA 
821-R-06-013. Available at http://www.epa.gov/waterscience/methods/.
    (72) USEPA. July 2006. Method 1682: Salmonella in Sewage Sludge 
(Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium. 
U.S. Environmental Protection Agency, Office of Water, Washington DC. 
EPA 821-R-06-014. Available at http://www.epa.gov/waterscience/methods/.
    (c) Under certain circumstances, the Regional Administrator or the 
Director in the Region or State where the discharge will occur may 
determine for a particular discharge that additional parameters or 
pollutants must be reported. Under such circumstances, additional test 
procedures for analysis of pollutants may be specified by the Regional 
Administrator, or the Director upon recommendation of the Alternate Test 
Procedure Program Coordinator, Washington, DC.
    (d) Under certain circumstances, the Administrator may approve 
additional alternate test procedures for nationwide use, upon 
recommendation by the Alternate Test Procedure Program Coordinator, 
Washington, DC.
    (e) Sample preservation procedures, container materials, and maximum 
allowable holding times for parameters are cited in Tables IA, IB, IC, 
ID, IE, IF, IG and IH are prescribed in Table II. Information in the 
table takes precedence over information in specific methods or 
elsewhere. Any person may apply for a variance from the prescribed 
preservation techniques, container materials, and maximum holding times 
applicable to samples taken from a specific discharge. Applications for 
variances may be made by letters to the Regional Administrator in the 
Region in which the discharge will occur. Sufficient data should be 
provided to assure such variance does not adversely affect the integrity 
of the sample. Such data will be forwarded by

[[Page 56]]

the Regional Administrator, to the Alternate Test Procedure Program 
Coordinator, Washington, DC, for technical review and recommendations 
for action on the variance application. Upon receipt of the 
recommendations from the Alternate Test Procedure Program Coordinator, 
the Regional Administrator may grant a variance applicable to the 
specific discharge to the applicant. A decision to approve or deny a 
variance will be made within 90 days of receipt of the application by 
the Regional Administrator.

                    Table II--Required Containers, Preservation Techniques, and Holding Times
----------------------------------------------------------------------------------------------------------------
                                                                                           Maximum holding time
          Parameter No./name                Container \1\          Preservation \2,3\              \4\
----------------------------------------------------------------------------------------------------------------
Table IA--Bacterial Tests:
    1-5. Coliform, total, fecal, and   PA, G..................  Cool, <10 [deg]C,        6 hours.\22,23\
     E. coli.                                                    0.0008% Na2S2O3 \5\.
    6. Fecal streptococci............  PA, G..................  Cool, <10 [deg]C,        6 hours.\22\
                                                                 0.0008% Na2S2O3 \5\.
    7. Enterococci...................  PA, G..................  Cool, <10 [deg]C,        6 hours.\22\
                                                                 0.0008% Na2S2O3 \5\.
    8. Salmonella....................  PA, G..................  Cool, <10 [deg]C,        6 hours.\22\
                                                                 0.0008% Na2S2O3 \5\.
Table IA--Aquatic Toxicity Tests:
    9-11. Toxicity, acute and chronic  P, FP, G...............  Cool, <=6 [deg]C \16\..  36 hours.
Table lB--Inorganic Tests:
    1. Acidity.......................  P, FP, G...............  Cool, <=6 [deg]C \18\..  14 days.
    2. Alkalinity....................  P, FP, G...............  Cool, <=6 [deg]C \18\..  14 days.
    4. Ammonia.......................  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
    9. Biochemical oxygen demand.....  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
    10. Boron........................  P, FP, or Quartz.......  HNO3 to pH<2...........  6 months.
    11. Bromide......................  P, FP, G...............  None required..........  28 days.
    14. Biochemical oxygen demand,     P, FP G................  Cool, <=6 [deg]C \18\..  48 hours.
     carbonaceous.
    15. Chemical oxygen demand.......  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
    16. Chloride.....................  P, FP, G...............  None required..........  28 days.
    17. Chlorine, total residual.....  P, G...................  None required..........  Analyze within 15
                                                                                          minutes.
    21. Color........................  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
    23-24. Cyanide, total or           P, FP, G...............  Cool, <=6 [deg]C \18\,   14 days.
     available (or CATC).                                        NaOH to pH12 \6\, reducing
                                                                 agent \5\.
    25. Fluoride.....................  P......................  None required..........  28 days.
    27. Hardness.....................  P, FP, G...............  HNO3 or H2SO4 to pH<2..  6 months.
    28. Hydrogen ion (pH)............  P, FP, G...............  None required..........  Analyze within 15
                                                                                          minutes.
    31, 43. Kjeldahl and organic N...  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
Table IB--Metals: \7\
    18. Chromium VI..................  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 pH = 9.3-9.7 \20\.
    35. Mercury (CVAA)...............  P, FP, G...............  HNO3 to pH<2...........  28 days.
    35. Mercury (CVAFS)..............  FP, G; and FP-lined cap  5 mL/L 12N HCl or 5 mL/  90 days.\17\
                                        \17\.                    L BrCl \17\.
    3, 5-8, 12, 13, 19, 20, 22, 26,    P, FP, G...............  HNO3 to pH<2, or at      6 months.
     29, 30, 32-34, 36, 37, 45, 47,                              least 24 hours prior
     51, 52, 58-60, 62, 63, 70-72,                               to analysis \19\.
     74, 75.
    Metals, except boron, chromium
     VI, and mercury.
    38. Nitrate......................  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
    39. Nitrate-nitrite..............  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
    40. Nitrite......................  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
    41. Oil and grease...............  G......................  Cool to <=6 [deg]C       28 days.
                                                                 \18\, HCl or H2SO4 to
                                                                 pH<2.
    42. Organic Carbon...............  P, FP, G...............  Cool to <=6 [deg]C       28 days.
                                                                 \18\, HCl, H2SO4, or
                                                                 H3PO4 to pH<2.
    44. Orthophosphate...............  P, FP, G...............  Cool, <=6 [deg]C \18\..  Filter within 15
                                                                                          minutes; Analyze
                                                                                          within 48 hours.
    46. Oxygen, Dissolved Probe......  G, Bottle and top......  None required..........  Analyze within 15
                                                                                          minutes.
    47. Winkler......................  G, Bottle and top......  Fix on site and store    8 hours.
                                                                 in dark.
    48. Phenols......................  G......................  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
    49. Phosphorous (elemental)......  G......................  Cool, <=6 [deg]C \18\..  48 hours.
    50. Phosphorous, total...........  P, FP, G...............  Cool, <=6 [deg]C \18\,   28 days.
                                                                 H2SO4 to pH<2.
    53. Residue, total...............  P, FP, G...............  Cool, <=6 [deg]C \18\..  7 days.
    54. Residue, Filterable..........  P, FP, G...............  Cool, <=6 [deg]C \18\..  7 days.
    55. Residue, Nonfilterable (TSS).  P, FP, G...............  Cool, <=6 [deg]C \18\..  7 days.
    56. Residue, Settleable..........  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.

[[Page 57]]

 
    57. Residue, Volatile............  P, FP, G...............  Cool, <=6 [deg]C \18\..  7 days.
    61. Silica.......................  P or Quartz............  Cool, <=6 [deg]C \18\..  28 days.
    64. Specific conductance.........  P, FP, G...............  Cool, <=6 [deg]C \18\..  28 days.
    65. Sulfate......................  P, FP, G...............  Cool, <=6 [deg]C \18\..  28 days.
    66. Sulfide......................  P, FP, G...............  Cool, <=6 [deg]C \18\,   7 days.
                                                                 add zinc acetate plus
                                                                 sodium hydroxide to
                                                                 pH9.
    67. Sulfite......................  P, FP, G...............  None required..........  Analyze within 15
                                                                                          minutes.
    68. Surfactants..................  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
    69. Temperature..................  P, FP, G...............  None required..........  Analyze.
    73. Turbidity....................  P, FP, G...............  Cool, <=6 [deg]C \18\..  48 hours.
Table lC--Organic Tests \8\
    13, 18-20, 22, 24-28, 34-37, 39-   G, FP-lined septum.....  Cool, <=6 [deg]C \18\,   14 days.
     43, 45-47, 56, 76, 104, 105, 108-                           0.008% Na2S2O3 \5\.
     111, 113. Purgeable Halocarbons.
    6, 57, 106. Purgeable aromatic     G, FP-lined septum.....  Cool, <=6 [deg]C \18\,   14 days.\9\
     hydrocarbons.                                               0.008% Na2S2O3 \5\,
                                                                 HCl to pH 2 \9\.
    3, 4. Acrolein and acrylonitrile.  G, FP-lined septum.....  Cool, <=6 [deg]C \18\,   14 days.\10\
                                                                 0.008% Na2S2O3 \5\, pH
                                                                 to 4-5 \10\.
    23, 30, 44, 49, 53, 77, 80, 81,    G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
     98, 100, 112. Phenols \11\.                                 0.008% Na2S2O3 \5\.      extraction, 40 days
                                                                                          after extraction.
    7, 38. Benzidines \11,\ \12\.....  G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
                                                                 0.008% Na2S2O3 \5\.      extraction.\13\
    14, 17, 48, 50-52. Phthalate       G, FP-lined cap........  Cool, <=6 [deg]C \18\..  7 days until
     esters \11\.                                                                         extraction, 40 days
                                                                                          after extraction.
    82-84. Nitrosamines \11,\ \14\...  G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
                                                                 store in dark, 0.008%    extraction, 40 days
                                                                 Na2S2O3 \5\.             after extraction.
    88-94. PCBs \11\.................  G, FP-lined cap........  Cool, <=6 [deg]C \18\..  1 year until
                                                                                          extraction, 1 year
                                                                                          after extraction.
    54, 55, 75, 79. Nitroaromatics     G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
     and isophorone \11\.                                        store in dark, 0.008%    extraction, 40 days
                                                                 Na2S2O3 \5\.             after extraction.
    1, 2, 5, 8-12, 32, 33, 58, 59,     G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
     74, 78, 99, 101. Polynuclear                                store in dark, 0.008%    extraction, 40 days
     aromatic hydrocarbons \11\.                                 Na2S2O3 \5\.             after extraction.
    15, 16, 21, 31, 87. Haloethers     G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
     \11\.                                                       0.008% Na2S2O3 \5\.      extraction, 40 days
                                                                                          after extraction.
    29, 35-37, 63-65, 107.             G, FP-lined cap........  Cool, <=6 [deg]C \18\..  7 days until
     Chlorinated hydrocarbons \11\.                                                       extraction, 40 days
                                                                                          after extraction.
    60-62, 66-72, 85, 86, 95-97, 102,
     103. CDDs/CDFs \11\.
    Aqueous Samples: Field and Lab     G......................  Cool, <=6 [deg]C \18\,   1 year.
     Preservation.                                               0.008% Na2S2O3 \5\,
                                                                 pH<9.
    Solids and Mixed-Phase Samples:    G......................  Cool, <=6 [deg]C \18\..  7 days.
     Field Preservation.
    Tissue Samples: Field              G......................  Cool, <=6 [deg]C \18\..  24 hours.
     Preservation.
    Solids, Mixed-Phase, and Tissue    G......................  Freeze, <=-10 [deg]C...  1 year.
     Samples: Lab Preservation.
Table lD--Pesticides Tests:
    1-70. Pesticides \11\............  G, FP-lined cap........  Cool, <=6 [deg]C \18\,   7 days until
                                                                 pH 5-9 \15\.             extraction, 40 days
                                                                                          after extraction.
Table IE--Radiological Tests:
    1-5. Alpha, beta, and radium.....  P, FP, G...............  HNO3 to pH<2...........  6 months.
Table IH--Bacterial Tests:
    1. E. coli.......................  PA, G..................  Cool, <10 [deg]C,        6 hours.\22\
                                                                 0.0008% Na2S2O3 \5\.
    2. Enterococci...................  PA, G..................  Cool, <10 [deg]C,        6 hours.\22\
                                                                 0.0008% Na2S2O3 \5\.
Table IH--Protozoan Tests:
    8. Cryptosporidium...............  LDPE; field filtration.  0-8 [deg]C.............  96 hours.\21\

[[Page 58]]

 
    9. Giardia.......................  LDPE; field filtration.  0-8 [deg]C.............  96 hours.\21\
----------------------------------------------------------------------------------------------------------------
\1\ ``P'' is polyethylene; ``FP'' is fluoropolymer (polytetrafluoroethylene (PTFE; Teflon[supreg]), or other
  fluoropolymer, unless stated otherwise in this Table II; ``G'' is glass; ``PA'' is any plastic that is made of
  a sterlizable material (polypropylene or other autoclavable plastic); ``LDPE'' is low density polyethylene.
\2\ Except where noted in this Table II and the method for the parameter, preserve each grab sample within 15
  minutes of collection. For a composite sample collected with an automated sampler (e.g., using a 24-hour
  composite sampler; see 40 CFR 122.21(g)(7)(i) or 40 CFR Part 403, Appendix E), refrigerate the sample at <=6
  [deg]C during collection unless specified otherwise in this Table II or in the method(s). For a composite
  sample to be split into separate aliquots for preservation and/or analysis, maintain the sample at <=6 [deg]C,
  unless specified otherwise in this Table II or in the method(s), until collection, splitting, and preservation
  is completed. Add the preservative to the sample container prior to sample collection when the preservative
  will not compromise the integrity of a grab sample, a composite sample, or an aliquot split from a composite
  sample; otherwise, preserve the grab sample, composite sample, or aliquot split from a composite sample within
  15 minutes of collection. If a composite measurement is required but a composite sample would compromise
  sample integrity, individual grab samples must be collected at prescribed time intervals (e.g., 4 samples over
  the course of a day, at 6-hour intervals). Grab samples must be analyzed separately and the concentrations
  averaged. Alternatively, grab samples may be collected in the field and composited in the laboratory if the
  compositing procedure produces results equivalent to results produced by arithmetic averaging of the results
  of analysis of individual grab samples. For examples of laboratory compositing procedures, see EPA Method
  1664A (oil and grease) and the procedures at 40 CFR 141.34(f)(14)(iv) and (v) (volatile organics).
\3\ When any sample is to be shipped by common carrier or sent via the U.S. Postal Service, it must comply with
  the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such
  material for transportation is responsible for ensuring such compliance. For the preservation requirements of
  Table II, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has
  determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric acid
  (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); Nitric acid
  (HNO3) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric
  acid (H2SO4) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); and
  Sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or
  less).
\4\ Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that
  samples may be held before the start of analysis and still be considered valid (e.g., samples analyzed for
  fecal coliforms may be held up to 6 hours prior to commencing analysis). Samples may be held for longer
  periods only if the permittee or monitoring laboratory has data on file to show that, for the specific types
  of samples under study, the analytes are stable for the longer time, and has received a variance from the
  Regional Administrator under Sec.  136.3(e). For a grab sample, the holding time begins at the time of
  collection. For a composite sample collected with an automated sampler (e.g., using a 24-hour composite
  sampler; see 40 CFR 122.21(g)(7)(i) or 40 CFR Part 403, Appendix E), the holding time begins at the time of
  the end of collection of the composite sample. For a set of grab samples composited in the field or
  laboratory, the holding time begins at the time of collection of the last grab sample in the set. Some samples
  may not be stable for the maximum time period given in the table. A permittee or monitoring laboratory is
  obligated to hold the sample for a shorter time if it knows that a shorter time is necessary to maintain
  sample stability. See Sec.  136.3(e) for details. The date and time of collection of an individual grab
  sample is the date and time at which the sample is collected. For a set of grab samples to be composited, and
  that are all collected on the same calendar date, the date of collection is the date on which the samples are
  collected. For a set of grab samples to be composited, and that are collected across two calendar dates, the
  date of collection is the dates of the two days; e.g., November 14-15. For a composite sample collected
  automatically on a given date, the date of collection is the date on which the sample is collected. For a
  composite sample collected automatically, and that is collected across two calendar dates, the date of
  collection is the dates of the two days; e.g., November 14-15.
\5\ Add a reducing agent only if an oxidant (e.g., chlorine) is present. Reducing agents shown to be effective
  are sodium thiosulfate (Na2S2O3), ascorbic acid, sodium arsenite (NaAsO2), or sodium borohydride (NaBH4).
  However, some of these agents have been shown to produce a positive or negative cyanide bias, depending on
  other substances in the sample and the analytical method used. Therefore, do not add an excess of reducing
  agent. Methods recommending ascorbic acid (e.g., EPA Method 335.4) specify adding ascorbic acid crystals, 0.1-
  0.6 g, until a drop of sample produces no color on potassium iodide (KI) starch paper, then adding 0.06 g (60
  mg) for each liter of sample volume. If NaBH4 or NaAsO2 is used, 25 mg/L NaBH4 or 100 mg/L NaAsO2 will reduce
  more than 50 mg/L of chlorine (see method ``Kelada-01'' and/or Standard Method 4500-CN- for more information).
  After adding reducing agent, test the sample using KI paper, a test strip (e.g. for chlorine, SenSafeTM Total
  Chlorine Water Check 480010) moistened with acetate buffer solution (see Standard Method 4500-Cl.C.3e), or a
  chlorine/oxidant test method (e.g., EPA Method 330.4 or 330.5), to make sure all oxidant is removed. If
  oxidant remains, add more reducing agent. Whatever agent is used, it should be tested to assure that cyanide
  results are not affected adversely.
\6\ Sample collection and preservation: Collect a volume of sample appropriate to the analytical method in a
  bottle of the material specified. If the sample can be analyzed within 48 hours and sulfide is not present,
  adjust the pH to  12 with sodium hydroxide solution (e.g., 5% w/v), refrigerate as specified, and
  analyze within 48 hours. Otherwise, to extend the holding time to 14 days and mitigate interferences, treat
  the sample immediately using any or all of the following techniques, as necessary, followed by adjustment of
  the sample pH to  12 and refrigeration as specified. There may be interferences that are not
  mitigated by approved procedures. Any procedure for removal or suppression of an interference may be employed,
  provided the laboratory demonstrates that it more accurately measures cyanide. Particulate cyanide (e.g.,
  ferric ferrocyanide) or a strong cyanide complex (e.g., cobalt cyanide) are more accurately measured if the
  laboratory holds the sample at room temperature and pH  12 for a minimum of 4 hours prior to
  analysis, and performs UV digestion or dissolution under alkaline (pH=12) conditions, if necessary.
(1) Sulfur: To remove elemental sulfur (S8), filter the sample immediately. If the filtration time will exceed
  15 minutes, use a larger filter or a method that requires a smaller sample volume (e.g., EPA Method 335.4 or
  Lachat Method 01). Adjust the pH of the filtrate to > 12 with NaOH, refrigerate the filter and filtrate, and
  ship or transport to the laboratory. In the laboratory, extract the filter with 100 mL of 5% NaOH solution for
  a minimum of 2 hours. Filter the extract and discard the solids. Combine the 5% NaOH-extracted filtrate with
  the initial filtrate, lower the pH to approximately 12 with concentrated hydrochloric or sulfuric acid, and
  analyze the combined filtrate. Because the detection limit for cyanide will be increased by dilution by the
  filtrate from the solids, test the sample with and without the solids procedure if a low detection limit for
  cyanide is necessary. Do not use the solids procedure if a higher cyanide concentration is obtained without
  it. Alternatively, analyze the filtrates from the sample and the solids separately, add the amounts determined
  (in [mu]g or mg), and divide by the original sample volume to obtain the cyanide concentration.

[[Page 59]]

 
(2) Sulfide: If the sample contains sulfide as determined by lead acetate paper, or if sulfide is known or
  suspected to be present, immediately conduct one of the volatilization treatments or the precipitation
  treatment as follows: Volatilization--Headspace expelling. In a fume hood or well-ventilated area, transfer
  0.75 liter of sample to a 4.4 L collapsible container (e.g., CubitainerTM). Acidify with concentrated
  hydrochloric acid to pH < 2. Cap the container and shake vigorously for 30 seconds. Remove the cap and expel
  the headspace into the fume hood or open area by collapsing the container without expelling the sample. Refill
  the headspace by expanding the container. Repeat expelling a total of five headspace volumes. Adjust the pH to
  > 12, refrigerate, and ship or transport to the laboratory. Scaling to a smaller or larger sample volume must
  maintain the air to sample volume ratio. A larger volume of air will result in too great a loss of cyanide (>
  10%). Dynamic stripping: In a fume hood or well-ventilated area, transfer 0.75 liter of sample to a container
  of the material specified and acidify with concentrated hydrochloric acid to pH < 2. Using a calibrated air
  sampling pump or flowmeter, purge the acidified sample into the fume hood or open area through a fritted glass
  aerator at a flow rate of 2.25 L/min for 4 minutes. Adjust the pH to > 12, refrigerate, and ship or transport
  to the laboratory. Scaling to a smaller or larger sample volume must maintain the air to sample volume ratio.
  A larger volume of air will result in too great a loss of cyanide (> 10%). Precipitation: If the sample
  contains particulate matter that would be removed by filtration, filter the sample prior to treatment to
  assure that cyanide associated with the particulate matter is included in the measurement. Ship or transport
  the filter to the laboratory. In the laboratory, extract the filter with 100 mL of 5% NaOH solution for a
  minimum of 2 hours. Filter the extract and discard the solids. Combine the 5% NaOH-extracted filtrate with the
  initial filtrate, lower the pH to approximately 12 with concentrated hydrochloric or sulfuric acid, and
  analyze the combined filtrate. Because the detection limit for cyanide will be increased by dilution by the
  filtrate from the solids, test the sample with and without the solids procedure if a low detection limit for
  cyanide is necessary. Do not use the solids procedure if a higher cyanide concentration is obtained without
  it. Alternatively, analyze the filtrates from the sample and the solids separately, add the amounts determined
  (in [mu]g or mg), and divide by the original sample volume to obtain the cyanide concentration. For removal of
  sulfide by precipitation, raise the pH of the sample to > 12 with NaOH solution, then add approximately 1 mg
  of powdered cadmium chloride for each mL of sample. For example, add approximately 500 mg to a 500-mL sample.
  Cap and shake the container to mix. Allow the precipitate to settle and test the sample with lead acetate
  paper. If necessary, add cadmium chloride but avoid adding an excess. Finally, filter through 0.45 micron
  filter. Cool the sample as specified and ship or transport the filtrate and filter to the laboratory. In the
  laboratory, extract the filter with 100 mL of 5% NaOH solution for a minimum of 2 hours. Filter the extract
  and discard the solids. Combine the 5% NaOH-extracted filtrate with the initial filtrate, lower the pH to
  approximately 12 with concentrated hydrochloric or sulfuric acid, and analyze the combined filtrate. Because
  the detection limit for cyanide will be increased by dilution by the filtrate from the solids, test the sample
  with and without the solids procedure if a low detection limit for cyanide is necessary. Do not use the solids
  procedure if a higher cyanide concentration is obtained without it. Alternatively, analyze the filtrates from
  the sample and the solids separately, add the amounts determined (in [mu]g or mg), and divide by the original
  sample volume to obtain the cyanide concentration. If a ligand-exchange method is used (e.g., ASTM D6888), it
  may be necessary to increase the ligand-exchange reagent to offset any excess of cadmium chloride.
(3) Sulfite, thiosulfate, or thiocyanate: If sulfite, thiosulfate, or thiocyanate is known or suspected to be
  present, use UV digestion with a glass coil (Method Kelada-01) or ligand exchange (Method OIA-1677) to
  preclude cyanide loss or positive interference.
(4) Aldehyde: If formaldehyde, acetaldehyde, or another water-soluble aldehyde is known or suspected to be
  present, treat the sample with 20 mL of 3.5% ethylenediamine solution per liter of sample.
(5) Carbonate: Carbonate interference is evidenced by noticeable effervescence upon acidification in the
  distillation flask, a reduction in the pH of the absorber solution, and incomplete cyanide spike recovery.
  When significant carbonate is present, adjust the pH to =12 using calcium hydroxide instead of
  sodium hydroxide. Allow the precipitate to settle and decant or filter the sample prior to analysis (also see
  Standard Method 4500-CN.B.3.d).
(6) Chlorine, hypochlorite, or other oxidant: Treat a sample known or suspected to contain chlorine,
  hypochlorite, or other oxidant as directed in footnote 5.
\7\ For dissolved metals, filter grab samples within 15 minutes of collection and before adding preservatives.
  For a composite sample collected with an automated sampler (e.g., using a 24-hour composite sampler; see 40
  CFR 122.21(g)(7)(i) or 40 CFR Part 403, Appendix E), filter the sample within 15 minutes after completion of
  collection and before adding preservatives. If it is known or suspected that dissolved sample integrity will
  be compromised during collection of a composite sample collected automatically over time (e.g., by interchange
  of a metal between dissolved and suspended forms), collect and filter grab samples to be composited (footnote
  2) in place of a composite sample collected automatically.
\8\ Guidance applies to samples to be analyzed by GC, LC, or GC/MS for specific compounds.
\9\ If the sample is not adjusted to pH 2, then the sample must be analyzed within seven days of sampling.
\10\ The pH adjustment is not required if acrolein will not be measured. Samples for acrolein receiving no pH
  adjustment must be analyzed within 3 days of sampling.
\11\ When the extractable analytes of concern fall within a single chemical category, the specified preservative
  and maximum holding times should be observed for optimum safeguard of sample integrity (i.e., use all
  necessary preservatives and hold for the shortest time listed). When the analytes of concern fall within two
  or more chemical categories, the sample may be preserved by cooling to <=6 [deg]C, reducing residual chlorine
  with 0.008% sodium thiosulfate, storing in the dark, and adjusting the pH to 6-9; samples preserved in this
  manner may be held for seven days before extraction and for forty days after extraction. Exceptions to this
  optional preservation and holding time procedure are noted in footnote 5 (regarding the requirement for
  thiosulfate reduction), and footnotes 12, 13 (regarding the analysis of benzidine).
\12\ If 1,2-diphenylhydrazine is likely to be present, adjust the pH of the sample to 4.0 
  0.2 to prevent rearrangement to benzidine.
\13\ Extracts may be stored up to 30 days at < 0 [deg]C.
\14\ For the analysis of diphenylnitrosamine, add 0.008% Na2S2O3 and adjust pH to 7-10 with NaOH within 24 hours
  of sampling.
\15\ The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are
  extracted within 72 hours of collection. For the analysis of aldrin, add 0.008% Na2S2O3.
\16\ Sufficient ice should be placed with the samples in the shipping container to ensure that ice is still
  present when the samples arrive at the laboratory. However, even if ice is present when the samples arrive, it
  is necessary to immediately measure the temperature of the samples and confirm that the preservation
  temperature maximum has not been exceeded. In the isolated cases where it can be documented that this holding
  temperature cannot be met, the permittee can be given the option of on-site testing or can request a variance.
  The request for a variance should include supportive data which show that the toxicity of the effluent samples
  is not reduced because of the increased holding temperature.
\17\ Samples collected for the determination of trace level mercury (<100 ng/L) using EPA Method 1631 must be
  collected in tightly-capped fluoropolymer or glass bottles and preserved with BrCl or HCl solution within 48
  hours of sample collection. The time to preservation may be extended to 28 days if a sample is oxidized in the
  sample bottle. A sample collected for dissolved trace level mercury should be filtered in the laboratory
  within 24 hours of the time of collection. However, if circumstances preclude overnight shipment, the sample
  should be filtered in a designated clean area in the field in accordance with procedures given in Method 1669.
  If sample integrity will not be maintained by shipment to and filtration in the laboratory, the sample must be
  filtered in a designated clean area in the field within the time period necessary to maintain sample
  integrity. A sample that has been collected for determination of total or dissolved trace level mercury must
  be analyzed within 90 days of sample collection.
\18\ Aqueous samples must be preserved at <=6 [deg]C, and should not be frozen unless data demonstrating that
  sample freezing does not adversely impact sample integrity is maintained on file and accepted as valid by the
  regulatory authority. Also, for purposes of NPDES monitoring, the specification of ``<= [deg]C'' is used in
  place of the ``4 [deg]C'' and ``< 4 [deg]C'' sample temperature requirements listed in some methods. It is not
  necessary to measure the sample temperature to three significant figures (\1/100\th of 1 degree); rather,
  three significant figures are specified so that rounding down to 6 [deg]C may not be used to meet the <=6
  [deg]C requirement. The preservation temperature does not apply to samples that are analyzed immediately (less
  than 15 minutes).

[[Page 60]]

 
\19\ An aqueous sample may be collected and shipped without acid preservation. However, acid must be added at
  least 24 hours before analysis to dissolve any metals that adsorb to the container walls. If the sample must
  be analyzed within 24 hours of collection, add the acid immediately (see footnote 2). Soil and sediment
  samples do not need to be preserved with acid. The allowances in this footnote supersede the preservation and
  holding time requirements in the approved metals methods.
\20\ To achieve the 28-day holding time, use the ammonium sulfate buffer solution specified in EPA Method 218.6.
  The allowance in this footnote supersedes preservation and holding time requirements in the approved
  hexavalent chromium methods, unless this supersession would compromise the measurement, in which case
  requirements in the method must be followed.
\21\ Holding time is calculated from time of sample collection to elution for samples shipped to the laboratory
  in bulk and calculated from the time of sample filtration to elution for samples filtered in the field.
\22\ Samples analysis should begin immediately, preferably within 2 hours of collection. The maximum transport
  time to the laboratory is 6 hours, and samples should be processed within 2 hours of receipt at the
  laboratory.
\23\ For fecal coliform samples for sewage sludge (biosolids) only, the holding time is extended to 24 hours for
  the following sample types using either EPA Method 1680 (LTB-EC) or 1681 (A-1): Class A composted, Class B
  aerobically digested, and Class B anaerobically digested.


[38 FR 28758, Oct. 16, 1973]

    Editorial Note: For Federal Register citations affecting Sec. 
136.3, see the List of CFR Sections Affected, which appears in the 
Finding Aids section of the printed volume and on GPO Access.



Sec. 136.4  Application for alternate test procedures.

    (a) Any person may apply to the Regional Administrator in the Region 
where the discharge occurs for approval of an alternative test 
procedure.
    (b) When the discharge for which an alternative test procedure is 
proposed occurs within a State having a permit program approved pursuant 
to section 402 of the Act, the applicant shall submit his application to 
the Regional Administrator through the Director of the State agency 
having responsibility for issuance of NPDES permits within such State.
    (c) Unless and until printed application forms are made available, 
an application for an alternate test procedure may be made by letter in 
triplicate. Any application for an alternate test procedure under this 
paragraph (c) shall:
    (1) Provide the name and address of the responsible person or firm 
making the discharge (if not the applicant) and the applicable ID number 
of the existing or pending permit, issuing agency, and type of permit 
for which the alternate test procedure is requested, and the discharge 
serial number.
    (2) Identify the pollutant or parameter for which approval of an 
alternate testing procedure is being requested.
    (3) Provide justification for using testing procedures other than 
those specified in Table I.
    (4) Provide a detailed description of the proposed alternate test 
procedure, together with references to published studies of the 
applicability of the alternate test procedure to the effluents in 
question.
    (d) An application for approval of an alternate test procedure for 
nationwide use may be made by letter in triplicate to the Alternate Test 
Procedure Program Coordinator, Office of Science and Technology (4303), 
Office of Water, U.S. Environmental Protection Agency, 1200 Pennsylvania 
Ave., NW., Washington, DC 20460. Any application for an alternate test 
procedure under this paragraph (d) shall:
    (1) Provide the name and address of the responsible person or firm 
making the application.
    (2) Identify the pollutant(s) or parameter(s) for which nationwide 
approval of an alternate testing procedure is being requested.
    (3) Provide a detailed description of the proposed alternate 
procedure, together with references to published or other studies 
confirming the general applicability of the alternate test procedure to 
the pollutant(s) or parameter(s) in waste water discharges from 
representative and specified industrial or other categories.
    (4) Provide comparability data for the performance of the proposed 
alternate test procedure compared to the performance of the approved 
test procedures.

[38 FR 28760, Oct. 16, 1973, as amended at 41 FR 52785, Dec. 1, 1976; 62 
FR 30763, June 5, 1997; 72 FR 11239, Mar. 12, 2007]



Sec. 136.5  Approval of alternate test procedures.

    (a) The Regional Administrator of the region in which the discharge 
will

[[Page 61]]

occur has final responsibility for approval of any alternate test 
procedure proposed by the responsible person or firm making the 
discharge.
    (b) Within thirty days of receipt of an application, the Director 
will forward such application proposed by the responsible person or firm 
making the discharge, together with his recommendations, to the Regional 
Administrator. Where the Director recommends rejection of the 
application for scientific and technical reasons which he provides, the 
Regional Administrator shall deny the application and shall forward this 
decision to the Director of the State Permit Program and to the 
Alternate Test Procedure Program Coordinator, Office of Science and 
Technology (4303), Office of Water, U.S. Environmental Protection 
Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460.
    (c) Before approving any application for an alternate test procedure 
proposed by the responsible person or firm making the discharge, the 
Regional Administrator shall forward a copy of the application to the 
Alternate Test Procedure Program Coordinator, Office of Science and 
Technology (4303), Office of Water, U.S. Environmental Protection 
Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460.
    (d) Within ninety days of receipt by the Regional Administrator of 
an application for an alternate test procedure, proposed by the 
responsible person or firm making the discharge, the Regional 
Administrator shall notify the applicant and the appropriate State 
agency of approval or rejection, or shall specify the additional 
information which is required to determine whether to approve the 
proposed test procedure. Prior to the expiration of such ninety day 
period, a recommendation providing the scientific and other technical 
basis for acceptance or rejection will be forwarded to the Regional 
Administrator by the Alternate Test Procedure Program Coordinator, 
Washington, DC. A copy of all approval and rejection notifications will 
be forwarded to the Alternate Test Procedure Program Coordinator, Office 
of Science and Technology (4303), Office of Water, U.S. Environmental 
Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460, 
for the purposes of national coordination.
    (e) Approval for nationwide use. (1) As expeditiously as is 
practicable after receipt by the Alternate Test Procedure Program 
Coordinator, Washington, DC, of an application for an alternate test 
procedure for nationwide use, the Alternate Test Procedure Program 
Coordinator, Washington, DC, shall notify the applicant in writing 
whether the application is complete. If the application is incomplete, 
the applicant shall be informed of the information necessary to make the 
application complete.
    (2) As expeditiously as is practicable after receipt of a complete 
package, the Alternate Test Procedure Program Coordinator shall perform 
any analysis necessary to determine whether the alternate test procedure 
satisfies the applicable requirements of this part, and the Alternate 
Test Procedure Program Coordinator shall recommend to the Administrator 
that he/she approve or reject the application and shall also notify the 
application of the recommendation.
    (3) As expeditiously as practicable, an alternate method determined 
by the Administrator to satisfy the applicable requirements of this part 
shall be proposed by EPA for incorporation in subsection 136.3 of 40 CFR 
part 136. EPA shall make available for review all the factual bases for 
its proposal, including any performance data submitted by the applicant 
and any available EPA analysis of those data.
    (4) Following a period of public comment, EPA shall, as 
expeditiously as practicable, publish in the Federal Register a final 
decision to approve or reject the alternate method.

[38 FR 28760, Oct. 16, 1973, as amended at 41 FR 52785, Dec. 1, 1976; 55 
FR 33440, Aug. 15, 1990; 62 FR 30763, June 5, 1997; 72 FR 11239, Mar. 
12, 2007]



Sec. 136.6  Method modifications and analytical requirements.

    (a) Definitions of terms used in this section.
    (1) Analyst means the person or laboratory using a test procedure 
(analytical method) in this Part.
    (2) Chemistry of the Method means the reagents and reactions used in 
a test

[[Page 62]]

procedure that allow determination of the analyte(s) of interest in an 
environmental sample.
    (3) Determinative Technique means the way in which an analyte is 
identified and quantified (e.g., colorimetry, mass spectrometry).
    (4) Equivalent Performance means that the modified method produces 
results that meet the QC acceptance criteria of the approved method at 
this part.
    (5) Method-defined Analyte means an analyte defined solely by the 
method used to determine the analyte. Such an analyte may be a physical 
parameter, a parameter that is not a specific chemical, or a parameter 
that may be comprised of a number of substances. Examples of such 
analytes include temperature, oil and grease, total suspended solids, 
total phenolics, turbidity, chemical oxygen demand, and biochemical 
oxygen demand.
    (6) QC means ``quality control.''
    (b) Method Modifications.
    (1) Allowable Changes. Except as set forth in paragraph (b)(3) of 
this section, an analyst may modify an approved test procedure 
(analytical method) provided that the chemistry of the method or the 
determinative technique is not changed, and provided that the 
requirements of paragraph (b)(2) of this section are met.
    (i) Potentially acceptable modifications regardless of current 
method performance include changes between automated and manual discrete 
instrumentation; changes in the calibration range (provided that the 
modified range covers any relevant regulatory limit); changes in 
equipment such as using similar equipment from a vendor other than that 
mentioned in the method (e.g., a purge-and-trap device from OIA rather 
than Tekmar), changes in equipment operating parameters such as changing 
the monitoring wavelength of a colorimeter or modifying the temperature 
program for a specific GC column; changes to chromatographic columns 
(treated in greater detail in paragraph (d) of this section); and 
increases in purge-and-trap sample volumes (provided specifications in 
paragraph (e) of this section are met). The changes are only allowed 
provided that all the requirements of paragraph (b)(2) of this section 
are met.
    (ii) If the characteristics of a wastewater matrix prevent efficient 
recovery of organic pollutants and prevent the method from meeting QC 
requirements, the analyst may attempt to resolve the issue by using 
salts as specified in Guidance on Evaluation, Resolution, and 
Documentation of Analytical Problems Associated with Compliance 
Monitoring (EPA 821-B-93-001, June 1993), provided that such salts do 
not react with or introduce the target pollutant into the sample (as 
evidenced by the analysis of method blanks, laboratory control samples, 
and spiked samples that also contain such salts) and that all 
requirements of paragraph (b)(2) of this section are met. Chlorinated 
samples must be dechlorinated prior to the addition of such salts.
    (iii) If the characteristics of a wastewater matrix result in poor 
sample dispersion or reagent deposition on equipment and prevents the 
analyst from meeting QC requirements, the analysts may attempt to 
resolve the issue by adding an inert surfactant (i.e. a surfactant that 
will not affect the chemistry of the method), which may include Brij-35 
or sodium dodecyl sulfate (SDS), provided that such surfactant does not 
react with or introduce the target pollutant into the sample (as 
evidenced by the analysis of method blanks, laboratory control samples, 
and spiked samples that also contain such surfactant) and that all 
requirements of paragraph (b)(2) of this section are met. Chlorinated 
samples must be dechlorinated prior to the addition of such surfactant.
    (2) Requirements. A modified method must produce equivalent 
performance to the approved methods for the analyte(s) of interest, and 
the equivalent performance must be documented.
    (i) Requirements for Establishing Equivalent Performance
    (A) If the approved method contains QC tests and QC acceptance 
criteria, the modified method must use these QC tests and the modified 
method must meet the QC acceptance criteria. The Analyst may only rely 
on QC tests and QC acceptance criteria in a method if it includes 
wastewater matrix QC tests

[[Page 63]]

and QC acceptance criteria (e.g., as matrix spikes) and both initial 
(start-up) and ongoing QC tests and QC acceptance criteria.
    (B) If the approved method does not contain QC tests and QC 
acceptance criteria, or if the QC tests and QC acceptance criteria in 
the method do not meet the requirements of paragraph (b)(2)(i)(A) of 
this section, the analyst must employ QC tests specified in Protocol for 
EPA Approval of Alternate Test Procedures for Organic and Inorganic 
Analytes in Wastewater and Drinking Water (EPA-821-B-98-002, March 1999) 
and meet the QC provisions specified therein. In addition, the Analyst 
must perform on-going QC tests, including assessment of performance of 
the modified method on the sample matrix (e.g., analysis of a matrix 
spike/matrix spike duplicate pair for every twenty samples of a 
discharge analyzed), and analysis of an ongoing precision and recovery 
sample and a blank with each batch of 20 or fewer samples.
    (C) Calibration must be performed using the modified method and the 
modified method must be tested with every wastewater matrix to which it 
will be applied (up to nine distinct matrices; as described in the ATP 
Protocol, after validation in nine distinct matrices, the method may be 
applied to all wastewater matrices), in addition to any and all reagent 
water tests. If the performance in the wastewater matrix or reagent 
water does not meet the QC acceptance criteria the method modification 
may not be used.
    (D) Analysts must test representative effluents with the modified 
method, and demonstrate that the results are equivalent or superior to 
results with the unmodified method.
    (ii) Requirements for Documentation. The modified method must be 
documented in a method write-up or an addendum that describes the 
modification(s) to the approved method. The write-up or addendum must 
include a reference number (e.g., method number), revision number, and 
revision date so that it may be referenced accurately. In addition, the 
organization that uses the modified method must document the results of 
QC tests and keep these records, along with a copy of the method write-
up or addendum, for review by an auditor.
    (3) Restrictions. An analyst may not modify an approved analytical 
method for a method-defined analyte. In addition, an analyst may not 
modify an approved method if the modification would result in 
measurement of a different form or species of an analyte (e.g., a change 
to a metals digestion or total cyanide distillation). An analyst may 
also may not modify any sample preservation and/or holding time 
requirements of an approved method.
    (c) Analytical Requirements for Multi-analyte Methods (Target 
Analytes). For the purpose of NPDES reporting, the discharger or 
permittee must meet QC requirements only for the analyte(s) being 
measured and reported under the NPDES permit.
    (d) The following modifications to approved methods are authorized 
in the circumstances described below:
    (1) Capillary Column. Use of a capillary (open tubular) GC column 
rather than a packed column is allowed with EPA Methods 601-613, 624, 
625, and 1624B in Appendix A to this part, provided that all QC tests 
for the approved method are performed and all QC acceptance criteria are 
met. When changing from a packed column to a capillary column, retention 
times will change. Analysts are not required to meet retention time 
specified in the approved method when this change is made. Instead, 
analysts must generate new retention time tables with capillary columns 
to be kept on file along with other startup test and ongoing QC data, 
for review by auditors.
    (2) Increased sample volume in purge and trap methodology. Use of 
increased sample volumes, up to a maximum of 25 mL, is allowed for an 
approved method, provided that the height of the water column in the 
purge vessel is at least 5 cm. The analyst should also use one or more 
surrogate analytes that are chemically similar to the analytes of 
interest in order to demonstrate that the increased sample volume does 
not adversely affect the analytical results.

[72 FR 11239, Mar. 12, 2007]

[[Page 64]]

    Appendix A to Part 136--Methods for Organic Chemical Analysis of 
                   Municipal and Industrial Wastewater

                    Method 601--Purgeable Halocarbons

                        1. Scope and Application

    1.1 This method covers the determination of 29 purgeable 
halocarbons.
    The following parameters may be determined by this method:

------------------------------------------------------------------------
                                                  STORET
                   Parameter                       No.        CAS No.
------------------------------------------------------------------------
Bromodichloromethane...........................    32101         75-27-4
Bromoform......................................    32104         75-25-2
Bromomethane...................................    34413         74-83-9
Carbon tetrachloride...........................    32102         56-23-5
Chlorobenzene..................................    34301        108-90-7
Chloroethane...................................    34311         75-00-3
2-Chloroethylvinyl ether.......................    34576        100-75-8
Chloroform.....................................    32106         67-66-3
Chloromethane..................................    34418         74-87-3
Dibromochloromethane...........................    32105        124-48-1
1,2-Dichlorobenzene............................    34536         95-50-1
1,3-Dichlorobenzene............................    34566        541-73-1
1,4-Dichlorobenzene............................    34571        106-46-7
Dichlorodifluoromethane........................    34668         75-71-8
1,1-Dichloroethane.............................    34496         75-34-3
1,2-Dichloroethane.............................    34531        107-06-2
1,1-Dichloroethane.............................    34501         75-35-4
trans-1,2-Dichloroethene.......................    34546        156-60-5
1,2-Dichloropropane............................    34541         78-87-5
cis-1,3-Dichloropropene........................    34704      10061-01-5
trans-1,3-Dichloropropene......................    34699      10061-02-6
Methylene chloride.............................    34423         75-09-2
1,1,2,2-Tetrachloroethane......................    34516         79-34-5
Tetrachloroethene..............................    34475        127-18-4
1,1,1-Trichloroethane..........................    34506         71-55-6
1,1,2-Trichloroethane..........................    34511         79-00-5
Tetrachloroethene..............................    39180         79-01-6
Trichlorofluoromethane.........................    34488         75-69-4
Vinyl chloride.................................    39715         75-01-4
------------------------------------------------------------------------

    1.2 This is a purge and trap gas chromatographic (GC) method 
applicable to the determination of the compounds listed above in 
municipal and industrial discharges as provided under 40 CFR 136.1. When 
this method is used to analyze unfamiliar samples for any or all of the 
compounds above, compound identifications should be supported by at 
least one additional qualitative technique. This method describes 
analytical conditions for a second gas chromatographic column that can 
be used to confirm measurements made with the primary column. Method 624 
provides gas chromatograph/mass spectrometer (GC/MS) conditions 
appropriate for the qualitative and quantitative confirmation of results 
for most of the parameters listed above.
    1.3 The method detection limit (MDL, defined in Section 12.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the operation of a purge and trap system and a 
gas chromatograph and in the interpretation of gas chromatograms. Each 
analyst must demonstrate the ability to generate acceptable results with 
this method using the procedure described in Section 8.2.

                          2. Summary of Method

    2.1 An inert gas is bubbled through a 5-mL water sample contained in 
a specially-designed purging chamber at ambient temperature. The 
halocarbons are efficiently transferred from the aqueous phase to the 
vapor phase. The vapor is swept through a sorbent trap where the 
halocarbons are trapped. After purging is completed, the trap is heated 
and backflushed with the inert gas to desorb the halocarbons onto a gas 
chromatographic column. The gas chromatograph is temperature programmed 
to separate the halocarbons which are then detected with a halide-
specific detector. \2,3\
    2.2 The method provides an optional gas chromatographic column that 
may be helpful in resolving the compounds of interest from interferences 
that may occur.

                            3. Interferences

    3.1 Impurities in the purge gas and organic compounds outgassing 
from the plumbing ahead of the trap account for the majority of 
contamination problems. The analytical system must be demonstrated to be 
free from contamination under the conditions of the analysis by running 
laboratory reagent blanks as described in Section 8.1.3. The use of non-
Teflon plastic tubing, non-Teflon thread sealants, or flow controllers 
with rubber components in the purge and trap system should be avoided.
    3.2 Samples can be contaminated by diffusion of volatile organics 
(particularly fluorocarbons and methylene chloride) through the septum 
seal ilto the sample during shipment and storage. A field reagent blank 
prepared from reagent water and carried through the sampling and 
handling protocol can serve as a check on such contamination.
    3.3 Contamination by carry-over can occur whenever high level and 
low level samples are sequentially analyzed. To reduce carry-over, the 
purging device and sample syringe must be rinsed with reagent water 
between sample analyses. Whenever an unusually concentrated sample is 
encountered, it should be followed by an analysis of reagent water to 
check for cross contamination. For samples containing large amounts of 
water-soluble materials, suspended solids,

[[Page 65]]

high boiling compounds or high organohalide levels, it may be necessary 
to wash out the purging device with a detergent solution, rinse it with 
distilled water, and then dry it in a 105[deg]C oven between analyses. 
The trap and other parts of the system are also subject to 
contamination; therefore, frequent bakeout and purging of the entire 
system may be required.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified \4,6\ for 
the information of the analyst.
    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: carbon tetrachloride, chloroform, 1,4-dichlorobenzene, and 
vinyl chloride. Primary standards of these toxic compounds should be 
prepared in a hood. A NIOSH/MESA approved toxic gas respirator should be 
worn when the analyst handles high concentrations of these toxic 
compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete sampling.
    5.1.1 Vial--25-mL capacity or larger, equipped with a screw cap with 
a hole in the center (Pierce 13075 or equivalent). Detergent 
wash, rinse with tap and distilled water, and dry at 105 [deg]C before 
use.
    5.1.2 Septum--Teflon-faced silicone (Pierce 12722 or 
equivalent). Detergent wash, rinse with tap and distilled water, and dry 
at 105 [deg]C for 1 h before use.
    5.2 Purge and trap system--The purge and trap system consists of 
three separate pieces of equipment: a purging device, trap, and 
desorber. Several complete systems are now commercially available.
    5.2.1 The purging device must be designed to accept 5-mL samples 
with a water column at least 3 cm deep. The gaseous head space between 
the water column and the trap must have a total volume of less than 15 
mL. The purge gas must pass through the water column as finely divided 
bubbles with a diameter of less than 3 mm at the origin. The purge gas 
must be introduced no more than 5 mm from the base of the water column. 
The purging device illustrated in Figure 1 meets these design criteria.
    5.2.2 The trap must be at least 25 cm long and have an inside 
diameter of at least 0.105 in. The trap must be packed to contain the 
following minimum lengths of adsorbents: 1.0 cm of methyl silicone 
coated packing (Section 6.3.3), 7.7 cm of 2,6-diphenylene oxide polymer 
(Section 6.3.2), 7.7 cm of silica gel (Section 6.3.4), 7.7 cm of coconut 
charcoal (Section 6.3.1). If it is not necessary to analyze for 
dichlorodifluoromethane, the charcoal can be eliminated, and the polymer 
section lengthened to 15 cm. The minimum specifications for the trap are 
illustrated in Figure 2.
    5.2.3 The desorber must be capable of rapidly heating the trap to 
180 [deg]C. The polymer section of the trap should not be heated higher 
than 180 [deg]C and the remaining sections should not exceed 200 [deg]C. 
The desorber illustrated in Figure 2 meets these design criteria.
    5.2.4 The purge and trap system may be assembled as a separate unit 
or be coupled to a gas chromatograph as illustrated in Figures 3 and 4.
    5.3 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, gases, detector, and strip-chart recorder. A data system is 
recommended for measuring peak areas.
    5.3.1 Column 1--8 ft long x 0.1 in. ID stainless steel or glass, 
packed with 1% SP-1000 on Carbopack B (60/80 mesh) or equivalent. This 
column was used to develop the method performance statements in Section 
12. Guidelines for the use of alternate column packings are provided in 
Section 10.1.
    5.3.2 Column 2--6 ft long x 0.1 in. ID stainless steel or glass, 
packed with chemically bonded n-octane on Porasil-C (100/120 mesh) or 
equivalent.
    5.3.3 Detector--Electrolytic conductivity or microcoulometric 
detector. These types of detectors have proven effective in the analysis 
of wastewaters for the parameters listed in the scope (Section 1.1). The 
electrolytic conductivity detector was used to develop the method 
performance statements in Section 12. Guidelines for the use of 
alternate detectors are provided in Section 10.1.
    5.4 Syringes--5-mL glass hypodermic with Luerlok tip (two each), if 
applicable to the purging device.
    5.5 Micro syringes--25-[micro]L, 0.006 in. ID needle.
    5.6 Syringe valve--2-way, with Luer ends (three each).
    5.7 Syringe--5-mL, gas-tight with shut-off valve.
    5.8 Bottle--15-mL, screw-cap, with Teflon cap liner.

