[Title 40 CFR ]
[Code of Federal Regulations (annual edition) - July 1, 2007 Edition]
[From the U.S. Government Printing Office]



[[Page i]]

          

          40


          Part 60 (Appendices)

                         Revised as of July 1, 2007


          Protection of Environment
          



________________________

          Containing a codification of documents of general 
          applicability and future effect

          As of July 1, 2007
          With Ancillaries
                    Published by
                    Office of the Federal Register
                    National Archives and Records
                    Administration
                    A Special Edition of the Federal Register

[[Page ii]]

          U.S. GOVERNMENT OFFICIAL EDITION NOTICE

          Legal Status and Use of Seals and Logos
          
          
          The seal of the National Archives and Records Administration 
              (NARA) authenticates the Code of Federal Regulations (CFR) as 
              the official codification of Federal regulations established 
              under the Federal Register Act. Under the provisions of 44 
              U.S.C. 1507, the contents of the CFR, a special edition of the 
              Federal Register, shall be judicially noticed. The CFR is 
              prima facie evidence of the original documents published in 
              the Federal Register (44 U.S.C. 1510).

          It is prohibited to use NARA's official seal and the stylized Code 
              of Federal Regulations logo on any republication of this 
              material without the express, written permission of the 
              Archivist of the United States or the Archivist's designee. 
              Any person using NARA's official seals and logos in a manner 
              inconsistent with the provisions of 36 CFR part 1200 is 
              subject to the penalties specified in 18 U.S.C. 506, 701, and 
              1017.

          Use of ISBN Prefix

          This is the Official U.S. Government edition of this publication 
              and is herein identified to certify its authenticity. Use of 
              the 0-16 ISBN prefix is for U.S. Government Printing Office 
              Official Editions only. The Superintendent of Documents of the 
              U.S. Government Printing Office requests that any reprinted 
              edition clearly be labeled as a copy of the authentic work 
              with a new ISBN.

              
              
          U . S . G O V E R N M E N T P R I N T I N G O F F I C E

          ------------------------------------------------------------------

          U.S. Superintendent of Documents  Washington, DC 
              20402-0001

          http://bookstore.gpo.gov

          Phone: toll-free (866) 512-1800; DC area (202) 512-1800

[[Page iii]]




                            Table of Contents



                                                                    Page
  Explanation.................................................       v

  Title 40:
          Chapter I--Environmental Protection Agency                 3
  Finding Aids:
      Material Approved for Incorporated by Reference.........     709
      Table of CFR Titles and Chapters........................     713
      Alphabetical List of Agencies Appearing in the CFR......     731
      List of CFR Sections Affected...........................     741

[[Page iv]]





                     ----------------------------

                     Cite this Code: CFR
                     To cite the regulations in 
                       this volume use title, 
                       part and appendix letter. 
                       Thus, 40 CFR 60, 
                       appendices refers to title 
                       40, part 60, appendix A-1.

                     ----------------------------

[[Page v]]



                               EXPLANATION

    The Code of Federal Regulations is a codification of the general and 
permanent rules published in the Federal Register by the Executive 
departments and agencies of the Federal Government. The Code is divided 
into 50 titles which represent broad areas subject to Federal 
regulation. Each title is divided into chapters which usually bear the 
name of the issuing agency. Each chapter is further subdivided into 
parts covering specific regulatory areas.
    Each volume of the Code is revised at least once each calendar year 
and issued on a quarterly basis approximately as follows:

Title 1 through Title 16.................................as of January 1
Title 17 through Title 27..................................as of April 1
Title 28 through Title 41...................................as of July 1
Title 42 through Title 50................................as of October 1

    The appropriate revision date is printed on the cover of each 
volume.

LEGAL STATUS

    The contents of the Federal Register are required to be judicially 
noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie 
evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

    The Code of Federal Regulations is kept up to date by the individual 
issues of the Federal Register. These two publications must be used 
together to determine the latest version of any given rule.
    To determine whether a Code volume has been amended since its 
revision date (in this case, July 1, 2007), consult the ``List of CFR 
Sections Affected (LSA),'' which is issued monthly, and the ``Cumulative 
List of Parts Affected,'' which appears in the Reader Aids section of 
the daily Federal Register. These two lists will identify the Federal 
Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

    Each volume of the Code contains amendments published in the Federal 
Register since the last revision of that volume of the Code. Source 
citations for the regulations are referred to by volume number and page 
number of the Federal Register and date of publication. Publication 
dates and effective dates are usually not the same and care must be 
exercised by the user in determining the actual effective date. In 
instances where the effective date is beyond the cut-off date for the 
Code a note has been inserted to reflect the future effective date. In 
those instances where a regulation published in the Federal Register 
states a date certain for expiration, an appropriate note will be 
inserted following the text.

OMB CONTROL NUMBERS

    The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires 
Federal agencies to display an OMB control number with their information 
collection request.

[[Page vi]]

Many agencies have begun publishing numerous OMB control numbers as 
amendments to existing regulations in the CFR. These OMB numbers are 
placed as close as possible to the applicable recordkeeping or reporting 
requirements.

OBSOLETE PROVISIONS

    Provisions that become obsolete before the revision date stated on 
the cover of each volume are not carried. Code users may find the text 
of provisions in effect on a given date in the past by using the 
appropriate numerical list of sections affected. For the period before 
January 1, 2001, consult either the List of CFR Sections Affected, 1949-
1963, 1964-1972, 1973-1985, or 1986-2000, published in 11 separate 
volumes. For the period beginning January 1, 2001, a ``List of CFR 
Sections Affected'' is published at the end of each CFR volume.

CFR INDEXES AND TABULAR GUIDES

    A subject index to the Code of Federal Regulations is contained in a 
separate volume, revised annually as of January 1, entitled CFR Index 
and Finding Aids. This volume contains the Parallel Table of Statutory 
Authorities and Agency Rules (Table I). A list of CFR titles, chapters, 
and parts and an alphabetical list of agencies publishing in the CFR are 
also included in this volume.
    An index to the text of ``Title 3--The President'' is carried within 
that volume.
    The Federal Register Index is issued monthly in cumulative form. 
This index is based on a consolidation of the ``Contents'' entries in 
the daily Federal Register.
    A List of CFR Sections Affected (LSA) is published monthly, keyed to 
the revision dates of the 50 CFR titles.

REPUBLICATION OF MATERIAL

    There are no restrictions on the republication of textual material 
appearing in the Code of Federal Regulations.

INQUIRIES

    For a legal interpretation or explanation of any regulation in this 
volume, contact the issuing agency. The issuing agency's name appears at 
the top of odd-numbered pages.
    For inquiries concerning CFR reference assistance, call 202-741-6000 
or write to the Director, Office of the Federal Register, National 
Archives and Records Administration, Washington, DC 20408 or e-mail 
fedreg.info@nara.gov.

SALES

    The Government Printing Office (GPO) processes all sales and 
distribution of the CFR. For payment by credit card, call toll-free, 
866-512-1800, or DC area, 202-512-1800, M-F 8 a.m. to 4 p.m. e.s.t. or 
fax your order to 202-512-2250, 24 hours a day. For payment by check, 
write to the Superintendent of Documents, Attn: New Orders, P.O. Box 
371954, Pittsburgh, PA 15250-7954. For GPO Customer Service call 202-
512-1803.

ELECTRONIC SERVICES

    The full text of the Code of Federal Regulations, the LSA (List of 
CFR Sections Affected), The United States Government Manual, the Federal 
Register, Public Laws, Public Papers, Weekly Compilation of Presidential 
Documents and the Privacy Act Compilation are available in electronic 
format at www.gpoaccess.gov/nara (``GPO Access''). For more information, 
contact Electronic Information Dissemination Services, U.S. Government 
Printing Office. Phone 202-512-1530, or 888-293-6498 (toll-free). E-
mail, gpoaccess@gpo.gov.

[[Page vii]]

    The Office of the Federal Register also offers a free service on the 
National Archives and Records Administration's (NARA) World Wide Web 
site for public law numbers, Federal Register finding aids, and related 
information. Connect to NARA's web site at www.archives.gov/federal-
register. The NARA site also contains links to GPO Access.

                              Raymond A. Mosley,
                                    Director,
                          Office of the Federal Register.

July 1, 2007.

[[Page ix]]



                               THIS TITLE

    Title 40--Protection of Environment is composed of thirty-one 
volumes. The parts in these volumes are arranged in the following order: 
parts 1-49, parts 50-51, part 52 (52.01-52.1018), part 52 (52.1019-End), 
parts 53-59, part 60 (60.1-End), part 60 (Appendices), parts 61-62, part 
63 (63.1-63.599), part 63 (63.600-63.1199), part 63 (63.1200-63.1439), 
part 63 (63.1440-63.6175), part 63 (63.6580-63.8830), part 63 (63.8980-
End) parts 64-71, parts 72-80, parts 81-84, part 85-Sec.  86.599-99, 
part 86 (86.600-1-End), parts 87-99, parts 100-135, parts 136-149, parts 
150-189, parts 190-259, parts 260-265, parts 266-299, parts 300-399, 
parts 400-424, parts 425-699, parts 700-789, and part 790 to End. The 
contents of these volumes represent all current regulations codified 
under this title of the CFR as of July 1, 2007.

    Chapter I--Environmental Protection Agency appears in all thirty-one 
volumes. An alphabetical Listing of Pesticide Chemicals Index appears in 
parts 150-189, within part 180. Regulations issued by the Council on 
Environmental Quality, including an Index to Parts 1500 through 1508, 
appear in the volume containing part 790 to End. The OMB control numbers 
for title 40 appear in Sec.  9.1 of this chapter.

    For this volume, Jonn V. Lilyea was Chief Editor. The Code of 
Federal Regulations publication program is under the direction of 
Frances D. McDonald, assisted by Ann Worley.


[[Page 1]]



                   TITLE 40--PROTECTION OF ENVIRONMENT




                      (This book contains part 60)

  --------------------------------------------------------------------
                                                                    Part

chapter i--Environmental Protection Agency (Continued)......          60

[[Page 3]]



         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)




  --------------------------------------------------------------------


  Editorial Note: Nomenclature changes to chapter I appear at 65 FR 
47324, 47325, Aug. 2, 2000.

                 SUBCHAPTER C--AIR PROGRAMS (CONTINUED)
Part                                                                Page
60              Appendix A to part 60--Test methods.........           5

[[Page 5]]



                  SUBCHAPTER C_AIR PROGRAMS (CONTINUED)



PART 60_STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (CONTINUED)--Table 

of Contents




Appendix A-1 to Part 60--Test Methods 1 through 2F
Appendix A-2 to Part 60--Test Methods 2G through 3C
Appendix A-3 to Part 60--Test Methods 4 through 5I
Appendix A-4 to Part 60--Test Methods 6 through 10B
Appendix A-5 to Part 60--Test Methods 11 through 15A
Appendix A-6 to Part 60--Test Methods 16 through 18
Appendix A-7 to Part 60--Test Methods 19 through 25E
Appendix A-8 to Part 60--Test Methods 26 through 29
Appendix B to Part 60--Performance Specifications
Appendix C to Part 60--Determination of Emmission Rate Change
Appendix D to Part 60--Required Emission Inventory Information
Appendix E to Part 60 [Reserved]
Appendix F to Part 60--Quality Assurance Procedures
Appendix G to Part 60--Provisions for an Alternative Method of 
          Demonstrating Compliance with 40 CFR 60.43 for the Newton 
          Power Station of Central Illinois Public Service Company
Appendix H to Part 60 [Reserved]
Appendix I to Part 60--Removable Label and Owner's Manual

    Authority: 42 U.S.C. 7401-7601.

    Source: 36 FR 24877, Dec. 23, 1971, unless otherwise noted.

           Appendix A-1 to Part 60--Test Methods 1 through 2F

Method 1--Sample and velocity traverses for stationary sources
Method 1A--Sample and velocity traverses for stationary sources with 
small stacks or ducts
Method 2--Determination of stack gas velocity and volumetric flow rate 
(Type S pitot tube)
Method 2A--Direct measurement of gas volume through pipes and small 
ducts
Method 2B--Determination of exhaust gas volume flow rate from gasoline 
vapor incinerators
Method 2C--Determination of gas velocity and volumetric flow rate in 
small stacks or ducts (standard pitot tube)
Method 2D--Measurement of gas volume flow rates in small pipes and ducts
Method 2E--Determination of landfill gas production flow rate
Method 2F--Determination of Stack Gas Velocity and Volumetric Flow Rate 
With Three-Dimensional Probes
    The test methods in this appendix are referred to in Sec.  60.8 
(Performance Tests) and Sec.  60.11 (Compliance With Standards and 
Maintenance Requirements) of 40 CFR part 60, subpart A (General 
Provisions). Specific uses of these test methods are described in the 
standards of performance contained in the subparts, beginning with 
Subpart D.
    Within each standard of performance, a section title ``Test Methods 
and Procedures'' is provided to: (1) Identify the test methods to be 
used as reference methods to the facility subject to the respective 
standard and (2) identify any special instructions or conditions to be 
followed when applying a method to the respective facility. Such 
instructions (for example, establish sampling rates, volumes, or 
temperatures) are to be used either in addition to, or as a substitute 
for procedures in a test method. Similarly, for sources subject to 
emission monitoring requirements, specific instructions pertaining to 
any use of a test method as a reference method are provided in the 
subpart or in Appendix B.
    Inclusion of methods in this appendix is not intended as an 
endorsement or denial of their applicability to sources that are not 
subject to standards of performance. The methods are potentially 
applicable to other sources; however, applicability should be confirmed 
by careful and appropriate evaluation of the conditions prevalent at 
such sources.
    The approach followed in the formulation of the test methods 
involves specifications for equipment, procedures, and performance. In 
concept, a performance specification approach would be preferable in all 
methods because this allows the greatest flexibility to the user. In 
practice, however, this approach is impractical in most cases because 
performance specifications cannot be established. Most of the methods 
described herein, therefore, involve specific equipment specifications 
and procedures, and only a few methods in this appendix rely on 
performance criteria.
    Minor changes in the test methods should not necessarily affect the 
validity of the results and it is recognized that alternative and 
equivalent methods exist. Section 60.8 provides authority for the 
Administrator to specify or approve (1) equivalent methods, (2) 
alternative methods, and (3) minor changes in the methodology of the 
test methods. It

[[Page 6]]

should be clearly understood that unless otherwise identified all such 
methods and changes must have prior approval of the Administrator. An 
owner employing such methods or deviations from the test methods without 
obtaining prior approval does so at the risk of subsequent disapproval 
and retesting with approved methods.
    Within the test methods, certain specific equipment or procedures 
are recognized as being acceptable or potentially acceptable and are 
specifically identified in the methods. The items identified as 
acceptable options may be used without approval but must be identified 
in the test report. The potentially approvable options are cited as 
``subject to the approval of the Administrator'' or as ``or 
equivalent.'' Such potentially approvable techniques or alternatives may 
be used at the discretion of the owner without prior approval. However, 
detailed descriptions for applying these potentially approvable 
techniques or alternatives are not provided in the test methods. Also, 
the potentially approvable options are not necessarily acceptable in all 
applications. Therefore, an owner electing to use such potentially 
approvable techniques or alternatives is responsible for: (1) assuring 
that the techniques or alternatives are in fact applicable and are 
properly executed; (2) including a written description of the 
alternative method in the test report (the written method must be clear 
and must be capable of being performed without additional instruction, 
and the degree of detail should be similar to the detail contained in 
the test methods); and (3) providing any rationale or supporting data 
necessary to show the validity of the alternative in the particular 
application. Failure to meet these requirements can result in the 
Administrator's disapproval of the alternative.

     Method 1--Sample and Velocity Traverses for Stationary Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test method: Method 2.

                        1.0 Scope and Application

    1.1 Measured Parameters. The purpose of the method is to provide 
guidance for the selection of sampling ports and traverse points at 
which sampling for air pollutants will be performed pursuant to 
regulations set forth in this part. Two procedures are presented: a 
simplified procedure, and an alternative procedure (see Section 11.5). 
The magnitude of cyclonic flow of effluent gas in a stack or duct is the 
only parameter quantitatively measured in the simplified procedure.
    1.2 Applicability. This method is applicable to gas streams flowing 
in ducts, stacks, and flues. This method cannot be used when: (1) the 
flow is cyclonic or swirling; or (2) a stack is smaller than 0.30 meter 
(12 in.) in diameter, or 0.071 m\2\ (113 in.\2\) in cross-sectional 
area. The simplified procedure cannot be used when the measurement site 
is less than two stack or duct diameters downstream or less than a half 
diameter upstream from a flow disturbance.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

    Note: The requirements of this method must be considered before 
construction of a new facility from which emissions are to be measured; 
failure to do so may require subsequent alterations to the stack or 
deviation from the standard procedure. Cases involving variants are 
subject to approval by the Administrator.

                          2.0 Summary of Method

    2.1 This method is designed to aid in the representative measurement 
of pollutant emissions and/or total volumetric flow rate from a 
stationary source. A measurement site where the effluent stream is 
flowing in a known direction is selected, and the cross-section of the 
stack is divided into a number of equal areas. Traverse points are then 
located within each of these equal areas.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies.

    6.1 Apparatus. The apparatus described below is required only when 
utilizing the alternative site selection procedure described in Section 
11.5 of this method.
    6.1.1 Directional Probe. Any directional probe, such as United 
Sensor Type DA Three-Dimensional Directional Probe, capable of measuring 
both the pitch and yaw angles of gas flows is acceptable. Before using 
the probe, assign an identification number to the directional probe, and 
permanently mark or engrave the number on the body of the probe. The 
pressure holes of directional

[[Page 7]]

probes are susceptible to plugging when used in particulate-laden gas 
streams. Therefore, a procedure for cleaning the pressure holes by 
``back-purging'' with pressurized air is required.
    6.1.2 Differential Pressure Gauges. Inclined manometers, U-tube 
manometers, or other differential pressure gauges (e.g., magnehelic 
gauges) that meet the specifications described in Method 2, Section 6.2.

    Note: If the differential pressure gauge produces both negative and 
positive readings, then both negative and positive pressure readings 
shall be calibrated at a minimum of three points as specified in Method 
2, Section 6.2.

                  7.0 Reagents and Standards [Reserved]

 8.0 Sample Collection, Preservation, Storage, and Transport [Reserved]

                     9.0 Quality Control [Reserved]

             10.0 Calibration and Standardization [Reserved]

                             11.0 Procedure

    11.1 Selection of Measurement Site.
    11.1.1 Sampling and/or velocity measurements are performed at a site 
located at least eight stack or duct diameters downstream and two 
diameters upstream from any flow disturbance such as a bend, expansion, 
or contraction in the stack, or from a visible flame. If necessary, an 
alternative location may be selected, at a position at least two stack 
or duct diameters downstream and a half diameter upstream from any flow 
disturbance.
    11.1.2 An alternative procedure is available for determining the 
acceptability of a measurement location not meeting the criteria above. 
This procedure described in Section 11.5 allows for the determination of 
gas flow angles at the sampling points and comparison of the measured 
results with acceptability criteria.
    11.2 Determining the Number of Traverse Points.
    11.2.1 Particulate Traverses.
    11.2.1.1 When the eight- and two-diameter criterion can be met, the 
minimum number of traverse points shall be: (1) twelve, for circular or 
rectangular stacks with diameters (or equivalent diameters) greater than 
0.61 meter (24 in.); (2) eight, for circular stacks with diameters 
between 0.30 and 0.61 meter (12 and 24 in.); and (3) nine, for 
rectangular stacks with equivalent diameters between 0.30 and 0.61 meter 
(12 and 24 in.).
    11.2.1.2 When the eight- and two-diameter criterion cannot be met, 
the minimum number of traverse points is determined from Figure 1-1. 
Before referring to the figure, however, determine the istances from the 
measurement site to the nearest upstream and downstream disturbances, 
and divide each distance by the stack diameter or equivalent diameter, 
to determine the distance in terms of the number of duct diameters. 
Then, determine from Figure 1-1 the minimum number of traverse points 
that corresponds: (1) to the number of duct diameters upstream; and (2) 
to the number of diameters downstream. Select the higher of the two 
minimum numbers of traverse points, or a greater value, so that for 
circular stacks the number is a multiple of 4, and for rectangular 
stacks, the number is one of those shown in Table 1-1.
    11.2.2 Velocity (Non-Particulate) Traverses. When velocity or 
volumetric flow rate is to be determined (but not particulate matter), 
the same procedure as that used for particulate traverses (Section 
11.2.1) is followed, except that Figure 1-2 may be used instead of 
Figure 1-1.
    11.3 Cross-Sectional Layout and Location of Traverse Points.
    11.3.1 Circular Stacks.
    11.3.1.1 Locate the traverse points on two perpendicular diameters 
according to Table 1-2 and the example shown in Figure 1-3. Any equation 
(see examples in References 2 and 3 in Section 16.0) that gives the same 
values as those in Table 1-2 may be used in lieu of Table 1-2.
    11.3.1.2 For particulate traverses, one of the diameters must 
coincide with the plane containing the greatest expected concentration 
variation (e.g., after bends); one diameter shall be congruent to the 
direction of the bend. This requirement becomes less critical as the 
distance from the disturbance increases; therefore, other diameter 
locations may be used, subject to the approval of the Administrator.
    11.3.1.3 In addition, for elliptical stacks having unequal 
perpendicular diameters, separate traverse points shall be calculated 
and located along each diameter. To determine the cross-sectional area 
of the elliptical stack, use the following equation:

Square Area=D1 x D2 x 0.7854

Where: D1=Stack diameter 1
D2=Stack diameter 2

    11.3.1.4 In addition, for stacks having diameters greater than 0.61 
m (24 in.), no traverse points shall be within 2.5 centimeters (1.00 
in.) of the stack walls; and for stack diameters equal to or less than 
0.61 m (24 in.), no traverse points shall be located within 1.3 cm (0.50 
in.) of the stack walls. To meet these criteria, observe the procedures 
given below.
    11.3.2 Stacks With Diameters Greater Than 0.61 m (24 in.).
    11.3.2.1 When any of the traverse points as located in Section 
11.3.1 fall within 2.5 cm (1.0 in.) of the stack walls, relocate them 
away from the stack walls to: (1) a distance of 2.5 cm (1.0 in.); or (2) 
a distance equal to

[[Page 8]]

the nozzle inside diameter, whichever is larger. These relocated 
traverse points (on each end of a diameter) shall be the ``adjusted'' 
traverse points.
    11.3.2.2 Whenever two successive traverse points are combined to 
form a single adjusted traverse point, treat the adjusted point as two 
separate traverse points, both in the sampling and/or velocity 
measurement procedure, and in recording of the data.
    11.3.3 Stacks With Diameters Equal To or Less Than 0.61 m (24 in.). 
Follow the procedure in Section 11.3.1.1, noting only that any 
``adjusted'' points should be relocated away from the stack walls to: 
(1) a distance of 1.3 cm (0.50 in.); or (2) a distance equal to the 
nozzle inside diameter, whichever is larger.
    11.3.4 Rectangular Stacks.
    11.3.4.1 Determine the number of traverse points as explained in 
Sections 11.1 and 11.2 of this method. From Table 1-1, determine the 
grid configuration. Divide the stack cross-section into as many equal 
rectangular elemental areas as traverse points, and then locate a 
traverse point at the centroid of each equal area according to the 
example in Figure 1-4.
    11.3.4.2 To use more than the minimum number of traverse points, 
expand the ``minimum number of traverse points'' matrix (see Table 1-1) 
by adding the extra traverse points along one or the other or both legs 
of the matrix; the final matrix need not be balanced. For example, if a 
4 x 3 ``minimum number of points'' matrix were expanded to 36 points, 
the final matrix could be 9 x 4 or 12 x 3, and would not necessarily 
have to be 6 x 6. After constructing the final matrix, divide the stack 
cross-section into as many equal rectangular, elemental areas as 
traverse points, and locate a traverse point at the centroid of each 
equal area.
    11.3.4.3 The situation of traverse points being too close to the 
stack walls is not expected to arise with rectangular stacks. If this 
problem should ever arise, the Administrator must be contacted for 
resolution of the matter.
    11.4 Verification of Absence of Cyclonic Flow.
    11.4.1 In most stationary sources, the direction of stack gas flow 
is essentially parallel to the stack walls. However, cyclonic flow may 
exist (1) after such devices as cyclones and inertial demisters 
following venturi scrubbers, or (2) in stacks having tangential inlets 
or other duct configurations which tend to induce swirling; in these 
instances, the presence or absence of cyclonic flow at the sampling 
location must be determined. The following techniques are acceptable for 
this determination.
    11.4.2 Level and zero the manometer. Connect a Type S pitot tube to 
the manometer and leak-check system. Position the Type S pitot tube at 
each traverse point, in succession, so that the planes of the face 
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it is 
at ``0[deg] reference.'' Note the differential pressure ([Delta]p) 
reading at each traverse point. If a null (zero) pitot reading is 
obtained at 0[deg] reference at a given traverse point, an acceptable 
flow condition exists at that point. If the pitot reading is not zero at 
0[deg] reference, rotate the pitot tube (up to 90[deg] yaw angle), until a null reading is obtained. 
Carefully determine and record the value of the rotation angle ([alpha]) 
to the nearest degree. After the null technique has been applied at each 
traverse point, calculate the average of the absolute values of [alpha]; 
assign [alpha] values of 0[deg] to those points for which no rotation 
was required, and include these in the overall average. If the average 
value of [alpha] is greater than 20[deg], the overall flow condition in 
the stack is unacceptable, and alternative methodology, subject to the 
approval of the Administrator, must be used to perform accurate sample 
and velocity traverses.
    11.5 The alternative site selection procedure may be used to 
determine the rotation angles in lieu of the procedure outlined in 
Section 11.4.
    11.5.1 Alternative Measurement Site Selection Procedure. This 
alternative applies to sources where measurement locations are less than 
2 equivalent or duct diameters downstream or less than one-half duct 
diameter upstream from a flow disturbance. The alternative should be 
limited to ducts larger than 24 in. in diameter where blockage and wall 
effects are minimal. A directional flow-sensing probe is used to measure 
pitch and yaw angles of the gas flow at 40 or more traverse points; the 
resultant angle is calculated and compared with acceptable criteria for 
mean and standard deviation.

    Note: Both the pitch and yaw angles are measured from a line passing 
through the traverse point and parallel to the stack axis. The pitch 
angle is the angle of the gas flow component in the plane that INCLUDES 
the traverse line and is parallel to the stack axis. The yaw angle is 
the angle of the gas flow component in the plane PERPENDICULAR to the 
traverse line at the traverse point and is measured from the line 
passing through the traverse point and parallel to the stack axis.

    11.5.2 Traverse Points. Use a minimum of 40 traverse points for 
circular ducts and 42 points for rectangular ducts for the gas flow 
angle determinations. Follow the procedure outlined in Section 11.3 and 
Table 1-1 or 1-2 for the location and layout of the traverse points. If 
the measurement location is determined to be acceptable according to the 
criteria in this alternative procedure, use the same traverse point 
number and locations for sampling and velocity measurements.
    11.5.3 Measurement Procedure.

[[Page 9]]

    11.5.3.1 Prepare the directional probe and differential pressure 
gauges as recommended by the manufacturer. Capillary tubing or surge 
tanks may be used to dampen pressure fluctuations. It is recommended, 
but not required, that a pretest leak check be conducted. To perform a 
leak check, pressurize or use suction on the impact opening until a 
reading of at least 7.6 cm (3 in.) H2O registers on the 
differential pressure gauge, then plug the impact opening. The pressure 
of a leak-free system will remain stable for at least 15 seconds.
    11.5.3.2 Level and zero the manometers. Since the manometer level 
and zero may drift because of vibrations and temperature changes, 
periodically check the level and zero during the traverse.
    11.5.3.3 Position the probe at the appropriate locations in the gas 
stream, and rotate until zero deflection is indicated for the yaw angle 
pressure gauge. Determine and record the yaw angle. Record the pressure 
gauge readings for the pitch angle, and determine the pitch angle from 
the calibration curve. Repeat this procedure for each traverse point. 
Complete a ``back-purge'' of the pressure lines and the impact openings 
prior to measurements of each traverse point.
    11.5.3.4 A post-test check as described in Section 11.5.3.1 is 
required. If the criteria for a leak-free system are not met, repair the 
equipment, and repeat the flow angle measurements.
    11.5.4 Calibration. Use a flow system as described in Sections 
10.1.2.1 and 10.1.2.2 of Method 2. In addition, the flow system shall 
have the capacity to generate two test-section velocities: one between 
365 and 730 m/min (1,200 and 2,400 ft/min) and one between 730 and 1,100 
m/min (2,400 and 3,600 ft/min).
    11.5.4.1 Cut two entry ports in the test section. The axes through 
the entry ports shall be perpendicular to each other and intersect in 
the centroid of the test section. The ports should be elongated slots 
parallel to the axis of the test section and of sufficient length to 
allow measurement of pitch angles while maintaining the pitot head 
position at the test-section centroid. To facilitate alignment of the 
directional probe during calibration, the test section should be 
constructed of plexiglass or some other transparent material. All 
calibration measurements should be made at the same point in the test 
section, preferably at the centroid of the test section.
    11.5.4.2 To ensure that the gas flow is parallel to the central axis 
of the test section, follow the procedure outlined in Section 11.4 for 
cyclonic flow determination to measure the gas flow angles at the 
centroid of the test section from two test ports located 90[deg] apart. 
The gas flow angle measured in each port must be 2[deg] of 0[deg]. Straightening vanes should be 
installed, if necessary, to meet this criterion.
    11.5.4.3 Pitch Angle Calibration. Perform a calibration traverse 
according to the manufacturer's recommended protocol in 5[deg] 
increments for angles from -60[deg] to +60[deg] at one velocity in each 
of the two ranges specified above. Average the pressure ratio values 
obtained for each angle in the two flow ranges, and plot a calibration 
curve with the average values of the pressure ratio (or other suitable 
measurement factor as recommended by the manufacturer) versus the pitch 
angle. Draw a smooth line through the data points. Plot also the data 
values for each traverse point. Determine the differences between the 
measured data values and the angle from the calibration curve at the 
same pressure ratio. The difference at each comparison must be within 
2[deg] for angles between 0[deg] and 40[deg] and within 3[deg] for 
angles between 40[deg] and 60[deg].
    11.5.4.4 Yaw Angle Calibration. Mark the three-dimensional probe to 
allow the determination of the yaw position of the probe. This is 
usually a line extending the length of the probe and aligned with the 
impact opening. To determine the accuracy of measurements of the yaw 
angle, only the zero or null position need be calibrated as follows: 
Place the directional probe in the test section, and rotate the probe 
until the zero position is found. With a protractor or other angle 
measuring device, measure the angle indicated by the yaw angle indicator 
on the three-dimensional probe. This should be within 2[deg] of 0[deg]. 
Repeat this measurement for any other points along the length of the 
pitot where yaw angle measurements could be read in order to account for 
variations in the pitot markings used to indicate pitot head positions.

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature.
L=length.
n=total number of traverse points.
Pi=pitch angle at traverse point i, degree.
Ravg=average resultant angle, degree.
Ri=resultant angle at traverse point i, degree.
Sd=standard deviation, degree.
W=width.
Yi=yaw angle at traverse point i, degree.
    12.2 For a rectangular cross section, an equivalent diameter 
(De) shall be calculated using the following equation, to 
determine the upstream and downstream distances:
[GRAPHIC] [TIFF OMITTED] TR17OC00.037

    12.3 If use of the alternative site selection procedure (Section 
11.5 of this method) is required, perform the following calculations 
using the equations below: the resultant angle at each traverse point, 
the average resultant angle, and the standard deviation. Complete the 
calculations retaining at least

[[Page 10]]

one extra significant figure beyond that of the acquired data. Round the 
values after the final calculations.
    12.3.1 Calculate the resultant angle at each traverse point:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.038
    
    12.3.2 Calculate the average resultant for the measurements:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.039
    
    12.3.3 Calculate the standard deviations:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.040
    
    12.3.4 Acceptability Criteria. The measurement location is 
acceptable if Ravg <= 20[deg] and Sd <= 10[deg].

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Determining Dust Concentration in a Gas Stream, ASME Performance 
Test Code No. 27. New York. 1957.
    2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual. Air 
Pollution Control District. Los Angeles, CA. November 1963.
    3. Methods for Determining of Velocity, Volume, Dust and Mist 
Content of Gases. Western Precipitation Division of Joy Manufacturing 
Co. Los Angeles, CA. Bulletin WP-50. 1968.
    4. Standard Method for Sampling Stacks for Particulate Matter. In: 
1971 Book of ASTM Standards, Part 23. ASTM Designation D 2928-71. 
Philadelphia, PA. 1971.
    5. Hanson, H.A., et al. Particulate Sampling Strategies for Large 
Power Plants Including Nonuniform Flow. USEPA, ORD, ESRL, Research 
Triangle Park, NC. EPA-600/2-76-170. June 1976.
    6. Entropy Environmentalists, Inc. Determination of the Optimum 
Number of Sampling Points: An Analysis of Method 1 Criteria. 
Environmental Protection Agency. Research Triangle Park, NC. EPA 
Contract No. 68-01-3172, Task 7.
    7. Hanson, H.A., R.J. Davini, J.K. Morgan, and A.A. Iversen. 
Particulate Sampling Strategies for Large Power Plants Including 
Nonuniform Flow. USEPA, Research Triangle Park, NC. Publication No. EPA-
600/2-76-170. June 1976. 350 pp.
    8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling Manual. 
U.S. Environmental Protection Agency. Research Triangle Park, NC. 
Publication No. EPA-600/2-76-203. July 1976. 93 pp.
    9. Entropy Environmentalists, Inc. Traverse Point Study. EPA 
Contract No. 68-02-3172. June 1977. 19 pp.
    10. Brown, J. and K. Yu. Test Report: Particulate Sampling Strategy 
in Circular Ducts. Emission Measurement Branch. U.S. Environmental 
Protection Agency, Research Triangle Park, NC 27711. July 31, 1980. 12 
pp.
    11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackett. Measurement of 
Solids in Flue Gases. Leatherhead, England, The British Coal Utilisation 
Research Association. 1961. pp. 129-133.
    12. Knapp, K.T. The Number of Sampling Points Needed for 
Representative Source Sampling. In: Proceedings of the Fourth National 
Conference on Energy and Environment. Theodore, L. et al. (ed). Dayton, 
Dayton Section of the American Institute of Chemical Engineers. October 
3-7, 1976. pp. 563-568.
    13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA Method 1 
Criteria. Pollution Engineering. XV (8):36-37. August 1983.
    14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test 
Procedures for Large Fans. University of Akron. Akron, OH. (EPRI 
Contract CS-1651). Final Report (RP-1649-5). December 1980.
    15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling--
Theory and Applications. Source Evaluation Society Newsletter. VIII 
(3):19-24. August 1983.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 11]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.041


          Table 1-1 Cross-Section Layout for Rectangular Stacks
------------------------------------------------------------------------
   Number of tranverse points layout                  Matrix
------------------------------------------------------------------------
9......................................  3x3
12.....................................  4x3
16.....................................  4x4
20.....................................  5x4
25.....................................  5x5
30.....................................  6x5
36.....................................  6x6
42.....................................  7x6
49.....................................  7x7
------------------------------------------------------------------------


[[Page 12]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.042


                                                Table 1-2--Location of Traverse Points in Circular Stacks
                                             [Percent of stack diameter from inside wall to tranverse point]
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                      Number of traverse points on a diameter
         Traverse  point  number on  a diameter          -----------------------------------------------------------------------------------------------
                                                             2       4       6       8      10      12      14      16      18      20      22      24
--------------------------------------------------------------------------------------------------------------------------------------------------------
1.......................................................    14.6     6.7     4.4     3.2     2.6     2.1     1.8     1.6     1.4     1.3     1.1     1.1
2.......................................................    85.4    25.0    14.6    10.5     8.2     6.7     5.7     4.9     4.4     3.9     3.5     3.2
3.......................................................  ......    75.0    29.6    19.4    14.6    11.8     9.9     8.5     7.5     6.7     6.0     5.5
4.......................................................  ......    93.3    70.4    32.3    22.6    17.7    14.6    12.5    10.9     9.7     8.7     7.9
5.......................................................  ......  ......    85.4    67.7    34.2    25.0    20.1    16.9    14.6    12.9    11.6    10.5

[[Page 13]]

 
6.......................................................  ......  ......    95.6    80.6    65.8    35.6    26.9    22.0    18.8    16.5    14.6    13.2
7.......................................................  ......  ......  ......    89.5    77.4    64.4    36.6    28.3    23.6    20.4    18.0    16.1
8.......................................................  ......  ......  ......    96.8    85.4    75.0    63.4    37.5    29.6    25.0    21.8    19.4
9.......................................................  ......  ......  ......  ......    91.8    82.3    73.1    62.5    38.2    30.6    26.2    23.0
10......................................................  ......  ......  ......  ......    97.4    88.2    79.9    71.7    61.8    38.8    31.5    27.2
11......................................................  ......  ......  ......  ......  ......    93.3    85.4    78.0    70.4    61.2    39.3    32.3
12......................................................  ......  ......  ......  ......  ......    97.9    90.1    83.1    76.4    69.4    60.7    39.8
13......................................................  ......  ......  ......  ......  ......  ......    94.3    87.5    81.2    75.0    68.5    60.2
14......................................................  ......  ......  ......  ......  ......  ......    98.2    91.5    85.4    79.6    73.8    67.7
15......................................................  ......  ......  ......  ......  ......  ......  ......    95.1    89.1    83.5    78.2    72.8
16......................................................  ......  ......  ......  ......  ......  ......  ......    98.4    92.5    87.1    82.0    77.0
17......................................................  ......  ......  ......  ......  ......  ......  ......  ......    95.6    90.3    85.4    80.6
18......................................................  ......  ......  ......  ......  ......  ......  ......  ......    98.6    93.3    88.4    83.9
19......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......    96.1    91.3    86.8
20......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......    98.7    94.0    89.5
21......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......    96.5    92.1
22......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......    98.9    94.5
23......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......    96.8
24......................................................  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......  ......    99.9
--------------------------------------------------------------------------------------------------------------------------------------------------------

                                                                                                                                                  [GRAPHIC] [TIFF OMITTED] TR17OC00.043
                                                                                                                                                  
  Method 1A--Sample and Velocity Traverses for Stationary Sources With 
                          Small Stacks or Ducts

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test method: Method 1.

                        1.0 Scope and Application

    1.1 Measured Parameters. The purpose of the method is to provide 
guidance for the selection of sampling ports and traverse points at 
which sampling for air pollutants will be performed pursuant to 
regulations set forth in this part.
    1.2 Applicability. The applicability and principle of this method 
are identical to Method 1, except its applicability is limited to stacks 
or ducts. This method is applicable to flowing gas streams in ducts, 
stacks, and flues of less than about 0.30 meter (12 in.) in diameter, or 
0.071 m\2\ (113 in.\2\) in cross-sectional area, but equal to or greater 
than about 0.10 meter (4 in.) in diameter, or 0.0081 m\2\ (12.57 in.\2\) 
in cross-sectional area. This method cannot be used when the flow is 
cyclonic or swirling.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

[[Page 14]]

                          2.0 Summary of Method

    2.1 The method is designed to aid in the representative measurement 
of pollutant emissions and/or total volumetric flow rate from a 
stationary source. A measurement site or a pair of measurement sites 
where the effluent stream is flowing in a known direction is (are) 
selected. The cross-section of the stack is divided into a number of 
equal areas. Traverse points are then located within each of these equal 
areas.
    2.2 In these small diameter stacks or ducts, the conventional Method 
5 stack assembly (consisting of a Type S pitot tube attached to a 
sampling probe, equipped with a nozzle and thermocouple) blocks a 
significant portion of the cross-section of the duct and causes 
inaccurate measurements. Therefore, for particulate matter (PM) sampling 
in small stacks or ducts, the gas velocity is measured using a standard 
pitot tube downstream of the actual emission sampling site. The straight 
run of duct between the PM sampling and velocity measurement sites 
allows the flow profile, temporarily disturbed by the presence of the 
sampling probe, to redevelop and stabilize.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.

                  6.0 Equipment and Supplies [Reserved]

                  7.0 Reagents and Standards [Reserved]

 8.0 Sample Collection, Preservation, Storage, and Transport [Reserved]

                     9.0 Quality Control [Reserved]

             10.0 Calibration and Standardization [Reserved]

                             11.0 Procedure

    11.1 Selection of Measurement Site.
    11.1.1 Particulate Measurements--Steady or Unsteady Flow. Select a 
particulate measurement site located preferably at least eight 
equivalent stack or duct diameters downstream and 10 equivalent 
diameters upstream from any flow disturbances such as bends, expansions, 
or contractions in the stack, or from a visible flame. Next, locate the 
velocity measurement site eight equivalent diameters downstream of the 
particulate measurement site (see Figure 1A-1). If such locations are 
not available, select an alternative particulate measurement location at 
least two equivalent stack or duct diameters downstream and two and one-
half diameters upstream from any flow disturbance. Then, locate the 
velocity measurement site two equivalent diameters downstream from the 
particulate measurement site. (See Section 12.2 of Method 1 for 
calculating equivalent diameters for a rectangular cross-section.)
    11.1.2 PM Sampling (Steady Flow) or Velocity (Steady or Unsteady 
Flow) Measurements. For PM sampling when the volumetric flow rate in a 
duct is constant with respect to time, Section 11.1.1 of Method 1 may be 
followed, with the PM sampling and velocity measurement performed at one 
location. To demonstrate that the flow rate is constant (within 10 
percent) when PM measurements are made, perform complete velocity 
traverses before and after the PM sampling run, and calculate the 
deviation of the flow rate derived after the PM sampling run from the 
one derived before the PM sampling run. The PM sampling run is 
acceptable if the deviation does not exceed 10 percent.
    11.2 Determining the Number of Traverse Points.
    11.2.1 Particulate Measurements (Steady or Unsteady Flow). Use 
Figure 1-1 of Method 1 to determine the number of traverse points to use 
at both the velocity measurement and PM sampling locations. Before 
referring to the figure, however, determine the distances between both 
the velocity measurement and PM sampling sites to the nearest upstream 
and downstream disturbances. Then divide each distance by the stack 
diameter or equivalent diameter to express the distances in terms of the 
number of duct diameters. Then, determine the number of traverse points 
from Figure 1-1 of Method 1 corresponding to each of these four 
distances. Choose the highest of the four numbers of traverse points (or 
a greater number) so that, for circular ducts the number is a multiple 
of four; and for rectangular ducts, the number is one of those shown in 
Table 1-1 of Method 1. When the optimum duct diameter location criteria 
can be satisfied, the minimum number of traverse points required is 
eight for circular ducts and nine for rectangular ducts.
    11.2.2 PM Sampling (Steady Flow) or only Velocity (Non-Particulate) 
Measurements. Use Figure 1-2 of Method 1 to determine number of traverse 
points, following the same procedure used for PM sampling as described 
in Section 11.2.1 of Method 1. When the optimum duct diameter location 
criteria can be satisfied, the minimum number of traverse points 
required is eight for circular ducts and nine for rectangular ducts.

[[Page 15]]

    11.3 Cross-sectional Layout, Location of Traverse Points, and 
Verification of the Absence of Cyclonic Flow. Same as Method 1, Sections 
11.3 and 11.4, respectively.

             12.0 Data Analysis and Calculations [Reserved]

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 1, Section 16.0, References 1 through 6, with the 
addition of the following:
    1. Vollaro, Robert F. Recommended Procedure for Sample Traverses in 
Ducts Smaller Than 12 Inches in Diameter. U.S. Environmental Protection 
Agency, Emission Measurement Branch, Research Triangle Park, North 
Carolina. January 1977.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data
[GRAPHIC] [TIFF OMITTED] TR17OC00.044

 Method 2--Determination of Stack Gas Velocity and Volumetric Flow Rate 
                           (Type S Pitot Tube)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test method: Method 1.

                       1.0 Scope and Application.

    1.1 This method is applicable for the determination of the average 
velocity and the volumetric flow rate of a gas stream.
    1.2 This method is not applicable at measurement sites that fail to 
meet the criteria of Method 1, Section 11.1. Also, the method cannot be 
used for direct measurement in cyclonic or swirling gas streams; Section 
11.4 of Method 1 shows how to determine cyclonic or swirling flow 
conditions. When unacceptable conditions exist, alternative procedures, 
subject to the approval of the Administrator, must be employed to 
produce accurate flow rate determinations. Examples of such alternative 
procedures are: (1) to install straightening vanes; (2) to calculate the 
total volumetric flow rate stoichiometrically, or (3) to move to another 
measurement site at which the flow is acceptable.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                         2.0 Summary of Method.

    2.1 The average gas velocity in a stack is determined from the gas 
density and from measurement of the average velocity head with a Type S 
(Stausscheibe or reverse type) pitot tube.

[[Page 16]]

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    Specifications for the apparatus are given below. Any other 
apparatus that has been demonstrated (subject to approval of the 
Administrator) to be capable of meeting the specifications will be 
considered acceptable.
    6.1 Type S Pitot Tube.
    6.1.1 Pitot tube made of metal tubing (e.g., stainless steel) as 
shown in Figure 2-1. It is recommended that the external tubing diameter 
(dimension Dt, Figure 2-2b) be between 0.48 and 0.95 cm (\3/
16\ and \3/8\ inch). There shall be an equal distance from the base of 
each leg of the pitot tube to its face-opening plane (dimensions 
PA and PB, Figure 2-2b); it is recommended that 
this distance be between 1.05 and 1.50 times the external tubing 
diameter. The face openings of the pitot tube shall, preferably, be 
aligned as shown in Figure 2-2; however, slight misalignments of the 
openings are permissible (see Figure 2-3).
    6.1.2 The Type S pitot tube shall have a known coefficient, 
determined as outlined in Section 10.0. An identification number shall 
be assigned to the pitot tube; this number shall be permanently marked 
or engraved on the body of the tube. A standard pitot tube may be used 
instead of a Type S, provided that it meets the specifications of 
Sections 6.7 and 10.2. Note, however, that the static and impact 
pressure holes of standard pitot tubes are susceptible to plugging in 
particulate-laden gas streams. Therefore, whenever a standard pitot tube 
is used to perform a traverse, adequate proof must be furnished that the 
openings of the pitot tube have not plugged up during the traverse 
period. This can be accomplished by comparing the velocity head 
([Delta]p) measurement recorded at a selected traverse point (readable 
[Delta]p value) with a second [Delta]p measurement recorded after ``back 
purging'' with pressurized air to clean the impact and static holes of 
the standard pitot tube. If the before and after [Delta]p measurements 
are within 5 percent, then the traverse data are acceptable. Otherwise, 
the data should be rejected and the traverse measurements redone. Note 
that the selected traverse point should be one that demonstrates a 
readable [Delta]p value. If ``back purging'' at regular intervals is 
part of a routine procedure, then comparative [Delta]p measurements 
shall be conducted as above for the last two traverse points that 
exhibit suitable [Delta]p measurements.
    6.2 Differential Pressure Gauge. An inclined manometer or equivalent 
device. Most sampling trains are equipped with a 10 in. (water column) 
inclined-vertical manometer, having 0.01 in. H20 divisions on 
the 0 to 1 in. inclined scale, and 0.1 in. H20 divisions on 
the 1 to 10 in. vertical scale. This type of manometer (or other gauge 
of equivalent sensitivity) is satisfactory for the measurement of 
[Delta]p values as low as 1.27 mm (0.05 in.) H20. However, a 
differential pressure gauge of greater sensitivity shall be used 
(subject to the approval of the Administrator), if any of the following 
is found to be true: (1) the arithmetic average of all [Delta]p readings 
at the traverse points in the stack is less than 1.27 mm (0.05 in.) 
H20; (2) for traverses of 12 or more points, more than 10 
percent of the individual [Delta]p readings are below 1.27 mm (0.05 in.) 
H20; or (3) for traverses of fewer than 12 points, more than 
one [Delta]p reading is below 1.27 mm (0.05 in.) H20. 
Reference 18 (see Section 17.0) describes commercially available 
instrumentation for the measurement of low-range gas velocities.
    6.2.1 As an alternative to criteria (1) through (3) above, Equation 
2-1 (Section 12.2) may be used to determine the necessity of using a 
more sensitive differential pressure gauge. If T is greater than 1.05, 
the velocity head data are unacceptable and a more sensitive 
differential pressure gauge must be used.

    Note: If differential pressure gauges other than inclined manometers 
are used (e.g., magnehelic gauges), their calibration must be checked 
after each test series. To check the calibration of a differential 
pressure gauge, compare [Delta]p readings of the gauge with those of a 
gauge-oil manometer at a minimum of three points, approximately 
representing the range of [Delta]p values in the stack. If, at each 
point, the values of [Delta]p as read by the differential pressure gauge 
and gauge-oil manometer agree to within 5 percent, the differential 
pressure gauge shall be considered to be in proper calibration. 
Otherwise, the test series shall either be voided, or procedures to 
adjust the measured [Delta]p values and final results shall be used, 
subject to the approval of the Administrator.

    6.3 Temperature Sensor. A thermocouple, liquid-filled bulb 
thermometer, bimetallic thermometer, mercury-in-glass thermometer, or 
other gauge capable of measuring temperatures to within 1.5 percent of 
the minimum absolute stack temperature. The temperature sensor shall be 
attached to the pitot tube such that the sensor tip does not touch any 
metal; the gauge shall be in an interference-free arrangement with 
respect to the pitot tube face openings (see Figure 2-1 and Figure 2-4). 
Alternative positions may

[[Page 17]]

be used if the pitot tube-temperature gauge system is calibrated 
according to the procedure of Section 10.0. Provided that a difference 
of not more than 1 percent in the average velocity measurement is 
introduced, the temperature gauge need not be attached to the pitot 
tube. This alternative is subject to the approval of the Administrator.
    6.4 Pressure Probe and Gauge. A piezometer tube and mercury- or 
water-filled U-tube manometer capable of measuring stack pressure to 
within 2.5 mm (0.1 in.) Hg. The static tap of a standard type pitot tube 
or one leg of a Type S pitot tube with the face opening planes 
positioned parallel to the gas flow may also be used as the pressure 
probe.
    6.5 Barometer. A mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 2.54 mm (0.1 in.) Hg.

    Note: The barometric pressure reading may be obtained from a nearby 
National Weather Service station. In this case, the station value (which 
is the absolute barometric pressure) shall be requested and an 
adjustment for elevation differences between the weather station and 
sampling point shall be made at a rate of minus 2.5 mm (0.1 in.) Hg per 
30 m (100 ft) elevation increase or plus 2.5 mm (0.1 in.) Hg per 30 m 
(100 ft.) for elevation decrease.

    6.6 Gas Density Determination Equipment. Method 3 equipment, if 
needed (see Section 8.6), to determine the stack gas dry molecular 
weight, and Method 4 (reference method) or Method 5 equipment for 
moisture content determination. Other methods may be used subject to 
approval of the Administrator.
    6.7 Calibration Pitot Tube. When calibration of the Type S pitot 
tube is necessary (see Section 10.1), a standard pitot tube shall be 
used for a reference. The standard pitot tube shall, preferably, have a 
known coefficient, obtained either (1) directly from the National 
Institute of Standards and Technology (NIST), Gaithersburg MD 20899, 
(301) 975-2002, or (2) by calibration against another standard pitot 
tube with an NIST-traceable coefficient. Alternatively, a standard pitot 
tube designed according to the criteria given in Sections 6.7.1 through 
6.7.5 below and illustrated in Figure 2-5 (see also References 7, 8, and 
17 in Section 17.0) may be used. Pitot tubes designed according to these 
specifications will have baseline coefficients of 0.99 0.01.
    6.7.1 Standard Pitot Design.
    6.7.1.1 Hemispherical (shown in Figure 2-5), ellipsoidal, or conical 
tip.
    6.7.1.2 A minimum of six diameters straight run (based upon D, the 
external diameter of the tube) between the tip and the static pressure 
holes.
    6.7.1.3 A minimum of eight diameters straight run between the static 
pressure holes and the centerline of the external tube, following the 
90[deg] bend.
    6.7.1.4 Static pressure holes of equal size (approximately 0.1 D), 
equally spaced in a piezometer ring configuration.
    6.7.1.5 90[deg] bend, with curved or mitered junction.
    6.8 Differential Pressure Gauge for Type S Pitot Tube Calibration. 
An inclined manometer or equivalent. If the single-velocity calibration 
technique is employed (see Section 10.1.2.3), the calibration 
differential pressure gauge shall be readable to the nearest 0.127 mm 
(0.005 in.) H20. For multivelocity calibrations, the gauge 
shall be readable to the nearest 0.127 mm (0.005 in.) H20 for 
[Delta]p values between 1.27 and 25.4 mm (0.05 and 1.00 in.) 
H20, and to the nearest 1.27 mm (0.05 in.) H20 for 
[Delta]p values above 25.4 mm (1.00 in.) H20. A special, more 
sensitive gauge will be required to read [Delta]p values below 1.27 mm 
(0.05 in.) H20 (see Reference 18 in Section 16.0).

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or 
surge tanks installed between the manometer and pitot tube may be used 
to dampen [Delta]p fluctuations. It is recommended, but not required, 
that a pretest leak-check be conducted as follows: (1) blow through the 
pitot impact opening until at least 7.6 cm (3.0 in.) H20 
velocity head registers on the manometer; then, close off the impact 
opening. The pressure shall remain stable for at least 15 seconds; (2) 
do the same for the static pressure side, except using suction to obtain 
the minimum of 7.6 cm (3.0 in.) H20. Other leak-check 
procedures, subject to the approval of the Administrator, may be used.
    8.2 Level and zero the manometer. Because the manometer level and 
zero may drift due to vibrations and temperature changes, make periodic 
checks during the traverse (at least once per hour). Record all 
necessary data on a form similar to that shown in Figure 2-6.
    8.3 Measure the velocity head and temperature at the traverse points 
specified by Method 1. Ensure that the proper differential pressure 
gauge is being used for the range of [Delta]p values encountered (see 
Section 6.2). If it is necessary to change to a more sensitive gauge, do 
so, and remeasure the [Delta]p and temperature readings at each traverse 
point. Conduct a post-test leak-check (mandatory), as described in 
Section 8.1 above, to validate the traverse run.
    8.4 Measure the static pressure in the stack. One reading is usually 
adequate.
    8.5 Determine the atmospheric pressure.
    8.6 Determine the stack gas dry molecular weight. For combustion 
processes or processes that emit essentially CO2, 
O2, CO, and N2, use Method 3. For processes 
emitting

[[Page 18]]

essentially air, an analysis need not be conducted; use a dry molecular 
weight of 29.0. For other processes, other methods, subject to the 
approval of the Administrator, must be used.
    8.7 Obtain the moisture content from Method 4 (reference method, or 
equivalent) or from Method 5.
    8.8 Determine the cross-sectional area of the stack or duct at the 
sampling location. Whenever possible, physically measure the stack 
dimensions rather than using blueprints. Do not assume that stack 
diameters are equal. Measure each diameter distance to verify its 
dimensions.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1-10.4.....................  Sampling           Ensure accurate
                                 equipment          measurement of stack
                                 calibration.       gas flow rate,
                                                    sample volume.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Type S Pitot Tube. Before its initial use, carefully examine 
the Type S pitot tube top, side, and end views to verify that the face 
openings of the tube are aligned within the specifications illustrated 
in Figures 2-2 and 2-3. The pitot tube shall not be used if it fails to 
meet these alignment specifications. After verifying the face opening 
alignment, measure and record the following dimensions of the pitot 
tube: (a) the external tubing diameter (dimension Dt, Figure 
2-2b); and (b) the base-to-opening plane distances (dimensions 
PA and PB, Figure 2-2b). If Dt is 
between 0.48 and 0.95 cm \3/16\ and \3/8\ in.), and if PA and 
PB are equal and between 1.05 and 1.50 Dt, there 
are two possible options: (1) the pitot tube may be calibrated according 
to the procedure outlined in Sections 10.1.2 through 10.1.5, or (2) a 
baseline (isolated tube) coefficient value of 0.84 may be assigned to 
the pitot tube. Note, however, that if the pitot tube is part of an 
assembly, calibration may still be required, despite knowledge of the 
baseline coefficient value (see Section 10.1.1). If Dt, 
PA, and PB are outside the specified limits, the 
pitot tube must be calibrated as outlined in Sections 10.1.2 through 
10.1.5.
    10.1.1 Type S Pitot Tube Assemblies. During sample and velocity 
traverses, the isolated Type S pitot tube is not always used; in many 
instances, the pitot tube is used in combination with other source-
sampling components (e.g., thermocouple, sampling probe, nozzle) as part 
of an ``assembly.'' The presence of other sampling components can 
sometimes affect the baseline value of the Type S pitot tube coefficient 
(Reference 9 in Section 17.0); therefore, an assigned (or otherwise 
known) baseline coefficient value may or may not be valid for a given 
assembly. The baseline and assembly coefficient values will be identical 
only when the relative placement of the components in the assembly is 
such that aerodynamic interference effects are eliminated. Figures 2-4, 
2-7, and 2-8 illustrate interference-free component arrangements for 
Type S pitot tubes having external tubing diameters between 0.48 and 
0.95 cm (\3/16\ and \3/8\ in.). Type S pitot tube assemblies that fail 
to meet any or all of the specifications of Figures 2-4, 2-7, and 2-8 
shall be calibrated according to the procedure outlined in Sections 
10.1.2 through 10.1.5, and prior to calibration, the values of the 
intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probe 
sheath) shall be measured and recorded.

    Note: Do not use a Type S pitot tube assembly that is constructed 
such that the impact pressure opening plane of the pitot tube is below 
the entry plane of the nozzle (see Figure 2-6B).

    10.1.2 Calibration Setup. If the Type S pitot tube is to be 
calibrated, one leg of the tube shall be permanently marked A, and the 
other, B. Calibration shall be performed in a flow system having the 
following essential design features:
    10.1.2.1 The flowing gas stream must be confined to a duct of 
definite cross-sectional area, either circular or rectangular. For 
circular cross sections, the minimum duct diameter shall be 30.48 cm (12 
in.); for rectangular cross sections, the width (shorter side) shall be 
at least 25.4 cm (10 in.).
    10.1.2.2 The cross-sectional area of the calibration duct must be 
constant over a distance of 10 or more duct diameters. For a rectangular 
cross section, use an equivalent diameter, calculated according to 
Equation 2-2 (see Section 12.3), to determine the number of duct 
diameters. To ensure the presence of stable, fully developed flow 
patterns at the calibration site, or ``test section,'' the site must be 
located at least eight diameters downstream and two diameters upstream 
from the nearest disturbances.

    Note: The eight- and two-diameter criteria are not absolute; other 
test section locations may be used (subject to approval of the 
Administrator), provided that the flow at the test site has been 
demonstrated to be or found stable and parallel to the duct axis.

    10.1.2.3 The flow system shall have the capacity to generate a test-
section velocity around 910 m/min (3,000 ft/min). This velocity must be 
constant with time to guarantee steady flow during calibration. Note 
that Type S pitot tube coefficients obtained by

[[Page 19]]

single-velocity calibration at 910 m/min (3,000 ft/min) will generally 
be valid to 3 percent for the measurement of 
velocities above 300 m/min (1,000 ft/min) and to 6 
percent for the measurement of velocities between 180 and 300 m/min (600 
and 1,000 ft/min). If a more precise correlation between the pitot tube 
coefficient, (Cp), and velocity is desired, the flow system 
should have the capacity to generate at least four distinct, time-
invariant test-section velocities covering the velocity range from 180 
to 1,500 m/min (600 to 5,000 ft/min), and calibration data shall be 
taken at regular velocity intervals over this range (see References 9 
and 14 in Section 17.0 for details).
    10.1.2.4 Two entry ports, one for each of the standard and Type S 
pitot tubes, shall be cut in the test section. The standard pitot entry 
port shall be located slightly downstream of the Type S port, so that 
the standard and Type S impact openings will lie in the same cross-
sectional plane during calibration. To facilitate alignment of the pitot 
tubes during calibration, it is advisable that the test section be 
constructed of Plexiglas \TM\ or some other transparent material.
    10.1.3 Calibration Procedure. Note that this procedure is a general 
one and must not be used without first referring to the special 
considerations presented in Section 10.1.5. Note also that this 
procedure applies only to single-velocity calibration. To obtain 
calibration data for the A and B sides of the Type S pitot tube, proceed 
as follows:
    10.1.3.1 Make sure that the manometer is properly filled and that 
the oil is free from contamination and is of the proper density. Inspect 
and leak-check all pitot lines; repair or replace if necessary.
    10.1.3.2 Level and zero the manometer. Switch on the fan, and allow 
the flow to stabilize. Seal the Type S pitot tube entry port.
    10.1.3.3 Ensure that the manometer is level and zeroed. Position the 
standard pitot tube at the calibration point (determined as outlined in 
Section 10.1.5.1), and align the tube so that its tip is pointed 
directly into the flow. Particular care should be taken in aligning the 
tube to avoid yaw and pitch angles. Make sure that the entry port 
surrounding the tube is properly sealed.
    10.1.3.4 Read [Delta]pstd, and record its value in a data 
table similar to the one shown in Figure 2-9. Remove the standard pitot 
tube from the duct, and disconnect it from the manometer. Seal the 
standard entry port.
    10.1.3.5 Connect the Type S pitot tube to the manometer and leak-
check. Open the Type S tube entry port. Check the manometer level and 
zero. Insert and align the Type S pitot tube so that its A side impact 
opening is at the same point as was the standard pitot tube and is 
pointed directly into the flow. Make sure that the entry port 
surrounding the tube is properly sealed.
    10.1.3.6 Read [Delta]ps, and enter its value in the data 
table. Remove the Type S pitot tube from the duct, and disconnect it 
from the manometer.
    10.1.3.7 Repeat Steps 10.1.3.3 through 10.1.3.6 until three pairs of 
[Delta]p readings have been obtained for the A side of the Type S pitot 
tube.
    10.1.3.8 Repeat Steps 10.1.3.3 through 10.1.3.7 for the B side of 
the Type S pitot tube.
    10.1.3.9 Perform calculations as described in Section 12.4. Use the 
Type S pitot tube only if the values of [sigma]A and 
[sigma]B are less than or equal to 0.01 and if the absolute 
value of the difference between Cp(A) and Cp(B) is 
0.01 or less.
    10.1.4 Special Considerations.
    10.1.4.1 Selection of Calibration Point.
    10.1.4.1.1 When an isolated Type S pitot tube is calibrated, select 
a calibration point at or near the center of the duct, and follow the 
procedures outlined in Section 10.1.3. The Type S pitot coefficients 
measured or calculated, (i.e., Cp(A) and Cp(B)) 
will be valid, so long as either: (1) the isolated pitot tube is used; 
or (2) the pitot tube is used with other components (nozzle, 
thermocouple, sample probe) in an arrangement that is free from 
aerodynamic interference effects (see Figures 2-4, 2-7, and 2-8).
    10.1.4.1.2 For Type S pitot tube-thermocouple combinations (without 
probe assembly), select a calibration point at or near the center of the 
duct, and follow the procedures outlined in Section 10.1.3. The 
coefficients so obtained will be valid so long as the pitot tube-
thermocouple combination is used by itself or with other components in 
an interference-free arrangement (Figures 2-4, 2-7, and 2-8).
    10.1.4.1.3 For Type S pitot tube combinations with complete probe 
assemblies, the calibration point should be located at or near the 
center of the duct; however, insertion of a probe sheath into a small 
duct may cause significant cross-sectional area interference and 
blockage and yield incorrect coefficient values (Reference 9 in Section 
17.0). Therefore, to minimize the blockage effect, the calibration point 
may be a few inches off-center if necessary. The actual blockage effect 
will be negligible when the theoretical blockage, as determined by a 
projected-area model of the probe sheath, is 2 percent or less of the 
duct cross-sectional area for assemblies without external sheaths 
(Figure 2-10a), and 3 percent or less for assemblies with external 
sheaths (Figure 2-10b).
    10.1.4.2 For those probe assemblies in which pitot tube-nozzle 
interference is a factor (i.e., those in which the pitot-nozzle 
separation distance fails to meet the specifications illustrated in 
Figure 2-7A), the value of Cp(s) depends upon the amount of 
free space between the tube and nozzle and, therefore,

[[Page 20]]

is a function of nozzle size. In these instances, separate calibrations 
shall be performed with each of the commonly used nozzle sizes in place. 
Note that the single-velocity calibration technique is acceptable for 
this purpose, even though the larger nozzle sizes (0.635 cm 
or \1/4\ in.) are not ordinarily used for isokinetic sampling at 
velocities around 910 m/min (3,000 ft/min), which is the calibration 
velocity. Note also that it is not necessary to draw an isokinetic 
sample during calibration (see Reference 19 in Section 17.0).
    10.1.4.3 For a probe assembly constructed such that its pitot tube 
is always used in the same orientation, only one side of the pitot tube 
need be calibrated (the side which will face the flow). The pitot tube 
must still meet the alignment specifications of Figure 2-2 or 2-3, 
however, and must have an average deviation ([sigma]) value of 0.01 or 
less (see Section 10.1.4.4).
    10.1.5 Field Use and Recalibration.
    10.1.5.1 Field Use.
    10.1.5.1.1 When a Type S pitot tube (isolated or in an assembly) is 
used in the field, the appropriate coefficient value (whether assigned 
or obtained by calibration) shall be used to perform velocity 
calculations. For calibrated Type S pitot tubes, the A side coefficient 
shall be used when the A side of the tube faces the flow, and the B side 
coefficient shall be used when the B side faces the flow. Alternatively, 
the arithmetic average of the A and B side coefficient values may be 
used, irrespective of which side faces the flow.
    10.1.5.1.2 When a probe assembly is used to sample a small duct, 
30.5 to 91.4 cm (12 to 36 in.) in diameter, the probe sheath sometimes 
blocks a significant part of the duct cross-section, causing a reduction 
in the effective value of Cp(s). Consult Reference 9 (see 
Section 17.0) for details. Conventional pitot-sampling probe assemblies 
are not recommended for use in ducts having inside diameters smaller 
than 30.5 cm (12 in.) (see Reference 16 in Section 17.0).
    10.1.5.2 Recalibration.
    10.1.5.2.1 Isolated Pitot Tubes. After each field use, the pitot 
tube shall be carefully reexamined in top, side, and end views. If the 
pitot face openings are still aligned within the specifications 
illustrated in Figure 2-2 and Figure 2-3, it can be assumed that the 
baseline coefficient of the pitot tube has not changed. If, however, the 
tube has been damaged to the extent that it no longer meets the 
specifications of Figure 2-2 and Figure 2-3, the damage shall either be 
repaired to restore proper alignment of the face openings, or the tube 
shall be discarded.
    10.1.5.2.2 Pitot Tube Assemblies. After each field use, check the 
face opening alignment of the pitot tube, as in Section 10.1.5.2.1. 
Also, remeasure the intercomponent spacings of the assembly. If the 
intercomponent spacings have not changed and the face opening alignment 
is acceptable, it can be assumed that the coefficient of the assembly 
has not changed. If the face opening alignment is no longer within the 
specifications of Figure 2-2 and Figure 2-3, either repair the damage or 
replace the pitot tube (calibrating the new assembly, if necessary). If 
the intercomponent spacings have changed, restore the original spacings, 
or recalibrate the assembly.
    10.2 Standard Pitot Tube (if applicable). If a standard pitot tube 
is used for the velocity traverse, the tube shall be constructed 
according to the criteria of Section 6.7 and shall be assigned a 
baseline coefficient value of 0.99. If the standard pitot tube is used 
as part of an assembly, the tube shall be in an interference-free 
arrangement (subject to the approval of the Administrator).
    10.3 Temperature Sensors.
    10.3.1 After each field use, calibrate dial thermometers, liquid-
filled bulb thermometers, thermocouple-potentiometer systems, and other 
sensors at a temperature within 10 percent of the average absolute stack 
temperature. For temperatures up to 405 [deg]C (761 [deg]F), use an ASTM 
mercury-in-glass reference thermometer, or equivalent, as a reference. 
Alternatively, either a reference thermocouple and potentiometer 
(calibrated against NIST standards) or thermometric fixed points (e.g., 
ice bath and boiling water, corrected for barometric pressure) may be 
used. For temperatures above 405 [deg]C (761 [deg]F), use a reference 
thermocouple-potentiometer system calibrated against NIST standards or 
an alternative reference, subject to the approval of the Administrator.
    10.3.2 The temperature data recorded in the field shall be 
considered valid. If, during calibration, the absolute temperature 
measured with the sensor being calibrated and the reference sensor agree 
within 1.5 percent, the temperature data taken in the field shall be 
considered valid. Otherwise, the pollutant emission test shall either be 
considered invalid or adjustments (if appropriate) of the test results 
shall be made, subject to the approval of the Administrator.
    10.4 Barometer. Calibrate the barometer used against a mercury 
barometer.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
Section 8.0).

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculation.
    12.1 Nomenclature.
A=Cross-sectional area of stack, m\2\ (ft\2\).
Bws=Water vapor in the gas stream (from Method 4 (reference 
method) or Method 5), proportion by volume.

[[Page 21]]

Cp=Pitot tube coefficient, dimensionless.
Cp(s)=Type S pitot tube coefficient, dimensionless.
Cp(std)=Standard pitot tube coefficient; use 0.99 if the 
coefficient is unknown and the tube is designed according to the 
criteria of Sections 6.7.1 to 6.7.5 of this method.
De=Equivalent diameter.
K=0.127 mm H2O (metric units). 0.005 in. H2O 
(English units).
Kp=Velocity equation constant.
L=Length.
Md=Molecular weight of stack gas, dry basis (see Section 
8.6), g/g-mole (lb/lb-mole).
Ms=Molecular weight of stack gas, wet basis, g/g-mole (lb/lb-
mole).
n=Total number of traverse points.
Pbar=Barometric pressure at measurement site, mm Hg (in. Hg).
Pg=Stack static pressure, mm Hg (in. Hg).
Ps=Absolute stack pressure (Pbar + Pg), 
mm Hg (in. Hg),
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
Qsd=Dry volumetric stack gas flow rate corrected to standard 
conditions, dscm/hr (dscf/hr).
T=Sensitivity factor for differential pressure gauges.
Ts=Stack temperature, [deg]C ( [deg]F).
Ts(abs)=Absolute stack temperature, [deg]K ([deg]R).
    =273 + Ts for metric units,
    =460 + Ts for English units.
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Vs=Average stack gas velocity, m/sec (ft/sec).
W=Width.
[Delta]p=Velocity head of stack gas, mm H2O (in. 
H20).
[Delta]pi=Individual velocity head reading at traverse point 
``i'', mm (in.) H2O.
[Delta]pstd=Velocity head measured by the standard pitot 
tube, cm (in.) H2O.
[Delta]ps=Velocity head measured by the Type S pitot tube, cm 
(in.) H2O.
3600=Conversion Factor, sec/hr.
18.0=Molecular weight of water, g/g-mole (lb/lb-mole).

    12.2 Calculate T as follows:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.045
    
    12.3 Calculate De as follows:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.046
    
    12.4 Calibration of Type S Pitot Tube.
    12.4.1 For each of the six pairs of [Delta]p readings (i.e., three 
from side A and three from side B) obtained in Section 10.1.3, calculate 
the value of the Type S pitot tube coefficient according to Equation 2-
3:
[GRAPHIC] [TIFF OMITTED] TR17OC00.047

    12.4.2 Calculate Cp(A), the mean A-side coefficient, and 
Cp(B), the mean B-side coefficient. Calculate the difference 
between these two average values.
    12.4.3 Calculate the deviation of each of the three A-side values of 
Cp(s) from Cp(A), and the deviation of each of the 
three B-side values of Cp(s) from Cp(B), using 
Equation 2-4:
[GRAPHIC] [TIFF OMITTED] TR17OC00.048

    12.4.4 Calculate [sigma] the average deviation from the mean, for 
both the A and B sides of the pitot tube. Use Equation 2-5:
[GRAPHIC] [TIFF OMITTED] TR17OC00.049

    12.5 Molecular Weight of Stack Gas.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.050
    
    12.6 Average Stack Gas Velocity.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.051
    

[[Page 22]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.052

[GRAPHIC] [TIFF OMITTED] TR17OC00.053

    12.7 Average Stack Gas Dry Volumetric Flow Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.054
    
                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Mark, L.S. Mechanical Engineers' Handbook. New York. McGraw-Hill 
Book Co., Inc. 1951.
    2. Perry, J.H., ed. Chemical Engineers' Handbook. New York. McGraw-
Hill Book Co., Inc. 1960.
    3. Shigehara, R.T., W.F. Todd, and W.S. Smith. Significance of 
Errors in Stack Sampling Measurements. U.S. Environmental Protection 
Agency, Research Triangle Park, N.C. (Presented at the Annual Meeting of 
the Air Pollution Control Association, St. Louis, MO., June 14-19, 
1970).
    4. Standard Method for Sampling Stacks for Particulate Matter. In: 
1971 Book of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM 
Designation D 2928-71.
    5. Vennard, J.K. Elementary Fluid Mechanics. New York. John Wiley 
and Sons, Inc. 1947.
    6. Fluid Meters--Their Theory and Application. American Society of 
Mechanical Engineers, New York, N.Y. 1959.
    7. ASHRAE Handbook of Fundamentals. 1972. p. 208.
    8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
    9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. U.S. 
Environmental Protection Agency, Research Triangle Park, N.C. (Presented 
at 1st Annual Meeting, Source Evaluation Society, Dayton, OH, September 
18, 1975.)
    10. Vollaro, R.F. A Type S Pitot Tube Calibration Study. U.S. 
Environmental Protection Agency, Emission Measurement Branch, Research 
Triangle Park, N.C. July 1974.
    11. Vollaro, R.F. The Effects of Impact Opening Misalignment on the 
Value of the Type S Pitot Tube Coefficient. U.S. Environmental 
Protection Agency, Emission Measurement Branch, Research Triangle Park, 
NC. October 1976.
    12. Vollaro, R.F. Establishment of a Baseline Coefficient Value for 
Properly Constructed Type S Pitot Tubes. U.S. Environmental Protection 
Agency, Emission Measurement Branch, Research Triangle Park, NC. 
November 1976.
    13. Vollaro, R.F. An Evaluation of Single-Velocity Calibration 
Technique as a Means of Determining Type S Pitot Tube Coefficients. U.S. 
Environmental Protection Agency, Emission Measurement Branch, Research 
Triangle Park, NC. August 1975.
    14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement 
of Low Velocities. U.S. Environmental Protection Agency, Emission 
Measurement Branch, Research Triangle Park, NC. November 1976.
    15. Smith, Marvin L. Velocity Calibration of EPA Type Source 
Sampling Probe. United Technologies Corporation, Pratt and Whitney 
Aircraft Division, East Hartford, CT. 1975.
    16. Vollaro, R.F. Recommended Procedure for Sample Traverses in 
Ducts Smaller than 12 Inches in Diameter. U.S. Environmental Protection 
Agency, Emission Measurement Branch, Research Triangle Park, NC. 
November 1976.
    17. Ower, E. and R.C. Pankhurst. The Measurement of Air Flow, 4th 
Ed. London, Pergamon Press. 1966.

[[Page 23]]

    18. Vollaro, R.F. A Survey of Commercially Available Instrumentation 
for the Measurement of Low-Range Gas Velocities. U.S. Environmental 
Protection Agency, Emission Measurement Branch, Research Triangle Park, 
NC. November 1976. (Unpublished Paper).
    19. Gnyp, A.W., et al. An Experimental Investigation of the Effect 
of Pitot Tube-Sampling Probe Configurations on the Magnitude of the S 
Type Pitot Tube Coefficient for Commercially Available Source Sampling 
Probes. Prepared by the University of Windsor for the Ministry of the 
Environment, Toronto, Canada. February 1975.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data
[GRAPHIC] [TIFF OMITTED] TR17OC00.055


[[Page 24]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.056


[[Page 25]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.057


[[Page 26]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.058

[GRAPHIC] [TIFF OMITTED] TR17OC00.059

PLANT___________________________________________________________________
DATE____________________________________________________________________

[[Page 27]]

RUN NO._________________________________________________________________
STACK DIA. OR DIMENSIONS, m (in.)_______________________________________
BAROMETRIC PRESS., mm Hg (in. Hg)_______________________________________
CROSS SECTIONAL AREA, m\2\ (ft\2\)______________________________________
OPERATORS_______________________________________________________________
PITOT TUBE I.D. NO._____________________________________________________
AVG. COEFFICIENT, Cp =__________________________________________________
LAST DATE CALIBRATED____________________________________________________

------------------------------------------------------------------------
 
-------------------------------------------------------------------------
 
 
 
 
 
 
 
------------------------------------------------------------------------

                    SCHEMATIC OF STACK CROSS SECTION

--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           Stack  temperature
         Traverse  Pt. No.             Vel. Hd.,  [Delta]p  -----------------------------------------------  Pg  mm Hg  (in. Hg)      ([Delta]p)\1/2\
                                          mm (in.)  H2O       Ts,  [deg]C ( [deg]F)   Ts,  [deg]K ([deg]R)
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                          Average(1)
--------------------------------------------------------------------------------------------------------------------------------------------------------

                   Figure 2-6. Velocity Traverse Data

[[Page 28]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.060

[GRAPHIC] [TIFF OMITTED] TR17OC00.061

PITOT TUBE IDENTIFICATION NUMBER:_______________________________________
DATE:___________________________________________________________________
CALIBRATED BY:__________________________________________________________

                                             ``A'' Side Calibration
----------------------------------------------------------------------------------------------------------------
                                   [Delta]Pstd  cm   [Delta]P(s)  cm H2O                      Deviation  Cp(s)--
            Run No.                 H2O  (in H2O)          (in H2O)              Cp(s)               Cp(A)
----------------------------------------------------------------------------------------------------------------
1
----------------------------------------------------------------------------------------------------------------
2
----------------------------------------------------------------------------------------------------------------
3
----------------------------------------------------------------------------------------------------------------

[[Page 29]]

 
                                                     Cp, avg
                                                     (SIDE A)
----------------------------------------------------------------------------------------------------------------


                                             ``B'' Side Calibration
----------------------------------------------------------------------------------------------------------------
                                   [Delta]Pstd  cm   [Delta]P(s)  cm H2O                      Deviation  Cp(s)--
            Run No.                 H2O  (in H2O)          (in H2O)              Cp(s)               Cp(B)
----------------------------------------------------------------------------------------------------------------
1
----------------------------------------------------------------------------------------------------------------
2
----------------------------------------------------------------------------------------------------------------
3
----------------------------------------------------------------------------------------------------------------
                                                     Cp, avg
                                                     (SIDE B)
----------------------------------------------------------------------------------------------------------------

                                                     [GRAPHIC] [TIFF OMITTED] TR17OC00.062
                                                     
[Cp, avg (side A)--Cp, avg (side B)]*
    *Must be less than or equal to 0.01

                 Figure 2-9. Pitot Tube Calibration Data

[[Page 30]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.063

  Method 2A--Direct Measurement of Gas Volume Through Pipes and Small 
                                  Ducts

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test methods: Method 1, Method 2.

                        1.0 Scope and Application

    1.1 This method is applicable for the determination of gas flow 
rates in pipes and small ducts, either in-line or at exhaust positions, 
within the temperature range of 0 to 50 [deg]C (32 to 122 [deg]F).
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas volume meter is used to measure gas volume directly. 
Temperature and pressure measurements are made to allow correction of 
the volume to standard conditions.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety

[[Page 31]]

and health practices and determine the applicability of regulatory 
limitations prior to performing this test method.

                       6.0 Equipment and Supplies

    Specifications for the apparatus are given below. Any other 
apparatus that has been demonstrated (subject to approval of the 
Administrator) to be capable of meeting the specifications will be 
considered acceptable.
    6.1 Gas Volume Meter. A positive displacement meter, turbine meter, 
or other direct measuring device capable of measuring volume to within 2 
percent. The meter shall be equipped with a temperature sensor (accurate 
to within 2 percent of the minimum absolute 
temperature) and a pressure gauge (accurate to within 2.5 mm Hg). The manufacturer's recommended capacity of 
the meter shall be sufficient for the expected maximum and minimum flow 
rates for the sampling conditions. Temperature, pressure, corrosive 
characteristics, and pipe size are factors necessary to consider in 
selecting a suitable gas meter.
    6.2 Barometer. A mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 2.5 mm 
Hg.

    Note: In many cases, the barometric reading may be obtained from a 
nearby National Weather Service station, in which case the station value 
(which is the absolute barometric pressure) shall be requested and an 
adjustment for elevation differences between the weather station and 
sampling point shall be applied at a rate of minus 2.5 mm (0.1 in.) Hg 
per 30 m (100 ft) elevation increase or vice versa for elevation 
decrease.

    6.3 Stopwatch. Capable of measurement to within 1 second.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Installation. As there are numerous types of pipes and small 
ducts that may be subject to volume measurement, it would be difficult 
to describe all possible installation schemes. In general, flange 
fittings should be used for all connections wherever possible. Gaskets 
or other seal materials should be used to assure leak-tight connections. 
The volume meter should be located so as to avoid severe vibrations and 
other factors that may affect the meter calibration.
    8.2 Leak Test.
    8.2.1 A volume meter installed at a location under positive pressure 
may be leak-checked at the meter connections by using a liquid leak 
detector solution containing a surfactant. Apply a small amount of the 
solution to the connections. If a leak exists, bubbles will form, and 
the leak must be corrected.
    8.2.2 A volume meter installed at a location under negative pressure 
is very difficult to test for leaks without blocking flow at the inlet 
of the line and watching for meter movement. If this procedure is not 
possible, visually check all connections to assure leak-tight seals.
    8.3 Volume Measurement.
    8.3.1 For sources with continuous, steady emission flow rates, 
record the initial meter volume reading, meter temperature(s), meter 
pressure, and start the stopwatch. Throughout the test period, record 
the meter temperatures and pressures so that average values can be 
determined. At the end of the test, stop the timer, and record the 
elapsed time, the final volume reading, meter temperature, and pressure. 
Record the barometric pressure at the beginning and end of the test run. 
Record the data on a table similar to that shown in Figure 2A-1.
    8.3.2 For sources with noncontinuous, non-steady emission flow 
rates, use the procedure in Section 8.3.1 with the addition of the 
following: Record all the meter parameters and the start and stop times 
corresponding to each process cyclical or noncontinuous event.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1-10.4.....................  Sampling           Ensure accurate
                                 equipment          measurement of stack
                                 calibration.       gas flow rate,
                                                    sample volume.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Volume Meter.
    10.1.1 The volume meter is calibrated against a standard reference 
meter prior to its initial use in the field. The reference meter is a 
spirometer or liquid displacement meter with a capacity consistent with 
that of the test meter.
    10.1.2 Alternatively, a calibrated, standard pitot may be used as 
the reference meter in conjunction with a wind tunnel assembly. Attach 
the test meter to the wind tunnel so that the total flow passes through 
the test meter. For each calibration run, conduct a 4-point traverse 
along one stack diameter at a position at least eight diameters of 
straight tunnel downstream and two diameters upstream of any bend, 
inlet, or air mover. Determine the traverse point locations as specified 
in Method 1. Calculate the reference volume using the velocity values 
following the procedure in Method 2, the wind tunnel cross-sectional 
area, and the run time.

[[Page 32]]

    10.1.3 Set up the test meter in a configuration similar to that used 
in the field installation (i.e., in relation to the flow moving device). 
Connect the temperature sensor and pressure gauge as they are to be used 
in the field. Connect the reference meter at the inlet of the flow line, 
if appropriate for the meter, and begin gas flow through the system to 
condition the meters. During this conditioning operation, check the 
system for leaks.
    10.1.4 The calibration shall be performed during at least three 
different flow rates. The calibration flow rates shall be about 0.3, 
0.6, and 0.9 times the rated maximum flow rate of the test meter.
    10.1.5 For each calibration run, the data to be collected include: 
reference meter initial and final volume readings, the test meter 
initial and final volume reading, meter average temperature and 
pressure, barometric pressure, and run time. Repeat the runs at each 
flow rate at least three times.
    10.1.6 Calculate the test meter calibration coefficient as indicated 
in Section 12.2.
    10.1.7 Compare the three Ym values at each of the flow 
rates tested and determine the maximum and minimum values. The 
difference between the maximum and minimum values at each flow rate 
should be no greater than 0.030. Extra runs may be required to complete 
this requirement. If this specification cannot be met in six successive 
runs, the test meter is not suitable for use. In addition, the meter 
coefficients should be between 0.95 and 1.05. If these specifications 
are met at all the flow rates, average all the Ym values from 
runs meeting the specifications to obtain an average meter calibration 
coefficient, Ym.
    10.1.8 The procedure above shall be performed at least once for each 
volume meter. Thereafter, an abbreviated calibration check shall be 
completed following each field test. The calibration of the volume meter 
shall be checked with the meter pressure set at the average value 
encountered during the field test. Three calibration checks (runs) shall 
be performed using this average flow rate value. Calculate the average 
value of the calibration factor. If the calibration has changed by more 
than 5 percent, recalibrate the meter over the full range of flow as 
described above.

    Note: If the volume meter calibration coefficient values obtained 
before and after a test series differ by more than 5 percent, the test 
series shall either be voided, or calculations for the test series shall 
be performed using whichever meter coefficient value (i.e., before or 
after) gives the greater value of pollutant emission rate.

    10.2 Temperature Sensor. After each test series, check the 
temperature sensor at ambient temperature. Use an American Society for 
Testing and Materials (ASTM) mercury-in-glass reference thermometer, or 
equivalent, as a reference. If the sensor being checked agrees within 2 
percent (absolute temperature) of the reference, the temperature data 
collected in the field shall be considered valid. Otherwise, the test 
data shall be considered invalid or adjustments of the results shall be 
made, subject to the approval of the Administrator.
    10.3 Barometer. Calibrate the barometer used against a mercury 
barometer prior to the field test.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
Section 8.0).

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra decimal figure 
beyond that of the acquired data. Round off figures after final 
calculation.

    12.1 Nomenclature.

f=Final reading.
i=Initial reading.
Pbar=Barometric pressure, mm Hg.
Pg=Average static pressure in volume meter, mm Hg.
Qs=Gas flow rate, m\3\/min, standard conditions.
s=Standard conditions, 20 [deg]C and 760 mm Hg.
Tr=Reference meter average temperature, [deg]K ([deg]R).
Tm=Test meter average temperature, [deg]K ([deg]R).
Vr=Reference meter volume reading, m\3\.
Vm=Test meter volume reading, m\3\.
Ym=Test meter calibration coefficient, dimensionless.
[thetas]=Elapsed test period time, min.
    12.2 Test Meter Calibration Coefficient.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.064
    
    12.3 Volume.

[[Page 33]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.065

    12.4 Gas Flow Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.066
    
                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Rom, Jerome J. Maintenance, Calibration, and Operation of 
Isokinetic Source Sampling Equipment. U.S. Environmental Protection 
Agency, Research Triangle Park, NC. Publication No. APTD-0576. March 
1972.
    2. Wortman, Martin, R. Vollaro, and P.R. Westlin. Dry Gas Volume 
Meter Calibrations. Source Evaluation Society Newsletter. Vol. 2, No. 2. 
May 1977.
    3. Westlin, P.R., and R.T. Shigehara. Procedure for Calibrating and 
Using Dry Gas Volume Meters as Calibration Standards. Source Evaluation 
Society Newsletter. Vol. 3, No. 1. February 1978.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

 Method 2B--Determination of Exhaust Gas Volume Flow Rate From Gasoline 
                           Vapor Incinerators

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should also have a thorough knowledge of at 
least the following additional test methods: Method 1, Method 2, Method 
2A, Method 10, Method 25A, Method 25B.

                        1.0 Scope and Application

    1.1 This method is applicable for the determination of exhaust 
volume flow rate from incinerators that process gasoline vapors 
consisting primarily of alkanes, alkenes, and/or arenes (aromatic 
hydrocarbons). It is assumed that the amount of auxiliary fuel is 
negligible.
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 Organic carbon concentration and volume flow rate are measured 
at the incinerator inlet using either Method 25A or Method 25B and 
Method 2A, respectively. Organic carbon, carbon dioxide 
(CO2), and carbon monoxide (CO) concentrations are measured 
at the outlet using either Method 25A or Method 25B and Method 10, 
respectively. The ratio of total carbon at the incinerator inlet and 
outlet is multiplied by the inlet volume to determine the exhaust volume 
flow rate.

                             3.0 Definitions

    Same as Section 3.0 of Method 10 and Method 25A.

                            4.0 Interferences

    Same as Section 4.0 of Method 10.

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This test method may not address all of the safety problems 
associated with its use. It is the responsibility of the user of this 
test method to establish appropriate safety and health practices and 
determine the applicability of regulatory limitations prior to 
performing this test method.

                       6.0 Equipment and Supplies

    Same as Section 6.0 of Method 2A, Method 10, and Method 25A and/or 
Method 25B as applicable, with the addition of the following:
    6.1 This analyzer must meet the specifications set forth in Section 
6.1.2 of Method 10, except that the span shall be 15 percent 
CO2 by volume.

                       7.0 Reagents and Standards

    Same as Section 7.0 of Method 10 and Method 25A, with the following 
addition and exceptions:
    7.1 Carbon Dioxide Analyzer Calibration. CO2 gases 
meeting the specifications set forth in Section 7 of Method 6C are 
required.
    7.2 Hydrocarbon Analyzer Calibration. Methane shall not be used as a 
calibration gas when performing this method.
    7.3 Fuel Gas. If Method 25B is used to measure the organic carbon 
concentrations at both the inlet and exhaust, no fuel gas is required.

[[Page 34]]

                   8.0 Sample Collection and Analysis

    8.1 Pre-test Procedures. Perform all pre-test procedures (e.g., 
system performance checks, leak checks) necessary to determine gas 
volume flow rate and organic carbon concentration in the vapor line to 
the incinerator inlet and to determine organic carbon, carbon monoxide, 
and carbon dioxide concentrations at the incinerator exhaust, as 
outlined in Method 2A, Method 10, and Method 25A and/or Method 25B as 
applicable.
    8.2 Sampling. At the beginning of the test period, record the 
initial parameters for the inlet volume meter according to the 
procedures in Method 2A and mark all of the recorder strip charts to 
indicate the start of the test. Conduct sampling and analysis as 
outlined in Method 2A, Method 10, and Method 25A and/or Method 25B as 
applicable. Continue recording inlet organic and exhaust CO2, 
CO, and organic concentrations throughout the test. During periods of 
process interruption and halting of gas flow, stop the timer and mark 
the recorder strip charts so that data from this interruption are not 
included in the calculations. At the end of the test period, record the 
final parameters for the inlet volume meter and mark the end on all of 
the recorder strip charts.
    8.3 Post-test Procedures. Perform all post-test procedures (e.g., 
drift tests, leak checks), as outlined in Method 2A, Method 10, and 
Method 25A and/or Method 25B as applicable.

                           9.0 Quality Control

    Same as Section 9.0 of Method 2A, Method 10, and Method 25A.

                  10.0 Calibration and Standardization

    Same as Section 10.0 of Method 2A, Method 10, and Method 25A.

    Note: If a manifold system is used for the exhaust analyzers, all 
the analyzers and sample pumps must be operating when the analyzer 
calibrations are performed.

    10.1 If an analyzer output does not meet the specifications of the 
method, invalidate the test data for the period. Alternatively, 
calculate the exhaust volume results using initial calibration data and 
using final calibration data and report both resulting volumes. Then, 
for emissions calculations, use the volume measurement resulting in the 
greatest emission rate or concentration.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
Section 8.0).

                   12.0 Data Analysis and Calculations

    Carry out the calculations, retaining at least one extra decimal 
figure beyond that of the acquired data. Round off figures after the 
final calculation.
    12.1 Nomenclature.

Coe=Mean carbon monoxide concentration in system exhaust, 
ppm.
(CO2)2=Ambient carbon dioxide concentration, ppm 
(if not measured during the test period, may be assumed to equal 300 
ppm).
(CO2)e=Mean carbon dioxide concentration in system 
exhaust, ppm.
HCe=Mean organic concentration in system exhaust as defined 
by the calibration gas, ppm.
Hci=Mean organic concentration in system inlet as defined by 
the calibration gas, ppm.
Ke=Hydrocarbon calibration gas factor for the exhaust 
hydrocarbon analyzer, unitless [equal to the number of carbon atoms per 
molecule of the gas used to calibrate the analyzer (2 for ethane, 3 for 
propane, etc.)].
Ki=Hydrocarbon calibration gas factor for the inlet 
hydrocarbon analyzer, unitless.
Ves=Exhaust gas volume, m\3\.
Vis=Inlet gas volume, m\3\.
Qes=Exhaust gas volume flow rate, m\3\/min.
Qis=Inlet gas volume flow rate, m\3\/min.
[thetas]=Sample run time, min.
s=Standard conditions: 20 [deg]C, 760 mm Hg.

    12.2 Concentrations. Determine mean concentrations of inlet 
organics, outlet CO2, outlet CO, and outlet organics 
according to the procedures in the respective methods and the analyzers' 
calibration curves, and for the time intervals specified in the 
applicable regulations.
    12.3 Exhaust Gas Volume. Calculate the exhaust gas volume as 
follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.067

    12.4 Exhaust Gas Volume Flow Rate. Calculate the exhaust gas volume 
flow rate as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.210


[[Page 35]]



                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Section 16.0 of Method 2A, Method 10, and Method 25A.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

  Method 2C--Determination of Gas Velocity and Volumetric Flow Rate in 
               Small Stacks or Ducts (Standard Pitot Tube)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should also have a thorough knowledge of at least the 
following additional test methods: Method 1, Method 2.

                        1.0 Scope and Application

    1.1 This method is applicable for the determination of average 
velocity and volumetric flow rate of gas streams in small stacks or 
ducts. Limits on the applicability of this method are identical to those 
set forth in Method 2, Section 1.0, except that this method is limited 
to stationary source stacks or ducts less than about 0.30 meter (12 in.) 
in diameter, or 0.071 m\2\ (113 in.\2\) in cross-sectional area, but 
equal to or greater than about 0.10 meter (4 in.) in diameter, or 0.0081 
m\2\ (12.57 in.\2\) in cross-sectional area.
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 The average gas velocity in a stack or duct is determined from 
the gas density and from measurement of velocity heads with a standard 
pitot tube.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This test method may not address all of the safety problems 
associated with its use. It is the responsibility of the user of this 
test method to establish appropriate safety and health practices and 
determine the applicability of regulatory limitations prior to 
performing this test method.

                       6.0 Equipment and Supplies

    Same as Method 2, Section 6.0, with the exception of the following:
    6.1 Standard Pitot Tube (instead of Type S). A standard pitot tube 
which meets the specifications of Section 6.7 of Method 2. Use a 
coefficient of 0.99 unless it is calibrated against another standard 
pitot tube with a NIST-traceable coefficient (see Section 10.2 of Method 
2).
    6.2 Alternative Pitot Tube. A modified hemispherical-nosed pitot 
tube (see Figure 2C-1), which features a shortened stem and enlarged 
impact and static pressure holes. Use a coefficient of 0.99 unless it is 
calibrated as mentioned in Section 6.1 above. This pitot tube is useful 
in particulate liquid droplet-laden gas streams when a ``back purge'' is 
ineffective.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Follow the general procedures in Section 8.0 of Method 2, except 
conduct the measurements at the traverse points specified in Method 1A. 
The static and impact pressure holes of standard pitot tubes are 
susceptible to plugging in particulate-laden gas streams. Therefore, 
adequate proof that the openings of the pitot tube have not plugged 
during the traverse period must be furnished; this can be done by taking 
the velocity head ([Delta]p) heading at the final traverse point, 
cleaning out the impact and static holes of the standard pitot tube by 
``back-purging'' with pressurized air, and then taking another [Delta]p 
reading. If the [Delta]p readings made before and after the air purge 
are the same (within 5 percent) the traverse is 
acceptable. Otherwise, reject the run. Note that if the [Delta]p at the 
final traverse point is unsuitably low, another point may be selected. 
If ``back purging'' at regular intervals is part of the procedure, then 
take comparative [Delta]p readings, as above, for the last two back 
purges at which suitably high [Delta]p readings are observed.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.0..........................  Sampling           Ensure accurate
                                 equipment          measurement of stack
                                 calibration.       gas velocity head.
------------------------------------------------------------------------


[[Page 36]]

                  10.0 Calibration and Standardization

    Same as Method 2, Sections 10.2 through 10.4.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
Section 8.0).

                   12.0 Calculations and Data Analysis

    Same as Method 2, Section 12.0.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 2, Section 16.0.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data
[GRAPHIC] [TIFF OMITTED] TR17OC00.068

Method 2D--Measurement of Gas Volume Flow Rates in Small Pipes and Ducts

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should also have a thorough knowledge of at least the 
following additional test methods: Method 1, Method 2, and Method 2A.

                        1.0 Scope and Application

    1.1 This method is applicable for the determination of the 
volumetric flow rates of gas streams in small pipes and ducts. It can be 
applied to intermittent or variable gas flows only with particular 
caution.
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 All the gas flow in the pipe or duct is directed through a 
rotameter, orifice plate or similar device to measure flow rate or 
pressure drop. The device has been previously calibrated in a manner 
that insures its proper calibration for the gas being measured. Absolute 
temperature and pressure measurements are made to allow correction of 
volumetric flow rates to standard conditions.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This test method may not address all of the safety problems 
associated with its use. It is the responsibility of the user of this 
test method to establish appropriate safety and health practices and 
determine the applicability of regulatory limitations prior to 
performing this test method.

[[Page 37]]

                       6.0 Equipment and Supplies

    Specifications for the apparatus are given below. Any other 
apparatus that has been demonstrated (subject to approval of the 
Administrator) to be capable of meeting the specifications will be 
considered acceptable.
    6.1 Gas Metering Rate or Flow Element Device. A rotameter, orifice 
plate, or other volume rate or pressure drop measuring device capable of 
measuring the stack flow rate to within 5 percent. 
The metering device shall be equipped with a temperature gauge accurate 
to within 2 percent of the minimum absolute stack 
temperature and a pressure gauge (accurate to within 5 mm Hg). The capacity of the metering device shall be 
sufficient for the expected maximum and minimum flow rates at the stack 
gas conditions. The magnitude and variability of stack gas flow rate, 
molecular weight, temperature, pressure, dewpoint, and corrosive 
characteristics, and pipe or duct size are factors to consider in 
choosing a suitable metering device.
    6.2 Barometer. Same as Method 2, Section 6.5.
    6.3 Stopwatch. Capable of measurement to within 1 second.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Installation and Leak Check. Same as Method 2A, Sections 8.1 and 
8.2, respectively.
    8.2 Volume Rate Measurement.
    8.2.1 Continuous, Steady Flow. At least once an hour, record the 
metering device flow rate or pressure drop reading, and the metering 
device temperature and pressure. Make a minimum of 12 equally spaced 
readings of each parameter during the test period. Record the barometric 
pressure at the beginning and end of the test period. Record the data on 
a table similar to that shown in Figure 2D-1.
    8.2.2 Noncontinuous and Nonsteady Flow. Use volume rate devices with 
particular caution. Calibration will be affected by variation in stack 
gas temperature, pressure and molecular weight. Use the procedure in 
Section 8.2.1 with the addition of the following: Record all the 
metering device parameters on a time interval frequency sufficient to 
adequately profile each process cyclical or noncontinuous event. A 
multichannel continuous recorder may be used.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.0..........................  Sampling           Ensure accurate
                                 equipment          measurement of stack
                                 calibration.       gas flow rate or
                                                    sample volume.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    Same as Method 2A, Section 10.0, with the following exception:
    10.1 Gas Metering Device. Same as Method 2A, Section 10.1, except 
calibrate the metering device with the principle stack gas to be 
measured (examples: air, nitrogen) against a standard reference meter. A 
calibrated dry gas meter is an acceptable reference meter. Ideally, 
calibrate the metering device in the field with the actual gas to be 
metered. For metering devices that have a volume rate readout, calculate 
the test metering device calibration coefficient, Ym, for 
each run shown in Equation 2D-2 Section 12.3.
    10.2 For metering devices that do not have a volume rate readout, 
refer to the manufacturer's instructions to calculate the Vm2 
corresponding to each Vr.
    10.3 Temperature Gauge. Use the procedure and specifications in 
Method 2A, Section 10.2. Perform the calibration at a temperature that 
approximates field test conditions.
    10.4 Barometer. Calibrate the barometer to be used in the field test 
with a mercury barometer prior to the field test.

                       11.0 Analytical Procedure.

    Sample collection and analysis are concurrent for this method (see 
Section 8.0).

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature.
Pbar=Barometric pressure, mm Hg (in. Hg).
Pm=Test meter average static pressure, mm Hg (in. Hg).
Qr=Reference meter volume flow rate reading, m\3\/min (ft\3\/
min).
Qm=Test meter volume flow rate reading, m\3\/min (ft\3\/min).
Tr=Absolute reference meter average temperature, [deg]K 
([deg]R).
Tm=Absolute test meter average temperature, [deg]K ([deg]R).
Kl=0.3855 [deg]K/mm Hg for metric units,=17.65 [deg]R/in. Hg 
for English units.
    12.2 Gas Flow Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.069
    
    12.3 Test Meter Device Calibration Coefficient. Calculation for 
testing metering device calibration coefficient, Ym.

[[Page 38]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.070

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Spink, L.K. Principles and Practice of Flowmeter Engineering. The 
Foxboro Company. Foxboro, MA. 1967.
    2. Benedict, R.P. Fundamentals of Temperature, Pressure, and Flow 
Measurements. John Wiley & Sons, Inc. New York, NY. 1969.
    3. Orifice Metering of Natural Gas. American Gas Association. 
Arlington, VA. Report No. 3. March 1978. 88 pp.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

Plant___________________________________________________________________
Date____________________________________________________________________
Run No._________________________________________________________________
Sample location_________________________________________________________
Barometric pressure (mm Hg):
Start___________________________________________________________________
Finish__________________________________________________________________
Operators_______________________________________________________________
Metering device No._____________________________________________________
Calibration coefficient_________________________________________________
Calibration gas_________________________________________________________
Date to recalibrate_____________________________________________________

----------------------------------------------------------------------------------------------------------------
                                                                                        Temperature
              Time                Flow rate  reading    Static Pressure  ---------------------------------------
                                                       [mm Hg (in. Hg)]     [deg]C ([deg]F)     [deg]K ([deg]R)
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 Average
----------------------------------------------------------------------------------------------------------------

             Figure 2D-1. Volume Flow Rate Measurement Data

      Method 2E--Determination of Landfill Gas Production Flow Rate

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should also have a thorough knowledge of at 
least the following additional test methods: Methods 2 and 3C.