[[Page 66]]

    5.9 Balance--Analytical, capable of accurately weighing 0.0001 g.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.1.1 Reagent water can be generated by passing tap water through a 
carbon filter bed containing about 1 lb of activated carbon (Filtrasorb-
300, Calgon Corp., or equivalent).
    6.1.2 A water purification system (Millipore Super-Q or equivalent) 
may be used to generate reagent water.
    6.1.3 Reagent water may also be prepared by boiling water for 15 
min. Subsequently, while maintaining the temperature at 90 [deg]C, 
bubble a contaminant-free inert gas through the water for 1 h. While 
still hot, transfer the water to a narrow mouth screw-cap bottle and 
seal with a Teflon-lined septum and cap.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Trap Materials:
    6.3.1 Coconut charcoal--6/10 mesh sieved to 26 mesh, Barnabey 
Cheney, CA-580-26 lot  M-2649 or equivalent.
    6.3.2 2,6-Diphenylene oxide polymer--Tenax, (60/80 mesh), 
chromatographic grade or equivalent.
    6.3.3 Methyl silicone packing--3% OV-1 on Chromosorb-W (60/80 mesh) 
or equivalent.
    6.3.4 Silica gel--35/60 mesh, Davison, grade-15 or equivalent.
    6.4 Methanol--Pesticide quality or equivalent.
    6.5 Stock standard solutions--Stock standard solutions may be 
prepared from pure standard materials or purchased as certified 
solutions. Prepare stock standard solutions in methanol using assayed 
liquids or gases as appropriate. Because of the toxicity of some of the 
organohalides, primary dilutions of these materials should be prepared 
in a hood. A NIOSH/MESA approved toxic gas respirator should be used 
when the analyst handles high concentrations of such materials.
    6.5.1 Place about 9.8 mL of methanol into a 10-mL ground glass 
stoppered volumetric flask. Allow the flask to stand, unstoppered, for 
about 10 min or until all alcohol wetted surfaces have dried. Weigh the 
flask to the learest 0.1 mg.
    6.5.2 Add the assayed reference material:
    6.5.2.1 Liquid--Using a 100 [micro]L syringe, immediately add two or 
more drops of assayed reference material to the flask, then reweigh. Be 
sure that the drops fall directly into the alcohol without contacting 
the neck of the flask.
    6.5.2.2 Gases--To prepare standards for any of the six halocarbons 
that boil below 30 [deg] C (bromomethane, chloroethane, chloromethane, 
dichlorodifluoromethane, trichlorofluoromethane, vinyl chloride), fill a 
5-mL valved gas-tight syringe with the reference standard to the 5.0-mL 
mark. Lower the needle to 5 mm above the methanol meniscus. Slowly 
introduce the reference standard above the surface of the liquid (the 
heavy gas will rapidly dissolve into the methanol).
    6.5.3 Reweigh, dilute to volume, stopper, then mix by inverting the 
flask several times. Calculate the concentration in [micro]g/[micro]L 
from the net gain in weight. When compound purity is assayed to be 96% 
or greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
malufacturer or by an independent source.
    6.5.4 Transfer the stock standard solution into a Teflon-sealed 
screw-cap bottle. Store, with minimal headspace, at -10 to -20 [deg]C 
and protect from light.
    6.5.5 Prepare fresh standards weekly for the six gases and 2-
chloroethylvinyl ether. All other standards must be replaced after one 
month, or sooner if comparison with check standards indicates a problem.
    6.6 Secondary dilution standards--Using stock standard solutions, 
prepare secondary dilution standards in methanol that contain the 
compounds of interest, either singly or mixed together. The secondary 
dilution standards should be prepared at concentrations such that the 
aqueous calibration standards prepared in Section 7.3.1 or 7.4.1 will 
bracket the working range of the analytical system. Secondary dilution 
standards should be stored with minimal headspace and should be checked 
frequently for signs of degradation or evaporation, especially just 
prior to preparing calibration standards from them.
    6.7 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Assemble a purge and trap system that meets the specifications 
in Section 5.2. Condition the trap overnight at 180 [deg]C by 
backflushing with an inert gas flow of at least 20 mL/min. Condition the 
trap for 10 min once daily prior to use.
    7.2 Connect the purge and trap system to a gas chromatograph. The 
gas chromatograph must be operated using temperature and flow rate 
conditions equivalent to those given in Table 1. Calibrate the purge and 
trap-gas chromatographic system using either the external standard 
technique (Section 7.3) or the internal standard technique (Section 
7.4).
    7.3 External standard calibration procedure:
    7.3.1 Prepare calibration standards at a miminum of three 
concentration levels for each parameter by carefully adding 20.0 
[micro]L of one or more secondary dilution standards to 100, 500, or 
1000 [micro]L of reagent water. A 25-[micro]L

[[Page 67]]

syringe with a 0.006 in. ID needle should be used for this operation. 
One of the external standards should be at a concentration near, but 
above, the MDL (Table 1) and the other concentrations should correspond 
to the expected range of concentrations found in real samples or should 
define the working range of the detector. These aqueous standards can be 
stored up to 24 h, if held in sealed vials with zero headspace as 
described in Section 9.2. If not so stored, they must be discarded after 
1 h.
    7.3.2 Analyze each calibration standard according to Section 10, and 
tabulate peak height or area responses versus the concentration in the 
standard. The results can be used to prepare a calibration curve for 
each compound. Alternatively, if the ratio of response to concentration 
(calibration factor) is a constant over the working range (<10% relative 
standard deviation, RSD), linearity through the origin can be assumed 
and the average ratio or calibration factor can be used in place of a 
calibration curve.
    7.4 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples. The compounds recommended for use as surrogate spikes in 
Section 8.7 have been used successfully as internal standards, because 
of their generally unique retention times.
    7.4.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest as described in 
Section 7.3.1.
    7.4.2 Prepare a spiking solution containing each of the internal 
standards using the procedures described in Sections 6.5 and 6.6. It is 
recommended that the secondary dilution standard be prepared at a 
concentration of 15 [micro]g/mL of each internal standard compound. The 
addition of 10 [micro]L of this standard to 5.0 mL of sample or 
calibration standard would be equivalent to 30 [micro]g/L.
    7.4.3 Analyze each calibration standard according to Section 10, 
adding 10 [micro]L of internal standard spiking solution directly to the 
syringe (Section 10.4). Tabulate peak height or area responses against 
concentration for each compound and internal standard, and calculate 
response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.094

                                                              Equation 1
where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard.
Cs=Concentration of the parameter to be measured.

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.5 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of a QC check sample.
    7.5.1 Prepare the QC check sample as described in Section 8.2.2.
    7.5.2 Analyze the QC check sample according to Section 10.
    7.5.3 For each parameter, compare the response (Q) with the 
corresponding calibration acceptance criteria found in Table 2. If the 
responses for all parameters of interest fall within the designated 
ranges, analysis of actual samples can begin. If any individual Q falls 
outside the range, proceed according to Section 7.5.4.
    Note: The large number of parameters in Table 2 present a 
substantial probability that one or more will not meet the calibration 
acceptance criteria when all parameters are analyzed.
    7.5.4 Repeat the test only for those parameters that failed to meet 
the calibration acceptance criteria. If the response for a parameter 
does not fall within the range in this second test, a new calibration 
curve, calibration factor, or RF must be prepared for that parameter 
according to Section 7.3 or 7.4.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision

[[Page 68]]

with this method. This ability is established as described in Section 
8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Section 10.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Each day, the analyst must analyze a reagent water blank to 
demonstrate that interferences from the analytical system are under 
control.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 10 [micro]g/
mL in methanol. The QC check sample concentrate must be obtained from 
the U.S. Environmental Protection Agency, Environmental Monitoring and 
Support Laboratory in Cincinnati, Ohio, if available. If not available 
from that source, the QC check sample concentrate must be obtained from 
another external source. If not available from either source above, the 
QC check sample concentrate must be prepared by the laboratory using 
stock standards prepared independently from those used for calibration.
    8.2.2 Prepare a QC check sample to contain 20 [micro]g/L of each 
parameter by adding 200 [micro]L of QC check sample concentrate to 100 
mL of reagent water.
    8.2.3 Analyze four 5-mL aliquots of the well-mixed QC check sample 
according to Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
of interest using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, then the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 2 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.3.
    8.2.6.2 Beginning with Section 8.2.3, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.3.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 20 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.2 Analyze one 5-mL sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second 5-mL sample aliquot with 10 
[micro]L of the QC check sample concentrate and analyze it to determine 
the concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement

[[Page 69]]

of both the background and spike concentrations, assuming a spike to 
background ratio of 5:1. This error will be accounted for to the extent 
that the analyst's spike to background ratio approaches 5:1. \7\ If 
spiking was performed at a concentration lower than 20 [micro]g/L, the 
analyst must use either the QC acceptance criteria in Table 2, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 3, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 3, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T)2.44(100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory. If the entire list of parameters in Table 2 must be measured 
in the sample in Section 8.3, the probability that the analysis of a QC 
check standard will be required is high. In this case the QC check 
standard should be routinely analyzed with the spiked sample.
    8.4.1 Prepare the QC check standard by adding 10 [micro]L of QC 
check sample concentrate (Section 8.2.1 or 8.3.2) to 5 mL of reagent 
water. The QC check standard needs only to contain the parameters that 
failed criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If p=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.
    8.7 The analyst should monitor both the performance of the 
analytical system and the effectiveness of the method in dealing with 
each sample matrix by spiking each sample, standard, and reagent water 
blank with surrogate halocarbons. A combination of bromochloromethane, 
2-bromo-1-chloropropane, and 1,4-dichlorobutane is recommended to 
encompass the range of the temperature program used in this method. From 
stock standard solutions prepared as in Section 6.5, add a volume to 
give 750 [micro]g of each surrogate to 45 mL of reagent water contained 
in a 50-mL volumetric flask, mix and dilute to volume for a 
concentration of 15 ng/[micro]L. Add 10 [micro]L of this surrogate 
spiking solution directly into the 5-mL syringe with every sample and 
reference standard analyzed. Prepare a fresh surrogate spiking solution 
on a weekly basis. If the internal standard calibration procedure is 
being used, the surrogate compounds may be added directly to the 
internal standard spiking solution (Section 7.4.2).

            9. Sample Collection, Preservation, and Handling

    9.1 All samples must be iced or refrigerated from the time of 
collection until analysis. If the sample contains free or combined 
chlorine, add sodium thiosulfate preservative (10 mg/40 mL is sufficient 
for up to 5 ppm Cl2) to the empty sample bottle just prior to 
shipping to the sampling site. EPA Methods 330.4 and 330.5 may be used 
for measurement of residual chlorine. \8\ Field test kits are available 
for this purpose.
    9.2 Grab samples must be collected in glass containers having a 
total volume of at least 25 mL. Fill the sample bottle just to 
overflowing in such a manner that no air

[[Page 70]]

bubbles pass through the sample as the bottle is being filled. Seal the 
bottle so that no air bubbles are entrapped in it. If preservative has 
been added, shake vigorously for 1 min. Maintain the hermetic seal on 
the sample bottle until time of analysis.
    9.3 All samples must be analyzed within 14 days of collection. \3\

                              10. Procedure

    10.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are estimated retention times 
and MDL that can be achieved under these conditions. An example of the 
separations achieved by Column 1 is shown in Figure 5. Other packed 
columns, chromatographic conditions, or detectors may be used if the 
requirements of Section 8.2 are met.
    10.2 Calibrate the system daily as described in Section 7.
    10.3 Adjust the purge gas (nitrogen or helium) flow rate to 40 mL/
min. Attach the trap inlet to the purging device, and set the purge and 
trap system to purge (Figure 3). Open the syringe valve located on the 
purging device sample introduction needle.
    10.4 Allow the sample to come to ambient temperature prior to 
introducing it to the syringe. Remove the plunger from a 5-mL syringe 
and attach a closed syringe valve. Open the sample bottle (or standard) 
and carefully pour the sample into the syringe barrel to just short of 
overflowing. Replace the syringe plunger and compress the sample. Open 
the syringe valve and vent any residual air while adjusting the sample 
volume to 5.0 mL. Since this process of taking an aliquot destroys the 
validity of the sample for future analysis, the analyst should fill a 
second syringe at this time to protect against possible loss of data. 
Add 10.0 [micro]L of the surrogate spiking solution (Section 8.7) and 
10.0 [micro]L of the internal standard spiking solution (Section 7.4.2), 
if applicable, through the valve bore, then close the valve.
    10.5 Attach the syringe-syringe valve assembly to the syringe valve 
on the purging device. Open the syringe valves and inject the sample 
into the purging chamber.
    10.6 Close both valves and purge the sample for 11.0 0.1 min at ambient temperature.
    10.7 After the 11-min purge time, attach the trap to the 
chromatograph, adjust the purge and trap system to the desorb mode 
(Figure 4), and begin to temperature program the gas chromatograph. 
Introduce the trapped materials to the GC column by rapidly heating the 
trap to 180 [deg]C while backflushing the trap with an inert gas between 
20 and 60 mL/min for 4 min. If rapid heating of the trap cannot be 
achieved, the GC column must be used as a secondary trap by cooling it 
to 30 [deg]C (subambient temperature, if poor peak geometry or random 
retention time problems persist) instead of the initial program 
temperature of 45 [deg]C
    10.8 While the trap is being desorbed into the gas chromatograph, 
empty the purging chamber using the sample introduction syringe. Wash 
the chamber with two 5-mL flushes of reagent water.
    10.9 After desorbing the sample for 4 min, recondition the trap by 
returning the purge and trap system to the purge mode. Wait 15 s then 
close the syringe valve on the purging device to begin gas flow through 
the trap. The trap temperature should be maintained at 180 [deg]C After 
approximately 7 min, turn off the trap heater and open the syringe valve 
to stop the gas flow through the trap. When the trap is cool, the next 
sample can be analyzed.
    10.10 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    10.11 If the response for a peak exceeds the working range of the 
system, prepare a dilution of the sample with reagent water from the 
aliquot in the second syringe and reanalyze.

                            11. Calculations

    11.1 Determine the concentration of individual compounds in the 
sample.
    11.1.1 If the external standard calibration procedure is used, 
calculate the concentration of the parameter being measured from the 
peak response using the calibration curve or calibration factor 
determined in Section 7.3.2.
    11.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.4.3 and Equation 2.
                                                              Equation 2
[GRAPHIC] [TIFF OMITTED] TC15NO91.095

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard.

    11.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

[[Page 71]]

                         12. Method Performance

    12.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentration 
listed in Table 1 were obtained using reagent water. \11\. Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.

    12.2 This method is recommended for use in the concentration range 
from the MDL to 1000xMDL. Direct aqueous injection techniques should be 
used to measure concentration levels above 1000xMDL.
    12.3 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 8.0 to 500 [micro]g/L. \9\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. Bellar, T.A., and Lichtenberg, J.J. ``Determining Volatile 
Organics at Microgram-per-Litre-Levels by Gas Chromatography,'' Journal 
of the American Water Works Association, 66, 739 (1974).
    3. Bellar, T.A., and Lichtenberg, J.J. ``Semi-Automated Headspace 
Analysis of Drinking Waters and Industrial Waters for Purgeable Volatile 
Organic Compounds,'' Proceedings from Symposium on Measurement of 
Organic Pollutants in Water and Wastewater, American Society for Testing 
and Materials, STP 686, C.E. Van Hall, editor, 1978.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    8. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA 600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    9. ``EPA Method Study 24, Method 601--Purgeable Halocarbons by the 
Purge and Trap Method,'' EPA 600/4-84-064, National Technical 
Information Service, PB84-212448, Springfield, Virginia 22161, July 
1984.
    10. ``Method Validation Data for EPA Method 601,'' Memorandum from 
B. Potter, U.S. Environmental Protection Agency, Environmental 
Monitoring and Support Laboratory, Cincinnati, Ohio 45268, November 10, 
1983.
    11. Bellar, T. A., Unpublished data, U.S. Environmental Protection 
Agency, Environmental Monitoring and Support Laboratory, Cincinnati, 
Ohio 45268, 1981.

                         Table 1--Chromatographic Conditions and Method Detection Limits
----------------------------------------------------------------------------------------------------------------
                                                                   Retention time (min)         Method detection
                         Parameter                         ------------------------------------ limit ([micro]g/
                                                                Column 1          Column 2             L)
----------------------------------------------------------------------------------------------------------------
Chloromethane.............................................         1.50              5.28              0.08
Bromomethane..............................................         2.17              7.05              1.18
Dichlorodifluoromethane...................................         2.62             nd                 1.81
Vinyl chloride............................................         2.67              5.28              0.18
Chloroethane..............................................         3.33              8.68              0.52
Methylene chloride........................................         5.25             10.1               0.25
Trichlorofluoromethane....................................         7.18             nd                nd
1,1-Dichloroethene........................................         7.93              7.72              0.13
1,1-Dichloroethane........................................         9.30             12.6               0.07
trans-1,2-Dichloroethene..................................        10.1               9.38              0.10
Chloroform................................................        10.7              12.1               0.05
1,2-Dichloroethane........................................        11.4              15.4               0.03
1,1,1-Trichloroethane.....................................        12.6              13.1               0.03
Carbon tetrachloride......................................        13.0              14.4               0.12
Bromodichloromethane......................................        13.7              14.6               0.10
1,2-Dichloropropane.......................................        14.9              16.6               0.04
cis-1,3-Dichloropropene...................................        15.2              16.6               0.34
Trichloroethene...........................................        15.8              13.1               0.12
Dibromochloromethane......................................        16.5              16.6               0.09

[[Page 72]]

 
1,1,2-Trichloroethane.....................................        16.5              18.1               0.02
trans-1,3-Dichloropropene.................................        16.5              18.0               0.20
2-Chloroethylvinyl ether..................................        18.0              nd                 0.13
Bromoform.................................................        19.2              19.2               0.20
1,1,2,2-Tetrachloroethane.................................        21.6              nd                 0.03
Tetrachloroethene.........................................        21.7              15.0               0.03
Chlorobenzene.............................................        24.2              18.8               0.25
1,3-Dichlorobenzene.......................................        34.0              22.4               0.32
1,2-Dichlorobenzene.......................................        34.9              23.5               0.15
1,4-Dichlorobenzene.......................................        35.4              22.3               0.24
----------------------------------------------------------------------------------------------------------------
Column 1 conditions: Carbopack B (60/80 mesh) coated with 1% SP-1000 packed in an 8 ft x 0.1 in. ID stainless
  steel or glass column with helium carrier gas at 40 mL/min flow rate. Column temperature held at 45 [deg]C for
  3 min then programmed at 8 [deg]C/min to 220 [deg]C and held for 15 min.
Column 2 conditions: Porisil-C (100/120 mesh) coated with n-octane packed in a 6 ft x 0.1 in. ID stainless steel
  or glass column with helium carrier gas at 40 mL/min flow rate. Column temperature held at 50 [deg]C for 3 min
  then programmed at 6 [deg]C/min to 170 [deg]C and held for 4 min.
nd=not determined.


                         Table 2--Calibration and QC Acceptance Criteria--Method 601 \a\
----------------------------------------------------------------------------------------------------------------
                                                                           Limit for
                                                            Range for Q        s        Range for X    Range P,
                        Parameter                          ([micro]g/L)   ([micro]g/   ([micro]g/L)     Ps (%)
                                                                              L)
----------------------------------------------------------------------------------------------------------------
Bromodichloromethane....................................       15.2-24.8         4.3       10.7-32.0      42-172
Bromoform...............................................       14.7-25.3         4.7        5.0-29.3      13-159
Bromomethane............................................       11.7-28.3         7.6        3.4-24.5       D-144
Carbon tetrachloride....................................       13.7-26.3         5.6       11.8-25.3      43-143
Chlorobenzene...........................................       14.4-25.6         5.0       10.2-27.4      38-150
Chloroethane............................................       15.4-24.6         4.4       11.3-25.2      46-137
2-Chloroethylvinyl ether................................       12.0-28.0         8.3        4.5-35.5      14-186
Chloroform..............................................       15.0-25.0         4.5       12.4-24.0      49-133
Chloromethane...........................................       11.9-28.1         7.4          D-34.9       D-193
Dibromochloromethane....................................       13.1-26.9         6.3        7.9-35.1      24-191
1,2-Dichlorobenzene.....................................       14.0-26.0         5.5        1.7-38.9       D-208
1,3-Dichlorobenzene.....................................        9.9-30.1         9.1        6.2-32.6       7-187
1,4-Dichlorobenzene.....................................       13.9-26.1         5.5       11.5-25.5      42-143
1,1-Dichloroethane......................................       16.8-23.2         3.2       11.2-24.6      47-132
1,2-Dichloroethane......................................       14.3-25.7         5.2       13.0-26.5      51-147
1,1-Dichloroethene......................................       12.6-27.4         6.6       10.2-27.3      28-167
trans-1,2-Dichloroethene................................       12.8-27.2         6.4       11.4-27.1      38-155
1,2-Dichloropropane.....................................       14.8-25.2         5.2       10.1-29.9      44-156
cis-1,3-Dichloropropene.................................       12.8-27.2         7.3        6.2-33.8      22-178
trans-1,3-Dichloropropene...............................       12.8-27.2         7.3        6.2-33.8      22-178
Methylene chloride......................................       15.5-24.5         4.0        7.0-27.6      25-162
1,1,2,2-Tetrachloroethane...............................        9.8-30.2         9.2        6.6-31.8       8-184
Tetrachloroethene.......................................       14.0-26.0         5.4        8.1-29.6      26-162
1,1,1-Trichloroethane...................................       14.2-25.8         4.9       10.8-24.8      41-138
1,1,2-Trichloroethane...................................       15.7-24.3         3.9        9.6-25.4      39-136
Trichloroethene.........................................       15.4-24.6         4.2        9.2-26.6      35-146
Trichlorofluoromethane..................................       13.3-26.7         6.0        7.4-28.1      21-156
Vinyl chloride..........................................       13.7-26.3         5.7        8.2-29.9      28-163
----------------------------------------------------------------------------------------------------------------
\a\ Criteria were calculated assuming a QC check sample concentration of 20 [micro]g/L.
Q=Concentration measured in QC check sample, in [micro]g/L (Section 7.5.3).
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 601
----------------------------------------------------------------------------------------------------------------
                                                                     Single analyst
              Parameter                Accuracy, as recovery,        precision, sr'       Overall precision, S'
                                           X' ([micro]g/L)            ([micro]g/L)             ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Bromodichloromethane................  1.12C-1.02                0.11X+0.04               0.20X+1.00
Bromoform...........................  0.96C-2.05                0.12X+0.58               0.21X+2.41
Bromomethane........................  0.76C-1.27                0.28X+0.27               0.36X+0.94
Carbon tetrachloride................  0.98C-1.04                0.15X+0.38               0.20X+0.39
Chlorobenzene.......................  1.00C-1.23                0.15X-0.02               0.18X+1.21
Choroethane.........................  0.99C-1.53                0.14X-0.13               0.17X+0.63

[[Page 73]]

 
2-Chloroethylvinyl ether \a\........  1.00C                     0.20X                    0.35X
Chloroform..........................  0.93C-0.39                0.13X+0.15               0.19X-0.02
Chloromethane.......................  0.77C+0.18                0.28X-0.31               0.52X+1.31
Dibromochloromethane................  0.94C+2.72                0.11X+1.10               0.24X+1.68
1,2-Dichlorobenzene.................  0.93C+1.70                0.20X+0.97               0.13X+6.13
1,3-Dichlorobenzene.................  0.95C+0.43                0.14X+2.33               0.26X+2.34
1,4-Dichlorobenzene.................  0.93C-0.09                0.15X+0.29               0.20X+0.41
1,1-Dichloroethane..................  0.95C-1.08                0.09X+0.17               0.14X+0.94
1,2-Dichloroethane..................  1.04C-1.06                0.11X+0.70               0.15X+0.94
1,1-Dichloroethene..................  0.98C-0.87                0.21X-0.23               0.29X-0.40
trans-1,2-Dichloroethene............  0.97C-0.16                0.11X+1.46               0.17X+1.46
1,2-Dichloropropane \a\.............  1.00C                     0.13X                    0.23X
cis-1,3-Dichloropropene \a\.........  1.00C                     0.18X                    0.32X
trans-1,3-Dichloropropene \a\.......  1.00C                     0.18X                    0.32X
Methylene chloride..................  0.91C-0.93                0.11X+0.33               0.21X+1.43
1,1,2,2-Tetrachloroethene...........  0.95C+0.19                0.14X+2.41               0.23X+2.79
Tetrachloroethene...................  0.94C+0.06                0.14X+0.38               0.18X+2.21
1,1,1-Trichloroethane...............  0.90C-0.16                0.15X+0.04               0.20X+0.37
1,1,2-Trichloroethane...............  0.86C+0.30                0.13X-0.14               0.19X+0.67
Trichloroethene.....................  0.87C+0.48                0.13X-0.03               0.23X+0.30
Trichlorofluoromethane..............  0.89C-0.07                0.15X+0.67               0.26X+0.91
Vinyl chloride......................  0.97C-0.36                0.13X+0.65               0.27X+0.40
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sn'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S\1\=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.
\a\ Estimates based upon the performance in a single laboratory. \10\


[[Page 74]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.000


[[Page 75]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.001


[[Page 76]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.002


[[Page 77]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.003


[[Page 78]]

                     Method 602--Purgeable Aromatics

                        1. Scope and Application

    1.1 This method covers the determination of various purgeable 
aromatics. The following parameters may be determined by this method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                         No.      CAS No.
------------------------------------------------------------------------
Benzene..........................................     34030      71-43-2
Chlorobenzene....................................     34301     108-90-7
1,2-Dichlorobenzene..............................     34536      95-50-1
1,3-Dichlorobenzene..............................     34566     541-73-1
1,4-Dichlorobenzene..............................     34571     106-46-7
Ethylbenzene.....................................     34371     100-41-4
Toluene..........................................     34010     108-88-3
------------------------------------------------------------------------

    1.2 This is a purge and trap gas chromatographic (GC) method 
applicable to the determination of the compounds listed above in 
municipal and industrial discharges as provided under 40 CFR 136.1. When 
this method is used to analyze unfamiliar samples for any or all of the 
compounds above, compound identifications should be supported by at 
least one additional qualitative technique. This method describes 
analytical conditions for a second gas chromatographic column that can 
be used to confirm measurements made with the primary column. Method 624 
provides gas chromatograph/mass spectrometer (GC/MS) conditions 
appropriate for the qualitative and quantitative confirmation of results 
for all of the parameters listed above.
    1.3 The method detection limit (MDL, defined in Section 12.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the operation of a purge and trap system and a 
gas chromatograph and in the interpretation of gas chromatograms. Each 
analyst must demonstrate the ability to generate acceptable results with 
this method using the procedure described in Section 8.2.

                          2. Summary of Method

    2.1 An inert gas is bubbled through a 5-mL water sample contained in 
a specially-designed purging chamber at ambient temperature. The 
aromatics are efficiently transferred from the aqueous phase to the 
vapor phase. The vapor is swept through a sorbent trap where the 
aromatics are trapped. After purging is completed, the trap is heated 
and backflushed with the inert gas to desorb the aromatics onto a gas 
chromatographic column. The gas chromatograph is temperature programmed 
to separate the aromatics which are then detected with a photoionization 
detector. \2,3\
    2.2 The method provides an optional gas chromatographic column that 
may be helpful in resolving the compounds of interest from interferences 
that may occur.

                            3. Interferences

    3.1 Impurities in the purge gas and organic compounds outgassing 
from the plumbing ahead of the trap account for the majority of 
contamination problems. The analytical system must be demonstrated to be 
free from contamination under the conditions of the analysis by running 
laboratory reagent blanks as described in Section 8.1.3. The use of non-
Teflon plastic tubing, non-Teflon thread sealants, or flow controllers 
with rubber components in the purge and trap system should be avoided.
    3.2 Samples can be contaminated by diffusion of volatile organics 
through the septum seal into the sample during shipment and storage. A 
field reagent blank prepared from reagent water and carried through the 
sampling and handling protocol can serve as a check on such 
contamination.
    3.3 Contamination by carry-over can occur whenever high level and 
low level samples are sequentially analyzed. To reduce carry-over, the 
purging device and sample syringe must be rinsed with reagent water 
between sample analyses. Whenever an unusually concentrated sample is 
encountered, it should be followed by an analysis of reagent water to 
check for cross contamination. For samples containing large amounts of 
water-soluble materials, suspended solids, high boiling compounds or 
high aromatic levels, it may be necessary to wash the purging device 
with a detergent solution, rinse it with distilled water, and then dry 
it in an oven at 105 [deg]C between analyses. The trap and other parts 
of the system are also subject to contamination; therefore, frequent 
bakeout and purging of the entire system may be required.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety

[[Page 79]]

are available and have been identified \4,6\ for the information of the 
analyst.
    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: benzene and 1,4-dichlorobenzene. Primary standards of these 
toxic compounds should be prepared in a hood. A NIOSH/MESA approved 
toxic gas respirator should be worn when the analyst handles high 
concentrations of these toxic compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete sampling.
    5.1.1 Vial]25-mL capacity or larger, equipped with a screw cap with 
a hole in the center (Pierce 13075 or equivalent). Detergent 
wash, rinse with tap and distilled water, and dry at 105 [deg]C before 
use.
    5.1.2 Septum--Teflon-faced silicone (Pierce 12722 or 
equivalent). Detergent wash, rinse with tap and distilled water, and dry 
at 105 [deg]C for 1 h before use.
    5.2 Purge and trap system--The purge and trap system consists of 
three separate pieces of equipment: A purging device, trap, and 
desorber. Several complete systems are now commercially available.
    5.2.1 The purging device must be designed to accept 5-mL samples 
with a water column at least 3 cm deep. The gaseous head space between 
the water column and the trap must have a total volume of less than 15 
mL. The purge gas must pass through the water column as finely divided 
bubbles with a diameter of less than 3 mm at the origin. The purge gas 
must be introduced no more than 5 mm from the base of the water column. 
The purging device illustrated in Figure 1 meets these design criteria.
    5.2.2 The trap must be at least 25 cm long and have an inside 
diameter of at least 0.105 in.
    5.2.2.1 The trap is packed with 1 cm of methyl silicone coated 
packing (Section 6.4.2) and 23 cm of 2,6-diphenylene oxide polymer 
(Section 6.4.1) as shown in Figure 2. This trap was used to develop the 
method performance statements in Section 12.
    5.2.2.2 Alternatively, either of the two traps described in Method 
601 may be used, although water vapor will preclude the measurement of 
low concentrations of benzene.
    5.2.3 The desorber must be capable of rapidly heating the trap to 
180 [deg]C. The polymer section of the trap should not be heated higher 
than 180 [deg]C and the remaining sections should not exceed 200 [deg]C. 
The desorber illustrated in Figure 2 meets these design criteria.
    5.2.4 The purge and trap system may be assembled as a separate unit 
or be coupled to a gas chromatograph as illustrated in Figures 3, 4, and 
5.
    5.3 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, gases, detector, and strip-chart recorder. A data system is 
recommended for measuring peak areas.
    5.3.1 Column 1--6 ft long x 0.082 in. ID stainless steel or glass, 
packed with 5% SP-1200 and 1.75% Bentone-34 on Supelcoport (100/120 
mesh) or equivalent. This column was used to develop the method 
performance statements in Section 12. Guidelines for the use of 
alternate column packings are provided in Section 10.1.
    5.3.2 Column 2--8 ft long x 0.1 in ID stainless steel or glass, 
packed with 5% 1,2,3-Tris(2-cyanoethoxy)propane on Chromosorb W-AW (60/
80 mesh) or equivalent.
    5.3.3 Detector--Photoionization detector (h-Nu Systems, Inc. Model 
PI-51-02 or equivalent). This type of detector has been proven effective 
in the analysis of wastewaters for the parameters listed in the scope 
(Section 1.1), and was used to develop the method performance statements 
in Section 12. Guidelines for the use of alternate detectors are 
provided in Section 10.1.
    5.4 Syringes--5-mL glass hypodermic with Luerlok tip (two each), if 
applicable to the purging device.
    5.5 Micro syringes--25-[micro]L, 0.006 in. ID needle.
    5.6 Syringe valve--2-way, with Luer ends (three each).
    5.7 Bottle--15-mL, screw-cap, with Teflon cap liner.
    5.8 Balance--Analytical, capable of accurately weighing 0.0001 g.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.1.1 Reagent water can be generated by passing tap water through a 
carbon filter bed containing about 1 lb of activated carbon (Filtrasorb-
300, Calgon Corp., or equivalent).
    6.1.2 A water purification system (Millipore Super-Q or equivalent) 
may be used to generate reagent water.
    6.1.3 Reagent water may also be prepared by boiling water for 15 
min. Subsequently, while maintaining the temperature at 90 [deg]C, 
bubble a contaminant-free inert gas through the water for 1 h. While 
still hot, transfer the water to a narrow mouth screw-cap bottle and 
seal with a Teflon-lined septum and cap.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Hydrochloric acid (1+1)--Add 50 mL of concentrated HCl (ACS) to 
50 mL of reagent water.
    6.4 Trap Materials:

[[Page 80]]

    6.4.1 2,6-Diphenylene oxide polymer--Tenax, (60/80 mesh), 
chromatographic grade or equivalent.
    6.4.2 Methyl silicone packing--3% OV-1 on Chromosorb-W (60/80 mesh) 
or equivalent.
    6.5 Methanol--Pesticide quality or equivalent.
    6.6 Stock standard solutions--Stock standard solutions may be 
prepared from pure standard materials or purchased as certified 
solutions. Prepare stock standard solutions in methanol using assayed 
liquids. Because of the toxicity of benzene and 1,4-dichlorobenzene, 
primary dilutions of these materials should be prepared in a hood. A 
NIOSH/MESA approved toxic gas respirator should be used when the analyst 
handles high concentrations of such materials.
    6.6.1 Place about 9.8 mL of methanol into a 10-mL ground glass 
stoppered volumetric flask. Allow the flask to stand, unstoppered, for 
about 10 min or until all alcohol wetted surfaces have dried. Weigh the 
flask to the nearest 0.1 mg.
    6.6.2 Using a 100-[micro]L syringe, immediately add two or more 
drops of assayed reference material to the flask, then reweigh. Be sure 
that the drops fall directly into the alcohol without contacting the 
neck of the flask.
    6.6.3 Reweigh, dilute to volume, stopper, then mix by inverting the 
flask several times. Calculate the concentration in [micro]g/[micro]L 
from the net gain in weight. When compound purity is assayed to be 96% 
or greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.6.4 Transfer the stock standard solution into a Teflon-sealed 
screw-cap bottle. Store at 4 [deg]C and protect from light.
    6.6.5 All standards must be replaced after one month, or sooner if 
comparison with check standards indicates a problem.
    6.7 Secondary dilution standards--Using stock standard solutions, 
prepare secondary dilution standards in methanol that contain the 
compounds of interest, either singly or mixed together. The secondary 
dilution standards should be prepared at concentrations such that the 
aqueous calibration standards prepared in Section 7.3.1 or 7.4.1 will 
bracket the working range of the analytical system. Secondary solution 
standards must be stored with zero headspace and should be checked 
frequently for signs of degradation or evaporation, especially just 
prior to preparing calibration standards from them.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Assemble a purge and trap system that meets the specifications 
in Section 5.2. Condition the trap overnight at 180 [deg]C by 
backflushing with an inert gas flow of at least 20 mL/min. Condition the 
trap for 10 min once daily prior to use.
    7.2 Connect the purge and trap system to a gas chromatograph. The 
gas chromatograph must be operated using temperature and flow rate 
conditions equivalent to those given in Table 1. Calibrate the purge and 
trap-gas chromatographic system using either the external standard 
technique (Section 7.3) or the internal standard technique (Section 
7.4).
    7.3 External standard calibration procedure:
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter by carefully adding 20.0 
[micro]L of one or more secondary dilution standards to 100, 500, or 
1000 mL of reagent water. A 25-[micro]L syringe with a 0.006 in. ID 
needle should be used for this operation. One of the external standards 
should be at a concentration near, but above, the MDL (Table 1) and the 
other concentrations should correspond to the expected range of 
concentrations found in real samples or should define the working range 
of the detector. These aqueous standards must be prepared fresh daily.
    7.3.2 Analyze each calibration standard according to Section 10, and 
tabulate peak height or area responses versus the concentration in the 
standard. The results can be used to prepare a calibration curve for 
each compound. Alternatively, if the ratio of response to concentration 
(calibration factor) is a constant over the working range (<10% relative 
standard deviation, RSD), linearity through the origin can be assumed 
and the average ratio or calibration factor can be used in place of a 
calibration curve.
    7.4 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples. The compound, [alpha],[alpha],[alpha],-trifluorotoluene, 
recommended as a surrogate spiking compound in Section 8.7 has been used 
successfully as an internal standard.
    7.4.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest as described in 
Section 7.3.1.
    7.4.2 Prepare a spiking solution containing each of the internal 
standards using the procedures described in Sections 6.6 and 6.7. It is 
recommended that the secondary dilution standard be prepared at a 
concentration of 15 [micro]g/mL of each internal standard compound. The 
addition of 10 [micro]l of this

[[Page 81]]

standard to 5.0 mL of sample or calibration standard would be equivalent 
to 30 [micro]g/L.
    7.4.3 Analyze each calibration standard according to Section 10, 
adding 10 [micro]L of internal standard spiking solution directly to the 
syringe (Section 10.4). Tabulate peak height or area responses against 
concentration for each compound and internal standard, and calculate 
response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard
Cs=Concentration of the parameter to be measured.

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.5 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of a QC check sample.
    7.5.1 Prepare the QC check sample as described in Section 8.2.2.
    7.5.2 Analyze the QC check sample according to Section 10.
    7.5.3 For each parameter, compare the response (Q) with the 
corresponding calibration acceptance criteria found in Table 2. If the 
responses for all parameters of interest fall within the designated 
ranges, analysis of actual samples can begin. If any individual Q falls 
outside the range, a new calibration curve, calibration factor, or RF 
must be prepared for that parameter according to Section 7.3 or 7.4.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The mimimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Section 10.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Each day, the analyst must analyze a reagent water blank to 
demonstrate that interferences from the analytical system are under 
control.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 10 [micro]g/
mL in methanol. The QC check sample concentrate must be obtained from 
the U.S. Environmental Protection Agency, Environmental Monitoring and 
Support Laboratory in Cincinnati, Ohio, if available. If not available 
from that source, the QC check sample concentrate must be obtained from 
another external source. If not available from either source above, the 
QC check sample concentrate must be prepared by the laboratory using 
stock standards prepared independently from those used for calibration.
    8.2.2 Prepare a QC check sample to contain 20 [micro]g/L of each 
parameter by adding 200 [micro]L of QC check sample concentrate to 100 
mL of reagant water.
    8.2.3 Analyze four 5-mL aliquots of the well-mixed QC check sample 
according to Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
of interest using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively,

[[Page 82]]

found in Table 2. If s and X for all parameters of interest meet the 
acceptance criteria, the system performance is acceptable and analysis 
of actual samples can begin. If any individual s exceeds the precision 
limit or any individual X falls outside the range for accuracy, the 
system performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 2 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.3.
    8.2.6.2 Beginning with Section 8.2.3, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.3.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 20 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.2 Analyze one 5-mL sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second 5-mL sample aliquot with 10 
[micro]L of the QC check sample concentrate and analyze it to determine 
the concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\ If spiking was performed at a concentration lower than 20 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 2, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 3, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 3, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T) 2.44(100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 10 [micro]L of QC 
check sample concentrate (Section 8.2.1 or 8.3.2) to 5 mL of reagent 
water. The QC check standard needs only to contain the parameters that 
failed criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P)

[[Page 83]]

and the standard deviation of the percent recovery (sp). 
Express the accuracy assessment as a percent recovery interval from P-
2sp to P+2sp. If P=90% and sp=10%, for 
example, the accuracy interval is expressed as 70-110%. Update the 
accuracy assessment for each parameter on a regular basis (e.g. after 
each five to ten new accuracy measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.
    8.7 The analyst should monitor both the performance of the 
analytical system and the effectiveness of the method in dealing with 
each sample matrix by spiking each sample, standard, and reagent water 
blank with surrogate compounds (e.g. [alpha], [alpha], [alpha],-
trifluorotoluene) that encompass the range of the temperature program 
used in this method. From stock standard solutions prepared as in 
Section 6.6, add a volume to give 750 [micro]g of each surrogate to 45 
mL of reagent water contained in a 50-mL volumetric flask, mix and 
dilute to volume for a concentration of 15 mg/[micro]L. Add 10 [micro]L 
of this surrogate spiking solution directly into the 5-mL syringe with 
every sample and reference standard analyzed. Prepare a fresh surrogate 
spiking solution on a weekly basis. If the internal standard calibration 
procedure is being used, the surrogate compounds may be added directly 
to the internal standard spiking solution (Section 7.4.2).

            9. Sample Collection, Preservation, and Handling

    9.1 The samples must be iced or refrigerated from the time of 
collection until analysis. If the sample contains free or combined 
chlorine, add sodium thiosulfate preservative (10 mg/40 mL is sufficient 
for up to 5 ppm Cl2) to the empty sample bottle just prior to 
shipping to the sampling site. EPA Method 330.4 or 330.5 may be used for 
measurement of residual chlorine. \8\ Field test kits are available for 
this purpose.
    9.2 Collect about 500 mL of sample in a clean container. Adjust the 
pH of the sample to about 2 by adding 1+1 HCl while stirring. Fill the 
sample bottle in such a manner that no air bubbles pass through the 
sample as the bottle is being filled. Seal the bottle so that no air 
bubbles are entrapped in it. Maintain the hermetic seal on the sample 
bottle until time of analysis.
    9.3 All samples must be analyzed within 14 days of collection. \3\

                              10. Procedure

    10.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are estimated retention times 
and MDL that can be achieved under these conditions. An example of the 
separations achieved by Column 1 is shown in Figure 6. Other packed 
columns, chromatographic conditions, or detectors may be used if the 
requirements of Section 8.2 are met.
    10.2 Calibrate the system daily as described in Section 7.
    10.3 Adjust the purge gas (nitrogen or helium) flow rate to 40 mL/
min. Attach the trap inlet to the purging device, and set the purge and 
trap system to purge (Figure 3). Open the syringe valve located on the 
purging device sample introduction needle.
    10.4 Allow the sample to come to ambient temperature prior to 
introducing it to the syringe. Remove the plunger from a 5-mL syringe 
and attach a closed syringe valve. Open the sample bottle (or standard) 
and carefully pour the sample into the syringe barrel to just short of 
overflowing. Replace the syringe plunger and compress the sample. Open 
the syringe valve and vent any residual air while adjusting the sample 
volume to 5.0 mL. Since this process of taking an aliquot destroys the 
validity of the sample for future analysis, the analyst should fill a 
second syringe at this time to protect against possible loss of data. 
Add 10.0 [micro]L of the surrogate spiking solution (Section 8.7) and 
10.0 [micro]L of the internal standard spiking solution (Section 7.4.2), 
if applicable, through the valve bore, then close the valve.
    10.5 Attach the syringe-syringe valve assembly to the syringe valve 
on the purging device. Open the syringe valves and inject the sample 
into the purging chamber.
    10.6 Close both valves and purge the sample for 12.0 0.1 min at ambient temperature.
    10.7 After the 12-min purge time, disconnect the purging device from 
the trap. Dry the trap by maintaining a flow of 40 mL/min of dry purge 
gas through it for 6 min (Figure 4). If the purging device has no 
provision for bypassing the purger for this step, a dry purger should be 
inserted into the device to minimize moisture in the gas. Attach the 
trap to the chromatograph, adjust the purge and trap system to the 
desorb mode (Figure 5), and begin to temperature program the gas 
chromatograph. Introduce the trapped materials to the GC column by 
rapidly heating the trap to 180 [deg]C while backflushing the trap with 
an inert gas between 20 and 60 mL/min for 4 min. If rapid heating of the 
trap cannot be achieved, the GC column must be used as

[[Page 84]]

a secondary trap by cooling it to 30 [deg]C (subambient temperature, if 
poor peak geometry and random retention time problems persist) instead 
of the initial program temperature of 50 [deg]C.
    10.8 While the trap is being desorbed into the gas chromatograph 
column, empty the purging chamber using the sample introduction syringe. 
Wash the chamber with two 5-mL flushes of reagent water.
    10.9 After desorbing the sample for 4 min, recondition the trap by 
returning the purge and trap system to the purge mode. Wait 15 s, then 
close the syringe valve on the purging device to begin gas flow through 
the trap. The trap temperature should be maintained at 180 [deg]C. After 
approximately 7 min, turn off the trap heater and open the syringe valve 
to stop the gas flow through the trap. When the trap is cool, the next 
sample can be analyzed.
    10.10 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    10.11 If the response for a peak exceeds the working range of the 
system, prepare a dilution of the sample with reagent water from the 
aliquot in the second syringe and reanalyze.

                            11. Calculations

    11.1 Determine the concentration of individual compounds in the 
sample.
    11.1.1 If the external standard calibration procedure is used, 
calculate the concentration of the parameter being measured from the 
peak response using the calibration curve or calibration factor 
determined in Section 7.3.2.
    11.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.4.3 and Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.096

    Equation 2
where:
As = Response for the parameter to be measured.
Ais = Response for the internal standard.
Cis = Concentration of the internal standard.

    11.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         12. Method Performance

    12.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \9\ Similar results 
were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    12.2 This method has been demonstrated to be applicable for the 
concentration range from the MDL to 100 x MDL. \9\ Direct aqueous 
injection techniques should be used to measure concentration levels 
above 1000 x MDL.
    12.3 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 2.1 to 550 [micro]g/L. \9\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. Lichtenberg, J.J. ``Determining Volatile Organics at Microgram-
per-Litre-Levels by Gas Chromatography,'' Journal American Water Works 
Association, 66, 739 (1974).
    3. Bellar, T.A., and Lichtenberg, J.J. ``Semi-Automated Headspace 
Analysis of Drinking Waters and Industrial Waters for Purgeable Volatile 
Organic Compounds,'' Proceedings of Symposium on Measurement of Organic 
Pollutants in Water and Wastewater. American Society for Testing and 
Materials, STP 686, C.E. Van Hall, editor, 1978.
    4. ``Carcinogens--Working with Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health. 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3. is two times the value 1.22 
derived in this report.)

[[Page 85]]

    8.``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Office of Research and Development, 
Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268. 
March 1979.
    9. ``EPA Method Study 25, Method 602, Purgeable Aromatics,'' EPA 
600/4-84-042, National Technical Information Service, PB84-196682, 
Springfield, Virginia 22161, May 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                        Retention time (min)    Method
                                       ----------------------  detection
               Parameter                                         limit
                                         Column 1   Column 2  ([micro]g/
                                                                  L)
------------------------------------------------------------------------
Benzene...............................       3.33       2.75        0.2
Toluene...............................       5.75       4.25        0.2
Ethylbenzene..........................       8.25       6.25        0.2
Chlorobenzene.........................       9.17       8.02        0.2
1,4-Dichlorobenzene...................      16.8       16.2         0.3
1,3-Dichlorobenzene...................      18.2       15.0         0.4
1,2-Dichlorobenzene...................      25.9       19.4         0.4
------------------------------------------------------------------------
Column 1 conditions: Supelcoport (100/120 mesh) coated with 5% SP-1200/
  1.75% Bentone-34 packed in a 6 ft x 0.085 in. ID stainless steel
  column with helium carrier gas at 36 mL/min flow rate. Column
  temperature held at 50 [deg]C for 2 min then programmed at 6 [deg]C/
  min to 90 [deg]C for a final hold.
Column 2 conditions: Chromosorb W-AW (60/80 mesh) coated with 5% 1,2,3-
  Tris(2-cyanoethyoxy)propane packed in a 6 ft x 0.085 in. ID stainless
  steel column with helium carrier gas at 30 mL/min flow rate. Column
  temperature held at 40 [deg]C for 2 min then programmed at 2 [deg]C/
  min to 100 [deg]C for a final hold.


                         Table 2--Calibration and QC Acceptance Criteria--Method 602 \a\
----------------------------------------------------------------------------------------------------------------
                                                                               Limit for  Range for X
                                                                 Range for Q       s       ([micro]g/  Range for
                           Parameter                              ([micro]g/  ([micro]g/       L)       P, Ps(%)
                                                                      L)          L)
----------------------------------------------------------------------------------------------------------------
Benzene........................................................    15.4-24.6        4.1     10.0-27.9     39-150
Chlorobenzene..................................................    16.1-23.9        3.5     12.7-25.4     55-135
1,2-Dichlorobenzene............................................    13.6-26.4        5.8     10.6-27.6     37-154
1,3-Dichlorobenzene............................................    14.5-25.5        5.0     12.8-25.5     50-141
1,4-Dichlorobenzene............................................    13.9-26.1        5.5     11.6-25.5     42-143
Ethylbenzene...................................................    12.6-27.4        6.7     10.0-28.2     32-160
Toluene........................................................    15.5-24.5        4.0     11.2-27.7     46-148
----------------------------------------------------------------------------------------------------------------
Q=Concentration measured in QC check sample, in [micro]g/L (Section 7.5.3).
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
Ps, P=Percent recovery measured (Section 8.3.2, Section 8.4.2).
\a\ Criteria were calculated assuming a QC check sample concentration of 20 [micro]g/L.
 
 Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the
  limits for recovery have been broadened to assure applicability of the limits to concentrations below those
  used to develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 602
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                              recovery, X'    precision, s'   precision, S'
                                                                   ([micro]g/L)    ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Benzene.........................................................      0.92C+0.57      0.09X+0.59      0.21X+0.56
Chlorobenzene...................................................      0.95C+0.02      0.09X+0.23      0.17X+0.10
1,2-Dichlorobenzene.............................................      0.93C+0.52      0.17X-0.04      0.22X+0.53
1,3-Dichlorobenzene.............................................      0.96C-0.05      0.15X-0.10      0.19X+0.09
1,4-Dichlorobenzene.............................................      0.93C-0.09      0.15X+0.28      0.20X+0.41
Ethylbenzene....................................................      0.94C+0.31      0.17X+0.46      0.26X+0.23
Toluene.........................................................      0.94C+0.65      0.09X+0.48      0.18X+0.71
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
S'=Expected single analyst standard deviation of measurements at an average concentration found of X, in X
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the Concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 86]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.004


[[Page 87]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.005


[[Page 88]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.006


[[Page 89]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.007


[[Page 90]]

                 Method 603--Acrolein and Acrylonitrile

                        1. Scope and Application

    1.1 This method covers the determination of acrolein and 
acrylonitrile. The following parameters may be determined by this 
method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                         No.      CAS No.
------------------------------------------------------------------------
Acrolein.........................................     34210     107-02-8
Acrylonitrile....................................     34215     107-13-1
------------------------------------------------------------------------
 

    1.2 This is a purge and trap gas chromatographic (GC) method 
applicable to the determination of the compounds listed above in 
municipal and industrial discharges as provided under 40 CFR 136.1. When 
this method is used to analyze unfamiliar samples for either or both of 
the compounds above, compound identifications should be supported by at 
least one additional qualitative technique. This method describes 
analytical conditions for a second gas chromatographic column that can 
be used to confirm measurements made with the primary column. Method 624 
provides gas chromatograph/mass spectrometer (GC/MS) conditions 
appropriate for the qualitative and quantitative confirmation of results 
for the parameters listed above, if used with the purge and trap 
conditions described in this method.
    1.3 The method detection limit (MDL, defined in Section 12.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the operation of a purge and trap system and a 
gas chromatograph and in the interpretation of gas chromatograms. Each 
analyst must demonstrate the ability to generate acceptable results with 
this method using the procedure described in Section 8.2.

                          2. Summary of Method

    2.1 An inert gas is bubbled through a 5-mL water sample contained in 
a heated purging chamber. Acrolein and acrylonitrile are transferred 
from the aqueous phase to the vapor phase. The vapor is swept through a 
sorbent trap where the analytes are trapped. After the purge is 
completed, the trap is heated and backflushed with the inert gas to 
desorb the compound onto a gas chromatographic column. The gas 
chromatograph is temperature programmed to separate the analytes which 
are then detected with a flame ionization detector. \2,3\
    2.2 The method provides an optional gas chromatographic column that 
may be helpful in resolving the compounds of interest from the 
interferences that may occur.

                            3. Interferences

    3.1 Impurities in the purge gas and organic compound outgassing from 
the plumbing of the trap account for the majority of contamination 
problems. The analytical system must be demonstrated to be free from 
contamination under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3. The use of non-Teflon 
plastic tubing, non-Teflon thread sealants, or flow controllers with 
rubber components in the purge and trap system should be avoided.
    3.2 Samples can be contaminated by diffusion of volatile organics 
through the septum seal into the sample during shipment and storage. A 
field reagent blank prepared from reagent water and carried through the 
sampling and handling protocol can serve as a check on such 
contamination.
    3.3 Contamination by carry-over can occur whenever high level and 
low level samples are sequentially analyzed. To reduce carry-over, the 
purging device and sample syringe must be rinsed between samples with 
reagent water. Whenever an unusually concentrated sample is encountered, 
it should be followed by an analysis of reagent water to check for cross 
contamination. For samples containing large amounts of water-soluble 
materials, suspended solids, high boiling compounds or high analyte 
levels, it may be necessary to wash the purging device with a detergent 
solution, rinse it with distilled water, and then dry it in an oven at 
105 [deg]C between analyses. The trap and other parts of the system are 
also subject to contamination, therefore, frequent bakeout and purging 
of the entire system may be required.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this view point, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified \4,6\ for 
the information of the analyst.

[[Page 91]]

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete sampling.
    5.1.1 Vial--25-mL capacity or larger, equipped with a screw cap with 
a hole in the center (Pierce 13075 or equivalent). Detergent 
wash, rinse with tap and distilled water, and dry at 105 [deg]C before 
use.
    5.1.2 Septum--Teflon-faced silicone (Pierce 12722 or 
equivalent). Detergent wash, rinse with tap and distilled water and dry 
at 105 [deg]C for 1 h before use.
    5.2 Purge and trap system--The purge and trap system consists of 
three separate pieces of equipment: a purging device, trap, and 
desorber. Several complete systems are now commercially available.
    5.2.1 The purging device must be designed to accept 5-mL, samples 
with a water column at least 3 cm deep. The gaseous head space between 
the water column and the trap must have a total volume of less than 15 
mL. The purge gas must pass through the water column as finely divided 
bubbles with a diameter of less than 3 mm at the origin. The purge gas 
must be introduced no more than 5 mm from the base of the water column. 
The purging device must be capable of being heated to 85 [deg]C within 
3.0 min after transfer of the sample to the purging device and being 
held at 85 2 [deg]C during the purge cycle. The 
entire water column in the purging device must be heated. Design of this 
modification to the standard purging device is optional, however, use of 
a water bath is suggested.
    5.2.1.1 Heating mantle--To be used to heat water bath.
    5.2.1.2 Temperature controller--Equipped with thermocouple/sensor to 
accurately control water bath temperature to 2 
[deg]C. The purging device illustrated in Figure 1 meets these design 
criteria.
    5.2.2 The trap must be at least 25 cm long and have an inside 
diameter of at least 0.105 in. The trap must be packed to contain 1.0 cm 
of methyl silicone coated packing (Section 6.5.2) and 23 cm of 2,6-
diphenylene oxide polymer (Section 6.5.1). The minimum specifications 
for the trap are illustrated in Figure 2.
    5.2.3 The desorber must be capable of rapidly heating the trap to 
180 [deg]C, The desorber illustrated in Figure 2 meets these design 
criteria.
    5.2.4 The purge and trap system may be assembled as a separate unit 
as illustrated in Figure 3 or be coupled to a gas chromatograph.
    5.3 pH paper--Narrow pH range, about 3.5 to 5.5 (Fisher Scientific 
Short Range Alkacid No. 2, 14-837-2 or equivalent).
    5.4 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, gases, detector, and strip-chart recorder. A data system is 
recommended for measuring peak areas.
    5.4.1 Column 1--10 ft long x 2 mm ID glass or stainless steel, 
packed with Porapak-QS (80/100 mesh) or equivalent. This column was used 
to develop the method performance statements in Section 12. Guidelines 
for the use of alternate column packings are provided in Section 10.1.
    5.4.2 Column 2--6 ft long x 0.1 in. ID glass or stainless steel, 
packed with Chromosorb 101 (60/80 mesh) or equivalent.
    5.4.3 Detector--Flame ionization detector. This type of detector has 
proven effective in the analysis of wastewaters for the parameters 
listed in the scope (Section 1.1), and was used to develop the method 
performance statements in Section 12. Guidelines for the use of 
alternate detectors are provided in Section 10.1.
    5.5 Syringes--5-mL, glass hypodermic with Luerlok tip (two each).
    5.6 Micro syringes--25-[micro]L, 0.006 in. ID needle.
    5.7 Syringe valve--2-way, with Luer ends (three each).
    5.8 Bottle--15-mL, screw-cap, with Teflon cap liner.
    5.9 Balance--Analytical, capable of accurately weighing 0.0001 g.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.1.1 Reagent water can be generated by passing tap water through a 
carbon filter bed containing about 1 lb of activated carbon (Filtrasorb-
300, Calgon Corp., or equivalent).
    6.1.2 A water purification system (Millipore Super-Q or equivalent) 
may be used to generate reagent water.
    6.1.3 Regent water may also be prepared by boiling water for 15 min. 
Subsequently, while maintaining the temperature at 90 [deg]C, bubble a 
contaminant-free inert gas through the water for 1 h. While still hot, 
transfer the water to a narrow mouth screw-cap bottle and seal with a 
Teflon-lined septum and cap.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.4 Hydrochloric acid (1+1)--Slowly, add 50 mL of concentrated HCl 
(ACS) to 50 mL of reagent water.
    6.5 Trap Materials:
    6.5.1 2,6-Diphenylene oxide polymer--Tenax (60/80 mesh), 
chromatographic grade or equivalent.
    6.5.2 Methyl silicone packing--3% OV-1 on Chromosorb-W (60/80 mesh) 
or equivalent.

[[Page 92]]

    6.6 Stock standard solutions--Stock standard solutions may be 
prepared from pure standard materials or purchased as certified 
solutions. Prepare stock standard solutions in reagent water using 
assayed liquids. Since acrolein and acrylonitrile are lachrymators, 
primary dilutions of these compounds should be prepared in a hood. A 
NIOSH/MESA approved toxic gas respirator should be used when the analyst 
handles high concentrations of such materials.
    6.6.1 Place about 9.8 mL of reagent water into a 10-mL ground glass 
stoppered volumetric flask. For acrolein standards the reagent water 
must be adjusted to pH 4 to 5. Weight the flask to the nearest 0.1 mg.
    6.6.2 Using a 100-[micro]L syringe, immediately add two or more 
drops of assayed reference material to the flask, then reweigh. Be sure 
that the drops fall directly into the water without contacting the neck 
of the flask.
    6.6.3 Reweigh, dilute to volume, stopper, then mix by inverting the 
flask several times. Calculate the concentration in [micro]g/[micro]L 
from the net gain in weight. When compound purity is assayed to be 96% 
or greater, the weight can be used without correction to calculate the 
concentration of the stock staldard. Optionally, stock standard 
solutions may be prepared using the pure standard material by 
volumetrically measuring the appropriate amounts and determining the 
weight of the material using the density of the material. Commercially 
prepared stock standards may be used at any concentration if they are 
certified by the manufactaurer or by an independent source.
    6.6.4 Transfer the stock standard solution into a Teflon-sealed 
screw-cap bottle. Store at 4 [deg]C and protect from light.
    6.6.5 Prepare fresh standards daily.
    6.7 Secondary dilution standards--Using stock standard solutions, 
prepare secondary dilution standards in reagent water that contain the 
compounds of interest, either singly or mixed together. The secondary 
dilution standards should be prepared at concentrations such that the 
aqueous calibration standards prepared in Section 7.3.1 or 7.4.1 will 
bracket the working range of the analytical system. Secondary dilution 
standards should be prepared daily and stored at 4 [deg]C.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Assemble a purge and trap system that meets the specifications 
in Section 5.2. Condition the trap overnight at 180 [deg]C by 
backflushing with an inert gas flow of at least 20 mL/min. Condition the 
trap for 10 min once daily prior to use.
    7.2 Connect the purge and trap system to a gas chromatograph. The 
gas chromatograph must be operated using temperature and flow rate 
conditions equivalent to those given in Table 1. Calibrate the purge and 
trap-gas chromatographic system using either the external standard 
technique (Section 7.3) or the internal standard technique (Section 
7.4).
    7.3 External standard calibration procedure:
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter by carefully adding 20.0 
[micro]L of one or more secondary dilution standards to 100, 500, or 
1000 mL of reagent water. A 25-[micro]L syringe with a 0.006 in. ID 
needle should be used for this operation. One of the external standards 
should be at a concentration near, but above, the MDL and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector. These standards must be prepared fresh daily.
    7.3.2 Analyze each calibration standard according to Section 10, and 
tabulate peak height or area responses versus the concentration of the 
standard. The results can be used to prepare a calibration curve for 
each compound. Alternatively, if the ratio of response to concentration 
(calibration factor) is a constant over the working range (< 10% 
relative standard deviation, RSD), linearity through the origin can be 
assumed and the average ratio or calibration factor can be used in place 
of a calibration curve.
    7.4 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.4.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest as described in 
Section 7.3.1.
    7.4.2 Prepare a spiking solution containing each of the internal 
standards using the procedures described in Sections 6.6 and 6.7. It is 
recommended that the secondary dilution standard be prepared at a 
concentration of 15 [micro]g/mL of each internal standard compound. The 
addition of 10 [micro]L of this standard to 5.0 mL of sample or 
calibration standard would be equivalent to 30 [micro]g/L.
    7.4.3 Analyze each calibration standard according to Section 10, 
adding 10 [micro]L of internal standard spiking solution directly to the 
syringe (Section 10.4). Tabulate peak height or area responses against 
concentration for each compound and internal standard, and calculate 
response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1


[[Page 93]]


where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard.
Cs=Concentration of the parameter to be measured.

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.5 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of a QC check sample.
    7.5.1 Prepare the QC check sample as described in Section 8.2.2.
    7.5.2 Analyze the QC check sample according to Section 10.
    7.5.3 For each parameter, compare the response (Q) with the 
corresponding calibration acceptance criteria found in Table 2. If the 
responses for all parameters of interest fall within the designated 
ranges, analysis of actual samples can begin. If any individual Q falls 
outside the range, a new calibration curve, calibration factor, or RF 
must be prepared for that parameter according to Section 7.3 or 7.4.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Section 10.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Each day, the analyst must analyze a reagent water blank to 
demonstrate that interferences from the analytical system are under 
control.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 25 [micro]g/
mL in reagent water. The QC check sample concentrate must be obtained 
from the U.S. Environmental Protection Agency, Environmental Monitoring 
and Support Laboratory in Cincinnati, Ohio, if available. If not 
available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Prepare a QC check sample to contain 50 [micro]g/L of each 
parameter by adding 200 [micro]L of QC check sample concentrate to 100 
mL of reagent water.
    8.2.3 Analyze four 5-mL aliquots of the well-mixed QC check sample 
according to Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 3. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If either s exceeds the precision limit or X falls 
outside the range for accuracy, the system performance is unacceptable 
for that parameter. Locate and correct the source of the problem and 
repeat the test for each compound of interest.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to

[[Page 94]]

ten samples per month, at least one spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 50 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.2 Analyze one 5-mL sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second 5-mL sample aliquot with 10 
[micro]L of the QC check sample concentrate and analyze it to determine 
the concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 3. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 10 [micro]L of QC 
check sample concentrate (Section 8.2.1 or 8.3.2) to 5 mL of reagent 
water. The QC check standard needs only to contain the parameters that 
failed criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
3. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column or mass spectrometer 
must be used. Whenever possible, the laboratory should analyze standard 
reference materials and participate in relevant performance evaluation 
studies.

            9. Sample Collection, Preservation, and Handling

    9.1 All samples must be iced or refrigerated from the time of 
collection until analysis. If the sample contains free or combined 
chlorine, add sodium thiosulfate preservative (10 mg/40 mL is sufficient 
for up to 5 ppm Cl2) to the empty sample bottle just prior to 
shipping to the sampling site. EPA Methods 330.4 and 330.5 may be used 
for measurement of residual chlorine. \8\ Field test kits are available 
for this purpose.
    9.2 If acrolein is to be analyzed, collect about 500 mL of sample in 
a clean glass container. Adjust the pH of the sample to 4 to 5 using 
acid or base, measuring with narrow range pH paper. Samples for acrolein 
analysis receiving no pH adjustment must be analyzed within 3 days of 
sampling.
    9.3 Grab samples must be collected in glass containers having a 
total volume of at

[[Page 95]]

least 25 mL. Fill the sample bottle just to overflowing in such a manner 
that no air bubbles pass through the sample as the bottle is being 
filled. Seal the bottle so that no air bubbles are entrapped in it. If 
preservative has been added, shake vigorously for 1 min. Maintain the 
hermetic seal on the sample bottle until time of analysis.
    9.4 All samples must be analyzed within 14 days of collection. \3\

                              10. Procedure

    10.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are estimated retention times 
and MDL that can be achieved under these conditions. An example of the 
separations achieved by Column 1 is shown in Figure 5. Other packed 
columns, chromatographic conditions, or detectors may be used if the 
requirements of Section 8.2 are met.
    10.2 Calibrate the system daily as described in Section 7.
    10.3 Adjust the purge gas (nitrogen or helium) flow rate to 20 mL-
min. Attach the trap inlet to the purging device, and set the purge and 
trap system to purge (Figure 3). Open the syringe valve located on the 
purging device sample introduction needle.
    10.4 Remove the plunger from a 5-mL syringe and attach a closed 
syringe valve. Open the sample bottle (or standard) and carefully pour 
the sample into the syringe barrel to just short of overflowing. Replace 
the syringe plunger and compress the sample. Open the syringe valve and 
vent any residual air while adjusting the sample volume to 5.0 mL. Since 
this process of taking an aliquot destroys the validity of the sample 
for future analysis, the analyst should fill a second syringe at this 
time to protect against possible loss of data. Add 10.0 [micro]L of the 
internal standard spiking solution (Section 7.4.2), if applicable, 
through the valve bore then close the valve.
    10.5 Attach the syringe-syringe valve assembly to the syringe valve 
on the purging device. Open the syringe valves and inject the sample 
into the purging chamber.
    10.6 Close both valves and purge the sample for 15.0 0.1 min while heating at 85 2 
[deg]C.
    10.7 After the 15-min purge time, attach the trap to the 
chromatograph, adjust the purge and trap system to the desorb mode 
(Figure 4), and begin to temperature program the gas chromatograph. 
Introduce the trapped materials to the GC column by rapidly heating the 
trap to 180 [deg]C while backflushing the trap with an inert gas between 
20 and 60 mL/min for 1.5 min.
    10.8 While the trap is being desorbed into the gas chromatograph, 
empty the purging chamber using the sample introduction syringe. Wash 
the chamber with two 5-mL flushes of reagent water.
    10.9 After desorbing the sample for 1.5 min, recondition the trap by 
returning the purge and trap system to the purge mode. Wait 15 s then 
close the syringe valve on the purging device to begin gas flow through 
the trap. The trap temperature should be maintained at 210 [deg]C. After 
approximately 7 min, turn off the trap heater and open the syringe valve 
to stop the gas flow through the trap. When the trap is cool, the next 
sample can be analyzed.
    10.10 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.

                            11. Calculations

    11.1 Determine the concentration of individual compounds in the 
sample.
    11.1.1 If the external standard calibration procedure is used, 
calculate the concentration of the parameter being measured from the 
peak response using the calibration curve or calibration factor 
determined in Section 7.3.2.
    11.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.4.3 and Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.097

                                                              Equation 2

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard.

    11.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         12. Method Performance

    12.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \9\ The MDL 
actually achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.

[[Page 96]]

    12.2 This method is recommended for the concentration range from the 
MDL to 1,000xMDL. Direct aqueous injection techniques should be used to 
measure concentration levels above 1,000xMDL.
    12.3 In a single laboratory (Battelle-Columbus), the average 
recoveries and standard deviations presented in Table 2 were obtained. 
\9\ Seven replicate samples were analyzed at each spike level.

                               References

    1. 40 CFR part 136, appendix B.
    2. Bellar, T.A., and Lichtenberg, J.J. ``Determining Volatile 
Organics at Microgram-per-Litre-Levels by Gas Chromatography,'' Journal 
American Water Works Association, 66, 739 (1974).
    3. ``Evaluate Test Procedures for Acrolein and Acrylonitrile,'' 
Special letter report for EPA Project 4719-A, U.S. Environmental 
Protection Agency, Environmental Monitoring and Support Laboratory, 
Cincinnati, Ohio 45268, 27 June 1979.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983).
    8. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    9. ``Evaluation of Method 603 (Modified),'' EPA-600/4-84-ABC, 
National Technical Information Service, PB84-, Springfield, Virginia 
22161, Nov. 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                       Retention time (min)     Method
                                     ------------------------  detection
              Parameter                                          limit
                                       Column 1    Column 2   ([micro]g/
                                                                  L)
------------------------------------------------------------------------
Acrolein............................     10.6         8.2         0.7
Acrylonitrile.......................     12.7         9.8         0.5
------------------------------------------------------------------------
Column 1 conditions: Porapak-QS (80/100 mesh) packed in a 10 ft x 2 mm
  ID glass or stainless steel column with helium carrier gas at 30 mL/
  min flow rate. Column temperature held isothermal at 110 [deg]C for
  1.5 min (during desorption), then heated as rapidly as possible to 150
  [deg]C and held for 20 min; column bakeout at 190 [deg]C for 10 min.
  \9\
Column 2 conditions: Chromosorb 101 (60/80 mesh) packed in a 6 ft. x 0.1
  in. ID glass or stainless steel column with helium carrier gas at 40
  mL/min flow rate. Column temperature held isothermal at 80 [deg]C for
  4 min, then programmed at 50 [deg]C/min to 120 [deg]C and held for 12
  min.


                          Table 2--Single Laboratory Accuracy and Precision--Method 603
----------------------------------------------------------------------------------------------------------------
                                                                      Spike      Average    Standard
                                                          Sample      conc.     recovery    deviation   Average
                       Parameter                          matrix   ([micro]g/  ([micro]g/  ([micro]g/   percent
                                                                       L)          L)          L)       recovery
----------------------------------------------------------------------------------------------------------------
Acrolein...............................................        RW        5.0          5.2         0.2        104
                                                               RW       50.0         51.4         0.7        103
                                                             POTW        5.0          4.0         0.2         80
                                                             POTW       50.0         44.4         0.8         89
                                                               IW        5.0          0.1         0.1          2
                                                               IW      100.0          9.3         1.1          9
Acrylonitrile..........................................        RW        5.0          4.2         0.2         84
                                                               RW       50.0         51.4         1.5        103
                                                             POTW       20.0         20.1         0.8        100
                                                             POTW      100.0        101.3         1.5        101
                                                               IW       10.0          9.1         0.8         91
                                                               IW      100.0        104.0         3.2        104
----------------------------------------------------------------------------------------------------------------
 ARW=Reagent water.
 APOTW=Prechlorination secondary effluent from a municipal sewage treatment plant.
 AIW=Industrial wastewater containing an unidentified acrolein reactant.


                         Table 3--Calibration and QC Acceptance Criteria--Method 603 \a\
----------------------------------------------------------------------------------------------------------------
                                                                             Limit for
                                                               Range for Q       S      Range for X   Range for
                          Parameter                             ([micro]g/  ([micro]g/   ([micro]g/   P, Ps (%)
                                                                    L)          L)           L)
----------------------------------------------------------------------------------------------------------------
Acrolein.....................................................    45.9-54.1         4.6    42.9-60.1       88-118
Acrylonitrile................................................    41.2-58.8         9.9    33.1-69.9       71-135
----------------------------------------------------------------------------------------------------------------
\a\=Criteria were calculated assuming a QC check sample concentration of 50 [micro]g/L. \9\
Q=Concentration measured in QC check sample, in [micro]g/L (Section 7.5.3).

[[Page 97]]

 
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).

[GRAPHIC] [TIFF OMITTED] TC02JY92.008


[[Page 98]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.009


[[Page 99]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.010


[[Page 100]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.011

                           Method 604--Phenols

                        1. Scope and Application

    1.1 This method covers the determination of phenol and certain 
substituted phenols. The following parameters may be determined by this 
method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                         No.      CAS No.
------------------------------------------------------------------------
4-Chloro-3-methylphenol..........................     34452      59-50-7
2--Chlorophenol..................................     34586      95-57-8
2,4-Dichlorophenol...............................     34601     120-83-2
2,4-Dimethylphenol...............................     34606     105-67-9
2,4-Dinitrophenol................................     34616      51-28-5
2-Methyl-4,6-dinitrophenol.......................     34657     534-52-1
2-Nitrophenol....................................     34591      88-75-5
4-Nitrophenol....................................     34646     100-02-7
Pentachlorophenol................................     39032      87-86-5
Phenol...........................................     34694     108-95-2
2,4,6-Trichlorophenol............................     34621      88-06-2
------------------------------------------------------------------------
 

    1.2 This is a flame ionization detector gas chromatographic (FIDGC) 
method applicable to the determination of the compounds listed above in 
municipal and industrial discharges as provided under 40 CFR 136.1. When 
this method is used to analyze unfamiliar samples for any or all of the 
compounds above, compound identifications should be supported by at 
least one additional qualitative technique. This method describes 
analytical conditions for derivatization, cleanup, and electron capture 
detector gas chromatography (ECDGC) that can be used to confirm 
measurements made by FIDGC. Method 625 provides gas chromatograph/mass 
spectrometer (GC/MS) conditions appropriate for the qualitative and 
quantitative confirmation of results for all of the parameters listed 
above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix. The MDL listed in Table 1 for each 
parameter was achieved with a flame ionization detector (FID). The MDLs 
that were achieved when the derivatization cleanup and electron capture 
detector (ECD) were employed are presented in Table 2.

[[Page 101]]

    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is acidified and 
extracted with methylene chloride using a separatory funnel. The 
methylene chloride extract is dried and exchanged to 2-propanol during 
concentration to a volume of 10 mL or less. The extract is separated by 
gas chromatography and the phenols are then measured with an FID. \2\
    2.2 A preliminary sample wash under basic conditions can be employed 
for samples having high general organic and organic base interferences.
    2.3 The method also provides for a derivatization and column 
chromatography cleanup procedure to aid in the elimination of 
interferences. \2,3\ The derivatives are analyzed by ECDGC.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \4\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are 
coextracted from the sample. The extent of matrix interferences will 
vary considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
derivatization cleanup procedure in Section 12 can be used to overcome 
many of these interferences, but unique samples may require additional 
cleanup approaches to achieve the MDL listed in Tables 1 and 2.
    3.3 The basic sample wash (Section 10.2) may cause significantly 
reduced recovery of phenol and 2,4-dimethylphenol. The analyst must 
recognize that results obtained under these conditions are minimum 
concentrations.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
mothod has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified \5,7\ for 
the information of analyst.
    4.2 Special care should be taken in handling pentafluorobenzyl 
bromide, which is a lachrymator, and 18-crown-6-ether, which is highly 
toxic.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be

[[Page 102]]

used. Before use, however, the compressible tubing should be thoroughly 
rinsed with methanol, followed by repeated rinsings with distilled water 
to minimize the potential for contamination of the sample. An 
integrating flow meter is required to collect flow proportional 
composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, 400 mm long x 19 mm ID, 
with coarse frit filter disc.
    5.2.3 Chromatographic column--100 mm long x 10 mm ID, with Teflon 
stopcock.
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.8 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.9 Reaction flask--15 to 25-mL round bottom flask, with standard 
tapered joint, fitted with a water-cooled condenser and U-shaped drying 
tube containing granular calcium chloride.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2[deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighting 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, gases, detector, and strip-chart recorder. A data system is 
recommended for measuring peak areas.
    5.6.1 Column for underivatized phenols--1.8 m long x 2 mm ID glass, 
packed with 1% SP-1240DA on Supelcoport (80/100 mesh) or equivalent. 
This column was used to develop the method performance statements in 
Section 14. Guidelines for the use of alternate column packings are 
provided in Section 11.1.
    5.6.2 Column for derivatized phenols--1.8 m long x 2 mm ID glass, 
packed with 5% OV-17 on Chromosorb W-AW-DMCS (80/100 mesh) or 
equivalent. This column has proven effective in the analysis of 
wastewaters for derivatization products of the parameters listed in the 
scope (Section 1.1), and was used to develop the method performance 
statements in Section 14. Guidelines for the use of alternate column 
packings are provided in Section 11.1.
    5.6.3 Detectors--Flame ionization and electron capture detectors. 
The FID is used when determining the parent phenols. The ECD is used 
when determining the derivatized phenols. Guidelines for the use of 
alternatve detectors are provided in Section 11.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.3 Sodium hydroxide solution (1 N)--Dissolve 4 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.4 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400[deg]C for 4 h in a shallow tray.
    6.5 Sodium thiosulfate--(ACS) Granular.
    6.6 Sulfuric acid (1+1)--Slowly, add 50 mL of 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.7 Sulfuric acid (1 N)--Slowly, add 58 mL of 
H2SO4 (ACS, sp. gr. 1.84) to reagent water and 
dilute to 1 L.
    6.8 Potassium carbonate--(ACS) Powdered.
    6.9 Pentafluorobenzyl bromide ([alpha]-Bromopentafluorotoluene)--97% 
minimum purity.
    Note: This chemical is a lachrymator. (See Section 4.2.)
    6.10 18-crown-6-ether (1,4,7,10,13,16-Hexaoxacyclooctadecane)--98% 
minimum purity.
    Note: This chemical is highly toxic.
    6.11 Derivatization reagent--Add 1 mL of pentafluorobenzyl bromide 
and 1 g of 18-crown-6-ether to a 50-mL volumetric flask and dilute to 
volume with 2-propanol. Prepare fresh weekly. This operation should be 
carried out in a hood. Store at 4 [deg]C and protect from light.
    6.12 Acetone, hexane, methanol, methylene chloride, 2-propanol, 
toluene--Pesticide quality or equivalent.
    6.13 Silica gel--100/200 mesh, Davison, grade-923 or equivalent. 
Activate at 130 [deg]C overnight and store in a desiccator.
    6.14 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions may be prepared from pure standard materials or 
purchased as certified solutions.
    6.14.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in 2-propanol

[[Page 103]]

and dilute to volume in a 10-mL volumetric flask. Larger volumes can be 
used at the convenience of the analyst. When compound purity is assayed 
to be 96% or greater, the weight can be used without correction to 
calculate the concentration of the stock standard. Commercially prepared 
stock standards can be used at any concentration if they are certified 
by the manufacturer or by an independent source.
    6.14.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.14.3 Stock standard solutions must be replaced after six months, 
or sooner if comparison with check standards indicates a problem.
    6.15 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 To calibrate the FIDGC for the anaylsis of underivatized 
phenols, establish gas chromatographic operating conditions equivalent 
to those given in Table 1. The gas chromatographic system can be 
calibrated using the external standard technique (Section 7.2) or the 
internal standard technique (Section 7.3).
    7.2 External standard calibration procedure for FIDGC:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with 2-propanol. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 2 to 5 [micro]l, analyze each calibration 
standard according to Section 11 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure for FIDGC--To use this 
approach, the analyst must select one or more internal standards that 
are similar in analytical behavior to the compounds of interest. The 
analyst must further demonstrate that the measurement of the internal 
standard is not affected by method or matrix interferences. Because of 
these limitations, no internal standard can be suggested that is 
applicable to all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with 2-propanol. One of the standards should be at 
a concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 11 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).

Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 To calibrate the ECDGC for the analysis of phenol derivatives, 
establish gas chromatographic operating conditions equivalent to those 
given in Table 2.
    7.5.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with 2-propanol. One of the external standards should be at a 
concentration near, but above, the MDL (Table 2) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.

[[Page 104]]

    7.5.2 Each time samples are to be derivatized, simultaneously treat 
a 1-mL aliquot of each calibration standard as described in Section 12.
    7.5.3 After derivatization, analyze 2 to 5 [micro]L of each column 
eluate collected according to the method beginning in Section 12.8 and 
tabulate peak height or area responses against the calculated equivalent 
mass of underivatized phenol injected. The results can be used to 
prepare a calibration curve for each compound.
    7.6 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.6 and 11.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 100 
[micro]g/mL in 2-propanol. The QC check sample concentrate must be 
obtained from the U.S. Environmental Protection Agency, Environmental 
Monitoring and Support Laboratory in Cincinnati, Ohio, if available. If 
not available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
100 [micro]g/L by adding 1.00 mL of QC check sample concentrate to each 
of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 3. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Talbe 3 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.2.
    8.2.6.2 Beginning with Section 8.2.2, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem

[[Page 105]]

with the measurement system. If this occurs, locate and correct the 
source of the problem and repeat the test for all compounds of interest 
beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 100 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any, 
or, if none, (2) the larger of either 5 times higher than the expected 
background concentration or 100 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 3. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\8\ If spiking was performed at a concentration lower than 100 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 3, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 4, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 4, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T)2.44(100 S'/T)%. \8\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.

    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.

    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
3. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6. It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak

[[Page 106]]

on the chromatogram, confirmatory techniques such as gas chromatography 
with a dissimilar column, specific element detector, or mass 
spectrometer must be used. Whenever possible, the laboratory should 
analyze standard reference materials and participate in relevant 
performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \9\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. Fill the sample bottles and, if 
residual chlorine is present, add 80 mg of sodium thiosulfate per liter 
of sample and mix well. EPA Methods 330.4 and 330.5 may be used for 
measurement of residual chlorine. \10\ Field test kits are available for 
this purpose.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of sample bottle for later 
determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 For samples high in organic content, the analyst may solvent 
wash the sample at basic pH as prescribed in Sections 10.2.1 and 10.2.2 
to remove potential method interferences. Prolonged or exhaustive 
contact with solvent during the wash may result in low recovery of some 
of the phenols, notably phenol and 2,4-dimethylphenol. For relatively 
clean samples, the wash should be omitted and the extraction, beginning 
with Section 10.3, should be followed.
    10.2.1 Adjust the pH of the sample to 12.0 or greater with sodium 
hydroxide solution.
    10.2.2 Add 60 mL of methylene chloride to the sample by shaking the 
funnel for 1 min with periodic venting to release excess pressure. 
Discard the solvent layer. The wash can be repeated up to two additional 
times if significant color is being removed.
    10.3 Adjust the sample to a pH of 1 to 2 with sulfuric acid.
    10.4 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.5 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.6 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.7 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.8 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.9 Increase the temperature of the hot water bath to 95 to 100 
[deg]C. Remove the Synder column and rinse the flask and its lower joint 
into the concentrator tube with 1 to 2 mL of 2-propanol. A 5-mL syringe 
is recommended for this operation. Attach a two-ball micro-Snyder column 
to the concentrator tube and prewet the column by adding about 0.5 mL of 
2-propanol to the top. Place the micro-K-D apparatus on the water bath 
so that the concentrator tube is partially immersed in the hot water. 
Adjust the vertical position of the apparatus and the water temperature 
as required to complete concentration in 5 to 10 min. At the proper rate 
of distillation the balls of the column will actively chatter but the 
chambers will

[[Page 107]]

not flood. When the apparent volume of liquid reaches 2.5 mL, remove the 
K-D apparatus and allow it to drain and cool for at least 10 min. Add an 
additional 2 mL of 2-propanol through the top of the micro-Snyder column 
and resume concentrating as before. When the apparent volume of liquid 
reaches 0.5 mL, remove the K-D apparatus and allow it to drain and cool 
for at least 10 min.
    10.10 Remove the micro-Snyder column and rinse its lower joint into 
the concentrator tube with a minimum amount of 2-propanol. Adjust the 
extract volume to 1.0 mL. Stopper the concentrator tube and store 
refrigerated at 4 [deg]C if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial. If the sample 
extract requires no further cleanup, proceed with FIDGC analysis 
(Section 11). If the sample requires further cleanup, proceed to Section 
12.
    10.11 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

            11. Flame Ionization Detector Gas Chromatography

    11.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. An example of the 
separations achieved by this column is shown in Figure 1. Other packed 
or capillary (open-tubular) columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    11.2 Calibrate the system daily as described in Section 7.
    11.3 If the internal standard calibration procedure is used, the 
internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    11.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \11\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, and 
the resulting peak size in area or peak height units.
    11.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
may be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    11.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    11.7 If the measurement of the peak response is prevented by the 
presence of interferences, an alternative gas chromatographic procedure 
is required. Section 12 describes a derivatization and column 
chromatographic procedure which has been tested and found to be a 
practical means of analyzing phenols in complex extracts.

   12. Derivatization and Electron Capture Detector Gas Chromatography

    12.1 Pipet a 1.0-mL aliquot of the 2-propanol solution of standard 
or sample extract into a glass reaction vial. Add 1.0 mL of derivatizing 
reagent (Section 6.11). This amount of reagent is sufficient to 
derivatize a solution whose total phenolic content does not exceed 0.3 
mg/mL.
    12.2 Add about 3 mg of potassium carbonate to the solution and shake 
gently.
    12.3 Cap the mixture and heat it for 4 h at 80 [deg]C in a hot water 
bath.
    12.4 Remove the solution from the hot water bath and allow it to 
cool.
    12.5 Add 10 mL of hexane to the reaction flask and shake vigorously 
for 1 min. Add 3.0 mL of distilled, deionized water to the reaction 
flask and shake for 2 min. Decant a portion of the organic layer into a 
concentrator tube and cap with a glass stopper.
    12.6 Place 4.0 g of silica gel into a chromatographic column. Tap 
the column to settle the silica gel and add about 2 g of anhydrous 
sodium sulfate to the top.
    12.7 Preelute the column with 6 mL of hexane. Discard the eluate and 
just prior to exposure of the sodium sulfate layer to the air, pipet 
onto the column 2.0 mL of the hexane solution (Section 12.5) that 
contains the derivatized sample or standard. Elute the column with 10.0 
mL of hexane and discard the eluate. Elute the column, in order, with: 
10.0 mL of 15% toluene in hexane (Fraction 1); 10.0 mL of 40% toluene in 
hexane (Fraction 2); 10.0 mL of 75% toluene in hexane (Fraction 3); and 
10.0 mL of 15% 2-propanol in toluene (Fraction 4). All elution mixtures 
are prepared on a volume: volume basis. Elution patterns for the 
phenolic derivatives are shown in Table 2. Fractions may be combined as 
desired, depending upon the specific phenols of interest or level of 
interferences.
    12.8 Analyze the fractions by ECDGC. Table 2 summarizes the 
recommended operating conditions for the gas chromatograph. Included in 
this table are retention times and MDL that can be achieved under these 
conditions. An example of the separations achieved by this column is 
shown in Figure 2.

[[Page 108]]

    12.9 Calibrate the system daily with a minimum of three aliquots of 
calibration standards, containing each of the phenols of interest that 
are derivatized according to Section 7.5.
    12.10 Inject 2 to 5 [micro]L of the column fractions into the gas 
chromatograph using the solvent-flush technique. Smaller (1.0 [micro]L) 
volumes can be injected if automatic devices are employed. Record the 
volume injected to the nearest 0.05 [micro]L, and the resulting peak 
size in area or peak height units. If the peak response exceeds the 
linear range of the system, dilute the extract and reanalyze.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample analyzed by FIDGC (without derivatization) as indicated below.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.098

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.099

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Determine the concentration of individual compounds in the 
sample analyzed by derivatization and ECDGC according to Equation 4.
[GRAPHIC] [TIFF OMITTED] TC15NO91.100

                                                              Equation 4

where:
A=Mass of underivatized phenol represented by area of peak in sample 
chromatogram, determined from calibration curve in Section 7.5.3 (ng).
Vi=Volume of eluate injected ([micro]L).
Vt=Total volume of column eluate or combined fractions from 
which Vi was taken ([micro]L).
Vs=Volume of water extracted in Section 10.10 (mL).
B=Total volume of hexane added in Section 12.5 (mL).
C=Volume of hexane sample solution added to cleanup column in Section 
12.7 (mL).
D=Total volume of 2-propanol extract prior to derivatization (mL).
E=Volume of 2-propanol extract carried through derivatization in Section 
12.1 (mL).

    13.3 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Tables 1 and 2 were obtained using reagent water. \12\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
as six concentrations over the range 12 to 450 [micro]g/L. \13\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships for a flame ionization detector are 
presented in Table 4.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Phenols in Industrial and Municipal 
Wastewaters,'' EPA 600/4-84-ABC, National Technical Information Service, 
PBXYZ, Springfield, Virginia 22161, November 1984.
    3. Kawahara, F. K. ``Microdetermination of Derivatives of Phenols 
and Mercaptans by Means of Electron Capture Gas Chromatography,'' 
Analytical Chemistry, 40, 1009 (1968).
    4. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American

[[Page 109]]

Society for Testing and Materials, Philadelphia.
    5. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    6. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    7. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    8. Provost, L. P., and Elder, R. S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    9. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    10. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methmds for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    11. Burke, J. A. ``Gas Chromatography for Pesticide Residue 
Analysis; Some Practical Aspects,'' Journal of the Association of 
Official Analytical Chemists, 48, 1037 (1965).
    12. ``Development of Detection Limits, EPA Method 604, Phenols,'' 
Special letter report for EPA Contract 68-03-2625, U.S. Environmental 
Protection Agency, Environmental Monitoring and Support Laboratory, 
Cincinnati, Ohio 45268.
    13. ``EPA Method Study 14 Method 604-Phenols,'' EPA 600/4-84-044, 
National Technical Information Service, PB84-196211, Springfield, 
Virginia 22161, May 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                                               Method
                                                 Retention    detection
                   Parameter                    time (min)      limit
                                                            ([micro]g/L)
------------------------------------------------------------------------
2-Chlorophenol................................        1.70          0.31
2-Nitrophenol.................................        2.00          0.45
Phenol........................................        3.01          0.14
2,4-Dimethylphenol............................        4.03          0.32
2,4-Dichlorophenol............................        4.30          0.39
2,4,6-Trichlorophenol.........................        6.05          0.64
4-Chloro-3-methylphenol.......................        7.50          0.36
2,4-Dinitrophenol.............................       10.00         13.0
2-Methyl-4,6-dinitrophenol....................       10.24         16.0
Pentachlorophenol.............................       12.42          7.4
4-Nitrophenol.................................       24.25          2.8
------------------------------------------------------------------------
Column conditions: Supelcoport (80/100 mesh) coated with 1% SP-1240DA
  packed in a 1.8 m long x 2 mm ID glass column with nitrogen carrier
  gas at 30 mL/min flow rate. Column temperature was 80 [deg]C at
  injection, programmed immediately at 8 [deg]C/min to 150 [deg]C final
  temperature. MDL were determined with an FID.


          Table 2--Silica Gel Fractionation and Electron Capture Gas Chromatography of PFBB Derivatives
----------------------------------------------------------------------------------------------------------------
                                                                   Percent recovery by                  Method
                                                                      fraction \a\         Retention   detection
                       Parent compound                        ----------------------------    time       limit
                                                                                             (min)    ([micro]g/
                                                                 1      2      3      4                   L)
----------------------------------------------------------------------------------------------------------------
2-Chlorophenol...............................................  .....     90      1  .....        3.3        0.58
2-Nitrophenol................................................  .....  .....      9     90        9.1        0.77
Phenol.......................................................  .....     90     10  .....        1.8        2.2
2,4-Dimethylphenol...........................................  .....     95      7  .....        2.9        0.63
2,4-Dichlorophenol...........................................  .....     95      1  .....        5.8        0.68
2,4,6-Trichlorophenol........................................     50     50  .....  .....        7.0        0.58
4-Chloro-3-methylphenol......................................  .....     84     14  .....        4.8        1.8
Pentachlorophenol............................................     75     20  .....  .....       28.8        0.59
4-Nitrophenol................................................  .....  .....      1     90       14.0        0.70
----------------------------------------------------------------------------------------------------------------
Column conditions: Chromosorb W-AW-DMCS (80/100 mesh) coated with 5% OV-17 packed in a 1.8 m long x 2.0 mm ID
  glass column with 5% methane/95% argon carrier gas at 30 mL/min flow rate. Column temperature held isothermal
  at 200 [deg]C. MDL were determined with an ECD.
 
\a\ Eluant composition:
 Fraction 1--15% toluene in hexane.
 Fraction 2--40% toluene in hexane.
 Fraction 3--75% toluene in hexane.
 Fraction 4--15% 2-propanol in toluene.


[[Page 110]]


                                   Table 3--QC Acceptance Criteria--Method 604
----------------------------------------------------------------------------------------------------------------
                                                                             Limit for  Range for X
                                                                Test conc.       s       ([micro]g/   Range for
                           Parameter                            ([micro]g/  ([micro]g/       L)         P, Ps
                                                                    L)          L)                    (percent)
----------------------------------------------------------------------------------------------------------------
4-Chloro-3-methylphenol.......................................       100          16.6   56.7-113.4       49-122
2-Chlorophenol................................................       100          27.0   54.1-110.2       38-126
2,4-Dichlorophenol............................................       100          25.1   59.7-103.3       44-119
2,4-Dimethylphenol............................................       100          33.3   50.4-100.0       24-118
4,6-Dinitro-2-methylphenol....................................       100          25.0   42.4-123.6       30-136
2,4-Dinitrophenol.............................................       100          36.0   31.7-125.1       12-145
2-Nitrophenol.................................................       100          22.5   56.6-103.8       43-117
4-Nitrophenol.................................................       100          19.0   22.7-100.0       13-110
Pentachlorophenol.............................................       100          32.4   56.7-113.5       36-134
Phenol........................................................       100          14.1   32.4-100.0       23-108
2,4,6-Trichlorophenol.........................................       100          16.6   60.8-110.4       53-119
----------------------------------------------------------------------------------------------------------------
s--Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X--Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps--Percent recovery measured (Section 8.3.2, Section 8.4.2).
 
Note: These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 4.


                Table 4--Method Accuracy and Precision as Functions of Concentration--Method 604
----------------------------------------------------------------------------------------------------------------
                                                            Accuracy, as      Single Analyst        Overall
                       Parameter                            recovery, X'      precision, sr'     precision, S'
                                                            ([micro]g/L)       ([micro]g/L)       ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
4-Chloro-3-methylphenol................................         0.87C-1.97         0.11X-0.21         0.16X+1.41
2-Chlorophenol.........................................         0.83C-0.84         0.18X+0.20         0.21X+0.75
2,4-Dichlorophenol.....................................         0.81C+0.48         0.17X-0.02         0.18X+0.62
2,4-Dimethylphenol.....................................         0.62C-1.64         0.30X-0.89         0.25X+0.48
4,6-Dinitro-2-methylphenol.............................         0.84C-1.01         0.15X+1.25         0.19X+5.85
2,4-Dinitrophenol......................................         0.80C-1.58         0.27X-1.15         0.29X+4.51
2-Nitrophenol..........................................         0.81C-0.76         0.15X+0.44         0.14X+3.84
4-Nitrophenol..........................................         0.46C+0.18         0.17X+2.43         0.19X+4.79
Pentachlorophenol......................................         0.83C+2.07         0.22X-0.58         0.23X+0.57
Phenol.................................................         0.43C+0.11         0.20X-0.88         0.17X+0.77
2,4,6-Trichlorophenol..................................         0.86C-0.40         0.10X+0.53         0.13X+2.40
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 111]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.012


[[Page 112]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.013

                         Method 605--Benzidines

                        1. Scope and Application

    1.1 This method covers the determination of certain benzidines. The 
following parameters can be determined by this method:

------------------------------------------------------------------------
                   Parameter                     Storet No     CAS No.
------------------------------------------------------------------------
Benzidine.....................................        39120      92-87-5
3,3'-Dichlorobenzidine........................        34631      91-94-1
------------------------------------------------------------------------

    1.2 This is a high performance liquid chromatography (HPLC) method 
applicable to the determination of the compounds listed above in 
municipal and industrial discharges as provided under 40 CFR 136.1. When 
this method is used to analyze unfamiliar samples for the compounds 
above, identifications should be supported by at least one additional 
qualitative technique. This method describes electrochemical conditions 
at a second potential which can be used to confirm measurements made 
with this method. Method 625 provides gas chromatograph/mass 
spectrometer (GC/MS) conditions appropriate for the qualitative and 
quantitative confirmation of results for the parameters listed above, 
using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is

[[Page 113]]

listed in Table 1. The MDL for a specific wastewater may differ from 
those listed, depending upon the nature of the interferences in the 
sample matrix.
    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the use of HPLC instrumentation and in the 
interpretation of liquid chromatograms. Each analyst must demonstrate 
the ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with chloroform using liquid-liquid extractions in a separatory funnel. 
The chloroform extract is extracted with acid. The acid extract is then 
neutralized and extracted with chloroform. The final chloroform extract 
is exchanged to methanol while being concentrated using a rotary 
evaporator. The extract is mixed with buffer and separated by HPLC. The 
benzidine compounds are measured with an electrochemical detector. \2\
    2.2 The acid back-extraction acts as a general purpose cleanup to 
aid in the elimination of interferences.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in chromatograms. All of 
these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials may not be eliminated 
by this treatment. Solvent rinses with acetone and pesticide quality 
hexane may be substituted for the muffle furnace heating. Volumetric 
ware should not be heated in a muffle furnace. After drying and cooling, 
glassware should be sealed and stored in a clean environment to prevent 
any accumulation of dust or other contaminants. Store inverted or capped 
with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedures that are inherent in the extraction step are used to 
overcome many of these interferences, but unique samples may require 
additional cleanup approaches to achieve the MDL listed in Table 1.
    3.3 Some dye plant effluents contain large amounts of components 
with retention times closed to benzidine. In these cases, it has been 
found useful to reduce the electrode potential in order to eliminate 
interferences and still detect benzidine. (See Section 12.7.)

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health harzard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified \4,6\ for 
the information of the analyst.
    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: benzidine and 3,3'-dichlorobenzidine. Primary standards of 
these toxic compounds should be prepared in a hood. A NIOSH/MESA 
approved toxic gas respirator should be worn when the analyst handles 
high concentrations of these toxic compounds.
    4.3 Exposure to chloroform should be minimized by performing all 
extractions and extract concentrations in a hood or other well-
ventiliated area.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene

[[Page 114]]

chloride, and dried before use to minimize contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4[deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested):
    5.2.1 Separatory funnels--2000, 1000, and 250-mL, with Teflon 
stopcock.
    5.2.2 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.3 Rotary evaporator.
    5.2.4 Flasks--Round bottom, 100-mL, with 24/40 joints.
    5.2.5 Centrifuge tubes--Conical, graduated, with Teflon-lined screw 
caps.
    5.2.6 Pipettes--Pasteur, with bulbs.
    5.3 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.4 High performance liquid chromatograph (HPLC)--An analytical 
system complete with column supplies, high pressure syringes, detector, 
and compatible recorder. A data system is recommended for measuring peak 
areas and retention times.
    5.4.1 Solvent delivery system--With pulse damper, Altex 110A or 
equivalent.
    5.4.2 Injection valve (optional)--Waters U6K or equivalent.
    5.4.3 Electrochemical detector--Bioanalytical Systems LC-2A with 
glassy carbon electrode, or equivalent. This detector has proven 
effective in the analysis of wastewaters for the parameters listed in 
the scope (Section 1.1), and was used to develop the method performance 
statements in Section 14. Guidelines for the use of alternate detectors 
are provided in Section 12.1.
    5.4.4 Electrode polishing kit--Princeton Applied Research Model 9320 
or equivalent.
    5.4.5 Column--Lichrosorb RP-2, 5 micron particle diameter, in a 25 
cm x 4.6 mm ID stainless steel column. This column was used to develop 
the method performance statements in Section 14. Guidelines for the use 
of alternate column packings are provided in Section 12.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (5 N)--Dissolve 20 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.3 Sodium hydroxide solution (1 M)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 1 L.
    6.4 Sodium thiosulfate--(ACS) Granular.
    6.5 Sodium tribasic phosphate (0.4 M)--Dissolve 160 g of trisodium 
phosphate decahydrate (ACS) in reagent water and dilute to 1 L.
    6.6 Sulfuric acid (1+1)--Slowly, add 50 mL of 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.7 Sulfuric acid (1 M)--Slowly, add 58 mL of 
H2SO4 (ACS, sp. gr. 1.84) to reagent water and 
dilute to 1 L.
    6.8 Acetate buffer (0.1 M, pH 4.7)--Dissolve 5.8 mL of glacial 
acetic acid (ACS) and 13.6 g of sodium acetate trihydrate (ACS) in 
reagent water which has been purified by filtration through a RO-4 
Millipore System or equivalent and dilute to 1 L.
    6.9 Acetonitrile, chloroform (preserved with 1% ethanol), methanol--
Pesticide quality or equivalent.
    6.10 Mobile phase--Place equal volumes of filtered acetonitrile 
(Millipore type FH filter or equivalent) and filtered acetate buffer 
(Millipore type GS filter or equivalent) in a narrow-mouth, glass 
container and mix thoroughly. Prepare fresh weekly. Degas daily by 
sonicating under vacuum, by heating and stirring, or by purging with 
helium.
    6.11 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions may be prepared from pure standard materials or 
purchased as certified solutions.
    6.11.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in methanol and dilute 
to volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.11.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.11.3 Stock standard solutions must be replaced after six months, 
or sooner if comparison with check standards indicates a problem.
    6.12 Quality control check sample concentrate--See Section 8.2.1.