                        1.0 Scope and Application

    1.1 Applicability. This method applies to the measurement of 
landfill gas (LFG) production flow rate from municipal solid waste 
landfills and is used to calculate the flow rate of nonmethane organic 
compounds (NMOC) from landfills.
    1.2 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 Extraction wells are installed either in a cluster of three or 
at five dispersed locations in the landfill. A blower is used to extract 
LFG from the landfill. LFG composition, landfill pressures, and orifice 
pressure differentials from the wells are measured and the landfill gas 
production flow rate is calculated.

[[Page 39]]

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Since this method is complex, only experienced personnel should 
perform the test. Landfill gas contains methane, therefore explosive 
mixtures may exist at or near the landfill. It is advisable to take 
appropriate safety precautions when testing landfills, such as 
refraining from smoking and installing explosion-proof equipment.

                       6.0 Equipment and Supplies

    6.1 Well Drilling Rig. Capable of boring a 0.61 m (24 in.) diameter 
hole into the landfill to a minimum of 75 percent of the landfill depth. 
The depth of the well shall not extend to the bottom of the landfill or 
the liquid level.
    6.2 Gravel. No fines. Gravel diameter should be appreciably larger 
than perforations stated in Sections 6.10 and 8.2.
    6.3 Bentonite.
    6.4 Backfill Material. Clay, soil, and sandy loam have been found to 
be acceptable.
    6.5 Extraction Well Pipe. Minimum diameter of 3 in., constructed of 
polyvinyl chloride (PVC), high density polyethylene (HDPE), fiberglass, 
stainless steel, or other suitable nonporous material capable of 
transporting landfill gas.
    6.6 Above Ground Well Assembly. Valve capable of adjusting gas flow, 
such as a gate, ball, or butterfly valve; sampling ports at the well 
head and outlet; and a flow measuring device, such as an in-line orifice 
meter or pitot tube. A schematic of the aboveground well head assembly 
is shown in Figure 2E-1.
    6.7 Cap. Constructed of PVC or HDPE.
    6.8 Header Piping. Constructed of PVC or HDPE.
    6.9 Auger. Capable of boring a 0.15-to 0.23-m (6-to 9-in.) diameter 
hole to a depth equal to the top of the perforated section of the 
extraction well, for pressure probe installation.
    6.10 Pressure Probe. Constructed of PVC or stainless steel (316), 
0.025-m (1-in.). Schedule 40 pipe. Perforate the bottom two-thirds. A 
minimum requirement for perforations is slots or holes with an open area 
equivalent to four 0.006-m (\1/4\-in.) diameter holes spaced 90[deg] 
apart every 0.15 m (6 in.).
    6.11 Blower and Flare Assembly. Explosion-proof blower, capable of 
extracting LFG at a flow rate of 8.5 m\3\/min (300 ft\3\/min), a water 
knockout, and flare or incinerator.
    6.12 Standard Pitot Tube and Differential Pressure Gauge for Flow 
Rate Calibration with Standard Pitot. Same as Method 2, Sections 6.7 and 
6.8.
    6.13 Orifice Meter. Orifice plate, pressure tabs, and pressure 
measuring device to measure the LFG flow rate.
    6.14 Barometer. Same as Method 4, Section 6.1.5.
    6.15 Differential Pressure Gauge. Water-filled U-tube manometer or 
equivalent, capable of measuring within 0.02 mm Hg (0.01 in. 
H2O), for measuring the pressure of the pressure probes.

               7.0 Reagents and Standards. Not Applicable

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Placement of Extraction Wells. The landfill owner or operator 
may install a single cluster of three extraction wells in a test area or 
space five equal-volume wells over the landfill. The cluster wells are 
recommended but may be used only if the composition, age of the refuse, 
and the landfill depth of the test area can be determined.
    8.1.1 Cluster Wells. Consult landfill site records for the age of 
the refuse, depth, and composition of various sections of the landfill. 
Select an area near the perimeter of the landfill with a depth equal to 
or greater than the average depth of the landfill and with the average 
age of the refuse between 2 and 10 years old. Avoid areas known to 
contain nondecomposable materials, such as concrete and asbestos. Locate 
the cluster wells as shown in Figure 2E-2.
    8.1.1.1 The age of the refuse in a test area will not be uniform, so 
calculate a weighted average age of the refuse as shown in Section 12.2.
    8.1.2 Equal Volume Wells. Divide the sections of the landfill that 
are at least 2 years old into five areas representing equal volumes. 
Locate an extraction well near the center of each area.
    8.2 Installation of Extraction Wells. Use a well drilling rig to dig 
a 0.6 m (24 in.) diameter hole in the landfill to a minimum of 75 
percent of the landfill depth, not to extend to the bottom of the 
landfill or the liquid level. Perforate the bottom two thirds of the 
extraction well pipe. A minimum requirement for perforations is holes or 
slots with an open area equivalent to 0.01-m (0.5-in.) diameter holes 
spaced 90[deg] apart every 0.1 to 0.2 m (4 to 8 in.). Place the 
extraction well in the center of the hole and backfill with gravel to a 
level 0.30 m (1 ft) above the perforated section. Add a layer of 
backfill material 1.2 m (4 ft) thick. Add a layer of bentonite 0.9 m (3 
ft) thick, and backfill the remainder of the hole with cover material or 
material equal in permeability to the existing cover material. The 
specifications for extraction well installation are shown in Figure 2E-
3.
    8.3 Pressure Probes. Shallow pressure probes are used in the check 
for infiltration of air into the landfill, and deep pressure probes are 
use to determine the radius of influence. Locate pressure probes along 
three radial arms approximately 120[deg] apart at distances of 3, 15, 
30, and 45 m (10, 50, 100, and

[[Page 40]]

150 ft) from the extraction well. The tester has the option of locating 
additional pressure probes at distances every 15 m (50 feet) beyond 45 m 
(150 ft). Example placements of probes are shown in Figure 2E-4. The 15-
, 30-, and 45-m, (50-, 100-, and 150-ft) probes from each well, and any 
additional probes located along the three radial arms (deep probes), 
shall extend to a depth equal to the top of the perforated section of 
the extraction wells. All other probes (shallow probes) shall extend to 
a depth equal to half the depth of the deep probes.
    8.3.1 Use an auger to dig a hole, 0.15- to 0.23-m (6-to 9-in.) in 
diameter, for each pressure probe. Perforate the bottom two thirds of 
the pressure probe. A minimum requirement for perforations is holes or 
slots with an open area equivalent to four 0.006-m (0.25-in.) diameter 
holes spaced 90[deg] apart every 0.15 m (6 in.). Place the pressure 
probe in the center of the hole and backfill with gravel to a level 0.30 
m (1 ft) above the perforated section. Add a layer of backfill material 
at least 1.2 m (4 ft) thick. Add a layer of bentonite at least 0.3 m (1 
ft) thick, and backfill the remainder of the hole with cover material or 
material equal in permeability to the existing cover material. The 
specifications for pressure probe installation are shown in Figure 2E-5.
    8.4 LFG Flow Rate Measurement. Place the flow measurement device, 
such as an orifice meter, as shown in Figure 2E-1. Attach the wells to 
the blower and flare assembly. The individual wells may be ducted to a 
common header so that a single blower, flare assembly, and flow meter 
may be used. Use the procedures in Section 10.1 to calibrate the flow 
meter.
    8.5 Leak-Check. A leak-check of the above ground system is required 
for accurate flow rate measurements and for safety. Sample LFG at the 
well head sample port and at the outlet sample port. Use Method 3C to 
determine nitrogen (N2) concentrations. Determine the 
difference between the well head and outlet N2 concentrations 
using the formula in Section 12.3. The system passes the leak-check if 
the difference is less than 10,000 ppmv.
    8.6 Static Testing. Close the control valves on the well heads 
during static testing. Measure the gauge pressure (Pg) at 
each deep pressure probe and the barometric pressure (Pbar) 
every 8 hours (hr) for 3 days. Convert the gauge pressure of each deep 
pressure probe to absolute pressure using the equation in Section 12.4. 
Record as Pi (initial absolute pressure).
    8.6.1 For each probe, average all of the 8-hr deep pressure probe 
readings (Pi) and record as Pia (average absolute 
pressure). Pia is used in Section 8.7.5 to determine the 
maximum radius of influence.
    8.6.2 Measure the static flow rate of each well once during static 
testing.
    8.7 Short-Term Testing. The purpose of short-term testing is to 
determine the maximum vacuum that can be applied to the wells without 
infiltration of ambient air into the landfill. The short-term testing is 
performed on one well at a time. Burn all LFG with a flare or 
incinerator.
    8.7.1 Use the blower to extract LFG from a single well at a rate at 
least twice the static flow rate of the respective well measured in 
Section 8.6.2. If using a single blower and flare assembly and a common 
header system, close the control valve on the wells not being measured. 
Allow 24 hr for the system to stabilize at this flow rate.
    8.7.2 Test for infiltration of air into the landfill by measuring 
the gauge pressures of the shallow pressure probes and using Method 3C 
to determine the LFG N2 concentration. If the LFG 
N2 concentration is less than 5 percent and all of the 
shallow probes have a positive gauge pressure, increase the blower 
vacuum by 3.7 mm Hg (2 in. H2O), wait 24 hr, and repeat the 
tests for infiltration. Continue the above steps of increasing blower 
vacuum by 3.7 mm Hg (2 in. H2O), waiting 24 hr, and testing 
for infiltration until the concentration of N2 exceeds 5 
percent or any of the shallow probes have a negative gauge pressure. 
When this occurs,reduce the blower vacuum to the maximum setting at 
which the N2 concentration was less than 5 percent and the 
gauge pressures of the shallow probes are positive.
    8.7.3 At this blower vacuum, measure atmospheric pressure 
(Pbar) every 8 hr for 24 hr, and record the LFG flow rate 
(Qs) and the probe gauge pressures (Pf) for all of 
the probes. Convert the gauge pressures of the deep probes to absolute 
pressures for each 8-hr reading at Qs as shown in Section 
12.4.
    8.7.4 For each probe, average the 8-hr deep pressure probe absolute 
pressure readings and record as Pfa (the final average 
absolute pressure).
    8.7.5 For each probe, compare the initial average pressure 
(Pia) from Section 8.6.1 to the final average pressure 
(Pfa). Determine the furthermost point from the well head 
along each radial arm where Pfa <= Pia. This 
distance is the maximum radius of influence (Rm), which is 
the distance from the well affected by the vacuum. Average these values 
to determine the average maximum radius of influence (Rma).
    8.7.6 Calculate the depth (Dst) affected by the 
extraction well during the short term test as shown in Section 12.6. If 
the computed value of Dst exceeds the depth of the landfill, 
set Dst equal to the landfill depth.
    8.7.7 Calculate the void volume (V) for the extraction well as shown 
in Section 12.7.
    8.7.8 Repeat the procedures in Section 8.7 for each well.
    8.8 Calculate the total void volume of the test wells 
(Vv) by summing the void volumes (V) of each well.

[[Page 41]]

    8.9 Long-Term Testing. The purpose of long-term testing is to 
extract two void volumes of LFG from the extraction wells. Use the 
blower to extract LFG from the wells. If a single Blower and flare 
assembly and common header system are used, open all control valves and 
set the blower vacuum equal to the highest stabilized blower vacuum 
demonstrated by any individual well in Section 8.7. Every 8 hr, sample 
the LFG from the well head sample port, measure the gauge pressures of 
the shallow pressure probes, the blower vacuum, the LFG flow rate, and 
use the criteria for infiltration in Section 8.7.2 and Method 3C to test 
for infiltration. If infiltration is detected, do not reduce the blower 
vacuum, instead reduce the LFG flow rate from the well by adjusting the 
control valve on the well head. Adjust each affected well individually. 
Continue until the equivalent of two total void volumes (Vv) 
have been extracted, or until Vt=2Vv.
    8.9.1 Calculate Vt, the total volume of LFG extracted 
from the wells, as shown in Section 12.8.
    8.9.2 Record the final stabilized flow rate as Qf and the 
gauge pressure for each deep probe. If, during the long term testing, 
the flow rate does not stabilize, calculate Qf by averaging 
the last 10 recorded flow rates.
    8.9.3 For each deep probe, convert each gauge pressure to absolute 
pressure as in Section 12.4. Average these values and record as 
Psa. For each probe, compare Pia to 
Psa. Determine the furthermost point from the well head along 
each radial arm where Psa <= Pia. This distance is 
the stabilized radius of influence. Average these values to determine 
the average stabilized radius of influence (Rsa).
    8.10 Determine the NMOC mass emission rate using the procedures in 
Section 12.9 through 12.15.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1..........................  LFG flow rate      Ensures accurate
                                 meter              measurement of LFG
                                 calibration.       flow rate and sample
                                                    volume
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 LFG Flow Rate Meter (Orifice) Calibration Procedure. Locate a 
standard pitot tube in line with an orifice meter. Use the procedures in 
Section 8, 12.5, 12.6, and 12.7 of Method 2 to determine the average dry 
gas volumetric flow rate for at least five flow rates that bracket the 
expected LFG flow rates, except in Section 8.1, use a standard pitot 
tube rather than a Type S pitot tube. Method 3C may be used to determine 
the dry molecular weight. It may be necessary to calibrate more than one 
orifice meter in order to bracket the LFG flow rates. Construct a 
calibration curve by plotting the pressure drops across the orifice 
meter for each flow rate versus the average dry gas volumetric flow rate 
in m\3\/min of the gas.

                       11.0 Procedures [Reserved]

                   12.0 Data Analysis and Calculations

    12.1 Nomenclature.
A=Age of landfill, yr.
Aavg=Average age of the refuse tested, yr.
Ai=Age of refuse in the ith fraction, yr.
Ar=Acceptance rate, Mg/yr.
CNMOC=NMOC concentration, ppmv as hexane 
(CNMOC=Ct/6).
Co=Concentration of N2 at the outlet, ppmv.
Ct=NMOC concentration, ppmv (carbon equivalent) from Method 
25C.
Cw=Concentration of N2 at the wellhead, ppmv.
D=Depth affected by the test wells, m.
Dst=Depth affected by the test wells in the short-term test, 
m.
e=Base number for natural logarithms (2.718).
f=Fraction of decomposable refuse in the landfill.
fi=Fraction of the refuse in the ith section.
k=Landfill gas generation constant, yr-1.
Lo=Methane generation potential, m\3\/Mg.
Lo'=Revised methane generation potential to account for the 
amount of nondecomposable material in the landfill, m\3\/Mg.
Mi=Mass of refuse in the ith section, Mg.
Mr=Mass of decomposable refuse affected by the test well, Mg.
Pbar=Atmospheric pressure, mm Hg.
Pf=Final absolute pressure of the deep pressure probes during 
short-term testing, mm Hg.
Pfa=Average final absolute pressure of the deep pressure 
probes during short-term testing, mm Hg.
Pgf=final gauge pressure of the deep pressure probes, mm Hg.
Pgi=Initial gauge pressure of the deep pressure probes, mm 
Hg.
Pi=Initial absolute pressure of the deep pressure probes 
during static testing, mm Hg.
Pia=Average initial absolute pressure of the deep pressure 
probes during static testing, mm Hg.
Ps=Final absolute pressure of the deep pressure probes during 
long-term testing, mm Hg.

[[Page 42]]

Psa=Average final absolute pressure of the deep pressure 
probes during long-term testing, mm Hg.
Qf=Final stabilized flow rate, m\3\/min.
Qi=LFG flow rate measured at orifice meter during the ith 
interval, m\3\/min.
Qs=Maximum LFG flow rate at each well determined by short-
term test, m\3\/min.
Qt=NMOC mass emission rate, m\3\/min.
Rm=Maximum radius of influence, m.
Rma=Average maximum radius of influence, m.
Rs=Stabilized radius of influence for an individual well, m.
Rsa=Average stabilized radius of influence, m.
ti=Age of section i, yr.
tt=Total time of long-term testing, yr.
tvi=Time of the ith interval (usually 8), hr.
V=Void volume of test well, m\3\.
Vr=Volume of refuse affected by the test well, m\3\.
Vt=Total volume of refuse affected by the long-term testing, 
m\3\.
Vv=Total void volume affected by test wells, m\3\.
WD=Well depth, m.
[rho]=Refuse density, Mg/m\3\ (Assume 0.64 Mg/m\3\ if data are 
unavailable).

    12.2 Use the following equation to calculate a weighted average age 
of landfill refuse.
[GRAPHIC] [TIFF OMITTED] TR17OC00.071

    12.3 Use the following equation to determine the difference in 
N2 concentrations (ppmv) at the well head and outlet 
location.
[GRAPHIC] [TIFF OMITTED] TR17OC00.072

    12.4 Use the following equation to convert the gauge pressure 
(Pg) of each initial deep pressure probe to absolute pressure 
(Pi).
[GRAPHIC] [TIFF OMITTED] TR17OC00.073

    12.5 Use the following equation to convert the gauge pressures of 
the deep probes to absolute pressures for each 8-hr reading at 
Qs.
[GRAPHIC] [TIFF OMITTED] TR17OC00.074

    12.6 Use the following equation to calculate the depth 
(Dst) affected by the extraction well during the short-term 
test.
[GRAPHIC] [TIFF OMITTED] TR17OC00.075

    12.7 Use the following equation to calculate the void volume for the 
extraction well (V).
[GRAPHIC] [TIFF OMITTED] TR17OC00.076

    12.8 Use the following equation to calculate Vt, the 
total volume of LFG extracted from the wells.
[GRAPHIC] [TIFF OMITTED] TR17OC00.077

    12.9 Use the following equation to calculate the depth affected by 
the test well. If using cluster wells, use the average depth of the 
wells for WD. If the value of D is greater than the depth of the 
landfill, set D equal to the landfill depth.
[GRAPHIC] [TIFF OMITTED] TR17OC00.078

    12.10 Use the following equation to calculate the volume of refuse 
affected by the test well.
[GRAPHIC] [TIFF OMITTED] TR17OC00.079

    12.11 Use the following equation to calculate the mass affected by 
the test well.
[GRAPHIC] [TIFF OMITTED] TR17OC00.080

    12.12 Modify Lo to account for the nondecomposable refuse 
in the landfill.
[GRAPHIC] [TIFF OMITTED] TR17OC00.081

    12.13 In the following equation, solve for k (landfill gas 
generation constant) by iteration. A suggested procedure is to select a 
value for k, calculate the left side of the equation, and if not equal 
to zero, select another value for k. Continue this process until the 
left hand side of the equation equals zero, 0.001.
[GRAPHIC] [TIFF OMITTED] TR17OC00.082

    12.14 Use the following equation to determine landfill NMOC mass 
emission rate if the yearly acceptance rate of refuse has been 
consistent (10 percent) over the life of the landfill.
[GRAPHIC] [TIFF OMITTED] TR17OC00.083

    12.15 Use the following equation to determine landfill NMOC mass 
emission rate if the acceptance rate has not been consistent over the 
life of the landfill.

[[Page 43]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.084

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Same as Method 2, Appendix A, 40 CFR Part 60.
    2. Emcon Associates, Methane Generation and Recovery from Landfills. 
Ann Arbor Science, 1982.
    3. The Johns Hopkins University, Brown Station Road Landfill Gas 
Resource Assessment, Volume 1: Field Testing and Gas Recovery 
Projections. Laurel, Maryland: October 1982.
    4. Mandeville and Associates, Procedure Manual for Landfill Gases 
Emission Testing.
    5. Letter and attachments from Briggum, S., Waste Management of 
North America, to Thorneloe, S., EPA. Response to July 28, 1988 request 
for additional information. August 18, 1988.
    6. Letter and attachments from Briggum, S., Waste Management of 
North America, to Wyatt, S., EPA. Response to December 7, 1988 request 
for additional information. January 16, 1989.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 44]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.085


[[Page 45]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.086


[[Page 46]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.087


[[Page 47]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.088


[[Page 48]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.089

Method 2F--Determination of Stack Gas Velocity And Volumetric Flow Rate 
                      With Three-Dimensional Probes

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material has been incorporated from other methods in 
this part. Therefore, to obtain reliable results, those using this 
method should have a thorough knowledge of at least the following 
additional test methods: Methods 1, 2, 3 or 3A, and 4.

                        1.0 Scope and Application

1.1 This method is applicable for the determination of yaw angle, pitch 
angle, axial velocity and the volumetric flow rate of a gas

[[Page 49]]

stream in a stack or duct using a three-dimensional (3-D) probe. This 
method may be used only when the average stack or duct gas velocity is 
greater than or equal to 20 ft/sec. When the above condition cannot be 
met, alternative procedures, approved by the Administrator, U.S. 
Environmental Protection Agency, shall be used to make accurate flow 
rate determinations.

                          2.0 Summary of Method

    2.1 A 3-D probe is used to determine the velocity pressure and the 
yaw and pitch angles of the flow velocity vector in a stack or duct. The 
method determines the yaw angle directly by rotating the probe to null 
the pressure across a pair of symmetrically placed ports on the probe 
head. The pitch angle is calculated using probe-specific calibration 
curves. From these values and a determination of the stack gas density, 
the average axial velocity of the stack gas is calculated. The average 
gas volumetric flow rate in the stack or duct is then determined from 
the average axial velocity.

                             3.0 Definitions

    3.1. Angle-measuring Device Rotational Offset (RADO). The rotational 
position of an angle-measuring device relative to the reference scribe 
line, as determined during the pre-test rotational position check 
described in section 8.3.
    3.2 Axial Velocity. The velocity vector parallel to the axis of the 
stack or duct that accounts for the yaw and pitch angle components of 
gas flow. The term ``axial'' is used herein to indicate that the 
velocity and volumetric flow rate results account for the measured yaw 
and pitch components of flow at each measurement point.
    3.3 Calibration Pitot Tube. The standard (Prandtl type) pitot tube 
used as a reference when calibrating a 3-D probe under this method.
    3.4 Field Test. A set of measurements conducted at a specific unit 
or exhaust stack/duct to satisfy the applicable regulation (e.g., a 
three-run boiler performance test, a single-or multiple-load nine-run 
relative accuracy test).
    3.5 Full Scale of Pressure-measuring Device. Full scale refers to 
the upper limit of the measurement range displayed by the device. For 
bi-directional pressure gauges, full scale includes the entire pressure 
range from the lowest negative value to the highest positive value on 
the pressure scale.
    3.6 Main probe. Refers to the probe head and that section of probe 
sheath directly attached to the probe head. The main probe sheath is 
distinguished from probe extensions, which are sections of sheath added 
onto the main probe to extend its reach.
    3.7 ``May,'' ``Must,'' ``Shall,'' ``Should,'' and the imperative 
form of verbs.
    3.7.1 ``May'' is used to indicate that a provision of this method is 
optional.
    3.7.2 ``Must,'' ``Shall,'' and the imperative form of verbs (such as 
``record'' or ``enter'') are used to indicate that a provision of this 
method is mandatory.
    3.7.3 ``Should'' is used to indicate that a provision of this method 
is not mandatory, but is highly recommended as good practice.
    3.8 Method 1. Refers to 40 CFR part 60, appendix A, ``Method 1--
Sample and velocity traverses for stationary sources.''
    3.9 Method 2. Refers to 40 CFR part 60, appendix A, ``Method 2--
Determination of stack gas velocity and volumetric flow rate (Type S 
pitot tube).''
    3.10 Method 2G. Refers to 40 CFR part 60, appendix A, ``Method 2G--
Determination of stack gas velocity and volumetric flow rate with two-
dimensional probes.''
    3.11 Nominal Velocity. Refers to a wind tunnel velocity setting that 
approximates the actual wind tunnel velocity to within 1.5 m/sec (5 ft/sec).
    3.12 Pitch Angle. The angle between the axis of the stack or duct 
and the pitch component of flow, i.e., the component of the total 
velocity vector in a plane defined by the traverse line and the axis of 
the stack or duct. (Figure 2F-1 illustrates the ``pitch plane.'') From 
the standpoint of a tester facing a test port in a vertical stack, the 
pitch component of flow is the vector of flow moving from the center of 
the stack toward or away from that test port. The pitch angle is the 
angle described by this pitch component of flow and the vertical axis of 
the stack.
    3.13 Readability. For the purposes of this method, readability for 
an analog measurement device is one half of the smallest scale division. 
For a digital measurement device, it is the number of decimals displayed 
by the device.
    3.14 Reference Scribe Line. A line permanently inscribed on the main 
probe sheath (in accordance with section 6.1.6.1) to serve as a 
reference mark for determining yaw angles.
    3.15 Reference Scribe Line Rotational Offset (RSLO). The 
rotational position of a probe's reference scribe line relative to the 
probe's yaw-null position, as determined during the yaw angle 
calibration described in section 10.5.
    3.16 Response Time. The time required for the measurement system to 
fully respond to a change from zero differential pressure and ambient 
temperature to the stable stack or duct pressure and temperature 
readings at a traverse point.
    3.17 Tested Probe. A 3-D probe that is being calibrated.
    3.18 Three-dimensional (3-D) Probe. A directional probe used to 
determine the velocity pressure and yaw and pitch angles in a flowing 
gas stream.

[[Page 50]]

    3.19 Traverse Line. A diameter or axis extending across a stack or 
duct on which measurements of differential pressure and flow angles are 
made.
    3.20 Wind Tunnel Calibration Location. A point, line, area, or 
volume within the wind tunnel test section at, along, or within which 
probes are calibrated. At a particular wind tunnel velocity setting, the 
average velocity pressures at specified points at, along, or within the 
calibration location shall vary by no more than 2 percent or 0.3 mm 
H2O (0.01 in. H2O), whichever is less restrictive, 
from the average velocity pressure at the calibration pitot tube 
location. Air flow at this location shall be axial, i.e., yaw and pitch 
angles within 3[deg]. Compliance with these flow 
criteria shall be demonstrated by performing the procedures prescribed 
in sections 10.1.1 and 10.1.2. For circular tunnels, no part of the 
calibration location may be closer to the tunnel wall than 10.2 cm (4 
in.) or 25 percent of the tunnel diameter, whichever is farther from the 
wall. For elliptical or rectangular tunnels, no part of the calibration 
location may be closer to the tunnel wall than 10.2 cm (4 in.) or 25 
percent of the applicable cross-sectional axis, whichever is farther 
from the wall.
    3.21 Wind Tunnel with Documented Axial Flow. A wind tunnel facility 
documented as meeting the provisions of sections 10.1.1 (velocity 
pressure cross-check) and 10.1.2 (axial flow verification) using the 
procedures described in these sections or alternative procedures 
determined to be technically equivalent.
    3.22 Yaw Angle. The angle between the axis of the stack or duct and 
the yaw component of flow, i.e., the component of the total velocity 
vector in a plane perpendicular to the traverse line at a particular 
traverse point. (Figure 2F-1 illustrates the ``yaw plane.'') From the 
standpoint of a tester facing a test port in a vertical stack, the yaw 
component of flow is the vector of flow moving to the left or right from 
the center of the stack as viewed by the tester. (This is sometimes 
referred to as ``vortex flow,'' i.e., flow around the centerline of a 
stack or duct.) The yaw angle is the angle described by this yaw 
component of flow and the vertical axis of the stack. The algebraic sign 
convention is illustrated in Figure 2F-2.
    3.23 Yaw Nulling. A procedure in which a probe is rotated about its 
axis in a stack or duct until a zero differential pressure reading 
(``yaw null'') is obtained. When a 3-D probe is yaw-nulled, its impact 
pressure port (P1) faces directly into the direction of flow 
in the stack or duct and the differential pressure between pressure 
ports P2 and P3 is zero.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This test method may involve hazardous operations and the use of 
hazardous materials or equipment. This method does not purport to 
address all of the safety problems associated with its use. It is the 
responsibility of the user to establish and implement appropriate safety 
and health practices and to determine the applicability of regulatory 
limitations before using this test method.

                       6.0 Equipment and Supplies

    6.1 Three-dimensional Probes. The 3-D probes as specified in 
subsections 6.1.1 through 6.1.3 below qualify for use based on 
comprehensive wind tunnel and field studies involving both inter-and 
intra-probe comparisons by multiple test teams. Other types of probes 
shall not be used unless approved by the Administrator. Each 3-D probe 
shall have a unique identification number or code permanently marked on 
the main probe sheath. The minimum recommended diameter of the sensing 
head of any probe used under this method is 2.5 cm (1 in.). Each probe 
shall be calibrated prior to use according to the procedures in section 
10. Manufacturer-supplied calibration data shall be used as example 
information only, except when the manufacturer calibrates the 3-D probe 
as specified in section 10 and provides complete documentation.
    6.1.1 Five-hole prism-shaped probe. This type of probe consists of 
five pressure taps in the flat facets of a prism-shaped sensing head. 
The pressure taps are numbered 1 through 5, with the pressures measured 
at each hole referred to as P1, P2, P3, 
P4, and P5, respectively. Figure 2F-3 is an 
illustration of the placement of pressure taps on a commonly available 
five-hole prism-shaped probe, the 2.5-cm (1-in.) DAT probe. (Note: 
Mention of trade names or specific products does not constitute 
endorsement by the U.S. Environmental Protection Agency.) The numbering 
arrangement for the prism-shaped sensing head presented in Figure 2F-3 
shall be followed for correct operation of the probe. A brief 
description of the probe measurements involved is as follows: the 
differential pressure P2-P3 is used to yaw null 
the probe and determine the yaw angle; the differential pressure 
P4-P5 is a function of pitch angle; and the 
differential pressure P1-P2 is a function of total 
velocity.
    6.1.2 Five-hole spherical probe. This type of probe consists of five 
pressure taps in a spherical sensing head. As with the prism-shaped 
probe, the pressure taps are numbered 1 through 5, with the pressures 
measured at each hole referred to as P1, P2, 
P3, P4, and P5, respectively. However, 
the P4 and P5 pressure taps are in the reverse 
location

[[Page 51]]

from their respective positions on the prism-shaped probe head. The 
differential pressure P2-P3 is used to yaw null 
the probe and determine the yaw angle; the differential pressure 
P4-P5 is a function of pitch angle; and the 
differential pressure P1-P2 is a function of total 
velocity. A diagram of a typical spherical probe sensing head is 
presented in Figure 2F-4. Typical probe dimensions are indicated in the 
illustration.
    6.1.3 A manual 3-D probe refers to a five-hole prism-shaped or 
spherical probe that is positioned at individual traverse points and yaw 
nulled manually by an operator. An automated 3-D probe refers to a 
system that uses a computer-controlled motorized mechanism to position 
the five-hole prism-shaped or spherical head at individual traverse 
points and perform yaw angle determinations.
    6.1.4 Other three-dimensional probes. [Reserved]
    6.1.5 Probe sheath. The probe shaft shall include an outer sheath 
to: (1) provide a surface for inscribing a permanent reference scribe 
line, (2) accommodate attachment of an angle-measuring device to the 
probe shaft, and (3) facilitate precise rotational movement of the probe 
for determining yaw angles. The sheath shall be rigidly attached to the 
probe assembly and shall enclose all pressure lines from the probe head 
to the farthest position away from the probe head where an angle-
measuring device may be attached during use in the field. The sheath of 
the fully assembled probe shall be sufficiently rigid and straight at 
all rotational positions such that, when one end of the probe shaft is 
held in a horizontal position, the fully extended probe meets the 
horizontal straightness specifications indicated in section 8.2 below.
    6.1.6 Scribe lines.
    6.1.6.1 Reference scribe line. A permanent line, no greater than 1.6 
mm (1/16 in.) in width, shall be inscribed on each manual probe that 
will be used to determine yaw angles of flow. This line shall be placed 
on the main probe sheath in accordance with the procedures described in 
section 10.4 and is used as a reference position for installation of the 
yaw angle-measuring device on the probe. At the discretion of the 
tester, the scribe line may be a single line segment placed at a 
particular position on the probe sheath (e.g., near the probe head), 
multiple line segments placed at various locations along the length of 
the probe sheath (e.g., at every position where a yaw angle-measuring 
device may be mounted), or a single continuous line extending along the 
full length of the probe sheath.
    6.1.6.2 Scribe line on probe extensions. A permanent line may also 
be inscribed on any probe extension that will be attached to the main 
probe in performing field testing. This allows a yaw angle-measuring 
device mounted on the extension to be readily aligned with the reference 
scribe line on the main probe sheath.
    6.1.6.3 Alignment specifications. This specification shall be met 
separately, using the procedures in section 10.4.1, on the main probe 
and on each probe extension. The rotational position of the scribe line 
or scribe line segments on the main probe or any probe extension must 
not vary by more than 2[deg]. That is, the difference between the 
minimum and maximum of all of the rotational angles that are measured 
along the full length of the main probe or the probe extension must not 
exceed 2[deg].
    6.1.7 Probe and system characteristics to ensure horizontal 
stability.
    6.1.7.1 For manual probes, it is recommended that the effective 
length of the probe (coupled with a probe extension, if necessary) be at 
least 0.9 m (3 ft.) longer than the farthest traverse point mark on the 
probe shaft away from the probe head. The operator should maintain the 
probe's horizontal stability when it is fully inserted into the stack or 
duct. If a shorter probe is used, the probe should be inserted through a 
bushing sleeve, similar to the one shown in Figure 2F-5, that is 
installed on the test port; such a bushing shall fit snugly around the 
probe and be secured to the stack or duct entry port in such a manner as 
to maintain the probe's horizontal stability when fully inserted into 
the stack or duct.
    6.1.7.2 An automated system that includes an external probe casing 
with a transport system shall have a mechanism for maintaining 
horizontal stability comparable to that obtained by manual probes 
following the provisions of this method. The automated probe assembly 
shall also be constructed to maintain the alignment and position of the 
pressure ports during sampling at each traverse point. The design of the 
probe casing and transport system shall allow the probe to be removed 
from the stack or duct and checked through direct physical measurement 
for angular position and insertion depth.
    6.1.8 The tubing that is used to connect the probe and the pressure-
measuring device should have an inside diameter of at least 3.2 mm (1/8 
in.), to reduce the time required for pressure equilibration, and should 
be as short as practicable.
    6.2 Yaw Angle-measuring Device. One of the following devices shall 
be used for measurement of the yaw angle of flow.
    6.2.1 Digital inclinometer. This refers to a digital device capable 
of measuring and displaying the rotational position of the probe to 
within 1[deg]. The device shall be able to be 
locked into position on the probe sheath or probe extension, so that it 
indicates the probe's rotational position throughout the test. A 
rotational position collar block that can be attached to the probe 
sheath (similar

[[Page 52]]

to the collar shown in Figure 2F-6) may be required to lock the digital 
inclinometer into position on the probe sheath.
    6.2.2 Protractor wheel and pointer assembly. This apparatus, similar 
to that shown in Figure 2F-7, consists of the following components.
    6.2.2.1 A protractor wheel that can be attached to a port opening 
and set in a fixed rotational position to indicate the yaw angle 
position of the probe's scribe line relative to the longitudinal axis of 
the stack or duct. The protractor wheel must have a measurement ring on 
its face that is no less than 17.8 cm (7 in.) in diameter, shall be able 
to be rotated to any angle and then locked into position on the stack or 
duct port, and shall indicate angles to a resolution of 1[deg].
    6.2.2.2 A pointer assembly that includes an indicator needle mounted 
on a collar that can slide over the probe sheath and be locked into a 
fixed rotational position on the probe sheath. The pointer needle shall 
be of sufficient length, rigidity, and sharpness to allow the tester to 
determine the probe's angular position to within 1[deg] from the 
markings on the protractor wheel. Corresponding to the position of the 
pointer, the collar must have a scribe line to be used in aligning the 
pointer with the scribe line on the probe sheath.
    6.2.3 Other yaw angle-measuring devices. Other angle-measuring 
devices with a manufacturer's specified precision of 1[deg] or better 
may be used, if approved by the Administrator.
    6.3 Probe Supports and Stabilization Devices. When probes are used 
for determining flow angles, the probe head should be kept in a stable 
horizontal position. For probes longer than 3.0 m (10 ft.), the section 
of the probe that extends outside the test port shall be secured. Three 
alternative devices are suggested for maintaining the horizontal 
position and stability of the probe shaft during flow angle 
determinations and velocity pressure measurements: (1) Monorails 
installed above each port, (2) probe stands on which the probe shaft may 
be rested, or (3) bushing sleeves of sufficient length secured to the 
test ports to maintain probes in a horizontal position. Comparable 
provisions shall be made to ensure that automated systems maintain the 
horizontal position of the probe in the stack or duct. The physical 
characteristics of each test platform may dictate the most suitable type 
of stabilization device. Thus, the choice of a specific stabilization 
device is left to the judgment of the testers.
    6.4 Differential Pressure Gauges. The pressure ([Delta]P) measuring 
devices used during wind tunnel calibrations and field testing shall be 
either electronic manometers (e.g., pressure transducers), fluid 
manometers, or mechanical pressure gauges (e.g., 
Magnehelic[Delta] gauges). Use of electronic manometers is 
recommended. Under low velocity conditions, use of electronic manometers 
may be necessary to obtain acceptable measurements.
    6.4.1 Differential pressure-measuring device. This refers to a 
device capable of measuring pressure differentials and having a 
readability of 1 percent of full scale. The device 
shall be capable of accurately measuring the maximum expected pressure 
differential. Such devices are used to determine the following pressure 
measurements: velocity pressure, static pressure, yaw-null pressure, and 
pitch-angle pressure. For an inclined-vertical manometer, the 
readability specification of 1 percent shall be 
met separately using the respective full-scale upper limits of the 
inclined and vertical portions of the scales. To the extent practicable, 
the device shall be selected such that most of the pressure readings are 
between 10 and 90 percent of the device's full-scale measurement range 
(as defined in section 3.5). Typical velocity pressure (P1-
P2) ranges for both the prism-shaped probe and the spherical 
probe are 0 to 1.3 cm H2O (0 to 0.5 in. H2O), 0 to 
5.1 cm H2O (0 to 2 in. H2O), and 0 to 12.7 cm 
H2O (0 to 5 in. H2O). The pitch angle 
(P4-P5) pressure range is typically -6.4 to +6.4 
mm H2O (-0.25 to +0.25 in. H2O) or -12.7 to +12.7 
mm H2O (-0.5 to +0.5 in. H2O) for the prism-shaped 
probe, and -12.7 to +12.7 mm H2O (-0.5 to +0.5 in. 
H2O) or -5.1 to +5.1 cm H2O (-2 to +2 in. 
H2O) for the spherical probe. The pressure range for the yaw 
null (P2-P3) readings is typically -12.7 to +12.7 
mm H2O (-0.5 to +0.5 in. H2O) for both probe 
types. In addition, pressure-measuring devices should be selected such 
that the zero does not drift by more than 5 percent of the average 
expected pressure readings to be encountered during the field test. This 
is particularly important under low pressure conditions.
    6.4.2 Gauge used for yaw nulling. The differential pressure-
measuring device chosen for yaw nulling the probe during the wind tunnel 
calibrations and field testing shall be bi-directional, i.e., capable of 
reading both positive and negative differential pressures. If a 
mechanical, bi-directional pressure gauge is chosen, it shall have a 
full-scale range no greater than 2.6 cm H2O (1 in. 
H2O) [i.e., -1.3 to +1.3 cm H2O (-0.5 in. to +0.5 
in.)].
    6.4.3 Devices for calibrating differential pressure-measuring 
devices. A precision manometer (e.g., a U-tube, inclined, or inclined-
vertical manometer, or micromanometer) or NIST (National Institute of 
Standards and Technology) traceable pressure source shall be used for 
calibrating differential pressure-measuring devices. The device shall be 
maintained under laboratory conditions or in a similar protected 
environment (e.g., a climate-controlled trailer). It shall not be used 
in field tests. The precision manometer shall have a scale gradation of 
0.3 mm H2O (0.01 in. H2O), or less, in the range 
of 0 to 5.1 cm H2O (0 to 2 in. H2O) and 2.5 mm 
H2O (0.1 in. H2O),

[[Page 53]]

or less, in the range of 5.1 to 25.4 cm H2O (2 to 10 in. 
H2O). The manometer shall have manufacturer's documentation 
that it meets an accuracy specification of at least 0.5 percent of full 
scale. The NIST-traceable pressure source shall be recertified annually.
    6.4.4 Devices used for post-test calibration check. A precision 
manometer meeting the specifications in section 6.4.3, a pressure-
measuring device or pressure source with a documented calibration 
traceable to NIST, or an equivalent device approved by the Administrator 
shall be used for the post-test calibration check. The pressure-
measuring device shall have a readability equivalent to or greater than 
the tested device. The pressure source shall be capable of generating 
pressures between 50 and 90 percent of the range of the tested device 
and known to within 1 percent of the full scale of 
the tested device. The pressure source shall be recertified annually.
    6.5 Data Display and Capture Devices. Electronic manometers (if 
used) shall be coupled with a data display device (such as a digital 
panel meter, personal computer display, or strip chart) that allows the 
tester to observe and validate the pressure measurements taken during 
testing. They shall also be connected to a data recorder (such as a data 
logger or a personal computer with data capture software) that has the 
ability to compute and retain the appropriate average value at each 
traverse point, identified by collection time and traverse point.
    6.6 Temperature Gauges. For field tests, a thermocouple or 
resistance temperature detector (RTD) capable of measuring temperature 
to within 3[deg]C (5[deg]F) 
of the stack or duct temperature shall be used. The thermocouple shall 
be attached to the probe such that the sensor tip does not touch any 
metal and is located on the opposite side of the probe head from the 
pressure ports so as not to interfere with the gas flow around the probe 
head. The position of the thermocouple relative to the pressure port 
face openings shall be in the same configuration as used for the probe 
calibrations in the wind tunnel. Temperature gauges used for wind tunnel 
calibrations shall be capable of measuring temperature to within 0.6[deg]C (1[deg]F) of the 
temperature of the flowing gas stream in the wind tunnel.
    6.7 Stack or Duct Static Pressure Measurement. The pressure-
measuring device used with the probe shall be as specified in section 
6.4 of this method. The static tap of a standard (Prandtl type) pitot 
tube or one leg of a Type S pitot tube with the face opening planes 
positioned parallel to the gas flow may be used for this measurement. 
Also acceptable is the pressure differential reading of P1-
Pbar from a five-hole prism-shaped probe (e.g., Type DA or 
DAT probe) with the P1 pressure port face opening positioned 
parallel to the gas flow in the same manner as the Type S probe. 
However, the spherical probe, as specified in section 6.1.2, is unable 
to provide this measurement and shall not be used to take static 
pressure measurements. Static pressure measurement is further described 
in section 8.11.
    6.8 Barometer. Same as Method 2, section 2.5.
    6.9 Gas Density Determination Equipment. Method 3 or 3A shall be 
used to determine the dry molecular weight of the stack gas. Method 4 
shall be used for moisture content determination and computation of 
stack gas wet molecular weight. Other methods may be used, if approved 
by the Administrator.
    6.10 Calibration Pitot Tube. Same as Method 2, section 2.7.
    6.11 Wind Tunnel for Probe Calibration. Wind tunnels used to 
calibrate velocity probes must meet the following design specifications.
    6.11.1 Test section cross-sectional area. The flowing gas stream 
shall be confined within a circular, rectangular, or elliptical duct. 
The cross-sectional area of the tunnel must be large enough to ensure 
fully developed flow in the presence of both the calibration pitot tube 
and the tested probe. The calibration site, or ``test section,'' of the 
wind tunnel shall have a minimum diameter of 30.5 cm (12 in.) for 
circular or elliptical duct cross-sections or a minimum width of 30.5 cm 
(12 in.) on the shorter side for rectangular cross-sections. Wind 
tunnels shall meet the probe blockage provisions of this section and the 
qualification requirements prescribed in section 10.1. The projected 
area of the portion of the probe head, shaft, and attached devices 
inside the wind tunnel during calibration shall represent no more than 4 
percent of the cross-sectional area of the tunnel. The projected area 
shall include the combined area of the calibration pitot tube and the 
tested probe if both probes are placed simultaneously in the same cross-
sectional plane in the wind tunnel, or the larger projected area of the 
two probes if they are placed alternately in the wind tunnel.
    6.11.2 Velocity range and stability. The wind tunnel should be 
capable of maintaining velocities between 6.1 m/sec and 30.5 m/sec (20 
ft/sec and 100 ft/sec). The wind tunnel shall produce fully developed 
flow patterns that are stable and parallel to the axis of the duct in 
the test section.
    6.11.3 Flow profile at the calibration location. The wind tunnel 
shall provide axial flow within the test section calibration location 
(as defined in section 3.20). Yaw and pitch angles in the calibration 
location shall be within 3[deg] of 0[deg]. The 
procedure for determining that this requirement has been met is 
described in section 10.1.2.
    6.11.4 Entry ports in the wind tunnel test section.

[[Page 54]]

    6.11.4.1 Port for tested probe. A port shall be constructed for the 
tested probe. The port should have an elongated slot parallel to the 
axis of the duct at the test section. The elongated slot should be of 
sufficient length to allow attaining all the pitch angles at which the 
probe will be calibrated for use in the field. To facilitate alignment 
of the probe during calibration, the test section should include a 
window constructed of a transparent material to allow the tested probe 
to be viewed. This port shall be located to allow the head of the tested 
probe to be positioned within the calibration location (as defined in 
section 3.20) at all pitch angle settings.
    6.11.4.2 Port for verification of axial flow. Depending on the 
equipment selected to conduct the axial flow verification prescribed in 
section 10.1.2, a second port, located 90[deg] from the entry port for 
the tested probe, may be needed to allow verification that the gas flow 
is parallel to the central axis of the test section. This port should be 
located and constructed so as to allow one of the probes described in 
section 10.1.2.2 to access the same test point(s) that are accessible 
from the port described in section 6.11.4.1.
    6.11.4.3 Port for calibration pitot tube. The calibration pitot tube 
shall be used in the port for the tested probe or a separate entry port. 
In either case, all measurements with the calibration pitot tube shall 
be made at the same point within the wind tunnel over the course of a 
probe calibration. The measurement point for the calibration pitot tube 
shall meet the same specifications for distance from the wall and for 
axial flow as described in section 3.20 for the wind tunnel calibration 
location.
    6.11.5 Pitch angle protractor plate. A protractor plate shall be 
attached directly under the port used with the tested probe and set in a 
fixed position to indicate the pitch angle position of the probe 
relative to the longitudinal axis of the wind tunnel duct (similar to 
Figure 2F-8). The protractor plate shall indicate angles in 5[deg] 
increments with a minimum resolution of 2[deg]. 
The tested probe shall be able to be locked into position at the desired 
pitch angle delineated on the protractor. The probe head position shall 
be maintained within the calibration location (as defined in section 
3.20) in the test section of the wind tunnel during all tests across the 
range of pitch angles.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Equipment Inspection and Set-Up
    8.1.1 All probes, differential pressure-measuring devices, yaw 
angle-measuring devices, thermocouples, and barometers shall have a 
current, valid calibration before being used in a field test. (See 
sections 10.3.3, 10.3.4, and 10.5 through10.10 for the applicable 
calibration requirements.)
    8.1.2 Before each field use of a 3-D probe, perform a visual 
inspection to verify the physical condition of the probe head according 
to the procedures in section 10.2. Record the inspection results on a 
form similar to Table 2F-1. If there is visible damage to the 3-D probe, 
the probe shall not be used until it is recalibrated.
    8.1.3 After verifying that the physical condition of the probe head 
is acceptable, set up the apparatus using lengths of flexible tubing 
that are as short as practicable. Surge tanks installed between the 
probe and pressure-measuring device may be used to dampen pressure 
fluctuations provided that an adequate measurement response time (see 
section 8.8) is maintained.
    8.2 Horizontal Straightness Check. A horizontal straightness check 
shall be performed before the start of each field test, except as 
otherwise specified in this section. Secure the fully assembled probe 
(including the probe head and all probe shaft extensions) in a 
horizontal position using a stationary support at a point along the 
probe shaft approximating the location of the stack or duct entry port 
when the probe is sampling at the farthest traverse point from the stack 
or duct wall. The probe shall be rotated to detect bends. Use an angle-
measuring device or trigonometry to determine the bend or sag between 
the probe head and the secured end. (See Figure 2F-9.) Probes that are 
bent or sag by more than 5[deg] shall not be used. Although this check 
does not apply when the probe is used for a vertical traverse, care 
should be taken to avoid the use of bent probes when conducting vertical 
traverses. If the probe is constructed of a rigid steel material and 
consists of a main probe without probe extensions, this check need only 
be performed before the initial field use of the probe, when the probe 
is recalibrated, when a change is made to the design or material of the 
probe assembly, and when the probe becomes bent. With such probes, a 
visual inspection shall be made of the fully assembled probe before each 
field test to determine if a bend is visible. The probe shall be rotated 
to detect bends. The inspection results shall be documented in the field 
test report. If a bend in the probe is visible, the horizontal 
straightness check shall be performed before the probe is used.
    8.3 Rotational Position Check. Before each field test, and each time 
an extension is added to the probe during a field test, a rotational 
position check shall be performed on all manually operated probes 
(except as noted in section 8.3.5, below) to ensure that, throughout 
testing, the angle-measuring device is either: aligned to within 1[deg] of the rotational position of the reference 
scribe line; or is affixed to the probe such that the rotational offset 
of the device from the reference scribe line is known to within 1[deg]. This check shall consist of direct measurements 
of the

[[Page 55]]

rotational positions of the reference scribe line and angle-measuring 
device sufficient to verify that these specifications are met. Annex A 
in section 18 of this method gives recommended procedures for performing 
the rotational position check, and Table 2F-2 gives an example data 
form. Procedures other than those recommended in Annex A in section 18 
may be used, provided they demonstrate whether the alignment 
specification is met and are explained in detail in the field test 
report.
    8.3.1 Angle-measuring device rotational offset. The tester shall 
maintain a record of the angle-measuring device rotational offset, 
RADO, as defined in section 3.1. Note that RADO is 
assigned a value of 0[deg] when the angle-measuring device is aligned to 
within 1[deg] of the rotational position of the 
reference scribe line. The RADO shall be used to determine 
the yaw angle of flow in accordance with section 8.9.4.
    8.3.2 Sign of angle-measuring device rotational offset. The sign of 
RADO is positive when the angle-measuring device (as viewed 
from the ``tail'' end of the probe) is positioned in a clockwise 
direction from the reference scribe line and negative when the device is 
positioned in a counterclockwise direction from the reference scribe 
line.
    8.3.3 Angle-measuring devices that can be independently adjusted 
(e.g., by means of a set screw), after being locked into position on the 
probe sheath, may be used. However, the RADO must also take 
into account this adjustment.
    8.3.4 Post-test check. If probe extensions remain attached to the 
main probe throughout the field test, the rotational position check 
shall be repeated, at a minimum, at the completion of the field test to 
ensure that the angle-measuring device has remained within 2[deg] of its rotational position established prior to 
testing. At the discretion of the tester, additional checks may be 
conducted after completion of testing at any sample port or after any 
test run. If the 2[deg] specification is not met, 
all measurements made since the last successful rotational position 
check must be repeated. Section 18.1.1.3 of Annex A provides an example 
procedure for performing the post-test check.
    8.3.5 Exceptions.
    8.3.5.1 A rotational position check need not be performed if, for 
measurements taken at all velocity traverse points, the yaw angle-
measuring device is mounted and aligned directly on the reference scribe 
line specified in sections 6.1.6.1 and 6.1.6.3 and no independent 
adjustments, as described in section 8.3.3, are made to the device's 
rotational position.
    8.3.5.2 If extensions are detached and re-attached to the probe 
during a field test, a rotational position check need only be performed 
the first time an extension is added to the probe, rather than each time 
the extension is re-attached, if the probe extension is designed to be 
locked into a mechanically fixed rotational position (e.g., through use 
of interlocking grooves) that can re-establish the initial rotational 
position to within 1[deg].
    8.4 Leak Checks. A pre-test leak check shall be conducted before 
each field test. A post-test check shall be performed at the end of the 
field test, but additional leak checks may be conducted after any test 
run or group of test runs. The post-test check may also serve as the 
pre-test check for the next group of test runs. If any leak check is 
failed, all runs since the last passed leak check are invalid. While 
performing the leak check procedures, also check each pressure device's 
responsiveness to the changes in pressure.
    8.4.1 To perform the leak check, pressurize the probe's 
P1 pressure port until at least 7.6 cm H2O (3 in. 
H2O) pressure, or a pressure corresponding to approximately 
75 percent of the pressure-measuring device's measurement scale, 
whichever is less, registers on the device; then, close off the pressure 
port. The pressure shall remain stable [2.5 mm 
H2O (0.10 in. H2O)] for at 
least 15 seconds. Check the P2, P3, P4, 
and P5 pressure ports in the same fashion. Other leak-check 
procedures may be used, if approved by the Administrator.
    8.5 Zeroing the Differential Pressure-measuring Device. Zero each 
differential pressure-measuring device, including the device used for 
yaw nulling, before each field test. At a minimum, check the zero after 
each field test. A zero check may also be performed after any test run 
or group of test runs. For fluid manometers and mechanical pressure 
gauges (e.g., Magnehelic[Delta] gauges), the zero reading 
shall not deviate from zero by more than 0.8 mm 
H2O (0.03 in. H2O) or one 
minor scale division, whichever is greater, between checks. For 
electronic manometers, the zero reading shall not deviate from zero 
between checks by more than: 0.3 mm H2O 
(0.01 in. H2O), for full scales less 
than or equal to 5.1 cm H2O (2.0 in. H2O); or 
0.8 mm H2O (0.03 
in. H2O), for full scales greater than 5.1 cm H2O 
(2.0 in. H2O). (Note: If negative zero drift is not directly 
readable, estimate the reading based on the position of the gauge oil in 
the manometer or of the needle on the pressure gauge.) In addition, for 
all pressure-measuring devices except those used exclusively for yaw 
nulling, the zero reading shall not deviate from zero by more than 5 
percent of the average measured differential pressure at any distinct 
process condition or load level. If any zero check is failed at a 
specific process condition or load level, all runs conducted at that 
process condition or load level since the last passed zero check are 
invalid.
    8.6 Traverse Point Verification. The number and location of the 
traverse points shall be selected based on Method 1 guidelines.