[[Page 115]]

                             7. Calibration

    7.1 Establish chromatographic operating conditions equivalent to 
those given in Table 1. The HPLC system can be calibrated using the 
external standard technique (Section 7.2) or the internal standard 
technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with mobile phase. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using syringe injections of 5 to 25 [micro]L or a constant 
volume injection loop, analyze each calibration standard according to 
Section 12 and tabulate peak height or area responses against the mass 
injected. The results can be used to prepare a calibration curve for 
each compound. Alternatively, if the ratio of response to amount 
injected (calibration factor) is a constant over the working range (<10% 
relative standard deviation, RSD), linearity through the origin can be 
assumed and the average ratio or calibration factor can be used in place 
of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with mobile phase. One of the standards should be 
at a concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using syringe injections of 5 to 25 [micro]L or a constant 
volume injection loop, analyze each calibration standard according to 
Section 12 and tabulate peak height or area responses against 
concentration for each compound and internal standard. Calculate 
response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound. If serious loss of 
response occurs, polish the electrode and recalibrate.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.9, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.

[[Page 116]]

    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing benzidine and/or 3,3'-dichlorobenzidine at a concentration of 
50 [micro]g/mL each in methanol. The QC check sample concentrate must be 
obtained from the U.S. Environmental Protection Agency, Environmental 
Monitoring and Support Laboratory in Cincinnati, Ohio, if available. If 
not available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
50 [micro]g/L by adding 1.00 mL of QC check sample concentrate to each 
of four 1-L-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter. Locate and correct the 
source of the problem and repeat the test for all parameters of interest 
beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 50 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or 50 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\ If spiking was performed at a concentration lower than 50 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 2, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 3, substituting

[[Page 117]]

the spike concentration (T) for C; (2) calculate overall precision (S') 
using the equation in Table 3, substituting X' for X; (3) calculate the 
range for recovery at the spike concentration as (100 X'/T)2.44(100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Sections 8.2.1 or 8.3.2) to 1 L of reagent water. 
The QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as HPLC with a dissimilar column, gas chromatography, or mass 
spectrometer must be used. Whenever possible, the laboratory should 
analyze standard reference materials and participate in relevant 
performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \8\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4[deg]C and stored 
in the dark from the time of collection until extraction. Both benzidine 
and 3,3'-dichlorobenzidine are easily oxidized. Fill the sample bottles 
and, if residual chlorine is present, add 80 mg of sodium thiosulfate 
per liter of sample and mix well. EPA Methods 330.4 and 330.5 may be 
used for measurement of residual chlorine. \9\ Field test kits are 
available for this purpose. After mixing, adjust the pH of the sample to 
a range of 2 to 7 with sulfuric acid.
    9.3 If 1,2-diphenylhydrazine is likely to be present, adjust the pH 
of the sample to 4.0 0.2 to prevent rearrangement 
to benzidine.
    9.4 All samples must be extracted within 7 days of collection. 
Extracts may be held up to 7 days before analysis, if stored under an 
inert (oxidant free) atmosphere. \2\ The extract should be protected 
from light.

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel. Check the pH of the sample with wide-range pH paper 
and adjust to within the range of 6.5 to 7.5 with sodium hydroxide 
solution or sulfuric acid.
    10.2 Add 100 mL of chloroform to the sample bottle, seal, and shake 
30 s to rinse the inner surface. (Caution: Handle chloroform in a well 
ventilated area.) Transfer the solvent to the separatory funnel and 
extract the sample by shaking the funnel for 2 min with periodic venting 
to release excess pressure. Allow the organic layer to separate from the 
water phase for a minimum of 10 min. If the emulsion interface between 
layers is more than one-third the volume of the solvent layer, the 
analyst must employ mechanical techniques to complete the phase 
separation. The optimum technique depends upon the sample, but may 
include stirring,

[[Page 118]]

filtration of the emulsion through glass wool, centrifugation, or other 
physical methods. Collect the chloroform extract in a 250-mL separatory 
funnel.
    10.3 Add a 50-mL volume of chloroform to the sample bottle and 
repeat the extraction procedure a second time, combining the extracts in 
the separatory funnel. Perform a third extraction in the same manner.
    10.4 Separate and discard any aqueous layer remaining in the 250-mL 
separatory funnel after combining the organic extracts. Add 25 mL of 1 M 
sulfuric acid and extract the sample by shaking the funnel for 2 min. 
Transfer the aqueous layer to a 250-mL beaker. Extract with two 
additional 25-mL portions of 1 M sulfuric acid and combine the acid 
extracts in the beaker.
    10.5 Place a stirbar in the 250-mL beaker and stir the acid extract 
while carefully adding 5 mL of 0.4 M sodium tribasic phosphate. While 
monitoring with a pH meter, neutralize the extract to a pH between 6 and 
7 by dropwise addition of 5 N sodium hydroxide solution while stirring 
the solution vigorously. Approximately 25 to 30 mL of 5 N sodium 
hydroxide solution will be required and it should be added over at least 
a 2-min period. Do not allow the sample pH to exceed 8.
    10.6 Transfer the neutralized extract into a 250-mL separatory 
funnel. Add 30 mL of chloroform and shake the funnel for 2 min. Allow 
the phases to separate, and transfer the organic layer to a second 250-
mL separatory funnel.
    10.7 Extract the aqueous layer with two additional 20-mL aliquots of 
chloroform as before. Combine the extracts in the 250-mL separatory 
funnel.
    10.8 Add 20 mL of reagent water to the combined organic layers and 
shake for 30 s.
    10.9 Transfer the organic extract into a 100-mL round bottom flask. 
Add 20 mL of methanol and concentrate to 5 mL with a rotary evaporator 
at reduced pressure and 35 [deg]C. An aspirator is recommended for use 
as the source of vacuum. Chill the receiver with ice. This operation 
requires approximately 10 min. Other concentration techniques may be 
used if the requirements of Section 8.2 are met.
    10.10 Using a 9-in. Pasteur pipette, transfer the extract to a 15-
mL, conical, screw-cap centrifuge tube. Rinse the flask, including the 
entire side wall, with 2-mL portions of methanol and combine with the 
original extract.
    10.11 Carefully concentrate the extract to 0.5 mL using a gentle 
stream of nitrogen while heating in a 30 [deg]C water bath. Dilute to 2 
mL with methanol, reconcentrate to 1 mL, and dilute to 5 mL with acetate 
buffer. Mix the extract thoroughly. Cap the centrifuge tube and store 
refrigerated and protected from light if further processing will not be 
performed immediately. If the extract will be stored longer than two 
days, it should be transferred to a Teflon-sealed screw-cap vial. If the 
sample extract requires no further cleanup, proceed with HPLC analysis 
(Section 12). If the sample requires further cleanup, proceed to Section 
11.
    10.12 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1,000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst first must demonstrate that the requirements of 
Section 8.2 can be met using the method as revised to incorporate the 
cleanup procedure.

               12. High Performance Liquid Chromatography

    12.1 Table 1 summarizes the recommended operating conditions for the 
HPLC. Included in this table are retention times, capacity factors, and 
MDL that can be achieved under these conditions. An example of the 
separations achieved by this HPLC column is shown in Figure 1. Other 
HPLC columns, chromatographic conditions, or detectors may be used if 
the requirements of Section 8.2 are met. When the HPLC is idle, it is 
advisable to maintain a 0.1 mL/min flow through the column to prolong 
column life.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the instrument.
    12.4 Inject 5 to 25 [micro]L of the sample extract or standard into 
the HPLC. If constant volume injection loops are not used, record the 
volume injected to the nearest 0.05 [micro]L, and the resulting peak 
size in area or peak height units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract with mobile phase and reanalyze.

[[Page 119]]

    12.7 If the measurement of the peak response for benzidine is 
prevented by the presence of interferences, reduce the electrode 
potential to +0.6 V and reanalyze. If the benzidine peak is still 
obscured by interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.101

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.102

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \10\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 7xMDL to 3000xMDL. \10\
    14.3 This method was tested by 17 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 1.0 to 70 [micro]g/L. \11\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Benzidines in Industrial and Muncipal 
Wastewaters,'' EPA 600/4-82-022, National Technical Information Service, 
PB82-196320, Springfield, Virginia 22161, April 1982.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    8. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    9. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    10. ``EPA Method Study 15, Method 605 (Benzidines),'' EPA 600/4-84-
062, National Technical Information Service, PB84-211176, Springfield, 
Virginia 22161, June 1984.
    11. ``EPA Method Validation Study 15, Method 605 (Benzidines),'' 
Report for EPA Contract 68-03-2624 (In preparation).

[[Page 120]]



     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                                                Method
                                                   Column     detection
            Parameter               Retention     capacity      limit
                                    time (min)  factor (k')   ([micro]g/
                                                                  L)
------------------------------------------------------------------------
Benzidine........................          6.1         1.44         0.08
3,3'-Dichlorobenzidine...........         12.1         3.84         0.13
------------------------------------------------------------------------
HPLC Column conditions: Lichrosorb RP-2, 5 micron particle size, in a 25
  cmx4.6 mm ID stainless steel column. Mobile Phase: 0.8 mL/min of 50%
  acetonitrile/50% 0.1M pH 4.7 acetate buffer. The MDL were determined
  using an electrochemical detector operated at +0.8 V.


                                   Table 2--QC Acceptance Criteria--Method 605
----------------------------------------------------------------------------------------------------------------
                                                                                Limit for   Range for
                                                                   Test conc.       s           X      Range for
                            Parameter                              ([micro]g/  ([micro]g/  ([micro]g/    P, Ps
                                                                       L)          L)          L)      (percent)
----------------------------------------------------------------------------------------------------------------
Benzidine........................................................          50        18.7    9.1-61.0      D-140
3.3'-Dichlorobenzidine...........................................          50        23.6   18.7-50.0      5-128
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 605
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                                recovery,    precision, sr'   precision, S'
                                                                  X'([micro]g/L)   ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Benzidine.......................................................      0.70C+0.06      0.28X+0.19      0.40X+0.18
3,3'-Dichlorobenzidine..........................................      0.66C+0.23      0.39X-0.05      0.38X+0.02
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 121]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.014


[[Page 122]]

                       Method 606--Phthalate Ester

                        1. Scope and Application

    1.1 This method covers the determination of certain phthalate 
esters. The following parameters can be determined by this method:

------------------------------------------------------------------------
                                                      STORET
                     Parameter                         No.      CAS No.
------------------------------------------------------------------------
Bis(2-ethylhexyl) phthalate........................    39100    117-81-7
Butyl benzyl phthalate.............................    34292     85-68-7
Di-n-butyl phthalate...............................    39110     84-74-2
Diethyl phthalate..................................    34336     84-66-2
Dimethyl phthalate.................................    34341    131-11-3
Di-n-octyl phthalate...............................    34596    117-84-0
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of the compounds listed above in municipal and industrial 
discharges as provided under 40 CFR 136.1. When this method is used to 
analyze unfamiliar samples for any or all of the compounds above, 
compound identifications should be supported by at least one additional 
qualitative technique. This method describes analytical conditions for a 
second gas chromatographic column that can be used to confirm 
measurements made with the primary column. Method 625 provides gas 
chromatograph/mass spectrometer (GC/MS) conditions appropriate for the 
qualitative and quantitative confirmation of results for all of the 
parameters listed above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 608, 609, 611, and 612. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. The analyst is 
allowed the latitude, under Section 12, to select chromatographic 
conditions appropriate for the simultaneous measurement of combinations 
of these parameters.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and exchanged to hexane during concentration 
to a volume of 10 mL or less. The extract is separated by gas 
chromatography and the phthalate esters are then measured with an 
electron capture detector. \2\
    2.2 Analysis for phthalates is especially complicated by their 
ubiquitous occurrence in the environment. The method provides Florisil 
and alumina column cleanup procedures to aid in the elimination of 
interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Phthalate esters are contaminants in many products commonly 
found in the laboratory. It is particularly important to avoid the use 
of plastics because phthalates are commonly used as plasticizers and are 
easily extracted from plastic materials. Serious phthalate contamination 
can result at any time, if consistent quality control is not practiced. 
Great care must be experienced to prevent such contamination. Exhaustive 
cleanup of reagents and glassware may be required to eliminate 
background phthalate contamination. \4,5\

[[Page 123]]

    3.3 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedures in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified \6,8\ for 
the information of the analyst.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only).
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Chromatographic column--300 mm long x 10 mm ID, with Teflon 
stopcock and coarse frit filter disc at bottom (Kontes K-420540-0213 or 
equivalent).
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.8 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with gas 
chromatograph suitable for on-column injection and all required 
accessories including syringes, analytical columns, gases, detector, and 
strip-chart recorder. A data system is recommended for measuring peak 
areas.
    5.6.1 Column 1--1.8 m long x 4 mm ID glass, packed with 1.5% SP-
2250/1.95% SP-2401 Supelcoport (100/120 mesh) or equivalent. This column 
was used to develop the method performance statemelts in Section 14. 
Guidelines for the use of alternate column packings are provided in 
Section 12.1.
    5.6.2 Column 2--1.8 m long x 4 mm ID glass, packed with 3% OV-1 on 
Supelcoport (100/120 mesh) or equivalent.
    5.6.3 Detector--Electron capture detector. This detector has proven 
effective in the analysis of wastewaters for the parameters listed in 
the scope (Section 1.1), and was used to develop the method performance 
statements in Section 14. Guidelines for the use of alternate detectors 
are provided in Section 12.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Acetone, hexane, isooctane, methylene chloride, methanol--
Pesticide quality or equivalent.
    6.3 Ethyl ether--nanograde, redistilled in glass if necessary.
    6.3.1 Ethyl ether must be shown to be free of peroxides before it is 
used as indicated by

[[Page 124]]

EM Laboratories Quant test strips. (Available from Scientific Products 
Co., Cat. No. P1126-8, and other suppliers.)
    6.3.2 Procedures recommended for removal of peroxides are provided 
with the test strips. After cleanup, 20 mL of ethyl alcohol preservative 
must be added to each liter of ether.
    6.4 Sodium sulfate--(ACS) Granular, anhydrous. Several levels of 
purification may be required in order to reduce background phthalate 
levels to an acceptable level: 1) Heat 4 h at 400 [deg]C in a shallow 
tray, 2) Heat 16 h at 450 to 500 [deg]C in a shallow tray, 3) Soxhlet 
extract with methylene chloride for 48 h.
    6.5 Florisil--PR grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in the dark in glass containers with ground glass 
stoppers or foil-lined screw caps. To prepare for use, place 100 g of 
Florisil into a 500-mL beaker and heat for approximately 16 h at 40 
[deg]C. After heating transfer to a 500-mL reagent bottle. Tightly seal 
and cool to room temperature. When cool add 3 mL of reagent water. Mix 
thoroughly by shaking or rolling for 10 min and let it stand for at 
least 2 h. Keep the bottle sealed tightly.
    6.6 Alumina--Neutral activity Super I, W200 series (ICN Life 
Sciences Group, No. 404583). To prepare for use, place 100 g of alumina 
into a 500-mL beaker and heat for approximately 16 h at 400 [deg]C. 
After heating transfer to a 500-mL reagent bottle. Tightly seal and cool 
to room temperature. When cool add 3 mL of reagent water. Mix thoroughly 
by shaking or rolling for 10 min and let it stand for at least 2 h. Keep 
the bottle sealed tightly.
    6.7 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.7.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in isooctane and dilute 
to volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.7.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.7.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with check standards indicates a problem.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatograph operating conditions equivalent to 
those given in Table 1. The gas chromatographic system can be calibrated 
using the external standard technique (Section 7.2) or the internal 
standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepared calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with isooctane. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flash. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with isooctane. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.

[[Page 125]]

    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality contrml (QC) check sample concentrate is required 
containing each parameter of interest at the following concentrations in 
acetone: butyl benzyl phthalate, 10 [micro]g/mL; bis(2-ethylhexyl) 
phthalate, 50 [micro]g/mL; di-n-octyl phthalate, 50 [micro]g/mL; any 
other phthlate, 25 [micro]g/mL. The QC check sample concentrate must be 
obtained from the U.S. Environmental Protection Agancy, Environmental 
Monitoring and Support Laboratory in Cincinnati, Ohio, if available. If 
not available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Using a pipet, prepare QC check samples at the test 
concentrations shown in Table 2 by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively,

[[Page 126]]

found in Table 2. If s and X for all parameters of interest meet the 
acceptance criteria, the system performance is acceptable and analysis 
of actual samples can begin. If any individual s exceeds the precision 
limit or any individual X falls outside the range for accuracy, the 
system performance is unacceptable for that parameter. Locate and 
correct the source of the problem and repeat the test for all parameters 
of interest beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at the test concentration in Section 8.2.2 or 1 to 5 
times higher than the background concentration determined in Section 
8.3.2, whichever concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or the test concentration in Section 8.2.2.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\9\ If spiking was performed at a concentration lower than the test 
concentration in Section 8.2.2, the analyst must use either the QC 
acceptance criteria in Table 2, or optional QC acceptance criteria 
calculated for the specific spike concentration. To calculate optional 
acceptance criteria for the recovery of a parameter: (1) Calculate 
accuracy (X') using the equation in Table 3, substituting the spike 
concentration (T) for C; (2) calculate overall precision (S') using the 
equation in Table 3, substituting X' for X; (3) calculate the range for 
recovery at the spike concentration as (100 X'/T)2.44(100 S'/T)%. \9\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).

[[Page 127]]

    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \10\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phrase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentrator 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.7 Increase the temperature of the hot water bath to about 80 
[deg]C. Momentarily remove the Snyder column, add 50 mL of hexane and a 
new boiling chip, and reattach the Snyder column. Concentrate the 
extract as in Section 10.6, except use hexane to prewet the column. The 
elapsed time of concentration should be 5 to 10 min.
    10.8 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of hexane. A 5-mL 
syringe is recommended for this operation. Adjust the extract volume to 
10 mL. Stopper the concentrator tube and store refrigerated if further 
processing will not be performed immediately. If the extract will be 
stored longer than two days, it should be transferred to a Teflon-sealed 
screw-cap vial. If the sample extract requires no further cleanup, 
proceed with gas chromatographic analysis (Section 12). If the sample 
requires further cleanup, proceed to Section 11.
    10.9 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11. Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use either procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of

[[Page 128]]

Section 8.2 can be met using the method as revised to incorporate the 
cleanup procedure.
    11.2 If the entire extract is to be cleaned up by one of the 
following procedures, it must be concentrated to 2.0 mL. To the 
concentrator tube in Section 10.8, add a clean boiling chip and attach a 
two-ball micro-Snyder column. Prewet the column by adding about 0.5 mL 
of hexane to the top. Place the micro-K-D apparatus on a hot water bath 
(80 [deg]C) so that the concentrator tube is partially immersed in the 
hot water. Adjust the vertical position of the apparatus and the water 
temperature as required to complete the concentration in 5 to 10 min. At 
the proper rate of distillation the balls of the column will actively 
chatter but the chambers will not flood. When the apparent volume of 
liquid reaches about 0.5 mL, remove the K-D apparatus and allow it to 
drain and cool for at least 10 min. Remove the micro-Snyder column and 
rinse its lower joint into the concentrator tube with 0.2 mL of hexane. 
Adjust the final volume to 2.0 mL and proceed with one of the following 
cleanup procedures.
    11.3 Florisil column cleanup for phthalate esters:
    11.3.1 Place 10 g of Florisil into a chromatographic column. Tap the 
column to settle the Florisil and add 1 cm of anhydrous sodium sulfate 
to the top.
    11.3.2 Preelute the column with 40 mL of hexane. The rate for all 
elutions should be about 2 mL/min. Discard the eluate and just prior to 
exposure of the sodium sulfate layer to the air, quantitatively transfer 
the 2-mL sample extract onto the column using an additional 2 mL of 
hexane to complete the transfer. Just prior to exposure of the sodium 
sulfate layer to the air, add 40 mL of hexane and continue the elution 
of the column. Discard this hexane eluate.
    11.3.3 Next, elute the column with 100 mL of 20% ethyl ether in 
hexane (V/V) into a 500-mL K-D flask equipped with a 10-mL concentrator 
tube. Concentrate the collected fraction as in Section 10.6. No solvent 
exchange is necessary. Adjust the volume of the cleaned up extract to 10 
mL in the concentrator tube and analyze by gas chromatography (Section 
12).
    11.4 Alumina column cleanup for phthalate esters:
    11.4.1 Place 10 g of alumina into a chromatographic column. Tap the 
column to settle the alumina and add 1 cm of anhydrous sodium sulfate to 
the top.
    11.4.2 Preelute the column with 40 mL of hexane. The rate for all 
elutions should be about 2 mL/min. Discard the eluate and just prior to 
exposure of the sodium sulfate layer to the air, quantitatively transfer 
the 2-mL sample extract onto the column using an additional 2 mL of 
hexane to complete the transfer. Just prior to exposure of the sodium 
sulfate layer to the air, add 35 mL of hexane and continue the elution 
of the column. Discard this hexane eluate.
    11.4.3 Next, elute the column with 140 mL of 20% ethyl ether in 
hexane (V/V) into a 500-mL K-D flask equipped with a 10-mL concentrator 
type. Concentrate the collected fraction as in Section 10.6. No solvent 
exchange is necessary. Adjust the volume of the cleaned up extract to 10 
mL in the concentrator tube and analyze by gas chromatography (Section 
12).

                         12. Gas Chromatography

    12.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Examples of the separations 
achieved by Column 1 are shown in Figures 1 and 2. Other packed or 
capillary (open-tubular) columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal staldard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    12.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas-chromatograph using the solvent-flush technique. \11\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, and 
the resulting peak size in area or peak height units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.7 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration

[[Page 129]]

factor determined in Section 7.2.2. The concentration in the sample can 
be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.103

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.104

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \12\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 5 x MDL to 1000 x MDL with the following 
exceptions: dimethyl and diethyl phthalate recoveries at 1000 x MDL were 
low (70%); bis-2-ethylhexyl and di-n-octyl phthalate recoveries at 5 x 
MDL were low (60%). \12\
    14.3 This method was tested by 16 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 0.7 to 106 [micro]g/L. \13\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Phthalates in Industrial and Muncipal 
Wastewaters,'' EPA 600/4-81-063, National Technical Information Service, 
PB81-232167, Springfield, Virginia 22161, July 1981.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    4. Giam, C.S., Chan, H.S., and Nef, G.S. ``Sensitive Method for 
Determination of Phthalate Ester Plasticizers in Open-Ocean Biota 
Samples,'' Analytical Chemistry, 47, 2225 (1975).
    5. Giam, C.S., and Chan, H.S. ``Control of Blanks in the Analysis of 
Phthalates in Air and Ocean Biota Samples,'' U.S. National Bureau of 
Standards, Special Publication 442, pp. 701-708, 1976.
    6. ``Carcinogens--Working with Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    7. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    8. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    9. Provost L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    10. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    11. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    12. ``Method Detection Limit and Analytical Curve Studies, EPA 
Methods 606, 607, and 608,'' Special letter report for EPA Contract 68-
03-2606, U.S. Environmental Protection Agency, Environmental Monitoring 
and Support Laboratory, Cincinnati, Ohio 45268, June 1980.
    13. ``EPA Method Study 16 Method 606 (Phthalate Esters),'' EPA 600/
4-84-056, National Technical Information Service, PB84-211275, 
Springfield, Virginia 22161, June 1984.

[[Page 130]]



     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                   Retention time (min)        Method
                               ----------------------------   detection
           Parameter                                            limit
                                  Column 1      Column 2    ([micro]g/L)
------------------------------------------------------------------------
Dimethyl phthalate............          2.03          0.95          0.29
Diethyl phthalate.............          2.82          1.27          0.49
Di-n-butyl phthalate..........          8.65          3.50          0.36
Butyl benzyl phthalate........      \a\ 6.94      \a\ 5.11          0.34
Bis(2-ethylhexyl) phthalate...      \a\ 8.92     \a\ 10.5           2.0
Di-n-octyl phthalate..........     \a\ 16.2      \a\ 18.0           3.0
------------------------------------------------------------------------
Column 1 conditions: Supelcoport (100/120 mesh) coated with 1.5% SP-2250/
  1.95% SP-2401 packed in a 1.8 m long x 4 mm ID glass column with 5%
  methane/95% argon carrier gas at 60 mL/min flow rate. Column
  temperature held isothermal at 180[deg]C, except where otherwise
  indicated.
Column 2 conditions: Supelcoport (100/120 mesh) coated with 3% OV-1
  packed in a 1.8 m long x 4 mm ID glass column with 5% methane/95%
  argon carrier gas at 60 mL/min flow rate. Column temperature held
  isothermal at 200 [deg]C, except where otherwise indicated.
\a\ 220 [deg]C column temperature.


                                   Table 2--QC Acceptance Criteria--Method 606
----------------------------------------------------------------------------------------------------------------
                                                                                Limit for   Range for
                                                                   Test conc.       s           X      Range for
                            Parameter                              ([micro]g/  ([micro]g/  ([micro]g/    P, Ps
                                                                       L)          L)          L)      (percent)
----------------------------------------------------------------------------------------------------------------
Bis(2-ethylhexyl) phthalate......................................          50        38.4    1.2-55.9      D-158
Butyl benzyl phthalate...........................................          10         4.2    5.7-11.0     30-136
Di-n-butyl phthalate.............................................          25         8.9   10.3-29.6     23-136
Diethyl phthalate................................................          25         9.0    1.9-33.4      D-149
Dimethyl phathalate..............................................          25         9.5    1.3-35.5      D-156
Di-n-octyl phthalate.............................................          50        13.4      D-50.0      D-114
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 606
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                              recovery, X'   precision, sr'   precision, S'
                                                                   ([micro]g/L)    ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Bis(2-ethylhexyl) phthalate.....................................      0.53C+2.02      0.80X-2.54      0.73X-0.17
Butyl benzyl phthalate..........................................      0.82C+0.13      0.26X+0.04      0.25X+0.07
Di-n-butyl phthalate............................................      0.79C+0.17      0.23X+0.20      0.29X+0.06
Diethyl phthalate...............................................      0.70C+0.13      0.27X+0.05      0.45X+0.11
Dimethyl phthalate..............................................      0.73C+0.17      0.26X+0.14      0.44X+0.31
Di-n-octyl phthalate............................................      0.35C-0.71      0.38X+0.71      0.62X+0.34
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 131]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.015


[[Page 132]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.016


[[Page 133]]

                        Method 607--Nitrosamines

                        1. Scope and Application

    1.1 This method covers the determination of certain nitrosamines. 
The following parameters can be determined by this method:

------------------------------------------------------------------------
                   Parameter                     Storet No.    CAS No.
------------------------------------------------------------------------
N-Nitrosodimethylamine........................        34438      62-75-9
N-Nitrosodiphenylamine........................        34433      86-30-6
N-Nitrosodi-n-propylamine.....................        34428     621-64-7
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of the parameters listed above in municipal and industrial 
discharges as provided under 40 CFR 136.1. When this method is used to 
analyze unfamiliar samples for any or all of the compmunds above, 
compound identifications should be supported by at least one additional 
qualitative technique. This method describes analytical conditimns for a 
second gas chromatographic column that can be used to confirm 
measurements made with the primary column. Method 625 provides gas 
chromatograph/mass spectrometer (GC/MS) conditions appropriate for the 
qualitative and quantitative confirmation of results for N-nitrosodi-n-
propylamine. In order to confirm the presence of N-nitrosodiphenylamine, 
the cleanup procedure specified in Section 11.3 or 11.4 must be used. In 
order to confirm the presence of N-nitrosodimethylamine by GC/MS, Column 
1 of this method must be substituted for the column recommended in 
Method 625. Confirmation of these parameters using GC-high resolution 
mass spectrometry or a Thermal Energy Analyzer is also recommended. 
\1,2\
    1.3 The method detection limit (MDL, defined in Section 14.1) \3\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.5 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is washed with dilute hydrochloric acid to remove free 
amines, dried, and concentrated to a volume of 10 mL or less. After the 
extract has been exchanged to methanol, it is separated by gas 
chromatography and the parameters are then measured with a nitrogen-
phosphorus detector. \4\
    2.2 The method provides Florisil and alumina column cleanup 
procedures to separate diphenylamine from the nitrosamines and to aid in 
the elimination of interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \5\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Solvent rinses with acetone and pesticide quality 
hexane may be substituted for the muffle furnace heating. Volumetric 
ware should not be heated in a muffle furnace. After drying and cooling, 
glassware should be sealed and stored in a clean environment to prevent 
any accumulation of dust or other contaminants. Store inverted or capped 
with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedures in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.
    3.3 N-Nitrosodiphenylamine is reported 6-9 to undergo 
transnitrosation reactions. Care must be exercised in the heating or 
concentrating of solutions containing this compound in the presence of 
reactive amines.
    3.4 The sensitive and selective Thermal Energy Analyzer and the 
reductive Hall detector may be used in place of the nitrogen-phosphorus 
detector when interferences are encountered. The Thermal Energy Analyzer 
offers the highest selectivity of the non-MS detectors.

[[Page 134]]

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
10-12 for the information of the analyst.
    4.2 These nitrosamines are known carcinogens, 13-17 
therefore, utmost care must be exercised in the handling of these 
materials. Nitrosamine reference standards and standard solutions should 
be handled and prepared in a ventilated glove box within a properly 
ventilated room.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flowmeter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnels--2-L and 250-mL, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.4 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.5 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.6 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.8 Chromatographic column--Approximately 400 mm long x 22 mm ID, 
with Teflon stopcock and coarse frit filter disc at bottom (Kontes K-
420540-0234 or equivalent), for use in Florisil column cleanup 
procedure.
    5.2.9 Chromatographic column--Approximately 300 mm long x 10 mm ID, 
with Teflon stopcock and coarse frit filter disc at bottom (Kontes K-
420540-0213 or equivalent), for use in alumina column cleanup procedure.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with gas 
chromatograph suitable for on-column injection and all required 
accessories including syringes, analytical columns, gases, detector, and 
strip-chart recorder. A data system is recommended for measuring peak 
areas.
    5.6.1 Column 1--1.8 m long x 4 mm ID glass, packed with 10% Carbowax 
20 M/2% KOH on Chromosorb W-AW (80/100 mesh) or equivalent. This column 
was used to develop the method performance statements in Section 14. 
Guidelines for the use of alternate column packings are provided in 
Section 12.2.
    5.6.2 Column 2--1.8 m long x 4 mm ID glass, packed with 10% SP-2250 
on Supel-coport (100/120 mesh) or equivalent.
    5.6.3 Detector--Nitrogen-phosphorus, reductive Hall, or Thermal 
Energy Analyzer detector. \1,2\ These detectors have proven effective in 
the analysis of wastewaters for the parameters listed in the scope 
(Section 1.1). A nitrogen-phosphorus detector was used to develop the 
method performance statements in Section 14. Guidelines for the use of 
alternate detectors are provided in Section 12.2.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 ml.

[[Page 135]]

    6.3 Sodium thiosulfate--(ACS) Granular.
    6.4 Sulfuric acid (1+1)--Slowly, add 50 mL of 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.5 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.6 Hydrochloric acid (1+9)--Add one volume of concentrated HCl 
(ACS) to nine volumes of reagent water.
    6.7 Acetone, methanol, methylene chloride, pentane--Pesticide 
quality or equivalent.
    6.8 Ethyl ether--Nanograde, redistilled in glass if necessary.
    6.8.1 Ethyl ether must be shown to be free of peroxides before it is 
used as indicated by EM Laboratories Quant test strips. (Available from 
Scientific Products Co., Cat No. P1126-8, and other suppliers.)
    6.8.2 Procedures recommended for removal of peroxides are provided 
with the test strips. After cleanup, 20 mL of ethyl alcohol preservative 
must be added to each liter of ether.
    6.9 Florisil--PR grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in the dark in glass containers with ground glass 
stoppers or foil-lined screw caps. Before use, activate each batch at 
least 16 h at 130 [deg]C in a foil-covered glass container and allow to 
cool.
    6.10 Alumina--Basic activity Super I, W200 series (ICN Life Sciences 
Group, No. 404571, or equivalent). To prepare for use, place 100 g of 
alumina into a 500-mL reagent bottle and add 2 mL of reagent water. Mix 
the alumina preparation thoroughly by shaking or rolling for 10 min and 
let it stand for at least 2 h. The preparation should be homogeneous 
before use. Keep the bottle sealed tightly to ensure proper activity.
    6.11 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.11.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in methanol and dilute 
to volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.11.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.11.3 Stock standard solutions must be replaced after six months, 
or sooner if comparison with check standards indicates a problem.
    6.12 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating conditions equivalent to 
those given in Table 1. The gas chromatographic system can be calibrated 
using the external standard technique (Section 7.2) or the internal 
standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with methanol. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with methanol. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.

[[Page 136]]

    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.

   RF = (As)(Cis (Ais)(Cs)

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.2) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 20 [micro]g/
mL in methanol. The QC check sample concentrate must be obtained from 
the U.S. Environmental Protection Agency, Environmental Monitoring and 
Support Laboratory in Cincinnati, Ohio, if available. If not available 
from that source, the QC check sample concentrate must be obtained from 
another external source. If not available from either source above, the 
QC check sample concentrate must be prepared by the laboratory using 
stock standards prepared independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
20 [micro]g/L by adding 1.00 mL of QC check sample concentrate to each 
of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If

[[Page 137]]

any individual s exceeds the precision limit or any individual X falls 
outside the range for accuracy, the system performance is unacceptable 
for that parameter. Locate and correct the source of the problem and 
repeat the test for all parameters of interest beginning with Section 
8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 20 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or 20 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were caluclated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\18\ If spiking was performed at a concentration lower than 20 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 2, or 
optional QC acceptance criteria caluclated for the specific spike 
concentration. To calculate optional acceptance crtieria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 3, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 3, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T) 2.44(100 S'/T)%. \18\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of

[[Page 138]]

the samples. Field duplicates may be analyzed to assess the precision of 
the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \19\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. Fill the sample bottles and, if 
residual chlorine is present, add 80 mg of sodium thiosulfate per liter 
of sample and mix well. EPA Methods 330.4 and 330.5 may be used for 
measurement of residual chlorine. \20\ Field test kits are available for 
this purpose. If N-nitrosodiphenylamine is to be determined, adjust the 
sample pH to 7 to 10 with sodium hydroxide solution or sulfuric acid.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \4\
    9.4 Nitrosamines are known to be light sensitive. \7\ Samples should 
be stored in amber or foil-wrapped bottles in order to minimize 
photolytic decomposition.

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel. Check the pH of the sample with wide-range pH paper 
and adjust to within the range of 5 to 9 with sodium hydroxide solution 
or sulfuric acid.
    10.2 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 min 
with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Add 10 mL of hydrochloric acid to the combined extracts and 
shake for 2 min. Allow the layers to separate. Pour the combined extract 
through a solvent-rinsed drying column containing about 10 cm of 
anhydrous sodium sulfate, and collect the extract in the K-D 
concentrator. Rinse the Erlenmeyer flask and column with 20 to 30 mL of 
methylene chloride to complete the quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65[deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.7 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of methylene chloride. A 
5-mL syringe is recommended for this operation. Stopper the concentrator 
tube and store refrigerated if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial. If N-
nitrosodiphenylamine is to be measured by gas chromatography, the 
analyst must first use a cleanup column to eliminate diphenylamine 
interference (Section 11). If N-nitrosodiphenylamine is of no interest, 
the analyst may proceed directly with gas chromatographic analysis 
(Section 12).
    10.8 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-
mL graduated cylinder. Record the sample volume to the nearest 5 mL.

[[Page 139]]

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use either procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the method as revised 
to incorporate the cleanup procedure. Diphenylamine, if present in the 
original sample extract, must be separated from the nitrosamines if N-
nitrosodiphenylamine is to be determined by this method.
    11.2 If the entire extract is to be cleaned up by one of the 
following procedures, it must be concentrated to 2.0 mL. To the 
concentrator tube in Section 10.7, add a clean boiling chip and attach a 
two-ball micro-Snyder column. Prewet the column by adding about 0.5 mL 
of methylene chloride to the top. Place the micr-K-D apparatus on a hot 
water bath (60 to 65 [deg]C) so that the concentrator tube is partially 
immersed in the hot water. Adjust the vertical position of the apparatus 
and the water temperature as required to complete the concentration in 5 
to 10 min. At the proper rate of distillation the balls of the column 
will actively chatter but the chambers will not flood. When the apparent 
volume of liquid reaches about 0.5 mL, remove the K-D apparatus and 
allow it to drain and cool for at least 10 min. Remove the micro-Snyder 
column and rinse its lower joint into the concentrator tube with 0.2 mL 
of methylene chloride. Adjust the final volume to 2.0 mL and proceed 
with one of the following cleanup procedures.
    11.3 Florisil column cleanup for nitrosamines:
    11.3.1 Place 22 g of activated Florisil into a 22-mm ID 
chromatographic column. Tap the column to settle the Florisil and add 
about 5 mm of anhydrous sodium sulfate to the top.
    11.3.2 Preelute the column with 40 mL of ethyl ether/pentane 
(15+85)(V/V). Discard the eluate and just prior to exposure of the 
sodium sulfate layer to the air, quantitatively transfer the 2-mL sample 
extract onto the column using an additional 2 mL of pentane to complete 
the transfer.
    11.3.3 Elute the column with 90 mL of ethyl ether/pentane (15+85)(V/
V) and discard the eluate. This fraction will contain the diphenylamine, 
if it is present in the extract.
    11.3.4 Next, elute the column with 100 mL of acetone/ethyl ether 
(5+95)(V/V) into a 500-mL K-D flask equipped with a 10-mL concentrator 
tube. This fraction will contain all of the nitrosamines listed in the 
scope of the method.
    11.3.5 Add 15 mL of methanol to the collected fraction and 
concentrate as in Section 10.6, except use pentane to prewet the column 
and set the water bath at 70 to 75 [deg]C. When the apparatus is cool, 
remove the Snyder column and rinse the flask and its lower joint into 
the concentrator tube with 1 to 2 mL of pentane. Analyze by gas 
chromatography (Section 12).
    11.4 Alumina column cleanup for nitrosamines:
    11.4.1 Place 12 g of the alumina preparation (Section 6.10) into a 
10-mm ID chromatographic column. Tap the column to settle the alumina 
and add 1 to 2 cm of anhydrous sodium sulfate to the top.
    11.4.2 Preelute the column with 10 mL of ethyl ether/pentane 
(3+7)(V/V). Discard the eluate (about 2 mL) and just prior to exposure 
of the sodium sulfate layer to the air, quantitatively transfer the 2 mL 
sample extract onto the column using an additional 2 mL of pentane to 
complete the transfer.
    11.4.3 Just prior to exposure of the sodium sulfate layer to the 
air, add 70 mL of ethyl ether/pentane (3+7)(V/V). Discard the first 10 
mL of eluate. Collect the remainder of the eluate in a 500-mL K-D flask 
equipped with a 10 mL concentrator tube. This fraction contains N-
nitrosodiphenylamine and probably a small amount of N-nitrosodi-n-
propylamine.
    11.4.4 Next, elute the column with 60 mL of ethyl ether/pentane 
(1+1)(V/V), collecting the eluate in a second K-D flask equipped with a 
10-mL concentrator tube. Add 15 mL of methanol to the K-D flask. This 
fraction will contain N-nitrosodimethylamine, most of the N-nitrosodi-n-
propylamine and any diphenylamine that is present.
    11.4.5 Concentrate both fractions as in Section 10.6, except use 
pentane to prewet the column. When the apparatus is cool, remove the 
Snyder column and rinse the flask and its lower joint into the 
concentrator tube with 1 to 2 mL of pentane. Analyze the fractions by 
gas chromatography (Section 12).

                         12. Gas Chromatography

    12.1 N-nitrosodiphenylamine completely reacts to form diphenylamine 
at the normal operating temperatures of a GC injection port (200 to 250 
[deg]C). Thus, N-nitrosodiphenylamine is chromatographed and detected as 
diphenylamine. Accurate determination depends on removal of 
diphenylamine that may be present in the original extract prior to GC 
analysis (See Section 11).
    12.2 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Examples of the separations 
achieved by Column 1 are shown in Figures 1 and 2. Other packed or 
capillary (open-tubular) columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    12.3 Calibrate the system daily as described in Section 7.

[[Page 140]]

    12.4 If the extract has not been subjected to one of the cleanup 
procedures in Section 11, it is necessary to exchange the solvent from 
methylene chloride to methanol before the thermionic detector can be 
used. To a 1 to 10-mL volume of methylene chloride extract in a 
concentrator tube, add 2 mL of methanol and a clean boiling chip. Attach 
a two-ball micro-Snyder column to the concentrator tube. Prewet the 
column by adding about 0.5 mL of methylene chloride to the top. Place 
the micro-K-D apparatus on a boiling (100 [deg]C) water bath so that the 
concentrator tube is partially immersed in the hot water. Adjust the 
vertical position of the apparatus and the water temperature as required 
to complete the concentration in 5 to 10 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood. When the apparent volume of liquid reaches 
about 0.5 mL, remove the K-D apparatus and allow it to drain and cool 
for at least 10 min. Remove the micro-Snyder column and rinse its lower 
joint into the concentrator tube with 0.2 mL of methanol. Adjust the 
final volume to 2.0 mL.
    12.5 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    12.6 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \21\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, and 
the resulting peak size in area or peak height units.
    12.7 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.8 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.9 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.105

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.106

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \3\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \22\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 4 x MDL to 1000 x MDL. \22\
    14.3 This method was tested by 17 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 0.8 to 55 [micro]g/L. \23\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

[[Page 141]]

                               References

    1. Fine, D.H., Lieb, D., and Rufeh, R. ``Principle of Operation of 
the Thermal Energy Analyzer for the Trace Analysis of Volatile and Non-
volatile N-nitroso Compounds,'' Journal of Chromatography, 107, 351 
(1975).
    2. Fine, D.H., Hoffman, F., Rounbehler, D.P., and Belcher, N.M. 
``Analysis of N-nitroso Compounds by Combined High Performance Liquid 
Chromatography and Thermal Energy Analysis,'' Walker, E.A., Bogovski, P. 
and Griciute, L., Editors, N-nitroso Compounds--Analysis and Formation, 
Lyon, International Agency for Research on Cancer (IARC Scientific 
Publications No. 14), pp. 43-50 (1976).
    3. 40 CFR part 136, appendix B.
    4. ``Determination of Nitrosamines in Industrial and Municipal 
Wastewaters,'' EPA 600/4-82-016, National Technical Information Service, 
PB82-199621, Springfield, Virginia 22161, April 1982.
    5. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    6. Buglass, A.J., Challis, B.C., and Osborn, M.R. ``Transnitrosation 
and Decomposition of Nitrosamines,'' Bogovski, P. and Walker, E.A., 
Editors, N-nitroso Compounds in the Environment, Lyon, International 
Agency for Research on Cancer (IARC Scientific Publication No. 9), pp. 
94-100 (1974).
    7. Burgess, E.M., and Lavanish, J.M. ``Photochemical Decomposition 
of N-nitrosamines,'' Tetrahedon Letters, 1221 (1964)
    8. Druckrey, H., Preussmann, R., Ivankovic, S., and Schmahl, D. 
``Organotrope Carcinogene Wirkungen bei 65 Verschiedenen N-
NitrosoVerbindungen an BD-Ratten,'' Z. Krebsforsch., 69, 103 (1967).
    9. Fiddler, W. ``The Occurrence and Determination of N-nitroso 
Compounds,'' Toxicol. Appl. Pharmacol., 31, 352 (1975).
    10. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    11. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
Part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    12. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    13. Lijinsky, W. ``How Nitrosamines Cause Cancer,'' New Scientist, 
73, 216 (1977).
    14. Mirvish, S.S. ``N-Nitroso compounds: Their Chemical and in vivo 
Formation and Possible Importance as Environmental Carcinogens,'' J. 
Toxicol. Environ. Health, 3, 1267 (1977).
    15. ``Reconnaissance of Environmental Levels of Nitrosamines in the 
Central United States,'' EPA-330/1-77-001, National Enforcement 
Investigations Center, U.S. Environmental Protection Agency (1977).
    16. ``Atmospheric Nitrosamine Assessment Report,'' Office of Air 
Quality Planning and Standards, U.S. Environmental Protection Agency, 
Research Triangle Park, North Carolina (1976).
    17. ``Scientific and Technical Assessment Report on Nitrosamines,'' 
EPA-660/6-7-001, Office of Research and Development, U.S. Environmental 
Protection Agency (1976).
    18. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value of 1.22 
derived in this report.)
    19. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    20. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    21. Burke, J. A. ``Gas Chromatography for Pesticide Residue 
Analysis; Some Practical Aspects,'' Journal of the Association of 
Official Analytical Chemists, 48, 1037 (1965).
    22. ``Method Detection Limit and Analytical Curve Studies EPA 
Methods 606, 607, and 608,'' Special letter report for EPA Contract 68-
03-2606, U.S. Environmental Protection Agency, Environmental Monitoring 
and Support Laboratory, Cincinnati, Ohio 45268, June 1980.
    23. ``EPA Method Study 17 Method 607--Nitrosamines,'' EPA 600/4-84-
051, National Technical Information Service, PB84-207646, Springfield, 
Virginia 22161, June 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                     Retention time (min)       Method
                                  --------------------------  detection
            Parameter                                           limit
                                     Column 1     Column 2    ([micro]g/
                                                                  L)
------------------------------------------------------------------------
N-Nitrosodimethylamine...........          4.1         0.88         0.15
N-Nitrosodi-n-propylamine........         12.1          4.2          .46

[[Page 142]]

 
N-Nitrosodiphenylamine \a\.......     \b\ 12.8      \c\ 6.4          .81
------------------------------------------------------------------------
Column 1 conditions: Chromosorb W-AW (80/100 mesh) coated with 10%
  Carbowax 20 M/2% KOH packed in a 1.8 m long x 4mm ID glass column with
  helium carrier gas at 40 mL/min flow rate. Column temperature held
  isothermal at 110 [deg]C, except where otherwise indicated.
Column 2 conditions: Supelcoport (100/120 mesh) coated with 10% SP-2250
  packed in a 1.8 m long x 4 mm ID glass column with helium carrier gas
  at 40 mL/min flow rate. Column temperature held isothermal at 120
  [deg]C, except where otherwise indicated.
\a\ Measured as diphenylamine.
\b\ 220 [deg]C column temperature.
\c\ 210 [deg]C column temperature.


                                   Table 2--QC Acceptance Criteria--Method 607
----------------------------------------------------------------------------------------------------------------
                                                                                        Range for X
                                                               Test conc.  Limit for s   ([micro]g/   Range for
                          Parameter                            ([micro]g/   ([micro]g/       L)         P, Ps
                                                                   L)           L)                    (percent)
----------------------------------------------------------------------------------------------------------------
N-Nitrosodimethylamine......................................           20          3.4     4.6-20.0       13-109
N-Nitrosodiphenyl...........................................           20          6.1     2.1-24.5        D-139
N-Nitrosodi-n-propylamine...................................           20          5.7    11.5-26.8      45-146
----------------------------------------------------------------------------------------------------------------
s=Standard deviation for four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 607
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                              recovery, X'   precision, sr'   precision, S'
                                                                   ([micro]g/L)    ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
N-Nitrosodimethylamine..........................................      0.37C+0.06      0.25X-0.04      0.25X+0.11
N-Nitrosodiphenylamine..........................................      0.64C+0.52      0.36X-1.53      0.46X-0.47
N-Nitrosodi-n-propylamine.......................................      0.96C-0.07      0.15X+0.13      0.21X+0.15
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 143]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.017


[[Page 144]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.018


[[Page 145]]

             Method 608--Organochlorine Pesticides and PCBs

                        1. Scope and Application

    1.1 This method covers the determination of certain organochlorine 
pesticides and PCBs. The following parameters can be determined by this 
method:

------------------------------------------------------------------------
                  Parameter                    STORET No.      CAS No.
------------------------------------------------------------------------
Aldrin......................................         39330      309-00-2
[alpha]-BHC.................................         39337      319-84-6
[beta]-BHC..................................         39338      319-85-7
[delta]-BHC.................................         34259      319-86-8
[gamma]-BHC.................................         39340       58-89-9
Chlordane...................................         39350       57-74-9
4,4'-DDD....................................         39310       72-54-8
4,4'-DDE....................................         39320       72-55-9
4,4'-DDT....................................         39300       50-29-3
Dieldrin....................................         39380       60-57-1
Endosulfan I................................         34361      959-98-8
Endosulfan II...............................         34356    33212-65-9
Endosulfan sulfate..........................         34351     1031-07-8
Eldrin......................................         39390       72-20-8
Endrin aldehyde.............................         34366     7421-93-4
Heptachlor..................................         39410       76-44-8
Heptachlor epoxide..........................         39420     1024-57-3
Toxaphene...................................         39400     8001-35-2
PCB-1016....................................         34671    12674-11-2
PCB-1221....................................         39488     1104-28-2
PCB-1232....................................         39492    11141-16-5
PCB-1242....................................         39496    53469-21-9
PCB-1248....................................         39500    12672-29-6
PCB-1254....................................         39504    11097-69-1
PCB-1260....................................         39508    11096-82-5
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of the compounds listed above in municipal and industrial 
discharges as provided under 40 CFR 136.1. When this method is used to 
analyze unfamiliar samples for any or all of the compounds above, 
compound identifications should be supported by at least one additional 
qualitative technique. This method describes analytical conditions for a 
second gas chromatographic column that can be used to confirm 
measurements made with the primary column. Method 625 provides gas 
chromatograph/mass spectrometer (GC/MS) conditions appropriate for the 
qualitative and quantitative confirmation of results for all of the 
parameters listed above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 606, 609, 611, and 612. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. The analyst is 
allowed the latitude, under Section 12, to select chromatographic 
conditions appropriate for the simultaneous measurement of combinations 
of these parameters.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and exchanged to hexane during concentration 
to a volume of 10 mL or less. The extract is separated by gas 
chromatography and the parameters are then measured with an electron 
capture detector. \2\
    2.2 The method provides a Florisil column cleanup procedure and an 
elemental sulfur removal procedure to aid in the elimination of 
interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.

[[Page 146]]

    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Interferences by phthalate esters can pose a major problem in 
pesticide analysis when using the electron capture detector. These 
compounds generally appear in the chromatogram as large late eluting 
peaks, especially in the 15 and 50% fractions from Florisil. Common 
flexible plastics contain varying amounts of phthalates. These 
phthalates are easily extracted or leached from such materials during 
laboratory operations. Cross contamination of clean glassware routinely 
occurs when plastics are handled during extraction steps, especially 
when solvent-wetted surfaces are handled. Interferences from phthalates 
can best be minimized by avoiding the use of plastics in the laboratory. 
Exhaustive cleanup of reagents and glassware may be required to 
eliminate background phthalate contamination. \4,5\ The interferences 
from phthalate esters can be avoided by using a microcoulometric or 
electrolytic conductivity detector.
    3.3 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedures in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
6-8 for the information of the analyst.
    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: 4,4'-DDT, 4,4'-DDD, the BHCs, and the PCBs. Primary 
standards of these toxic compounds should be prepared in a hood. A 
NIOSH/MESA approved toxic gas respirator should be worn when the analyst 
handles high concentrations of these toxic compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during composting. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2. Glassware (All specifications are suggested. Catalog numbers 
are included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Chromatographic column--400 mm long x 22 mm ID, with Teflon 
stopcock and coarse frit filter disc (Kontes K-42054 or equivalent).
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna/Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with gas 
chromatograph suitable for on-column injection and all required 
accessories including syringes, analytical columns, gases, detector, and 
strip-

[[Page 147]]

chart recorder. A data system is recommended for measuring peak areas.
    5.6.1 Column 1--1.8 m long x 4 mm ID glass, packed with 1.5% SP-
2250/1.95% SP-2401 on Supelcoport (100/120 mesh) or equivalent. This 
column was used to develop the method performance statements in Section 
14. Guidelines for the use of alternate column packings are provided in 
Section 12.1.
    5.6.2 Column 2--1.8 m long x 4 mm ID glass, packed with 3% OV-1 on 
Supelcoport (100/120 mesh) or equivalent.
    5.6.3 Detector--Electron capture detector. This detector has proven 
effective in the analysis of wastewaters for the parameters listed in 
the scope (Section 1.1), and was used to develop the method performance 
statements in Section 14. Guidelines for the use of alternate detectors 
are provided in Section 12.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.3 Sodium thiosulfate--(ACS) Granular.
    6.4 Sulfuric acid (1+1)--Slowly, add 50 mL to 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.5 Acetone, hexane, isooctane, methylene chloride--Pesticide 
quality or equivalent.
    6.6 Ethyl ether--Nanograde, redistilled in glass if necessary.
    6.6.1 Ethyl ether must be shown to be free of peroxides before it is 
used as indicated by EM Laboratories Quant test strips. (Available from 
Scientific Products Co., Cat. No. P1126-8, and other suppliers.)
    6.6.2 Procedures recommended for removal of peroxides are provided 
with the test strips. After cleanup, 20 mL of ethyl alcohol preservative 
must be added to each liter of ether.
    6.7 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.8 Florisil--PR grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in the dark in glass containers with ground glass 
stoppers or foil-lined screw caps. Before use, activate each batch at 
least 16 h at 130 [deg]C in a foil-covered glass container and allow to 
cool.
    6.9 Mercury--Triple distilled.
    6.10 Copper powder--Activated.
    6.11 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.11.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in isooctane and dilute 
to volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.11.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.11.3 Stock standard solutions must be replaced after six months, 
or sooner if comparison with check standards indicates a problem.
    6.12 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating conditions equivalent to 
those given in Table 1. The gas chromatographic system can be calibrated 
using the external standard technique (Section 7.2) or the internal 
standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with isooctane. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can

[[Page 148]]

be suggested that is applicable to all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with isooctane. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.107

                                                              Equation 1
where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, the test must 
be repeated using a fresh calibration standard. Alternatively, a new 
calibration curve must be prepared for that compound.
    7.5 The cleanup procedure in Section 11 utilizes Florisil column 
chromatography. Florisil from different batches or sources may vary in 
adsorptive capacity. To standardize the amount of Florisil which is 
used, the use of lauric acid value \9\ is suggested. The referenced 
procedure determines the adsorption from hexane solution of lauric acid 
(mg) per g of Florisil. The amount of Florisil to be used for each 
column is calculated by dividing 110 by this ratio and multiplying by 20 
g.
    7.6 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.

[[Page 149]]

    8.2.1 A quality control (QC) check sample concentrate is required 
containing each single-component parameter of interest at the following 
concentrations in acetone: 4,4'-DDD, 10 [micro]g/mL; 4,4'-DDT, 10 
[micro]g/mL; endosulfan II, 10 [micro]g/mL; endosulfan sulfate, 10 
[micro]g/mL; endrin, 10 [micro]g/mL; any other single-component 
pesticide, 2 [micro]g/mL. If this method is only to be used to analyze 
for PCBs, chlordane, or toxaphene, the QC check sample concentrate 
should contain the most representative multicomponent parameter at a 
concentration of 50 [micro]g/mL in acetone. The QC check sample 
concentrate must be obtained from the U.S. Environmental Protection 
Agency, Environmental Monitoring and Support Laboratory in Cincinnati, 
Ohio, if available. If not available from that source, the QC check 
sample concentrate must be obtained from another external source. If not 
available from either source above, the QC check sample concentrate must 
be prepared by the laboratory using stock standards prepared 
independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at the test 
concentrations shown in Table 3 by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/mL; and the 
standard deviation of the recovery (s) in [micro]g/mL, for each 
parameter using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 3. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 3 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.2.
    8.2.6.2 Beginning with Section 8.2.2, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compmunds of interest beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at the test concentration in Section 8.2.2 or 1 to 5 
times higher than the background concentration determined in Section 
8.3.2, whichever concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or the test concentration in Section 8.2.2.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 3. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\10\ If spiking was performed at a concentration lower than the test 
concentration in Section 8.2.2, the analyst must use either the QC 
acceptance criteria in Table 3, or optional QC acceptance criteria 
calculated for the specific spike concentration. To calculate optional 
acceptance criteria for the recovery of a parameter: (1) Calculate 
accuracy (X') using the equation in Table 4, substituting the spike 
concentration (T) for C; (2) calculate overall precision (S') using the 
equation in Table 4, substituting X'

[[Page 150]]

for X; (3) calculate the range for recovery at the spike concentration 
as (100 X'/T)2.44(100 S'/T)%. \10\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory. If the entire list of parameters in Table 3 must be measured 
in the sample in Section 8.3, the probability that the analysis of a QC 
check standard will be required is high. In this case the QC check 
standard should be routinely analyzed with the spike sample.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standards to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
3. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2 sp to P+2 sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \11\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. If the samples will not be 
extracted within 72 h of collection, the sample should be adjusted to a 
pH range of 5.0 to 9.0 with sodium hydroxide solution or sulfuric acid. 
Record the volume of acid or base used. If aldrin is to be determined, 
add sodium thiosulfate when residual chlorine is present. EPA Methods 
330.4 and 330.5 may be used for measurement of residual chlorine. \12\ 
Field test kits are available for this purpose.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optium technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.

[[Page 151]]

    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.7 Increase the temperature of the hot water bath to about 80 
[deg]C. Momeltarily remove the Snyder column, add 50 mL of hexane and a 
new boiling chip, and reattach the Snyder column. Concentrate the 
extract as in Section 10.6, except use hexane to prewet the column. The 
elapsed time of concentration should be 5 to 10 min.
    10.8 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of hexane. A 5-mL 
syringe is recommended for this operation. Stopper the concentrator tube 
and store refrigerated if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial. If the sample 
extract requires no further cleanup, proceed with gas chromatographic 
analysis (Section 12). If the sample requires further cleanup, proceed 
to Section 11.
    10.9 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use either procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the method as revised 
to incorporate the cleanup procedure. The Florisil column allows for a 
select fractionation of the compounds and will eliminate polar 
interferences. Elemental sulfur, which interferes with the electron 
capture gas chromatography of certain pesticides, can be removed by the 
technique described in Section 11.3.
    11.2 Florisil column cleanup:
    11.2.1 Place a weight of Florisil (nominally 20 g) predetermined by 
calibration (Section 7.5), into a chromatographic column. Tap the column 
to settle the Florisil and add 1 to 2 cm of anhydrous sodium sulfate to 
the top.
    11.2.2 Add 60 mL of hexane to wet and rinse the sodium sulfate and 
Florisil. Just prior to exposure of the sodium sulfate layer to the air, 
stop the elution of the hexane by closing the stopcock on the 
chromatographic column. Discard the eluate.
    11.2.3 Adjust the sample extract volume to 10 mL with hexane and 
transfer it from the K-D concentrator tube onto the column. Rinse the 
tube twice with 1 to 2 mL of hexane, adding each rinse to the column.
    11.2.4 Place a 500-mL K-D flask and clean concentrator tube under 
the chromatographic column. Drain the column into the flask until the 
sodium sulfate layer is nearly exposed. Elute the column with 200 mL of 
6% ethyl ether in hexane (V/V) (Fraction 1) at a rate of about 5 mL/min. 
Remove the K-D flask and set it aside for later concentration. Elute the 
column again, using 200 mL of 15% ethyl ether in hexane (V/V) (Fraction 
2), into a second K-D flask. Perform the third elution using 200 mL of 
50% ethyl ether in hexane (V/V) (Fraction 3). The elution patterns for 
the pesticides and PCBs are shown in Table 2.
    11.2.5 Concentrate the fractions as in Section 10.6, except use 
hexane to prewet the column and set the water bath at about 85 [deg]C. 
When the apparatus is cool, remove the Snyder column and rinse the flask 
and its lower joint into the concentrator tube with hexane. Adjust the 
volume of each fraction to 10 mL with hexane and analyze by gas 
chromatography (Section 12).
    11.3 Elemental sulfur will usually elute entirely in Fraction 1 of 
the Florisil column cleanup. To remove sulfur interference from this 
fraction or the original extract, pipet 1.00 mL of the concentrated 
extract into a clean concentrator tube or Teflon-sealed vial. Add one to 
three drops of mercury and seal. \13\ Agitate the contents of the vial 
for 15 to 30 s. Prolonged shaking (2 h) may be required. If so, this may 
be accomplished with a reciprocal shaker. Alternatively, activated

[[Page 152]]

copper powder may be used for sulfur removal. \14\ Analyze by gas 
chromatography.

                         12. Gas Chromatography

    12.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Examples of the separations 
achieved by Column 1 are shown in Figures 1 to 10. Other packed or 
capillary (open-tubular) columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    12.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \15\ Smaller 
(1.0 uL) volumes may be injected if automatic devices are employed. 
Record the volume injected to the nearest 0.05 [micro]L, the total 
extract volume, and the resulting peak size in area or peak height 
units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.7 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.108

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.109

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 When it is apparent that two or more PCB (Aroclor) mixtures are 
present, the Webb and McCall procedure \16\ may be used to identify and 
quantify the Aroclors.
    13.3 For multicomponent mixtures (chlordane, toxaphene, and PCBs) 
match retention times of peaks in the standards with peaks in the 
sample. Quantitate every identifiable peak unless interference with 
individual peaks persist after cleanup. Add peak height or peak area of 
each identified peak in the chromatogram. Calculate as total response in 
the sample versus total response in the standard.
    13.4 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \17\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 4xMDL to 1000xMDL with the following 
exceptions: Chlordane recovery at 4xMDL was low (60%); Toxaphene 
recovery was demonstrated linear over the range of 10xMDL to 1000xMDL. 
\17\
    14.3 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial

[[Page 153]]

wastewaters spiked at six concentrations. \18\ Concentrations used in 
the study ranged from 0.5 to 30 [micro]g/L for single-component 
pesticides and from 8.5 to 400 [micro]g/L for multicomponent parameters. 
Single operator precision, overall precision, and method accuracy were 
found to be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 4.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Pesticides and PCBs in Industrial and 
Municipal Wastewaters,'' EPA 600/4-82-023, National Technical 
Information Service, PB82-214222, Springfield, Virginia 22161, April 
1982.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    4. Giam, C.S., Chan, H.S., and Nef, G.S., ``Sensitive Method for 
Determination of Phthalate Ester Plasticizers in Open-Ocean Biota 
Samples,'' Analytical Chemistry, 47, 2225 (1975).
    5. Giam, C.S., Chan, H.S. ``Control of Blanks in the Analysis of 
Phthalates in Air and Ocean Biota Samples,'' U.S. National Bureau of 
Standards, Special Publication 442, pp. 701-708, 1976.
    6. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    7. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    8. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    9. Mills, P.A. ``Variation of Florisil Activity: Simple Method for 
Measuring Absorbent Capacity and Its Use in Standardizing Florisil 
Columns,'' Journal of the Association of Official Analytical Chemists, 
51, 29, (1968).
    10. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    11. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    12. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    13. Goerlitz, D.F., and Law, L.M. Bulletin for Environmental 
Contamination and Toxicology, 6, 9 (1971).
    14. ``Manual of Analytical Methods for the Analysis of Pesticides in 
Human and Environmental Samples,'' EPA-600/8-80-038, U.S. Environmental 
Protection Agency, Health Effects Research Laboratory, Research Triangle 
Park, North Carolina.
    15. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    16. Webb, R.G., and McCall, A.C. ``Quantitative PCB Standards for 
Election Capture Gas Chromatography,'' Journal of Chromatographic 
Science, 11, 366 (1973).
    17. ``Method Detection Limit and Analytical Curve Studies, EPA 
Methods 606, 607, and 608,'' Special letter report for EPA Contract 68-
03-2606, U.S. Environmental Protection Agency, Environmental Monitoring 
and Support Laboratory, Cincinnati, Ohio 45268, June 1980.
    18. ``EPA Method Study 18 Method 608--Organochlorine Pesticides and 
PCBs,'' EPA 600/4-84-061, National Technical Information Service, PB84-
211358, Springfield, Virginia 22161, June 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                   Retention time (min)        Method
                                --------------------------   detection
           Parameter                                           limit
                                    Col. 1       Col. 2     ([micro]g/L)
------------------------------------------------------------------------
[alpha]-BHC....................         1.35         1.82          0.003
[gamma]-BHC....................         1.70         2.13          0.004
[beta]-BHC.....................         1.90         1.97          0.006
Heptachlor.....................         2.00         3.35          0.003
[delta]-BHC....................         2.15         2.20          0.009
Aldrin.........................         2.40         4.10          0.004
Heptachlor epoxide.............         3.50         5.00          0.083
Endosulfan I...................         4.50         6.20          0.014
4,4'-DDE.......................         5.13         7.15          0.004
Dieldrin.......................         5.45         7.23          0.002
Endrin.........................         6.55         8.10          0.006

[[Page 154]]

 
4,4'-DDD.......................         7.83         9.08          0.011
Endosulfan II..................         8.00         8.28          0.004
4,4'-DDT.......................         9.40        11.75          0.012
Endrin aldehyde................        11.82         9.30          0.023
Endosulfan sulfate.............        14.22        10.70          0.066
Chlordane......................        mr           mr             0.014
Toxaphene......................        mr           mr             0.24
PCB-1016.......................        mr           mr            nd
PCB-1221.......................        mr           mr            nd
PCB-1232.......................        mt           mr            nd
PCB-1242.......................        mr           mr             0.065
PCB-1248.......................        mr           mr            nd
PCB-1254.......................        mr           mr            nd
PCB-1260.......................        mr           mr            nd
------------------------------------------------------------------------
 AColumn 1 conditions: Supelcoport (100/120 mesh) coated with 1.5% SP-
  2250/1.95% SP-2401 packed in a 1.8 m long x 4 mm ID glass column with
  5% methane/95% argon carrier gas at 60 mL/min flow rate. Column
  temperature held isothermal at 200 [deg]C, except for PCB-1016 through
  PCB-1248, should be measured at 160 [deg]C.
 AColumn 2 conditions: Supelcoport (100/120 mesh) coated with 3% OV-1
  packed in a 1.8 m long x 4 mm ID glass column with 5% methane/95%
  argon carrier gas at 60 mL/min flow rate. Column temperature held
  isothermal at 200 [deg]C for the pesticides; at 140 [deg]C for PCB-
  1221 and 1232; and at 170 [deg]C for PCB-1016 and 1242 to 1268.
 Amr=Multiple peak response. See Figures 2 thru 10.
 And=Not determined.


 Table 2--Distribution of Chlorinated Pesticides and PCBs into Florisil
                           Column Fractions 2
------------------------------------------------------------------------
                                      Percent recovery by fraction \a\
            Parameter             --------------------------------------
                                        1            2            3
------------------------------------------------------------------------
Aldrin...........................          100  ...........  ...........
[alpha]-BHC......................          100  ...........  ...........
[beta]-BHC.......................           97  ...........  ...........
[delta]-BHC......................           98  ...........  ...........
[gamma]-BHC......................          100  ...........  ...........
Chlordane........................          100  ...........  ...........
4,4'-DDD.........................           99  ...........  ...........
4,4'-DDE.........................           98  ...........  ...........
4,4'-DDT.........................          100  ...........  ...........
Dieldrin.........................            0          100  ...........
Endosulfan I.....................           37           64  ...........
Endosulfan II....................            0            7           91
Endosulfan sulfate...............            0            0          106
Endrin...........................            4           96  ...........
Endrin aldehyde..................            0           68           26
Heptachlor.......................          100  ...........  ...........
Heptachlor epoxide...............          100  ...........  ...........
Toxaphene........................           96  ...........  ...........
PCB-1016.........................           97  ...........  ...........
PCB-1221.........................           97  ...........  ...........
PCB-1232.........................           95            4  ...........
PCB-1242.........................           97  ...........  ...........
PCB-1248.........................          103  ...........  ...........
PCB-1254.........................           90  ...........  ...........
PCB-1260.........................           95  ...........  ...........
------------------------------------------------------------------------
\a\ Eluant composition:
 Fraction 1-6% ethyl ether in hexane.
 Fraction 2-15% ethyl ether in hexane.
 Fraction 3-50% ethyl ether in hexane.


                                   Table 3--QC Acceptance Criteria--Method 608
----------------------------------------------------------------------------------------------------------------
                                                                                          Range for
                                                               Test conc.   Limit for s       X       Range for
                          Parameter                            ([micro]g/  ([micro]g/L)  ([micro]g/    P, Ps(%)
                                                                   L)                        L)
----------------------------------------------------------------------------------------------------------------
Aldrin......................................................          2.0          0.42  1.08-2.24        42-122
[alpha]-BHC.................................................          2.0          0.48  0.98-2.44        37-134
[beta]-BHC..................................................          2.0          0.64  0.78-2.60        17-147
[delta]-BHC.................................................          2.0          0.72  1.01-2.37        19-140
[gamma]-BHC.................................................          2.0          0.46  0.86-2.32        32-127

[[Page 155]]

 
Chlordane...................................................         50           10.0   27.6-54.3        45-119
4,4 '-DDD...................................................         10            2.8   4.8-12.6         31-141
4,4 '-DDE...................................................          2.0          0.55  1.08-2.60        30-145
4,4'-DDT....................................................         10            3.6   4.6-13.7         25-160
Dieldrin....................................................          2.0          0.76  1.15-2.49        36-146
Endosulfan I................................................          2.0          0.49  1.14-2.82        45-153
Endosulfan II...............................................         10            6.1   2.2-17.1          D-202
Endosulfan Sulfate..........................................         10            2.7   3.8-13.2         26-144
Endrin......................................................         10            3.7   5.1-12.6         30-147
Heptachlor..................................................          2.0          0.40  0.86-2.00        34-111
Heptachlor epoxide..........................................          2.0          0.41  1.13-2.63        37-142
Toxaphene...................................................         50.0         12.7   27.8-55.6        41-126
PCB-1016....................................................         50           10.0   30.5-51.5        50-114
PCB-1221....................................................         50           24.4   22.1-75.2        15-178
PCB-1232....................................................         50           17.9   14.0-98.5        10-215
PCB-1242....................................................         50           12.2   24.8-69.6        39-150
PCB-1248....................................................         50           15.9   29.0-70.2        38-158
PCB-1254....................................................         50           13.8   22.2-57.9        29-131
PCB-1260....................................................         50           10.4   18.7-54.9         8-127
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 4.


                Table 4--Method Accuracy and Precision as Functions of Concentration--Method 608
----------------------------------------------------------------------------------------------------------------
                                                         Accuracy, as       Single analyst
                      Parameter                          recovery, X'       precision, sr'    Overall precision,
                                                         ([micro]g/L)        ([micro]g/L)       S' ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Aldrin..............................................          0.81C+0.04          0.16X-0.04          0.20X-0.01
[alpha]-BHC.........................................          0.84C+0.03          0.13X+0.04          0.23X-0.00
[beta]-BHC..........................................          0.81C+0.07          0.22X-0.02          0.33X-0.05
[delta]-BHC.........................................          0.81C+0.07          0.18X+0.09          0.25X+0.03
[gamma]-BHC.........................................          0.82C-0.05          0.12X+0.06          0.22X+0.04
Chlordane...........................................          0.82C-0.04          0.13X+0.13          0.18X+0.18
4,4'-DDD............................................          0.84C+0.30          0.20X-0.18          0.27X-0.14
4,4'-DDE............................................          0.85C+0.14          0.13X+0.06          0.28X-0.09
4,4'-DDT............................................          0.93C-0.13          0.17X+0.39          0.31X-0.21
Dieldrin............................................          0.90C+0.02          0.12X+0.19          0.16X+0.16
Endosulfan I........................................          0.97C+0.04          0.10X+0.07          0.18X+0.08
Endosulfan II.......................................          0.93C+0.34         0.41X--0.65          0.47X-0.20
Endosulfan Sulfate..................................          0.89C-0.37          0.13X+0.33          0.24X+0.35
Endrin..............................................          0.89C-0.04          0.20X+0.25          0.24X+0.25
Heptachlor..........................................          0.69C+0.04          0.06X+0.13          0.16X+0.08
Heptachlor epoxide..................................          0.89C+0.10          0.18X-0.11          0.25X-0.08
Toxaphene...........................................          0.80C+1.74          0.09X+3.20          0.20X+0.22
PCB-1016............................................          0.81C+0.50          0.13X+0.15          0.15X+0.45
PCB-1221............................................          0.96C+0.65          0.29X-0.76          0.35X-0.62
PCB-1232............................................         0.91C+10.79          0.21X-1.93          0.31X+3.50
PCB-1242............................................          0.93C+0.70          0.11X+1.40          0.21X+1.52
PCB-1248............................................          0.97C+1.06          0.17X+0.41          0.25X-0.37
PCB-1254............................................          0.76C+2.07          0.15X+1.66          0.17X+3.62
PCB-1260............................................          0.66C+3.76          0.22X-2.37          0.39X-4.86
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 156]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.019


[[Page 157]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.020


[[Page 158]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.021


[[Page 159]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.022


[[Page 160]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.023


[[Page 161]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.024


[[Page 162]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.025


[[Page 163]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.026


[[Page 164]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.027


[[Page 165]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.028

                Method 609--Nitroaromatics and Isophorone

                        1. Scope and Application

    1.1 This method covers the determination of certain nitroaromatics 
and isophorone. The following parameters may be determined by this 
method:

------------------------------------------------------------------------
                   Parameter                     STORET No.    CAS No.
------------------------------------------------------------------------
2,4-Dinitrotoluene............................        34611     121-14-2
2,6-Dinitrotoluene............................        34626     606-20-2
Isophorone....................................        34408      78-59-1
Nitrobenzene..................................        34447      98-95-3
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of

[[Page 166]]

the compounds listed above in municipal and industrial discharges as 
provided under 40 CFR 136.1. When this method is used to analyze 
unfamiliar samples for any or all of the compounds above, compound 
identifications should be supported by at least one additional 
qualitative technique. This method describes analytical conditions for a 
second gas chromatographic column that can be used to confirm 
measurements made with the primary column. Method 625 provides gas 
chromatograph/mass spectrometer (GC/MS) conditions appropriate for the 
qualitative and quantitative confirmation of results for all of the 
parameters listed above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 606, 608, 611, and 612. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. The analyst is 
allowed the latitude, under Section 12, to select chromatographic 
conditions appropriate for the simultaneous measurement of combinations 
of these parameters.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and exchanged to hexane during concentration 
to a volume of 10 mL or less. Isophorone and nitrobenzene are measured 
by flame ionization detector gas chromatography (FIDGC). The 
dinitrotoluenes are measured by electron capture detector gas 
chromatography (ECDGC). \2\
    2.2 The method provides a Florisil column cleanup procedure to aid 
in the elimination of interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baseliles in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedure in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
4-6 for the information of the analyst.

[[Page 167]]

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Chromatographic column--100 mm long x 10 mm ID, with Teflon 
stopcock.
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.8 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with gas 
chromatograph suitable for on-column injection and all required 
accessories including syringes, analytical columns, gases, detector, and 
strip-chart recorder. A data system is recommended for measuring peak 
areas.
    5.6.1 Column 1--1.2 m long x 2 or 4 mm ID glass, packed with 1.95% 
QF-1/1.5% OV-17 on Gas-Chrom Q (80/100 mesh) or equivalent. This column 
was used to develop the method performance statements given in Section 
14. Guidelines for the use of alternate column packings are provided in 
Section 12.1.
    5.6.2 Column 2--3.0 m long x 2 or 4 mm ID glass, packed with 3% OV-
101 on Gas-Chrom Q (80/100 mesh) or equivalent.
    5.6.3 Detectors--Flame ionization and electron capture detectors. 
The flame ionization detector (FID) is used when determining isophorone 
and nitrobenzene. The electron capture detector (ECD) is used when 
determining the dinitrotoluenes. Both detectors have proven effective in 
the analysis of wastewaters and were used in develop the method 
performance statements in Section 14. Guidelines for the use to 
alternate detectors are provided in Section 12.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.3 Sulfuric acid (1+1)--Slowly, add 50 mL of 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.4 Acetone, hexane, methanol, methylene chloride--Pesticide quality 
or equivalent.
    6.5 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.6 Florisil--PR grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in dark in glass containers with ground glass stoppers 
or foil-lined screw caps. Before use, activate each batch at least 16 h 
at 200 [deg]C in a foil-covered glass container and allow to cool.
    6.7 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.7.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in hexane and dilute to 
volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.7.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles.

[[Page 168]]

Store at 4 [deg]C and protect from light. Stock standard solutions 
should be checked frequently for signs of degradation or evaporation, 
especially just prior to preparing calibration standards from them.
    6.7.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with check standards indicates a problem.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating conditions equivalent to 
those given in Table 1. The gas chromatographic system can be calibrated 
using the external standard technique (Section 7.2) or the internal 
standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with hexane. One of the external standards should be at a concentration 
near, but above, the MDL (Table 1) and the other concentrations should 
correspond to the expected range of concentrations found in real samples 
or should define the working range of the detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD) linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flash. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with hexane. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.
    Equation 1.
    [GRAPHIC] [TIFF OMITTED] TC15NO91.110
    
where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

    If the RF value over the working range is a constant (<10% RSD), the 
RF can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to

[[Page 169]]

generate acceptable accuracy and precision with this method. This 
ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1,5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest in acetone at a concentration of 
20 [micro]g/mL for each dinitrotoluene and 100 [micro]g/mL for 
isophorone and nitrobenzene. The QC check sample concentrate must be 
obtained from the U.S. Environmental Protection Agency, Environmental 
Monitoring and Support Laboratory in Cincinnati, Ohio, if available. If 
not available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Using a pipet, prepare QC check samples at the test 
concentrations shown in Table 2 by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter. Locate and correct the 
source of the problem and repeat the test for all parameters of interest 
beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at the test concentration in Section 8.2.2 or 1 to 5 
times higher than the background concentration determined in Section 
8.3.2, whichever concentration would be larger.
    8.3.1.3 If it is impractical to determile background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or the test concentration in Section 8.2.2.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100 (A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement

[[Page 170]]

of both the background and spike concentrations, assuming a spike to 
background ratio of 5:1. This error will be accounted for to the extent 
that the analyst's spike to background ratio approaches 5:1. \7\ If 
spiking was performed at a concentration lower than the test 
concentration in Section 8.2.2, the analyst must use either the QC 
acceptance criteria in Table 2, or optional QC acceptance criteria 
calculated for the specific spike concentration. To calculate optional 
acceptance criteria for the recovery of a parameter: (1) Calculate 
accuracy (X') using the equation in Table 3, substituting the spike 
concentration (T) for C; (2) calculate overall precision (S') using the 
equation in Table 3, substituting X' for X8; (3) calculate the range for 
recovery at the spike concentration as (100 X'/T) 2.44 (100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4. If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of QC program for the laboratory, method accuracy for 
wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp = 10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \8\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel. Check the pH of the sample with wide-range pH paper 
and adjust to within the range of 5 to 9 with sodium hydroxide solution 
or sulfuric acid.
    10.2 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration

[[Page 171]]

of the emulsion through glass wool, centrifugation, or other physical 
methods. Collect the methylene chloride extract in a 250-mL Erlenmeyer 
flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Sections 10.7 and 10.8 describe a procedure for exchanging the 
methylene chloride solvent to hexane while concentrating the extract 
volume to 1.0 mL. When it is not necessary to achieve the MDL in Table 
2, the solvent exchange may be made by the addition of 50 mL of hexane 
and concentration to 10 mL as described in Method 606, Sections 10.7 and 
10.8.
    10.7 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.8 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of methylene chloride. A 
5-mL syringe is recommended for this operation. Add 1 to 2 mL of hexane 
and a clean boiling chip to the concentrator tube and attach a two-ball 
micro-Snyder column. Prewet the column by adding about 0.5 mL of hexane 
to the top. Place the micro-K-D apparatus on a hot water bath (60 to 65 
[deg]C) so that the concentrator tube is partially immersed in the hot 
water. Adjust the vertical position of the apparatus and the water 
temperature as required to complete the concentration in 5 to 10 min. At 
the proper rate of distillation the balls of the column will actively 
chatter but the chambers will not flood. When the apparent volume of 
liquid reaches 0.5 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.9 Remove the micro-Snyder column and rinse its lower joint into 
the concentrator tube with a minimum amount of hexane. Adjust the 
extract volume to 1.0 mL. Stopper the concentrator tube and store 
refrigerated if further processing will not be performed immediately. If 
the extract will be stored longer than two days, it should be 
transferred to a Teflon-sealed screw-cap vial. If the sample extract 
requires no further cleanup, proceed with gas chromatographic analysis 
(Section 12). If the sample requires further cleanup, proceed to Section 
11.
    10.10 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use the procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the method as revised 
to incorporate the cleanup procedure.
    11.2 Florisil column cleanup:
    11.2.1 Prepare a slurry of 10 g of activated Florisil in methylene 
chloride/hexane (1+9)(V/V) and place the Florisil into a chromatographic 
column. Tap the column to settle the Florisil and add 1 cm of anhydrous 
sodium sulfate to the top. Adjust the elution rate to about 2 mL/min.
    11.2.2 Just prior to exposure of the sodium sulfate layer to the 
air, quantitatively transfer the sample extract onto the column using an 
additional 2 mL of hexane to complete the transfer. Just prior to 
exposure of the sodium sulfate layer to the air, add 30 mL of methylene 
chloride/hexane (1 + 9)(V/V) and continue the elution of the column. 
Discard the eluate.
    11.2.3 Next, elute the column with 30 mL of acetone/methylene 
chloride (1 + 9)(V/V) into a 500-mL K-D flask equipped with a 10-mL 
concentrator tube. Concentrate the collected fraction as in Sections 
10.6, 10.7, 10.8, and 10.9 including the solvent exchange to 1 mL of 
hexane. This fraction should contain the nitroaromatics and isophorone. 
Analyze by gas chromatography (Section 12).

                         12. Gas Chromatography

    12.1 Isophorone and nitrobenzene are analyzed by injection of a 
portion of the extract into an FIDGC. The dinitrotoluenes are analyzed 
by a separate injection into an ECDGC. Table 1 summarizes the 
recommended operating conditions for the gas chromatograph.

[[Page 172]]

Included in this table are retention times and MDL that can be achieved 
under these conditions. Examples of the separations achieved by Column 1 
are shown in Figures 1 and 2. Other packed or capillary (open-tubular) 
columns, chromatographic conditions, or detectors may be used if the 
requirements of Section 8.2 are met.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal standard must be added to the same extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    12.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \9\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, the 
total extract volume, and the resulting peak size in area or peak height 
units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.7 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.111

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.112

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \10\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 7xMDL to 1000xMDL. \10\
    14.3 This method was tested by 18 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 1.0 to 515 [micro]g/L. \11\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Nitroaromatic Compounds and Isophorone in 
Industrial and Municipal Wastewaters,'' EPA 600/ 4-82-024, National 
Technical Information Service, PB82-208398, Springfield, Virginia 22161, 
May 1982.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.

[[Page 173]]

    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    8. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    9. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    10. ``Determination of Method Detection Limit and Analytical Curve 
for EPA Method 609--Nitroaromatics and Isophorone,'' Special letter 
report for EPA Contract 68-03-2624, U.S. Environmental Protection 
Agency, Environmental Monitoring and Support Laboratory, Cincinnati, 
Ohio 45268, June 1980.
    11. ``EPA Method Study 19, Method 609 (Nitroaromatics and 
Isophorone),'' EPA 600/4-84-018, National Technical Information Service, 
PB84-176908, Springfield, Virginia 22161, March 1984.

                         Table 1--Chromatographic Conditions and Method Detection Limits
----------------------------------------------------------------------------------------------------------------
                                                             Retention time (min)       Method detection limit
                                                         ----------------------------        ([micro]g/L)
                        Parameter                                                    ---------------------------
                                                             Col. 1        Col. 2         ECDGC         FIDGC
----------------------------------------------------------------------------------------------------------------
Nitrobenzene............................................        3.31          4.31         13.7           3.6
2,6-Dinitrotoluene......................................        3.52          4.75          0.01          -
Isophorone..............................................        4.49          5.72         15.7           5.7
2,4-Dinitrotoluene......................................        5.35          6.54          0.02          -
----------------------------------------------------------------------------------------------------------------
 AAColumn 1 conditions: Gas-Chrom Q (80/100 mesh) coated with 1.95% QF-1/1.5% OV-17 packed in a 1.2 m long x 2
  mm or 4 mm ID glass column. A 2 mm ID column and nitrogen carrier gas at 44 mL/min flow rate were used when
  determining isophorone and nitrobenzene by FIDGC. The column temperature was held isothermal at 85 [deg]C. A 4
  mm ID column and 10% methane/90% argon carrier gas at 44 mL/min flow rate were used when determining the
  dinitrotoluenes by ECDGC. The column temperature was held isothermal at 145 [deg]C.
 AAColumn 2 conditions: Gas-Chrom Q (80/100 mesh) coated with 3% OV-101 packed in a 3.0 m long x 2 mm or 4 mm ID
  glass column. A 2 mm ID column and nitrogen carrier gas at 44 mL/min flow rate were used when determining
  isophorone and nitrobenzene by FIDGC. The column temperature was held isothermal at 100 [deg]C. A 4 mm ID
  column and 10% methane/90% argon carrier gas at 44 mL/min flow rate were used when determining the
  dinitrotoluenes by ECDGC. The column temperature was held isothermal at 150 [deg]C.


                                   Table 2--QC Acceptance Criteria--Method 609
----------------------------------------------------------------------------------------------------------------
                                                             Test Conc.                 Range for X
                         Parameter                           ([micro]g/   Limit for s  ([micro]g/L)   Range for
                                                                 L)      ([micro]g/L)                 P, Ps (%)
----------------------------------------------------------------------------------------------------------------
2,4-Dinitrotoluene........................................           20           5.1  3.6-22.8            6-125
2,6-Dinitrotoluene........................................           20           4.8  3.8-23.0            8-126
Isophorone................................................          100          32.3  8.0-100.0           D-117
Nitrobenzene..............................................          100          33.3  25.7-100.0          6-118
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 609
----------------------------------------------------------------------------------------------------------------
                                                            Accuracy, as      Single analyst        Overall
                       Parameter                            recovery, X'      precision, sr'     precision, S'
                                                            ([micro]g/L)       ([micro]g/L)       ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
2,4-Dinitro-
 toluene...............................................         0.65C+0.22         0.20X+0.08         0.37X-0.07
2,6-Dinitro-
 toluene...............................................         0.66C+0.20         0.19X+0.06         0.36X-0.00
Isophorone.............................................         0.49C+2.93         0.28X+2.77         0.46X+0.31
Nitrobenzene...........................................         0.60C+2.00         0.25X+2.53         0.37X-0.78
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 174]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.029


[[Page 175]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.030


[[Page 176]]

              Method 610--Polynuclear Aromatic Hydrocarbons

                        1. Scope and Application

    1.1 This method covers the determination of certain polynuclear 
aromatic hydrocarbons (PAH). The following parameters can be determined 
by this method:

------------------------------------------------------------------------
                  Parameter                    STORET No.      CAS No.
------------------------------------------------------------------------
Acenaphthene................................         34205       83-32-9
Acenaphthylene..............................         34200      208-96-8
Anthracene..................................         34220      120-12-7
Benzo(a)anthracene..........................         34526       56-55-3
Benzo(a)pyrene..............................         34247       50-32-8
Benzo(b)fluoranthene........................         34230      205-99-2
Benzo(ghi)perylene..........................         34521      191-24-2
Benzo(k)fluoranthene........................         34242      207-08-9
Chrysene....................................         34320      218-01-9
Dibenzo(a,h)anthracene......................         34556       53-70-3
Fluoranthene................................         34376      206-44-0
Fluorene....................................         34381       86-73-7
Indeno(1,2,3-cd)pyrene......................         34403      193-39-5
Naphthalene.................................         34696       91-20-3
Phenanthrene................................         34461       85-01-8
Pyrene......................................         34469      129-00-0
------------------------------------------------------------------------

    1.2 This is a chromatographic method applicable to the determination 
of the compounds listed above in municipal and industrial discharges as 
provided under 40 CFR 136.1. When this method is used to analyze 
unfamiliar samples for any or all of the compounds above, compound 
identifications should be supported by at least one additional 
qualitative technique. Method 625 provides gas chromatograph/mass 
spectrometer (GC/MS) conditions appropriate for the qualitative and 
quantitative confirmation of results for many of the parameters listed 
above, using the extract produced by this method.
    1.3 This method provides for both high performance liquid 
chromatographic (HPLC) and gas chromatographic (GC) approaches for the 
determination of PAHs. The gas chromatographic procedure does not 
adequately resolve the following four pairs of compounds: Anthracene and 
phenanthrene; chrysene and benzo(a)anthracene; benzo(b)fluoranthene and 
benzo(k)fluoranthene; and dibenzo(a,h) anthracene and indeno (1,2,3-
cd)pyrene. Unless the purpose for the analysis can be served by 
reporting the sum of an unresolved pair, the liquid chromatographic 
approach must be used for these compounds. The liquid chromatographic 
method does resolve all 16 of the PAHs listed.
    1.4 The method detection limit (MDL, defined in Section 15.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.5 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 606, 608, 609, 611, and 612. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. Selection of the 
aliquots must be made prior to the solvent exchange steps of this 
method. The analyst is allowed the latitude, under Sections 12 and 13, 
to select chromatographic conditions appropriate for the simultaneous 
measurement of combinations of these parameters.
    1.6 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.7 This method is restricted to use by or under the supervision of 
analysts experienced in the use of HPLC and GC systems and in the 
interpretation of liquid and gas chromatograms. Each analyst must 
demonstrate the ability to generate acceptable results with this method 
using the procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and concentrated to a volume of 10 mL or less. 
The extract is then separated by HPLC or GC. Ultraviolet (UV) and 
fluorescence detectors are used with HPLC to identify and measure the 
PAHs. A flame ionization detector is used with GC. \2\
    2.2 The method provides a silica gel column cleanup procedure to aid 
in the elimination of interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardward that lead to 
discrete artifacts and/or elevated baselines in the chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be

[[Page 177]]

substituted for the muffle furnace heating. Thorough rinsing with such 
solvents usually eliminates PCB interference. Volumetric ware should not 
be heated in a muffle furnace. After drying and cooling, glassware 
should be sealed and stored in a clean environment to prevent any 
accumulation of dust or other contaminants. Store inverted or capped 
with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedure in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.
    3.3 The extent of interferences that may be encountered using liquid 
chromatographic techniques has not been fully assessed. Although the 
HPLC conditions described allow for a unique resolution of the specific 
PAH compounds covered by this method, other PAH compounds may interfere.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method have not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
4-6 for the information of the analyst.
    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)-
anthracene. Primary standards of these toxic compounds should be 
prepared in a hood. A NIOSH/MESA approved toxic gas respirator should be 
worn when the analyst handles high concentrations of these toxic 
compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.4 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.5 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.6 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.8 Chromatographic column--250 mm long x 10 mm ID, with coarse 
frit filter disc at bottom and Teflon stopcock.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 High performance liquid chromatograph (HPLC)--An analytical 
system complete with column supplies, high pressure syringes, detectors, 
and compatible strip-chart recorder. A data system is recommended for 
measuring peak areas and retention times.
    5.6.1 Gradient pumping system--Constant flow.

[[Page 178]]

    5.6.2 Reverse phase column--HC-ODS Sil-X, 5 micron particle 
diameter, in a 25 cm x 2.6 mm ID stainless steel column (Perkin Elmer 
No. 089-0716 or equivalent). This column was used to develop the method 
performance statements in Section 15. Guidelines for the use of 
alternate column packings are provided in Section 12.2.
    5.6.3 Detectors--Fluorescence and/or UV detectors. The fluorescence 
detector is used for excitation at 280 nm and emission greater than 389 
nm cutoff (Corning 3-75 or equivalent). Fluorometers should have 
dispersive optics for excitation and can utilize either filter or 
dispersive optics at the emission detector. The UV detector is used at 
254 nm and should be coupled to the fluorescence detector. These 
detectors were used to develop the method performance statements in 
Section 15. Guidelines for the use of alternate detectors are provided 
in Section 12.2.
    5.7 Gas chromatograph--An analytical system complete with 
temperature programmable gas chromatograph suitable for on-column or 
splitless injection and all required accessories including syringes, 
analytical columns, gases, detector, and strip-chart recorder. A data 
system is recommended for measuring peak areas.
    5.7.1 Column--1.8 m long x 2 mm ID glass, packed with 3% OV-17 on 
Chromosorb W-AW-DCMS (100/120 mesh) or equivalent. This column was used 
to develop the retention time data in Table 2. Guidelines for the use of 
alternate column packings are provided in Section 13.3.
    5.7.2 Detector--Flame ionization detector. This detector has proven 
effective in the analysis of wastewaters for the parameters listed in 
the scope (Section 1.1), excluding the four pairs of unresolved 
compounds listed in Section 1.3. Guidelines for the use of alternate 
detectors are provided in Section 13.3.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Cyclohexane, methanol, acetone, methylene chloride, pentane--
Pesticide quality or equivalent.
    6.4 Acetonitrile--HPLC quality, distilled in glass.
    6.5 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.6 Silica gel--100/200 mesh, desiccant, Davison, grade-923 or 
equivalent. Before use, activate for at least 16 h at 130 [deg]C in a 
shallow glass tray, loosely covered with foil.
    6.7 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.7.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in acetonitrile and 
dilute to volume in a 10-mL volumetric flask. Larger volumes can be used 
at the convenience of the analyst. When compound purity is assayed to be 
96% or greater, the weight can be used without correction to calculate 
the concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.7.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.7.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with check standards indicates a problem.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish liquid or gas chromatographic operating conditions 
equivalent to those given in Table 1 or 2. The chromatographic system 
can be calibrated using the external standard technique (Section 7.2) or 
the internal standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with acetonitrile. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 5 to 25 [micro]L for HPLC and 2 to 5 
[micro]L for GC, analyze each calibration standard according to Section 
12 or 13, as appropriate. Tabulate peak height or area responses against 
the mass injected. The results can be used to prepare a calibration 
curve for each compound. Alternatively, if the ratio of response to 
amount injected (calibration factor) is a constant over the working 
range (<10% relative standard deviation, RSD), linearity through the 
origin can be assumed and the average ratio or calibration factor can be 
used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the

[[Page 179]]

compounds of interest. The analyst must further demonstrate that the 
measurement of the internal standard is not affected by method or matrix 
interferences. Because of these limitations, no internal standard can be 
suggested that is applicable to all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with acetonitrile. One of the standards should be 
at a concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 5 to 25 [micro]L for HPLC and 2 to 5 
[micro]L for GC, analyze each calibration standard according to Section 
12 or 13, as appropriate. Tabulate peak height or area responses against 
concentration for each compound and internal standard. Calculate 
response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.113

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.

    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, the test must 
be repeated using a fresh calibration standard. Alternatively, a new 
calibration curve must be prepared for that compound.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, 12.2, and 13.3) to improve the separations or lower 
the cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at the following concentrations in 
acetonitrile: 100 [micro]g/mL of any

[[Page 180]]

of the six early-eluting PAHs (naphthalene, acenaphthylene, 
acenaphthene, fluorene, phenanthrene, and anthracene); 5 [micro]g/mL of 
benzo(k)fluoranthene; and 10 [micro]g/mL of any of the other PAHs. The 
QC check sample concentrate must be obtained from the U.S. Environmental 
Protection Agency, Environmental Monitoring and Support Laboratory in 
Cincinnati, Ohio, if available. If not available from that source, the 
QC check sample concentrate must be obtained from another external 
source. If not available from either source above, the QC check sample 
concentrate must be prepared by the laboratory using stock standards 
prepared independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at the test 
concentrations shown in Table 3 by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 3. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 3 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.2.
    8.2.6.2 Beginning with Section 8.2.2, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at the test concentration in Section 8.2.2 or 1 to 5 
times higher than the background concentration determined in Section 
8.3.2, whichever concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none, (2) the larger of either 5 times higher than the expected 
background concentration or the test concentration in Section 8.2.2.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100 (A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 3. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\ If spiking was performed at a concentration lower than the test 
concentration in Section 8.2.2, the analyst must use either the QC 
acceptance criteria in Table 3, or optional QC acceptance criteria 
calculated for the specific spike concentration. To calculate optional 
acceptance criteria for the recovery of a parameter: (1) Calculate 
accuracy (X') using the equation in Table 4, substituting the spike 
concentration (T) for C; (2) calculate overall precision (S') using the 
equation in Table 4, substituting X' for X; (3) calculate the range for 
recovery at the spike concentration as (100 X'/T)2.44(100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter

[[Page 181]]

that failed the critiera must be analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory. If the entire list of parameters in Table 3 must be measured 
in the sample in Section 8.3, the probability that the analysis of a QC 
check standard will be required is high. In this case the QC check 
standard should be routinely analyzed with the spike sample.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
3. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \8\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. PAHs are known to be light 
sensitive; therefore, samples, extracts, and standards should be stored 
in amber or foil-wrapped bottles in order to minimize photolytic 
decomposition. Fill the sample bottles and, if residual chlorine is 
present, add 80 mg of sodium thiosulfate per liter of sample and mix 
well. EPA Methods 330.4 and 330.5 may be used for measurement of 
residual chlorine. \9\ Field test kits are available for this purpose.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.

[[Page 182]]

    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.7 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of methylene chloride. A 
5-mL syringe is recommended for this operation. Stopper the concentrator 
tube and store refrigerated if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial and protected 
from light. If the sample extract requires no further cleanup, proceed 
with gas or liquid chromatographic analysis (Section 12 or 13). If the 
sample requires further cleanup, proceed to Section 11.
    10.8 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use the procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the methods as revised 
to incorporate the cleanup procedure.
    11.2 Before the silica gel cleanup technique can be utilized, the 
extract solvent must be exchanged to cyclohexane. Add 1 to 10 mL of the 
sample extract (in methylene chloride) and a boiling chip to a clean K-D 
concentrator tube. Add 4 mL of cyclohexane and attach a two-ball micro-
Snyder column. Prewet the column by adding 0.5 mL of methylene chloride 
to the top. Place the micro-K-D apparatus on a boiling (100 [deg]C) 
water bath so that the concentrator tube is partially immersed in the 
hot water. Adjust the vertical position of the apparatus and the water 
temperature as required to complete concentration in 5 to 10 min. At the 
proper rate of distillation the balls of the column will actively 
chatter but the chambers will not flood. When the apparent volume of the 
liquid reaches 0.5 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min. Remove the micro-Snyder column and rinse 
its lower joint into the concentrator tube with a minimum amount of 
cyclohexane. Adjust the extract volume to about 2 mL.
    11.3 Silica gel column cleanup for PAHs:
    11.3.1 Prepare a slurry of 10 g of activiated silica gel in 
methylene chloride and place this into a 10-mm ID chromatographic 
column. Tap the column to settle the silica gel and elute the methylene 
chloride. Add 1 to 2 cm of anhydrous sodium sulfate to the top of the 
silica gel.
    11.3.2 Preelute the column with 40 mL of pentane. The rate for all 
elutions should be about 2 mL/min. Discard the eluate and just prior to 
exposure of the sodium sulfate layer to the air, transfer the 2-mL 
cyclohexane sample extract onto the column using an additional 2 mL 
cyclohexane to complete the transfer. Just prior to exposure of the 
sodium sulfate layer to the air, add 25 mL of pentane and continue the 
elution of the column. Discard this pentane eluate.
    11.3.3 Next, elute the column with 25 mL of methylene chloride/
pentane (4+6)(V/V) into a 500-mL K-D flask equipped with a 10-mL 
concentrator tube. Concentrate the collected fraction to less than 10 mL 
as in Section 10.6. When the apparatus is cool, remove the Snyder column 
and rinse the flask and its lower joint with pentane. Proceed with HPLC 
or GC analysis.