[[Page 56]]

The stack or duct diameter and port nipple lengths, including any 
extension of the port nipples into stack or duct, shall be verified the 
first time the test is performed; retain and use this information for 
subsequent field tests, updating it as required. Physically measure the 
stack or duct dimensions or use a calibrated laser device; do not use 
engineering drawings of the stack or duct. The probe length necessary to 
reach each traverse point shall be recorded to within 6.4 mm (1/4 in.) and, for manual 
probes, marked on the probe sheath. In determining these lengths, the 
tester shall take into account both the distance that the port flange 
projects outside of the stack and the depth that any port nipple extends 
into the gas stream. The resulting point positions shall reflect the 
true distances from the inside wall of the stack or duct, so that when 
the tester aligns any of the markings with the outside face of the stack 
port, the probe's impact port shall be located at the appropriate 
distance from the inside wall for the respective Method 1 traverse 
point. Before beginning testing at a particular location, an out-of-
stack or duct verification shall be performed on each probe that will be 
used to ensure that these position markings are correct. The distances 
measured during the verification must agree with the previously 
calculated distances to within 1/4 in. For manual 
probes, the traverse point positions shall be verified by measuring the 
distance of each mark from the probe's P1 pressure port. A 
comparable out-of-stack test shall be performed on automated probe 
systems. The probe shall be extended to each of the prescribed traverse 
point positions. Then, the accuracy of the positioning for each traverse 
point shall be verified by measuring the distance between the port 
flange and the probe's P1 pressure port.
    8.7 Probe Installation. Insert the probe into the test port. A solid 
material shall be used to seal the port.
    8.8 System Response Time. Determine the response time of the probe 
measurement system. Insert and position the ``cold'' probe (at ambient 
temperature and pressure) at any Method 1 traverse point. Read and 
record the probe's P1-P2 differential pressure, 
temperature, and elapsed time at 15-second intervals until stable 
readings for both pressure and temperature are achieved. The response 
time is the longer of these two elapsed times. Record the response time.
    8.9 Sampling.
    8.9.1 Yaw angle measurement protocol. With manual probes, yaw angle 
measurements may be obtained in two alternative ways during the field 
test, either by using a yaw angle-measuring device (e.g., digital 
inclinometer) affixed to the probe, or using a protractor wheel and 
pointer assembly. For horizontal traversing, either approach may be 
used. For vertical traversing, i.e., when measuring from on top or into 
the bottom of a horizontal duct, only the protractor wheel and pointer 
assembly may be used. With automated probes, curve-fitting protocols may 
be used to obtain yaw-angle measurements.
    8.9.1.1 If a yaw angle-measuring device affixed to the probe is to 
be used, lock the device on the probe sheath, aligning it either on the 
reference scribe line or in the rotational offset position established 
under section 8.3.1.
    8.9.1.2 If a protractor wheel and pointer assembly is to be used, 
follow the procedures in Annex B of this method.
    8.9.1.3 Other yaw angle-determination procedures. If approved by the 
Administrator, other procedures for determining yaw angle may be used, 
provided that they are verified in a wind tunnel to be able to perform 
the yaw angle calibration procedure as described in section 10.5.
    8.9.2 Sampling strategy. At each traverse point, first yaw-null the 
probe, as described in section 8.9.3, below. Then, with the probe 
oriented into the direction of flow, measure and record the yaw angle, 
the differential pressures and the temperature at the traverse point, 
after stable readings are achieved, in accordance with sections 8.9.4 
and 8.9.5. At the start of testing in each port (i.e., after a probe has 
been inserted into the flue gas stream), allow at least the response 
time to elapse before beginning to take measurements at the first 
traverse point accessed from that port. Provided that the probe is not 
removed from the flue gas stream, measurements may be taken at 
subsequent traverse points accessed from the same test port without 
waiting again for the response time to elapse.
    8.9.3 Yaw-nulling procedure. In preparation for yaw angle 
determination, the probe must first be yaw nulled. After positioning the 
probe at the appropriate traverse point, perform the following 
procedures.
    8.9.3.1 Rotate the probe until a null differential pressure reading 
(the difference in pressures across the P2 and P3 
pressure ports is zero, i.e., P2=P3) is indicated 
by the yaw angle pressure gauge. Read and record the angle displayed by 
the angle-measuring device.
    8.9.3.2 Sign of the measured angle. The angle displayed on the 
angle-measuring device is considered positive when the probe's impact 
pressure port (as viewed from the ``tail'' end of the probe) is oriented 
in a clockwise rotational position relative to the stack or duct axis 
and is considered negative when the probe's impact pressure port is 
oriented in a counterclockwise rotational position (see Figure 2F-10).
    8.9.4 Yaw angle determination. After performing the yaw-nulling 
procedure in section

[[Page 57]]

8.9.3, determine the yaw angle of flow according to one of the following 
procedures. Special care must be observed to take into account the signs 
of the recorded angle and all offsets.
    8.9.4.1 Direct-reading. If all rotational offsets are zero or if the 
angle-measuring device rotational offset (RADO) determined in 
section 8.3 exactly compensates for the scribe line rotational offset 
(RSLO) determined in section 10.5, then the magnitude of the 
yaw angle is equal to the displayed angle-measuring device reading from 
section 8.9.3.1. The algebraic sign of the yaw angle is determined in 
accordance with section 8.9.3.2.

    Note: Under certain circumstances (e.g., testing of horizontal 
ducts), a 90[deg] adjustment to the angle-measuring device readings may 
be necessary to obtain the correct yaw angles.

    8.9.4.2 Compensation for rotational offsets during data reduction. 
When the angle-measuring device rotational offset does not compensate 
for reference scribe line rotational offset, the following procedure 
shall be used to determine the yaw angle:
    (a) Enter the reading indicated by the angle-measuring device from 
section 8.9.3.1.
    (b) Associate the proper algebraic sign from section 8.9.3.2 with 
the reading in step (a).
    (c) Subtract the reference scribe line rotational offset, 
RSLO, from the reading in step (b).
    (d) Subtract the angle-measuring device rotational offset, 
RADO, if any, from the result obtained in step (c).
    (e) The final result obtained in step (d) is the yaw angle of flow.

    Note: It may be necessary to first apply a 90[deg] adjustment to the 
reading in step (a), in order to obtain the correct yaw angle.

    8.9.4.3 Record the yaw angle measurements on a form similar to Table 
2F-3.
    8.9.5 Velocity determination. Maintain the probe rotational position 
established during the yaw angle determination. Then, begin recording 
the pressure-measuring device readings for the impact pressure 
(P1-P2) and pitch angle pressure (P4-
P5). These pressure measurements shall be taken over a 
sampling period of sufficiently long duration to ensure representative 
readings at each traverse point. If the pressure measurements are 
determined from visual readings of the pressure device or display, allow 
sufficient time to observe the pulsation in the readings to obtain a 
sight-weighted average, which is then recorded manually. If an automated 
data acquisition system (e.g., data logger, computer-based data 
recorder, strip chart recorder) is used to record the pressure 
measurements, obtain an integrated average of all pressure readings at 
the traverse point. Stack or duct gas temperature measurements shall be 
recorded, at a minimum, once at each traverse point. Record all 
necessary data as shown in the example field data form (Table 2F-3).
    8.9.6 Alignment check. For manually operated probes, after the 
required yaw angle and differential pressure and temperature 
measurements have been made at each traverse point, verify (e.g., by 
visual inspection) that the yaw angle-measuring device has remained in 
proper alignment with the reference scribe line or with the rotational 
offset position established in section 8.3. If, for a particular 
traverse point, the angle-measuring device is found to be in proper 
alignment, proceed to the next traverse point; otherwise, re-align the 
device and repeat the angle and differential pressure measurements at 
the traverse point. In the course of a traverse, if a mark used to 
properly align the angle-measuring device (e.g., as described in section 
18.1.1.1) cannot be located, re-establish the alignment mark before 
proceeding with the traverse.
    8.10 Probe Plugging. Periodically check for plugging of the pressure 
ports by observing the responses on pressure differential readouts. 
Plugging causes erratic results or sluggish responses. Rotate the probe 
to determine whether the readouts respond in the expected direction. If 
plugging is detected, correct the problem and repeat the affected 
measurements.
    8.11 Static Pressure. Measure the static pressure in the stack or 
duct using the equipment described in section 6.7.
    8.11.1 If a Type DA or DAT probe is used for this measurement, 
position the probe at or between any traverse point(s) and rotate the 
probe until a null differential pressure reading is obtained at 
P2-P3. Rotate the probe 90[deg]. Disconnect the 
P2 pressure side of the probe and read the pressure 
P1-Pbar and record as the static pressure. (Note: 
The spherical probe, specified in section 6.1.2, is unable to provide 
this measurement and shall not be used to take static pressure 
measurements.)
    8.11.2 If a Type S probe is used for this measurement, position the 
probe at or between any traverse point(s) and rotate the probe until a 
null differential pressure reading is obtained. Disconnect the tubing 
from one of the pressure ports; read and record the [Delta]P. For 
pressure devices with one-directional scales, if a deflection in the 
positive direction is noted with the negative side disconnected, then 
the static pressure is positive. Likewise, if a deflection in the 
positive direction is noted with the positive side disconnected, then 
the static pressure is negative.
    8.12 Atmospheric Pressure. Determine the atmospheric pressure at the 
sampling elevation during each test run following the procedure 
described in section 2.5 of Method 2.

[[Page 58]]

    8.13 Molecular Weight. Determine the stack gas dry molecular weight. 
For combustion processes or processes that emit essentially 
CO2, O2, CO, and N2, use Method 3 or 
3A. For processes emitting essentially air, an analysis need not be 
conducted; use a dry molecular weight of 29.0. Other methods may be 
used, if approved by the Administrator.
    8.14 Moisture. Determine the moisture content of the stack gas using 
Method 4 or equivalent.
    8.15 Data Recording and Calculations. Record all required data on a 
form similar to Table 2F-3.
    8.15.1 Selection of appropriate calibration curves. Choose the 
appropriate pair of F1 and F2 versus pitch angle 
calibration curves, created as described in section 10.6.
    8.15.2 Pitch angle derivation. Use the appropriate calculation 
procedures in section 12.2 to find the pitch angle ratios that are 
applicable at each traverse point. Then, find the pitch angles 
corresponding to these pitch angle ratios on the ``F1 versus 
pitch angle'' curve for the probe.
    8.15.3 Velocity calibration coefficient derivation. Use the pitch 
angle obtained following the procedures described in section 8.15.2 to 
find the corresponding velocity calibration coefficients from the 
``F2 versus pitch angle'' calibration curve for the probe.
    8.15.4 Calculations. Calculate the axial velocity at each traverse 
point using the equations presented in section 12.2 to account for the 
yaw and pitch angles of flow. Calculate the test run average stack gas 
velocity by finding the arithmetic average of the point velocity results 
in accordance with sections 12.3 and 12.4, and calculate the stack gas 
volumetric flow rate in accordance with section 12.5 or 12.6, as 
applicable.

                           9.0 Quality Control

    9.1 Quality Control Activities. In conjunction with the yaw angle 
determination and the pressure and temperature measurements specified in 
section 8.9, the following quality control checks should be performed.
    9.1.1 Range of the differential pressure gauge. In accordance with 
the specifications in section 6.4, ensure that the proper differential 
pressure gauge is being used for the range of [Delta]P values 
encountered. If it is necessary to change to a more sensitive gauge, 
replace the gauge with a gauge calibrated according to section 10.3.3, 
perform the leak check described in section 8.4 and the zero check 
described in section 8.5, and repeat the differential pressure and 
temperature readings at each traverse point.
    9.1.2 Horizontal stability check. For horizontal traverses of a 
stack or duct, visually check that the probe shaft is maintained in a 
horizontal position prior to taking a pressure reading. Periodically, 
during a test run, the probe's horizontal stability should be verified 
by placing a carpenter's level, a digital inclinometer, or other angle-
measuring device on the portion of the probe sheath that extends outside 
of the test port. A comparable check should be performed by automated 
systems.

                            10.0 Calibration

    10.1 Wind Tunnel Qualification Checks. To qualify for use in 
calibrating probes, a wind tunnel shall have the design features 
specified in section 6.11 and satisfy the following qualification 
criteria. The velocity pressure cross-check in section 10.1.1 and axial 
flow verification in section 10.1.2 shall be performed before the 
initial use of the wind tunnel and repeated immediately after any 
alteration occurs in the wind tunnel's configuration, fans, interior 
surfaces, straightening vanes, controls, or other properties that could 
reasonably be expected to alter the flow pattern or velocity stability 
in the tunnel. The owner or operator of a wind tunnel used to calibrate 
probes according to this method shall maintain records documenting that 
the wind tunnel meets the requirements of sections 10.1.1 and 10.1.2 and 
shall provide these records to the Administrator upon request.
    10.1.1 Velocity pressure cross-check. To verify that the wind tunnel 
produces the same velocity at the tested probe head as at the 
calibration pitot tube impact port, perform the following cross-check. 
Take three differential pressure measurements at the fixed calibration 
pitot tube location, using the calibration pitot tube specified in 
section 6.10, and take three measurements with the calibration pitot 
tube at the wind tunnel calibration location, as defined in section 
3.20. Alternate the measurements between the two positions. Perform this 
procedure at the lowest and highest velocity settings at which the 
probes will be calibrated. Record the values on a form similar to Table 
2F-4. At each velocity setting, the average velocity pressure obtained 
at the wind tunnel calibration location shall be within 2 percent or 2.5 mm H2O (0.01 in. 
H2O), whichever is less restrictive, of the average velocity 
pressure obtained at the fixed calibration pitot tube location. This 
comparative check shall be performed at 2.5-cm (1-in.), or smaller, 
intervals across the full length, width, and depth (if applicable) of 
the wind tunnel calibration location. If the criteria are not met at 
every tested point, the wind tunnel calibration location must be 
redefined, so that acceptable results are obtained at every point. 
Include the results of the velocity pressure cross-check in the 
calibration data section of the field test report. (See section 16.1.4.)
    10.1.2 Axial flow verification. The following procedures shall be 
performed to demonstrate that there is fully developed axial flow within 
the calibration location

[[Page 59]]

and at the calibration pitot tube location. Two testing options are 
available to conduct this check.
    10.1.2.1 Using a calibrated 3-D probe. A 3-D probe that has been 
previously calibrated in a wind tunnel with documented axial flow (as 
defined in section 3.21) may be used to conduct this check. Insert the 
calibrated 3-D probe into the wind tunnel test section using the tested 
probe port. Following the procedures in sections 8.9 and 12.2 of this 
method, determine the yaw and pitch angles at all the point(s) in the 
test section where the velocity pressure cross-check, as specified in 
section 10.1.1, is performed. This includes all the points in the 
calibration location and the point where the calibration pitot tube will 
be located. Determine the yaw and pitch angles at each point. Repeat 
these measurements at the highest and lowest velocities at which the 
probes will be calibrated. Record the values on a form similar to Table 
2F-5. Each measured yaw and pitch angle shall be within 3[deg] of 0[deg]. Exceeding the limits indicates 
unacceptable flow in the test section. Until the problem is corrected 
and acceptable flow is verified by repetition of this procedure, the 
wind tunnel shall not be used for calibration of probes. Include the 
results of the axial flow verification in the calibration data section 
of the field test report. (See section 16.1.4.)
    10.1.2.2 Using alternative probes. Axial flow verification may be 
performed using an uncalibrated prism-shaped 3-D probe (e.g., DA or DAT 
probe) or an uncalibrated wedge probe. (Figure 2F-11 illustrates a 
typical wedge probe.) This approach requires use of two ports: the 
tested probe port and a second port located 90[deg] from the tested 
probe port. Each port shall provide access to all the points within the 
wind tunnel test section where the velocity pressure cross-check, as 
specified in section 10.1.1, is conducted. The probe setup shall include 
establishing a reference yaw-null position on the probe sheath to serve 
as the location for installing the angle-measuring device. Physical 
design features of the DA, DAT, and wedge probes are relied on to 
determine the reference position. For the DA or DAT probe, this 
reference position can be determined by setting a digital inclinometer 
on the flat facet where the P1 pressure port is located and 
then identifying the rotational position on the probe sheath where a 
second angle-measuring device would give the same angle reading. The 
reference position on a wedge probe shaft can be determined either 
geometrically or by placing a digital inclinometer on each side of the 
wedge and rotating the probe until equivalent readings are obtained. 
With the latter approach, the reference position is the rotational 
position on the probe sheath where an angle-measuring device would give 
a reading of 0[deg]. After installing the angle-measuring device in the 
reference yaw-null position on the probe sheath, determine the yaw angle 
from the tested port. Repeat this measurement using the 90[deg] offset 
port, which provides the pitch angle of flow. Determine the yaw and 
pitch angles at all the point(s) in the test section where the velocity 
pressure cross-check, as specified in section 10.1.1, is performed. This 
includes all the points in the wind tunnel calibration location and the 
point where the calibration pitot tube will be located. Perform this 
check at the highest and lowest velocities at which the probes will be 
calibrated. Record the values on a form similar to Table 2F-5. Each 
measured yaw and pitch angle shall be within 3[deg] of 0[deg]. Exceeding the limits indicates 
unacceptable flow in the test section. Until the problem is corrected 
and acceptable flow is verified by repetition of this procedure, the 
wind tunnel shall not be used for calibration of probes. Include the 
results in the probe calibration report.
    10.1.3 Wind tunnel audits.
    10.1.3.1 Procedure. Upon the request of the Administrator, the owner 
or operator of a wind tunnel shall calibrate a 3-D audit probe in 
accordance with the procedures described in sections 10.3 through 10.6. 
The calibration shall be performed at two velocities and over a pitch 
angle range that encompasses the velocities and pitch angles typically 
used for this method at the facility. The resulting calibration data and 
curves shall be submitted to the Agency in an audit test report. These 
results shall be compared by the Agency to reference calibrations of the 
audit probe at the same velocity and pitch angle settings obtained at 
two different wind tunnels.
    10.1.3.2 Acceptance criteria. The audited tunnel's calibration is 
acceptable if all of the following conditions are satisfied at each 
velocity and pitch setting for the reference calibration obtained from 
at least one of the wind tunnels. For pitch angle settings between -
15[deg] and +15[deg], no velocity calibration coefficient (i.e., 
F2) may differ from the corresponding reference value by more 
than 3 percent. For pitch angle settings outside of this range (i.e., 
less than -15[deg] and greater than +15[deg]), no velocity calibration 
coefficient may differ by more than 5 percent from the corresponding 
reference value. If the acceptance criteria are not met, the audited 
wind tunnel shall not be used to calibrate probes for use under this 
method until the problems are resolved and acceptable results are 
obtained upon completion of a subsequent audit.
    10.2 Probe Inspection. Before each calibration of a 3-D probe, 
carefully examine the physical condition of the probe head. Particular 
attention shall be paid to the edges of the pressure ports and the 
surfaces surrounding these ports. Any dents, scratches, or asymmetries 
on the edges of the pressure ports and any scratches or indentations on

[[Page 60]]

the surfaces surrounding the pressure ports shall be noted because of 
the potential effect on the probe's pressure readings. If the probe has 
been previously calibrated, compare the current condition of the probe's 
pressure ports and surfaces to the results of the inspection performed 
during the probe's most recent wind tunnel calibration. Record the 
results of this inspection on a form and in diagrams similar to Table 
2F-1. The information in Table 2F-1 will be used as the basis for 
comparison during the probe head inspections performed before each 
subsequent field use.
    10.3 Pre-Calibration Procedures. Prior to calibration, a scribe line 
shall have been placed on the probe in accordance with section 10.4. The 
yaw angle and velocity calibration procedures shall not begin until the 
pre-test requirements in sections 10.3.1 through 10.3.4 have been met.
    10.3.1 Perform the horizontal straightness check described in 
section 8.2 on the probe assembly that will be calibrated in the wind 
tunnel.
    10.3.2 Perform a leak check in accordance with section 8.4.
    10.3.3 Except as noted in section 10.3.3.3, calibrate all 
differential pressure-measuring devices to be used in the probe 
calibrations, using the following procedures. At a minimum, calibrate 
these devices on each day that probe calibrations are performed.
    10.3.3.1 Procedure. Before each wind tunnel use, all differential 
pressure-measuring devices shall be calibrated against the reference 
device specified in section 6.4.3 using a common pressure source. 
Perform the calibration at three reference pressures representing 30, 
60, and 90 percent of the full-scale range of the pressure-measuring 
device being calibrated. For an inclined-vertical manometer, perform 
separate calibrations on the inclined and vertical portions of the 
measurement scale, considering each portion of the scale to be a 
separate full-scale range. [For example, for a manometer with a 0- to 
2.5-cm H2O (0- to 1-in. H2O) inclined scale and a 
2.5- to 12.7-cm H2O (1- to 5-in. H2O) vertical 
scale, calibrate the inclined portion at 7.6, 15.2, and 22.9 mm 
H2O (0.3, 0.6, and 0.9 in. H2O), and calibrate the 
vertical portion at 3.8, 7.6, and 11.4 cm H2O (1.5, 3.0, and 
4.5 in. H2O).] Alternatively, for the vertical portion of the 
scale, use three evenly spaced reference pressures, one of which is 
equal to or higher than the highest differential pressure expected in 
field applications.
    10.3.3.2 Acceptance criteria. At each pressure setting, the two 
pressure readings made using the reference device and the pressure-
measuring device being calibrated shall agree to within 2 percent of full scale of the device being calibrated 
or 0.5 mm H2O (0.02 in. H2O), whichever is less 
restrictive. For an inclined-vertical manometer, these requirements 
shall be met separately using the respective full-scale upper limits of 
the inclined and vertical portions of the scale. Differential pressure-
measuring devices not meeting the 2 percent of full scale or 
0.5 mm H2O (0.02 in. H2O) calibration requirement 
shall not be used.
    10.3.3.3 Exceptions. Any precision manometer that meets the 
specifications for a reference device in section 6.4.3 and that is not 
used for field testing does not require calibration, but must be leveled 
and zeroed before each wind tunnel use. Any pressure device used 
exclusively for yaw nulling does not require calibration, but shall be 
checked for responsiveness to rotation of the probe prior to each wind 
tunnel use.
    10.3.4 Calibrate digital inclinometers on each day of wind tunnel or 
field testing (prior to beginning testing) using the following 
procedures. Calibrate the inclinometer according to the manufacturer's 
calibration procedures. In addition, use a triangular block (illustrated 
in Figure 2F-12) with a known angle, [theta] independently determined 
using a protractor or equivalent device, between two adjacent sides to 
verify the inclinometer readings.

    Note: If other angle-measuring devices meeting the provisions of 
section 6.2.3 are used in place of a digital inclinometer, comparable 
calibration procedures shall be performed on such devices.)

Secure the triangular block in a fixed position. Place the inclinometer 
on one side of the block (side A) to measure the angle of inclination 
(R1). Repeat this measurement on the adjacent side of the 
block (side B) using the inclinometer to obtain a second angle reading 
(R2). The difference of the sum of the two readings from 
180[deg] (i.e., 180[deg] -R1 -R2) shall be within 
2[deg] of the known angle, [Theta]
    10.4 Placement of Reference Scribe Line. Prior to the first 
calibration of a probe, a line shall be permanently inscribed on the 
main probe sheath to serve as a reference mark for determining yaw 
angles. Annex C in section 18 of this method gives a guideline for 
placement of the reference scribe line.
    10.4.1 This reference scribe line shall meet the specifications in 
sections 6.1.6.1 and 6.1.6.3 of this method. To verify that the 
alignment specification in section 6.1.6.3 is met, secure the probe in a 
horizontal position and measure the rotational angle of each scribe line 
and scribe line segment using an angle-measuring device that meets the 
specifications in section 6.2.1 or 6.2.3. For any scribe line that is 
longer than 30.5 cm (12 in.), check the line's rotational position at 
30.5-cm (12-in.) intervals. For each line segment that is 30.5 cm (12 
in.) or less in length, check the rotational position at the two 
endpoints of the segment. To meet the alignment specification in section 
6.1.6.3, the minimum and maximum of all of the rotational angles that 
are measured along the full

[[Page 61]]

length of the main probe must not differ by more than 2[deg].

    Note: A short reference scribe line segment [e.g., 15.2 cm (6 in.) 
or less in length] meeting the alignment specifications in section 
6.1.6.3 is fully acceptable under this method. See section 18.1.1.1 of 
Annex A for an example of a probe marking procedure, suitable for use 
with a short reference scribe line.

    10.4.2 The scribe line should be placed on the probe first and then 
its offset from the yaw-null position established (as specified in 
section 10.5). The rotational position of the reference scribe line 
relative to the yaw-null position of the probe, as determined by the yaw 
angle calibration procedure in section 10.5, is defined as the reference 
scribe line rotational offset, RSLO. The reference scribe 
line rotational offset shall be recorded and retained as part of the 
probe's calibration record.
    10.4.3 Scribe line for automated probes. A scribe line may not be 
necessary for an automated probe system if a reference rotational 
position of the probe is built into the probe system design. For such 
systems, a ``flat'' (or comparable, clearly identifiable physical 
characteristic) should be provided on the probe casing or flange plate 
to ensure that the reference position of the probe assembly remains in a 
vertical or horizontal position. The rotational offset of the flat (or 
comparable, clearly identifiable physical characteristic) needed to 
orient the reference position of the probe assembly shall be recorded 
and maintained as part of the automated probe system's specifications.
    10.5 Yaw Angle Calibration Procedure. For each probe used to measure 
yaw angles with this method, a calibration procedure shall be performed 
in a wind tunnel meeting the specifications in section 10.1 to determine 
the rotational position of the reference scribe line relative to the 
probe's yaw-null position. This procedure shall be performed on the main 
probe with all devices that will be attached to the main probe in the 
field [such as thermocouples or resistance temperature detectors (RTDs)] 
that may affect the flow around the probe head. Probe shaft extensions 
that do not affect flow around the probe head need not be attached 
during calibration. At a minimum, this procedure shall include the 
following steps.
    10.5.1 Align and lock the angle-measuring device on the reference 
scribe line. If a marking procedure (such as that described in section 
18.1.1.1) is used, align the angle-measuring device on a mark within 
1[deg] of the rotational position of the reference 
scribe line. Lock the angle-measuring device onto the probe sheath at 
this position.
    10.5.2 Zero the pressure-measuring device used for yaw nulling.
    10.5.3 Insert the probe assembly into the wind tunnel through the 
entry port, positioning the probe's impact port at the calibration 
location. Check the responsiveness of the pressure-measurement device to 
probe rotation, taking corrective action if the response is 
unacceptable.
    10.5.4 Ensure that the probe is in a horizontal position, using a 
carpenter's level.
    10.5.5 Rotate the probe either clockwise or counterclockwise until a 
yaw null (P2=P3) is obtained.
    10.5.6 Use the reading displayed by the angle-measuring device at 
the yaw-null position to determine the magnitude of the reference scribe 
line rotational offset, RSLO, as defined in section 3.15. 
Annex D in section 18 of this method provides a recommended procedure 
for determining the magnitude of RSLO with a digital 
inclinometer and a second procedure for determining the magnitude of 
RSLO with a protractor wheel and pointer device. Table 2F-6 
presents an example data form and Table 2F-7 is a look-up table with the 
recommended procedure. Procedures other than those recommended in Annex 
D in section 18 may be used, if they can determine RSLO to 
within 1[deg] and are explained in detail in the 
field test report. The algebraic sign of RSLO will either be 
positive, if the rotational position of the reference scribe line (as 
viewed from the ``tail'' end of the probe) is clockwise, or negative, if 
counterclockwise with respect to the probe's yaw-null position. (This is 
illustrated in Figure 2F-13.)
    10.5.7 The steps in sections 10.5.3 through 10.5.6 shall be 
performed twice at each of the velocities at which the probe will be 
calibrated (in accordance with section 10.6). Record the values of 
RSLO.
    10.5.8 The average of all of the RSLO values shall be 
documented as the reference scribe line rotational offset for the probe.
    10.5.9 Use of reference scribe line offset. The reference scribe 
line rotational offset shall be used to determine the yaw angle of flow 
in accordance with section 8.9.4.
    10.6 Pitch Angle and Velocity Pressure Calibrations. Use the 
procedures in sections 10.6.1 through 10.6.16 to generate an appropriate 
set (or sets) of pitch angle and velocity pressure calibration curves 
for each probe. The calibration procedure shall be performed on the main 
probe and all devices that will be attached to the main probe in the 
field (e.g., thermocouple or RTDs) that may affect the flow around the 
probe head. Probe shaft extensions that do not affect flow around the 
probe head need not be attached during calibration. (Note: If a sampling 
nozzle is part of the assembly, a wind tunnel demonstration shall be 
performed that shows the probe's ability to measure velocity and yaw 
null is not impaired when the nozzle is drawing a sample.) The 
calibration

[[Page 62]]

procedure involves generating two calibration curves, F1 
versus pitch angle and F2 versus pitch angle. To generate 
these two curves, F1 and F2 shall be derived using 
Equations 2F-1 and 2F-2, below. Table 2F-8 provides an example wind 
tunnel calibration data sheet, used to log the measurements needed to 
derive these two calibration curves.
    10.6.1 Calibration velocities. The tester may calibrate the probe at 
two nominal wind tunnel velocity settings of 18.3 m/sec and 27.4 m/sec 
(60 ft/sec and 90 ft/sec) and average the results of these calibrations, 
as described in section 10.6.16.1, in order to generate a set of 
calibration curves. If this option is selected, this single set of 
calibration curves may be used for all field applications over the 
entire velocity range allowed by the method. Alternatively, the tester 
may customize the probe calibration for a particular field test 
application (or for a series of applications), based on the expected 
average velocity(ies) at the test site(s). If this option is selected, 
generate each set of calibration curves by calibrating the probe at two 
nominal wind tunnel velocity settings, at least one of which is greater 
than or equal to the expected average velocity(ies) for the field 
application(s), and average the results as described in section 
10.6.16.1. Whichever calibration option is selected, the probe 
calibration coefficients (F2 values) obtained at the two 
nominal calibration velocities shall, for the same pitch angle setting, 
meet the conditions specified in section 10.6.16.
    10.6.2 Pitch angle calibration curve (F1 versus pitch 
angle). The pitch angle calibration involves generating a calibration 
curve of calculated F1 values versus tested pitch angles, 
where F1 is the ratio of the pitch pressure to the velocity 
pressure, i.e.,
[GRAPHIC] [TIFF OMITTED] TR14MY99.049

See Figure 2F-14 for an example F1 versus pitch angle 
calibration curve.
    10.6.3 Velocity calibration curve (F2 versus pitch 
angle). The velocity calibration involves generating a calibration curve 
of the 3-D probe's F2 coefficient against the tested pitch 
angles, where
[GRAPHIC] [TIFF OMITTED] TR14MY99.050

and
Cp=calibration pitot tube coefficient, and
[Delta]Pstd=velocity pressure from the calibration pitot 
tube.

See Figure 2F-15 for an example F2 versus pitch angle 
calibration curve.
    10.6.4 Connect the tested probe and calibration pitot probe to their 
respective pressure-measuring devices. Zero the pressure-measuring 
devices. Inspect and leak-check all pitot lines; repair or replace, if 
necessary. Turn on the fan, and allow the wind tunnel air flow to 
stabilize at the first of the two selected nominal velocity settings.
    10.6.5 Position the calibration pitot tube at its measurement 
location (determined as outlined in section 6.11.4.3), and align the 
tube so that its tip is pointed directly into the flow. Ensure that the 
entry port surrounding the tube is properly sealed. The calibration 
pitot tube may either remain in the wind tunnel throughout the 
calibration, or be removed from the wind tunnel while measurements are 
taken with the probe being calibrated.
    10.6.6 Set up the pitch protractor plate on the tested probe's entry 
port to establish the pitch angle positions of the probe to within 
2[deg].
    10.6.7 Check the zero setting of each pressure-measuring device.
    10.6.8 Insert the tested probe into the wind tunnel and align it so 
that its P1 pressure port is pointed directly into the flow 
and is positioned within the calibration location (as defined in section 
3.20). Secure the probe at the 0[deg] pitch angle position. Ensure that 
the entry port surrounding the probe is properly sealed.
    10.6.9 Read the differential pressure from the calibration pitot 
tube ([Delta]Pstd), and record its value. Read the barometric 
pressure to within 2.5 mm Hg (0.1 in. Hg) and the temperature in the wind tunnel to 
within 0.6[deg]C (1[deg]F). Record these values on a data form similar 
to Table 2F-8.
    10.6.10 After the tested probe's differential pressure gauges have 
had sufficient time to stabilize, yaw null the probe, then obtain 
differential pressure readings for (P1-P2) and 
(P4-P5). Record the yaw angle and differential 
pressure readings. After taking these readings, ensure that the tested 
probe has remained at the yaw-null position.
    10.6.11 Either take paired differential pressure measurements with 
both the calibration pitot tube and tested probe (according to sections 
10.6.9 and 10.6.10) or take readings only with the tested probe 
(according to section 10.6.10) in 5[deg] increments over the pitch-angle 
range for which the probe is to be calibrated. The calibration pitch-
angle range shall be symmetric around 0[deg] and shall exceed the 
largest pitch angle expected in the field by 5[deg]. At a minimum, 
probes shall be calibrated over the range of -15[deg] to +15[deg]. If 
paired calibration pitot tube and tested probe measurements are not 
taken at each pitch angle setting, the differential pressure from the 
calibration pitot tube shall be read, at a minimum, before taking the 
tested probe's differential pressure reading at the first pitch angle 
setting and after taking the tested probe's differential pressure 
readings

[[Page 63]]

at the last pitch angle setting in each replicate.
    10.6.12 Perform a second replicate of the procedures in sections 
10.6.5 through 10.6.11 at the same nominal velocity setting.
    10.6.13 For each replicate, calculate the F1 and 
F2 values at each pitch angle. At each pitch angle, calculate 
the percent difference between the two F2 values using 
Equation 2F-3.
[GRAPHIC] [TIFF OMITTED] TR14MY99.051

    If the percent difference is less than or equal to 2 percent, 
calculate an average F1 value and an average F2 
value at that pitch angle. If the percent difference is greater than 2 
percent and less than or equal to 5 percent, perform a third repetition 
at that angle and calculate an average F1 value and an 
average F2 value using all three repetitions. If the percent 
difference is greater than 5 percent, perform four additional 
repetitions at that angle and calculate an average F1 value 
and an average F2 value using all six repetitions. When 
additional repetitions are required at any pitch angle, move the probe 
by at least 5[deg] and then return to the specified pitch angle before 
taking the next measurement. Record the average values on a form similar 
to Table 2F-9.
    10.6.14 Repeat the calibration procedures in sections 10.6.5 through 
10.6.13 at the second selected nominal wind tunnel velocity setting.
    10.6.15 Velocity drift check. The following check shall be 
performed, except when paired calibration pitot tube and tested probe 
pressure measurements are taken at each pitch angle setting. At each 
velocity setting, calculate the percent difference between consecutive 
differential pressure measurements made with the calibration pitot tube. 
If a measurement differs from the previous measurement by more than 2 
percent or 0.25 mm H2O (0.01 in. H2O), whichever 
is less restrictive, the calibration data collected between these 
calibration pitot tube measurements may not be used, and the 
measurements shall be repeated.
    10.6.16 Compare the averaged F2 coefficients obtained 
from the calibrations at the two selected nominal velocities, as 
follows. At each pitch angle setting, use Equation 2F-3 to calculate the 
difference between the corresponding average F2 values at the 
two calibration velocities. At each pitch angle in the -15[deg] to 
+15[deg] range, the percent difference between the average F2 
values shall not exceed 3.0 percent. For pitch angles outside this range 
(i.e., less than -15[deg]0 and greater than +15[deg]), the percent 
difference shall not exceed 5.0 percent.
    10.6.16.1 If the applicable specification in section 10.6.16 is met 
at each pitch angle setting, average the results obtained at the two 
nominal calibration velocities to produce a calibration record of 
F1 and F2 at each pitch angle tested. Record these 
values on a form similar to Table 2F-9. From these values, generate one 
calibration curve representing F1 versus pitch angle and a 
second curve representing F2 versus pitch angle. Computer 
spreadsheet programs may be used to graph the calibration data and to 
develop polynomial equations that can be used to calculate pitch angles 
and axial velocities.
    10.6.16.2 If the applicable specification in section 10.6.16 is 
exceeded at any pitch angle setting, the probe shall not be used unless: 
(1) the calibration is repeated at that pitch angle and acceptable 
results are obtained or (2) values of F1 and F2 
are obtained at two nominal velocities for which the specifications in 
section 10.6.16 are met across the entire pitch angle range.
    10.7 Recalibration. Recalibrate the probe using the procedures in 
section 10 either within 12 months of its first field use after its most 
recent calibration or after 10 field tests (as defined in section 3.4), 
whichever occurs later. In addition, whenever there is visible damage to 
the 3-D head, the probe shall be recalibrated before it is used again.
    10.8 Calibration of pressure-measuring devices used in field tests. 
Before its initial use in a field test, calibrate each pressure-
measuring device (except those used exclusively for yaw nulling) using 
the three-point calibration procedure described in section 10.3.3. The 
device shall be recalibrated according to the procedure in section 
10.3.3 no later than 90 days after its first field use following its 
most recent calibration. At the discretion of the tester, more frequent 
calibrations (e.g., after a field test) may be performed. No 
adjustments, other than adjustments to the zero setting, shall be made 
to the device between calibrations.
    10.8.1 Post-test calibration check. A single-point calibration check 
shall be performed on each pressure-measuring device after completion of 
each field test. At the discretion of the tester, more frequent single-
point calibration checks (e.g., after one or more field test runs) may 
be performed. It is recommended that the post-test check be performed 
before leaving the field test site. The check shall be performed at a 
pressure between 50 and 90 percent of full scale by taking a common 
pressure reading with the tested device and a reference pressure-
measuring device (as described in section 6.4.4) or by challenging the 
tested device with a reference pressure source (as described in section 
6.4.4) or by performing an equivalent check using a reference device 
approved by the Administrator.
    10.8.2 Acceptance criterion. At the selected pressure setting, the 
pressure readings made using the reference device and the tested device 
shall agree to within 3 percent of

[[Page 64]]

full scale of the tested device or 0.8 mm H2O (0.03 in. 
H2O), whichever is less restrictive. If this specification is 
met, the test data collected during the field test are valid. If the 
specification is not met, all test data collected since the last 
successful calibration or calibration check are invalid and shall be 
repeated using a pressure-measuring device with a current, valid 
calibration. Any device that fails the calibration check shall not be 
used in a field test until a successful recalibration is performed 
according to the procedures in section 10.3.3.
    10.9 Temperature Gauges. Same as Method 2, section 4.3. The 
alternative thermocouple calibration procedures outlined in Emission 
Measurement Center (EMC) Approved Alternative Method (ALT-011) 
``Alternative Method 2 Thermocouple Calibration Procedure'' may be 
performed. Temperature gauges shall be calibrated no more than 30 days 
prior to the start of a field test or series of field tests and 
recalibrated no more than 30 days after completion of a field test or 
series of field tests.
    10.10 Barometer. Same as Method 2, section 4.4. The barometer shall 
be calibrated no more than 30 days prior to the start of a field test or 
series of field tests.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
section 8.0).

                   12.0 Data Analysis and Calculations

    These calculations use the measured yaw angle, derived pitch angle, 
and the differential pressure and temperature measurements at individual 
traverse points to derive the axial flue gas velocity (va(i)) 
at each of those points. The axial velocity values at all traverse 
points that comprise a full stack or duct traverse are then averaged to 
obtain the average axial flue gas velocity (va (avg)). Round 
off figures only in the final calculation of reported values.
    12.1 Nomenclature

A=Cross-sectional area of stack or duct, m\2\ (ft \2\).
Bws=Water vapor in the gas stream (from Method 4 or 
alternative), proportion by volume.
Kp Conversion factor (a constant),
[GRAPHIC] [TIFF OMITTED] TR14MY99.052

for the metric system, and
[GRAPHIC] [TIFF OMITTED] TR14MY99.053

for the English system.

Md=Molecular weight of stack or duct gas, dry basis (see 
section 8.13), g/g-mole (lb/lb-mole).
Ms=Molecular weight of stack or duct gas, wet basis, g/g-mole 
(lb/lb-mole).
[GRAPHIC] [TIFF OMITTED] TR14MY99.054

Pbar=Barometric pressure at measurement site, mm Hg (in. Hg).
Pg=Stack or duct static pressure, mm H2O (in. 
H2O).
Ps=Absolute stack or duct pressure, mm Hg (in. Hg),
[GRAPHIC] [TIFF OMITTED] TR14MY99.055

Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
13.6=Conversion from mm H2O (in. H2O) to mm Hg 
(in. Hg).
Qsd=Average dry-basis volumetric stack or duct gas flow rate 
corrected to standard conditions, dscm/hr (dscf/hr).
Qsw=Average wet-basis volumetric stack or duct gas flow rate 
corrected to standard conditions, wscm/hr (wscf/hr).
Ts(avg)=Average absolute stack or duct gas temperature across 
all traverse points.
ts(i)=Stack or duct gas temperature, C (F), at traverse point 
i.
Ts(i)=Absolute stack or duct gas temperature, K (R), at 
traverse point i,
[GRAPHIC] [TIFF OMITTED] TR14MY99.056

for the metric system, and
[GRAPHIC] [TIFF OMITTED] TR14MY99.057

for the English system.
Tstd=Standard absolute temperature, 293[deg]K (528[deg]R).
F1(i)=Pitch angle ratio, applicable at traverse point i, 
dimensionless.
F2(i)=3-D probe velocity calibration coefficient, applicable 
at traverse point i, dimensionless.
(P4-P5)i=Pitch differential pressure of 
stack or duct gas flow, mm H2O (in. H2O), at 
traverse point i.
(P1-P2)i=Velocity head (differential 
pressure) of stack or duct gas flow, mm H2O (in. 
H2O), at traverse point i.
va(i)=Reported stack or duct gas axial velocity, m/sec (ft/
sec), at traverse point i.
va(avg)=Average stack or duct gas axial velocity, m/sec (ft/
sec), across all traverse points.
3,600=Conversion factor, sec/hr.
18.0=Molecular weight of water, g/g-mole (lb/lb-mole).
[theta]y(i)=Yaw angle, degrees, at traverse point i.
[theta]p(i)=Pitch angle, degrees, at traverse point i.
n=Number of traverse points.

    12.2 Traverse Point Velocity Calculations. Perform the following 
calculations from the

[[Page 65]]

measurements obtained at each traverse point.
    12.2.1 Selection of calibration curves. Select calibration curves as 
described in section 10.6.1.
    12.2.2 Traverse point pitch angle ratio. Use Equation 2F-1, as 
described in section 10.6.2, to calculate the pitch angle ratio, 
F1(i), at each traverse point.
    12.2.3 Pitch angle. Use the pitch angle ratio, F1(i), to 
derive the pitch angle, [theta]p(i), at traverse point i from 
the F1 versus pitch angle calibration curve generated under 
section 10.6.16.1.
    12.2.4 Velocity calibration coefficient. Use the pitch angle, 
[theta]p(i), to obtain the probe velocity calibration 
coefficient, F2(i), at traverse point i from the ``velocity 
pressure calibration curve,'' i.e., the F2 versus pitch angle 
calibration curve generated under section 10.6.16.1.
    12.2.5 Axial velocity. Use the following equation to calculate the 
axial velocity, va(i), from the differential pressure 
(P1-P2)i and yaw angle, 
[theta]y(i), measured at traverse point i and the previously 
calculated values for the velocity calibration coefficient, 
F2(i), absolute stack or duct standard temperature, 
Ts(i), absolute stack or duct pressure, Ps, 
molecular weight, Ms, and pitch angle, 
``[theta]p(i).
[GRAPHIC] [TIFF OMITTED] TR14MY99.058

    12.2.6 Handling multiple measurements at a traverse point. For 
pressure or temperature devices that take multiple measurements at a 
traverse point, the multiple measurements (or where applicable, their 
square roots) may first be averaged and the resulting average values 
used in the equations above. Alternatively, the individual measurements 
may be used in the equations above and the resulting multiple calculated 
values may then be averaged to obtain a single traverse point value. 
With either approach, all of the individual measurements recorded at a 
traverse point must be used in calculating the applicable traverse point 
value.
    12.3 Average Axial Velocity in Stack or Duct. Use the reported 
traverse point axial velocity in the following equation.
[GRAPHIC] [TIFF OMITTED] TR14MY99.059

    12.4 Acceptability of Results. The test results are acceptable and 
the calculated value of va(avg) may be reported as the 
average axial velocity for the test run if the conditions in either 
section 12.4.1 or 12.4.2 are met.
    12.4.1 The calibration curves were generated at nominal velocities 
of 18.3 m/sec and 27.4 m/sec (60 ft/sec and 90 ft/sec).
    12.4.2 The calibration curves were generated at nominal velocities 
other than 18.3 m/sec and 27.4 m/sec (60 ft/sec and 90 ft/sec), and the 
value of va(avg) obtained using Equation 2F-9 is less than or 
equal to at least one of the nominal velocities used to derive the 
F1 and F2 calibration curves.
    12.4.3 If the conditions in neither section 12.4.1 nor section 
12.4.2 are met, the test results obtained in Equation 2F-9 are not 
acceptable, and the steps in sections 12.2 and 12.3 must be repeated 
using a set of F1 and F2 calibration curves that 
satisfies the conditions specified in section 12.4.1 or 12.4.2.
    12.5 Average Gas Wet Volumetric Flow Rate in Stack or Duct. Use the 
following equation to compute the average volumetric flow rate on a wet 
basis.
[GRAPHIC] [TIFF OMITTED] TR14MY99.060

    12.6 Average Gas Dry Volumetric Flow Rate in Stack or Duct. Use the 
following equation to compute the average volumetric flow rate on a dry 
basis.