               12. High Performance Liquid Chromatography

    12.1 To the extract in the concentrator tube, add 4 mL of 
acetonitrile and a new boiling chip, then attach a two-ball micro-Snyder 
column. Concentrate the solvent as in Section 10.6, except set the water 
bath at 95 to 100 [deg]C. When the apparatus is cool, remove the micro-
Snyder column and rinse its lower joint into the concentrator tube with 
about 0.2 mL of acetonitrile. Adjust the extract volume to 1.0 mL.
    12.2 Table 1 summarizes the recommended operating conditions for the 
HPLC. Included in this table are retention times, capacity factors, and 
MDL that can be achieved under these conditions. The UV detector is 
recommended for the determination of naphthalene, acenaphthylene, 
acenapthene, and

[[Page 183]]

fluorene and the fluorescence detector is recommended for the remaining 
PAHs. Examples of the separations achieved by this HPLC column are shown 
in Figures 1 and 2. Other HPLC columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    12.3 Calibrate the system daily as described in Section 7.
    12.4 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the instrument.
    12.5 Inject 5 to 25 [micro]L of the sample extract or standard into 
the HPLC using a high pressure syringe or a constant volume sample 
injection loop. Record the volume injected to the nearest 0.1 [micro]L, 
and the resulting peak size in area or peak height units. Re-equilibrate 
the HPLC column at the initial gradient conditions for at least 10 min 
between injections.
    12.6 Identify the parameters in the sample by comparing the 
retention time of the peaks in the sample chromatogram with those of the 
peaks in standard chromatograms. The width of the retention time window 
used to make identifications should be based upon measurements of actual 
retention time variations of standards over the course of a day. Three 
times the standard deviation of a retention time for a compound can be 
used to calculate a suggested window size; however, the experience of 
the analyst should weigh heavily in the interpretation of chromatograms.
    12.7 If the response for a peak exceeds the working range of the 
system, dilute the extract with acetonitrile and reanalyze.
    12.8 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                         13. Gas Chromatography

    13.1 The packed column GC procedure will not resolve certain 
isomeric pairs as indicated in Section 1.3 and Table 2. The liquid 
chromatographic procedure (Section 12) must be used for these 
parameters.
    13.2 To achieve maximum sensitivity with this method, the extract 
must be concentrated to 1.0 mL. Add a clean boiling chip to the 
methylene chloride extract in the concentrator tube. Attach a two-ball 
micro-Snyder column. Prewet the micro-Snyder column by adding about 0.5 
mL of methylene chloride to the top. Place the micro-K-D apparatus on a 
hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water. Adjust the vertical position of the 
apparatus and the water temperature as required to complete the 
concentration in 5 to 10 min. At the proper rate of distillation the 
balls will actively chatter but the chambers will not flood. When the 
apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus and 
allow it to drain and cool for at least 10 min. Remove the micro-Snyder 
column and rinse its lower joint into the concentrator tube with a 
minimum amount of methylene chloride. Adjust the final volume to 1.0 mL 
and stopper the concentrator tube.
    13.3 Table 2 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times that were 
obtained under these conditions. An example of the separations achieved 
by this column is shown in Figure 3. Other packed or capillary (open-
tubular) columns, chromatographic conditions, or detectors may be used 
if the requirements of Section 8.2 are met.
    13.4 Calibrate the gas chromatographic system daily as described in 
Section 7.
    13.5 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatograph.
    13.6 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \10\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, and 
the resulting peak size in area or peak height units.
    13.7 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    13.8 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    13.9 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            14. Calculations

    14.1 Determine the concentration of individual compounds in the 
sample.
    14.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.

[[Page 184]]

[GRAPHIC] [TIFF OMITTED] TC15NO91.114

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.115

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    14.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         15. Method Performance

    15.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \11\ Similar 
results were achieved using representative wastewaters. MDL for the GC 
approach were not determined. The MDL actually achieved in a given 
analysis will vary depending on instrument sensitivity and matrix 
effects.
    15.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 8 x MDL to 800 x MDL \11\ with the following 
exception: benzo(ghi)perylene recovery at 80 x and 800 x MDL were low 
(35% and 45%, respectively).
    15.3 This method was tested by 16 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 0.1 to 425 [micro]g/L. \12\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 4.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Polynuclear Aromatic Hydrocarbons in 
Industrial and Municipal Wastewaters,'' EPA 600/4-82-025, National 
Technical Information Service, PB82-258799, Springfield, Virginia 22161, 
June 1982.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    8. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    9. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    10. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    11. Cole, T., Riggin, R., and Glaser, J. ``Evaluation of Method 
Detection Limits and Analytical Curve for EPA Method 610--PNAs,'' 
International Symposium on Polynuclear Aromatic Hydrocarbons, 5th, 
Battelle's Columbus Laboratories, Columbus, Ohio (1980).
    12. ``EPA Method Study 20, Method 610 (PNA's),'' EPA 600/4-84-063, 
National Technical Information Service, PB84-211614, Springfield, 
Virginia 22161, June 1984.

[[Page 185]]



  Table 1--High Performance Liquid Chromatography Conditions and Method
                            Detection Limits
------------------------------------------------------------------------
                                                                Method
                                        Retention    Column    detection
               Parameter                   time     capacity     limit
                                          (min)      factor   ([micro]g/
                                                      (k')      L) \a\
------------------------------------------------------------------------
Naphthalene...........................       16.6       12.2       1.8
Acenaphthylene........................       18.5       13.7       2.3
Acenaphthene..........................       20.5       15.2       1.8
Fluorene..............................       21.2       15.8       0.21
Phenanthrene..........................       22.1       16.6       0.64
Anthracene............................       23.4       17.6       0.66
Fluoranthene..........................       24.5       18.5       0.21
Pyrene................................       25.4       19.1       0.27
Benzo(a)anthracene....................       28.5       21.6       0.013
Chrysene..............................       29.3       22.2       0.15
Benzo(b)fluoranthene..................       31.6       24.0       0.018
Benzo(k)fluoranthene..................       32.9       25.1       0.017
Benzo(a)pyrene........................       33.9       25.9       0.023
Dibenzo(a,h)anthracene................       35.7       27.4       0.030
Benzo(ghi)perylene....................       36.3       27.8       0.076
Indeno(1,2,3-cd)pyrene................       37.4       28.7       0.043
------------------------------------------------------------------------
 AAAHPLC column conditions: Reverse phase HC-ODS Sil-X, 5 micron
  particle size, in a 25 cm x 2.6 mm ID stainless steel column.
  Isocratic elution for 5 min. using acetonitrile/water (4+6), then
  linear gradient elution to 100% acetonitrile over 25 min. at 0.5 mL/
  min flow rate. If columns having other internal diameters are used,
  the flow rate should be adjusted to maintain a linear velocity of 2 mm/
  sec.
\a\ The MDL for naphthalene, acenaphthylene, acenaphthene, and fluorene
  were determined using a UV detector. All others were determined using
  a fluorescence detector.


       Table 2--Gas Chromatographic Conditions and Retention Times
------------------------------------------------------------------------
                                                               Retention
                          Parameter                           time (min)
------------------------------------------------------------------------
Naphthalene.................................................         4.5
Acenaphthylene..............................................        10.4
Acenaphthene................................................        10.8
Fluorene....................................................        12.6
Phenanthrene................................................        15.9
Anthracene..................................................        15.9
Fluoranthene................................................        19.8
Pyrene......................................................        20.6
Benzo(a)anthracene..........................................        24.7
Chrysene....................................................        24.7
Benzo(b)fluoranthene........................................        28.0
Benzo(k)fluoranthene........................................        28.0
Benzo(a)pyrene..............................................        29.4
Dibenzo(a,h)anthracene......................................        36.2
Indeno(1,2,3-cd)pyrene......................................        36.2
Benzo(ghi)perylene..........................................        38.6
------------------------------------------------------------------------
GC Column conditions: Chromosorb W-AW-DCMS (100/120 mesh) coated with 3%
  OV-17 packed in a 1.8 x 2 mm ID glass column with nitrogen carrier gas
  at 40 mL/min. flow rate. Column temperature was held at 100 [deg]C for
  4 min., then programmed at 8 [deg]C/min. to a final hold at 280
  [deg]C.


                                   Table 3--QC Acceptance Criteria--Method 610
----------------------------------------------------------------------------------------------------------------
                                                                                        Range for X
                                                               Test conc.  Limit for s   ([micro]g/   Range for
                          Parameter                            ([micro]g/   ([micro]g/       L)       P, Ps (%)
                                                                   L)           L)
----------------------------------------------------------------------------------------------------------------
Acenaphthene................................................          100         40.3      D-105.7        D-124
Acenaphthylene..............................................          100         45.1   22.1-112.1        D-139
Anthracene..................................................          100         28.7   11.2-112.3        D-126
Benzo(a)anthracene..........................................           10          4.0     3.1-11.6       12-135
Benzo(a)pyrene..............................................           10          4.0     0.2-11.0        D-128
Benzo(b)fluor-anthene.......................................           10          3.1     1.8-13.8        6-150
Benzo(ghi)perylene..........................................           10          2.3       D-10.7        D-116
Benzo(k)fluo-ranthene.......................................            5          2.5        D-7.0        D-159
Chrysene....................................................           10          4.2       D-17.5        D-199
Dibenzo(a,h)an-thracene.....................................           10          2.0     0.3-10.0        D-110
Fluoranthene................................................           10          3.0     2.7-11.1       14-123
Fluorene....................................................          100         43.0        D-119        D-142
Indeno(1,2,3-cd)pyrene......................................           10          3.0     1.2-10.0        D-116
Naphthalene.................................................          100         40.7   21.5-100.0        D-122
Phenanthrene................................................          100         37.7    8.4-133.7        D-155
Pyrene......................................................           10          3.4     1.4-12.1        D-140
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 4.


[[Page 186]]


                Table 4--Method Accuracy and Precision as Functions of Concentration--Method 610
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                              recovery, X'   precision, sr'   precision, S'
                                                                   ([micro]g/L)    ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Acenaphthene....................................................    0.52C + 0.54    0.39X + 0.76    0.53X + 1.32
Acenaphthylene..................................................    0.69C - 1.89    0.36X + 0.29    0.42X + 0.52
Anthracene......................................................    0.63C - 1.26    0.23X + 1.16    0.41X + 0.45
Benzo(a)anthracene..............................................    0.73C + 0.05    0.28X + 0.04    0.34X + 0.02
Benzo(a)pyrene..................................................    0.56C + 0.01    0.38X - 0.01    0.53X - 0.01
Benzo(b)fluoranthene............................................    0.78C + 0.01    0.21X + 0.01    0.38X - 0.00
Benzo(ghi)perylene..............................................    0.44C + 0.30    0.25X + 0.04    0.58X + 0.10
Benzo(k)fluoranthene............................................    0.59C + 0.00    0.44X - 0.00    0.69X + 0.01
Chrysene........................................................    0.77C - 0.18    0.32X - 0.18    0.66X - 0.22
Dibenzo(a,h)anthracene..........................................    0.41C + 0.11    0.24X + 0.02    0.45X + 0.03
Fluoranthene....................................................    0.68C + 0.07    0.22X + 0.06    0.32X + 0.03
Fluorene........................................................    0.56C - 0.52    0.44X - 1.12    0.63X - 0.65
Indeno(1,2,3-cd)pyrene..........................................    0.54C + 0.06    0.29X + 0.02    0.42X + 0.01
Naphthalene.....................................................    0.57C - 0.70    0.39X - 0.18    0.41X + 0.74
Phenanthrene....................................................    0.72C - 0.95    0.29X + 0.05    0.47X - 0.25
Pyrene..........................................................    0.69C - 0.12    0.25X + 0.14   0.42X - 0.00
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.

[GRAPHIC] [TIFF OMITTED] TC02JY92.031


[[Page 187]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.032


[[Page 188]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.033

                         Method 611--Haloethers

                        1. Scope and Application

    1.1 This method covers the determination of certain haloethers. The 
following parameters can be determined by this method:

------------------------------------------------------------------------
                   Parameter                     STORET No.    CAS No.
------------------------------------------------------------------------
Bis(2-chloroethyl) ether......................        34273     111-44-4
Bis(2-chloroethoxy) methane...................        34278     111-91-1
Bis(2-chloroisopropyl) ether..................        34283     108-60-1
4-Bromophenyl phenyl ether....................        34636     101-55-3
4-Chlorophenyl phenyl either..................        34641    7005-72-3
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of the compounds listed above in municipal and industrial 
discharges as provided under 40 CFR 136.1. When this method is used to 
analyze unfamiliar samples for any or all of the compounds above, 
compound identifications should be supported by at least one additional 
qualitative technique. This method describes analytical conditions for a 
second gas chromatographic column that can be used to confirm 
measurements made with the primary column. Method 625 provides gas 
chromatograph/mass spectrometer (GC/MS) conditions appropriate for the 
qualitative and quantitative confirmation of results for all of the 
parameters listed above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 606, 608, 609, and 612. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. The analyst is 
allowed the latitude, under Section 12, to select

[[Page 189]]

chromatographic conditions appropriate for the simultaneous measurement 
of combinations of these parameters.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and exchanged to hexane during concentration 
to a volume of 10 mL or less. The extract is separated by gas 
chromatography and the parameters are then measured with a halide 
specific detector. \2\
    2.2 The method provides a Florisil column cleanup procedure to aid 
in the elimination of interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed be detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such a PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedure in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.
    3.3 Dichlorobenzenes are known to coelute with haloethers under some 
gas chromatographic conditions. If these materials are present together 
in a sample, it may be necessary to analyze the extract with two 
different column packings to completely resolve all of the compounds.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
4-6 for the information of the analyst.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating

[[Page 190]]

flow meter is required to collect flow proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Chromatographic column--400 mm long x 19 mm ID, with Teflon 
stopcock and coarse frit filter disc at bottom (Kontes K-420540-0224 or 
equivalent).
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2[deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, gases, detector, and strip-chart recorder. A data system is 
recommended for measuring peak areas.
    5.6.1 Column 1--1.8 m long x 2 mm ID glass, packed with 3% SP-1000 
on Supelcoport (100/120 mesh) or equivalent. This column was used to 
develop the method performance statements in Section 14. Guidelines for 
the use of alternate column packings are provided in Section 12.1.
    5.6.2 Column 2--1.8 m long x 2 mm ID glass, packed with 2,6-
diphenylene oxide polymer (60/80 mesh), Tenax, or equivalent.
    5.6.3 Detector--Halide specific detector: electrolytic conductivity 
or microcoulometric. These detectors have proven effective in the 
analysis of wastewaters for the parameters listed in the scope (Section 
1.1). The Hall conductivity detector was used to develop the method 
performance statements in Section 14. Guidelines for the use of 
alternate detectors are provided in Section 12.1. Although less 
selective, an electron capture detector is an acceptable alternative.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Acetone, hexane, methanol, methylene chloride, petroleum ether 
(boiling range 30-60 [deg]C)--Pesticide quality or equivalent.
    6.4 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.5 Florisil--PR Grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in the dark in glass containers with ground glass 
stoppers or foil-lined screw caps. Before use, activate each batch at 
least 16 h at 130 [deg]C in a foil-covered glass container and allow to 
cool.
    6.6 Ethyl ether--Nanograde, redistilled in glass if necessary.
    6.6.1 Ethyl ether must be shown to be free of peroxides before it is 
used as indicated by EM Laboratories Quant test strips. (Available from 
Scientific Products Co., Cat. No. P1126-8, and other suppliers.)
    6.6.2 Procedures recommended for removal of peroxides are provided 
with the test strips. After cleanup, 20 mL of ethyl alcohol preservative 
must be added to each liter of ether.
    6.7 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutions can be prepared from pure standard materials or 
purchased as certified solutions.
    6.7.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in acetone and dilute 
to volume in a 10-mL volumetric flask. Larger volumes can be used at the 
convenience of the analyst. When compound purity is assayed to be 96% or 
greater, the weight can be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.7.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.7.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with check standards indicates a problem.
    6.8 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating conditions equivalent to 
those given in Table 1. The gas chromatographic system

[[Page 191]]

can be calibrated using the external standard technique (Section 7.2) or 
the internal standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with hexane. One of the external standards should be at a concentration 
near, but above, the MDL (Table 1) and the other concentrations should 
correspond to the expected range of concentrations found in real samples 
or should define the working range of the detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with hexane. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.116

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 The cleanup procedure in Section 11 utilizes Florisil column 
chromatography. Florisil from different batches or sources may vary in 
adsorptive capacity. To standardize the amount of Florisil which is 
used, the use of lauric acid value \7\ is suggested. The referenced 
procedure determines the adsorption from hexane solution of lauric acid 
(mg) per g of Florisil. The amount of Florisil to be used for each 
column is calculated by dividing 110 by this ratio and multiplying by 20 
g.
    7.6 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.

[[Page 192]]

    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 100 
[micro]g/mL in acetone. The QC check sample concentrate must be obtained 
from the U.S. Environmental Protection Agency, Environmental Monitoring 
and Support Laboratory in Cincinnati, Ohio, if available. If not 
available from that source, the QC check sample concentrate must be 
obtained from another external source. If not available from either 
source above, the QC check sample concentrate must be prepared by the 
laboratory using stock standards prepared independently from those used 
for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
100 [micro]g/L by adding 1.00 mL of QC check sample concentrate to each 
of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter. Locate and correct the 
source of the problem and repeat the test for all parameters of interest 
beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1. The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 100 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or 100 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\8\ If spiking was performed at a concentration lower than 100 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 2, or 
optional QC

[[Page 193]]

acceptance criteria calculated for the specific spike concentration. To 
calculate optional acceptance criteria for the recovery of a parameter: 
(1) Calculate accuracy (X') using the equation in Table 3, substituting 
the spike concentration (T) for C; (2) calculate overall precision (S') 
using the equation in Table 3, substituting X' for X; (3) calculate the 
range for recovery at the spike concentration as (100 X'/T)2.44(100 S'/T)%. \8\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 m/L of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \9\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. Fill the sample bottles and, if 
residual chlorine is present, add 80 mg of sodium thiosulfate per liter 
of sample and mix well. EPA Methods 330.4 and 330.5 may be used for 
measurement of residual chlorine. \10\ Field test kits are available for 
this purpose.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 Add 60 mL methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 min 
with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time,

[[Page 194]]

combining the extracts in the Erlenmeyer flask. Perform a third 
extraction in the same manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    Note: Some of the haloethers are very volatile and significant 
losses will occur in concentration steps if care is not exercised. It is 
important to maintain a constant gentle evaporation rate and not to 
allow the liquid volume to fall below 1 to 2 mL before removing the K-D 
apparatus from the hot water bath.
    10.7 Momentarily remove the Snyder column, add 50 mL of hexane and a 
new boiling chip, and reattach the Snyder column. Raise the temperature 
of the water bath to 85 to 90 [deg]C. Concentrate the extract as in 
Section 10.6, except use hexane to prewet the column. The elapsed time 
of concentration should be 5 to 10 min.
    10.8 Remove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of hexane. A 5-mL 
syringe is recommended for this operation. Stopper the concentrator tube 
and store refrigerated if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial. If the sample 
extract requires no further cleanup, proceed with gas chromatographic 
analysis (Section 12). If the sample requires further cleanup, proceed 
to Section 11.
    10.9 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use the procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the method as revised 
to incorporate the cleanup procedure.
    11.2 Florisil column cleanup for haloethers:
    11.2.1 Adjust the sample extract volume to 10 mL.
    11.2.2 Place a weight of Florisil (nominally 20 g) predetermined by 
calibration (Section 7.5), into a chromatographic column. Tap the column 
to settle the Florisil and add 1 to 2 cm of anhydrous sodium sulfate to 
the top.
    11.2.3 Preelute the column with 50 to 60 mL of petroleum ether. 
Discard the eluate and just prior to exposure of the sodium sulfate 
layer to the air, quantitatively transfer the sample extract onto the 
column by decantation and subsequent petroleum ether washings. Discard 
the eluate. Just prior to exposure of the sodium sulfate layer to the 
air, begin eluting the column with 300 mL of ethyl ether/petroleum ether 
(6+94) (V/V). Adjust the elution rate to approximately 5 mL/min and 
collect the eluate in a 500-mL K-D flask equipped with a 10-mL 
concentrator tube. This fraction should contain all of the haloethers.
    11.2.4 Concentrate the fraction as in Section 10.6, except use 
hexane to prewet the column. When the apparatus is cool, remove the 
Snyder column and rinse the flask and its lower joint into the 
concentrator tube with hexane. Adjust the volume of the cleaned up 
extract to 10 mL with hexane and analyze by gas chromatography (Section 
12).

                         12. Gas Chromatography

    12.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Examples of the separations 
achieved by Columns 1 and 2 are shown in Figures 1 and 2, respectively. 
Other packed or capillary (open-tubular) columns, chromatographic 
conditions, or detectors may be used if the requirements of Section 8.2 
are met.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
thoroughly immediately before injection into the gas chromatrograph.

[[Page 195]]

    12.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush technique. \11\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, the 
total extract volume, and the resulting peak size in area or peak height 
units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weight heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.7 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.117

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.118

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \12\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 4 x MDL to 1000 x MDL. \12\
    14.3 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 1.0 to 626 [micro]/L. \12\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Haloethers in Industrial and Municipal 
Wastewaters,'' EPA 600/4-81-062, National Technical Information Service, 
PB81-232290, Springfield, Virginia 22161, July 1981.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constitutents,'' American Society for Testing and Materials, 
Philadelphia.
    4. ``Carcinogens--Working Carcinogens, '' Department of Health, 
Education, and Welfare, Public Health Services, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Mills., P.A. ``Variation of Florisil Activity: Simple Method for 
Measuring Absorbent Capacity and Its Use in Standardizing

[[Page 196]]

Florisil Columns,'' Journal of the Association of Official Analytical 
Chemists, 51, 29 (1968).
    8. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    9. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    10. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    11. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    12. ``EPA Method Study 21, Method 611, Haloethers,'' EPA 600/4-84-
052, National Technical Information Service, PB84-205939, Springfield, 
Virginia 22161, June 1984.

    Table 1--Chromatographic Conditions and Methods Detection Limits
------------------------------------------------------------------------
                                         Retention time (min)    Method
                                        ---------------------- detection
               Parameters                                        limit
                                          Column 1   Column 2  ([micro]/
                                                                   L)
------------------------------------------------------------------------
Bis(2-chloroisopropyl) ether...........        8.4        9.7        0.8
Bis(2-chloroethyl) ether...............        9.3        9.1        0.3
Bis(2-chloroethoxy) methane............       13.1       10.0        0.5
4-Chlorophenyl ether...................       19.4       15.0        3.9
4-Bromophenyl phenyl ether.............       21.2       16.2        2.3
------------------------------------------------------------------------
 AColumn 1 conditions: Supelcoport (100/120 mesh) coated with 3% SP-1000
  packed in a 1.8 m long x 2 mm ID glass column with helium carrier gas
  at 40 mL/min. flow rate. Column temperature held at 60 [deg]C for 2
  min. after injection then programmed at 8 [deg]C/min. to 230 [deg]C
  and held for 4 min. Under these conditions the retention time for
  Aldrin is 22.6 min.
 AColumn 2 conditions: Tenax-GC (60/80 mesh) packed in a 1.8 m long x
  2mm ID glass column with helium carrier gas at 40 mL/min. flow rate.
  Column temperature held at 150 [deg]C for 4 min. after injection then
  programmed at 16 [deg]C/min. to 310 [deg]C. Under these conditions the
  retention time for Aldrin is 18.4 min.


                                   Table 2--QC Acceptance Criteria--Method 611
----------------------------------------------------------------------------------------------------------------
                                                                                        Range for X
                                                              Test conc.   Limit for s   ([micro]g/   Range for
                         Parameter                            ([micro]g/  ([micro]g/L)       L)         P, Ps
                                                                  L)                                   percent
----------------------------------------------------------------------------------------------------------------
Bis (2-chloroethyl)ether...................................          100          26.3   26.3-136.8       11-152
Bis (2-chloroethoxy)methane................................          100          25.7   27.3-115.0       12-128
Bis (2-chloroisopropyl)ether...............................          100          32.7   26.4-147.0        9-165
4-Bromophenyl phenyl ether.................................          100          39.3   7.6 -167.5        D-189
4-Chlorophenyl phenyl ether................................          100          30.7   15.4-152.5        D-170
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 611
----------------------------------------------------------------------------------------------------------------
                                                                   Accuracy, as   Single analyst      Overall
                            Parameter                              recovery, X'   precision, sr'   precision, S'
                                                                   ([micro]g/L)    ([micro]g/L)    ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Bis(2-chloroethyl) ether........................................      0.81C+0.54      0.19X+0.28      0.35X+0,36
Bis(2-chloroethoxy) methane.....................................      0.71C+0.13      0.20X+0.15      0.33X+0.11
Bis(2-chloroisopropyl) ether....................................      0.85C+1.67      0.20X+1.05      0.36X+0.79
4-Bromophenyl phenyl ether......................................      0.85C+2.55      0.25X+0.21      0.47X+0.37
4-Chlorophenyl phenyl ether.....................................      0.82C+1.97      0.18X+2.13      0.41X+0.55
----------------------------------------------------------------------------------------------------------------
X' = Expected recovery for one or more measuremelts of a sample containing a concentration of C, in [micro]g/L.
sr' = Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S' = Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C =True value for the concentration, in [micro]g/L.
X = Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.


[[Page 197]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.034


[[Page 198]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.035

                  Method 612--Chlorinated Hydrocarbons

                        1. Scope and Application

    1.1 This method covers the determination of certain chlorinated 
hydrocarbons. The following parameters can be determined by this method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                         No.      CAS No.
------------------------------------------------------------------------
2-Chloronaphthalene..............................     34581      91-58-7
1,2-Dichlorobenzene..............................     34536      95-50-1
1,3-Dichlorobenzene..............................     34566     541-73-1
1,4-Dichlorobenzene..............................     34571     106-46-7
Hexachlorobenzene................................     39700     118-74-1
Hexachlorobutadiene..............................     34391      87-68-3
Hexachlorocyclopentadiene........................     34386      77-47-4
Hexachloroethane.................................     34396      67-72-1

[[Page 199]]

 
1,2,4-Trichlorobenzene...........................     34551     120-82-1
------------------------------------------------------------------------

    1.2 This is a gas chromatographic (GC) method applicable to the 
determination of the compounds listed above in municipal and industrial 
discharges as provided under 40 CFR 136.1. When this method is used to 
analyze unfamiliar samples for any or all of the compounds above, 
compound identifications should be supported by at least one additional 
qualitative technique. This method describes a second gas 
chromatographic column that can be used to confirm measurements made 
with the primary column. Method 625 provides gas chromatograph/mass 
spectrometer (GC/MS) conditions appropriate for the qualitative and 
quantitative confirmation of results for all of the parameters listed 
above, using the extract produced by this method.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 The sample extraction and concentration steps in this method are 
essentially the same as in Methods 606, 608, 609, and 611. Thus, a 
single sample may be extracted to measure the parameters included in the 
scope of each of these methods. When cleanup is required, the 
concentration levels must be high enough to permit selecting aliquots, 
as necessary, to apply appropriate cleanup procedures. The analyst is 
allowed the latitude, under Section 12, to select chromatographic 
conditions appropriate for the simultaneous measurement of combinations 
of these parameters.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph and in the 
interpretation of gas chromatograms. Each analyst must demonstrate the 
ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is extracted 
with methylene chloride using a separatory funnel. The methylene 
chloride extract is dried and exchanged to hexane during concentration 
to a volume of 10 mL or less. The extract is separated by gas 
chromatography and the parameters are then measured with an electron 
capture detector. \2\
    2.2 The method provides a Florisil column cleanup procedure to aid 
in the elimination of interferences that may be encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in gas chromatograms. All 
of these materials must be routinely demonstrated to be free from 
interferences under the conditions of the analysis by running laboratory 
reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. The 
cleanup procedure in Section 11 can be used to overcome many of these 
interferences, but unique samples may require additional cleanup 
approaches to achieve the MDL listed in Table 1.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all

[[Page 200]]

personnel involved in the chemical analysis. Additional references to 
laboratory safety are available and have been identified 4-6 
for the information of the analyst.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1cL or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, approximately 400 mm 
long x 19 mm ID, with coarse frit filter disc.
    5.2.3 Chromatographic column--300 long x 10 mm ID, with Teflon 
stopcock and coarse frit filter disc at bottom.
    5.2.4 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.5 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.6 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 Gas chromatograph--An analytical system complete with gas 
chromatograph suitable for on-column injection and all required 
accessories including syringes, analytical columns, gases, detector, and 
strip-chart recorder. A data system is recommended for measuring peak 
areas.
    5.6.1 Column 1--1.8 m long x 2 mm ID glass, packed with 1% SP-1000 
on Supelcoport (100/120 mesh) or equivalent. Guidelines for the use of 
alternate column packings are provide in Section 12.1.
    5.6.2 Column 2--1.8 m long x2 mm ID glass, packed with 1.5% OV-1/
2.4% OV-225 on Supelcoport (80/100 mesh) or equivalent. This column was 
used to develop the method performance statements in Section 14.
    5.6.3 Detector--Electron capture detector. This detector has proven 
effective in the analysis of wastewaters for the parameters listed in 
the scope (Section 1.1), and was used to develop the method performance 
statements in Section 14. Guidelines for the use of alternate detectors 
are provided in Section 12.1.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Acetone, hexane, isooctane, methanol, methylene chloride, 
petroleum ether (boiling range 30 to 60 [deg]C)--Pesticide quality or 
equivalent.
    6.3 Sodium sulfate--(ACS) Granular, anhydrous. Purify heating at 400 
[deg]C for 4 h in a shallow tray.
    6.4 Florisil--PR grade (60/100 mesh). Purchase activated at 1250 
[deg]F and store in the dark in glass containers with ground glass 
stoppers or foil-lined screw caps. Before use, activate each batch at 
least 16 h at 130 [deg]C in a foil-covered glass container and allow to 
cool.
    6.5 Stock standard solution (1.00 [micro]g/[micro]L)--Stock standard 
solutions can be prepared from pure standard materials or purchased as 
certified solutions.
    6.5.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in isooctane and dilute 
to volume in a 120-mL volumetric flask. Larger volumes can be used at 
the convenience of the analyst. When compound purity is assayed to be 
96% or greater, the weight can be used without correction to calculate 
the concentration of the stock standard. Commercially prepared stock 
standards can be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.5.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.

[[Page 201]]

    6.5.3 Stock standard solutions must be replaced after six months, or 
sooner if comparision with check standards indicates a problem.
    6.6 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating conditions equivalent to 
those given in Table 1. The gas chromatographic system can be calibrated 
using the external standard technique (Section 7.2) or the internal 
standard technique (Section 7.3).
    7.2 External standard calibration procedure:
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask and diluting to volume 
with isooctane. One of the external standards should be at a 
concentration near, but above, the MDL (Table 1) and the other 
concentrations should correspond to the expected range of concentrations 
found in real samples or should define the working range of the 
detector.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against the mass injected. The results can be used to prepare 
a calibration curve for each compound. Alternatively, if the ratio of 
response to amount injected (calibration factor) is a constant over the 
working range (<10% relative standard deviation, RSD), linearity through 
the origin can be assumed and the average ratio or calibration factor 
can be used in place of a calibration curve.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select one or more internal standards that are similar 
in analytical behavior to the compounds of interest. The analyst must 
further demonstrate that the measurement of the internal standard is not 
affected by method or matrix interferences. Because of these 
limitations, no internal standard can be suggested that is applicable to 
all samples.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding volumes of 
one or more stock standards to a volumetric flask. To each calibration 
standard, add a known constant amount of one or more internal standards, 
and dilute to volume with isooctane. One of the standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the detector.
    7.3.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 12 and tabulate peak height or area 
responses against concentration for each compound and internal standard. 
Calculate response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.119

                                                              Equation 1

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

If the RF value over the working range is a constant (<10% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve, calibration factor, or RF must be 
verified on each working day by the measurement of one or more 
calibration standards. If the response for any parameter varies from the 
predicted response by more than 15%, a new 
calibration curve must be prepared for that compound.
    7.5 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When the results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.

[[Page 202]]

    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.4, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such modification is made to the method, 
the analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at the following concentrations in 
acetone: Hexachloro-substituted parameters, 10 [micro]g/mL; any other 
chlorinated hydrocarbon, 100 [micro]g/mL. The QC check sample 
concentrate must be obtained from the U.S. Environmental Protection 
Agency, Environmental Monitoring and Support Laboratory in Cincinnati, 
Ohio, if available. If not available from that source, the QC check 
sample concentrate must be obtained from another external source. If not 
available from either source above, the QC check sample concentrate must 
be prepared by the laboratory using stock standards prepared 
independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at the test 
concentrations shown in Table 2 by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 2. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 2 presents a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.2.
    8.2.6.2 Beginning with Section 8.2.2, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spike sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at the test concentration in Section 8.2.2 or 1 to 5 
times higher than the background concentration determined in Section 
8.3.2, whichever concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none by (2) the larger of either 5 times higher than the expected 
background concentration or the test concentration in Section 8.2.2.

[[Page 203]]

    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. In necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100 (A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\ If spiking was performed at a concentration lower than the test 
concentration in Section 8.2.2, the analyst must use either the QC 
acceptance criteria in Table 2, or optional QC acceptance criteria 
calculated for the specific spike concentration. To calculate optional 
acceptance criteria for the recovery of a parameter: (1) Calculate 
accuracy (X') using the equation in Table 3, substituting the spike 
concentration (T) for C; (2) calculate overall precision (S') using the 
equation in Table 3, substituting X' for X; (3) calculate the range for 
recovery at the spike concentration as (100 X'/T) 2.44 (100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4. If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Sections 8.2.1 or 8.3.2) to 1 L of reagent water. 
The QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
2. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment for each parameter 
on a regular basis (e.g. after each five to ten new accuracy 
measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. When doubt exists over the 
identification of a peak on the chromatogram, confirmatory techniques 
such as gas chromatography with a dissimilar column, specific element 
detector, or mass spectrometer must be used. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevent performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \8\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction.
    9.3 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.

[[Page 204]]

    10.2 Add 60 mL of methylele chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 min 
with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the volume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.3 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.4 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.5 Pour the combined extract through a solvent-rinsed drying 
column containing about 10 cm of anhydrous sodium sulfate, and collect 
the extract in the K-D concentrator. Rinse the Erlenmeyer flask and 
column with 20 to 30 mL of methylene chloride to complete the 
quantitative transfer.
    10.6 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 to 2 mL, remove the K-D apparatus and allow it to 
drain and cool for at least 10 min.
    Note: The dichloribenzenes have a sufficiently high volatility that 
significant losses may occur in concentration steps if care is not 
exercised. It is important to maintain a constant gentle evaporation 
rate and not to allow the liquid volume to fall below 1 to 2 mL before 
removing the K-D apparatus from the hot water bath.
    10.7 Momentarily remove the Snyder column, add 50 mL of hexane and a 
new boiling chip, and reattach the Snyder column. Raise the tempeature 
of the water bath to 85 to 90 [deg]C. Concentrate the extract as in 
Section 10.6, except use hexane to prewet the column. The elapsed time 
of concentration should be 5 to 10 min.
    10.8 Romove the Snyder column and rinse the flask and its lower 
joint into the concentrator tube with 1 to 2 mL of hexane. A 5-mL 
syringe is recommended for this operation. Stopper the concentrator tube 
and store refrigerated if further processing will not be performed 
immediately. If the extract will be stored longer than two days, it 
should be transferred to a Teflon-sealed screw-cap vial. If the sample 
extract requires no further cleanup, proceed with gas chromatographic 
analysis (Section 12). If the sample requires further cleanup, proceed 
to Section 11.
    10.9 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use the procedure below or any other 
appropriate procedure. However, the analyst first must demonstrate that 
the requirements of Section 8.2 can be met using the method as revised 
to incorporate the cleanup procedure.
    11.2 Florisil column cleanup for chlorinated hydrocarbons:
    11.2.1 Adjust the sample extract to 10 mL with hexane.
    11.2.2 Place 12 g of Florisil into a chromatographic column. Tap the 
column to settle the Florisil and add 1 to 2 cm of anhydrous sodium 
sulfate to the top.
    11.2.3 Preelute the column with 100 mL of petroleum ether. Discard 
the eluate and just prior to exposure of the sodium sulfate layer to the 
air, quantitatively transfer the sample extract onto the column by 
decantation and subsequent petroleum ether washings. Discard the eluate. 
Just prior to exposure of the sodium sulfate layer to the air, begin 
eluting the column with 200 mL of petroleum ether and collect the eluate 
in a 500-mL K-D flask equipped with a 10-mL concentrator tube. This 
fraction should contain all of the chlorinated hydrocarbons.
    11.2.4 Concentrate the fraction as in Section 10.6, except use 
hexane to prewet the column. When the apparatus is cool, remove the 
Snyder column and rinse the flask and its lower joint into the 
concentrator tube with hexane. Analyze by gas chromatography (Section 
12).

[[Page 205]]

                         12. Gas Chromatography

    12.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Examples of the separations 
achieved by Columl 2 are shown in Figures 1 and 2. Other packed or 
capillary (open-tubular) columns, chromatographic conditions, or 
detectors may be used if the requirements of Section 8.2 are met.
    12.2 Calibrate the system daily as described in Section 7.
    12.3 If the internal standard calibration procedure is being used, 
the internal standard must be added to the sample extract and mixed 
throughly immediately before injection into the gas chromatograph.
    12.4 Inject 2 to 5 [micro]L of the sample extract or standard into 
the gas chromatograph using the solvent-flush techlique. \9\ Smaller 
(1.0 [micro]L) volumes may be injected if automatic devices are 
employed. Record the volume injected to the nearest 0.05 [micro]L, the 
total extract volume, and the resulting peak size in area or peak height 
units.
    12.5 Identify the parameters in the sample by comparing the 
retention times of the peaks in the sample chromatogram with those of 
the peaks in standard chromatograms. The width of the retention time 
window used to make identifications should be based upon measurements of 
actual retention time variations of standards over the course of a day. 
Three times the standard deviation of a retention time for a compound 
can be used to calculate a suggested window size; however, the 
experience of the analyst should weigh heavily in the interpretation of 
chromatograms.
    12.6 If the response for a peak exceeds the working range of the 
system, dilute the extract and reanalyze.
    12.7 If the measurement of the peak response is prevented by the 
presence of interferences, further cleanup is required.

                            13. Calculations

    13.1 Determine the concentration of individual compounds in the 
sample.
    13.1.1 If the external standard calibration procedure is used, 
calculate the amount of material injected from the peak response using 
the calibration curve or calibration factor determined in Section 7.2.2. 
The concentration in the sample can be calculated from Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.120

                                                              Equation 2

where:
A=Amount of material injected (ng).
Vi=Volume of extract injected ([micro]L).
Vt=Volume of total extract ([micro]L).
Vs=Volume of water extracted (mL).

    13.1.2 If the internal standard calibration procedure is used, 
calculate the concentration in the sample using the response factor (RF) 
determined in Section 7.3.2 and Equation 3.
[GRAPHIC] [TIFF OMITTED] TC15NO91.121

                                                              Equation 3

where:
As=Response for the parameter to be measured.
Ais=Response for the internal standard.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \10\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method has been tested for linearity of spike recovery 
from reagent water and has been demonstrated to be applicable over the 
concentration range from 4xMDL to 1000xMDL. \10\
    14.3 This method was tested by 20 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 1.0 to 356 [micro]g/L. \11\ Single 
operator precision, overall precision, and method accuracy were found to 
be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of Chlorinated Hydrocarbons In Industrial and 
Municipal Wastewaters, ``EPA 6090/4-84-ABC, National Technical 
Information Service, PBXYZ, Springfield, Virginia, 22161 November 1984.
    3. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American

[[Page 206]]

Society for Testing and Materials, Philadelphia.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,''American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    8. ASTM Annual Book of Standards, Part 31, D3370-76. ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    9. Burke, J.A. ``Gas Chromatography for Pesticide Residue Analysis; 
Some Practical Aspects,'' Journal of the Association of Official 
Analytical Chemists, 48, 1037 (1965).
    10. ``Development of Detection Limits, EPA Method 612, Chlorinated 
Hydrocarbons,'' Special letter report for EPA Contract 68-03-2625, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268.
    11. ``EPA Method Study Method 612--Chlorinated Hydrocarbons,'' EPA 
600/4-84-039, National Technical Information Service, PB84-187772, 
Springfield, Virginia 22161, May 1984.
    12. ``Method Performance for Hexachlorocyclopentadiene by Method 
612,'' Memorandum from R. Slater, U.S. Environmental Protection Agency, 
Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268, 
December 7, 1983.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                     Retention time (min)       Method
                                  --------------------------  detection
            Parameter                                           limit
                                     Column 1     Column 2    ([micro]g/
                                                                  L)
------------------------------------------------------------------------
1,3-Dichlorobenzene..............          4.5          6.8         1.19
Hexachloroethane.................          4.9          8.3         0.03
1,4-Dichlorobenzene..............          5.2          7.6         1.34
1,2-Dichlorobenzene..............          6.6          9.3         1.14
Hexachlorobutadiene..............          7.7         20.0         0.34
1,2,4-Trichlorobenzene...........         15.5         22.3         0.05
Hexachlorocyclopentadiene........           nd     \c\ 16.5         0.40
2-Chloronaphthalene..............      \a\ 2.7      \b\ 3.6         0.94
Hexachlorobenzene................      \a\ 5.6     \b\ 10.1        0.05
------------------------------------------------------------------------
Column 1 conditions: Supelcoport (100/120 mesh) coated with 1% SP-1000
  packed in a 1.8 m x 2 mm ID glass column with 5% methane/95% argon
  carrier gas at 25 mL/min. flow rate. Column temperature held
  isothermal at 65 [deg]C, except where otherwise indicated.
Column 2 conditions: Supelcoport (80/100 mesh) coated with 1.5% OV-1/
  2.4% OV-225 packed in a 1.8 m x 2 mm ID glass column with 5% methane/
  95% argon carrier gas at 25 mL/min. flow rate. Column temperature held
  isothermal at 75 [deg]C, except where otherwise indicated.
nd=Not determined.
\a\ 150 [deg]C column temperature.
\b\ 165 [deg]C column temperature.
\c\ 100 [deg]C column temperature.


                                   Table 2--QC Acceptance Criteria--Method 612
----------------------------------------------------------------------------------------------------------------
                                                                               Limit for  Range for X
                                                                  Test conc.       s       ([micro]g/  Range for
                            Parameter                             ([micro]g/  ([micro]g/       L)        P, Ps
                                                                      L)          L)                   (percent)
----------------------------------------------------------------------------------------------------------------
2-Chloronaphthalene.............................................         100        37.3   29.5-126.9      9-148
1,2-Dichlorobenzene.............................................         100        28.3   23.5-145.1      9-160
1,3-Dichlorobenzene.............................................         100        26.4    7.2-138.6      D-150
1,4-Dichlorobenzene.............................................         100        20.8   22.7-126.9     13-137
Hexachlorobenzene...............................................          10         2.4     2.6-14.8     15-159
Hexachlorobutadiene.............................................          10         2.2       D-12.7      D-139
Hexachlorocyclopentadiene.......................................          10         2.5       D-10.4      D-111
Hexachloroethane................................................          10         3.3     2.4-12.3      8-139
1,2,4-Trichlorobenzene..........................................         100        31.6   20.2-133.7      5-149
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
D=Detected; result must be greater than zero.
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


[[Page 207]]


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 612
----------------------------------------------------------------------------------------------------------------
                                                                      Single analyst
               Parameter                Acccuracy, as recovery,       precision, sr'       Overall precision, S'
                                            X' ([micro]g/L)            ([micro]g/L)            ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
2-Chloronaphthalene...................  0.75C+3.21               0.28X-1.17               0.38X-1.39
1,2-Dichlorobenzene...................  0.85C-0.70               0.22X-2.95               0.41X-3.92
1,3-Dichlorobenzene...................  0.72C+0.87               0.21X-1.03               0.49X-3.98
1,4-Dichlorobenzene...................  0.72C+2.80               0.16X-0.48               0.35X-0.57
Hexachlorobenzene.....................  0.87C-0.02               0.14X+0.07               0.36X-0.19
Hexachlorobutadiene...................  0.61C+0.03               0.18X+0.08               0.53X-0.12
Hexachlorocyclopentadiene \a\.........  0.47C                    0.24X                    0.50X
Hexachloroethane......................  0.74C-0.02               0.23X+0.07               0.36X-0.00
1,2,4-Trichlorobenzene................  0.76C+0.98               0.23X-0.44               0.40X-1.37
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.
 
\a\ Estimates based upon the performance in a single laboratory. \12\


[[Page 208]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.036


[[Page 209]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.037


[[Page 210]]

             Method 613--2,3,7,8-Tetrachlorodibenzo-p-Dioxin

                        1. Scope and Application

    1.1 This method covers the determination of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The following parameter may 
be determined by this method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                        No.       GAS No.
------------------------------------------------------------------------
2,3,7,8-TCDD.....................................    34675     1746-01-6
------------------------------------------------------------------------

    1.2 This is a gas chromatographic/mass spectrometer (GC/MS) method 
applicable to the determination of 2,3,7,8-TCDD in municipal and 
industrial discharges as provided under 40 CFR 136.1. Method 625 may be 
used to screen samples for 2,3,7,8-TCDD. When the screening test is 
positive, the final qualitative confirmation and quantification must be 
made using Method 613.
    1.3 The method detection limit (MDL, defined in Section 14.1) \1\ 
for 2,3,7,8-TCDD is listed in Table 1. The MDL for a specific wastewater 
may be different from that listed, depending upon the nature of 
interferences in the sample matrix.
    1.4 Because of the extreme toxicity of this compound, the analyst 
must prevent exposure to himself, of to others, by materials knows or 
believed to contain 2,3,7,8-TCDD. Section 4 of this method contains 
guidelines and protocols that serve as minimum safe-handling standards 
in a limited-access laboratory.
    1.5 Any modification of this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph/mass spectrometer 
and in the interpretation of mass spectra. Each analyst must demonstrate 
the ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is spiked with 
an internal standard of labeled 2,3,7,8-TCDD and extracted with 
methylene chloride using a separatory funnel. The methylene chloride 
extract is exchanged to hexane during concentration to a volume of 1.0 
mL or less. The extract is then analyzed by capillary column GC/MS to 
separate and measure 2,3,7,8-TCDD. \2,3\
    2.2 The method provides selected column chromatographic cleanup 
proceudres to aid in the elimination of interferences that may be 
encountered.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated backgrounds at the masses (m/z) 
monitored. All of these materials must be routinely demonstrated to be 
free from interferences under the conditions of the analysis by running 
laboratory reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \4\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by the treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thorough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to 
mininmize interference problems. Purification of solvents by 
distillation in all-glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are 
coextracted from the sample. The extent of matrix interferences will 
vary considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled. 
2,3,7,8-TCDD is often associated with other interfering chlorinated 
compounds which are at concentrations several magnitudes higher than 
that of 2,3,7,8-TCDD. The cleanup producers in Section 11 can be used to 
overcome many of these interferences, but unique samples may require 
additional cleanup approaches \1,5-7\ to eliminate false positives and 
achieve the MDL listed in Table 1.
    3.3 The primary column, SP-2330 or equivalent, resolves 2,3,7,8-TCDD 
from the other 21 TCDD insomers. Positive results using any other gas 
chromatographic column must be confirmed using the primary column.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to

[[Page 211]]

the lowest possible level by whatever means available. The laboratory is 
responsible for maintaining a current awareness file of OSHA regulations 
regarding the safe handling of the chemicals specified in this method. A 
reference file of material data handling sheets should also be made 
available to all personnel involved in the chemical analysis. Additional 
references to laboratory safety are available and have been identified 
8-10 for the information of the analyst. Benzene and 2,3,7,8-
TCDD have been identified as suspected human or mammalian carcinogens.
    4.2 Each laboratory must develop a strict safety program for 
handling 2,3,7,8-TCDD. The following laboratory practices are 
recommended:
    4.2.1 Contamination of the laboratory will be minimized by 
conducting all manipulations in a hood.
    4.2.2 The effluents of sample splitters for the gas chromatograph 
and roughing pumps on the GC/MS should pass through either a column of 
activated charcoal or be bubbled through a trap containing oil or high-
boiling alcohols.
    4.2.3 Liquid waste should be dissolved in methanol or ethanol and 
irradiated with ultraviolet light with a wavelength greater than 290 nm 
for several days. (Use F 40 BL lamps or equivalent). Analyze liquid 
wastes and dispose of the solutions when 2,3,7,8-TCDD can no longer be 
detected.
    4.3 Dow Chemical U.S.A. has issued the following precautimns 
(revised November 1978) for safe handling of 2,3,7,8-TCDD in the 
laboratory:
    4.3.1 The following statements on safe handling are as complete as 
possible on the basis of available toxicological information. The 
precautions for safe handling and use are necessarily general in nature 
since detailed, specific recommendations can be made only for the 
particular exposure and circumstances of each individual use. Inquiries 
about specific operations or uses may be addressed to the Dow Chemical 
Company. Assistance in evaluating the health hazards of particular plant 
conditions may be obtained from certain consulting laboratories and from 
State Departments of Health or of Labor, many of which have an 
industrial health service. 2,3,7,8-TCDD is extremely toxic to laboratory 
animals. However, it has been handled for years without injury in 
analytical and biological laboratories. Techniques used in handling 
radioactive and infectious materials are applicable to 2,3,7,8,-TCDD.
    4.3.1.1 Protective equipment--Throw-away plastic gloves, apron or 
lab coat, safety glasses, and a lab hood adequate for radioactive work.
    4.3.1.2 Training--Workers must be trained in the proper method of 
removing contaminated gloves and clothing without contacting the 
exterior surfaces.
    4.3.1.3 Personal hygiene--Thorough washing of hands and forearms 
after each manipulation and before breaks (coffee, lunch, and shift).
    4.3.1.4 Confinement--Isolated work area, posted with signs, 
segregated glassware and tools, plastic-backed absorbent paper on 
benchtops.
    4.3.1.5 Waste--Good technique includes minimizing contaminated 
waste. Plastic bag liners should be used in waste cans. Janitors must be 
trained in the safe handling of waste.
    4.3.1.6 Disposal of wastes--2,3,7,8-TCDD decomposes above 800 
[deg]C. Low-level waste such as absorbent paper, tissues, animal 
remains, and plastic gloves may be burned in a good incinerator. Gross 
quantities (milligrams) should be packaged securely and disposed through 
commercial or governmental channels which are capable of handling high-
level radioactive wastes or extremely toxic wastes. Liquids should be 
allowed to evaporate in a good hood and in a disposable container. 
Residues may then be handled as above.
    4.3.1.7 Decontamination--For personal decontamination, use any mild 
soap with plenty of scrubbing action. For decontamination of glassware, 
tools, and surfaces, Chlorothene NU Solvent (Trademark of the Dow 
Chemical Company) is the least toxic solvent shown to be effective. 
Satisfactory cleaning may be accomplished by rinsing with Chlorothene, 
then washing with any detergent and water. Dishwater may be disposed to 
the sewer. It is prudent to minimize solvent wastes because they may 
require special disposal through commercial sources which are expensive.
    4.3.1.8 Laundry--Clothing known to be contaminated should be 
disposed with the precautions described under Section 4.3.1.6. Lab coats 
or other clothing worn in 2,3,7,8-TCDD work areas may be laundered.
    Clothing should be collected in plastic bags. Persons who convey the 
bags and launder the clothing should be advised of the hazard and 
trained in proper handling. The clothing may be put into a washer 
without contact if the launderer knows the problem. The washer should be 
run through a cycle before being used again for other clothing.
    4.3.1.9 Wipe tests--A useful method of determining cleanliness of 
work surfaces and tools is to wipe the surface with a piece of filter 
paper. Extraction and analysis by gas chromatography can achieve a limit 
of sensitivity of 0.1 [micro]g per wipe. Less than 1 [micro]g of 
2,3,7,8-TCDD per sample indicates acceptable cleanliness; anything 
higher warrants further cleaning. More than 10 [micro]g on a wipe sample 
constitutes an acute hazard and requires prompt cleaning before further 
use of the equipment or work space. A high (10 [micro]g)

[[Page 212]]

2,3,7,8-TCDD level indicates that unacceptable work practices have been 
employed in the past.
    4.3.1.10 Inhalation--Any procedure that may produce airborne 
contamination must be done with good ventilation. Gross losses to a 
ventilation system must not be allowed. Handling of the dilute solutions 
normally used in analytical and animal work presents no inhalation 
hazards except in the case of an accident.
    4.3.1.11 Accidents--Remove contaminated clothing immediately, taking 
precautions not to contaminate skin or other articles. Wash exposed skin 
vigorously and repeatedly until medical attention is obtained.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composite sampling.
    5.1.1 Grab sample bottle--1-L or 1-qt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. Before use, however, the compressible tubing should 
be thoroughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.1.3 Clearly label all samples as ``POISON'' and ship according to 
U.S. Department of Transportation regulations.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnels--2-L and 125-mL, with Teflon stopcock.
    5.2.2 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.3 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-570001-
0500 or equivalent). Attach to concentrator tube with springs.
    5.2.4 Snyder column, Kuderna-Danish--Three-ball macro (Kontes K-
503000-0121 or equivalent).
    5.2.5 Snyder column, Kuderna-Danish--Two-ball micro (Kontes K-
569001-0219 or equivalent).
    5.2.6 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.7 Chromatographic column--300 mm long x 10 mm ID, with Teflon 
stopcock and coarse frit filter disc at bottom.
    5.2.8 Chromatographic column--400 mm long x 11 mm ID, with Teflon 
stopcock and coarse frit filter disc at bottom.
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min or Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2 [deg]C). The bath should be 
used in a hood.
    5.5 GC/MS system:
    5.5.1 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph and all required accessories 
including syringes, analytical columns, and gases. The injection port 
must be designed for capillary columns. Either split, splitless, or on-
column injection techniques may be employed, as long as the requirements 
of Section 7.1.1 are achieved.
    5.5.2 Column--60 m long x 0.25 mm ID glass or fused silica, coated 
with SP-2330 (or equivalent) with a film thickness of 0.2 [micro]m. Any 
equivalent column must resolve 2, 3, 7, 8-TCDD from the other 21 TCDD 
isomers. \16\
    5.5.3 Mass spectrometer--Either a low resolution mass spectrometer 
(LRMS) or a high resolution mass spectrometer (HRMS) may be used. The 
mass spectrometer must be equipped with a 70 V (nominal) ion source and 
be capable of aquiring m/z abundance data in real time selected ion 
monitoring (SIM) for groups of four or more masses.
    5.5.4 GC/MS interface--Any GC to MS interface can be used that 
achieves the requirements of Section 7.1.1. GC to MS interfaces 
constructed of all glass or glass-lined materials are recommended. Glass 
surfaces can be deactivated by silanizing with dichlorodimethylsilane. 
To achieve maximum sensitivity, the exit end of the capillary column 
should be placed in the ion source. A short piece of fused silica 
capillary can be used as the interface to overcome problems associated 
with straightening the exit end of glass capillary columns.
    5.5.5 The SIM data acquired during the chromatographic program is 
defined as the Selected Ion Current Profile (SICP). The SICP can be 
acquired under computer control or as a real time analog output. If 
computer control is used, there must be software available to plot the 
SICP and report peak height or area data for any m/z in the SICP between 
specified time or scan number limits.
    5.6 Balance--Analytical, capable of accurately weighing 0.0001 g.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of 2, 3, 7, 8-TCDD.