[[Page 66]]

[GRAPHIC] [TIFF OMITTED] TR14MY99.061

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 Reporting

    16.1 Field Test Reports. Field test reports shall be submitted to 
the Agency according to applicable regulatory requirements. Field test 
reports should, at a minimum, include the following elements.
    16.1.1 Description of the source. This should include the name and 
location of the test site, descriptions of the process tested, a 
description of the combustion source, an accurate diagram of stack or 
duct cross-sectional area at the test site showing the dimensions of the 
stack or duct, the location of the test ports, and traverse point 
locations and identification numbers or codes. It should also include a 
description and diagram of the stack or duct layout, showing the 
distance of the test location from the nearest upstream and downstream 
disturbances and all structural elements (including breachings, baffles, 
fans, straighteners, etc.) affecting the flow pattern. If the source and 
test location descriptions have been previously submitted to the Agency 
in a document (e.g., a monitoring plan or test plan), referencing the 
document in lieu of including this information in the field test report 
is acceptable.
    16.1.2 Field test procedures. These should include a description of 
test equipment and test procedures. Testing conventions, such as 
traverse point numbering and measurement sequence (e.g., sampling from 
center to wall, or wall to center), should be clearly stated. Test port 
identification and directional reference for each test port should be 
included on the appropriate field test data sheets.
    16.1.3 Field test data.
    16.1.3.1 Summary of results. This summary should include the dates 
and times of testing and the average axial gas velocity and the average 
flue gas volumetric flow results for each run and tested condition.
    16.1.3.2 Test data. The following values for each traverse point 
should be recorded and reported:

    (a) P1-P2 and P4-P5 
differential pressures
    (b) Stack or duct gas temperature at traverse point i 
(ts(i))
    (c) Absolute stack or duct gas temperature at traverse point i 
(Ts(i))
    (d) Yaw angle at each traverse point i ([theta]y(i))
    (e) Pitch angle at each traverse point i ([theta]p(i))
    (f) Stack or duct gas axial velocity at traverse point i 
(va(i))

    16.1.3.3 The following values should be reported once per run:

    (a) Water vapor in the gas stream (from Method 4 or alternative), 
proportion by volume (Bws), measured at the frequency 
specified in the applicable regulation
    (b) Molecular weight of stack or duct gas, dry basis (Md)
    (c) Molecular weight of stack or duct gas, wet basis (Ms)
    (d) Stack or duct static pressure (Pg)
    (e) Absolute stack or duct pressure (Ps)
    (f) Carbon dioxide concentration in the flue gas, dry basis (\0/
0\d CO2)
    (g) Oxygen concentration in the flue gas, dry basis (\0/
0\d O2)
    (h) Average axial stack or duct gas velocity (va(avg)) 
across all traverse points
    (i) Gas volumetric flow rate corrected to standard conditions, dry 
or wet basis as required by the applicable regulation (Qsd or 
Qsw)

16.1.3.4 The following should be reported once per complete set of test 
runs:

    (a) Cross-sectional area of stack or duct at the test location (A)
    (b) Measurement system response time (sec)
    (c) Barometric pressure at measurement site (Pbar)

    16.1.4 Calibration data. The field test report should include 
calibration data for all probes and test equipment used in the field 
test. At a minimum, the probe calibration data reported to the Agency 
should include the following:

    (a) Date of calibration
    (b) Probe type
    (c) Probe identification number(s) or code(s)
    (d) Probe inspection sheets
    (e) Pressure measurements and intermediate calculations of 
F1 and F2 at each pitch angle used to obtain 
calibration curves in accordance with section 10.6 of this method
    (f) Calibration curves (in graphic or equation format) obtained in 
accordance with sections 10.6.11 of this method
    (g) Description and diagram of wind tunnel used for the calibration, 
including dimensions of cross-sectional area and position and size of 
the test section
    (h) Documentation of wind tunnel qualification tests performed in 
accordance with section 10.1 of this method


[[Page 67]]


    16.1.5 Quality Assurance. Specific quality assurance and quality 
control procedures used during the test should be described.

                            17.0 Bibliography

    (1) 40 CFR Part 60, Appendix A, Method 1--Sample and velocity 
traverses for stationary sources.
    (2) 40 CFR Part 60, Appendix A, Method 2H--Determination of stack 
gas velocity taking into account velocity decay near the stack wall.
    (3) 40 CFR Part 60, Appendix A, Method 2--Determination of stack gas 
velocity and volumetric flow rate (Type S pitot tube).
    (4) 40 CFR Part 60, Appendix A, Method 3--Gas analysis for carbon 
dioxide, oxygen, excess air, and dry molecular weight.
    (5) 40 CFR Part 60, Appendix A, Method 3A--Determination of oxygen 
and carbon dioxide concentrations in emissions from stationary sources 
(instrumental analyzer procedure).
    (6) 40 CFR Part 60, Appendix A, Method 4--Determination of moisture 
content in stack gases.
    (7) Emission Measurement Center (EMC) Approved Alternative Method 
(ALT-011) ``Alternative Method 2 Thermocouple Calibration Procedure.''
    (8) Electric Power Research Institute, Interim Report EPRI TR-
106698, ``Flue Gas Flow Rate Measurement Errors,'' June 1996.
    (9) Electric Power Research Institute, Final Report EPRI TR-108110, 
``Evaluation of Heat Rate Discrepancy from Continuous Emission 
Monitoring Systems,'' August 1997.
    (10) Fossil Energy Research Corporation, Final Report, ``Velocity 
Probe Tests in Non-axial Flow Fields,'' November 1998, Prepared for the 
U.S. Environmental Protection Agency.
    (11) Fossil Energy Research Corporation, ``Additional Swirl Tunnel 
Tests: E-DAT and T-DAT Probes,'' February 24, 1999, Technical Memorandum 
Prepared for U.S. Environmental Protection Agency, P.O. No. 7W-1193-
NALX.
    (12) Massachusetts Institute of Technology, Report WBWT-TR-1317, 
``Calibration of Eight Wind Speed Probes Over a Reynolds Number Range of 
46,000 to 725,000 Per Foot, Text and Summary Plots,'' Plus appendices, 
October 15, 1998, Prepared for The Cadmus Group, Inc.
    (13) National Institute of Standards and Technology, Special 
Publication 250, ``NIST Calibration Services Users Guide 1991,'' Revised 
October 1991, U.S. Department of Commerce, p. 2.
    (14) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four Prandtl Probes, Four 
S-Type Probes, Four French Probes, Four Modified Kiel Probes,'' Prepared 
for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (15) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Five Autoprobes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (16) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Eight Spherical Probes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (17) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four DAT Probes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (18) Norfleet, S.K., ``An Evaluation of Wall Effects on Stack Flow 
Velocities and Related Overestimation Bias in EPA's Stack Flow Reference 
Methods,'' EPRI CEMS User's Group Meeting, New Orleans, Louisiana, May 
13-15, 1998.
    (19) Page, J.J., E.A. Potts, and R.T. Shigehara, ``3-D Pitot Tube 
Calibration Study,'' EPA Contract No. 68-D1-0009, Work Assignment No. I-
121, March 11, 1993.
    (20) Shigehara, R.T., W.F. Todd, and W.S. Smith, ``Significance of 
Errors in Stack Sampling Measurements,'' Presented at the Annual Meeting 
of the Air Pollution Control Association, St. Louis, Missouri, June 14-
19, 1970.
    (21) The Cadmus Group, Inc., May 1999, ``EPA Flow Reference Method 
Testing and Analysis: Findings Report,'' EPA/430-R-99-009.
    (22) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, DeCordova Steam 
Electric Station, Volume I: Test Description and Appendix A (Data 
Distribution Package),'' EPA/430-R-98-015a.
    (23) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, Lake Hubbard Steam 
Electric Station, Volume I: Test Description and Appendix A (Data 
Distribution Package),'' EPA/430-R-98-017a.
    (24) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Pennsylvania Electric Co., G.P.U. 
Genco Homer City Station: Unit 1, Volume I: Test Description and 
Appendix A (Data Distribution Package),'' EPA/430-R-98-018a.
    (25) The Cadmus Group, Inc., 1997, ``EPA Flow Reference Method 
Testing and Analysis: Wind Tunnel Experimental Results,'' EPA/430-R-97-
013.

                              18.0 Annexes

    Annex A, C, and D describe recommended procedures for meeting 
certain provisions in sections 8.3, 10.4, and 10.5 of this method. Annex 
B describes procedures to be followed

[[Page 68]]

when using the protractor wheel and pointer assembly to measure yaw 
angles, as provided under section 8.9.1.
    18.1 Annex A--Rotational Position Check. The following are 
recommended procedures that may be used to satisfy the rotational 
position check requirements of section 8.3 of this method and to 
determine the angle-measuring device rotational offset RADO.
    18.1.1 Rotational position check with probe outside stack. Where 
physical constraints at the sampling location allow full assembly of the 
probe outside the stack and insertion into the test port, the following 
procedures should be performed before the start of testing. Two angle-
measuring devices that meet the specifications in section 6.2.1 or 6.2.3 
are required for the rotational position check. An angle measuring 
device whose position can be independently adjusted (e.g., by means of a 
set screw) after being locked into position on the probe sheath shall 
not be used for this check unless the independent adjustment is set so 
that the device performs exactly like a device without the capability 
for independent adjustment. That is, when aligned on the probe such a 
device must give the same reading as a device that does not have the 
capability of being independently adjusted. With the fully assembled 
probe (including probe shaft extensions, if any) secured in a horizontal 
position, affix one yaw angle-measuring device to the probe sheath and 
lock it into position on the reference scribe line specified in section 
6.1.6.1. Position the second angle-measuring device using the procedure 
in section 18.1.1.1 or 18.1.1.2.
    18.1.1.1 Marking procedure. The procedures in this section should be 
performed at each location on the fully assembled probe where the yaw 
angle-measuring device will be mounted during the velocity traverse. 
Place the second yaw angle-measuring device on the main probe sheath (or 
extension) at the position where a yaw angle will be measured during the 
velocity traverse. Adjust the position of the second angle-measuring 
device until it indicates the same angle (1[deg]) 
as the reference device, and affix the second device to the probe sheath 
(or extension). Record the angles indicated by the two angle-measuring 
devices on a form similar to Table 2F-2. In this position, the second 
angle-measuring device is considered to be properly positioned for yaw 
angle measurement. Make a mark, no wider than 1.6 mm (1/16 in.), on the 
probe sheath (or extension), such that the yaw angle-measuring device 
can be re-affixed at this same properly aligned position during the 
velocity traverse.
    18.1.1.2 Procedure for probe extensions with scribe lines. If, 
during a velocity traverse the angle-measuring device will be affixed to 
a probe extension having a scribe line as specified in section 6.1.6.2, 
the following procedure may be used to align the extension's scribe line 
with the reference scribe line instead of marking the extension as 
described in section 18.1.1.1. Attach the probe extension to the main 
probe. Align and lock the second angle-measuring device on the probe 
extension's scribe line. Then, rotate the extension until both measuring 
devices indicate the same angle (1[deg]). Lock the 
extension at this rotational position. Record the angles indicated by 
the two angle-measuring devices on a form similar to Table 2F-2. An 
angle-measuring device may be aligned at any position on this scribe 
line during the velocity traverse, if the scribe line meets the 
alignment specification in section 6.1.6.3.
    18.1.1.3 Post-test rotational position check. If the fully assembled 
probe includes one or more extensions, the following check should be 
performed immediately after the completion of a velocity traverse. At 
the discretion of the tester, additional checks may be conducted after 
completion of testing at any sample port. Without altering the alignment 
of any of the components of the probe assembly used in the velocity 
traverse, secure the fully assembled probe in a horizontal position. 
Affix an angle-measuring device at the reference scribe line specified 
in section 6.1.6.1. Use the other angle-measuring device to check the 
angle at each location where the device was checked prior to testing. 
Record the readings from the two angle-measuring devices.
    18.1.2 Rotational position check with probe in stack. This section 
applies only to probes that, due to physical constraints, cannot be 
inserted into the test port as fully assembled with all necessary 
extensions needed to reach the inner-most traverse point(s).
    18.1.2.1 Perform the out-of-stack procedure in section 18.1.1 on the 
main probe and any attached extensions that will be initially inserted 
into the test port.
    18.1.2.2 Use the following procedures to perform additional 
rotational position check(s) with the probe in the stack, each time a 
probe extension is added. Two angle-measuring devices are required. The 
first of these is the device that was used to measure yaw angles at the 
preceding traverse point, left in its properly aligned measurement 
position. The second angle-measuring device is positioned on the added 
probe extension. Use the applicable procedures in section 18.1.1.1 or 
18.1.1.2 to align, adjust, lock, and mark (if necessary) the position of 
the second angle-measuring device to within 1[deg] 
of the first device. Record the readings of the two devices on a form 
similar to Table 2F-2.
    18.1.2.3 The procedure in section 18.1.2.2 should be performed at 
the first port where measurements are taken. The procedure should be 
repeated each time a probe extension is re-attached at a subsequent 
port, unless the probe extensions are designed to be locked into a 
mechanically fixed rotational

[[Page 69]]

position (e.g., through use of interlocking grooves), which can be 
reproduced from port to port as specified in section 8.3.5.2.
    18.2 Annex B--Angle Measurement Protocol for Protractor Wheel and 
Pointer Device. The following procedure shall be used when a protractor 
wheel and pointer assembly, such as the one described in section 6.2.2 
and illustrated in Figure 2F-7 is used to measure the yaw angle of flow. 
With each move to a new traverse point, unlock, re-align, and re-lock 
the probe, angle-pointer collar, and protractor wheel to each other. At 
each such move, particular attention is required to ensure that the 
scribe line on the angle pointer collar is either aligned with the 
reference scribe line on the main probe sheath or is at the rotational 
offset position established under section 8.3.1. The procedure consists 
of the following steps:
    18.2.1 Affix a protractor wheel to the entry port for the test probe 
in the stack or duct.
    18.2.2 Orient the protractor wheel so that the 0[deg] mark 
corresponds to the longitudinal axis of the stack or duct. For stacks, 
vertical ducts, or ports on the side of horizontal ducts, use a digital 
inclinometer meeting the specifications in section 6.2.1 to locate the 
0[deg] orientation. For ports on the top or bottom of horizontal ducts, 
identify the longitudinal axis at each test port and permanently mark 
the duct to indicate the 0[deg] orientation. Once the protractor wheel 
is properly aligned, lock it into position on the test port.
    18.2.3 Move the pointer assembly along the probe sheath to the 
position needed to take measurements at the first traverse point. Align 
the scribe line on the pointer collar with the reference scribe line or 
at the rotational offset position established under section 8.3.1. 
Maintaining this rotational alignment, lock the pointer device onto the 
probe sheath. Insert the probe into the entry port to the depth needed 
to take measurements at the first traverse point.
    18.2.4 Perform the yaw angle determination as specified in sections 
8.9.3 and 8.9.4 and record the angle as shown by the pointer on the 
protractor wheel. Then, take velocity pressure and temperature 
measurements in accordance with the procedure in section 8.9.5. Perform 
the alignment check described in section 8.9.6.
    18.2.5 After taking velocity pressure measurements at that traverse 
point, unlock the probe from the collar and slide the probe through the 
collar to the depth needed to reach the next traverse point.
    18.2.6 Align the scribe line on the pointer collar with the 
reference scribe line on the main probe or at the rotational offset 
position established under section 8.3.1. Lock the collar onto the 
probe.
    18.2.7 Repeat the steps in sections 18.2.4 through 18.2.6 at the 
remaining traverse points accessed from the current stack or duct entry 
port.
    18.2.8 After completing the measurement at the last traverse point 
accessed from a port, verify that the orientation of the protractor 
wheel on the test port has not changed over the course of the traverse 
at that port. For stacks, vertical ducts, or ports on the side of 
horizontal ducts, use a digital inclinometer meeting the specifications 
in section 6.2.1 to check the rotational position of the 0[deg] mark on 
the protractor wheel. For ports on the top or bottom of horizontal 
ducts, observe the alignment of the angle wheel 0[deg] mark relative to 
the permanent 0[deg] mark on the duct at that test port. If these 
observed comparisons exceed 2[deg] of 0[deg], all 
angle and pressure measurements taken at that port since the protractor 
wheel was last locked into position on the port shall be repeated.
    18.2.9 Move to the next stack or duct entry port and repeat the 
steps in sections 18.2.1 through 18.2.8.
    18.3 Annex C--Guideline for Reference Scribe Line Placement. Use of 
the following guideline is recommended to satisfy the requirements of 
section 10.4 of this method. The rotational position of the reference 
scribe line should be either 90[deg] or 180[deg] from the probe's impact 
pressure port.
    18.4 Annex D--Determination of Reference Scribe Line Rotational 
Offset. The following procedures are recommended for determining the 
magnitude and sign of a probe's reference scribe line rotational offset, 
RSLO. Separate procedures are provided for two types of 
angle-measuring devices: digital inclinometers and protractor wheel and 
pointer assemblies.
    18.4.1 Perform the following procedures on the main probe with all 
devices that will be attached to the main probe in the field [such as 
thermocouples or resistance temperature detectors (RTDs)] that may 
affect the flow around the probe head. Probe shaft extensions that do 
not affect flow around the probe head need not be attached during 
calibration.
    18.4.2 The procedures below assume that the wind tunnel duct used 
for probe calibration is horizontal and that the flow in the calibration 
wind tunnel is axial as determined by the axial flow verification check 
described in section 10.1.2. Angle-measuring devices are assumed to 
display angles in alternating 0[deg] to 90[deg] and 90[deg] to 0[deg] 
intervals. If angle-measuring devices with other readout conventions are 
used or if other calibration wind tunnel duct configurations are used, 
make the appropriate calculational corrections.
    18.4.2.1 Position the angle-measuring device in accordance with one 
of the following procedures.
    18.4.2.1.1 If using a digital inclinometer, affix the calibrated 
digital inclinometer to

[[Page 70]]

the probe. If the digital inclinometer can be independently adjusted 
after being locked into position on the probe sheath (e.g., by means of 
a set screw), the independent adjustment must be set so that the device 
performs exactly like a device without the capability for independent 
adjustment. That is, when aligned on the probe the device must give the 
same readings as a device that does not have the capability of being 
independently adjusted. Either align it directly on the reference scribe 
line or on a mark aligned with the scribe line determined according to 
the procedures in section 18.1.1.1. Maintaining this rotational 
alignment, lock the digital inclinometer onto the probe sheath.
    18.4.2.1.2 If using a protractor wheel and pointer device, orient 
the protractor wheel on the test port so that the 0[deg] mark is aligned 
with the longitudinal axis of the wind tunnel duct. Maintaining this 
alignment, lock the wheel into place on the wind tunnel test port. Align 
the scribe line on the pointer collar with the reference scribe line or 
with a mark aligned with the reference scribe line, as determined under 
section 18.1.1.1. Maintaining this rotational alignment, lock the 
pointer device onto the probe sheath.
    18.4.2.2 Zero the pressure-measuring device used for yaw nulling.
    18.4.2.3 Insert the probe assembly into the wind tunnel through the 
entry port, positioning the probe's impact port at the calibration 
location. Check the responsiveness of the pressure-measuring device to 
probe rotation, taking corrective action if the response is 
unacceptable.
    18.4.2.4 Ensure that the probe is in a horizontal position using a 
carpenter's level.
    18.4.2.5 Rotate the probe either clockwise or counterclockwise until 
a yaw null (P2=P3) is obtained.
    18.4.2.6 Read and record the value of [theta]null, the 
angle indicated by the angle-measuring device at the yaw-null position. 
Record the angle reading on a form similar to Table 2F-6. Do not 
associate an algebraic sign with this reading.
    18.4.2.7 Determine the magnitude and algebraic sign of the reference 
scribe line rotational offset, RSLO. The magnitude of 
RSLO will be equal to either [theta]null or 
(90[deg]-[theta]null), depending on the angle-measuring 
device used. (See Table 2F-7 for a summary.) The algebraic sign of 
RSLO will either be positive, if the rotational position of 
the reference scribe line is clockwise, or negative, if counterclockwise 
with respect to the probe's yaw-null position. Figure 2F-13 illustrates 
how the magnitude and sign of RSLO are determined.
    18.4.2.8 Perform the steps in sections 18.4.2.3 through 18.4.2.7 
twice at each of the two calibration velocities selected for the probe 
under section 10.6. Record the values of RSLO in a form 
similar to Table 2F-6.
    18.4.2.9 The average of all RSLO values is the reference 
scribe line rotational offset for the probe.

[[Page 71]]

[GRAPHIC] [TIFF OMITTED] TR14MY99.000


[[Page 72]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.001


[[Page 73]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.002


[[Page 74]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.003


[[Page 75]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.004


[[Page 76]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.005


[[Page 77]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.006


[[Page 78]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.007


[[Page 79]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.008


[[Page 80]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.009


[[Page 81]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.010


[[Page 82]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.011


[[Page 83]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.012


[[Page 84]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.013


[[Page 85]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.014


[[Page 86]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.015


[[Page 87]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.016

[GRAPHIC] [TIFF OMITTED] TR14MY99.017


[[Page 88]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.018


[[Page 89]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.019


[36 FR 24877, Dec. 23, 1971]

    Editorial Note: For Federal Register citations affecting part 60, 
appendix A-1, see the List of CFR Sections Affected, which appears in 
the Finding Aids section of the printed volume and on GPO Access.

[[Page 90]]

           Appendix A-2 to Part 60--Test Methods 2G through 3C

Method 2G--Determination of Stack Gas Velocity and Volumetric Flow Rate 
With Two-Dimensional Probes
Method 2H--Determination of Stack Gas Velocity Taking Into Account 
Velocity Decay Near the Stack Wall
Method 3--Gas analysis for the determination of dry molecular weight
Method 3A--Determination of Oxygen and Carbon Dioxide Concentrations in 
Emissions From Stationary Sources (Instrumental Analyzer Procedure)
Method 3B--Gas analysis for the determination of emission rate 
correction factor or excess air
Method 3C--Determination of carbon dioxide, methane, nitrogen, and 
oxygen from stationary sources
    The test methods in this appendix are referred to in Sec.  60.8 
(Performance Tests) and Sec.  60.11 (Compliance With Standards and 
Maintenance Requirements) of 40 CFR part 60, subpart A (General 
Provisions). Specific uses of these test methods are described in the 
standards of performance contained in the subparts, beginning with 
Subpart D.
    Within each standard of performance, a section title ``Test Methods 
and Procedures'' is provided to: (1) Identify the test methods to be 
used as reference methods to the facility subject to the respective 
standard and (2) identify any special instructions or conditions to be 
followed when applying a method to the respective facility. Such 
instructions (for example, establish sampling rates, volumes, or 
temperatures) are to be used either in addition to, or as a substitute 
for procedures in a test method. Similarly, for sources subject to 
emission monitoring requirements, specific instructions pertaining to 
any use of a test method as a reference method are provided in the 
subpart or in Appendix B.
    Inclusion of methods in this appendix is not intended as an 
endorsement or denial of their applicability to sources that are not 
subject to standards of performance. The methods are potentially 
applicable to other sources; however, applicability should be confirmed 
by careful and appropriate evaluation of the conditions prevalent at 
such sources.
    The approach followed in the formulation of the test methods 
involves specifications for equipment, procedures, and performance. In 
concept, a performance specification approach would be preferable in all 
methods because this allows the greatest flexibility to the user. In 
practice, however, this approach is impractical in most cases because 
performance specifications cannot be established. Most of the methods 
described herein, therefore, involve specific equipment specifications 
and procedures, and only a few methods in this appendix rely on 
performance criteria.
    Minor changes in the test methods should not necessarily affect the 
validity of the results and it is recognized that alternative and 
equivalent methods exist. Section 60.8 provides authority for the 
Administrator to specify or approve (1) equivalent methods, (2) 
alternative methods, and (3) minor changes in the methodology of the 
test methods. It should be clearly understood that unless otherwise 
identified all such methods and changes must have prior approval of the 
Administrator. An owner employing such methods or deviations from the 
test methods without obtaining prior approval does so at the risk of 
subsequent disapproval and retesting with approved methods.
    Within the test methods, certain specific equipment or procedures 
are recognized as being acceptable or potentially acceptable and are 
specifically identified in the methods. The items identified as 
acceptable options may be used without approval but must be identified 
in the test report. The potentially approvable options are cited as 
``subject to the approval of the Administrator'' or as ``or 
equivalent.'' Such potentially approvable techniques or alternatives may 
be used at the discretion of the owner without prior approval. However, 
detailed descriptions for applying these potentially approvable 
techniques or alternatives are not provided in the test methods. Also, 
the potentially approvable options are not necessarily acceptable in all 
applications. Therefore, an owner electing to use such potentially 
approvable techniques or alternatives is responsible for: (1) assuring 
that the techniques or alternatives are in fact applicable and are 
properly executed; (2) including a written description of the 
alternative method in the test report (the written method must be clear 
and must be capable of being performed without additional instruction, 
and the degree of detail should be similar to the detail contained in 
the test methods); and (3) providing any rationale or supporting data 
necessary to show the validity of the alternative in the particular 
application. Failure to meet these requirements can result in the 
Administrator's disapproval of the alternative.

Method 2G--Determination of Stack Gas Velocity and Volumetric Flow Rate 
                       With Two-Dimensional Probes

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material has been incorporated from other methods in 
this part. Therefore, to obtain reliable results, those using this 
method should have a thorough knowledge of at least the following

[[Page 91]]

additional test methods: Methods 1, 2, 3 or 3A, and 4.

                        1.0 Scope and Application

    1.1 This method is applicable for the determination of yaw angle, 
near-axial velocity, and the volumetric flow rate of a gas stream in a 
stack or duct using a two-dimensional (2-D) probe.

                          2.0 Summary of Method

2.1 A 2-D probe is used to measure the velocity pressure and the yaw 
angle of the flow velocity vector in a stack or duct. Alternatively, 
these measurements may be made by operating one of the three-dimensional 
(3-D) probes described in Method 2F, in yaw determination mode only. 
From these measurements and a determination of the stack gas density, 
the average near-axial velocity of the stack gas is calculated. The 
near-axial velocity accounts for the yaw, but not the pitch, component 
of flow. The average gas volumetric flow rate in the stack or duct is 
then determined from the average near-axial velocity.

                             3.0 Definitions

    3.1. Angle-measuring Device Rotational Offset (RADO). The rotational 
position of an angle-measuring device relative to the reference scribe 
line, as determined during the pre-test rotational position check 
described in section 8.3.
    3.2 Calibration Pitot Tube. The standard (Prandtl type) pitot tube 
used as a reference when calibrating a probe under this method.
    3.3 Field Test. A set of measurements conducted at a specific unit 
or exhaust stack/duct to satisfy the applicable regulation (e.g., a 
three-run boiler performance test, a single-or multiple-load nine-run 
relative accuracy test).
    3.4 Full Scale of Pressure-measuring Device. Full scale refers to 
the upper limit of the measurement range displayed by the device. For 
bi-directional pressure gauges, full scale includes the entire pressure 
range from the lowest negative value to the highest positive value on 
the pressure scale.
    3.5 Main probe. Refers to the probe head and that section of probe 
sheath directly attached to the probe head. The main probe sheath is 
distinguished from probe extensions, which are sections of sheath added 
onto the main probe to extend its reach.
    3.6 ``May,'' ``Must,'' ``Shall,'' ``Should,'' and the imperative 
form of verbs.
    3.6.1 ``May'' is used to indicate that a provision of this method is 
optional.
    3.6.2 ``Must,'' ``Shall,'' and the imperative form of verbs (such as 
``record'' or ``enter'') are used to indicate that a provision of this 
method is mandatory.
    3.6.3 ``Should'' is used to indicate that a provision of this method 
is not mandatory, but is highly recommended as good practice.
    3.7 Method 1. Refers to 40 CFR part 60, appendix A, ``Method 1--
Sample and velocity traverses for stationary sources.''
    3.8 Method 2. Refers to 40 CFR part 60, appendix A, ``Method 2--
Determination of stack gas velocity and volumetric flow rate (Type S 
pitot tube).''
    3.9 Method 2F. Refers to 40 CFR part 60, appendix A, ``Method 2F--
Determination of stack gas velocity and volumetric flow rate with three-
dimensional probes.''
    3.10 Near-axial Velocity. The velocity vector parallel to the axis 
of the stack or duct that accounts for the yaw angle component of gas 
flow. The term ``near-axial'' is used herein to indicate that the 
velocity and volumetric flow rate results account for the measured yaw 
angle component of flow at each measurement point.
    3.11 Nominal Velocity. Refers to a wind tunnel velocity setting that 
approximates the actual wind tunnel velocity to within 1.5 m/sec (5 ft/sec).
    3.12 Pitch Angle. The angle between the axis of the stack or duct 
and the pitch component of flow, i.e., the component of the total 
velocity vector in a plane defined by the traverse line and the axis of 
the stack or duct. (Figure 2G-1 illustrates the ``pitch plane.'') From 
the standpoint of a tester facing a test port in a vertical stack, the 
pitch component of flow is the vector of flow moving from the center of 
the stack toward or away from that test port. The pitch angle is the 
angle described by this pitch component of flow and the vertical axis of 
the stack.
    3.13 Readability. For the purposes of this method, readability for 
an analog measurement device is one half of the smallest scale division. 
For a digital measurement device, it is the number of decimals displayed 
by the device.
    3.14 Reference Scribe Line. A line permanently inscribed on the main 
probe sheath (in accordance with section 6.1.5.1) to serve as a 
reference mark for determining yaw angles.
    3.15 Reference Scribe Line Rotational Offset (RSLO). The rotational 
position of a probe's reference scribe line relative to the probe's yaw-
null position, as determined during the yaw angle calibration described 
in section 10.5.
    3.16 Response Time. The time required for the measurement system to 
fully respond to a change from zero differential pressure and ambient 
temperature to the stable stack or duct pressure and temperature 
readings at a traverse point.
    3.17 Tested Probe. A probe that is being calibrated.
    3.18 Three-dimensional (3-D) Probe. A directional probe used to 
determine the velocity

[[Page 92]]

pressure and the yaw and pitch angles in a flowing gas stream.
    3.19 Two-dimensional (2-D) Probe. A directional probe used to 
measure velocity pressure and yaw angle in a flowing gas stream.
    3.20 Traverse Line. A diameter or axis extending across a stack or 
duct on which measurements of velocity pressure and flow angles are 
made.
    3.21 Wind Tunnel Calibration Location. A point, line, area, or 
volume within the wind tunnel test section at, along, or within which 
probes are calibrated. At a particular wind tunnel velocity setting, the 
average velocity pressures at specified points at, along, or within the 
calibration location shall vary by no more than 2 percent or 0.3 mm 
H20 (0.01 in. H2O), whichever is less restrictive, 
from the average velocity pressure at the calibration pitot tube 
location. Air flow at this location shall be axial, i.e., yaw and pitch 
angles within 3[deg] of 0[deg]. Compliance with 
these flow criteria shall be demonstrated by performing the procedures 
prescribed in sections 10.1.1 and 10.1.2. For circular tunnels, no part 
of the calibration location may be closer to the tunnel wall than 10.2 
cm (4 in.) or 25 percent of the tunnel diameter, whichever is farther 
from the wall. For elliptical or rectangular tunnels, no part of the 
calibration location may be closer to the tunnel wall than 10.2 cm (4 
in.) or 25 percent of the applicable cross-sectional axis, whichever is 
farther from the wall.
    3.22 Wind Tunnel with Documented Axial Flow. A wind tunnel facility 
documented as meeting the provisions of sections 10.1.1 (velocity 
pressure cross-check) and 10.1.2 (axial flow verification) using the 
procedures described in these sections or alternative procedures 
determined to be technically equivalent.
    3.23 Yaw Angle. The angle between the axis of the stack or duct and 
the yaw component of flow, i.e., the component of the total velocity 
vector in a plane perpendicular to the traverse line at a particular 
traverse point. (Figure 2G-1 illustrates the ``yaw plane.'') From the 
standpoint of a tester facing a test port in a vertical stack, the yaw 
component of flow is the vector of flow moving to the left or right from 
the center of the stack as viewed by the tester. (This is sometimes 
referred to as ``vortex flow,'' i.e., flow around the centerline of a 
stack or duct.) The yaw angle is the angle described by this yaw 
component of flow and the vertical axis of the stack. The algebraic sign 
convention is illustrated in Figure 2G-2.
    3.24 Yaw Nulling. A procedure in which a Type-S pitot tube or a 3-D 
probe is rotated about its axis in a stack or duct until a zero 
differential pressure reading (``yaw null'') is obtained. When a Type S 
probe is yaw-nulled, the rotational position of its impact port is 
90[deg] from the direction of flow in the stack or duct and the [Delta]P 
reading is zero. When a 3-D probe is yaw-nulled, its impact pressure 
port (P1) faces directly into the direction of flow in the 
stack or duct and the differential pressure between pressure ports 
P2 and P3 is zero.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This test method may involve hazardous operations and the use of 
hazardous materials or equipment. This method does not purport to 
address all of the safety problems associated with its use. It is the 
responsibility of the user to establish and implement appropriate safety 
and health practices and to determine the applicability of regulatory 
limitations before using this test method.

                       6.0 Equipment and Supplies

    6.1 Two-dimensional Probes. Probes that provide both the velocity 
pressure and the yaw angle of the flow vector in a stack or duct, as 
listed in sections 6.1.1 and 6.1.2, qualify for use based on 
comprehensive wind tunnel and field studies involving both inter-and 
intra-probe comparisons by multiple test teams. Each 2-D probe shall 
have a unique identification number or code permanently marked on the 
main probe sheath. Each probe shall be calibrated prior to use according 
to the procedures in section 10. Manufacturer-supplied calibration data 
shall be used as example information only, except when the manufacturer 
calibrates the probe as specified in section 10 and provides complete 
documentation.
    6.1.1 Type S (Stausscheibe or reverse type) pitot tube. This is the 
same as specified in Method 2, section 2.1, except for the following 
additional specifications that enable the pitot tube to accurately 
determine the yaw component of flow. For the purposes of this method, 
the external diameter of the tubing used to construct the Type S pitot 
tube (dimension Dt in Figure 2-2 of Method 2) shall be no 
less than 9.5 mm (3/8 in.). The pitot tube shall also meet the following 
alignment specifications. The angles [alpha]1, 
[alpha]2, [beta]1, and [beta]2, as 
shown in Method 2, Figure 2-3, shall not exceed 2[deg]. The dimensions w and z, shown in Method 2, 
Figure 2-3 shall not exceed 0.5 mm (0.02 in.).
    6.1.1.1 Manual Type S probe. This refers to a Type S probe that is 
positioned at individual traverse points and yaw nulled manually by an 
operator.
    6.1.1.2 Automated Type S probe. This refers to a system that uses a 
computer-controlled motorized mechanism to position the Type S pitot 
head at individual traverse points and perform yaw angle determinations.
    6.1.2 Three-dimensional probes used in 2-D mode. A 3-D probe, as 
specified in sections 6.1.1 through 6.1.3 of Method 2F, may, for the

[[Page 93]]

purposes of this method, be used in a two-dimensional mode (i.e., 
measuring yaw angle, but not pitch angle). When the 3-D probe is used as 
a 2-D probe, only the velocity pressure and yaw-null pressure are 
obtained using the pressure taps referred to as P1, 
P2, and P3. The differential pressure 
P1-P2 is a function of total velocity and 
corresponds to the [Delta]P obtained using the Type S probe. The 
differential pressure P2-P3 is used to yaw null 
the probe and determine the yaw angle. The differential pressure 
P4-P5, which is a function of pitch angle, is not 
measured when the 3-D probe is used in 2-D mode.
    6.1.3 Other probes. [Reserved]
    6.1.4 Probe sheath. The probe shaft shall include an outer sheath 
to: (1) provide a surface for inscribing a permanent reference scribe 
line, (2) accommodate attachment of an angle-measuring device to the 
probe shaft, and (3) facilitate precise rotational movement of the probe 
for determining yaw angles. The sheath shall be rigidly attached to the 
probe assembly and shall enclose all pressure lines from the probe head 
to the farthest position away from the probe head where an angle-
measuring device may be attached during use in the field. The sheath of 
the fully assembled probe shall be sufficiently rigid and straight at 
all rotational positions such that, when one end of the probe shaft is 
held in a horizontal position, the fully extended probe meets the 
horizontal straightness specifications indicated in section 8.2 below.
    6.1.5 Scribe lines.
    6.1.5.1 Reference scribe line. A permanent line, no greater than 1.6 
mm (1/16 in.) in width, shall be inscribed on each manual probe that 
will be used to determine yaw angles of flow. This line shall be placed 
on the main probe sheath in accordance with the procedures described in 
section 10.4 and is used as a reference position for installation of the 
yaw angle-measuring device on the probe. At the discretion of the 
tester, the scribe line may be a single line segment placed at a 
particular position on the probe sheath (e.g., near the probe head), 
multiple line segments placed at various locations along the length of 
the probe sheath (e.g., at every position where a yaw angle-measuring 
device may be mounted), or a single continuous line extending along the 
full length of the probe sheath.
    6.1.5.2 Scribe line on probe extensions. A permanent line may also 
be inscribed on any probe extension that will be attached to the main 
probe in performing field testing. This allows a yaw angle-measuring 
device mounted on the extension to be readily aligned with the reference 
scribe line on the main probe sheath.
    6.1.5.3 Alignment specifications. This specification shall be met 
separately, using the procedures in section 10.4.1, on the main probe 
and on each probe extension. The rotational position of the scribe line 
or scribe line segments on the main probe or any probe extension must 
not vary by more than 2[deg]. That is, the difference between the 
minimum and maximum of all of the rotational angles that are measured 
along the full length of the main probe or the probe extension must not 
exceed 2[deg].
    6.1.6 Probe and system characteristics to ensure horizontal 
stability.
    6.1.6.1 For manual probes, it is recommended that the effective 
length of the probe (coupled with a probe extension, if necessary) be at 
least 0.9 m (3 ft.) longer than the farthest traverse point mark on the 
probe shaft away from the probe head. The operator should maintain the 
probe's horizontal stability when it is fully inserted into the stack or 
duct. If a shorter probe is used, the probe should be inserted through a 
bushing sleeve, similar to the one shown in Figure 2G-3, that is 
installed on the test port; such a bushing shall fit snugly around the 
probe and be secured to the stack or duct entry port in such a manner as 
to maintain the probe's horizontal stability when fully inserted into 
the stack or duct.
    6.1.6.2 An automated system that includes an external probe casing 
with a transport system shall have a mechanism for maintaining 
horizontal stability comparable to that obtained by manual probes 
following the provisions of this method. The automated probe assembly 
shall also be constructed to maintain the alignment and position of the 
pressure ports during sampling at each traverse point. The design of the 
probe casing and transport system shall allow the probe to be removed 
from the stack or duct and checked through direct physical measurement 
for angular position and insertion depth.
    6.1.7 The tubing that is used to connect the probe and the pressure-
measuring device should have an inside diameter of at least 3.2 mm (\1/
8\ in.), to reduce the time required for pressure equilibration, and 
should be as short as practicable.
    6.1.8 If a detachable probe head without a sheath [e.g., a pitot 
tube, typically 15.2 to 30.5 cm (6 to 12 in.) in length] is coupled with 
a probe sheath and calibrated in a wind tunnel in accordance with the 
yaw angle calibration procedure in section 10.5, the probe head shall 
remain attached to the probe sheath during field testing in the same 
configuration and orientation as calibrated. Once the detachable probe 
head is uncoupled or re-oriented, the yaw angle calibration of the probe 
is no longer valid and must be repeated before using the probe in 
subsequent field tests.
    6.2 Yaw Angle-measuring Device. One of the following devices shall 
be used for measurement of the yaw angle of flow.

[[Page 94]]

    6.2.1 Digital inclinometer. This refers to a digital device capable 
of measuring and displaying the rotational position of the probe to 
within 1[deg]. The device shall be able to be 
locked into position on the probe sheath or probe extension, so that it 
indicates the probe's rotational position throughout the test. A 
rotational position collar block that can be attached to the probe 
sheath (similar to the collar shown in Figure 2G-4) may be required to 
lock the digital inclinometer into position on the probe sheath.
    6.2.2 Protractor wheel and pointer assembly. This apparatus, similar 
to that shown in Figure 2G-5, consists of the following components.
    6.2.2.1 A protractor wheel that can be attached to a port opening 
and set in a fixed rotational position to indicate the yaw angle 
position of the probe's scribe line relative to the longitudinal axis of 
the stack or duct. The protractor wheel must have a measurement ring on 
its face that is no less than 17.8 cm (7 in.) in diameter, shall be able 
to be rotated to any angle and then locked into position on the stack or 
duct test port, and shall indicate angles to a resolution of 1[deg].
    6.2.2.2 A pointer assembly that includes an indicator needle mounted 
on a collar that can slide over the probe sheath and be locked into a 
fixed rotational position on the probe sheath. The pointer needle shall 
be of sufficient length, rigidity, and sharpness to allow the tester to 
determine the probe's angular position to within 1[deg] from the 
markings on the protractor wheel. Corresponding to the position of the 
pointer, the collar must have a scribe line to be used in aligning the 
pointer with the scribe line on the probe sheath.
    6.2.3 Other yaw angle-measuring devices. Other angle-measuring 
devices with a manufacturer's specified precision of 1[deg] or better 
may be used, if approved by the Administrator.
    6.3 Probe Supports and Stabilization Devices. When probes are used 
for determining flow angles, the probe head should be kept in a stable 
horizontal position. For probes longer than 3.0 m (10 ft.), the section 
of the probe that extends outside the test port shall be secured. Three 
alternative devices are suggested for maintaining the horizontal 
position and stability of the probe shaft during flow angle 
determinations and velocity pressure measurements: (1) monorails 
installed above each port, (2) probe stands on which the probe shaft may 
be rested, or (3) bushing sleeves of sufficient length secured to the 
test ports to maintain probes in a horizontal position. Comparable 
provisions shall be made to ensure that automated systems maintain the 
horizontal position of the probe in the stack or duct. The physical 
characteristics of each test platform may dictate the most suitable type 
of stabilization device. Thus, the choice of a specific stabilization 
device is left to the judgement of the testers.
    6.4 Differential Pressure Gauges. The velocity pressure ([Delta]P) 
measuring devices used during wind tunnel calibrations and field testing 
shall be either electronic manometers (e.g., pressure transducers), 
fluid manometers, or mechanical pressure gauges (e.g., 
Magnehelic[Delta] gauges). Use of electronic manometers is 
recommended. Under low velocity conditions, use of electronic manometers 
may be necessary to obtain acceptable measurements.
    6.4.1 Differential pressure-measuring device. This refers to a 
device capable of measuring pressure differentials and having a 
readability of 1 percent of full scale. The device 
shall be capable of accurately measuring the maximum expected pressure 
differential. Such devices are used to determine the following pressure 
measurements: velocity pressure, static pressure, and yaw-null pressure. 
For an inclined-vertical manometer, the readability specification of 
1 percent shall be met separately using the 
respective full-scale upper limits of the inclined anvertical portions 
of the scales. To the extent practicable, the device shall be selected 
such that most of the pressure readings are between 10 and 90 percent of 
the device's full-scale measurement range (as defined in section 3.4). 
In addition, pressure-measuring devices should be selected such that the 
zero does not drift by more than 5 percent of the average expected 
pressure readings to be encountered during the field test. This is 
particularly important under low pressure conditions.
    6.4.2 Gauge used for yaw nulling. The differential pressure-
measuring device chosen for yaw nulling the probe during the wind tunnel 
calibrations and field testing shall be bi-directional, i.e., capable of 
reading both positive and negative differential pressures. If a 
mechanical, bi-directional pressure gauge is chosen, it shall have a 
full-scale range no greater than 2.6 cm (i.e., -1.3 to +1.3 cm) [1 in. 
H2O (i.e., -0.5 in. to +0.5 in.)].
    6.4.3 Devices for calibrating differential pressure-measuring 
devices. A precision manometer (e.g., a U-tube, inclined, or inclined-
vertical manometer, or micromanometer) or NIST (National Institute of 
Standards and Technology) traceable pressure source shall be used for 
calibrating differential pressure-measuring devices. The device shall be 
maintained under laboratory conditions or in a similar protected 
environment (e.g., a climate-controlled trailer). It shall not be used 
in field tests. The precision manometer shall have a scale gradation of 
0.3 mm H2O (0.01 in. H2O), or less, in the range 
of 0 to 5.1 cm H2O (0 to 2 in. H2O) and 2.5 mm 
H2O (0.1 in. H2O), or less, in the range of 5.1 to 
25.4 cm H2O (2 to 10 in. H2O). The manometer shall 
have manufacturer's documentation that it meets an accuracy 
specification of at least 0.5 percent of full scale. The NIST-traceable 
pressure source shall be recertified annually.

[[Page 95]]

    6.4.4 Devices used for post-test calibration check. A precision 
manometer meeting the specifications in section 6.4.3, a pressure-
measuring device or pressure source with a documented calibration 
traceable to NIST, or an equivalent device approved by the Administrator 
shall be used for the post-test calibration check. The pressure-
measuring device shall have a readability equivalent to or greater than 
the tested device. The pressure source shall be capable of generating 
pressures between 50 and 90 percent of the range of the tested device 
and known to within 1 percent of the full scale of 
the tested device. The pressure source shall be recertified annually.
    6.5 Data Display and Capture Devices. Electronic manometers (if 
used) shall be coupled with a data display device (such as a digital 
panel meter, personal computer display, or strip chart) that allows the 
tester to observe and validate the pressure measurements taken during 
testing. They shall also be connected to a data recorder (such as a data 
logger or a personal computer with data capture software) that has the 
ability to compute and retain the appropriate average value at each 
traverse point, identified by collection time and traverse point.
    6.6 Temperature Gauges. For field tests, a thermocouple or 
resistance temperature detector (RTD) capable of measuring temperature 
to within 3[deg]C (5[deg]F) 
of the stack or duct temperature shall be used. The thermocouple shall 
be attached to the probe such that the sensor tip does not touch any 
metal. The position of the thermocouple relative to the pressure port 
face openings shall be in the same configuration as used for the probe 
calibrations in the wind tunnel. Temperature gauges used for wind tunnel 
calibrations shall be capable of measuring temperature to within 0.6[deg]C (1[deg]F) of the 
temperature of the flowing gas stream in the wind tunnel.
    6.7 Stack or Duct Static Pressure Measurement. The pressure-
measuring device used with the probe shall be as specified in section 
6.4 of this method. The static tap of a standard (Prandtl type) pitot 
tube or one leg of a Type S pitot tube with the face opening planes 
positioned parallel to the gas flow may be used for this measurement. 
Also acceptable is the pressure differential reading of P1-
Pbar from a five-hole prism-shaped 3-D probe, as specified in 
section 6.1.1 of Method 2F (such as the Type DA or DAT probe), with the 
P1 pressure port face opening positioned parallel to the gas 
flow in the same manner as the Type S probe. However, the 3-D spherical 
probe, as specified in section 6.1.2 of Method 2F, is unable to provide 
this measurement and shall not be used to take static pressure 
measurements. Static pressure measurement is further described in 
section 8.11.
    6.8 Barometer. Same as Method 2, section 2.5.
    6.9 Gas Density Determination Equipment. Method 3 or 3A shall be 
used to determine the dry molecular weight of the stack or duct gas. 
Method 4 shall be used for moisture content determination and 
computation of stack or duct gas wet molecular weight. Other methods may 
be used, if approved by the Administrator.
    6.10 Calibration Pitot Tube. Same as Method 2, section 2.7.
    6.11 Wind Tunnel for Probe Calibration. Wind tunnels used to 
calibrate velocity probes must meet the following design specifications.
    6.11.1 Test section cross-sectional area. The flowing gas stream 
shall be confined within a circular, rectangular, or elliptical duct. 
The cross-sectional area of the tunnel must be large enough to ensure 
fully developed flow in the presence of both the calibration pitot tube 
and the tested probe. The calibration site, or ``test section,'' of the 
wind tunnel shall have a minimum diameter of 30.5 cm (12 in.) for 
circular or elliptical duct cross-sections or a minimum width of 30.5 cm 
(12 in.) on the shorter side for rectangular cross-sections. Wind 
tunnels shall meet the probe blockage provisions of this section and the 
qualification requirements prescribed in section 10.1. The projected 
area of the portion of the probe head, shaft, and attached devices 
inside the wind tunnel during calibration shall represent no more than 4 
percent of the cross-sectional area of the tunnel. The projected area 
shall include the combined area of the calibration pitot tube and the 
tested probe if both probes are placed simultaneously in the same cross-
sectional plane in the wind tunnel, or the larger projected area of the 
two probes if they are placed alternately in the wind tunnel.
    6.11.2 Velocity range and stability. The wind tunnel should be 
capable of maintaining velocities between 6.1 m/sec and 30.5 m/sec (20 
ft/sec and 100 ft/sec). The wind tunnel shall produce fully developed 
flow patterns that are stable and parallel to the axis of the duct in 
the test section.
    6.11.3 Flow profile at the calibration location. The wind tunnel 
shall provide axial flow within the test section calibration location 
(as defined in section 3.21). Yaw and pitch angles in the calibration 
location shall be within 3[deg] of 0[deg]. The 
procedure for determining that this requirement has been met is 
described in section 10.1.2.
    6.11.4 Entry ports in the wind tunnel test section.
    6.11.4.1 Port for tested probe. A port shall be constructed for the 
tested probe. This port shall be located to allow the head of the tested 
probe to be positioned within the wind tunnel calibration location (as 
defined in section 3.21). The tested probe shall be able to be locked 
into the 0[deg] pitch angle position. To facilitate alignment of the 
probe during calibration, the test section should include a

[[Page 96]]

window constructed of a transparent material to allow the tested probe 
to be viewed.
    6.11.4.2 Port for verification of axial flow. Depending on the 
equipment selected to conduct the axial flow verification prescribed in 
section 10.1.2, a second port, located 90[deg] from the entry port for 
the tested probe, may be needed to allow verification that the gas flow 
is parallel to the central axis of the test section. This port should be 
located and constructed so as to allow one of the probes described in 
section 10.1.2.2 to access the same test point(s) that are accessible 
from the port described in section 6.11.4.1.
    6.11.4.3 Port for calibration pitot tube. The calibration pitot tube 
shall be used in the port for the tested probe or in a separate entry 
port. In either case, all measurements with the calibration pitot tube 
shall be made at the same point within the wind tunnel over the course 
of a probe calibration. The measurement point for the calibration pitot 
tube shall meet the same specifications for distance from the wall and 
for axial flow as described in section 3.21 for the wind tunnel 
calibration location.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Equipment Inspection and Set Up
    8.1.1 All 2-D and 3-D probes, differential pressure-measuring 
devices, yaw angle-measuring devices, thermocouples, and barometers 
shall have a current, valid calibration before being used in a field 
test. (See sections 10.3.3, 10.3.4, and 10.5 through 10.10 for the 
applicable calibration requirements.)
    8.1.2 Before each field use of a Type S probe, perform a visual 
inspection to verify the physical condition of the pitot tube. Record 
the results of the inspection. If the face openings are noticeably 
misaligned or there is visible damage to the face openings, the probe 
shall not be used until repaired, the dimensional specifications 
verified (according to the procedures in section 10.2.1), and the probe 
recalibrated.
    8.1.3 Before each field use of a 3-D probe, perform a visual 
inspection to verify the physical condition of the probe head according 
to the procedures in section 10.2 of Method 2F. Record the inspection 
results on a form similar to Table 2F-1 presented in Method 2F. If there 
is visible damage to the 3-D probe, the probe shall not be used until it 
is recalibrated.
    8.1.4 After verifying that the physical condition of the probe head 
is acceptable, set up the apparatus using lengths of flexible tubing 
that are as short as practicable. Surge tanks installed between the 
probe and pressure-measuring device may be used to dampen pressure 
fluctuations provided that an adequate measurement system response time 
(see section 8.8) is maintained.
    8.2 Horizontal Straightness Check. A horizontal straightness check 
shall be performed before the start of each field test, except as 
otherwise specified in this section. Secure the fully assembled probe 
(including the probe head and all probe shaft extensions) in a 
horizontal position using a stationary support at a point along the 
probe shaft approximating the location of the stack or duct entry port 
when the probe is sampling at the farthest traverse point from the stack 
or duct wall. The probe shall be rotated to detect bends. Use an angle-
measuring device or trigonometry to determine the bend or sag between 
the probe head and the secured end. (See Figure 2G-6.) Probes that are 
bent or sag by more than 5[deg] shall not be used. Although this check 
does not apply when the probe is used for a vertical traverse, care 
should be taken to avoid the use of bent probes when conducting vertical 
traverses. If the probe is constructed of a rigid steel material and 
consists of a main probe without probe extensions, this check need only 
be performed before the initial field use of the probe, when the probe 
is recalibrated, when a change is made to the design or material of the 
probe assembly, and when the probe becomes bent. With such probes, a 
visual inspection shall be made of the fully assembled probe before each 
field test to determine if a bend is visible. The probe shall be rotated 
to detect bends. The inspection results shall be documented in the field 
test report. If a bend in the probe is visible, the horizontal 
straightness check shall be performed before the probe is used.
    8.3 Rotational Position Check. Before each field test, and each time 
an extension is added to the probe during a field test, a rotational 
position check shall be performed on all manually operated probes 
(except as noted in section 8.3.5 below) to ensure that, throughout 
testing, the angle-measuring device is either: aligned to within 1[deg] of the rotational position of the reference 
scribe line; or is affixed to the probe such that the rotational offset 
of the device from the reference scribe line is known to within 1[deg]. This check shall consist of direct measurements 
of the rotational positions of the reference scribe line and angle-
measuring device sufficient to verify that these specifications are met. 
Annex A in section 18 of this method gives recommended procedures for 
performing the rotational position check, and Table 2G-2 gives an 
example data form. Procedures other than those recommended in Annex A in 
section 18 may be used, provided they demonstrate whether the alignment 
specification is met and are explained in detail in the field test 
report.
    8.3.1 Angle-measuring device rotational offset. The tester shall 
maintain a record of the angle-measuring device rotational offset, 
RADO, as defined in section 3.1. Note that RADO is 
assigned a value of 0[deg] when the angle-

[[Page 97]]

measuring device is aligned to within 1[deg] of 
the rotational position of the reference scribe line. The 
RADO shall be used to determine the yaw angle of flow in 
accordance with section 8.9.4.
    8.3.2 Sign of angle-measuring device rotational offset. The sign of 
RADO is positive when the angle-measuring device (as viewed 
from the ``tail'' end of the probe) is positioned in a clockwise 
direction from the reference scribe line and negative when the device is 
positioned in a counterclockwise direction from the reference scribe 
line.
    8.3.3 Angle-measuring devices that can be independently adjusted 
(e.g., by means of a set screw), after being locked into position on the 
probe sheath, may be used. However, the RADO must also take 
into account this adjustment.
    8.3.4 Post-test check. If probe extensions remain attached to the 
main probe throughout the field test, the rotational position check 
shall be repeated, at a minimum, at the completion of the field test to 
ensure that the angle-measuring device has remained within 2[deg] of its rotational position established prior to 
testing. At the discretion of the tester, additional checks may be 
conducted after completion of testing at any sample port or after any 
test run. If the 2[deg] specification is not met, 
all measurements made since the last successful rotational position 
check must be repeated. Section 18.1.1.3 of Annex A provides an example 
procedure for performing the post-test check.
    8.3.5 Exceptions.
    8.3.5.1 A rotational position check need not be performed if, for 
measurements taken at all velocity traverse points, the yaw angle-
measuring device is mounted and aligned directly on the reference scribe 
line specified in sections 6.1.5.1 and 6.1.5.3 and no independent 
adjustments, as described in section 8.3.3, are made to device's 
rotational position.
    8.3.5.2 If extensions are detached and re-attached to the probe 
during a field test, a rotational position check need only be performed 
the first time an extension is added to the probe, rather than each time 
the extension is re-attached, if the probe extension is designed to be 
locked into a mechanically fixed rotational position (e.g., through the 
use of interlocking grooves), that can re-establish the initial 
rotational position to within 1[deg].
    8.4 Leak Checks. A pre-test leak check shall be conducted before 
each field test. A post-test check shall be performed at the end of the 
field test, but additional leak checks may be conducted after any test 
run or group of test runs. The post-test check may also serve as the 
pre-test check for the next group of test runs. If any leak check is 
failed, all runs since the last passed leak check are invalid. While 
performing the leak check procedures, also check each pressure device's 
responsiveness to changes in pressure.
    8.4.1 To perform the leak check on a Type S pitot tube, pressurize 
the pitot impact opening until at least 7.6 cm H2O (3 in. 
H2O) velocity pressure, or a pressure corresponding to 
approximately 75 percent of the pressure device's measurement scale, 
whichever is less, registers on the pressure device; then, close off the 
impact opening. The pressure shall remain stable (2.5 mm H2O, 0.10 in. 
H2O) for at least 15 seconds. Repeat this procedure for the 
static pressure side, except use suction to obtain the required 
pressure. Other leak-check procedures may be used, if approved by the 
Administrator.
    8.4.2 To perform the leak check on a 3-D probe, pressurize the 
probe's impact (P1) opening until at least 7.6 cm 
H2O (3 in. H2O) velocity pressure, or a pressure 
corresponding to approximately 75 percent of the pressure device's 
measurement scale, whichever is less, registers on the pressure device; 
then, close off the impact opening. The pressure shall remain stable 
(2.5 mm H2O, 0.10 
in. H2O) for at least 15 seconds. Check the P2 and 
P3 pressure ports in the same fashion. Other leak-check 
procedures may be used, if approved by the Administrator.
    8.5 Zeroing the Differential Pressure-measuring Device. Zero each 
differential pressure-measuring device, including the device used for 
yaw nulling, before each field test. At a minimum, check the zero after 
each field test. A zero check may also be performed after any test run 
or group of test runs. For fluid manometers and mechanical pressure 
gauges (e.g., Magnehelic[Delta] gauges), the zero reading 
shall not deviate from zero by more than 0.8 mm 
H2O (0.03 in. H2O) or one 
minor scale division, whichever is greater, between checks. For 
electronic manometers, the zero reading shall not deviate from zero 
between checks by more than: 0.3 mm H2O 
(0.01 in. H2O), for full scales less 
than or equal to 5.1 cm H2O (2.0 in. H2O); or 
0.8 mm H2O (0.03 
in. H2O), for full scales greater than 5.1 cm H2O 
(2.0 in. H2O). (Note: If negative zero drift is not directly 
readable, estimate the reading based on the position of the gauge oil in 
the manometer or of the needle on the pressure gauge.) In addition, for 
all pressure-measuring devices except those used exclusively for yaw 
nulling, the zero reading shall not deviate from zero by more than 5 
percent of the average measured differential pressure at any distinct 
process condition or load level. If any zero check is failed at a 
specific process condition or load level, all runs conducted at that 
process condition or load level since the last passed zero check are 
invalid.
    8.6 Traverse Point Verification. The number and location of the 
traverse points shall be selected based on Method 1 guidelines.

[[Page 98]]

The stack or duct diameter and port nipple lengths, including any 
extension of the port nipples into the stack or duct, shall be verified 
the first time the test is performed; retain and use this information 
for subsequent field tests, updating it as required. Physically measure 
the stack or duct dimensions or use a calibrated laser device; do not 
use engineering drawings of the stack or duct. The probe length 
necessary to reach each traverse point shall be recorded to within 
6.4 mm (\1/4\ in.) and, for 
manual probes, marked on the probe sheath. In determining these lengths, 
the tester shall take into account both the distance that the port 
flange projects outside of the stack and the depth that any port nipple 
extends into the gas stream. The resulting point positions shall reflect 
the true distances from the inside wall of the stack or duct, so that 
when the tester aligns any of the markings with the outside face of the 
stack port, the probe's impact port shall be located at the appropriate 
distance from the inside wall for the respective Method 1 traverse 
point. Before beginning testing at a particular location, an out-of-
stack or duct verification shall be performed on each probe that will be 
used to ensure that these position markings are correct. The distances 
measured during the verification must agree with the previously 
calculated distances to within \1/4\ in. For 
manual probes, the traverse point positions shall be verified by 
measuring the distance of each mark from the probe's impact pressure 
port (the P1 port for a 3-D probe). A comparable out-of-stack 
test shall be performed on automated probe systems. The probe shall be 
extended to each of the prescribed traverse point positions. Then, the 
accuracy of the positioning for each traverse point shall be verified by 
measuring the distance between the port flange and the probe's impact 
pressure port.
    8.7 Probe Installation. Insert the probe into the test port. A solid 
material shall be used to seal the port.
    8.8 System Response Time. Determine the response time of the probe 
measurement system. Insert and position the ``cold'' probe (at ambient 
temperature and pressure) at any Method 1 traverse point. Read and 
record the probe differential pressure, temperature, and elapsed time at 
15-second intervals until stable readings for both pressure and 
temperature are achieved. The response time is the longer of these two 
elapsed times. Record the response time.
    8.9 Sampling.
    8.9.1 Yaw angle measurement protocol. With manual probes, yaw angle 
measurements may be obtained in two alternative ways during the field 
test, either by using a yaw angle-measuring device (e.g., digital 
inclinometer) affixed to the probe, or using a protractor wheel and 
pointer assembly. For horizontal traversing, either approach may be 
used. For vertical traversing, i.e., when measuring from on top or into 
the bottom of a horizontal duct, only the protractor wheel and pointer 
assembly may be used. With automated probes, curve-fitting protocols may 
be used to obtain yaw-angle measurements.
    8.9.1.1 If a yaw angle-measuring device affixed to the probe is to 
be used, lock the device on the probe sheath, aligning it either on the 
reference scribe line or in the rotational offset position established 
under section 8.3.1.
    8.9.1.2 If a protractor wheel and pointer assembly is to be used, 
follow the procedures in Annex B of this method.
    8.9.1.3 Curve-fitting procedures. Curve-fitting routines sweep 
through a range of yaw angles to create curves correlating pressure to 
yaw position. To find the zero yaw position and the yaw angle of flow, 
the curve found in the stack is computationally compared to a similar 
curve that was previously generated under controlled conditions in a 
wind tunnel. A probe system that uses a curve-fitting routine for 
determining the yaw-null position of the probe head may be used, 
provided that it is verified in a wind tunnel to be able to determine 
the yaw angle of flow to within 1[deg].
    8.9.1.4 Other yaw angle determination procedures. If approved by the 
Administrator, other procedures for determining yaw angle may be used, 
provided that they are verified in a wind tunnel to be able to perform 
the yaw angle calibration procedure as described in section 10.5.
    8.9.2 Sampling strategy. At each traverse point, first yaw-null the 
probe, as described in section 8.9.3, below. Then, with the probe 
oriented into the direction of flow, measure and record the yaw angle, 
the differential pressure and the temperature at the traverse point, 
after stable readings are achieved, in accordance with sections 8.9.4 
and 8.9.5. At the start of testing in each port (i.e., after a probe has 
been inserted into the flue gas stream), allow at least the response 
time to elapse before beginning to take measurements at the first 
traverse point accessed from that port. Provided that the probe is not 
removed from the flue gas stream, measurements may be taken at 
subsequent traverse points accessed from the same test port without 
waiting again for the response time to elapse.
    8.9.3 Yaw-nulling procedure. In preparation for yaw angle 
determination, the probe must first be yaw nulled. After positioning the 
probe at the appropriate traverse point, perform the following 
procedures.
    8.9.3.1 For Type S probes, rotate the probe until a null 
differential pressure reading is obtained. The direction of the probe 
rotation shall be such that the thermocouple is located downstream of 
the probe pressure ports at the yaw-null position. Rotate the

[[Page 99]]

probe 90[deg] back from the yaw-null position to orient the impact 
pressure port into the direction of flow. Read and record the angle 
displayed by the angle-measuring device.
    8.9.3.2 For 3-D probes, rotate the probe until a null differential 
pressure reading (the difference in pressures across the P2 
and P3 pressure ports is zero, i.e., 
P2=P3) is indicated by the yaw angle pressure 
gauge. Read and record the angle displayed by the angle-measuring 
device.
    8.9.3.3 Sign of the measured angle. The angle displayed on the 
angle-measuring device is considered positive when the probe's impact 
pressure port (as viewed from the ``tail'' end of the probe) is oriented 
in a clockwise rotational position relative to the stack or duct axis 
and is considered negative when the probe's impact pressure port is 
oriented in a counterclockwise rotational position (see Figure 2G-7).
    8.9.4 Yaw angle determination. After performing the applicable yaw-
nulling procedure in section 8.9.3, determine the yaw angle of flow 
according to one of the following procedures. Special care must be 
observed to take into account the signs of the recorded angle reading 
and all offsets.
    8.9.4.1 Direct-reading. If all rotational offsets are zero or if the 
angle-measuring device rotational offset (RADO) determined in 
section 8.3 exactly compensates for the scribe line rotational offset 
(RSLO) determined in section 10.5, then the magnitude of the 
yaw angle is equal to the displayed angle-measuring device reading from 
section 8.9.3.1 or 8.9.3.2. The algebraic sign of the yaw angle is 
determined in accordance with section 8.9.3.3. [Note: Under certain 
circumstances (e.g., testing of horizontal ducts) a 90[deg] adjustment 
to the angle-measuring device readings may be necessary to obtain the 
correct yaw angles.]
    8.9.4.2 Compensation for rotational offsets during data reduction. 
When the angle-measuring device rotational offset does not compensate 
for reference scribe line rotational offset, the following procedure 
shall be used to determine the yaw angle:
    (a) Enter the reading indicated by the angle-measuring device from 
section 8.9.3.1 or 8.9.3.2.
    (b) Associate the proper algebraic sign from section 8.9.3.3 with 
the reading in step (a).
    (c) Subtract the reference scribe line rotational offset, 
RSLO, from the reading in step (b).
    (d) Subtract the angle-measuring device rotational offset, 
RADO, if any, from the result obtained in step (c).
    (e) The final result obtained in step (d) is the yaw angle of flow.

    [Note: It may be necessary to first apply a 90[deg] adjustment to 
the reading in step (a), in order to obtain the correct yaw angle.]

    8.9.4.3 Record the yaw angle measurements on a form similar to Table 
2G-3.
    8.9.5 Impact velocity determination. Maintain the probe rotational 
position established during the yaw angle determination. Then, begin 
recording the pressure-measuring device readings. These pressure 
measurements shall be taken over a sampling period of sufficiently long 
duration to ensure representative readings at each traverse point. If 
the pressure measurements are determined from visual readings of the 
pressure device or display, allow sufficient time to observe the 
pulsation in the readings to obtain a sight-weighted average, which is 
then recorded manually. If an automated data acquisition system (e.g., 
data logger, computer-based data recorder, strip chart recorder) is used 
to record the pressure measurements, obtain an integrated average of all 
pressure readings at the traverse point. Stack or duct gas temperature 
measurements shall be recorded, at a minimum, once at each traverse 
point. Record all necessary data as shown in the example field data form 
(Table 2G-3).
    8.9.6 Alignment check. For manually operated probes, after the 
required yaw angle and differential pressure and temperature 
measurements have been made at each traverse point, verify (e.g., by 
visual inspection) that the yaw angle-measuring device has remained in 
proper alignment with the reference scribe line or with the rotational 
offset position established in section 8.3. If, for a particular 
traverse point, the angle-measuring device is found to be in proper 
alignment, proceed to the next traverse point; otherwise, re-align the 
device and repeat the angle and differential pressure measurements at 
the traverse point. In the course of a traverse, if a mark used to 
properly align the angle-measuring device (e.g., as described in section 
18.1.1.1) cannot be located, re-establish the alignment mark before 
proceeding with the traverse.
    8.10 Probe Plugging. Periodically check for plugging of the pressure 
ports by observing the responses on the pressure differential readouts. 
Plugging causes erratic results or sluggish responses. Rotate the probe 
to determine whether the readouts respond in the expected direction. If 
plugging is detected, correct the problem and repeat the affected 
measurements.
    8.11 Static Pressure. Measure the static pressure in the stack or 
duct using the equipment described in section 6.7.
    8.11.1 If a Type S probe is used for this measurement, position the 
probe at or between any traverse point(s) and rotate the probe until a 
null differential pressure reading is obtained. Disconnect the tubing 
from one of the pressure ports; read and record the [Delta]P. For 
pressure devices with one-directional

[[Page 100]]

scales, if a deflection in the positive direction is noted with the 
negative side disconnected, then the static pressure is positive. 
Likewise, if a deflection in the positive direction is noted with the 
positive side disconnected, then the static pressure is negative.
    8.11.2 If a 3-D probe is used for this measurement, position the 
probe at or between any traverse point(s) and rotate the probe until a 
null differential pressure reading is obtained at P2-
P3. Rotate the probe 90[deg]. Disconnect the P2 
pressure side of the probe and read the pressure P1-
Pbar and record as the static pressure. (Note: The spherical 
probe, specified in section 6.1.2 of Method 2F, is unable to provide 
this measurement and shall not be used to take static pressure 
measurements.)
    8.12 Atmospheric Pressure. Determine the atmospheric pressure at the 
sampling elevation during each test run following the procedure 
described in section 2.5 of Method 2.
    8.13 Molecular Weight. Determine the stack or duct gas dry molecular 
weight. For combustion processes or processes that emit essentially 
CO2, O2, CO, and N2, use Method 3 or 
3A. For processes emitting essentially air, an analysis need not be 
conducted; use a dry molecular weight of 29.0. Other methods may be 
used, if approved by the Administrator.
    8.14 Moisture. Determine the moisture content of the stack gas using 
Method 4 or equivalent.
    8.15 Data Recording and Calculations. Record all required data on a 
form similar to Table 2G-3.
    8.15.1 2-D probe calibration coefficient. When a Type S pitot tube 
is used in the field, the appropriate calibration coefficient as 
determined in section 10.6 shall be used to perform velocity 
calculations. For calibrated Type S pitot tubes, the A-side coefficient 
shall be used when the A-side of the tube faces the flow, and the B-side 
coefficient shall be used when the B-side faces the flow.
    8.15.2 3-D calibration coefficient. When a 3-D probe is used to 
collect data with this method, follow the provisions for the calibration 
of 3-D probes in section 10.6 of Method 2F to obtain the appropriate 
velocity calibration coefficient (F2 as derived using 
Equation 2F-2 in Method 2F) corresponding to a pitch angle position of 
0[deg].
    8.15.3 Calculations. Calculate the yaw-adjusted velocity at each 
traverse point using the equations presented in section 12.2. Calculate 
the test run average stack gas velocity by finding the arithmetic 
average of the point velocity results in accordance with sections 12.3 
and 12.4, and calculate the stack gas volumetric flow rate in accordance 
with section 12.5 or 12.6, as applicable.

                           9.0 Quality Control

    9.1 Quality Control Activities. In conjunction with the yaw angle 
determination and the pressure and temperature measurements specified in 
section 8.9, the following quality control checks should be performed.
    9.1.1 Range of the differential pressure gauge. In accordance with 
the specifications in section 6.4, ensure that the proper differential 
pressure gauge is being used for the range of [Delta]P values 
encountered. If it is necessary to change to a more sensitive gauge, 
replace the gauge with a gauge calibrated according to section 10.3.3, 
perform the leak check described in section 8.4 and the zero check 
described in section 8.5, and repeat the differential pressure and 
temperature readings at each traverse point.
    9.1.2 Horizontal stability check. For horizontal traverses of a 
stack or duct, visually check that the probe shaft is maintained in a 
horizontal position prior to taking a pressure reading. Periodically, 
during a test run, the probe's horizontal stability should be verified 
by placing a carpenter's level, a digital inclinometer, or other angle-
measuring device on the portion of the probe sheath that extends outside 
of the test port. A comparable check should be performed by automated 
systems.

                            10.0 Calibration

    10.1 Wind Tunnel Qualification Checks. To qualify for use in 
calibrating probes, a wind tunnel shall have the design features 
specified in section 6.11 and satisfy the following qualification 
criteria. The velocity pressure cross-check in section 10.1.1 and axial 
flow verification in section 10.1.2 shall be performed before the 
initial use of the wind tunnel and repeated immediately after any 
alteration occurs in the wind tunnel's configuration, fans, interior 
surfaces, straightening vanes, controls, or other properties that could 
reasonably be expected to alter the flow pattern or velocity stability 
in the tunnel. The owner or operator of a wind tunnel used to calibrate 
probes according to this method shall maintain records documenting that 
the wind tunnel meets the requirements of sections 10.1.1 and 10.1.2 and 
shall provide these records to the Administrator upon request.
    10.1.1 Velocity pressure cross-check. To verify that the wind tunnel 
produces the same velocity at the tested probe head as at the 
calibration pitot tube impact port, perform the following cross-check. 
Take three differential pressure measurements at the fixed calibration 
pitot tube location, using the calibration pitot tube specified in 
section 6.10, and take three measurements with the calibration pitot 
tube at the wind tunnel calibration location, as defined in section 
3.21. Alternate the measurements between the two positions. Perform this 
procedure at

[[Page 101]]

the lowest and highest velocity settings at which the probes will be 
calibrated. Record the values on a form similar to Table 2G-4. At each 
velocity setting, the average velocity pressure obtained at the wind 
tunnel calibration location shall be within 2 
percent or 2.5 mm H2O (0.01 in. H2O), whichever is 
less restrictive, of the average velocity pressure obtained at the fixed 
calibration pitot tube location. This comparative check shall be 
performed at 2.5-cm (1-in.), or smaller, intervals across the full 
length, width, and depth (if applicable) of the wind tunnel calibration 
location. If the criteria are not met at every tested point, the wind 
tunnel calibration location must be redefined, so that acceptable 
results are obtained at every point. Include the results of the velocity 
pressure cross-check in the calibration data section of the field test 
report. (See section 16.1.4.)
    10.1.2 Axial flow verification. The following procedures shall be 
performed to demonstrate that there is fully developed axial flow within 
the wind tunnel calibration location and at the calibration pitot tube 
location. Two options are available to conduct this check.
    10.1.2.1 Using a calibrated 3-D probe. A probe that has been 
previously calibrated in a wind tunnel with documented axial flow (as 
defined in section 3.22) may be used to conduct this check. Insert the 
calibrated 3-D probe into the wind tunnel test section using the tested 
probe port. Following the procedures in sections 8.9 and 12.2 of Method 
2F, determine the yaw and pitch angles at all the point(s) in the test 
section where the velocity pressure cross-check, as specified in section 
10.1.1, is performed. This includes all the points in the calibration 
location and the point where the calibration pitot tube will be located. 
Determine the yaw and pitch angles at each point. Repeat these 
measurements at the highest and lowest velocities at which the probes 
will be calibrated. Record the values on a form similar to Table 2G-5. 
Each measured yaw and pitch angle shall be within 3[deg] of 0[deg]. Exceeding the limits indicates 
unacceptable flow in the test section. Until the problem is corrected 
and acceptable flow is verified by repetition of this procedure, the 
wind tunnel shall not be used for calibration of probes. Include the 
results of the axial flow verification in the calibration data section 
of the field test report. (See section 16.1.4.)
    10.1.2.2 Using alternative probes. Axial flow verification may be 
performed using an uncalibrated prism-shaped 3-D probe (e.g., DA or DAT 
probe) or an uncalibrated wedge probe. (Figure 2G-8 illustrates a 
typical wedge probe.) This approach requires use of two ports: the 
tested probe port and a second port located 90[deg] from the tested 
probe port. Each port shall provide access to all the points within the 
wind tunnel test section where the velocity pressure cross-check, as 
specified in section 10.1.1, is conducted. The probe setup shall include 
establishing a reference yaw-null position on the probe sheath to serve 
as the location for installing the angle-measuring device. Physical 
design features of the DA, DAT, and wedge probes are relied on to 
determine the reference position. For the DA or DAT probe, this 
reference position can be determined by setting a digital inclinometer 
on the flat facet where the P1 pressure port is located and 
then identifying the rotational position on the probe sheath where a 
second angle-measuring device would give the same angle reading. The 
reference position on a wedge probe shaft can be determined either 
geometrically or by placing a digital inclinometer on each side of the 
wedge and rotating the probe until equivalent readings are obtained. 
With the latter approach, the reference position is the rotational 
position on the probe sheath where an angle-measuring device would give 
a reading of 0[deg]. After installation of the angle-measuring device in 
the reference yaw-null position on the probe sheath, determine the yaw 
angle from the tested port. Repeat this measurement using the 90[deg] 
offset port, which provides the pitch angle of flow. Determine the yaw 
and pitch angles at all the point(s) in the test section where the 
velocity pressure cross-check, as specified in section 10.1.1, is 
performed. This includes all the points in the wind tunnel calibration 
location and the point where the calibration pitot tube will be located. 
Perform this check at the highest and lowest velocities at which the 
probes will be calibrated. Record the values on a form similar to Table 
2G-5. Each measured yaw and pitch angle shall be within 3[deg] of 0[deg]. Exceeding the limits indicates 
unacceptable flow in the test section. Until the problem is corrected 
and acceptable flow is verified by repetition of this procedure, the 
wind tunnel shall not be used for calibration of probes. Include the 
results in the probe calibration report.
    10.1.3 Wind tunnel audits.
    10.1.3.1 Procedure. Upon the request of the Administrator, the owner 
or operator of a wind tunnel shall calibrate a 2-D audit probe in 
accordance with the procedures described in sections 10.3 through 10.6. 
The calibration shall be performed at two velocities that encompass the 
velocities typically used for this method at the facility. The resulting 
calibration data shall be submitted to the Agency in an audit test 
report. These results shall be compared by the Agency to reference 
calibrations of the audit probe at the same velocity settings obtained 
at two different wind tunnels.
    10.1.3.2 Acceptance criterion. The audited tunnel's calibration 
coefficient is acceptable if it is within 3 
percent of the reference calibrations obtained at each velocity setting 
by

[[Page 102]]

one (or both) of the wind tunnels. If the acceptance criterion is not 
met at each calibration velocity setting, the audited wind tunnel shall 
not be used to calibrate probes for use under this method until the 
problems are resolved and acceptable results are obtained upon 
completion of a subsequent audit.
    10.2 Probe Inspection.
    10.2.1 Type S probe. Before each calibration of a Type S probe, 
verify that one leg of the tube is permanently marked A, and the other, 
B. Carefully examine the pitot tube from the top, side, and ends. 
Measure the angles ([alpha]1, [alpha]2, 
[beta]1, and [beta]2) and the dimensions (w and z) 
illustrated in Figures 2-2 and 2-3 in Method 2. Also measure the 
dimension A, as shown in the diagram in Table 2G-1, and the external 
tubing diameter (dimension Dt, Figure 2-2b in Method 2). For 
the purposes of this method, Dt shall be no less than 9.5 mm 
(\3/8\ in.). The base-to-opening plane distances PA and 
PB in Figure 2-3 of Method 2 shall be equal, and the 
dimension A in Table 2G-1 should be between 2.10Dt and 
3.00Dt. Record the inspection findings and probe measurements 
on a form similar to Table CD2-1 of the ``Quality Assurance Handbook for 
Air Pollution Measurement Systems: Volume III, Stationary Source-
Specific Methods'' (EPA/600/R-94/038c, September 1994). For reference, 
this form is reproduced herein as Table 2G-1. The pitot tube shall not 
be used under this method if it fails to meet the specifications in this 
section and the alignment specifications in section 6.1.1. All Type S 
probes used to collect data with this method shall be calibrated 
according to the procedures outlined in sections 10.3 through 10.6 
below. During calibration, each Type S pitot tube shall be configured in 
the same manner as used, or planned to be used, during the field test, 
including all components in the probe assembly (e.g., thermocouple, 
probe sheath, sampling nozzle). Probe shaft extensions that do not 
affect flow around the probe head need not be attached during 
calibration.
    10.2.2 3-D probe. If a 3-D probe is used to collect data with this 
method, perform the pre-calibration inspection according to procedures 
in Method 2F, section 10.2.
    10.3 Pre-Calibration Procedures. Prior to calibration, a scribe line 
shall have been placed on the probe in accordance with section 10.4. The 
yaw angle and velocity calibration procedures shall not begin until the 
pre-test requirements in sections 10.3.1 through 10.3.4 have been met.
    10.3.1 Perform the horizontal straightness check described in 
section 8.2 on the probe assembly that will be calibrated in the wind 
tunnel.
    10.3.2 Perform a leak check in accordance with section 8.4.
    10.3.3 Except as noted in section 10.3.3.3, calibrate all 
differential pressure-measuring devices to be used in the probe 
calibrations, using the following procedures. At a minimum, calibrate 
these devices on each day that probe calibrations are performed.
    10.3.3.1 Procedure. Before each wind tunnel use, all differential 
pressure-measuring devices shall be calibrated against the reference 
device specified in section 6.4.3 using a common pressure source. 
Perform the calibration at three reference pressures representing 30, 
60, and 90 percent of the full-scale range of the pressure-measuring 
device being calibrated. For an inclined-vertical manometer, perform 
separate calibrations on the inclined and vertical portions of the 
measurement scale, considering each portion of the scale to be a 
separate full-scale range. [For example, for a manometer with a 0-to 
2.5-cm H2O (0-to 1-in. H2O) inclined scale and a 
2.5-to 12.7-cm H2O (1-to 5-in. H2O) vertical 
scale, calibrate the inclined portion at 7.6, 15.2, and 22.9 mm 
H2O (0.3, 0.6, and 0.9 in. H2O), and calibrate the 
vertical portion at 3.8, 7.6, and 11.4 cm H2O (1.5, 3.0, and 
4.5 in. H2O).] Alternatively, for the vertical portion of the 
scale, use three evenly spaced reference pressures, one of which is 
equal to or higher than the highest differential pressure expected in 
field applications.
    10.3.3.2 Acceptance criteria. At each pressure setting, the two 
pressure readings made using the reference device and the pressure-
measuring device being calibrated shall agree to within 2 percent of full scale of the device being calibrated 
or 0.5 mm H2O (0.02 in. H2O), whichever is less 
restrictive. For an inclined-vertical manometer, these requirements 
shall be met separately using the respective full-scale upper limits of 
the inclined and vertical portions of the scale. Differential pressure-
measuring devices not meeting the 2 percent of 
full scale or 0.5 mm H2O (0.02 in. H2O) 
calibration requirement shall not be used.
    10.3.3.3 Exceptions. Any precision manometer that meets the 
specifications for a reference device in section 6.4.3 and that is not 
used for field testing does not require calibration, but must be leveled 
and zeroed before each wind tunnel use. Any pressure device used 
exclusively for yaw nulling does not require calibration, but shall be 
checked for responsiveness to rotation of the probe prior to each wind 
tunnel use.
    10.3.4 Calibrate digital inclinometers on each day of wind tunnel or 
field testing (prior to beginning testing) using the following 
procedures. Calibrate the inclinometer according to the manufacturer's 
calibration procedures. In addition, use a triangular block (illustrated 
in Figure 2G-9) with a known angle [theta], independently determined 
using a protractor or equivalent device, between two adjacent sides to 
verify the inclinometer readings. (Note: If other angle-measuring 
devices meeting the provisions of

[[Page 103]]

section 6.2.3 are used in place of a digital inclinometer, comparable 
calibration procedures shall be performed on such devices.) Secure the 
triangular block in a fixed position. Place the inclinometer on one side 
of the block (side A) to measure the angle of inclination 
(R1). Repeat this measurement on the adjacent side of the 
block (side B) using the inclinometer to obtain a second angle reading 
(R2). The difference of the sum of the two readings from 
180[deg] (i.e., 180[deg]-R1-R2) shall be within 
2[deg] of the known angle, [theta].
    10.4 Placement of Reference Scribe Line. Prior to the first 
calibration of a probe, a line shall be permanently inscribed on the 
main probe sheath to serve as a reference mark for determining yaw 
angles. Annex C in section 18 of this method gives a guideline for 
placement of the reference scribe line.
    10.4.1 This reference scribe line shall meet the specifications in 
sections 6.1.5.1 and 6.1.5.3 of this method. To verify that the 
alignment specification in section 6.1.5.3 is met, secure the probe in a 
horizontal position and measure the rotational angle of each scribe line 
and scribe line segment using an angle-measuring device that meets the 
specifications in section 6.2.1 or 6.2.3. For any scribe line that is 
longer than 30.5 cm (12 in.), check the line's rotational position at 
30.5-cm (12-in.) intervals. For each line segment that is 12 in. or less 
in length, check the rotational position at the two endpoints of the 
segment. To meet the alignment specification in section 6.1.5.3, the 
minimum and maximum of all of the rotational angles that are measured 
along the full length of main probe must not differ by more than 2[deg]. 
(Note: A short reference scribe line segment [e.g., 15.2 cm (6 in.) or 
less in length] meeting the alignment specifications in section 6.1.5.3 
is fully acceptable under this method. See section 18.1.1.1 of Annex A 
for an example of a probe marking procedure, suitable for use with a 
short reference scribe line.)
    10.4.2 The scribe line should be placed on the probe first and then 
its offset from the yaw-null position established (as specified in 
section 10.5). The rotational position of the reference scribe line 
relative to the yaw-null position of the probe, as determined by the yaw 
angle calibration procedure in section 10.5, is the reference scribe 
line rotational offset, RSLO. The reference scribe line 
rotational offset shall be recorded and retained as part of the probe's 
calibration record.
    10.4.3 Scribe line for automated probes. A scribe line may not be 
necessary for an automated probe system if a reference rotational 
position of the probe is built into the probe system design. For such 
systems, a ``flat'' (or comparable, clearly identifiable physical 
characteristic) should be provided on the probe casing or flange plate 
to ensure that the reference position of the probe assembly remains in a 
vertical or horizontal position. The rotational offset of the flat (or 
comparable, clearly identifiable physical characteristic) needed to 
orient the reference position of the probe assembly shall be recorded 
and maintained as part of the automated probe system's specifications.
    10.5 Yaw Angle Calibration Procedure. For each probe used to measure 
yaw angles with this method, a calibration procedure shall be performed 
in a wind tunnel meeting the specifications in section 10.1 to determine 
the rotational position of the reference scribe line relative to the 
probe's yaw-null position. This procedure shall be performed on the main 
probe with all devices that will be attached to the main probe in the 
field [such as thermocouples, resistance temperature detectors (RTDs), 
or sampling nozzles] that may affect the flow around the probe head. 
Probe shaft extensions that do not affect flow around the probe head 
need not be attached during calibration. At a minimum, this procedure 
shall include the following steps.
    10.5.1 Align and lock the angle-measuring device on the reference 
scribe line. If a marking procedure (such as described in section 
18.1.1.1) is used, align the angle-measuring device on a mark within 
1[deg] of the rotational position of the reference 
scribe line. Lock the angle-measuring device onto the probe sheath at 
this position.
    10.5.2 Zero the pressure-measuring device used for yaw nulling.
    10.5.3 Insert the probe assembly into the wind tunnel through the 
entry port, positioning the probe's impact port at the calibration 
location. Check the responsiveness of the pressure-measurement device to 
probe rotation, taking corrective action if the response is 
unacceptable.
    10.5.4 Ensure that the probe is in a horizontal position, using a 
carpenter's level.
    10.5.5 Rotate the probe either clockwise or counterclockwise until a 
yaw null [zero [Delta]P for a Type S probe or zero (P2-
P3) for a 3-D probe] is obtained. If using a Type S probe 
with an attached thermocouple, the direction of the probe rotation shall 
be such that the thermocouple is located downstream of the probe 
pressure ports at the yaw-null position.
    10.5.6 Use the reading displayed by the angle-measuring device at 
the yaw-null position to determine the magnitude of the reference scribe 
line rotational offset, RSLO, as defined in section 3.15. 
Annex D in section 18 of this method gives a recommended procedure for 
determining the magnitude of RSLO with a digital inclinometer 
and a second procedure for determining the magnitude of RSLO 
with a protractor wheel and pointer device. Table 2G-6 gives an example 
data form and Table 2G-7 is a look-up table with the recommended 
procedure. Procedures other than those recommended in Annex D in section 
18 may be used, if they can determine RSLO to within 1[deg] 
and are explained in detail

[[Page 104]]

in the field test report. The algebraic sign of RSLO will 
either be positive if the rotational position of the reference scribe 
line (as viewed from the ``tail'' end of the probe) is clockwise, or 
negative, if counterclockwise with respect to the probe's yaw-null 
position. (This is illustrated in Figure 2G-10.)
    10.5.7 The steps in sections 10.5.3 through 10.5.6 shall be 
performed twice at each of the velocities at which the probe will be 
calibrated (in accordance with section 10.6). Record the values of 
RSLO.
    10.5.8 The average of all of the RSLO values shall be 
documented as the reference scribe line rotational offset for the probe.
    10.5.9 Use of reference scribe line offset. The reference scribe 
line rotational offset shall be used to determine the yaw angle of flow 
in accordance with section 8.9.4.
    10.6 Velocity Calibration Procedure. When a 3-D probe is used under 
this method, follow the provisions for the calibration of 3-D probes in 
section 10.6 of Method 2F to obtain the necessary velocity calibration 
coefficients (F2 as derived using Equation 2F-2 in Method 2F) 
corresponding to a pitch angle position of 0[deg]. The following 
procedure applies to Type S probes. This procedure shall be performed on 
the main probe and all devices that will be attached to the main probe 
in the field (e.g., thermocouples, RTDs, sampling nozzles) that may 
affect the flow around the probe head. Probe shaft extensions that do 
not affect flow around the probe head need not be attached during 
calibration. (Note: If a sampling nozzle is part of the assembly, two 
additional requirements must be satisfied before proceeding. The 
distance between the nozzle and the pitot tube shall meet the minimum 
spacing requirement prescribed in Method 2, and a wind tunnel 
demonstration shall be performed that shows the probe's ability to yaw 
null is not impaired when the nozzle is drawing sample.) To obtain 
velocity calibration coefficient(s) for the tested probe, proceed as 
follows.
    10.6.1 Calibration velocities. The tester may calibrate the probe at 
two nominal wind tunnel velocity settings of 18.3 m/sec and 27.4 m/sec 
(60 ft/sec and 90 ft/sec) and average the results of these calibrations, 
as described in sections 10.6.12 through 10.6.14, in order to generate 
the calibration coefficient, Cp. If this option is selected, 
this calibration coefficient may be used for all field applications 
where the velocities are 9.1 m/sec (30 ft/sec) or greater. 
Alternatively, the tester may customize the probe calibration for a 
particular field test application (or for a series of applications), 
based on the expected average velocity(ies) at the test site(s). If this 
option is selected, generate the calibration coefficients by calibrating 
the probe at two nominal wind tunnel velocity settings, one of which is 
less than or equal to and the other greater than or equal to the 
expected average velocity(ies) for the field application(s), and average 
the results as described in sections 10.6.12 through 10.6.14. Whichever 
calibration option is selected, the probe calibration coefficient(s) 
obtained at the two nominal calibration velocities shall meet the 
conditions specified in sections 10.6.12 through 10.6.14.
    10.6.2 Connect the tested probe and calibration pitot tube to their 
respective pressure-measuring devices. Zero the pressure-measuring 
devices. Inspect and leak-check all pitot lines; repair or replace them, 
if necessary. Turn on the fan, and allow the wind tunnel air flow to 
stabilize at the first of the selected nominal velocity settings.
    10.6.3 Position the calibration pitot tube at its measurement 
location (determined as outlined in section 6.11.4.3), and align the 
tube so that its tip is pointed directly into the flow. Ensure that the 
entry port surrounding the tube is properly sealed. The calibration 
pitot tube may either remain in the wind tunnel throughout the 
calibration, or be removed from the wind tunnel while measurements are 
taken with the probe being calibrated.
    10.6.4 Check the zero setting of each pressure-measuring device.
    10.6.5 Insert the tested probe into the wind tunnel and align it so 
that the designated pressure port (e.g., either the A-side or B-side of 
a Type S probe) is pointed directly into the flow and is positioned 
within the wind tunnel calibration location (as defined in section 
3.21). Secure the probe at the 0[deg] pitch angle position. Ensure that 
the entry port surrounding the probe is properly sealed.
    10.6.6 Read the differential pressure from the calibration pitot 
tube ([Delta]Pstd), and record its value. Read the barometric 
pressure to within 2.5 mm Hg (0.1 in. Hg) and the temperature in the wind tunnel to 
within 0.6[deg]C (1[deg]F). Record these values on a data form similar 
to Table 2G-8.
    10.6.7 After the tested probe's differential pressure gauges have 
had sufficient time to stabilize, yaw null the probe (and then rotate it 
back 90[deg] for Type S probes), then obtain the differential pressure 
reading ([Delta]P). Record the yaw angle and differential pressure 
readings.
    10.6.8 Take paired differential pressure measurements with the 
calibration pitot tube and tested probe (according to sections 10.6.6 
and 10.6.7). The paired measurements in each replicate can be made 
either simultaneously (i.e., with both probes in the wind tunnel) or by 
alternating the measurements of the two probes (i.e., with only one 
probe at a time in the wind tunnel).
    10.6.9 Repeat the steps in sections 10.6.6 through 10.6.8 at the 
same nominal velocity setting until three pairs of [Delta]P readings 
have been obtained from the calibration pitot tube and the tested probe.

[[Page 105]]

    10.6.10 Repeat the steps in sections 10.6.6 through 10.6.9 above for 
the A-side and B-side of the Type S pitot tube. For a probe assembly 
constructed such that its pitot tube is always used in the same 
orientation, only one side of the pitot tube need be calibrated (the 
side that will face the flow). However, the pitot tube must still meet 
the alignment and dimension specifications in section 6.1.1 and must 
have an average deviation ([sigma]) value of 0.01 or less as provided in 
section 10.6.12.4.
    10.6.11 Repeat the calibration procedures in sections 10.6.6 through 
10.6.10 at the second selected nominal wind tunnel velocity setting.
    10.6.12 Perform the following calculations separately on the A-side 
and B-side values.
    10.6.12.1 Calculate a Cp value for each of the three 
replicates performed at the lower velocity setting where the 
calibrations were performed using Equation 2-2 in section 4.1.4 of 
Method 2.
    10.6.12.2 Calculate the arithmetic average, Cp(avg-low), 
of the three Cp values.
    10.6.12.3 Calculate the deviation of each of the three individual 
values of Cp from the A-side average Cp(avg-low) 
value using Equation 2-3 in Method 2.
    10.6.12.4 Calculate the average deviation ([sigma]) of the three 
individual Cp values from Cp(avg-low) using 
Equation 2-4 in Method 2. Use the Type S pitot tube only if the values 
of [sigma] (side A) and [sigma] (side B) are less than or equal to 0.01. 
If both A-side and B-side calibration coefficients are calculated, the 
absolute value of the difference between Cp(avg-low) (side A) 
and Cp(avg-low) (side B) must not exceed 0.01.
    10.6.13 Repeat the calculations in section 10.6.12 using the data 
obtained at the higher velocity setting to derive the arithmetic 
Cp values at the higher velocity setting, 
Cp(avg-high), and to determine whether the conditions in 
10.6.12.4 are met by both the A-side and B-side calibrations at this 
velocity setting.
    10.6.14 Use equation 2G-1 to calculate the percent difference of the 
averaged Cp values at the two calibration velocities.
[GRAPHIC] [TIFF OMITTED] TR14MY99.062

The percent difference between the averaged Cp values shall 
not exceed 3 percent. If the specification is met, 
average the A-side values of Cp(avg-low) and 
Cp(avg-high) to produce a single A-side calibration 
coefficient, Cp. Repeat for the B-side values if calibrations 
were performed on that side of the pitot. If the specification is not 
met, make necessary adjustments in the selected velocity settings and 
repeat the calibration procedure until acceptable results are obtained.
    10.6.15 If the two nominal velocities used in the calibration were 
18.3 and 27.4 m/sec (60 and 90 ft/sec), the average Cp from 
section 10.6.14 is applicable to all velocities 9.1 m/sec (30 ft/sec) or 
greater. If two other nominal velocities were used in the calibration, 
the resulting average Cp value shall be applicable only in 
situations where the velocity calculated using the calibration 
coefficient is neither less than the lower nominal velocity nor greater 
than the higher nominal velocity.
    10.7 Recalibration. Recalibrate the probe using the procedures in 
section 10 either within 12 months of its first field use after its most 
recent calibration or after 10 field tests (as defined in section 3.3), 
whichever occurs later. In addition, whenever there is visible damage to 
the probe head, the probe shall be recalibrated before it is used again.
    10.8 Calibration of pressure-measuring devices used in the field. 
Before its initial use in a field test, calibrate each pressure-
measuring device (except those used exclusively for yaw nulling) using 
the three-point calibration procedure described in section 10.3.3. The 
device shall be recalibrated according to the procedure in section 
10.3.3 no later than 90 days after its first field use following its 
most recent calibration. At the discretion of the tester, more frequent 
calibrations (e.g., after a field test) may be performed. No 
adjustments, other than adjustments to the zero setting, shall be made 
to the device between calibrations.
    10.8.1 Post-test calibration check. A single-point calibration check 
shall be performed on each pressure-measuring device after completion of 
each field test. At the discretion of the tester, more frequent single-
point calibration checks (e.g., after one or more field test runs) may 
be performed. It is recommended that the post-test check be performed 
before leaving the field test site. The check shall be performed at a 
pressure between 50 and 90 percent of full scale by taking a common 
pressure reading with the tested probe and a reference pressure-
measuring device (as described in section 6.4.4) or by challenging the 
tested device with a reference pressure source (as described in section 
6.4.4) or by performing an equivalent check using a reference device 
approved by the Administrator.

[[Page 106]]

    10.8.2 Acceptance criterion. At the selected pressure setting, the 
pressure readings made using the reference device and the tested device 
shall agree to within 3 percent of full scale of 
the tested device or 0.8 mm H2O (0.03 in. H2O), 
whichever is less restrictive. If this specification is met, the test 
data collected during the field test are valid. If the specification is 
not met, all test data collected since the last successful calibration 
or calibration check are invalid and shall be repeated using a pressure-
measuring device with a current, valid calibration. Any device that 
fails the calibration check shall not be used in a field test until a 
successful recalibration is performed according to the procedures in 
section 10.3.3.
    10.9 Temperature Gauges. Same as Method 2, section 4.3. The 
alternative thermocouple calibration procedures outlined in Emission 
Measurement Center (EMC) Approved Alternative Method (ALT-011) 
``Alternative Method 2 Thermocouple Calibration Procedure'' may be 
performed. Temperature gauges shall be calibrated no more than 30 days 
prior to the start of a field test or series of field tests and 
recalibrated no more than 30 days after completion of a field test or 
series of field tests.
    10.10 Barometer. Same as Method 2, section 4.4. The barometer shall 
be calibrated no more than 30 days prior to the start of a field test or 
series of field tests.

                        11.0 Analytical Procedure

    Sample collection and analysis are concurrent for this method (see 
section 8.0).

                   12.0 Data Analysis and Calculations

    These calculations use the measured yaw angle and the differential 
pressure and temperature measurements at individual traverse points to 
derive the near-axial flue gas velocity (va(i)) at each of 
those points. The near-axial velocity values at all traverse points that 
comprise a full stack or duct traverse are then averaged to obtain the 
average near-axial stack or duct gas velocity (va(avg)).

                            12.1 Nomenclature

A=Cross-sectional area of stack or duct at the test port location, m\2\ 
(ft \2\).
Bws=Water vapor in the gas stream (from Method 4 or 
alternative), proportion by volume.
Cp=Pitot tube calibration coefficient, dimensionless.
F2(i)=3-D probe velocity coefficient at 0 pitch, applicable 
at traverse point i.
Kp=Pitot tube constant,
[GRAPHIC] [TIFF OMITTED] TR14MY99.063

for the metric system, and
[GRAPHIC] [TIFF OMITTED] TR14MY99.064

for the English system.

Md=Molecular weight of stack or duct gas, dry basis (see 
section 8.13), g/g-mole (lb/lb-mole).
Ms=Molecular weight of stack or duct gas, wet basis, g/g-mole 
(lb/lb-mole).
[GRAPHIC] [TIFF OMITTED] TR14MY99.065

Pbar=Barometric pressure at velocity measurement site, mm Hg 
(in. Hg).
Pg=Stack or duct static pressure, mm H2O (in. 
H2O).
Ps=Absolute stack or duct pressure, mm Hg (in. Hg),
[GRAPHIC] [TIFF OMITTED] TR14MY99.066

Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
13.6=Conversion from mm H2O (in. H2O) to mm Hg 
(in. Hg).
Qsd=Average dry-basis volumetric stack or duct gas flow rate 
corrected to standard conditions, dscm/hr (dscf/hr).
Qsw=Average wet-basis volumetric stack or duct gas flow rate 
corrected to standard conditions, wscm/hr (wscf/hr).
ts(i)=Stack or duct temperature, [deg]C ([deg]F), at traverse 
point i.
Ts(i)=Absolute stack or duct temperature, [deg]K ([deg]R), at 
traverse point i.
[GRAPHIC] [TIFF OMITTED] TR14MY99.067

for the metric system, and
[GRAPHIC] [TIFF OMITTED] TR14MY99.068

for the English system.

Ts(avg)=Average absolute stack or duct gas temperature across 
all traverse points.
Tstd=Standard absolute temperature, 293[deg]K (528[deg]R).
va(i)=Measured stack or duct gas impact velocity, m/sec (ft/
sec), at traverse point i.
va(avg)=Average near-axial stack or duct gas velocity, m/sec 
(ft/sec) across all traverse points.
[Delta]Pi=Velocity head (differential pressure) of stack or 
duct gas, mm H2O (in. H2O), applicable at traverse 
point i.
(P1-P2)=Velocity head (differential pressure) of 
stack or duct gas measured by a 3-D probe, mm H2O (in. 
H2O), applicable at traverse point i.
3,600=Conversion factor, sec/hr.
18.0=Molecular weight of water, g/g-mole (lb/lb-mole).

[[Page 107]]

[theta]y(i)=Yaw angle of the flow velocity vector, at 
traverse point i.
n=Number of traverse points.

    12.2 Traverse Point Velocity Calculations. Perform the following 
calculations from the measurements obtained at each traverse point.
    12.2.1 Selection of calibration coefficient. Select the calibration 
coefficient as described in section 10.6.1.
    12.2.2 Near-axial traverse point velocity. When using a Type S 
probe, use the following equation to calculate the traverse point near-
axial velocity (va(i)) from the differential pressure 
([Delta]Pi), yaw angle ([theta]y(i)), absolute 
stack or duct standard temperature (Ts(i)) measured at 
traverse point i, the absolute stack or duct pressure (Ps), 
and molecular weight (Ms).
[GRAPHIC] [TIFF OMITTED] TR14MY99.069

Use the following equation when using a 3-D probe.
[GRAPHIC] [TIFF OMITTED] TR14MY99.070

    12.2.3 Handling multiple measurements at a traverse point. For 
pressure or temperature devices that take multiple measurements at a 
traverse point, the multiple measurements (or where applicable, their 
square roots) may first be averaged and the resulting average values 
used in the equations above. Alternatively, the individual measurements 
may be used in the equations above and the resulting calculated values 
may then be averaged to obtain a single traverse point value. With 
either approach, all of the individual measurements recorded at a 
traverse point must be used in calculating the applicable traverse point 
value.
    12.3 Average Near-Axial Velocity in Stack or Duct. Use the reported 
traverse point near-axial velocity in the following equation.
[GRAPHIC] [TIFF OMITTED] TR14MY99.071

    12.4 Acceptability of Results. The acceptability provisions in 
section 12.4 of Method 2F apply to 3-D probes used under Method 2G. The 
following provisions apply to Type S probes. For Type S probes, the test 
results are acceptable and the calculated value of va(avg) 
may be reported as the average near-axial velocity for the test run if 
the conditions in either section 12.4.1 or 12.4.2 are met.
    12.4.1 The average calibration coefficient Cp used in 
Equation 2G-6 was generated at nominal velocities of 18.3 and 27.4 m/sec 
(60 and 90 ft/sec) and the value of va(avg) calculated using 
Equation 2G-8 is greater than or equal to 9.1 m/sec (30 ft/sec).
    12.4.2 The average calibration coefficient Cp used in 
Equation 2G-6 was generated at nominal velocities other than 18.3 or 
27.4 m/sec (60 or 90 ft/sec) and the value of va(avg) 
calculated using Equation 2G-8 is greater than or equal to the lower 
nominal velocity and less than or equal to the higher nominal velocity 
used to derive the average Cp.
    12.4.3 If the conditions in neither section 12.4.1 nor section 
12.4.2 are met, the test results obtained from Equation 2G-8 are not 
acceptable, and the steps in sections 12.2 and 12.3 must be repeated 
using an average calibration coefficient Cp that satisfies 
the conditions in section 12.4.1 or 12.4.2.
    12.5 Average Gas Volumetric Flow Rate in Stack or Duct (Wet Basis). 
Use the following equation to compute the average volumetric flow rate 
on a wet basis.