[[Page 213]]

    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL. Wash the solution with methylene 
chloride and hexane before use.
    6.3 Sodium thiosulfate--(ACS) Granular.
    6.4 Sulfuric acid--Concentrated (ACS, sp. gr. 1.84).
    6.5 Acetone, methylene chloride, hexane, benzene, ortho-xylene, 
tetradecane--Pesticide quality or equivalent.
    6.6 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.7 Alumina--Neutral, 80/200 mesh (Fisher Scientific Co., No. A-540 
or equivalent). Before use, activate for 24 h at 130 [deg]C in a foil-
covered glass container.
    6.8 Silica gel--High purity grade, 100/120 mesh (Fisher Scientific 
Co., No. S-679 or equivalent).
    6.9 Stock standard solutions (1.00 [micro]g/[micro]L)--Stock 
standard solutimns can be prepared from pure standard materials or 
purchased as certified solutions. Acetone should be used as the solvent 
for spiking solutions; ortho-xylene is recommended for calibration 
standards for split injectors; and tetradecane is recommended for 
splitless or on-colum injectors. Analyze stock internal standards to 
verify the absence of native 2,3,7,8-TCDD.
    6.9.1 Prepare stock standard solutions of 2,3,7,8-TCDD (mol wt 320) 
and either \37\C14 2,3,7,8-TCDD (mol wt 328) or 
\13\C112 2,3,7,8-TCDD (mol wt 332) in an isolated area by 
accurately weighing about 0.0100 g of pure material. Dissolve the 
material in pesticide quality solvent and dilute to volume in a 10-mL 
volumetric flask. When compound purity is assayed to be 96% or greater, 
the weight can be used without correction to calculate the concentration 
of the stock standard. Commercially prepared stock standards can be used 
at any concentration if they are certified by the manufacturer or by an 
independent source.
    6.9.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store in an isolated refrigerator protected from 
light. Stock standard solutions should be checked frequently for signs 
of degradation or evaporation, especially just prior to preparing 
calibration standards or spiking solutions from them.
    6.9.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with check standards indicates a problem.
    6.10 Internal standard spiking solution (25 ng/mL)--Using stock 
standard solution, prepare a spiking solution in acetone of either \13\ 
Cl12 or \37\ Cl4 2,3,7,8-TCDD at a concentration 
of 25 ng/mL. (See Section 10.2)
    6.11 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatograhic operating conditions equivalent to 
those given in Table 1 and SIM conditions for the mass spectrometer as 
described in Section 12.2 The GC/MS system must be calibrated using the 
internal standard technique.
    7.1.1 Using stock standards, prepare calibration standards that will 
allow measurement of relative response factors of at least three 
concentration ratios of 2,3,7,8-TCDD to internal standard. Each 
calibration standard must be prepared to contain the internal standard 
at a concentration of 25 ng/mL. If any interferences are contributed by 
the internal standard at m/z 320 and 322, its concentration may be 
reduced in the calibration standards and in the internal standard 
spiking solution (Section 6.10). One of the calibration standards should 
contain 2,3,7,8-TCDD at a concentration near, but above, the MDL and the 
other 2,3,7,8-TCDD concentrations should correspond to the expected 
range of concentrations found in real samples or should define the 
working range of the GC/MS system.
    7.1.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standardaccording to Section 12 and tabulate peak height or area 
response against the concentration of 2,3,7,8-TCDD and internal 
standard. Calculate response factors (RF) for 2,3,7,8-TCDD using 
Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.122

                                                              Equation 1

where:
As=SIM response for 2,3,7,8-TCDD m/z 320.
Ais=SIM response for the internal standard, m/z 332 for \13\ 
C12 2,3,7,8-TCDD m/z 328 for \37\ Cl4 2,3,7,8-
TCDD.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of 2,3,7,8-TCDD ([micro]g/L).

If the RF value over the working range is a constant (<10% relative 
standard deviation, RSD), the RF can be assumed to be invariant and the 
average RF can be used for calculations. Alternatively, the results can 
be used to plot a calibration curve of response ratios, As/
Ais, vs. RF.
    7.1.3 The working calibration curve or RF must be verified on each 
working day by the measurement of one or more 2,3,7,8-TCDD calibration 
standards. If the response for 2,3,7,8-TCDD varies from the predicted 
response by more than 15%, the test must be 
repeated using a fresh calibration standard. Alternatively, a new 
calibration curve must be prepared.

[[Page 214]]

    7.2 Before using any cleanup procedure, the analyst must process a 
series of calibration standards through the procedure to validate 
elution patterns and the absence of interferences from the reagents.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.5, 11.1, and 12.1) to improve the separations or lower the 
cost of measurements. Each time such a modification is made to the 
method, the analyst is required to repeat the procedure in Section 8.2
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 10% of all samples with native 2,3,7,8-TCDD to monitor and 
evaluate laboratory data quality. This procedure is described in Section 
8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 10% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing 2,3,7,8-TCDD at a concentration of 0.100 [micro]g/mL in 
acetone. The QC check sample concentrate must be obtained from the U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory in Cincinnati, Ohio, if available. If not available from that 
source, the QC check sample concentrate must be obtained from another 
external source. If not available from either source above, the QC check 
sample concentrate must be prepared by the laboratory using stock 
standards prepared independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
0.100 [micro]g/L (100 ng/L) by adding 1.00 mL of QC check sample 
concentrate to each of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for 2,3,7,8-TCDD 
using the four results.
    8.2.5 Compare s and (X) with the corresponding acceptance criteria 
for precision and accuracy, respectively, found in Table 2. If s and X 
meet the acceptance criteria, the system performance is acceptable and 
analysis of actual samples can begin. If s exceeds the precision limit 
or X falls outside the range for accuracy, the system performance is 
unacceptable for 2,3,7,8-TCDD. Locate and correct the source of the 
problem and repeat the test beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 10% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing one to ten samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of 
2,3,7,8-TCDD in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of 2,3,7,8-TCDD in the sample is not 
being checked against a limit specific to that parameter, the spike 
should be at 0.100 [micro]g/L or 1 to 5 times higher than the background 
concentration determined in Section 8.3.2, whichever concentration would 
be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the

[[Page 215]]

spike concentration should be (1) the regulatory concentration limit, if 
any; or, if none (2) the larger of either 5 times higher than the 
expected background concentration or 0.100 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of 2,3,7,8-TCDD. If necessary, prepare a new QC check 
sample concentrate (Section 8.2.1) appropriate for the background 
concentration in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of 2,3,7,8-TCDD. Calculate percent 
recovery (P) as 100(A-B)%T, where T is the known true value of the 
spike.
    8.3.3 Compare the percent recovery (P) for 2,3,7,8-TCDD with the 
corresponding QC acceptance criteria found in Table 2. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\11\ If spiking was performed at a concentration lower than 0.100 
[micro]g/L, the analyst must use either the QC acceptance criteria in 
Table 2, or optional QC acceptance criteria calculated for the specific 
spike concentration. To calculate optional acceptance criteria for the 
recovery of 2,3,7,8-TCDD: (1) Calculate accuracy (X') using the equation 
in Table 3, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 3, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T)2.44(100 S'/T)%. \11\
    8.3.4 If the recovery of 2,3,7,8-TCDD falls outside the designated 
range for recovery, a check standard must be analyzed as described in 
Section 8.4.
    8.4 If the recovery of 2,3,7,8-TCDD fails the acceptance criteria 
for recovery in Section 8.3, a QC check standard must be prepared and 
analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the complexity of the sample matrix and the performance 
of the laboratory.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of 2,3,7,8-TCDD. Calculate the percent recovery 
(Ps) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) with the 
corresponding QC acceptance criteria found in Table 2. If the recovery 
of 2,3,7,8-TCDD falls outside the designated range, the laboratory 
performance is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for 2,3,7,8-
TCDD in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the spandard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P-2sp to P+2sp. 
If P=90% and sp=10%, for example, the accuracy interval is 
expressed as 70-110%. Update the accuracy assessment on a regular basis 
(e.g. after each five to ten new accuracy measurements).
    8.6 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \12\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All samples must be iced or refrigerated at 4 [deg]C and 
protected from light from the time of collection until extraction. Fill 
the sample bottles and, if residual chlorine is present, add 80 mg of 
sodium thiosulfate per liter of sample and mix well. EPA Methods 330.4 
and 330.5 may be used for measurement of residual chlorine. \13\ Field 
test kits are available for this purpose.
    9.3 Label all samples and containers ``POISON'' and ship according 
to applicable U.S. Department of Transportation regulations.
    9.4 All samples must be extracted within 7 days of collection and 
completely analyzed within 40 days of extraction. \2\

                          10. Sample Extraction

    Caution: When using this method to analyze for 2,3,7,8-TCDD, all of 
the following operations must be performed in a limited-access 
laboratory with the analyst wearing full

[[Page 216]]

protective covering for all exposed skin surfaces. See Section 4.2.
    10.1 Mark the water meniscus on the side of the sample bottle for 
later determination of sample volume. Pour the entire sample into a 2-L 
separatory funnel.
    10.2 Add 1.00 mL of internal standard spiking solution to the sample 
in the separatory funnel. If the final extract will be concentrated to a 
fixed volume below 1.00 mL (Section 12.3), only that volume of spiking 
solution should be added to the sample so that the final extract will 
contain 25 ng/mL of internal standard at the time of analysis.
    10.3 Add 60 mL of methylene chloride to the sample bottle, seal, and 
shake 30 s to rinse the inner surface. Transfer the solvent to the 
separatory funnel and extract the sample by shaking the funnel for 2 
min. with periodic venting to release excess pressure. Allow the organic 
layer to separate from the water phase for a minimum of 10 min. If the 
emulsion interface between layers is more than one-third the vmlume of 
the solvent layer, the analyst must employ mechanical techniques to 
complete the phase separation. The optimum technique depends upon the 
sample, but may include stirring, filtration of the emulsion through 
glass wool, centrifugation, or other physical methods. Collect the 
methylene chloride extract in a 250-mL Erlenmeyer flask.
    10.4 Add a second 60-mL volume of methylene chloride to the sample 
bottle and repeat the extraction procedure a second time, combining the 
extracts in the Erlenmeyer flask. Perform a third extraction in the same 
manner.
    10.5 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-
mL concentrator tube to a 500-mL evaporative flask. Other concentration 
devices or techniques may be used in place of the K-D concentrator if 
the requirements of Section 8.2 are met.
    10.6 Pour the combined extract into the K-D concentrator. Rinse the 
Erlenmeyer flask with 20 to 30 mL of methylele chloride to complete the 
quantitative transfer.
    10.7 Add one or two clean boiling chips to the evaporative flask and 
attach a three-ball Snyder column. Prewet the Snyder column by adding 
about 1 mL of methylene chloride to the top. Place the K-D apparatus on 
a hot water bath (60 to 65 [deg]C) so that the concentrator tube is 
partially immersed in the hot water, and the entire lower rounded 
surface of the flask is bathed with hot vapor. Adjust the vertical 
position of the apparatus and the water temperature as required to 
complete the concentration in 15 to 20 min. At the proper rate of 
distillation the balls of the column will actively chatter but the 
chambers will not flood with condensed solvent. When the apparent volume 
of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain 
and cool for at least 10 min.
    10.8 Momentarily remove the Snyder column, add 50 mL of hexane and a 
new boiling chip, and reattach the Snyder column. Raise the temperature 
of the water bath to 85 to 90[deg]C. Concentrate the extract as in 
Section 10.7, except use hexane to prewet the column. Remove the Snyder 
column and rinse the flask and its lower joint into the concentrator 
tube with 1 to 2 mL of hexane. A 5-mL syringe is recommended for this 
operation. Set aside the K-D glassware for reuse in Section 10.14.
    10.9 Pour the hexane extract from the concentrator tube into a 125-
mL separatory funnel. Rinse the concentrator tube four times with 10-mL 
aliquots of hexane. Combine all rinses in the 125-mL separatory funnel.
    10.10 Add 50 mL of sodium hydroxide solution to the funnel and shake 
for 30 to 60 s. Discard the aqueous phase.
    10.11 Perform a second wash of the organic layer with 50 mL of 
reagent water. Discard the aqueous phase.
    10.12 Wash the hexane layer with a least two 50-mL aliquots of 
concentrated sulfuric acid. Continue washing the hexane layer with 50-mL 
aliquots of concentrated sulfuric acid until the acid layer remains 
colorless. Discard all acid fractions.
    10.13 Wash the hexane layer with two 50-mL aliquots of reagent 
water. Discard the aqueous phases.
    10.14 Transfer the hexane extract into a 125-mL Erlenmeyer flask 
containing 1 to 2 g of anhydrous sodium sulfate. Swirl the flask for 30 
s and decant the hexane extract into the reassembled K-D apparatus. 
Complete the quantitative transfer with two 10-mL hexane rinses of the 
Erlenmeyer flask.
    10.15 Replace the one or two clean boiling chips and concentrate the 
extract to 6 to 10 mL as in Section 10.8.
    10.16 Add a clean boiling chip to the concentrator tube and attach a 
two-ball micro-Snyder column. Prewet the column by adding about 1 mL of 
hexane to the top. Place the micro-K-D apparatus on the water bath so 
that the concentrator tube is partially immersed in the hot water. 
Adjust the vertical position of the apparatus and the water temperature 
as required to complete the concentration in 5 to 10 min. At the proper 
rate of distillation the balls of the column will actively chatter but 
the chambers will not flood. When the apparent volume of liquid reaches 
about 0.5 mL, remove the K-D apparatus and allow it to drain and cool 
for at least 10 min. Remove the micro-Snyder column and rinse its lower 
joint into the concentrator tube with 0.2 mL of hexane.
    Adjust the extract volume to 1.0 mL with hexane. Stopper the 
concentrator tube and store refrigerated and protected from light if 
further processing will not be performed immediately. If the extract 
will be stored

[[Page 217]]

longer than two days, it should be transferred to a Teflon-sealed screw-
cap vial. If the sample extract requires no further cleanup, proceed 
with GC/MS analysis (Section 12). If the sample requires further 
cleanup, proceed to Section 11.
    10.17 Determine the original sample volume by refilling the sample 
bottle to the mark and transferring the liquid to a 1000-mL graduated 
cylinder. Record the sample volume to the nearest 5 mL.

                       11. Cleanup and Separation

    11.1 Cleanup procedures may not be necessary for a relatively clean 
sample matrix. If particular circumstances demand the use of a cleanup 
procedure, the analyst may use either procedure below or any other 
appropriate procedure. \1,5-7\ However, the analyst first must 
demonstrate that the requirements of Section 8.2 can be met using the 
method as revised to incorporate the cleanup procedure. Two cleanup 
column options are offered to the analyst in this section. The alumina 
column should be used first to overcome interferences. If background 
problems are still encountered, the silica gel column may be helpful.
    11.2 Alumina column cleanup for 2,3,7,8-TCDD:
    11.2.1 Fill a 300 mm long x 10 mm ID chromatographic column with 
activated alumina to the 150 mm level. Tap the column gently to settle 
the alumina and add 10 mm of anhydrous sodium sulfate to the top.
    11.2.2 Preelute the column with 50 mL of hexane. Adjust the elution 
rate to 1 mL/min. Discard the eluate and just prior to exposure of the 
sodium sulfate layer to the air, quantitatively transfer the 1.0-mL 
sample extract onto the column using two 2-mL portions of hexane to 
complete the transfer.
    11.2.3 Just prior to exposure of the sodium sulfate layer to the 
air, add 50 mL of 3% methylene chloride/95% hexane (V/V) and continue 
the elution of the column. Discard the eluate.
    11.2.4 Next, elute the column with 50 mL of 20% methylene chloride/
80% hexane (V/V) into a 500-mL K-D flask equipped with a 10-mL 
concentrator tube. Concentrate the collected fraction to 1.0 mL as in 
Section 10.16 and analyze by GC/MS (Section 12).
    11.3 Silica gel column cleanup for 2,3,7,8-TCDD:
    11.3.1 Fill a 400 mm long x 11 mm ID chromatmgraphic column with 
silica gel to the 300 mm level. Tap the column gently to settle the 
silica gel and add 10 mm of anhydrous sodium sulfate to the top.
    11.3.2 Preelute the column with 50 mL of 20% benzene/80% hexane (V/
V). Adjust the elution rate to 1 mL/min. Discard the eluate and just 
prior to exposure of the sodium sulfate layer to the air, quantitatively 
transfer the 1.0-mL sample extract onto the column using two 2-mL 
portions of 20% benzene/80% hexane to complete the transfer.
    11.3.3 Just prior to exposure of the sodium sulfate layer to the 
air, add 40 mL of 20% benzene/80% hexane to the column. Collect the 
eluate in a clean 500-mL K-D flask equipped with a 10-mL concentrator 
tube. Concentrate the collected fraction to 1.0 mL as in Section 10.16 
and analyze by GC/MS.

                           12. GC/MS Analysis

    12.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. Other capillary columns or 
chromatographic conditions may be used if the requirements of Sections 
5.5.2 and 8.2 are met.
    12.2 Analyze standards and samples with the mass spectrometer 
operating in the selected ion monitoring (SIM) mode using a dwell time 
to give at least seven points per peak. For LRMS, use masses at m/z 320, 
322, and 257 for 2,3,7,8-TCDD and either m/z 328 for \37\Cl4 
2,3,7,8-TCDD or m/z 332 for \13\C12 2,3,7,8-TCDD. For HRMS, 
use masses at m/z 319.8965 and 321.8936 for 2,3,7,8-TCDD and either m/z 
327.8847 for \37\Cl4 2,3,7,8-TCDD or m/z 331.9367 for 
\13\C12 2,3,7,8-TCDD.
    12.3 If lower detection limits are required, the extract may be 
carefully evaporated to dryness under a gentle stream of nitrogen with 
the concentrator tube in a water bath at about 40 [deg]C. Conduct this 
operation immediately before GC/MS analysis. Redissolve the extract in 
the desired final volume of ortho-xylene or tetradecane.
    12.4 Calibrate the system daily as described in Section 7.
    12.5 Inject 2 to 5 [micro]L of the sample extract into the gas 
chromatograph. The volume of calibration standard injected must be 
measured, or be the same as all sample injection volumes.
    12.6 The presence of 2,3,7,8-TCDD is qualitatively confirmed if all 
of the following criteria are achieved:
    12.6.1 The gas chromatographic column must resolve 2,3,7,8-TCDD from 
the other 21 TCDD isomers.
    12.6.2 The masses for native 2,3,7,8-TCDD (LRMS-m/z 320, 322, and 
257 and HRMS-m/z 320 and 322) and labeled 2,3,7,8-TCDD (m/z 328 or 332) 
must exhibit a simultaneous maximum at a retention time that matches 
that of native 2,3,7,8-TCDD in the calibration standard, with the 
performance specifications of the analytical system.
    12.6.3 The chlorine isotope ratio at m/z 320 and m/z 322 must agree 
to within10% of that in the calibration standard.
    12.6.4 The signal of all peaks must be greater than 2.5 times the 
noise level.
    12.7 For quantitation, measure the response of the m/z 320 peak for 
2,3,7,8-TCDD

[[Page 218]]

and the m/z 332 peak for \13\C12 2,3,7,8-TCDD or the m/z 328 
peak for \37\Cl4 2,3,7,8-TCDD.
    12.8 Co-eluting impurities are suspected if all criteria are 
achieved except those in Section 12.6.3. In this case, another SIM 
analysis using masses at m/z 257, 259, 320 and either m/a 328 or m/z 322 
can be performed. The masses at m/z 257 and m/z 259 are indicative of 
the loss of one chlorine and one carbonyl group from 2,3,7,8-TCDD. If 
masses m/z 257 and m/z 259 give a chlorine isotope ratio that agrees to 
within 10% of the same cluster in the calibration 
standards, then the presence of TCDD can be confirmed. Co-eluting DDD, 
DDE, and PCB residues can be confirmed, but will require another 
injection using the appropriate SIM masses or full repetitive mass 
scans. If the response for \37\Cl4 2,3,7,8-TCDD at m/z 328 is 
too large, PCB contamination is suspected and can be confirmed by 
examining the response at both m/z 326 and m/z 328. The 
\37\Cl4 2,3,7,8-TCDD internal standard gives negligible 
response at m/z 326. These pesticide residues can be removed using the 
alumina column cleanup procedure.
    12.9 If broad background interference restricts the sensitivity of 
the GC/MS analysis, the analyst should employ additional cleanup 
procedures and reanalyze by GC/MS.
    12.10 In those circumstances where these procedures do not yield a 
definitive conclusion, the use of high resolution mass spectrometry is 
suggested. \5\

                            13. Calculations

    13.1 Calculate the concentration of 2,3,7,8-TCDD in the sample using 
the response factor (RF) determined in Section 7.1.2 and Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.123

                                                              Equation 2

where:
As=SIM response for 2,3,7,8-TCDD at m/z 320.
Ais=SIM response for the internal standard at m/z 328 or 332.
Is=Amount of internal standard added to each extract 
([micro]g).
Vo=Volume of water extracted (L).

    13.2 For each sample, calculate the percent recovery of the internal 
standard by comparing the area of the m/z peak measured in the sample to 
the area of the same peak in the calibration standard. If the recovery 
is below 50%, the analyst should review all aspects of his analytical 
technique.
    13.3 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentration 
listed in Table 1 was obtained using reagent water. \14\ The MDL 
actually achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method was tested by 11 laboratories using reagent water, 
drinking water, surface water, and three industrial wastewaters spiked 
at six concentrations over the range 0.02 to 0.20 [micro]g/L. \15\ 
Single operator precision, overall precision, and method accuracy were 
found to be directly related to the concentration of the parameter and 
essentially independent of the sample matrix. Linear equations to 
describe these relationships are presented in Table 3.

                               References

    1. 40 CFR part 136, appendix B.
    2. ``Determination of TCDD in Industrial and Municipal 
Wastewaters,'' EPA 600/4-82-028, National Technical Information Service, 
PB82-196882, Springfield, Virginia 22161, April 1982.
    3. Buser, H.R., and Rappe, C. ``High Resolution Gas Chromatography 
of the 22 Tetrachlorodibenzo-p-dioxin Isomers,'' Analytical Chemistry, 
52, 2257 (1980).
    4. ASTM Annual Book of Standards, Part 31, D3694-78. ``Standard 
Practices for Preparation of Sample Containers and for Preservation of 
Organic Constituents,'' American Society for Testing and Materials, 
Philadelphia.
    5. Harless, R. L., Oswald, E. O., and Wilkinson, M. K. ``Sample 
Preparation and Gas Chromatography/Mass Spectrometry Determination of 
2,3,7,8-Tetrachlorodibenzo-p-dioxin,'' Analytical Chemistry, 52, 1239 
(1980).
    6. Lamparski, L. L., and Nestrick, T. J. ``Determination of Tetra-, 
Hepta-, and Octachlorodibenzo-p-dioxin Isomers in Particulate Samples at 
Parts per Trillion Levels,'' Analytical Chemistry, 52, 2045 (1980).
    7. Longhorst, M. L., and Shadoff, L. A. ``Determination of Parts-
per-Trillion Concentrations of Tetra-, Hexa-, and Octachlorodibenzo-p-
dioxins in Human Milk,'' Analytical Chemistry, 52, 2037 (1980).
    8. ``Carcinogens--Working with Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    9. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occuptional Safety and Health Administration, OSHA 2206 
(Revised, January 1976).

[[Page 219]]

    10. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    11. Provost, L. P., and Elder, R. S., ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.3.3 is two times the value 1.22 
derived in this report.)
    12. ASTM Annual Book of Standards, Part 31, D3370-76, ``Standard 
Practices for Sampling Water,'' American Society for Testing and 
Materials, Philadelphia.
    13. ``Methods, 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    14. Wong, A.S. et al. ``The Determination of 2,3,7,8-TCDD in 
Industrial and Municipal Wastewaters, Method 613, Part 1--Development 
and Detection Limits,'' G. Choudhay, L. Keith, and C. Ruppe, ed., 
Butterworth Inc., (1983).
    15. ``EPA Method Study 26, Method 613: 2,3,7,8-Tetrachlorodibenzo-p-
dioxin,'' EPA 600/4-84-037, National Technical Information Service, 
PB84-188879, Springfield, Virginia 22161, May 1984.

     Table 1--Chromatographic Conditions and Method Detection Limit
------------------------------------------------------------------------
                                                                Method
                                                   Retention   detection
                    Parameter                         time       limit
                                                     (min)    ([micro]g/
                                                                  L)
------------------------------------------------------------------------
2,3,7,8-TCDD.....................................       13.1       0.002
------------------------------------------------------------------------
Column conditions: SP-2330 coated on a 60 m long x 0.25 mm ID glass
  column with hydrogen carrier gas at 40 cm/sec linear velocity,
  splitless injection using tetradecane. Column temperature held
  isothermal at 200[deg]C for 1 min, then programmed at 8[deg]C/min to
  250 [deg]C and held. Use of helium carrier gas will approximately
  double the retention time.


                                   Table 2--QC Acceptance Criteria--Method 613
----------------------------------------------------------------------------------------------------------------
                                                                              Limit for
                                                                 Test conc.       s        Range for X    Range
                           Parameter                             ([micro]g/  ([micro]g/   ([micro]g/L)    for P,
                                                                     L)          L)                       Ps (%)
----------------------------------------------------------------------------------------------------------------
2,3,7,8-TCDD...................................................      0.100      0.0276    0.0523-0.1226   45-129
----------------------------------------------------------------------------------------------------------------
s=Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X=Average recovery for four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps=Percent recovery measured (Section 8.3.2, Section 8.4.2).
 
Note: These criteria are based directly upon the method performance data in Table 3. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 3.


                Table 3--Method Accuracy and Precision as Functions of Concentration--Method 613
----------------------------------------------------------------------------------------------------------------
                                                         Accuracy, as       Single analyst,
                      Parameter                          recovery, X '      precision, sr '   Overall precision,
                                                         ([micro]g/L)         ([micro]/L)      S ' ([micro]/g/L)
----------------------------------------------------------------------------------------------------------------
2,3,7,8-TCDD........................................       0.86C+0.00145       0.13X+0.00129       0.19X+0.00028
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements. of a sample containing a concentration of C, in [micro]g/L.
sr'=Expected single analyst standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found of X, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.

                         Method 624--Purgeables

                        1. Scope and Application

    1.1 This method covers the determination of a number of purgeable 
organics. The following parameters may be determined by this method:

------------------------------------------------------------------------
                                                    STORET
                    Parameter                         No.      CAS No.
------------------------------------------------------------------------
Benzene..........................................     34030      71-43-2
Bromodichloromethane.............................     32101      75-27-4
Bromoform........................................     32104      75-25-2
Bromomethane.....................................     34413      74-83-9
Carbon tetrachloride.............................     32102      56-23-5
Chlorobenzene....................................     34301     108-90-7
Chloroethane.....................................     34311      75-00-3
2-Chloroethylvinyl ether.........................     34576     110-75-8
Chloroform.......................................     32106      67-66-3
Chloromethane....................................     34418      74-87-3
Dibromochloromethane.............................     32105     124-48-1
1,2-Dichlorobenzene..............................     34536      95-50-1
1,3-Dichlorobenzene..............................     34566     541-73-1
1,4-Dichlorobenzene..............................     34571     106-46-7
1,1-Dichloroethane...............................     34496      75-34-3
1,2-Dichloroethane...............................     34531     107-06-2
1,1-Dichloroethane...............................     34501      75-35-4
trans-1,2-Dichloroethene.........................     34546     156-60-5
1,2-Dichloropropane..............................     34541      78-87-5
cis-1,3-Dichloropropene..........................     34704   10061-01-5
trans-1,3-Dichloropropene........................     34699   10061-02-6
Ethyl benzene....................................     34371     100-41-4
Methylene chloride...............................     34423      75-09-2
1,1,2,2-Tetrachloroethane........................     34516      79-34-5
Tetrachloroethene................................     34475     127-18-4
Toluene..........................................     34010     108-88-3
1,1,1-Trichloroethene............................     34506      71-55-6
1,1,2-Trichloroethene............................     34511      79-00-5
Trichloroethane..................................     39180      79-01-6
Trichlorofluoromethane...........................     34488      75-69-4
Vinyl chloride...................................     39175      75-01-4
------------------------------------------------------------------------


[[Page 220]]

    1.2 The method may be extended to screen samples for acrolein 
(STORET No. 34210, CAS No. 107-02-8) and acrylonitrile (STORET No. 
34215, CAS No. 107-13-1), however, the preferred method for these two 
compounds in Method 603.
    1.3 This is a purge and trap gas chromatographic/mass spectrometer 
(GC/MS) method applicable to the determination of the compounds listed 
above in municipal and industrial discharges as provided under 40 CFR 
136.1.
    1.4 The method detection limit (MDL, defined in Section 14.1) \1\ 
for each parameter is listed in Table 1. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.5 Any modification to this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5. Depending upon the nature of the modification and the extent 
of intended use, the applicant may be required to demonstrate that the 
modifications will produce equivalent results when applied to relevant 
wastewaters.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the operation of a purge and trap system and a 
gas chromatograph/mass spectrometer and in the interpretation of mass 
spectra. Each analyst must demonstrate the ability to generate 
acceptable results with this method using the procedure described in 
Section 8.2.

                          2. Summary of Method

    2.1 An inert gas is bubbled through a 5-mL water sample contained in 
a specially-designed purging chamber at ambient temperature. The 
purgeables are efficiently transferred from the aqueous phase to the 
vapor phase. The vapor is swept through a sorbent trap where the 
purgeables are trapped. After purging is completed, the trap is heated 
and backflushed with the inert gas to desorb the purgeables onto a gas 
chromatographic column. The gas chromatograph is temperature programmed 
to separate the purgeables which are then detected with a mass 
spectrometer. \2,3\

                            3. Interferences

    3.1 Impurities in the purge gas, organic compounds outgassing from 
the plumbing ahead of the trap, and solvent vapors in the laboratory 
account for the majority of contamination problems. The analytical 
system must be demonstated to be free from contamination under the 
conditions of the analysis by running laboratory reagent blanks as 
described in Section 8.1.3. The use of non-Teflon plastic tubing, non-
Teflon thread sealants, or flow controllers with rubber components in 
the purge and trap system should be avoided.
    3.2 Samples can be contaminated by diffusion of volatile organics 
(particularly fluorocarbons and methylene chloride) through the septum 
seal into the sample during shipment and storage. A field reagent blank 
prepared from reagent water and carried through the sampling and 
handling protocol can serve as a check on such contamination.
    3.3 Contamination by carry-over can occur whenever high level and 
low level samples are sequentially analyzed. To reduce carry-over, the 
purging device and sample syringe must be rinsed with reagent water 
between sample analyses. Whenever an unusually concentrated sample is 
encountered, it should be followed by an analysis of reagent water to 
check for cross contamination. For samples containing large amounts of 
water-soluble materials, suspended solids, high boiling compounds or 
high pureeable levels, it may be necessary to wash the purging device 
with a detergent solution, rinse it with distilled water, and then dry 
it in a 105 [deg]C oven between analyses. The trap and other parts of 
the system are also subject to contamination; therefore, frequent 
bakeout and purging of the entire system may be required.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method has not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this methmd. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
4-6 for the information of the analyst.
    4.2. The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: benzene, carbon tetrachloride, chloroform, 1,4-
dichlorobenzene, and vinyl chloride. Primary standards of these toxic 
compounds should be prepared in a hood. A NIOSH/MESA approved toxic gas 
respirator should be worn when the analyst handles high concentrations 
of these toxic compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete sampling.

[[Page 221]]

    5.1.1 Vial--25-mL capacity or larger, equipped with a screw cap with 
a hole in the center (Pierce 13075 or equivalent). Detergent 
wash, rinse with tap and distilled water, and dry at 105 [deg]C before 
use.
    5.1.2 Septum--Teflon-faced silicane (Pierce 12722 or 
equivalent). Detergent wash, rinse with tap and distilled water, and dry 
at 105 [deg]C for 1 h before use.
    5.2 Purge and trap system--The purge and trap system consists of 
three separate pieces of equipment: A purging device, trap, and 
desorber. Several complete systems are now commercially available.
    5.2.1 The purging device must be designed to accept 5-mL samples 
with a water column at least 3 cm deep. The gaseous head space between 
the water column and the trap must have a total volume of less than 15 
mL. The purge gas must pass though the water column as finely divided 
bubbles with a diameter of less than 3 mm at the origin. The purge gas 
must be introduced no more than 5 mm from the base of the water column. 
The purging device illustrated in Figure 1 meets these design criteria.
    5.2.2 The trap must be at least 25 cm long and have an inside 
diameter of at least 0.105 in. The trap must be packed to contain the 
following minimum lengths of adsorbents: 1.0 cm of methyl silicone 
coated packing (Section 6.3.2), 15 cm of 2,6-dyphenylene oxide polymer 
(Section 6.3.1), and 8 cm of silica gel (Section 6.3.3). The minimum 
specifications for the trap are illustrated in Figure 2.
    5.2.3 The desorber should be capable of rapidly heating the trap to 
180 [deg]C. The polymer section of the trap should not be heated higher 
than 180 [deg]C and the remaining sections should not exceed 200 [deg]C. 
The desorber illustrated in Figure 2 meets these design criteria.
    5.2.4 The purge and trap system may be assembled as a separate unit 
or be coupled to a gas chromatograph as illustrated in Figures 3 and 4.
    5.3 GC/MS system:
    5.3.1 Gas chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph suitable for on-column 
injection and all required accessories including syringes, analytical 
columns, and gases.
    5.3.2 Column--6 ft long x 0.1 in ID stainless steel or glass, packed 
with 1% SP-1000 on Carbopack B (60/80 mesh) or equivalent. This column 
was used to develop the method performance statements in Section 14. 
Guidelines for the use of alternate column packings are provided in 
Section 11.1.
    5.3.3 Mass spectrometer--Capable of scanning from 20 to 260 amu 
every 7 s or less, utilizing 70 V (nominal) electron energy in the 
electron impact ionization mode, and producing a mass spectrum which 
meets all the criteria in Table 2 when 50 ng of 4-bromofluorobenzene 
(BFB) is injected through the GC inlet.
    5.3.4 GC/MS interface--Any GC to MS interface that gives acceptable 
calibration points at 50 ng or less per injection for each of the 
parameters of interest and achieves all acceptable performance criteria 
(Section 10) may be used. GC to MS interfaces constructed of all glass 
or glass-lined materials are recommended. Glass can be deactivated by 
silanizing with dichlorodimethylsilane.
    5.3.5 Data system--A computer system must be interfaced to the mass 
spectrometer that allows the continuous acquisition and storage on 
machine-readable media of all mass spectra obtained throughout the 
duration of the chromatographic program. The computer must have software 
that allows searching any GC/MS data file for specific m/z (masses) and 
plotting such m/z abundances versus time or scan number. This type of 
plot is defined as an Extracted Ion Current Profile (EICP). Software 
must also be available that allows integrating the abundance in any EICP 
between specified time or scan number limits.
    5.4 Syringes--5-mL, glass hypodermic with Luerlok tip (two each), if 
applicable to the purging device.
    5.5 Micro syringes--25-[micro]L, 0.006 in. ID needle.
    5.6 Syringe valve--2-way, with Luer ends (three each).
    5.7 Syringe--5-mL, gas-tight with shut-off valve.
    5.8 Bottle--15-mL, screw-cap, with Teflon cap liner.
    5.9 Balance--Analytical, capable of accurately weighing 0.0001 g.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.1.1 Reagent water can be generated by passing tap water through a 
carbon filter bed containing about 1 lb of activated carbon (Filtrasorb-
300, Calgon Corp., or equivalent).
    6.1.2 A water purification system (Millipore Super-Q or equivalent) 
may be used to generate reagent water.
    6.1.3 Reagent water may also be prepared by boiling water for 15 
min. Subsequently, while maintaining the temperature at 90 [deg]C, 
bubble a contaminant-free inert gas through the water for 1 h. While 
still hot, transfer the water to a narrow mouth screw-cap bottle and 
seal with a Teflon-lined septum and cap.
    6.2 Sodium thiosulfate--(ACS) Granular.
    6.3 Trap materials:
    6.3.1 2,6-Diphenylene oxide polymer--Tenax, (60/80 mesh), 
chromatographic grade or equivalent.
    6.3.2 Methyl silicone packing--3% OV-1 on Chromosorb-W (60/80 mesh) 
or equivalent.

[[Page 222]]

    6.3.3 Silica gel--35/60 mesh, Davison, grade-15 or equivalent.
    6.4 Methanol--Pesticide quality or equivalent.
    6.5 Stock standard solutions--Stock standard solutions may be 
prepared from pure standard materials or purchased as certified 
solutions. Prepare stock standard solutions in methanol using assayed 
liquids or gases as appropriate. Because of the toxicity of some of the 
compounds, primary dilutions of these materials should be prepared in a 
hood. A NIOSH/MESA approved toxic gas respirator should be used when the 
analyst handles high concentrations of such materials.
    6.5.1 Place about 9.8 mL of methanol into a 10-mL ground glass 
stoppered volumetric flask. Allow the flask to stand, unstoppered, for 
about 10 min or until all alcohol wetted surfaces have dried. Weigh the 
flask to the nearest 0.1 mg.
    6.5.2 Add the assayed reference material:
    6.5.2.1 Liquids--Using a 100-[micro]L syringe, immediately add two 
or more drops of assayed reference material to the flask, then reweigh. 
Be sure that the drops fall directly into the alcohol without contacting 
the neck of the flask.
    6.5.2.2 Gases--To prepare standards for any of the four halocarbons 
that boil below 30 [deg]C (bromomethane, chloroethane, chloromethane, 
and vinyl chloride), fill a 5-mL valved gas-tight syringe with the 
reference standard to the 5.0-mL mark. Lower the needle to 5 mm above 
the methanol meniscus. Slowly introduce the reference standard above the 
surface of the liquid (the heavy gas will rapidly dissolve in the 
methanol).
    6.5.3 Reweigh, dilute to volume, stopper, then mix by inverting the 
flask several times. Calculate the concentration in [micro]g/[micro]L 
from the net gain in weight. When compound purity is assayed to be 96% 
or greater, the weight may be used without correction to calculate the 
concentration of the stock standard. Commercially prepared stock 
standards may be used at any concentration if they are certified by the 
manufacturer or by an independent source.
    6.5.4 Transfer the stock standard solution into a Teflon-sealed 
screw-cap bottle. Store, with minimal headspace, at -10 to -20 [deg]C 
and protect from light.
    6.5.5 Prepare fresh standards weekly for the four gases and 2-
chloroethylvinyl ether. All other standards must be replaced after one 
month, or sooner if comparison with check standards indicates a problem.
    6.6 Secondary dilution standards--Using stock solutions, prepare 
secondary dilution standards in methanol that contain the compounds of 
interest, either singly or mixed together. The secondary dilution 
standards should be prepared at concentrations such that the aqueous 
calibration standards prepared in Section 7.3 will bracket the working 
range of the analytical system. Secondary dilution standards should be 
stored with minimal headspace and should be checked frequently for signs 
of degradation or evaporation, especially just prior to preparing 
calibration standards from them.
    6.7 Surrogate standard spiking solution--Select a minimum of three 
surrogate compounds from Table 3. Prepare stock standard solutions for 
each surrogate standard in methanol as described in Section 6.5. Prepare 
a surrogate standard spiking solution from these stock standards at a 
concentration of 15 [micro]g/mL in water. Store the solutions at 4 
[deg]C in Teflon-sealed glass containers with a minimum of headspace. 
The solutions should be checked frequently for stability. The addition 
of 10 [micro]L of this solution of 5 mL of sample or standard is 
equivalent to a concentration of 30 [micro]g/L of each surrogate 
standard.
    6.8 BFB Standard--Prepare a 25 [micro]g/mL solution of BFB in 
methanol.
    6.9 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Assemble a purge and trap system that meets the specifications 
in Section 5.2. Condition the trap overnight at 180 [deg]C by 
backflushing with an inert gas flow of at least 20 mL/min. Condition the 
trap for 10 min once daily prior to use.
    7.2 Connect the purge and trap system to a gas chromatograph. The 
gas chromatograph must be operated using temperature and flow rate 
conditions equivalent to those given in Table 1.
    7.3 Internal standard calibration procedure--To use this approach, 
the analyst must select three or more internal standards that are 
similar in analytical behavior to the compounds of interest. The analyst 
must further demonstrate that the measurement of the internal standard 
is not affected by method or matrix interferences. Some recommended 
internal standards are listed in Table 3.
    7.3.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter by carefully adding 20.0 
[micro]L of one or more secondary dilution standards to 50, 250, or 500 
mL of reagent water. A 25-[micro]L syringe with a 0.006 in. ID needle 
should be used for this operation. One of the calibration standards 
should be at a concentration near, but above, the MDL (Table 1) and the 
other concentrations should correspond to the expected range of 
concentrations found in real samples or should define the working range 
of the GC/MS system. These aqueous standards can be stored up to 24 h, 
if held in sealed vials with zero headspace as described in Section 9.2. 
If not so stored, they must be discarded after 1 h.
    7.3.2 Prepare a spiking solution containing each of the internal 
standards using the procedures described in Sections 6.5 and

[[Page 223]]

6.6. It is recommended that the secondary dilution standard be prepared 
at a concentration of 15 [micro]g/mL of each internal standard compound. 
The addition of 10 [micro]L of this standard to 5.0 mL of sample or 
calibration standard would be equivalent to 30 [micro]g/L.
    7.3.3 Analyze each calibration standard according to Section 11, 
adding 10 [micro]L of internal standard spiking solution directly to the 
syringe (Section 11.4). Tabulate the area response of the characteristic 
m/z against concentration for each compound and internal standard, and 
calculate response factors (RF) for each compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.124

                                                              Equation 1

where:
As=Area of the characteristic m/z for the parameter to be 
measured.
Ais=Area of the characteristic m/z for the inernal standard.
Cis=Concentration of the internal standard.
Cs=Concentration of the parameter to be measured.

If the RF value over the working range is a constant (<35% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.4 The working calibration curve or RF must be verified on each 
working day by the measurement of a QC check sample.
    7.4.1 Prepare the QC check sample as described in Section 8.2.2.
    7.4.2 Analyze the QC check sample according to the method beginning 
in Section 10.
    7.4.3 For each parameter, compare the response (Q) with the 
corresponding calibration acceptance criteria found in Table 5. If the 
responses for all parameters of interest fall within the designated 
ranges, analysis of actual samples can begin. If any individual Q falls 
outside the range, proceed according to Section 7.4.4.
    Note: The large number of parameters in Table 5 present a 
substantial probability that one or more will not meet the calibration 
acceptance criteria when all parameters are analyzed.
    7.4.4 Repeat the test only for those parameters that failed to meet 
the calibration acceptance criteria. If the response for a parameter 
does not fall within the range in this second test, a new calibration 
curve or RF must be prepared for that parameter according to Section 
7.3.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occurring in 
chromatography, the analyst is permitted certain options (detailed in 
Section 11.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Each day, the analyst must analyze a reagent water blank to 
demonstrate that interferences from the analytical system are under 
control.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 5% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 5% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must spike all samples with surrogate standards 
to monitor continuing laboratory performance. This procedure is 
described in Section 8.5.
    8.1.7 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.6.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 10 [micro]g/
mL in methanol. The QC check sample concentrate must be obtained from 
the U.S. Environmental Protection Agency, Environmental Monitoring and 
Support Laboratory in Cincinnati, Ohio, if available. If not available 
from that source, the QC check sample

[[Page 224]]

concentrate must be obtained from another external source. If not 
available from either source above, the QC check sample concentrate must 
be prepared by the laboratory using stock standards prepared 
independently from those used for calibration.
    8.2.2 Prepare a QC check sample to contain 20 [micro]g/L of each 
parameter by adding 200 [micro]L of QC check sample concentrate to 100 
mL of reagent water.
    8.2.3 Analyze four 5-mL aliquots of the well-mixed QC check sample 
according to the method beginning in Section 10.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
of interest using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 5. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 5 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.3.
    8.2.6.2 Beginning with Section 8.2.3, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.3.
    8.3 The laboratory must, on an ongoing basis, spike at least 5% of 
the samples from each sample site being monitored to assess accuracy. 
For laboratories analyzing 1 to 20 samples per month, at least one 
spiked sample per month is required.
    8.3.1 The concentration of the spike in the sample should be 
determined as follows:
    8.3.1.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 20 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.2 Analyze one 5-mL sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second 5-mL sample aliquot with 10 
[micro]L of the QC check sample concentrate and analyze it to determine 
the concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 5. These acceptance 
criteria wer calculated to include an allowance for error in measurement 
of both the background and spike concentrations, assuming a spike to 
background ratio of 5:1. This error will be accounted for to the extent 
that the analyst's spike to background ratio approaches 5:1. \7\ If 
spiking was performed at a concentration lower than 20 [micro]g/L, the 
analyst must use either the QC acceptance criteria in Table 5, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recoveryof a parameter: (1) Calculate accuracy (X') using the equation 
in Table 6, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 6, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T) (2.44(100 S'/T)%. \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required anlaysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory. If the entire list of parameters in Table 5 must be measured 
in the sample in Section 8.3, the probability that the analysis of a QC 
check standard will be required is high. In this case the QC check 
standard should be routinely analyzed with the spiked sample.
    8.4.1 Prepare the QC check standard by adding 10 [micro]L of QC 
check sample concentrate (Section 8.2.1 or 8.3.2) to 5 mL of reagent 
water. The QC check standard needs only to

[[Page 225]]

contain the parameters that failed criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(PS) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (PS) for each 
parameter with the corresponding QC acceptance criteria found in Table 
5. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As a quality control check, the laboratory must spike all 
samples with the surrogate standard spiking solutions as described in 
Section 11.4, and calculate the percent recovery of each surrogate 
compound.
    8.6 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent recovery interval from P--2sp to P + 
2sp. If P=90% and sp=10%, for example, the 
accuracy interval is expressed as 70-110%. Update the accuracy 
assessment for each parameter a regular basis (e.g. after each five to 
ten new accuracy measurements).
    8.7 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of the samples. Field duplicates may be analyzed to assess the 
precision of the environmental measurements. Whenever possible, the 
laboratory should analyze standard reference materials and participate 
in relevant performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 All samples must be iced or refrigerated from the time of 
collection until analysis. If the sample contains residual chlorine, add 
sodium thiosulfate preservative (10 mg/40 mL is sufficient for up to 5 
ppm Cl2) to the empty sample bottle just prior to shipping to 
the sampling site. EPA Methods 330.4 and 330.5 may be used for 
measurement of residual chlorine. \8\ Field test kits are available for 
this purpose.
    9.2 Grab samples must be collected in glass containers having a 
total volume of at least 25 mL. Fill the sample bottle just to 
overflowing in such a manner that no air bubbles pass through the sample 
as the bottle is being filled. Seal the bottle so that no air bubbles 
are entrapped in it. If preservative has been added, shake vigorously 
for 1 min. Maintain the hermetic seal on the sample bottle until time of 
analysis.
    9.3 Experimental evidence indicates that some aromatic compounds, 
notably benzene, toluene, and ethyl benzene are susceptible to rapid 
biological degradation under certain environmental conditions. \3\ 
Refrigeration alone may not be adequate to preserve these compounds in 
wastewaters for more than seven days. For this reason, a separate sample 
should be collected, acidified, and analyzed when these aromatics are to 
be determined. Collect about 500 mL of sample in a clean container. 
Adjust the pH of the sample to about 2 by adding 1+1 HCl while stirring 
vigorously, Check pH with narrow range (1.4 to 2.8) pH paper. Fill a 
sample container as described in Section 9.2.
    9.4 All samples must be analyzed within 14 days of collection. \3\

                    10. Daily GC/MS Performance Tests

    10.1 At the beginning of each day that analyses are to be performed, 
the GC/MS system must be checked to see if acceptable performance 
criteria are achieved for BFB. \9\ The performance test must be passed 
before any samples, blanks, or standards are analyzed, unless the 
instrument has met the DFTPP test described in Method 625 earlier in the 
day. \10\
    10.2 These performance tests require the following instrumental 
parameters:

    Electron Energy: 70 V (nominal)
    Mass Range: 20 to 260 amu
    Scan Time: To give at least 5 scans per peak but not to exceed 7 s 
per scan.