[[Page 108]]

[GRAPHIC] [TIFF OMITTED] TR14MY99.072

    12.6 Average Gas Volumetric Flow Rate in Stack or Duct (Dry Basis). 
Use the following equation to compute the average volumetric flow rate 
on a dry basis.
[GRAPHIC] [TIFF OMITTED] TR14MY99.073

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 Reporting.

    16.1 Field Test Reports. Field test reports shall be submitted to 
the Agency according to applicable regulatory requirements. Field test 
reports should, at a minimum, include the following elements.
    16.1.1 Description of the source. This should include the name and 
location of the test site, descriptions of the process tested, a 
description of the combustion source, an accurate diagram of stack or 
duct cross-sectional area at the test site showing the dimensions of the 
stack or duct, the location of the test ports, and traverse point 
locations and identification numbers or codes. It should also include a 
description and diagram of the stack or duct layout, showing the 
distance of the test location from the nearest upstream and downstream 
disturbances and all structural elements (including breachings, baffles, 
fans, straighteners, etc.) affecting the flow pattern. If the source and 
test location descriptions have been previously submitted to the Agency 
in a document (e.g., a monitoring plan or test plan), referencing the 
document in lieu of including this information in the field test report 
is acceptable.
    16.1.2 Field test procedures. These should include a description of 
test equipment and test procedures. Testing conventions, such as 
traverse point numbering and measurement sequence (e.g., sampling from 
center to wall, or wall to center), should be clearly stated. Test port 
identification and directional reference for each test port should be 
included on the appropriate field test data sheets.
    16.1.3 Field test data.
    16.1.3.1 Summary of results. This summary should include the dates 
and times of testing, and the average near-axial gas velocity and the 
average flue gas volumetric flow results for each run and tested 
condition.
    16.1.3.2 Test data. The following values for each traverse point 
should be recorded and reported:

    (a) Differential pressure at traverse point i ([Delta]Pi)
    (b) Stack or duct temperature at traverse point i (ts(i))
    (c) Absolute stack or duct temperature at traverse point i 
(Ts(i))
    (d) Yaw angle at traverse point i ([theta]y(i))
    (e) Stack gas near-axial velocity at traverse point i 
(va(i))

    16.1.3.3 The following values should be reported once per run:

    (a) Water vapor in the gas stream (from Method 4 or alternative), 
proportion by volume (Bws), measured at the frequency 
specified in the applicable regulation
    (b) Molecular weight of stack or duct gas, dry basis (Md)
    (c) Molecular weight of stack or duct gas, wet basis (Ms)
    (d) Stack or duct static pressure (Pg)
    (e) Absolute stack or duct pressure (Ps)
    (f) Carbon dioxide concentration in the flue gas, dry basis 
(%d CO2)
    (g) Oxygen concentration in the flue gas, dry basis (%d 
O2)
    (h) Average near-axial stack or duct gas velocity 
(va(avg)) across all traverse points
    (i) Gas volumetric flow rate corrected to standard conditions, dry 
or wet basis as required by the applicable regulation (Qsd or 
Qsw)

    16.1.3.4 The following should be reported once per complete set of 
test runs:

    (a) Cross-sectional area of stack or duct at the test location (A)
    (b) Pitot tube calibration coefficient (Cp)
    (c) Measurement system response time (sec)
    (d) Barometric pressure at measurement site (Pbar)

    16.1.4 Calibration data. The field test report should include 
calibration data for all

[[Page 109]]

probes and test equipment used in the field test. At a minimum, the 
probe calibration data reported to the Agency should include the 
following:

    (a) Date of calibration
    (b) Probe type
    (c) Probe identification number(s) or code(s)
    (d) Probe inspection sheets
    (e) Pressure measurements and calculations used to obtain 
calibration coefficients in accordance with section 10.6 of this method
    (f) Description and diagram of wind tunnel used for the calibration, 
including dimensions of cross-sectional area and position and size of 
the test section
    (g) Documentation of wind tunnel qualification tests performed in 
accordance with section 10.1 of this method

    16.1.5 Quality assurance. Specific quality assurance and quality 
control procedures used during the test should be described.

                           17.0 Bibliography.

    (1) 40 CFR Part 60, Appendix A, Method 1--Sample and velocity 
traverses for stationary sources.
    (2) 40 CFR Part 60, Appendix A, Method 2--Determination of stack gas 
velocity and volumetric flow rate (Type S pitot tube) .
    (3) 40 CFR Part 60, Appendix A, Method 2F--Determination of stack 
gas velocity and volumetric flow rate with three-dimensional probes.
    (4) 40 CFR Part 60, Appendix A, Method 2H--Determination of stack 
gas velocity taking into account velocity decay near the stack wall.
    (5) 40 CFR Part 60, Appendix A, Method 3--Gas analysis for carbon 
dioxide, oxygen, excess air, and dry molecular weight.
    (6) 40 CFR Part 60, Appendix A, Method 3A--Determination of oxygen 
and carbon dioxide concentrations in emissions from stationary sources 
(instrumental analyzer procedure).
    (7) 40 CFR Part 60, Appendix A, Method 4--Determination of moisture 
content in stack gases.
    (8) Emission Measurement Center (EMC) Approved Alternative Method 
(ALT-011) ``Alternative Method 2 Thermocouple Calibration Procedure.''
    (9) Electric Power Research Institute, Interim Report EPRI TR-
106698, ``Flue Gas Flow Rate Measurement Errors,'' June 1996.
    (10) Electric Power Research Institute, Final Report EPRI TR-108110, 
``Evaluation of Heat Rate Discrepancy from Continuous Emission 
Monitoring Systems,'' August 1997.
    (11) Fossil Energy Research Corporation, Final Report, ``Velocity 
Probe Tests in Non-axial Flow Fields,'' November 1998, Prepared for the 
U.S. Environmental Protection Agency.
    (12) Fossil Energy Research Corporation, ``Additional Swirl Tunnel 
Tests: E-DAT and T-DAT Probes,'' February 24, 1999, Technical Memorandum 
Prepared for U.S. Environmental Protection Agency, P.O. No. 7W-1193-
NALX.
    (13) Massachusetts Institute of Technology, Report WBWT-TR-1317, 
``Calibration of Eight Wind Speed Probes Over a Reynolds Number Range of 
46,000 to 725,000 Per Foot, Text and Summary Plots,'' Plus appendices, 
October 15, 1998, Prepared for The Cadmus Group, Inc.
    (14) National Institute of Standards and Technology, Special 
Publication 250, ``NIST Calibration Services Users Guide 1991,'' Revised 
October 1991, U.S. Department of Commerce, p. 2.
    (15) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four Prandtl Probes, Four 
S-Type Probes, Four French Probes, Four Modified Kiel Probes,'' Prepared 
for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (16) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed In-strumentation, Five Autoprobes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (17) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Eight Spherical Probes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (18) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four DAT Probes, `` 
Prepared for the U.S. Environmental Protection Agency under IAG 
DW13938432-01-0.
    (19) Norfleet, S.K., ``An Evaluation of Wall Effects on Stack Flow 
Velocities and Related Overestimation Bias in EPA's Stack Flow Reference 
Methods,'' EPRI CEMS User's Group Meeting, New Orleans, Louisiana, May 
13-15, 1998.
    (20) Page, J.J., E.A. Potts, and R.T. Shigehara, ``3-D Pitot Tube 
Calibration Study,'' EPA Contract No. 68D10009, Work Assignment No. I-
121, March 11, 1993.
    (21) Shigehara, R.T., W.F. Todd, and W.S. Smith, ``Significance of 
Errors in Stack Sampling Measurements,'' Presented at the Annual Meeting 
of the Air Pollution Control Association, St. Louis, Missouri, June 
1419, 1970.
    (22) The Cadmus Group, Inc., May 1999, ``EPA Flow Reference Method 
Testing and Analysis: Findings Report,'' EPA/430-R-99-009.
    (23) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, DeCordova Steam 
Electric Station, Volume

[[Page 110]]

I: Test Description and Appendix A (Data Distribution Package),'' EPA/
430-R-98-015a.
    (24) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, Lake Hubbard Steam 
Electric Station, Volume I: Test Description and Appendix A (Data 
Distribution Package),'' EPA/430-R-98-017a.
    (25) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Pennsylvania Electric Co., G.P.U. 
Genco Homer City Station: Unit 1, Volume I: Test Description and 
Appendix A (Data Distribution Package),'' EPA/430-R-98-018a.
    (26) The Cadmus Group, Inc., 1997, ``EPA Flow Reference Method 
Testing and Analysis: Wind Tunnel Experimental Results,'' EPA/430-R-97-
013.

                              18.0 Annexes

    Annex A, C, and D describe recommended procedures for meeting 
certain provisions in sections 8.3, 10.4, and 10.5 of this method. Annex 
B describes procedures to be followed when using the protractor wheel 
and pointer assembly to measure yaw angles, as provided under section 
8.9.1.
    18.1 Annex A--Rotational Position Check. The following are 
recommended procedures that may be used to satisfy the rotational 
position check requirements of section 8.3 of this method and to 
determine the angle-measuring device rotational offset 
(RADO).
    18.1.1 Rotational position check with probe outside stack. Where 
physical constraints at the sampling location allow full assembly of the 
probe outside the stack and insertion into the test port, the following 
procedures should be performed before the start of testing. Two angle-
measuring devices that meet the specifications in section 6.2.1 or 6.2.3 
are required for the rotational position check. An angle measuring 
device whose position can be independently adjusted (e.g., by means of a 
set screw) after being locked into position on the probe sheath shall 
not be used for this check unless the independent adjustment is set so 
that the device performs exactly like a device without the capability 
for independent adjustment. That is, when aligned on the probe such a 
device must give the same reading as a device that does not have the 
capability of being independently adjusted. With the fully assembled 
probe (including probe shaft extensions, if any) secured in a horizontal 
position, affix one yaw angle-measuring device to the probe sheath and 
lock it into position on the reference scribe line specified in section 
6.1.5.1. Position the second angle-measuring device using the procedure 
in section 18.1.1.1 or 18.1.1.2.
    18.1.1.1 Marking procedure. The procedures in this section should be 
performed at each location on the fully assembled probe where the yaw 
angle-measuring device will be mounted during the velocity traverse. 
Place the second yaw angle-measuring device on the main probe sheath (or 
extension) at the position where a yaw angle will be measured during the 
velocity traverse. Adjust the position of the second angle-measuring 
device until it indicates the same angle (1[deg]) 
as the reference device, and affix the second device to the probe sheath 
(or extension). Record the angles indicated by the two angle-measuring 
devices on a form similar to table 2G-2. In this position, the second 
angle-measuring device is considered to be properly positioned for yaw 
angle measurement. Make a mark, no wider than 1.6 mm (\1/16\ in.), on 
the probe sheath (or extension), such that the yaw angle-measuring 
device can be re-affixed at this same properly aligned position during 
the velocity traverse.
    18.1.1.2 Procedure for probe extensions with scribe lines. If, 
during a velocity traverse the angle-measuring device will be affixed to 
a probe extension having a scribe line as specified in section 6.1.5.2, 
the following procedure may be used to align the extension's scribe line 
with the reference scribe line instead of marking the extension as 
described in section 18.1.1.1. Attach the probe extension to the main 
probe. Align and lock the second angle-measuring device on the probe 
extension's scribe line. Then, rotate the extension until both measuring 
devices indicate the same angle (1[deg]). Lock the 
extension at this rotational position. Record the angles indicated by 
the two angle-measuring devices on a form similar to table 2G-2. An 
angle-measuring device may be aligned at any position on this scribe 
line during the velocity traverse, if the scribe line meets the 
alignment specification in section 6.1.5.3.
    18.1.1.3 Post-test rotational position check. If the fully assembled 
probe includes one or more extensions, the following check should be 
performed immediately after the completion of a velocity traverse. At 
the discretion of the tester, additional checks may be conducted after 
completion of testing at any sample port. Without altering the alignment 
of any of the components of the probe assembly used in the velocity 
traverse, secure the fully assembled probe in a horizontal position. 
Affix an angle-measuring device at the reference scribe line specified 
in section 6.1.5.1. Use the other angle-measuring device to check the 
angle at each location where the device was checked prior to testing. 
Record the readings from the two angle-measuring devices.
    18.1.2 Rotational position check with probe in stack. This section 
applies only to probes that, due to physical constraints, cannot be 
inserted into the test port as fully assembled with all necessary 
extensions needed to reach the inner-most traverse point(s).
    18.1.2.1 Perform the out-of-stack procedure in section 18.1.1 on the 
main probe and

[[Page 111]]

any attached extensions that will be initially inserted into the test 
port.
    18.1.2.2 Use the following procedures to perform additional 
rotational position check(s) with the probe in the stack, each time a 
probe extension is added. Two angle-measuring devices are required. The 
first of these is the device that was used to measure yaw angles at the 
preceding traverse point, left in its properly aligned measurement 
position. The second angle-measuring device is positioned on the added 
probe extension. Use the applicable procedures in section 18.1.1.1 or 
18.1.1.2 to align, adjust, lock, and mark (if necessary) the position of 
the second angle-measuring device to within 1[deg] 
of the first device. Record the readings of the two devices on a form 
similar to Table 2G-2.
    18.1.2.3 The procedure in section 18.1.2.2 should be performed at 
the first port where measurements are taken. The procedure should be 
repeated each time a probe extension is re-attached at a subsequent 
port, unless the probe extensions are designed to be locked into a 
mechanically fixed rotational position (e.g., through use of 
interlocking grooves), which can be reproduced from port to port as 
specified in section 8.3.5.2.
    18.2 Annex B--Angle Measurement Protocol for Protractor Wheel and 
Pointer Device. The following procedure shall be used when a protractor 
wheel and pointer assembly, such as the one described in section 6.2.2 
and illustrated in Figure 2G-5 is used to measure the yaw angle of flow. 
With each move to a new traverse point, unlock, re-align, and re-lock 
the probe, angle-pointer collar, and protractor wheel to each other. At 
each such move, particular attention is required to ensure that the 
scribe line on the angle pointer collar is either aligned with the 
reference scribe line on the main probe sheath or is at the rotational 
offset position established under section 8.3.1. The procedure consists 
of the following steps:
    18.2.1 Affix a protractor wheel to the entry port for the test probe 
in the stack or duct.
    18.2.2 Orient the protractor wheel so that the 0[deg] mark 
corresponds to the longitudinal axis of the stack or duct. For stacks, 
vertical ducts, or ports on the side of horizontal ducts, use a digital 
inclinometer meeting the specifications in section 6.2.1 to locate the 
0[deg] orientation. For ports on the top or bottom of horizontal ducts, 
identify the longitudinal axis at each test port and permanently mark 
the duct to indicate the 0[deg] orientation. Once the protractor wheel 
is properly aligned, lock it into position on the test port.
    18.2.3 Move the pointer assembly along the probe sheath to the 
position needed to take measurements at the first traverse point. Align 
the scribe line on the pointer collar with the reference scribe line or 
at the rotational offset position established under section 8.3.1. 
Maintaining this rotational alignment, lock the pointer device onto the 
probe sheath. Insert the probe into the entry port to the depth needed 
to take measurements at the first traverse point.
    18.2.4 Perform the yaw angle determination as specified in sections 
8.9.3 and 8.9.4 and record the angle as shown by the pointer on the 
protractor wheel. Then, take velocity pressure and temperature 
measurements in accordance with the procedure in section 8.9.5. Perform 
the alignment check described in section 8.9.6.
    18.2.5 After taking velocity pressure measurements at that traverse 
point, unlock the probe from the collar and slide the probe through the 
collar to the depth needed to reach the next traverse point.
    18.2.6 Align the scribe line on the pointer collar with the 
reference scribe line on the main probe or at the rotational offset 
position established under section 8.3.1. Lock the collar onto the 
probe.
    18.2.7 Repeat the steps in sections 18.2.4 through 18.2.6 at the 
remaining traverse points accessed from the current stack or duct entry 
port.
    18.2.8 After completing the measurement at the last traverse point 
accessed from a port, verify that the orientation of the protractor 
wheel on the test port has not changed over the course of the traverse 
at that port. For stacks, vertical ducts, or ports on the side of 
horizontal ducts, use a digital inclinometer meeting the specifications 
in section 6.2.1 to check the rotational position of the 0[deg] mark on 
the protractor wheel. For ports on the top or bottom of horizontal 
ducts, observe the alignment of the angle wheel 0[deg] mark relative to 
the permanent 0[deg] mark on the duct at that test port. If these 
observed comparisons exceed 2[deg] of 0[deg], all 
angle and pressure measurements taken at that port since the protractor 
wheel was last locked into position on the port shall be repeated.
    18.2.9 Move to the next stack or duct entry port and repeat the 
steps in sections 18.2.1 through 18.2.8.
    18.3 Annex C--Guideline for Reference Scribe Line Placement. Use of 
the following guideline is recommended to satisfy the requirements of 
section 10.4 of this method. The rotational position of the reference 
scribe line should be either 90[deg] or 180[deg] from the probe's impact 
pressure port. For Type-S probes, place separate scribe lines, on 
opposite sides of the probe sheath, if both the A and B sides of the 
pitot tube are to be used for yaw angle measurements.
    18.4 Annex D--Determination of Reference Scribe Line Rotational 
Offset. The following procedures are recommended for determining the 
magnitude and sign of a probe's reference scribe line rotational offset, 
RSLO. Separate procedures are provided for two types of 
angle-measuring devices:

[[Page 112]]

digital inclinometers and protractor wheel and pointer assemblies.
    18.4.1 Perform the following procedures on the main probe with all 
devices that will be attached to the main probe in the field [such as 
thermocouples, resistance temperature detectors (RTDs), or sampling 
nozzles] that may affect the flow around the probe head. Probe shaft 
extensions that do not affect flow around the probe head need not be 
attached during calibration.
    18.4.2 The procedures below assume that the wind tunnel duct used 
for probe calibration is horizontal and that the flow in the calibration 
wind tunnel is axial as determined by the axial flow verification check 
described in section 10.1.2. Angle-measuring devices are assumed to 
display angles in alternating 0[deg] to 90[deg] and 90[deg] to 0[deg] 
intervals. If angle-measuring devices with other readout conventions are 
used or if other calibration wind tunnel duct configurations are used, 
make the appropriate calculational corrections. For Type-S probes, 
calibrate the A-side and B-sides separately, using the appropriate 
scribe line (see section 18.3, above), if both the A and B sides of the 
pitot tube are to be used for yaw angle determinations.
    18.4.2.1 Position the angle-measuring device in accordance with one 
of the following procedures.
    18.4.2.1.1 If using a digital inclinometer, affix the calibrated 
digital inclinometer to the probe. If the digital inclinometer can be 
independently adjusted after being locked into position on the probe 
sheath (e.g., by means of a set screw), the independent adjustment must 
be set so that the device performs exactly like a device without the 
capability for independent adjustment. That is, when aligned on the 
probe the device must give the same readings as a device that does not 
have the capability of being independently adjusted. Either align it 
directly on the reference scribe line or on a mark aligned with the 
scribe line determined according to the procedures in section 18.1.1.1. 
Maintaining this rotational alignment, lock the digital inclinometer 
onto the probe sheath.
    18.4.2.1.2 If using a protractor wheel and pointer device, orient 
the protractor wheel on the test port so that the 0[deg] mark is aligned 
with the longitudinal axis of the wind tunnel duct. Maintaining this 
alignment, lock the wheel into place on the wind tunnel test port. Align 
the scribe line on the pointer collar with the reference scribe line or 
with a mark aligned with the reference scribe line, as determined under 
section 18.1.1.1. Maintaining this rotational alignment, lock the 
pointer device onto the probe sheath.
    18.4.2.2 Zero the pressure-measuring device used for yaw nulling.
    18.4.2.3 Insert the probe assembly into the wind tunnel through the 
entry port, positioning the probe's impact port at the calibration 
location. Check the responsiveness of the pressure-measuring device to 
probe rotation, taking corrective action if the response is 
unacceptable.
    18.4.2.4 Ensure that the probe is in a horizontal position using a 
carpenter's level.
    18.4.2.5 Rotate the probe either clockwise or counterclockwise until 
a yaw null [zero [Delta]P for a Type S probe or zero (P2-
P3) for a 3-D probe] is obtained. If using a Type S probe 
with an attached thermocouple, the direction of the probe rotation shall 
be such that the thermocouple is located downstream of the probe 
pressure ports at the yaw-null position.
    18.4.2.6 Read and record the value of [theta]null, the 
angle indicated by the angle-measuring device at the yaw-null position. 
Record the angle reading on a form similar to Table 2G-6. Do not 
associate an algebraic sign with this reading.
    18.4.2.7 Determine the magnitude and algebraic sign of the reference 
scribe line rotational offset, RSLO. The magnitude of 
RSLO will be equal to either [theta]null or 
(90[deg]-[theta]null), depending on the type of probe being 
calibrated and the type of angle-measuring device used. (See Table 2G-7 
for a summary.) The algebraic sign of RSLO will either be 
positive if the rotational position of the reference scribe line is 
clockwise or negative if counterclockwise with respect to the probe's 
yaw-null position. Figure 2G-10 illustrates how the magnitude and sign 
of RSLO are determined.
    18.4.2.8 Perform the steps in sections 18.3.2.3 through 18.3.2.7 
twice at each of the two calibration velocities selected for the probe 
under section 10.6. Record the values of RSLO in a form 
similar to Table 2G-6.
    18.4.2.9 The average of all RSLO values is the reference 
scribe line rotational offset for the probe.

[[Page 113]]

[GRAPHIC] [TIFF OMITTED] TR14MY99.020


[[Page 114]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.021


[[Page 115]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.022


[[Page 116]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.023


[[Page 117]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.024


[[Page 118]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.025


[[Page 119]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.026


[[Page 120]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.027


[[Page 121]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.028


[[Page 122]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.029


[[Page 123]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.030


[[Page 124]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.031


[[Page 125]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.032


[[Page 126]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.033

[GRAPHIC] [TIFF OMITTED] TR14MY99.034


[[Page 127]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.035


[[Page 128]]



   Method 2H--Determination of Stack Gas Velocity Taking Into Account 
                   Velocity Decay Near the Stack Wall

                        1.0 Scope and Application

    1.1 This method is applicable in conjunction with Methods 2, 2F, and 
2G (40 CFR Part 60, Appendix A) to account for velocity decay near the 
wall in circular stacks and ducts.
    1.2 This method is not applicable for testing stacks and ducts less 
than 3.3 ft (1.0 m) in diameter.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A wall effects adjustment factor is determined. It is used to 
adjust the average stack gas velocity obtained under Method 2, 2F, or 2G 
of this appendix to take into account velocity decay near the stack or 
duct wall.
    2.2 The method contains two possible procedures: a calculational 
approach which derives an adjustment factor from velocity measurements 
and a default procedure which assigns a generic adjustment factor based 
on the construction of the stack or duct.
    2.2.1 The calculational procedure derives a wall effects adjustment 
factor from velocity measurements taken using Method 2, 2F, or 2G at 16 
(or more) traverse points specified under Method 1 of this appendix and 
a total of eight (or more) wall effects traverse points specified under 
this method. The calculational procedure based on velocity measurements 
is not applicable for horizontal circular ducts where build-up of 
particulate matter or other material in the bottom of the duct is 
present.
    2.2.2 A default wall effects adjustment factor of 0.9900 for brick 
and mortar stacks and 0.9950 for all other types of stacks and ducts may 
be used without taking wall effects measurements in a stack or duct.
    2.3 When the calculational procedure is conducted as part of a 
relative accuracy test audit (RATA) or other multiple-run test 
procedure, the wall effects adjustment factor derived from a single 
traverse (i.e., single RATA run) may be applied to all runs of the same 
RATA without repeating the wall effects measurements. Alternatively, 
wall effects adjustment factors may be derived for several traverses and 
an average wall effects adjustment factor applied to all runs of the 
same RATA.

                            3.0 Definitions.

    3.1 Complete wall effects traverse means a traverse in which 
measurements are taken at drem (see section 3.3) and at 1-in. 
intervals in each of the four Method 1 equal-area sectors closest to the 
wall, beginning not farther than 4 in. (10.2 cm) from the wall and 
extending either (1) across the entire width of the Method 1 equal-area 
sector or (2) for stacks or ducts where this width exceeds 12 in. (30.5 
cm) (i.e., stacks or ducts greater than or equal to 15.6 ft [4.8 m] in 
diameter), to a distance of not less than 12 in. (30.5 cm) from the 
wall. Note: Because this method specifies that measurements must be 
taken at whole number multiples of 1 in. from a stack or duct wall, for 
clarity numerical quantities in this method are expressed in English 
units followed by metric units in parentheses. To enhance readability, 
hyphenated terms such as ``1-in. intervals'' or ``1-in. incremented,'' 
are expressed in English units only.
    3.2 dlast Depending on context, dlast means either (1) the distance 
from the wall of the last 1-in. incremented wall effects traverse point 
or (2) the traverse point located at that distance (see Figure 2H-2).
    3.3 drem Depending on context, drem means either (1) the distance 
from the wall of the centroid of the area between dlast and the interior 
edge of the Method 1 equal-area sector closest to the wall or (2) the 
traverse point located at that distance (see Figure 2H-2).
    3.4 ``May,'' ``Must,'' ``Shall,'' ``Should,'' and the imperative 
form of verbs.
    3.4.1 ``May'' is used to indicate that a provision of this method is 
optional.
    3.4.2 ``Must,'' ``Shall,'' and the imperative form of verbs (such as 
``record'' or ``enter'') are used to indicate that a provision of this 
method is mandatory.
    3.4.3 ``Should'' is used to indicate that a provision of this method 
is not mandatory but is highly recommended as good practice.
    3.5 Method 1 refers to 40 CFR part 60, appendix A, ``Method 1--
Sample and velocity traverses for stationary sources.''
    3.6 Method 1 exterior equal-area sector and Method 1 equal-area 
sector closest to the wall mean any one of the four equal-area sectors 
that are closest to the wall for a circular stack or duct laid out in 
accordance with section 2.3.1 of Method 1 (see Figure 2H-1).
    3.7 Method 1 interior equal-area sector means any of the equal-area 
sectors other than the Method 1 exterior equal-area sectors (as defined 
in section 3.6) for a circular stack or duct laid out in accordance with 
section 2.3.1 of Method 1 (see Figure 2H-1).
    3.8 Method 1 traverse point and Method 1 equal-area traverse point 
mean a traverse point located at the centroid of an equal-area sector of 
a circular stack laid out in accordance with section 2.3.1 of Method 1.
    3.9 Method 2 refers to 40 CFR part 60, appendix A, ``Method 2--
Determination of stack gas velocity and volumetric flow rate (Type S 
pitot tube).''
    3.10 Method 2F refers to 40 CFR part 60, appendix A, ``Method 2F--
Determination of stack gas velocity and volumetric flow rate with three-
dimensional probes.''

[[Page 129]]

    3.11 Method 2G refers to 40 CFR part 60, appendix A, ``Method 2G--
Determination of stack gas velocity and volumetric flow rate with two-
dimensional probes.''
    3.12 1-in. incremented wall effects traverse point means any of the 
wall effects traverse points that are located at 1-in. intervals, i.e., 
traverse points d1 through dlast (see Figure 2H-2).
    3.13 Partial wall effects traverse means a traverse in which 
measurements are taken at fewer than the number of traverse points 
required for a ``complete wall effects traverse'' (as defined in section 
3.1), but are taken at a minimum of two traverse points in each Method 1 
equal-area sector closest to the wall, as specified in section 8.2.2.
    3.14 Relative accuracy test audit (RATA) is a field test procedure 
performed in a stack or duct in which a series of concurrent 
measurements of the same stack gas stream is taken by a reference method 
and an installed monitoring system. A RATA usually consists of series of 
9 to 12 sets of such concurrent measurements, each of which is referred 
to as a RATA run. In a volumetric flow RATA, each reference method run 
consists of a complete traverse of the stack or duct.
    3.15 Wall effects-unadjusted average velocity means the average 
stack gas velocity, not accounting for velocity decay near the wall, as 
determined in accordance with Method 2, 2F, or 2G for a Method 1 
traverse consisting of 16 or more points.
    3.16 Wall effects-adjusted average velocity means the average stack 
gas velocity, taking into account velocity decay near the wall, as 
calculated from measurements at 16 or more Method 1 traverse points and 
at the additional wall effects traverse points specified in this method.
    3.17 Wall effects traverse point means a traverse point located in 
accordance with sections 8.2.2 or 8.2.3 of this method.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This method does not purport to address all of the health and 
safety considerations associated with its use. It is the responsibility 
of the user of this method to establish appropriate health and safety 
practices and to determine the applicability of occupational health and 
safety regulatory requirements prior to performing this method.

                       6.0 Equipment and Supplies

    6.1 The provisions pertaining to equipment and supplies in the 
method that is used to take the traverse point measurements (i.e., 
Method 2, 2F, or 2G) are applicable under this method.

                  7.0 Reagents and Standards [Reserved]

                   8.0 Sample Collection and Analysis

    8.1 Default Wall Effects Adjustment Factors. A default wall effects 
adjustment factor of 0.9900 for brick and mortar stacks and 0.9950 for 
all other types of stacks and ducts may be used without conducting the 
following procedures.
    8.2 Traverse Point Locations. Determine the location of the Method 1 
traverse points in accordance with section 8.2.1 and the location of the 
traverse points for either a partial wall effects traverse in accordance 
with section 8.2.2 or a complete wall effects traverse in accordance 
with section 8.2.3.
    8.2.1 Method 1 equal-area traverse point locations. Determine the 
location of the Method 1 equal-area traverse points for a traverse 
consisting of 16 or more points using Table 1-2 (Location of Traverse 
Points in Circular Stacks) of Method 1.
    8.2.2 Partial wall effects traverse. For a partial wall effects 
traverse, measurements must be taken at a minimum of the following two 
wall effects traverse point locations in all four Method 1 equal-area 
sectors closest to the wall: (1) 1 in. (2.5 cm) from the wall (except as 
provided in section 8.2.2.1) and (2) drem, as determined 
using Equation 2H-1 or 2H-2 (see section 8.2.2.2).
    8.2.2.1 If the probe cannot be positioned at 1 in. (2.5 cm) from the 
wall (e.g., because of insufficient room to withdraw the probe shaft) or 
if velocity pressure cannot be detected at 1 in. (2.5 cm) from the wall 
(for any reason other than build-up of particulate matter in the bottom 
of a duct), take measurements at the 1-in. incremented wall effects 
traverse point closest to the wall where the probe can be positioned and 
velocity pressure can be detected.
    8.2.2.2 Calculate the distance of drem from the wall to 
within \1/4\ in. (6.4 mm) using Equation 2H-1 or 
Equation 2H-2 (for a 16-point traverse).
[GRAPHIC] [TIFF OMITTED] TR14MY99.074

Where:

r=the stack or duct radius determined from direct measurement of the 
stack or duct diameter in accordance with section 8.6 of Method 2F or 
Method 2G, in. (cm);
p=the number of Method 1 equal-area traverse points on a diameter, p 
= 8 (e.g., for a 16-point traverse, p=8); dlast and drem are 
defined in sections 3.2 and 3.3 respectively, in. (cm).

For a 16-point Method 1 traverse, Equation 2H-1 becomes:

[[Page 130]]

[GRAPHIC] [TIFF OMITTED] TR14MY99.075

    8.2.2.3 Measurements may be taken at any number of additional wall 
effects traverse points, with the following provisions.
    (a) dlast must not be closer to the center of the stack or duct than 
the distance of the interior edge (boundary), db, of the Method 1 equal-
area sector closest to the wall (see Figure 2H-2 or 2H-3). That is,

Where:
[GRAPHIC] [TIFF OMITTED] TR14MY99.076

Table 2H-1 shows db as a function of the stack or duct radius, r, for 
traverses ranging from 16 to 48 points (i.e., for values of p ranging 
from 8 to 24).
    (b) Each point must be located at a distance that is a whole number 
(e.g., 1, 2, 3) multiple of 1 in. (2.5 cm).
    (c) Points do not have to be located at consecutive 1-in. intervals. 
That is, one or more 1-in. incremented points may be skipped. For 
example, it would be acceptable for points to be located at 1 in. (2.5 
cm), 3 in. (7.6 cm), 5 in. (12.7 cm), dlast, and drem; or at 1 in. (2.5 
cm), 2 in. (5.1 cm), 4 in. (10.2 cm), 7 in. (17.8 cm), dlast, and drem. 
Follow the instructions in section 8.7.1.2 of this method for recording 
results for wall effects traverse points that are skipped. It should be 
noted that the full extent of velocity decay may not be accounted for if 
measurements are not taken at all 1-in. incremented points close to the 
wall.
    8.2.3 Complete wall effects traverse. For a complete wall effects 
traverse, measurements must be taken at the following points in all four 
Method 1 equal-area sectors closest to the wall.
    (a) The 1-in. incremented wall effects traverse point closest to the 
wall where the probe can be positioned and velocity can be detected, but 
no farther than 4 in. (10.2 cm) from the wall.
    (b) Every subsequent 1-in. incremented wall effects traverse point 
out to the interior edge of the Method 1 equal-area sector or to 12 in. 
(30.5 cm) from the wall, whichever comes first. Note: In stacks or ducts 
with diameters greater than 15.6 ft (4.8 m) the interior edge of the 
Method 1 equal-area sector is farther from the wall than 12 in. (30.5 
cm).
    (c) drem, as determined using Equation 2H-1 or 2H-2 (as 
applicable). Note: For a complete traverse of a stack or duct with a 
diameter less than 16.5 ft (5.0 m), the distance between drem 
and dlast is less than or equal to \1/2\ in. (12.7 mm). As 
discussed in section 8.2.4.2, when the distance between drem 
and dlast is less than or equal to \1/2\ in. (12.7 mm), the 
velocity measured at dlast may be used for drem. 
Thus, it is not necessary to calculate the distance of drem 
or to take measurements at drem when conducting a complete 
traverse of a stack or duct with a diameter less than 16.5 ft (5.0 m).
    8.2.4 Special considerations. The following special considerations 
apply when the distance between traverse points is less than or equal to 
\1/2\ in. (12.7 mm).
    8.2.4.1 A wall effects traverse point and the Method 1 traverse 
point. If the distance between a wall effects traverse point and the 
Method 1 traverse point is less than or equal to \1/2\ in. (12.7 mm), 
taking measurements at both points is allowed but not required or 
recommended; if measurements are taken at only one point, take the 
measurements at the point that is farther from the wall and use the 
velocity obtained at that point as the value for both points (see 
sections 8.2.3 and 9.2 for related requirements).
    8.2.4.2 drem and dlast. If the distance 
between drem and dlast is less than or equal to 
\1/2\ in. (12.7 mm), taking measurements at drem is allowed 
but not required or recommended; if measurements are not taken at 
drem, the measured velocity value at dlast must be 
used as the value for both dlast and drem.
    8.3 Traverse Point Sampling Order and Probe Selection. Determine the 
sampling order of the Method 1 and wall effects traverse points and 
select the appropriate probe for the measurements, taking into account 
the following considerations.
    8.3.1 Traverse points on any radius may be sampled in either 
direction (i.e., from the wall toward the center of the stack or duct, 
or vice versa).
    8.3.2 To reduce the likelihood of velocity variations during the 
time of the traverse and the attendant potential impact on the wall 
effects-adjusted and unadjusted average velocities, the following 
provisions of this method shall be met.
    8.3.2.1 Each complete set of Method 1 and wall effects traverse 
points accessed from the same port shall be sampled without 
interruption. Unless traverses are performed simultaneously in all ports 
using separate probes at each port, this provision disallows first 
sampling all Method 1 points at all ports and then sampling all the wall 
effects points.
    8.3.2.2 The entire integrated Method 1 and wall effects traverse 
across all test ports shall be as short as practicable, consistent with 
the measurement system response time

[[Page 131]]

(see section 8.4.1.1) and sampling (see section 8.4.1.2) provisions of 
this method.
    8.3.3 It is recommended but not required that in each Method 1 
equal-area sector closest to the wall, the Method 1 equal-area traverse 
point should be sampled in sequence between the adjacent wall effects 
traverse points. For example, for the traverse point configuration shown 
in Figure 2H-2, it is recommended that the Method 1 equal-area traverse 
point be sampled between dlast and drem. In this 
example, if the traverse is conducted from the wall toward the center of 
the stack or duct, it is recommended that measurements be taken at 
points in the following order: d1, d2, 
dlast, the Method 1 traverse point, drem, and then 
at the traverse points in the three Method 1 interior equal-area 
sectors.
    8.3.4 The same type of probe must be used to take measurements at 
all Method 1 and wall effects traverse points. However, different copies 
of the same type of probe may be used at different ports (e.g., Type S 
probe 1 at port A, Type S probe 2 at port B) or at different traverse 
points accessed from a particular port (e.g., Type S probe 1 for Method 
1 interior traverse points accessed from port A, Type S probe 2 for wall 
effects traverse points and the Method 1 exterior traverse point 
accessed from port A). The identification number of the probe used to 
obtain measurements at each traverse point must be recorded.
    8.4 Measurements at Method 1 and Wall Effects Traverse Points. 
Conduct measurements at Method 1 and wall effects traverse points in 
accordance with Method 2, 2F, or 2G and in accordance with the 
provisions of the following subsections (some of which are included in 
Methods 2F and 2G but not in Method 2), which are particularly important 
for wall effects testing.
    8.4.1 Probe residence time at wall effects traverse points. Due to 
the steep temperature and pressure gradients that can occur close to the 
wall, it is very important for the probe residence time (i.e., the total 
time spent at a traverse point) to be long enough to ensure collection 
of representative temperature and pressure measurements. The provisions 
of Methods 2F and 2G in the following subsections shall be observed.
    8.4.1.1 System response time. Determine the response time of each 
probe measurement system by inserting and positioning the ``cold'' probe 
(at ambient temperature and pressure) at any Method 1 traverse point. 
Read and record the probe differential pressure, temperature, and 
elapsed time at 15-second intervals until stable readings for both 
pressure and temperature are achieved. The response time is the longer 
of these two elapsed times. Record the response time.
    8.4.1.2 Sampling. At the start of testing in each port (i.e., after 
a probe has been inserted into the stack gas stream), allow at least the 
response time to elapse before beginning to take measurements at the 
first traverse point accessed from that port. Provided that the probe is 
not removed from the stack gas stream, measurements may be taken at 
subsequent traverse points accessed from the same test port without 
waiting again for the response time to elapse.
    8.4.2 Temperature measurement for wall effects traverse points. 
Either (1) take temperature measurements at each wall effects traverse 
point in accordance with the applicable provisions of Method 2, 2F, or 
2G; or (2) use the temperature measurement at the Method 1 traverse 
point closest to the wall as the temperature measurement for all the 
wall effects traverse points in the corresponding equal-area sector.
    8.4.3 Non-detectable velocity pressure at wall effects traverse 
points. If the probe cannot be positioned at a wall effects traverse 
point or if no velocity pressure can be detected at a wall effects 
point, measurements shall be taken at the first subsequent wall effects 
traverse point farther from the wall where velocity can be detected. 
Follow the instructions in section 8.7.1.2 of this method for recording 
results for wall effects traverse points where velocity pressure cannot 
be detected. It should be noted that the full extent of velocity decay 
may not be accounted for if measurements are not taken at the 1-in. 
incremented wall effects traverse points closest to the wall.
    8.5 Data Recording. For each wall effects and Method 1 traverse 
point where measurements are taken, record all pressure, temperature, 
and attendant measurements prescribed in section 3 of Method 2 or 
section 8.0 of Method 2F or 2G, as applicable.
    8.6 Point Velocity Calculation. For each wall effects and Method 1 
traverse point, calculate the point velocity value (vi) in accordance 
with sections 12.1 and 12.2 of Method 2F for tests using Method 2F and 
in accordance with sections 12.1 and 12.2 of Method 2G for tests using 
Method 2 and Method 2G. (Note that the term (vi) in this method 
corresponds to the term (va(i)) in Methods 2F and 2G.) When the 
equations in the indicated sections of Method 2G are used in deriving 
point velocity values for Method 2 tests, set the value of the yaw 
angles appearing in the equations to 0[deg].
    8.7 Tabulating Calculated Point Velocity Values for Wall Effects 
Traverse Points. Enter the following values in a hardcopy or electronic 
form similar to Form 2H-1 (for 16-point Method 1 traverses) or Form 2H-2 
(for Method 1 traverses consisting of more than 16 points). A separate 
form must be completed for each of the four Method 1 equal-area sectors 
that are closest to the wall.
    (a) Port ID (e.g., A, B, C, or D)
    (b) Probe type
    (c) Probe ID

[[Page 132]]

    (d) Stack or duct diameter in ft (m) (determined in accordance with 
section 8.6 of Method 2F or Method 2G)
    (e) Stack or duct radius in in. (cm)
    (f) Distance from the wall of wall effects traverse points at 1-in. 
intervals, in ascending order starting with 1 in. (2.5 cm) (column A of 
Form 2H-1 or 2H-2)
    (g) Point velocity values (vd) for 1-in. incremented traverse points 
(see section 8.7.1), including dlast (see section 8.7.2)
    (h) Point velocity value (vdrem) at drem (see section 8.7.3).
    8.7.1 Point velocity values at wall effects traverse points other 
than dlast. For every 1-in. incremented wall effects traverse point 
other than dlast, enter in column B of Form 2H-1 or 2H-2 either the 
velocity measured at the point (see section 8.7.1.1) or the velocity 
measured at the first subsequent traverse point farther from the wall 
(see section 8.7.1.2). A velocity value must be entered in column B of 
Form 2H-1 or 2H-2 for every 1-in. incremented traverse point from d1 
(representing the wall effects traverse point 1 in. [2.5 cm] from the 
wall) to dlast.
    8.7.1.1 For wall effects traverse points where the probe can be 
positioned and velocity pressure can be detected, enter the value 
obtained in accordance with section 8.6.
    8.7.1.2 For wall effects traverse points that were skipped [see 
section 8.2.2.3(c)] and for points where the probe cannot be positioned 
or where no velocity pressure can be detected, enter the value obtained 
at the first subsequent traverse point farther from the wall where 
velocity pressure was detected and measured and follow the entered value 
with a ``flag,'' such as the notation ``NM,'' to indicate that ``no 
measurements'' were actually taken at this point.
    8.7.2 Point velocity value at dlast. For dlast, enter in column B of 
Form 2H-1 or 2H-2 the measured value obtained in accordance with section 
8.6.
    8.7.3 Point velocity value (vdrem) at drem. Enter the point velocity 
value obtained at drem in column G of row 4a in Form 2H-1 or 2H-2. If 
the distance between drem and dlast is less than or equal to \1/2\ in. 
(12.7 mm), the measured velocity value at dlast may be used as the value 
at drem (see section 8.2.4.2).

                          9.0 Quality Control.

    9.1 Particulate Matter Build-up in Horizontal Ducts. Wall effects 
testing of horizontal circular ducts should be conducted only if build-
up of particulate matter or other material in the bottom of the duct is 
not present.
    9.2 Verifying Traverse Point Distances. In taking measurements at 
wall effects traverse points, it is very important for the probe impact 
pressure port to be positioned as close as practicable to the traverse 
point locations in the gas stream. For this reason, before beginning 
wall effects testing, it is important to calculate and record the 
traverse point positions that will be marked on each probe for each 
port, taking into account the distance that each port nipple (or probe 
mounting flange for automated probes) extends out of the stack and any 
extension of the port nipple (or mounting flange) into the gas stream. 
To ensure that traverse point positions are properly identified, the 
following procedures should be performed on each probe used.
    9.2.1 Manual probes. Mark the probe insertion distance of the wall 
effects and Method 1 traverse points on the probe sheath so that when a 
mark is aligned with the outside face of the stack port, the probe 
impact port is located at the calculated distance of the traverse point 
from the stack inside wall. The use of different colored marks is 
recommended for designating the wall effects and Method 1 traverse 
points. Before the first use of each probe, check to ensure that the 
distance of each mark from the center of the probe impact pressure port 
agrees with the previously calculated traverse point positions to within 
\1/4\ in. (6.4 mm).
    9.2.2 Automated probe systems. For automated probe systems that 
mechanically position the probe head at prescribed traverse point 
positions, activate the system with the probe assemblies removed from 
the test ports and sequentially extend the probes to the programmed 
location of each wall effects traverse point and the Method 1 traverse 
points. Measure the distance between the center of the probe impact 
pressure port and the inside of the probe assembly mounting flange for 
each traverse point. The measured distances must agree with the 
previously calculated traverse point positions to within \1/4\ in. (6.4 mm).
    9.3 Probe Installation. Properly sealing the port area is 
particularly important in taking measurements at wall effects traverse 
points. For testing involving manual probes, the area between the probe 
sheath and the port should be sealed with a tightly fitting flexible 
seal made of an appropriate material such as heavy cloth so that leakage 
is minimized. For automated probe systems, the probe assembly mounting 
flange area should be checked to verify that there is no leakage.
    9.4 Velocity Stability. This method should be performed only when 
the average gas velocity in the stack or duct is relatively constant 
over the duration of the test. If the average gas velocity changes 
significantly during the course of a wall effects test, the test results 
should be discarded.

                            10.0 Calibration

    10.1 The calibration coefficient(s) or curves obtained under Method 
2, 2F, or 2G and used to perform the Method 1 traverse are applicable 
under this method.

[[Page 133]]

                        11.0 Analytical Procedure

    11.1 Sample collection and analysis are concurrent for this method 
(see section 8).

                   12.0 Data Analysis and Calculations

    12.1 The following calculations shall be performed to obtain a wall 
effects adjustment factor (WAF) from (1) the wall effects-unadjusted 
average velocity (T4avg), (2) the replacement velocity (vej) for each of 
the four Method 1 sectors closest to the wall, and (3) the average stack 
gas velocity that accounts for velocity decay near the wall (vavg).
    12.2 Nomenclature. The following terms are listed in the order in 
which they appear in Equations 2H-5 through 2H-21.

vavg=the average stack gas velocity, unadjusted for wall effects, actual 
ft/sec (m/sec);
vii=stack gas point velocity value at Method 1 interior equal-area 
sectors, actual ft/sec (m/sec);
vej=stack gas point velocity value, unadjusted for wall effects, at 
Method 1 exterior equal-area sectors, actual ft/sec (m/sec);
i=index of Method 1 interior equal-area traverse points;
j=index of Method 1 exterior equal-area traverse points;
n=total number of traverse points in the Method 1 traverse;
vdecd=the wall effects decay velocity for a sub-sector located between 
the traverse points at distances d-1 (in metric units, d-2.5) and d from 
the wall, actual ft/sec (m/sec);
vd=the measured stack gas velocity at distance d from the wall, actual 
ft/sec (m/sec); Note: v0=0;
d=the distance of a 1-in. incremented wall effects traverse point from 
the wall, for traverse points d1 through dlast, in. (cm);
Ad=the cross-sectional area of a sub-sector located between the traverse 
points at distances d-1 (in metric units, d-2.5) and d from the wall, 
in.\2\ (cm\2\) ( e.g., sub-sector A2 shown in Figures 2H-3 
and 2H-4);
r=the stack or duct radius, in. (cm);
Qd=the stack gas volumetric flow rate for a sub-sector located between 
the traverse points at distances d-1 (in metric units, d-2.5) and d from 
the wall, actual ft-in.\2\/sec (m-cm\2\/sec);
Qd1[rarr]dlast=the total stack gas volumetric flow rate for all sub-
sectors located between the wall and dlast, actual ft-in.\2\/sec (m-
cm\2\/sec);
dlast=the distance from the wall of the last 1-in. incremented wall 
effects traverse point, in. (cm);
Adrem=the cross-sectional area of the sub-sector located between dlast 
and the interior edge of the Method 1 equal-area sector closest to the 
wall, in.\2\ (cm\2\) (see Figure 2H-4);
p=the number of Method 1 traverse points per diameter, p=8 
(e.g., for a 16-point traverse, p=8);
drem=the distance from the wall of the centroid of the area between 
dlast and the interior edge of the Method 1 equal-area sector closest to 
the wall, in. (cm);
Qdrem=the total stack gas volumetric flow rate for the sub-sector 
located between dlast and the interior edge of the Method 1 equal-area 
sector closest to the wall, actual ft-in.\2\/sec (m-cm\2\/sec);
vdrem=the measured stack gas velocity at distance drem from the wall, 
actual ft/sec (m/sec);
QT=the total stack gas volumetric flow rate for the Method 1 equal-area 
sector closest to the wall, actual ft-in.\2\/sec (m-cm\2\/sec);
vej=the replacement stack gas velocity for the Method 1 equal-area 
sector closest to the wall, i.e., the stack gas point velocity value, 
adjusted for wall effects, for the j\th\ Method 1 equal-area sector 
closest to the wall, actual ft/sec (m/sec);
vavg=the average stack gas velocity that accounts for velocity decay 
near the wall, actual ft/sec (m/sec);
WAF=the wall effects adjustment factor derived from vavg and vavg for a 
single traverse, dimensionless;
vfinal=the final wall effects-adjusted average stack gas velocity that 
replaces the unadjusted average stack gas velocity obtained using Method 
2, 2F, or 2G for a field test consisting of a single traverse, actual 
ft/sec (m/sec);
WAF=the wall effects adjustment factor that is applied to the average 
velocity, unadjusted for wall effects, in order to obtain the final wall 
effects-adjusted stack gas velocity, vfinal or, vfinal(k), 
dimensionless;
vfinal(k)=the final wall effects-adjusted average stack gas velocity 
that replaces the unadjusted average stack gas velocity obtained using 
Method 2, 2F, or 2G on run k of a RATA or other multiple-run field test 
procedure, actual ft/sec (m/sec);
vavg(k)=the average stack gas velocity, obtained on run k of a RATA or 
other multiple-run procedure, unadjusted for velocity decay near the 
wall, actual ft/sec (m/sec);
k=index of runs in a RATA or other multiple-run procedure.