    10.3 At the beginning of each day, inject 2 [micro]L of BFB solution 
directly on the column. Alternatively, add 2 [micro]L of BFB solution to 
5.0 mL of reagent water or standard solution and analyze the solution 
according to section 11. Obtain a background-corrected mass spectrum of 
BFB and confirm that all the key m/z criteria in Table 2 are achieved. 
If all the criteria are not achieved, the analyst must retune the mass 
spectrometer and repeat the test until all criteria are achieved.

                11. Sample Purging and Gas Chromatography

    11.1 Table 1 summarizes the recommended operating conditions for the 
gas chromatograph. Included in this table are retention times and MDL 
that can be achieved under these conditions. An example of the 
separations achieved by this column is shown in Figure 5. Other packed 
columns or chromatographic conditions may be used if the requirements of 
Section 8.2 are met.

[[Page 226]]

    11.2 After achieving the key m/z abundance criteria in Section 10, 
calibrate the system daiy as described in Section 7.
    11.3 Adjust the purge gas (helium) flow rate to 40 mL/min. Attach 
the trap inlet to the purging device, and set the purge and trap system 
to purge (Figure 3). Open the syringe valve located on the purging 
device sample introduction needle.
    11.4 Allow the sample to come to ambient temperature prior to 
introducing it into the syringe. Remove the plunger from a 5-mL syringe 
and attach a closed syringe valve. Open the sample bottle (or standard) 
and carefully pour the sample into the syringe barrel to just short of 
overflowing. Replace the syringe plunger and compress the sample. Open 
the syringe valve and vent any residual air while adjusting the sample 
volume to 5.0 mL. Since this process of taking an aliquot destroys the 
validity of the sample for future analysis, the analyst should fill a 
second syringe at this time to protect against possible loss of data. 
Add 10.0 [micro]L of the surrogate spiking solution (Section 6.7) and 
10.0 [micro]L of the internal standard spiking solution (Section 7.3.2) 
through the valve bore, then close the valve. The surrogate and internal 
standards may be mixed and added as a single spiking solution.
    11.5 Attach the syringe-syringe valve assembly to the syringe valve 
on the purging device. Open the syringe valves and inject the sample 
into the purging chamber.
    11.6 Close both valves and purge the sample for 11.0 0.1 min at ambient temperature.
    11.7 After the 11-min purge time, attach the trap to the 
chromatograph, adjust the purge and trap system to the desorb mode 
(Figure 4), and begin to temperature program the gas chromatograph. 
Introduce the trapped materials to the GC column by rapidly heating the 
trap to 180 [deg]C while backflushing the trap with an inert gas between 
20 and 60 mL/min for 4 min. If rapid heating of the trap cannot be 
achieved, the GC cloumn must be used as a secondary trap by cooling it 
to 30 [deg]C (subambient temperature, if problems persist) instead of 
the initial program temperature of 45 [deg]C.
    11.8 While the trap is being desorbed into the gas chromatograph, 
empty the purging chamber using the sample introduction syringe. Wash 
the chamber with two 5-mL flushes of reagent water.
    11.9 After desorbing the sample for 4 min, recondition the trap by 
returning the purge and trap system to the purge mode. Wait 15 s then 
close the syringe valve on the purging device to begin gas flow through 
the trap. The trap temperature should be maintained at 180 [deg]C. After 
approximately 7 min, turn off the trap heater and open the syringe valve 
to stop the gas flow through the trap. When the trap is cool, the next 
sample can be analyzed.
    11.10 If the response for any m/z exceeds the working range of the 
system, prepare a dilution of the sample with reagent water from the 
aliquot in the second syringe and reanalyze.

                     12. Qualitative Identification

    12.1 Obtain EICPs for the primary m/z (Table 4) and at least two 
secondary masses for each parameter of interest. The following criteria 
must be met to make a qualitative identification:
    12.1.1 The characteristic masses of each parameter of interest must 
maximize in the same or within one scan of each other.
    12.1.2 The retention time must fall within 30 
s of the retention time of the authentic compound.
    12.1.3 The relative peak heights of the three characteristic masses 
in the EICPs must fall within 20% of the relative 
intensities of these masses in a reference mass spectrum. The reference 
mass spectrum can be obtained from a standard analyzed in the GC/MS 
system or from a reference library.
    12.2 Structural isomers that have very similar mass spectra and less 
than 30 s difference in retention time, can be explicitly identified 
only if the resolution between authentic isomers in a standard mix is 
acceptable. Acceptable resolution is achieved if the baseline to valley 
height between the isomers is less than 25% of the sum of the two peak 
heights. Otherwise, structural isomers are identified as isomeric pairs.

                            13. Calculations

    13.1 When a parameter has been identified, the quantitation of that 
parameter should be based on the integrated abundance from the EICP of 
the primary characteristic m/z given in Table 4. If the sample produces 
an interference for the primary m/z, use a secondary characteristic m/z 
to quantitate.
    Calculate the concentration in the sample using the response factor 
(RF) determined in Section 7.3.3 and Equation 2.
[GRAPHIC] [TIFF OMITTED] TC15NO91.125

                                                              Equation 2

where:
AS=Area of the characteristic m/z for the parameter or 
surrogate standard to be measured.
Ais=Area of the characteristic m/z for the internal standard.
Cis=Concentration of the internal standard.

    13.2 Report results in [micro]g/L without correction for recovery 
data. All QC data obtained should be reported with the sample results.

[[Page 227]]

                         14. Method Performance

    14.1 The method detection limit (MDL) is defined as the minimum 
concentration of a substance that can be measured and reported with 99% 
confidence that the value is above zero. \1\ The MDL concentrations 
listed in Table 1 were obtained using reagent water. \11\ Similar 
results were achieved using representative wastewaters. The MDL actually 
achieved in a given analysis will vary depending on instrument 
sensitivity and matrix effects.
    14.2 This method was tested by 15 laboratories using reagent water, 
drinking water, surface water, and industrial wastewaters spiked at six 
concentrations over the range 5-600 [micro]g/L. \12\ Single operator 
precision, overall precision, and method accuracy were found to be 
directly related to the concentration of the parameter and essentially 
independent of the sample matrix. Linear equations to describe these 
relationships are presented in Table 5.

                               References

    1. 40 CFR part 136, appendix B.
    2. Bellar, T.A., and Lichtenberg, J.J. ``Determining Volatile 
Organics at Microgram-per-Litre Levels by Gas Chromatography,'' Journal 
American Water Works Association, 66, 739 (1974).
    3. Bellar, T.A., and Lichtenberg, J.J. ``Semi-Automated Headspace 
Analysis of Drinking Waters and Industrial Waters for Purgeable Volatile 
Organic Compounds, '' Measurement of Organic Pollutants in Water and 
Wastewater, C.E. Van Hall, editor, American Society for Testing and 
Materials, Philadelphia, PA. Special Technical Publication 686, 1978.
    4. ``Carcinogens--Working With Carcinogens,'' Department of Health, 
Education, and Welfare, Public Health Service, Center for Disease 
Control, National Institute for Occupational Safety and Health, 
Publication No. 77-206, August 1977.
    5. ``OSHA Safety and Health Standards, General Industry,'' (29 CFR 
part 1910), Occupational Safety and Health Administration, OSHA 2206 
(Revised, January 1976).
    6. ``Safety in Academic Chemistry Laboratories,'' American Chemical 
Society Publication, Committee on Chemical Safety, 3rd Edition, 1979.
    7. Provost, L.P., and Elder, R.S. ``Interpretation of Percent 
Recovery Data,'' American Laboratory, 15, 58-63 (1983). (The value 2.44 
used in the equation in Section 8.2.3 is two times the value 1.22 
derived in this report.)
    8. ``Methods 330.4 (Titrimetric, DPD-FAS) and 330.5 
(Spectrophotometric, DPD) for Chlorine, Total Residual,'' Methods for 
Chemical Analysis of Water and Wastes, EPA-600/4-79-020, U.S. 
Environmental Protection Agency, Environmental Monitoring and Support 
Laboratory, Cincinnati, Ohio 45268, March 1979.
    9. Budde, W.L., and Eichelberger, J.W. ``Performance Tests for the 
Evaluation of Computerized Eas Chromatography/Mass Spectrometry 
Equipment and Laboratories,'' EPA-600/4-80-025, U.S. Environmental 
Protection Agency, Environmental Monitoring and Support Laboratory, 
Cincinnati, Ohio 45268, April 1980.
    10. Eichelberger, J.W., Harris, L.E., and Budde, W.L. ``Reference 
Compound to Calibrate Ion Abundance Measurement in Gas Chromatography--
Mass Spectrometry Systems,'' Analytical Chemistry, 47, 995-1000 (1975).
    11. ``Method Detection Limit for Methods 624 and 625,'' Olynyk, P., 
Budde, W.L., and Eichelberger, J.W. Unpublished report, May 14, 1980.
    12. ``EPA Method Study 29 EPA Method 624--Purgeables,'' EPA 600/4-
84-054, National Technical Information Service, PB84-209915, 
Springfield, Virginia 22161, June 1984.
    13.``Method Performance Data for Method 624,'' Memorandum from R. 
Slater and T. Pressley, U.S. Environmental Protection Agency, 
Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268, 
January 17, 1984.

     Table 1--Chromatographic Conditions and Method Detection Limits
------------------------------------------------------------------------
                                                                Method
                                                               detection
                    Parameter                      Retention     limit
                                                  time (min)  ([micro]g/
                                                                  L)
------------------------------------------------------------------------
Chloromethane...................................         2.3          nd
Bromomethane....................................         3.1          nd
Vinyl chloride..................................         3.8          nd
Chloroethane....................................         4.6          nd
Methylene chloride..............................         6.4         2.8
Trichlorofluoromethane..........................         8.3          nd
1,1-Dichloroethene..............................         9.0         2.8
1,1-Dichloroethane..............................        10.1         4.7
trans-1,2-Dichloroethene........................        10.8         1.6
Chloroform......................................        11.4         1.6
1,2-Dichloroethane..............................        12.1         2.8
1,1,1-Trichloroethane...........................        13.4         3.8
Carbon tetrachloride............................        13.7         2.8
Bromodichloromethane............................        14.3         2.2
1,2-Dichloroproane..............................        15.7         6.0
cis-1,3-Dichloropropene.........................        15.9         5.0
Trichloroethene.................................        16.5         1.9
Benzene.........................................        17.0         4.4
Dibromochloromethane............................        17.1         3.1
1,1,2-Trichloroethane...........................        17.2         5.0
trans-1,3-Dichloropropene.......................        17.2          nd
2-Chloroethylvinlyl ether.......................        18.6          nd
Bromoform.......................................        19.8         4.7
1,1,2,2-Tetrachloroethane.......................        22.1         6.9
Tetrachloroethene...............................        22.2         4.1
Toluene.........................................        23.5         6.0
Chlorobenzene...................................        24.6         6.0
Ethyl benzene...................................        26.4         7.2
1,3-Dichlorobenzene.............................        33.9          nd
1,2-Dichlorobenzene.............................        35.0          nd

[[Page 228]]

 
1,4-Dichlorobenzene.............................        35.4          nd
------------------------------------------------------------------------
Column conditions: Carbopak B (60/80 mesh) coated with 1% SP-1000 packed
  in a 6 ft by 0.1 in. ID glass column with helium carrier gas at 30 mL/
  min. flow rate. Column temperature held at 45[deg]C for 3 min., then
  programmed at 8[deg]C/min. to 220[deg]C and held for 15 min.
nd=not determined.


                 Table 2--BFB Key m/z Abundance Criteria
------------------------------------------------------------------------
                   Mass                        m/z Abundance criteria
------------------------------------------------------------------------
50........................................  15 to 40% of mass 95.
75........................................  30 to 60% of mass 95.
95........................................  Base Peak, 100% Relative
                                             Abundance.
96........................................  5 to 9% of mass 95.
173.......................................  <2% of mass 174.
174.......................................  50% of mass 95.
175.......................................  5 to 9% of mass 174.
176.......................................  95% but <101% of
                                             mass 174.
177.......................................  5 to 9% of mass 176.
------------------------------------------------------------------------


           Table 3--Suggested Surrogate and Internal Standards
------------------------------------------------------------------------
                                         Retention
                Compound                    time    Primary   Secondary
                                         (min) \a\    m/z       masses
------------------------------------------------------------------------
Benzene d-6............................     17.0        84   ...........
4-Bromofluorobenzene...................     28.3        95      174, 176
1,2-Dichloroethane d-4.................     12.1       102   ...........
1,4-Difluorobenzene....................     19.6       114        63, 88
Ethylbenzene d-5.......................     26.4       111   ...........
Ethylbenzene d-10......................     26.4        98   ...........
Fluorobenzene..........................     18.4        96            70
Pentafluorobenzene.....................     23.5       168   ...........
Bromochloromethane.....................      9.3       128   49, 130, 51
2-Bromo-1-chloropropane................     19.2        77       79, 156
1, 4-Dichlorobutane....................     25.8        55        90, 92
------------------------------------------------------------------------
\a\ For chromatographic conditions, see Table 1.


          Table 4--Characteristic Masses for Purgeable Organics
------------------------------------------------------------------------
              Parameter                Primary          Secondary
------------------------------------------------------------------------
Chloromethane........................      50   52.
Bromomethane.........................      94   96.
Vinyl chloride.......................      62   64.
Chloroethane.........................      64   66.
Methylene chloride...................      84   49, 51, and 86.
Trichlorofluoromethane...............     101   103.
1,1-Dichloroethene...................      96   61 and 98.
1,1-Dichloroethane...................      63   65, 83, 85, 98, and 100.
trans-1,2-Dichloroethene.............      96   61 and 98.
Chloroform...........................      83   85.
1,2-Dichloroethane...................      98   62, 64, and 100.
1,1,1-Trichloroethane................      97   99, 117, and 119.
Carbon tetrachloride.................     117   119 and 121.
Bromodichloromethane.................     127   83, 85, and 129.
1,2-Dichloropropane..................     112   63, 65, and 114.
trans-1,3-Dichloropropene............      75   77.
Trichloroethene......................     130   95, 97, and 132.
Benzene..............................      78   ........................
Dibromochloromethane.................     127   129, 208, and 206.
1,1,2-Trichloroethane................      97   83, 85, 99, 132, and
                                                 134.
cis-1,3-Dichloropropene..............      75   77.
2-Chloroethylvinyl ether.............     106   63 and 65.
Bromoform............................     173   171, 175, 250, 252, 254,
                                                 and 256.
1,1,2,2-Tetrachloroethane............     168   83, 85, 131, 133, and
                                                 166.
Tetrachloroethene....................     164   129, 131, and 166.
Toluene..............................      92   91.
Chlorobenzene........................     112   114.
Ethyl benzene........................     106   91.
1,3-Dichlorobenzene..................     146   148 and 113.
1,2-Dichlorobenzene..................     146   148 and 113.
1,4-Dichlorobenzene..................     146   148 and 113.
------------------------------------------------------------------------


                         Table 5--Calibration and QC Acceptance Criteria--Method 624 \a\
----------------------------------------------------------------------------------------------------------------
                                                                       Limit for
                                                         Range for Q       s        Range for X    Range for P,
                      Parameter                         ([micro]/g/L)  ([micro]/   ([micro]/g/L)      Ps (%)
                                                                          g/L)
----------------------------------------------------------------------------------------------------------------
Benzene..............................................       12.8-27.2        6.9       15.2-26.0          37-151
Bromodichloromethane.................................       13.1-26.9        6.4       10.1-28.0          35-155
Bromoform............................................       14.2-25.8        5.4       11.4-31.1          45-169
Bromomethane.........................................        2.8-37.2       17.9          D-41.2           D-242
Carbon tetrachloride.................................       14.6-25.4        5.2       17.2-23.5          70-140
Chlorobenzene........................................       13.2-26.8        6.3       16.4-27.4          37-160
Chloroethane.........................................        7.6-32.4       11.4        8.4-40.4          14-230
2-Chloroethylvinyl ether.............................          D-44.8       25.9          D-50.4           D-305
Chloroform...........................................       13.5-26.5        6.1       13.7-24.2          51-138
Chloromethane........................................          D-40.8       19.8          D-45.9           D-273
Dibromochloromethane.................................       13.5-26.5        6.1       13.8-26.6          53-149
1,2-Dichlorobenzene..................................       12.6-27.4        7.1       11.8-34.7          18-190
1,3-Dichlorobenzene..................................       14.6-25.4        5.5       17.0-28.8          59-156
1,4-Dichlorobenzene..................................       12.6-27.4        7.1       11.8-34.7          18-190
1,1-Dichloroethane...................................       14.5-25.5        5.1       14.2-28.5          59-155
1,2-Dichloroethane...................................       13.6-26.4        6.0       14.3-27.4          49-155
1,1-Dichlorothene....................................       10.1-29.9        9.1        3.7-42.3           D-234
trans-1,2-Dichloroethene.............................       13.9-26.1        5.7       13.6-28.5          54-156

[[Page 229]]

 
1,2-Dichloropropane..................................        6.8-33.2       13.8        3.8-36.2           D-210
cis-1,3-Dichloropropene..............................        4.8-35.2       15.8        1.0-39.0           D-227
trans-1,3-Dichloropropene............................       10.0-30.0       10.4        7.6-32.4          17-183
Ethyl benzene........................................       11.8-28.2        7.5       17.4-26.7          37-162
Methylene chloride...................................       12.1-27.9        7.4          D-41.0           D-221
1,1,2,2-Tetrachloroethane............................       12.1-27.9        7.4       13.5-27.2          46-157
Tetrachloroethene....................................       14.7-25.3        5.0       17.0-26.6          64-148
Toluene..............................................       14.9-25.1        4.8       16.6-26.7          47-150
1,1,1-Trichloroethane................................       15.0-25.0        4.6       13.7-30.1          52-162
1,1,2-Trichloroethane................................       14.2-25.8        5.5       14.3-27.1          52-150
Trichloroethene......................................       13.3-26.7        6.6       18.6-27.6          71-157
Trichlorofluoromethane...............................        9.6-30.4       10.0        8.9-31.5          17-181
Vinyl chloride.......................................        0.8-39.2       20.0          D-43.5           D-251
----------------------------------------------------------------------------------------------------------------
Q= Concentration measured in QC check sample, in [micro]g/L (Section 7.5.3).
s= Standard deviation of four recovery measurements, in [micro]g/L (Section 8.2.4).
X= Average recovery of four recovery measurements, in [micro]g/L (Section 8.2.4).
P, Ps= Percent recovery measured, (Section 8.3.2, Section 8.4.2).
D= Detected; result must be greater than zero.
\a\ Criteria were calculated assuming a QC check sample concentration of 20 [micro]g/L.
 
Note: These criteria are based directly upon the method performance data in Table 6. Where necessary, the limits
  for recovery have been broadened to assure applicability of the limits to concentrations below those used to
  develop Table 6.


                Table 6--Method Accuracy and Precision as Functions of Concentration--Method 624
----------------------------------------------------------------------------------------------------------------
                                                                      Single analyst
               Parameter                 Accuracy, as recovery,       precision, sr'       Overall precision, S'
                                            X' ([micro]g/L)            ([micro]g/L)            ([micro]g/L)
----------------------------------------------------------------------------------------------------------------
Benzene...............................  0.93C+2.00               0.26X-1.74               0.25X-1.33
Bromodichloromethane..................  1.03C-1.58               0.15X+0.59               0.20X+1.13
Bromoform.............................  1.18C-2.35               0.12X+0.36               0.17X+1.38
Bromomethane \a\......................  1.00C                    0.43X                    0.58X
Carbon tetrachloride..................  1.10C-1.68               0.12X+0.25               0.11X+0.37
Chlorobenzene.........................  0.98C+2.28               0.16X-0.09               0.26X-1.92
Chloroethane..........................  1.18C+0.81               0.14X+2.78               0.29X+1.75
2-Chloroethylvinyl ether \a\..........  1.00C                    0.62X                    0.84X
Chloroform............................  0.93C+0.33               0.16X+0.22               0.18X+0.16
Chloromethane.........................  1.03C+0.81               0.37X+2.14               0.58X+0.43
Dibromochloromethane..................  1.01C-0.03               0.17X-0.18               0.17X+0.49
1,2-Dichlorobenzene \b\...............  0.94C+4.47               0.22X-1.45               0.30X-1.20
1,3-Dichlorobenzene...................  1.06C+1.68               0.14X-0.48               0.18X-0.82
1,4-Dichlorobenzene \b\...............  0.94C+4.47               0.22X-1.45               0.30X-1.20
1,1-Dichloroethane....................  1.05C+0.36               0.13X-0.05               0.16X+0.47
1,2-Dichloroethane....................  1.02C+0.45               0.17X-0.32               0.21X-0.38
1,1-Dichloroethene....................  1.12C+0.61               0.17X+1.06               0.43X-0.22
trans-1,2,-Dichloroethene.............  1.05C+0.03               0.14X+0.09               0.19X+0.17
1,2-Dichloropropane \a\...............  1.00C                    0.33X                    0.45X
cis-1,3-Dichloropropene \a\...........  1.00C                    0.38X                    0.52X
trans-1,3-Dichloropropene \a\.........  1.00C                    0.25X                    0.34X
Ethyl benzene.........................  0.98C+2.48               0.14X+1.00               0.26X-1.72
Methylene chloride....................  0.87C+1.88               0.15X+1.07               0.32X+4.00
1,1,2,2-Tetrachloroethane.............  0.93C+1.76               0.16X+0.69               0.20X+0.41
Tetrachloroethene.....................  1.06C+0.60               0.13X-0.18               0.16X-0.45
Toluene...............................  0.98C+2.03               0.15X-0.71               0.22X-1.71
1,1,1-Trichloroethane.................  1.06C+0.73               0.12X-0.15               0.21X-0.39
1,1,2-Trichloroethane.................  0.95C+1.71               0.14X+0.02               0.18X+0.00
Trichloroethene.......................  1.04C+2.27               0.13X+0.36               0.12X+0.59
Trichloroflouromethane................  0.99C+0.39               0.33X-1.48               0.34X-0.39
Vinyl chloride........................  1.00C                    0.48X                    0.65X
----------------------------------------------------------------------------------------------------------------
X'=Expected recovery for one or more measurements of a sample containing a concentration of C, in [micro]g/L.
S\r\=Expected single analyst standard deviation of measurements at an average concentration found ofX, in
  [micro]g/L.
S'=Expected interlaboratory standard deviation of measurements at an average concentration found ofX, in
  [micro]g/L.
C=True value for the concentration, in [micro]g/L.
X=Average recovery found for measurements of samples containing a concentration of C, in [micro]g/L.
\a\ Estimates based upon the performance in a single laboratory. \13\
\b\ Due to chromatographic resolution problems, performance statements for these isomers are based upon the sums
  of their concentrations.


[[Page 230]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.038


[[Page 231]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.039[[Page 232]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.040


[[Page 233]]

[GRAPHIC] [TIFF OMITTED] TC02JY92.041

                   Method 625--Base/Neutrals and Acids

                        1. Scope and Application

    1.1 This method covers the determination of a number of organic 
compounds that are partitioned into an organic solvent and are amenable 
to gas chromatography. The parameters listed in Tables 1 and 2 may be 
qualitatively and quantitatively determined using this method.
    1.2 The method may be extended to include the parameters listed in 
Table 3. Benzidine can be subject to oxidative losses during solvent 
concentration. Under the alkaline conditions of the extraction step, 
[alpha]-BHC, [gamma]-BHC, endosulfan I and II, and endrin are subject to 
decomposition. Hexachlorocyclopentadiene is subject to thermal 
decomposition in the inlet of the gas chromatograph, chemical reaction 
in acetone solution, and photochemical decomposition. N-
nitrosodimethylamine is difficult to separate from the solvent under the 
chromatographic conditions described. N-nitrosodiphenylamine decomposes 
in the gas chromatographic inlet and cannot be separated from 
diphenylamine. The preferred method for each of these parameters is 
listed in Table 3.
    1.3 This is a gas chromatographic/mass spectrometry (GC/MS) method 
\2,14\ applicable to the determination of the compounds listed in Tables 
1, 2, and 3 in municipal and industrial discharges as provided under 40 
CFR 136.1.

[[Page 234]]

    1.4 The method detection limit (MDL, defined in Section 16.1) \1\ 
for each parameter is listed in Tables 4 and 5. The MDL for a specific 
wastewater may differ from those listed, depending upon the nature of 
interferences in the sample matrix.
    1.5 Any modification to this method, beyond those expressly 
permitted, shall be considered as a major modification subject to 
application and approval of alternate test procedures under 40 CFR 136.4 
and 136.5. Depending upon the nature of the modification and the extent 
of intended use, the applicant may be required to demonstrate that the 
modifications will produce equivalent results when applied to relevant 
wastewaters.
    1.6 This method is restricted to use by or under the supervision of 
analysts experienced in the use of a gas chromatograph/mass spectrometer 
and in the interpretation of mass spectra. Each analyst must demonstrate 
the ability to generate acceptable results with this method using the 
procedure described in Section 8.2.

                          2. Summary of Method

    2.1 A measured volume of sample, approximately 1-L, is serially 
extracted with methylene chloride at a pH greater than 11 and again at a 
pH less than 2 using a separatory funnel or a continuous extractor. \2\ 
The methylene chloride extract is dried, concentrated to a volume of 1 
mL, and analyzed by GC/MS. Qualitative identification of the parameters 
in the extract is performed using the retention time and the relative 
abundance of three characteristic masses (m/z). Quantitative analysis is 
performed using internal standard techniques with a single 
characteristic m/z.

                            3. Interferences

    3.1 Method interferences may be caused by contaminants in solvents, 
reagents, glassware, and other sample processing hardware that lead to 
discrete artifacts and/or elevated baselines in the total ion current 
profiles. All of these materials must be routinely demonstrated to be 
free from interferences under the conditions of the analysis by running 
laboratory reagent blanks as described in Section 8.1.3.
    3.1.1 Glassware must be scrupulously cleaned. \3\ Clean all 
glassware as soon as possible after use by rinsing with the last solvent 
used in it. Solvent rinsing should be followed by detergent washing with 
hot water, and rinses with tap water and distilled water. The glassware 
should then be drained dry, and heated in a muffle furnace at 400 [deg]C 
for 15 to 30 min. Some thermally stable materials, such as PCBs, may not 
be eliminated by this treatment. Solvent rinses with acetone and 
pesticide quality hexane may be substituted for the muffle furnace 
heating. Thmrough rinsing with such solvents usually eliminates PCB 
interference. Volumetric ware should not be heated in a muffle furnace. 
After drying and cooling, glassware should be sealed and stored in a 
clean environment to prevent any accumulation of dust or other 
contaminants. Store inverted or capped with aluminum foil.
    3.1.2 The use of high purity reagents and solvents helps to minimize 
interference problems. Purification of solvents by distillation in all-
glass systems may be required.
    3.2 Matrix interferences may be caused by contaminants that are co-
extracted from the sample. The extent of matrix interferences will vary 
considerably from source to source, depending upon the nature and 
diversity of the industrial complex or municipality being sampled.
    3.3 The base-neutral extraction may cause significantly reduced 
recovery of phenol, 2-methylphenol, and 2,4-dimethylphenol. The analyst 
must recognize that results obtained under these conditions are minimum 
concentrations.
    3.4 The packed gas chromatographic columns recommended for the basic 
fraction may not exhibit sufficient resolution for certain isomeric 
pairs including the following: anthracene and phenanthrene; chrysene and 
benzo(a)anthracene; and benzo(b)fluoranthene and benzo(k)fluoranthene. 
The gas chromatographic retention time and mass spectra for these pairs 
of compounds are not sufficiently different to make an unambiguous 
identification. Alternative techniques should be used to identify and 
quantify these specific compounds, such as Method 610.
    3.5 In samples that contain an inordinate number of interferences, 
the use of chemical ionization (CI) mass spectrometry may make 
identification easier. Tables 6 and 7 give characteristic CI ions for 
most of the compounds covered by this method. The use of CI mass 
spectrometry to support electron ionization (EI) mass spectrometry is 
encouraged but not required.

                                4. Safety

    4.1 The toxicity or carcinogenicity of each reagent used in this 
method have not been precisely defined; however, each chemical compound 
should be treated as a potential health hazard. From this viewpoint, 
exposure to these chemicals must be reduced to the lowest possible level 
by whatever means available. The laboratory is responsible for 
maintaining a current awareness file of OSHA regulations regarding the 
safe handling of the chemicals specified in this method. A reference 
file of material data handling sheets should also be made available to 
all personnel involved in the chemical analysis. Additional references 
to laboratory safety are available and have been identified 
4-6 for the information of the analyst.

[[Page 235]]

    4.2 The following parameters covered by this method have been 
tentatively classified as known or suspected, human or mammalian 
carcinogens: benzo(a)anthracene, benzidine, 3,3'-dichlorobenzidine, 
benzo(a)pyrene, [alpha]-BHC, [beta]-BHC, [delta]-BHC, [gamma]-BHC, 
dibenzo(a,h)anthracene, N-nitrosodimethylamine, 4,4'-DDT, and 
polychlorinated biphenyls (PCBs). Primary standards of these toxic 
compounds should be prepared in a hood. A NIOSH/MESA approved toxic gas 
respirator should be worn when the analyst handles high concentrations 
of these toxic compounds.

                       5. Apparatus and Materials

    5.1 Sampling equipment, for discrete or composit sampling.
    5.1.1 Grab sample bottle--1-L or 1-gt, amber glass, fitted with a 
screw cap lined with Teflon. Foil may be substituted for Teflon if the 
sample is not corrosive. If amber bottles are not available, protect 
samples from light. The bottle and cap liner must be washed, rinsed with 
acetone or methylene chloride, and dried before use to minimize 
contamination.
    5.1.2 Automatic sampler (optional)--The sampler must incorporate 
glass sample containers for the collection of a minimum of 250 mL of 
sample. Sample containers must be kept refrigerated at 4 [deg]C and 
protected from light during compositing. If the sampler uses a 
peristaltic pump, a minimum length of compressible silicone rubber 
tubing may be used. before use, however, the compressible tubing should 
be throughly rinsed with methanol, followed by repeated rinsings with 
distilled water to minimize the potential for contamination of the 
sample. An integrating flow meter is required to collect flow 
proportional composites.
    5.2 Glassware (All specifications are suggested. Catalog numbers are 
included for illustration only.):
    5.2.1 Separatory funnel--2-L, with Teflon stopcock.
    5.2.2 Drying column--Chromatographic column, 19 mm ID, with coarse 
frit
    5.2.3 Concentrator tube, Kuderna-Danish--10-mL, graduated (Kontes K-
570050-1025 or equivalent). Calibration must be checked at the volumes 
employed in the test. Ground glass stopper is used to prevent 
evaporation of extracts.
    5.2.4 Evaporative flask, Kuderna-Danish--500-mL (Kontes K-57001-0500 
or equivalent). Attach to concentrator tube with springs.
    5.2.5 Snyder column, Kuderna-Danish--Three all macro (Kontes K-
503000-0121 or equivalent).
    5.2.6 Snyder column, Kuderna-Danish--Two-ball macro (Kontes K-
569001-0219 or equivalent).
    5.2.7 Vials--10 to 15-mL, amber glass, with Teflon-lined screw cap.
    5.2.8 Continuous liquid--liquid extractor--Equipped with Teflon or 
glass connecting joints and stopcocks requiring no lubrication. 
(Hershberg-Wolf Extractor, Ace Glass Company, Vineland, N.J., P/N 6841-
10 or equivalent.)
    5.3 Boiling chips--Approximately 10/40 mesh. Heat to 400 [deg]C for 
30 min of Soxhlet extract with methylene chloride.
    5.4 Water bath--Heated, with concentric ring cover, capable of 
temperature control (2[deg]C). The bath should be 
used in a hood.
    5.5 Balance--Analytical, capable of accurately weighing 0.0001 g.
    5.6 GC/MS system:
    5.6.1 Gas Chromatograph--An analytical system complete with a 
temperature programmable gas chromatograph and all required accessores 
including syringes, analytical columns, and gases. The injection port 
must be designed for on-column injection when using packed columns and 
for splitless injection when using capillary columns.
    5.6.2 Column for base/neutrals--1.8 m long x 2 mm ID glass, packed 
with 3% SP-2250 on Supelcoport (100/120 mesh) or equivalent. This column 
was used to develop the method performance statements in Section 16. 
Guidelines for the use of alternate column packings are provided in 
Section 13.1.
    5.6.3 Column for acids--1.8 m long x 2 mm ID glass, packed with 1% 
SP-1240DA on Supelcoport (100/120 mesh) or equivalent. This column was 
used to develop the method performance statements in Section 16. 
Guidelines for the use of alternate column packings are given in Section 
13.1.
    5.6.4 Mass spectrometer--Capable of scanning from 35 to 450 amu 
every 7 s or less, utilizing a 70 V (nominal) electron energy in the 
electron impact ionization mode, and producing a mass spectrum which 
meets all the criteria in Table 9 when 50 ng of decafluorotriphenyl 
phosphine (DFTPP; bis(perfluorophenyl) phenyl phosphine) is injected 
through the GC inlet.
    5.6.5 GC/MS interface--Any GC to MS interface that gives acceptable 
calibration points at 50 ng per injection for each of the parameters of 
interest and achieves all acceptable performance criteria (Section 12) 
may be used. GC to MS interfaces constructed of all glass or glass-lined 
materials are recommended. Glass can be deactivated by silanizing with 
dichlorodimethylsilane.
    5.6.6 Data system--A computer system must be interfaced to the mass 
spectrometer that allows the contiluous acquisition and storage on 
machine-readable media of all mass spectra obtained throughout the 
duration of the chromatographic program. The computer must have software 
that allows searching any GC/MS data file for specific m/z and plotting 
such m/z abundances versus time or scan number. This type of plot is 
defined as an Extracted Ion Current Profile (EICP). Software must also 
be available that

[[Page 236]]

allows integrating the abundance in any EICP between specified time or 
scan number limits.

                               6. Reagents

    6.1 Reagent water--Reagent water is defined as a water in which an 
interferent is not observed at the MDL of the parameters of interest.
    6.2 Sodium hydroxide solution (10 N)--Dissolve 40 g of NaOH (ACS) in 
reagent water and dilute to 100 mL.
    6.3 Sodium thiosulfate--(ACS) Granular.
    6.4 Sulfuric acid (1+1)--Slowly, add 50 mL of 
H2SO4 (ACS, sp. gr. 1.84) to 50 mL of reagent 
water.
    6.5 Acetone, methanol, methlylene chloride--Pesticide quality or 
equivalent.
    6.6 Sodium sulfate--(ACS) Granular, anhydrous. Purify by heating at 
400 [deg]C for 4 h in a shallow tray.
    6.7 Stock standard solutions (1.00 [micro]g/[micro]L)--standard 
solutions can be prepared from pure standard materials or purchased as 
certified solutions.
    6.7.1 Prepare stock standard solutions by accurately weighing about 
0.0100 g of pure material. Dissolve the material in pesticide quality 
acetone or other suitable solvent and dilute to volume in a 10-mL 
volumetric flask. Larger volumes can be used at the convenience of the 
analyst. When compound purity is assayed to be 96% or greater, the 
weight may be used without correction to calculate the concentration of 
the stock standard. Commercially prepared stock standards may be used at 
any concentration if they are certified by the manufacturer or by an 
independent source.
    6.7.2 Transfer the stock standard solutions into Teflon-sealed 
screw-cap bottles. Store at 4 [deg]C and protect from light. Stock 
standard solutions should be checked frequently for signs of degradation 
or evaporation, especially just prior to preparing calibration standards 
from them.
    6.7.3 Stock standard solutions must be replaced after six months, or 
sooner if comparison with quality control check samples indicate a 
problem.
    6.8 Surrogate standard spiking solution--Select a minimum of three 
surrogate compounds from Table 8. Prepare a surrogate standard spiking 
solution containing each selected surrogate compound at a concentration 
of 100 [micro]g/mL in acetone. Addition of 1.00 mL of this solution to 
1000 mL of sample is equivalent to a concentration of 100 [micro]g/L of 
each surrogate standard. Store the spiking solution at 4 [deg]C in 
Teflon-sealed glass container. The solution should be checked frequently 
for stability. The solution must be replaced after six months, or sooner 
if comparison with quality control check standards indicates a problem.
    6.9 DFTPP standard--Prepare a 25 [micro]g/mL solution of DFTPP in 
acetone.
    6.10 Quality control check sample concentrate--See Section 8.2.1.

                             7. Calibration

    7.1 Establish gas chromatographic operating parameters equivalent to 
those indicated in Table 4 or 5.
    7.2 Internal standard calibration procedure--To use this approach, 
the analyst must select three or more internal standards that are 
similar in analytical behavior to the compounds of interest. The analyst 
must further demonstrate that the measurement of the internal standards 
is not affected by method or matrix interferences. Some recommended 
internal standards are listed in Table 8. Use the base peak m/z as the 
primary m/z for quantification of the standards. If interferences are 
noted, use one of the next two most intense m/z quantities for 
quantification.
    7.2.1 Prepare calibration standards at a minimum of three 
concentration levels for each parameter of interest by adding 
appropriate volumes of one or more stock standards to a volumetric 
flask. To each calibration standard or standard mixture, add a known 
constant amount of one or more internal standards, and dilute to volume 
with acetone. One of the calibration standards should be at a 
concentration near, but above, the MDL and the other concentrations 
should correspond to the expected range of concentrations found in real 
samples or should define the working range of the GC/MS system.
    7.2.2 Using injections of 2 to 5 [micro]L, analyze each calibration 
standard according to Section 13 and tabulate the area of the primary 
characteristic m/z (Tables 4 and 5) against concentration for each 
compound and internal standard. Calculate response factors (RF) for each 
compound using Equation 1.
[GRAPHIC] [TIFF OMITTED] TC15NO91.126

                                                              Equation 1
where:
As=Area of the characteristic m/z for the parameter to be 
measured.
Ais=Area of the characteristic m/z for the internal standard.
Cis=Concentration of the internal standard ([micro]g/L).
Cs=Concentration of the parameter to be measured ([micro]g/
L).

If the RF value over the working range is a constant (<35% RSD), the RF 
can be assumed to be invariant and the average RF can be used for 
calculations. Alternatively, the results can be used to plot a 
calibration curve of response ratios, As/Ais, vs. 
RF.
    7.3 The working calibration curve or RF must be verified on each 
working day by the

[[Page 237]]

measurement of one or more calibration standards. If the response for 
any parameter varies from the predicted response by more than 20%, the test must be repeated uning a fresh calibration 
standard. Alternatively, a new calibration curve must be prepared for 
that compound.

                           8. Quality Control

    8.1 Each laboratory that uses this method is required to operate a 
formal quality control program. The minimum requirements of this program 
consist of an initial demonstration of laboratory capability and an 
ongoing analysis of spiked samples to evaluate and document data 
quality. The laboratory must maintain records to document the quality of 
data that is generated. Ongoing data quality checks are compared with 
established performance criteria to determine if the results of analyses 
meet the performance characteristics of the method. When results of 
sample spikes indicate atypical method performance, a quality control 
check standard must be analyzed to confirm that the measurements were 
performed in an in-control mode of operation.
    8.1.1 The analyst must make an initial, one-time, demonstration of 
the ability to generate acceptable accuracy and precision with this 
method. This ability is established as described in Section 8.2.
    8.1.2 In recognition of advances that are occuring in 
chromatography, the analyst is permitted certain options (detailed in 
Sections 10.6 and 13.1) to improve the separations or lower the cost of 
measurements. Each time such a modification is made to the method, the 
analyst is required to repeat the procedure in Section 8.2.
    8.1.3 Before processing any samples, the analyst must analyze a 
reagent water blank to demonstrate that interferences from the 
analytical system and glassware are under control. Each time a set of 
samples is extracted or reagents are changed, a reagent water blank must 
be processed as a safeguard against laboratory contamination.
    8.1.4 The laboratory must, on an ongoing basis, spike and analyze a 
minimum of 5% of all samples to monitor and evaluate laboratory data 
quality. This procedure is described in Section 8.3.
    8.1.5 The laboratory must, on an ongoing basis, demonstrate through 
the analyses of quality control check standards that the operation of 
the measurement system is in control. This procedure is described in 
Section 8.4. The frequency of the check standard analyses is equivalent 
to 5% of all samples analyzed but may be reduced if spike recoveries 
from samples (Section 8.3) meet all specified quality control criteria.
    8.1.6 The laboratory must maintain performance records to document 
the quality of data that is generated. This procedure is described in 
Section 8.5.
    8.2 To establish the ability to generate acceptable accuracy and 
precision, the analyst must perform the following operations.
    8.2.1 A quality control (QC) check sample concentrate is required 
containing each parameter of interest at a concentration of 100 
[micro]g/mL in acetone. Multiple solutions may be required. PCBs and 
multicomponent pesticides may be omitted from this test. The QC check 
sample concentrate must be obtained from the U.S. Environmental 
Protection Agency, Environmental Monitoring and Support Laboratory in 
Cincinnati, Ohio, if available. If not available from that source, the 
QC check sample concentrate must be obtained from another external 
source. If not available from either source above, the QC check sample 
concentrate must be prepared by the laboratory using stock standards 
prepared independently from those used for calibration.
    8.2.2 Using a pipet, prepare QC check samples at a concentration of 
100 [micro]g/L by adding 1.00 mL of QC check sample concentrate to each 
of four 1-L aliquots of reagent water.
    8.2.3 Analyze the well-mixed QC check samples according to the 
method beginning in Section 10 or 11.
    8.2.4 Calculate the average recovery (X) in [micro]g/L, and the 
standard deviation of the recovery (s) in [micro]g/L, for each parameter 
using the four results.
    8.2.5 For each parameter compare s and X with the corresponding 
acceptance criteria for precision and accuracy, respectively, found in 
Table 6. If s and X for all parameters of interest meet the acceptance 
criteria, the system performance is acceptable and analysis of actual 
samples can begin. If any individual s exceeds the precision limit or 
any individual X falls outside the range for accuracy, the system 
performance is unacceptable for that parameter.
    Note: The large number of parameters in Table 6 present a 
substantial probability that one or more will fail at least one of the 
acceptance criteria when all parameters are analyzed.
    8.2.6 When one or more of the parameters tested fail at least one of 
the acceptance criteria, the analyst must proceed according to Section 
8.2.6.1 or 8.2.6.2.
    8.2.6.1 Locate and correct the source of the problem and repeat the 
test for all parameters of interest beginning with Section 8.2.2.
    8.2.6.2 Beginning with Section 8.2.2, repeat the test only for those 
parameters that failed to meet criteria. Repeated failure, however, will 
confirm a general problem with the measurement system. If this occurs, 
locate and correct the source of the problem and repeat the test for all 
compounds of interest beginning with Section 8.2.2.
    8.3 The laboratory must, on an ongoing basis, spike at least 5% of 
the samples from each sample site being monitored to assess

[[Page 238]]

accuracy. For laboratories analyzing 1 to 20 samples per month, at least 
one spiked sample per month is required.
    8.3.1. The concentration of the spike in the sample should be 
determined as follows:
    8.3.1 If, as in compliance monitoring, the concentration of a 
specific parameter in the sample is being checked against a regulatory 
concentration limit, the spike should be at that limit or 1 to 5 times 
higher than the background concentration determined in Section 8.3.2, 
whichever concentration would be larger.
    8.3.1.2 If the concentration of a specific parameter in the sample 
is not being checked against a limit specific to that parameter, the 
spike should be at 100 [micro]g/L or 1 to 5 times higher than the 
background concentration determined in Section 8.3.2, whichever 
concentration would be larger.
    8.3.1.3 If it is impractical to determine background levels before 
spiking (e.g., maximum holding times will be exceeded), the spike 
concentration should be (1) the regulatory concentration limit, if any; 
or, if none (2) the larger of either 5 times higher than the expected 
background concentration or 100 [micro]g/L.
    8.3.2 Analyze one sample aliquot to determine the background 
concentration (B) of each parameter. If necessary, prepare a new QC 
check sample concentrate (Section 8.2.1) appropriate for the background 
concentrations in the sample. Spike a second sample aliquot with 1.0 mL 
of the QC check sample concentrate and analyze it to determine the 
concentration after spiking (A) of each parameter. Calculate each 
percent recovery (P) as 100(A-B)%/T, where T is the known true value of 
the spike.
    8.3.3 Compare the percent recovery (P) for each parameter with the 
corresponding QC acceptance criteria found in Table 6. These acceptance 
criteria were calculated to include an allowance for error in 
measurement of both the background and spike concentrations, assuming a 
spike to background ratio of 5:1. This error will be accounted for to 
the extent that the analyst's spike to background ratio approaches 5:1. 
\7\ If spiking was performed at a concentration lower than 100 [micro]g/
L, the analyst must use either the QC acceptance criteria in Table 6, or 
optional QC acceptance criteria calculated for the specific spike 
concentration. To calculate optional acceptance criteria for the 
recovery of a parameter: (1) Calculate accuracy (X') using the equation 
in Table 7, substituting the spike concentration (T) for C; (2) 
calculate overall precision (S') using the equation in Table 7, 
substituting X' for X; (3) calculate the range for recovery at the spike 
concentration as (100 X'/T)2.44(100 S'/T)% \7\
    8.3.4 If any individual P falls outside the designated range for 
recovery, that parameter has failed the acceptance criteria. A check 
standard containing each parameter that failed the criteria must be 
analyzed as described in Section 8.4.
    8.4 If any parameter fails the acceptance criteria for recovery in 
Section 8.3, a QC check standard containing each parameter that failed 
must be prepared and analyzed.
    Note: The frequency for the required analysis of a QC check standard 
will depend upon the number of parameters being simultaneously tested, 
the complexity of the sample matrix, and the performance of the 
laboratory. If the entire list of single-component parameters in Table 6 
must be measured in the sample in Section 8.3, the probability that the 
analysis of a QC check standard will be required is high. In this case 
the QC check standard should be routinely analyzed with the spike 
sample.
    8.4.1 Prepare the QC check standard by adding 1.0 mL of QC check 
sample concentrate (Section 8.2.1 or 8.3.2) to 1 L of reagent water. The 
QC check standard needs only to contain the parameters that failed 
criteria in the test in Section 8.3.
    8.4.2 Analyze the QC check standard to determine the concentration 
measured (A) of each parameter. Calculate each percent recovery 
(PS) as 100 (A/T)%, where T is the true value of the standard 
concentration.
    8.4.3 Compare the percent recovery (Ps) for each 
parameter with the corresponding QC acceptance criteria found in Table 
6. Only parameters that failed the test in Section 8.3 need to be 
compared with these criteria. If the recovery of any such parameter 
falls outside the designated range, the laboratory performance for that 
parameter is judged to be out of control, and the problem must be 
immediately identified and corrected. The analytical result for that 
parameter in the unspiked sample is suspect and may not be reported for 
regulatory compliance purposes.
    8.5 As part of the QC program for the laboratory, method accuracy 
for wastewater samples must be assessed and records must be maintained. 
After the analysis of five spiked wastewater samples as in Section 8.3, 
calculate the average percent recovery (P) and the standard deviation of 
the percent recovery (sp). Express the accuracy assessment as 
a percent interval from P-2sp to P+2sp. If P=90% 
and sp=10%, for example, the accuracy interval is expressed 
as 70-110%. Update the accuracy assessment for each parameter on a 
regular basis (e.g. after each five to ten new accuracy measurements).
    8.6 As a quality control check, the laboratory must spike all 
samples with the surrogate standard spiking solution as described in 
Section 10.2, and calculate the percent recovery of each surrogate 
compound.
    8.7 It is recommended that the laboratory adopt additional quality 
assurance practices for use with this method. The specific practices 
that are most productive depend upon the needs of the laboratory and the 
nature of

[[Page 239]]

the samples. Field duplicates may be analyzed to assess the precision of 
the environmental measurements. Whenever possible, the laboratory should 
analyze standard reference materials and participate in relevant 
performance evaluation studies.

            9. Sample Collection, Preservation, and Handling

    9.1 Grab samples must be collected in glass containers. Conventional 
sampling practices \8\ should be followed, except that the bottle must 
not be prerinsed with sample before collection. Composite samples should 
be collected in refrigerated glass containers in accordance with the 
requirements of the program. Automatic sampling equipment must be as 
free as possible of Tygon tubing and other potential sources of 
contamination.
    9.2 All sampling must be iced or refrigerated at 4 [deg]C from the 
time of collection until extraction. Fill the sample bottles and, if 
residual chlorine is present, add 80 mg of sodium thiosulfate per liter 
of sample and mix well. EPA Methods 330.4 and 330.5 may be used for 
measurement of re