    12.3 Calculate the average stack gas velocity that does not account 
for velocity decay near the wall (vavg) using Equation 2H-5.
[GRAPHIC] [TIFF OMITTED] TR14MY99.077


[[Page 134]]


(Note that vavg in Equation 2H-5 is the same as v(a)avg in Equations 2F-
9 and 2G-8 in Methods 2F and 2G, respectively.)
    For a 16-point traverse, Equation 2H-5 may be written as follows:
    [GRAPHIC] [TIFF OMITTED] TR14MY99.078
    
    12.4 Calculate the replacement velocity, vej, for each of the four 
Method 1 equal-area sectors closest to the wall using the procedures 
described in sections 12.4.1 through 12.4.8. Forms 2H-1 and 2H-2 provide 
sample tables that may be used in either hardcopy or spreadsheet format 
to perform the calculations described in sections 12.4.1 through 12.4.8. 
Forms 2H-3 and 2H-4 provide examples of Form 2H-1 filled in for partial 
and complete wall effects traverses.
    12.4.1 Calculate the average velocity (designated the ``decay 
velocity,'' vdecd) for each sub-sector located between the 
wall and dlast (see Figure 2H-3) using Equation 2H-7.
[GRAPHIC] [TIFF OMITTED] TR14MY99.079

For each line in column A of Form 2H-1 or 2H-2 that contains a value of 
d, enter the corresponding calculated value of vdecd in 
column C.
    12.4.2 Calculate the cross-sectional area between the wall and the 
first 1-in. incremented wall effects traverse point and between 
successive 1-in. incremented wall effects traverse points, from the wall 
to dlast (see Figure 2H-3), using Equation 2H-8.
[GRAPHIC] [TIFF OMITTED] TR14MY99.080

For each line in column A of Form 2H-1 or 2H-2 that contains a value of 
d, enter the value of the expression \1/4\ [pi](r-d+1)\2\ in column D, 
the value of the expression \1/4\ [pi](r-d)\2\ in column E, and the 
value of Ad in column F. Note that Equation 2H-8 is designed 
for use only with English units (in.). If metric units (cm) are used, 
the first term, \1/4\ [pi](r-d+1)\2\, must be changed to \1/4\ [pi](r-
d+2.5)\2\. This change must also be made in column D of Form 2H-1 or 2H-
2.
    12.4.3 Calculate the volumetric flow through each cross-sectional 
area derived in section 12.4.2 by multiplying the values of vdecd, 
derived according to section 12.4.1, by the cross-sectional areas 
derived in section 12.4.2 using Equation 2H-9.
[GRAPHIC] [TIFF OMITTED] TR14MY99.081

For each line in column A of Form 2H-1 or 2H-2 that contains a value of 
d, enter the corresponding calculated value of Qd in column G.
    12.4.4 Calculate the total volumetric flow through all sub-sectors 
located between the wall and dlast, using Equation 2H-10.
[GRAPHIC] [TIFF OMITTED] TN09JY99.003

Enter the calculated value of Qd1[rarr]cdlast in line 3 of column G of 
Form 2H-1 or 2H-2.
    12.4.5 Calculate the cross-sectional area of the sub-sector located 
between dlast and the interior edge of the Method 1 equal-area sector 
(e.g., sub-sector Adrem shown in Figures 2H-3 and 2H-4) using Equation 
2H-11.
[GRAPHIC] [TIFF OMITTED] TR14MY99.083


[[Page 135]]


For a 16-point traverse (eight points per diameter), Equation 2H-11 may 
be written as follows:
[GRAPHIC] [TIFF OMITTED] TR14MY99.084

Enter the calculated value of Adrem in line 4b of column G of 
Form 2H-1 or 2H-2.
    12.4.6 Calculate the volumetric flow for the sub-sector located 
between dlast and the interior edge of the Method 1 equal-
area sector, using Equation 2H-13.
[GRAPHIC] [TIFF OMITTED] TR14MY99.085

In Equation 2H-13, vdrem is either (1) the measured velocity 
value at drem or (2) the measured velocity at 
dlast, if the distance between drem and 
dlast is less than or equal to \1/2\ in. (12.7 mm) and no 
velocity measurement is taken at drem (see section 8.2.4.2). 
Enter the calculated value of Qdrem in line 4c of column G of 
Form 2H-1 or 2H-2.
    12.4.7 Calculate the total volumetric flow for the Method 1 equal-
area sector closest to the wall, using Equation 2H-14.
[GRAPHIC] [TIFF OMITTED] TR14MY99.086

Enter the calculated value of QT in line 5a of column G of 
Form 2H-1 or 2H-2.
    12.4.8 Calculate the wall effects-adjusted replacement velocity 
value for the Method 1 equal-area sector closest to the wall, using 
Equation 2H-15.
[GRAPHIC] [TIFF OMITTED] TR14MY99.087

For a 16-point traverse (eight points per diameter), Equation 2H-15 may 
be written as follows:
[GRAPHIC] [TIFF OMITTED] TR14MY99.088

Enter the calculated value of vej in line 5B of column G of Form 2H-1 or 
2H-2.
    12.5 Calculate the wall effects-adjusted average velocity, vavg, by 
replacing the four values of vej shown in Equation 2H-5 with 
the four wall effects-adjusted replacement velocity 
values,vej, calculated according to section 12.4.8, using 
Equation 2H-17.
[GRAPHIC] [TIFF OMITTED] TR14MY99.089

For a 16-point traverse, Equation 2H-17 may be written as follows:
[GRAPHIC] [TIFF OMITTED] TR14MY99.090

    12.6 Calculate the wall effects adjustment factor, WAF, using 
Equation 2H-19.
[GRAPHIC] [TIFF OMITTED] TR14MY99.091

    12.6.1 Partial wall effects traverse. If a partial wall effects 
traverse (see section 8.2.2) is conducted, the value obtained from 
Equation 2H-19 is acceptable and may be reported as the wall effects 
adjustment factor provided that the value is greater than or equal to 
0.9800. If the value is less than 0.9800, it shall not be used and a 
wall effects adjustment factor of 0.9800 may be used instead.
    12.6.2 Complete wall effects traverse. If a complete wall effects 
traverse (see section 8.2.3) is conducted, the value obtained from 
Equation 2H-19 is acceptable and may be reported as the wall effects 
adjustment factor provided that the value is greater than or equal to 
0.9700. If the value is less than 0.9700, it shall not be used and a 
wall effects adjustment factor of 0.9700 may be used instead. If the 
wall effects adjustment factor for a particular stack or duct is less 
than 0.9700, the tester may (1) repeat the wall effects test, taking 
measurements at more Method 1 traverse points and (2) recalculate the 
wall effects adjustment factor from these measurements, in an attempt to 
obtain a wall effects adjustment factor that meets the 0.9700 
specification and completely characterizes the wall effects.
    12.7 Applying a Wall Effects Adjustment Factor. A default wall 
effects adjustment factor, as specified in section 8.1, or a calculated 
wall effects adjustment factor meeting the requirements of section 
12.6.1 or 12.6.2

[[Page 136]]

may be used to adjust the average stack gas velocity obtained using 
Methods 2, 2F, or 2G to take into account velocity decay near the wall 
of circular stacks or ducts. Default wall effects adjustment factors 
specified in section 8.1 and calculated wall effects adjustment factors 
that meet the requirements of section 12.6.1 and 12.6.2 are summarized 
in Table 2H-2.
    12.7.1 Single-run tests. Calculate the final wall effects-adjusted 
average stack gas velocity for field tests consisting of a single 
traverse using Equation 2H-20.
[GRAPHIC] [TIFF OMITTED] TR14MY99.092

The wall effects adjustment factor, WAF, shown in Equation 2H-20, may be 
(1) a default wall effects adjustment factor, as specified in section 
8.1, or (2) a calculated adjustment factor that meets the specifications 
in sections 12.6.1 or 12.6.2. If a calculated adjustment factor is used 
in Equation 2H-20, the factor must have been obtained during the same 
traverse in which vavg was obtained.
    12.7.2 RATA or other multiple run test procedure. Calculate the 
final wall effects-adjusted average stack gas velocity for any run k of 
a RATA or other multiple-run procedure using Equation 2H-21.
[GRAPHIC] [TIFF OMITTED] TR14MY99.093

The wall effects adjustment factor, WAF, shown in Equation 2H-21 may be 
(1) a default wall effects adjustment factor, as specified in section 
8.1; (2) a calculated adjustment factor (meeting the specifications in 
sections 12.6.1 or 12.6.2) obtained from any single run of the RATA that 
includes run k; or (3) the arithmetic average of more than one WAF (each 
meeting the specifications in sections 12.6.1 or 12.6.2) obtained 
through wall effects testing conducted during several runs of the RATA 
that includes run k. If wall effects adjustment factors (meeting the 
specifications in sections 12.6.1 or 12.6.2) are determined for more 
than one RATA run, the arithmetic average of all of the resulting 
calculated wall effects adjustment factors must be used as the value of 
WAF and applied to all runs of that RATA. If a calculated, not a 
default, wall effects adjustment factor is used in Equation 2H-21, the 
average velocity unadjusted for wall effects, vavg(k) must be 
obtained from runs in which the number of Method 1 traverse points 
sampled does not exceed the number of Method 1 traverse points in the 
runs used to derive the wall effects adjustment factor, WAF, shown in 
Equation 2H-21.
    12.8 Calculating Volumetric Flow Using Final Wall Effects-Adjusted 
Average Velocity Value. To obtain a stack gas flow rate that accounts 
for velocity decay near the wall of circular stacks or ducts, replace 
vs in Equation 2-10 in Method 2, or va(avg) in 
Equations 2F-10 and 2F-11 in Method 2F, or va(avg) in 
Equations 2G-9 and 2G-10 in Method 2G with one of the following.
    12.8.1 For single-run test procedures, use the final wall effects-
adjusted average stack gas velocity, vfinal, calculated according to 
Equation 2H-20.
    12.8.2 For RATA and other multiple run test procedures, use the 
final wall effects-adjusted average stack gas velocity, vfinal(k), 
calculated according to Equation 2H-21.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 Reporting

    16.1 Field Test Reports. Field test reports shall be submitted to 
the Agency according to the applicable regulatory requirements. When 
Method 2H is performed in conjunction with Method 2, 2F, or 2G to derive 
a wall effects adjustment factor, a single consolidated Method 2H/2F (or 
2H/2G) field test report should be prepared. At a minimum, the 
consolidated field test report should contain (1) all of the general 
information, and data for Method 1 points, specified in section 16.0 of 
Method 2F (when Method 2H is used in conjunction with Method 2F) or 
section 16.0 of Method 2G (when Method 2H is used in conjunction with 
Method 2 or 2G) and (2) the additional general information, and data for 
Method 1 points and wall effects points, specified in this section (some 
of which are included in section 16.0 of Methods 2F and 2G and are 
repeated in this section to ensure complete reporting for wall effects 
testing).
    16.1.1 Description of the source and site. The field test report 
should include the descriptive information specified in section 16.1.1 
of Method 2F (when using Method 2F) or 2G (when using either Method 2 or 
2G). It should also include a description of the stack or duct's 
construction material along with the diagram showing the dimensions of 
the stack or duct at the test port elevation prescribed in Methods 2F 
and 2G. The diagram should indicate the location of all wall effects 
traverse points where measurements were taken as well as the Method 1 
traverse points. The diagram should provide a unique identification 
number for each wall effects and Method 1 traverse point, its distance 
from the wall, and its location relative to the probe entry ports.
    16.1.2 Field test forms. The field test report should include a copy 
of Form 2H-1, 2H-2, or an equivalent for each Method 1 exterior equal-
area sector.
    16.1.3 Field test data. The field test report should include the 
following data for the Method 1 and wall effects traverse.
    16.1.3.1 Data for each traverse point. The field test report should 
include the values

[[Page 137]]

specified in section 16.1.3.2 of Method 2F (when using Method 2F) or 2G 
(when using either Method 2 or 2G) for each Method 1 and wall effects 
traverse point. The provisions of section 8.4.2 of Method 2H apply to 
the temperature measurements reported for wall effects traverse points. 
For each wall effects and Method 1 traverse point, the following values 
should also be included in the field test report.
    (a) Traverse point identification number for each Method 1 and wall 
effects traverse point.
    (b) Probe type.
    (c) Probe identification number.
    (d) Probe velocity calibration coefficient (i.e., Cp when Method 2 
or 2G is used; F2 when Method 2F is used).

    For each Method 1 traverse point in an exterior equal-area sector, 
the following additional value should be included.
    (e) Calculated replacement velocity, vej, accounting for wall 
effects.
    16.1.3.2 Data for each run. The values specified in section 16.1.3.3 
of Method 2F (when using Method 2F) or 2G (when using either Method 2 or 
2G) should be included in the field test report once for each run. The 
provisions of section 12.8 of Method 2H apply for calculating the 
reported gas volumetric flow rate. In addition, the following Method 2H 
run values should also be included in the field test report.
    (a) Average velocity for run, accounting for wall effects, vavg.
    (b) Wall effects adjustment factor derived from a test run, WAF.
    16.1.3.3 Data for a complete set of runs. The values specified in 
section 16.1.3.4 of Method 2F (when using Method 2F) or 2G (when using 
either Method 2 or 2G) should be included in the field test report once 
for each complete set of runs. In addition, the field test report should 
include the wall effects adjustment factor, WAF, that is applied in 
accordance with section 12.7.1 or 12.7.2 to obtain the final wall 
effects-adjusted average stack gas velocity vfinal or vfinal(k).
    16.1.4 Quality assurance and control. Quality assurance and control 
procedures, specifically tailored to wall effects testing, should be 
described.
    16.2 Reporting a Default Wall Effects Adjustment Factor. When a 
default wall effects adjustment factor is used in accordance with 
section 8.1 of this method, its value and a description of the stack or 
duct's construction material should be reported in lieu of submitting a 
test report.

                            17.0 References.

    (1) 40 CFR Part 60, Appendix A, Method 1--Sample and velocity 
traverses for stationary sources.
    (2) 40 CFR Part 60, Appendix A, Method 2--Determination of stack gas 
velocity and volumetric flow rate (Type S pitot tube).
    (3) 40 CFR Part 60, Appendix A, Method 2F--Determination of stack 
gas velocity and volumetric flow rate with three-dimensional probes.
    (4) 40 CFR Part 60, Appendix A, Method 2G--Determination of stack 
gas velocity and volumetric flow rate with two-dimensional probes.
    (5) 40 CFR Part 60, Appendix A, Method 3--Gas analysis for carbon 
dioxide, oxygen, excess air, and dry molecular weight.
    (6) 40 CFR Part 60, Appendix A, Method 3A--Determination of oxygen 
and carbon dioxide concentrations in emissions from stationary sources 
(instrumental analyzer procedure).
    (7) 40 CFR Part 60, Appendix A, Method 4--Determination of moisture 
content in stack gases.
    (8) Emission Measurement Center (EMC) Approved Alternative Method 
(ALT-011) ``Alternative Method 2 Thermocouple Calibration Procedure.''
    (9) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, DeCordova Steam 
Electric Station, Volume I: Test Description and Appendix A (Data 
Distribution Package),'' EPA/430-R-98-015a.
    (10) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Texas Utilities, Lake Hubbard Steam 
Electric Station, Volume I: Test Description and Appendix A (Data 
Distribution Package),'' EPA/430-R-98-017a.
    (11) The Cadmus Group, Inc., 1998, ``EPA Flow Reference Method 
Testing and Analysis: Data Report, Pennsylvania Electric Co., G.P.U. 
Genco Homer City Station: Unit 1, Volume I: Test Description and 
Appendix A (Data Distribution Package),'' EPA/430-R-98-018a.
    (12) The Cadmus Group, Inc., May 1999, ``EPA Flow Reference Method 
Testing and Analysis: Findings Report,'' EPA/430-R-99-009.
    (13) The Cadmus Group, Inc., 1997, ``EPA Flow Reference Method 
Testing and Analysis: Wind Tunnel Experimental Results,'' EPA/430-R-97-
013.
    (14) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four Prandtl Probes, Four 
S-Type Probes, Four French Probes, Four Modified Kiel Probes,'' Prepared 
for the U.S. Environmental Protection Agency under IAG No. DW13938432-
01-0.
    (15) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Five Autoprobes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG No. 
DW13938432-01-0.

[[Page 138]]

    (16) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Eight Spherical Probes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG No. 
DW13938432-01-0.
    (17) National Institute of Standards and Technology, 1998, ``Report 
of Special Test of Air Speed Instrumentation, Four DAT Probes,'' 
Prepared for the U.S. Environmental Protection Agency under IAG No. 
DW13938432-01-0.
    (18) Massachusetts Institute of Technology (MIT), 1998, 
``Calibration of Eight Wind Speed Probes Over a Reynolds Number Range of 
46,000 to 725,000 per Foot, Text and Summary Plots,'' Plus Appendices, 
WBWT-TR-1317, Prepared for The Cadmus Group, Inc., under EPA Contract 
68-W6-0050, Work Assignment 0007AA-3.
    (19) Fossil Energy Research Corporation, Final Report, ``Velocity 
Probe Tests in Non-axial Flow Fields,'' November 1998, Prepared for the 
U.S. Environmental Protection Agency.
    (20) Fossil Energy Research Corporation, ``Additional Swirl Tunnel 
Tests: E-DAT and T-DAT Probes,'' February 24, 1999, Technical Memorandum 
Prepared for U.S. Environmental Protection Agency, P.O. No. 7W-1193-
NALX.
[GRAPHIC] [TIFF OMITTED] TR14MY99.036


[[Page 139]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.037


[[Page 140]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.038


[[Page 141]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.039


[[Page 142]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.040


[[Page 143]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.041


[[Page 144]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.042


[[Page 145]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.043


[[Page 146]]


[GRAPHIC] [TIFF OMITTED] TR14MY99.044

  Method 3--Gas Analysis for the Determination of Dry Molecular Weight

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should also have a thorough knowledge of Method 1.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 147]]



------------------------------------------------------------------------
             Analytes                   CAS No.          Sensitivity
------------------------------------------------------------------------
Oxygen (O2).......................       7782-44-7  2,000 ppmv.
Nitrogen (N2).....................       7727-37-9  N/A.
Carbon dioxide (CO2)..............        124-38-9  2,000 ppmv.
Carbon monoxide (CO)..............        630-08-0  N/A.
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of CO2 and O2 concentrations and dry molecular 
weight of a sample from an effluent gas stream of a fossil-fuel 
combustion process or other process.
    1.3 Other methods, as well as modifications to the procedure 
described herein, are also applicable for all of the above 
determinations. Examples of specific methods and modifications include: 
(1) A multi-point grab sampling method using an Orsat analyzer to 
analyze the individual grab sample obtained at each point; (2) a method 
for measuring either CO2 or O2 and using 
stoichiometric calculations to determine dry molecular weight; and (3) 
assigning a value of 30.0 for dry molecular weight, in lieu of actual 
measurements, for processes burning natural gas, coal, or oil. These 
methods and modifications may be used, but are subject to the approval 
of the Administrator. The method may also be applicable to other 
processes where it has been determined that compounds other than 
CO2, O2, carbon monoxide (CO), and nitrogen 
(N2) are not present in concentrations sufficient to affect 
the results.
    1.4 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from a stack by one of the following 
methods: (1) single-point, grab sampling; (2) single-point, integrated 
sampling; or (3) multi-point, integrated sampling. The gas sample is 
analyzed for percent CO2 and percent O2. For dry 
molecular weight determination, either an Orsat or a Fyrite analyzer may 
be used for the analysis.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    4.1 Several compounds can interfere, to varying degrees, with the 
results of Orsat or Fyrite analyses. Compounds that interfere with 
CO2 concentration measurement include acid gases (e.g., 
sulfur dioxide, hydrogen chloride); compounds that interfere with 
O2 concentration measurement include unsaturated hydrocarbons 
(e.g., acetone, acetylene), nitrous oxide, and ammonia. Ammonia reacts 
chemically with the O2 absorbing solution, and when present 
in the effluent gas stream must be removed before analysis.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Corrosive Reagents.
    5.2.1 A typical Orsat analyzer requires four reagents: a gas-
confining solution, CO2 absorbent, O2 absorbent, 
and CO absorbent. These reagents may contain potassium hydroxide, sodium 
hydroxide, cuprous chloride, cuprous sulfate, alkaline pyrogallic acid, 
and/or chromous chloride. Follow manufacturer's operating instructions 
and observe all warning labels for reagent use.
    5.2.2 A typical Fyrite analyzer contains zinc chloride, hydrochloric 
acid, and either potassium hydroxide or chromous chloride. Follow 
manufacturer's operating instructions and observe all warning labels for 
reagent use.

                       6.0 Equipment and Supplies

    Note: As an alternative to the sampling apparatus and systems 
described herein, other sampling systems (e.g., liquid displacement) may 
be used, provided such systems are capable of obtaining a representative 
sample and maintaining a constant sampling rate, and are, otherwise, 
capable of yielding acceptable results. Use of such systems is subject 
to the approval of the Administrator.

    6.1 Grab Sampling (See Figure 3-1).
    6.1.1 Probe. Stainless steel or borosilicate glass tubing equipped 
with an in-stack or out-of-stack filter to remove particulate matter (a 
plug of glass wool is satisfactory for this purpose). Any other 
materials, resistant to temperature at sampling conditions and inert to 
all components of the gas stream, may be used for the probe. Examples of 
such materials may include aluminum, copper, quartz glass, and Teflon.
    6.1.2 Pump. A one-way squeeze bulb, or equivalent, to transport the 
gas sample to the analyzer.
    6.2 Integrated Sampling (Figure 3-2).
    6.2.1 Probe. Same as in Section 6.1.1.

[[Page 148]]

    6.2.2 Condenser. An air-cooled or water-cooled condenser, or other 
condenser no greater than 250 ml that will not remove O2, 
CO2, CO, and N2, to remove excess moisture which 
would interfere with the operation of the pump and flowmeter.
    6.2.3 Valve. A needle valve, to adjust sample gas flow rate.
    6.2.4 Pump. A leak-free, diaphragm-type pump, or equivalent, to 
transport sample gas to the flexible bag. Install a small surge tank 
between the pump and rate meter to eliminate the pulsation effect of the 
diaphragm pump on the rate meter.
    6.2.5 Rate Meter. A rotameter, or equivalent, capable of measuring 
flow rate to 2 percent of the selected flow rate. 
A flow rate range of 500 to 1000 ml/min is suggested.
    6.2.6 Flexible Bag. Any leak-free plastic (e.g., Tedlar, Mylar, 
Teflon) or plastic-coated aluminum (e.g., aluminized Mylar) bag, or 
equivalent, having a capacity consistent with the selected flow rate and 
duration of the test run. A capacity in the range of 55 to 90 liters 
(1.9 to 3.2 ft\3\) is suggested. To leak-check the bag, connect it to a 
water manometer, and pressurize the bag to 5 to 10 cm H2O (2 
to 4 in. H2O). Allow to stand for 10 minutes. Any 
displacement in the water manometer indicates a leak. An alternative 
leak-check method is to pressurize the bag to 5 to 10 cm (2 to 4 in.) 
H2O and allow to stand overnight. A deflated bag indicates a 
leak.
    6.2.7 Pressure Gauge. A water-filled U-tube manometer, or 
equivalent, of about 30 cm (12 in.), for the flexible bag leak-check.
    6.2.8 Vacuum Gauge. A mercury manometer, or equivalent, of at least 
760 mm (30 in.) Hg, for the sampling train leak-check.
    6.3 Analysis. An Orsat or Fyrite type combustion gas analyzer.

                       7.0 Reagents and Standards

    7.1 Reagents. As specified by the Orsat or Fyrite-type combustion 
analyzer manufacturer.
    7.2 Standards. Two standard gas mixtures, traceable to National 
Institute of Standards and Technology (NIST) standards, to be used in 
auditing the accuracy of the analyzer and the analyzer operator 
technique:
    7.2.1. Gas cylinder containing 2 to 4 percent O2 and 14 
to 18 percent CO2.
    7.2.2. Gas cylinder containing 2 to 4 percent CO2 and 
about 15 percent O2.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Single Point, Grab Sampling Procedure.
    8.1.1 The sampling point in the duct shall either be at the centroid 
of the cross section or at a point no closer to the walls than 1.0 m 
(3.3 ft), unless otherwise specified by the Administrator.
    8.1.2 Set up the equipment as shown in Figure 3-1, making sure all 
connections ahead of the analyzer are tight. If an Orsat analyzer is 
used, it is recommended that the analyzer be leak-checked by following 
the procedure in Section 11.5; however, the leak-check is optional.
    8.1.3 Place the probe in the stack, with the tip of the probe 
positioned at the sampling point. Purge the sampling line long enough to 
allow at least five exchanges. Draw a sample into the analyzer, and 
immediately analyze it for percent CO2 and percent 
O2 according to Section 11.2.
    8.2 Single-Point, Integrated Sampling Procedure.
    8.2.1 The sampling point in the duct shall be located as specified 
in Section 8.1.1.
    8.2.2 Leak-check (optional) the flexible bag as in Section 6.2.6. 
Set up the equipment as shown in Figure 3-2. Just before sampling, leak-
check (optional) the train by placing a vacuum gauge at the condenser 
inlet, pulling a vacuum of at least 250 mm Hg (10 in. Hg), plugging the 
outlet at the quick disconnect, and then turning off the pump. The 
vacuum should remain stable for at least 0.5 minute. Evacuate the 
flexible bag. Connect the probe, and place it in the stack, with the tip 
of the probe positioned at the sampling point. Purge the sampling line. 
Next, connect the bag, and make sure that all connections are tight.
    8.2.3 Sample Collection. Sample at a constant rate (10 percent). The sampling run should be simultaneous 
with, and for the same total length of time as, the pollutant emission 
rate determination. Collection of at least 28 liters (1.0 ft\3\) of 
sample gas is recommended; however, smaller volumes may be collected, if 
desired.
    8.2.4 Obtain one integrated flue gas sample during each pollutant 
emission rate determination. Within 8 hours after the sample is taken, 
analyze it for percent CO2 and percent O2 using 
either an Orsat analyzer or a Fyrite type combustion gas analyzer 
according to Section 11.3.

    Note: When using an Orsat analyzer, periodic Fyrite readings may be 
taken to verify/confirm the results obtained from the Orsat.

    8.3 Multi-Point, Integrated Sampling Procedure.
    8.3.1 Unless otherwise specified in an applicable regulation, or by 
the Administrator, a minimum of eight traverse points shall be used for 
circular stacks having diameters less than 0.61 m (24 in.), a minimum of 
nine shall be used for rectangular stacks having equivalent diameters 
less than 0.61 m (24 in.), and a minimum of 12 traverse points shall be 
used for all other cases. The traverse points shall be located according 
to Method 1.
    8.3.2 Follow the procedures outlined in Sections 8.2.2 through 
8.2.4, except for the following: Traverse all sampling points, and

[[Page 149]]

sample at each point for an equal length of time. Record sampling data 
as shown in Figure 3-3.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.2...........................  Use of Fyrite to   Ensures the accurate
                                 confirm Orsat      measurement of CO2
                                 results.           and O2.
10.1..........................  Periodic audit of  Ensures that the
                                 analyzer and       analyzer is
                                 operator           operating properly
                                 technique.         and that the
                                                    operator performs
                                                    the sampling
                                                    procedure correctly
                                                    and accurately.
11.3..........................  Replicable         Minimizes
                                 analyses of        experimental error.
                                 integrated
                                 samples.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Analyzer. The analyzer and analyzer operator's technique should 
be audited periodically as follows: take a sample from a manifold 
containing a known mixture of CO2 and O2, and 
analyze according to the procedure in Section 11.3. Repeat this 
procedure until the measured concentration of three consecutive samples 
agrees with the stated value 0.5 percent. If 
necessary, take corrective action, as specified in the analyzer users 
manual.
    10.2 Rotameter. The rotameter need not be calibrated, but should be 
cleaned and maintained according to the manufacturer's instruction.

                        11.0 Analytical Procedure

    11.1 Maintenance. The Orsat or Fyrite-type analyzer should be 
maintained and operated according to the manufacturers specifications.
    11.2 Grab Sample Analysis. Use either an Orsat analyzer or a Fyrite-
type combustion gas analyzer to measure O2 and CO2 
concentration for dry molecular weight determination, using procedures 
as specified in the analyzer user's manual. If an Orsat analyzer is 
used, it is recommended that the Orsat leak-check, described in Section 
11.5, be performed before this determination; however, the check is 
optional. Calculate the dry molecular weight as indicated in Section 
12.0. Repeat the sampling, analysis, and calculation procedures until 
the dry molecular weights of any three grab samples differ from their 
mean by no more than 0.3 g/g-mole (0.3 lb/lb-mole). Average these three 
molecular weights, and report the results to the nearest 0.1 g/g-mole 
(0.1 lb/lb-mole).
    11.3 Integrated Sample Analysis. Use either an Orsat analyzer or a 
Fyrite-type combustion gas analyzer to measure O2 and 
CO2 concentration for dry molecular weight determination, 
using procedures as specified in the analyzer user's manual. If an Orsat 
analyzer is used, it is recommended that the Orsat leak-check, described 
in Section 11.5, be performed before this determination; however, the 
check is optional. Calculate the dry molecular weight as indicated in 
Section 12.0. Repeat the analysis and calculation procedures until the 
individual dry molecular weights for any three analyses differ from 
their mean by no more than 0.3 g/g-mole (0.3 lb/lb-mole). Average these 
three molecular weights, and report the results to the nearest 0.1 g/g-
mole (0.1 lb/lb-mole).
    11.4 Standardization. A periodic check of the reagents and of 
operator technique should be conducted at least once every three series 
of test runs as outlined in Section 10.1.
    11.5 Leak-Check Procedure for Orsat Analyzer. Moving an Orsat 
analyzer frequently causes it to leak. Therefore, an Orsat analyzer 
should be thoroughly leak-checked on site before the flue gas sample is 
introduced into it. The procedure for leak-checking an Orsat analyzer is 
as follows:
    11.5.1 Bring the liquid level in each pipette up to the reference 
mark on the capillary tubing, and then close the pipette stopcock.
    11.5.2 Raise the leveling bulb sufficiently to bring the confining 
liquid meniscus onto the graduated portion of the burette, and then 
close the manifold stopcock.
    11.5.3 Record the meniscus position.
    11.5.4 Observe the meniscus in the burette and the liquid level in 
the pipette for movement over the next 4 minutes.
    11.5.5 For the Orsat analyzer to pass the leak-check, two conditions 
must be met:
    11.5.5.1 The liquid level in each pipette must not fall below the 
bottom of the capillary tubing during this 4-minute interval.
    11.5.5.2 The meniscus in the burette must not change by more than 
0.2 ml during this 4-minute interval.
    11.5.6 If the analyzer fails the leak-check procedure, check all 
rubber connections and stopcocks to determine whether they might be the 
cause of the leak. Disassemble, clean, and regrease any leaking 
stopcocks. Replace leaking rubber connections. After the analyzer is 
reassembled, repeat the leak-check procedure.

                   12.0 Calculations and Data Analysis

    12.1 Nomenclature.


[[Page 150]]


Md=Dry molecular weight, g/g-mole (lb/lb-mole).
%CO2=Percent CO2 by volume, dry basis.
%O2=Percent O2 by volume, dry basis.
%CO=Percent CO by volume, dry basis.
%N2=Percent N2 by volume, dry basis.
0.280 =Molecular weight of N2 or CO, divided by 100.
0.320 =Molecular weight of O2 divided by 100.
0.440 =Molecular weight of CO2 divided by 100.

    12.2 Nitrogen, Carbon Monoxide Concentration. Determine the 
percentage of the gas that is N2 and CO by subtracting the 
sum of the percent CO2 and percent O2 from 100 
percent.
    12.3 Dry Molecular Weight. Use Equation 3-1 to calculate the dry 
molecular weight of the stack gas.
[GRAPHIC] [TIFF OMITTED] TR17OC00.090

    Note: The above Equation 3-1 does not consider the effect on 
calculated dry molecular weight of argon in the effluent gas. The 
concentration of argon, with a molecular weight of 39.9, in ambient air 
is about 0.9 percent. A negative error of approximately 0.4 percent is 
introduced. The tester may choose to include argon in the analysis using 
procedures subject to approval of the Administrator.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Altshuller, A.P. Storage of Gases and Vapors in Plastic Bags. 
International Journal of Air and Water Pollution. 6:75-81. 1963.
    2. Conner, William D. and J.S. Nader. Air Sampling with Plastic 
Bags. Journal of the American Industrial Hygiene Association. 25:291-
297. 1964.
    3. Burrell Manual for Gas Analysts, Seventh edition. Burrell 
Corporation, 2223 Fifth Avenue, Pittsburgh, PA. 15219. 1951.
    4. Mitchell, W.J. and M.R. Midgett. Field Reliability of the Orsat 
Analyzer. Journal of Air Pollution Control Association. 26:491-495. May 
1976.
    5. Shigehara, R.T., R.M. Neulicht, and W.S. Smith. Validating Orsat 
Analysis Data from Fossil Fuel-Fired Units. Stack Sampling News. 
4(2):21-26. August 1976.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data
[GRAPHIC] [TIFF OMITTED] TR17OC00.091


[[Page 151]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.092


----------------------------------------------------------------------------------------------------------------
                 Time                       Traverse point           Q (liter/min)           % Deviation \a\
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
Average
----------------------------------------------------------------------------------------------------------------
\a\ % Dev.=[(Q-Qavg)/Qavg]x100 (Must be <=10%)

                     Figure 3-3. Sampling Rate Data

Method 3A--Determination of Oxygen and Carbon Dioxide Concentrations in 
   Emissions From Stationary Sources (Instrumental Analyzer Procedure)

                        1.0 Scope and Application

                           What is Method 3A?

    Method 3A is a procedure for measuring oxygen (O2) and 
carbon dioxide (CO2) in stationary source emissions using a 
continuous instrumental analyzer. Quality assurance and quality control 
requirements are included to assure that you, the tester, collect data 
of known quality. You must document your adherence to these specific 
requirements for equipment, supplies, sample collection and analysis, 
calculations, and data analysis.
    This method does not completely describe all equipment, supplies, 
and sampling and

[[Page 152]]

analytical procedures you will need but refers to other methods for some 
of the details. Therefore, to obtain reliable results, you should also 
have a thorough knowledge of these additional test methods which are 
found in appendix A to this part:
    (a) Method 1--Sample and Velocity Traverses for Stationary Sources.
    (b) Method 3--Gas Analysis for the Determination of Molecular 
Weight.
    (c) Method 4--Determination of Moisture Content in Stack Gases.
    (d) Method 7E--Determination of Nitrogen Oxides Emissions from 
Stationary Sources (Instrumental Analyzer Procedure).
    1.1 Analytes. What does this method determine? This method measures 
the concentration of oxygen and carbon dioxide.

------------------------------------------------------------------------
            Analyte                  CAS No.           Sensitivity
------------------------------------------------------------------------
Oxygen (O2)....................       7782-44-7  Typically <2% of
                                                  Calibration Span.
Carbon dioxide (CO2)...........        124-38-9  Typically <2% of
                                                  Calibration Span.
------------------------------------------------------------------------

    1.2 Applicability. When is this method required? The use of Method 
3A may be required by specific New Source Performance Standards, Clean 
Air Marketing rules, State Implementation Plans and permits, where 
measurements of O2 and CO2 concentrations in 
stationary source emissions must be made, either to determine compliance 
with an applicable emission standard or to conduct performance testing 
of a continuous emission monitoring system (CEMS). Other regulations may 
also require the use of Method 3A.
    1.3 Data Quality Objectives. How good must my collected data be? 
Refer to Section 1.3 of Method 7E.

                          2.0 Summary of Method

    In this method, you continuously or intermittently sample the 
effluent gas and convey the sample to an analyzer that measures the 
concentration of O2 or CO2. You must meet the 
performance requirements of this method to validate your data.

                             3.0 Definitions

    Refer to Section 3.0 of Method 7E for the applicable definitions.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    Refer to Section 5.0 of Method 7E.

                       6.0 Equipment and Supplies

    Figure 7E-1 in Method 7E is a schematic diagram of an acceptable 
measurement system.
    6.1 What do I need for the measurement system? The components of the 
measurement system are described (as applicable) in Sections 6.1 and 6.2 
of Method 7E, except that the analyzer described in Section 6.2 of this 
method must be used instead of the analyzer described in Method 7E. You 
must follow the noted specifications in Section 6.1 of Method 7E except 
that the requirements to use stainless steel, Teflon, or non-reactive 
glass filters do not apply. Also, a heated sample line is not required 
to transport dry gases or for systems that measure the O2 or 
CO2 concentration on a dry basis, provided that the system is 
not also being used to concurrently measure SO2 and/or 
NOX.
    6.2 What analyzer must I use? You must use an analyzer that 
continuously measures O2 or CO2 in the gas stream 
and meets the specifications in Section 13.0.

                       7.0 Reagents and Standards

    7.1 Calibration Gas. What calibration gases do I need? Refer to 
Section 7.1 of Method 7E for the calibration gas requirements. Example 
calibration gas mixtures are listed below.
    (a) CO2 in nitrogen (N2).
    (b) CO2 in air.
    (c) CO2/SO2 gas mixture in N2.
    (d) O2/SO2 gas mixture in N2.
    (e) O2/CO2/SO2 gas mixture in 
N2.
    (f) CO2/NOX gas mixture in N2.
    (g) CO2/SO2/NOX gas mixture in 
N2.
    The tests for analyzer calibration error and system bias require 
high-, mid-, and low-level gases.
    7.2 Interference Check. What reagents do I need for the interference 
check? Potential interferences may vary among available analyzers. Table 
7E-3 of Method 7E lists a number of gases that should be considered in 
conducting the interference test.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sampling Site and Sampling Points. You must follow the 
procedures of Section 8.1 of Method 7E to determine the appropriate 
sampling points, unless you are using Method 3A only to determine the 
stack gas molecular weight and for no other purpose. In that case, you 
may use single-point integrated sampling as described in Section 8.2 of 
Method 3. If the stratification test provisions in Section 8.1.2 of 
Method 7E are used to reduce the number of required sampling points, the 
alternative acceptance criterion for 3-point sampling will be  0.5 percent CO2 or O2, and

[[Page 153]]

the alternative acceptance criterion for single-point sampling will be 
 0.3 percent CO2 or O2.
    8.2 Initial Measurement System Performance Tests. You must follow 
the procedures in Section 8.2 of Method 7E. If a dilution-type 
measurement system is used, the special considerations in Section 8.3 of 
Method 7E apply.
    8.3 Interference Check. The O2 or CO2 analyzer 
must be documented to show that interference effects to not exceed 2.5 
percent of the calibration span. The interference test in Section 8.2.7 
of Method 7E is a procedure that may be used to show this. The effects 
of all potential interferences at the concentrations encountered during 
testing must be addressed and documented. This testing and documentation 
may be done by the instrument manufacturer.
    8.4 Sample Collection. You must follow the procedures in Section 8.4 
of Method 7E.
    8.5 Post-Run System Bias Check and Drift Assessment. You must follow 
the procedures in Section 8.5 of Method 7E.

                           9.0 Quality Control

    Follow quality control procedures in Section 9.0 of Method 7E.

                  10.0 Calibration and Standardization

    Follow the procedures for calibration and standardization in Section 
10.0 of Method 7E.

                       11.0 Analytical Procedures

    Because sample collection and analysis are performed together (see 
Section 8), additional discussion of the analytical procedure is not 
necessary.

                   12.0 Calculations and Data Analysis

    You must follow the applicable procedures for calculations and data 
analysis in Section 12.0 of Method 7E, substituting percent 
O2 and percent CO2 for ppmv of NOX as 
appropriate.

                         13.0 Method Performance

    The specifications for the applicable performance checks are the 
same as in Section 13.0 of Method 7E except for the alternative 
specifications for system bias, drift, and calibration error. In these 
alternative specifications, replace the term ``0.5 ppmv'' with the term 
``0.5 percent O2'' or ``0.5 percent CO2'' (as 
applicable).

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                 16.0 Alternative Procedures [Reserved]

                             17.0 References

    1. ``EPA Traceability Protocol for Assay and Certification of 
Gaseous Calibration Standards'' September 1997 as amended, EPA-600/R-97/
121.

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

    Refer to Section 18.0 of Method 7E.

     Method 3B--Gas Analysis for the Determination of Emission Rate 
                     Correction Factor or Excess Air

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test methods: Method 1 and 3.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Oxygen (O2).......................       7782-44-7  2,000 ppmv.
Carbon Dioxide (CO2)..............        124-38-9  2,000 ppmv.
Carbon Monoxide (CO)..............        630-08-0  N/A.
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of O2, CO2, and CO concentrations in the effluent 
from fossil-fuel combustion processes for use in excess air or emission 
rate correction factor calculations. Where compounds other than 
CO2, O2, CO, and nitrogen (N2) are 
present in concentrations sufficient to affect the results, the 
calculation procedures presented in this method must be modified, 
subject to the approval of the Administrator.
    1.3 Other methods, as well as modifications to the procedure 
described herein, are also applicable for all of the above 
determinations. Examples of specific methods and modifications include: 
(1) A multi-point sampling method using an Orsat analyzer to analyze 
individual grab samples obtained at each point, and (2) a method using 
CO2 or O2 and stoichiometric calculations to 
determine excess air. These methods and modifications may be used, but 
are subject to the approval of the Administrator.

[[Page 154]]

    1.4 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from a stack by one of the following 
methods: (1) Single-point, grab sampling; (2) single-point, integrated 
sampling; or (3) multi-point, integrated sampling. The gas sample is 
analyzed for percent CO2, percent O2, and, if 
necessary, percent CO using an Orsat combustion gas analyzer.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    4.1 Several compounds can interfere, to varying degrees, with the 
results of Orsat analyses. Compounds that interfere with CO2 
concentration measurement include acid gases (e.g., sulfur dioxide, 
hydrogen chloride); compounds that interfere with O2 
concentration measurement include unsaturated hydrocarbons (e.g., 
acetone, acetylene), nitrous oxide, and ammonia. Ammonia reacts 
chemically with the O2 absorbing solution, and when present 
in the effluent gas stream must be removed before analysis.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Corrosive Reagents. A typical Orsat analyzer requires four 
reagents: a gas-confining solution, CO2 absorbent, 
O2 absorbent, and CO absorbent. These reagents may contain 
potassium hydroxide, sodium hydroxide, cuprous chloride, cuprous 
sulfate, alkaline pyrogallic acid, and/or chromous chloride. Follow 
manufacturer's operating instructions and observe all warning labels for 
reagent use.

                       6.0 Equipment and Supplies

    Note: As an alternative to the sampling apparatus and systems 
described herein, other sampling systems (e.g., liquid displacement) may 
be used, provided such systems are capable of obtaining a representative 
sample and maintaining a constant sampling rate, and are, otherwise, 
capable of yielding acceptable results. Use of such systems is subject 
to the approval of the Administrator.

    6.1 Grab Sampling and Integrated Sampling. Same as in Sections 6.1 
and 6.2, respectively for Method 3.
    6.2 Analysis. An Orsat analyzer only. For low CO2 (less 
than 4.0 percent) or high O2 (greater than 15.0 percent) 
concentrations, the measuring burette of the Orsat must have at least 
0.1 percent subdivisions. For Orsat maintenance and operation 
procedures, follow the instructions recommended by the manufacturer, 
unless otherwise specified herein.

                       7.0 Reagents and Standards

    7.1 Reagents. Same as in Method 3, Section 7.1.
    7.2 Standards. Same as in Method 3, Section 7.2.

       8.0 Sample Collection, Preservation, Storage, and Transport

    Note: Each of the three procedures below shall be used only when 
specified in an applicable subpart of the standards. The use of these 
procedures for other purposes must have specific prior approval of the 
Administrator. A Fyrite-type combustion gas analyzer is not acceptable 
for excess air or emission rate correction factor determinations, unless 
approved by the Administrator. If both percent CO2 and 
percent O2 are measured, the analytical results of any of the 
three procedures given below may also be used for calculating the dry 
molecular weight (see Method 3).
    8.1 Single-Point, Grab Sampling and Analytical Procedure.
    8.1.1 The sampling point in the duct shall either be at the centroid 
of the cross section or at a point no closer to the walls than 1.0 m 
(3.3 ft), unless otherwise specified by the Administrator.
    8.1.2 Set up the equipment as shown in Figure 3-1 of Method 3, 
making sure all connections ahead of the analyzer are tight. Leak-check 
the Orsat analyzer according to the procedure described in Section 11.5 
of Method 3. This leak-check is mandatory.
    8.1.3 Place the probe in the stack, with the tip of the probe 
positioned at the sampling point; purge the sampling line long enough to 
allow at least five exchanges. Draw a sample into the analyzer. For 
emission rate correction factor determinations, immediately analyze the 
sample for percent CO2 or percent O2, as outlined 
in Section 11.2. For excess air determination, immediately analyze the 
sample for percent CO2, O2, and CO, as outlined in 
Section 11.2, and calculate excess air as outlined in Section 12.2.
    8.1.4 After the analysis is completed, leak-check (mandatory) the 
Orsat analyzer once again, as described in Section 11.5 of Method 3. For 
the results of the analysis to be valid, the Orsat analyzer must pass 
this leak-test before and after the analysis.
    8.2 Single-Point, Integrated Sampling and Analytical Procedure.

[[Page 155]]

    8.2.1 The sampling point in the duct shall be located as specified 
in Section 8.1.1.
    8.2.2 Leak-check (mandatory) the flexible bag as in Section 6.2.6 of 
Method 3. Set up the equipment as shown in Figure 3-2 of Method 3. Just 
before sampling, leak-check (mandatory) the train by placing a vacuum 
gauge at the condenser inlet, pulling a vacuum of at least 250 mm Hg (10 
in. Hg), plugging the outlet at the quick disconnect, and then turning 
off the pump. The vacuum should remain stable for at least 0.5 minute. 
Evacuate the flexible bag. Connect the probe, and place it in the stack, 
with the tip of the probe positioned at the sampling point; purge the 
sampling line. Next, connect the bag, and make sure that all connections 
are tight.
    8.2.3 Sample at a constant rate, or as specified by the 
Administrator. The sampling run must be simultaneous with, and for the 
same total length of time as, the pollutant emission rate determination. 
Collect at least 28 liters (1.0 ft\3\) of sample gas. Smaller volumes 
may be collected, subject to approval of the Administrator.
    8.2.4 Obtain one integrated flue gas sample during each pollutant 
emission rate determination. For emission rate correction factor 
determination, analyze the sample within 4 hours after it is taken for 
percent CO2 or percent O2 (as outlined in Section 
11.2).
    8.3 Multi-Point, Integrated Sampling and Analytical Procedure.
    8.3.1 Unless otherwise specified in an applicable regulation, or by 
the Administrator, a minimum of eight traverse points shall be used for 
circular stacks having diameters less than 0.61 m (24 in.), a minimum of 
nine shall be used for rectangular stacks having equivalent diameters 
less than 0.61 m (24 in.), and a minimum of 12 traverse points shall be 
used for all other cases. The traverse points shall be located according 
to Method 1.
    8.3.2 Follow the procedures outlined in Sections 8.2.2 through 
8.2.4, except for the following: Traverse all sampling points, and 
sample at each point for an equal length of time. Record sampling data 
as shown in Figure 3-3 of Method 3.

                           9.0 Quality Control

    9.1 Data Validation Using Fuel Factor. Although in most instances, 
only CO2 or O2 measurement is required, it is 
recommended that both CO2 and O2 be measured to 
provide a check on the quality of the data. The data validation 
procedure of Section 12.3 is suggested.

    Note: Since this method for validating the CO2 and 
O2 analyses is based on combustion of organic and fossil 
fuels and dilution of the gas stream with air, this method does not 
apply to sources that (1) remove CO2 or O2 through 
processes other than combustion, (2) add O2 (e.g., oxygen 
enrichment) and N2 in proportions different from that of air, 
(3) add CO2 (e.g., cement or lime kilns), or (4) have no fuel 
factor, FO, values obtainable (e.g., extremely variable waste 
mixtures). This method validates the measured proportions of 
CO2 and O2 for fuel type, but the method does not 
detect sample dilution resulting from leaks during or after sample 
collection. The method is applicable for samples collected downstream of 
most lime or limestone flue-gas desulfurization units as the 
CO2 added or removed from the gas stream is not significant 
in relation to the total CO2 concentration. The 
CO2 concentrations from other types of scrubbers using only 
water or basic slurry can be significantly affected and would render the 
fuel factor check minimally useful.

                  10.0 Calibration and Standardization

    10.1 Analyzer. The analyzer and analyzer operator technique should 
be audited periodically as follows: take a sample from a manifold 
containing a known mixture of CO2 and O2, and 
analyze according to the procedure in Section 11.3. Repeat this 
procedure until the measured concentration of three consecutive samples 
agrees with the stated value 0.5 percent. If 
necessary, take corrective action, as specified in the analyzer users 
manual.
    10.2 Rotameter. The rotameter need not be calibrated, but should be 
cleaned and maintained according to the manufacturer's instruction.

                        11.0 Analytical Procedure

    11.1 Maintenance. The Orsat analyzer should be maintained according 
to the manufacturers specifications.
    11.2 Grab Sample Analysis. To ensure complete absorption of the 
CO2, O2, or if applicable, CO, make repeated 
passes through each absorbing solution until two consecutive readings 
are the same. Several passes (three or four) should be made between 
readings. (If constant readings cannot be obtained after three 
consecutive readings, replace the absorbing solution.) Although in most 
cases, only CO2 or O2 concentration is required, 
it is recommended that both CO2 and O2 be 
measured, and that the procedure in Section 12.3 be used to validate the 
analytical data.

    Note: Since this single-point, grab sampling and analytical 
procedure is normally conducted in conjunction with a single-point, grab 
sampling and analytical procedure for a pollutant, only one analysis is 
ordinarily conducted. Therefore, great care must be taken to obtain a 
valid sample and analysis.

    11.3 Integrated Sample Analysis. The Orsat analyzer must be leak-
checked (see Section 11.5 of Method 3) before the analysis.

[[Page 156]]

If excess air is desired, proceed as follows: (1) within 4 hours after 
the sample is taken, analyze it (as in Sections 11.3.1 through 11.3.3) 
for percent CO2, O2, and CO; (2) determine the 
percentage of the gas that is N2 by subtracting the sum of 
the percent CO2, percent O2, and percent CO from 
100 percent; and (3) calculate percent excess air, as outlined in 
Section 12.2.
    11.3.1 To ensure complete absorption of the CO2, 
O2, or if applicable, CO, follow the procedure described in 
Section 11.2.

    Note: Although in most instances only CO2 or 
O2 is required, it is recommended that both CO2 
and O2 be measured, and that the procedures in Section 12.3 
be used to validate the analytical data.

    11.3.2 Repeat the analysis until the following criteria are met:
    11.3.2.1 For percent CO2, repeat the analytical procedure 
until the results of any three analyses differ by no more than (a) 0.3 
percent by volume when CO2 is greater than 4.0 percent or (b) 
0.2 percent by volume when CO2 is less than or equal to 4.0 
percent. Average three acceptable values of percent CO2, and 
report the results to the nearest 0.2 percent.
    11.3.2.2 For percent O2, repeat the analytical procedure 
until the results of any three analyses differ by no more than (a) 0.3 
percent by volume when O2 is less than 15.0 percent or (b) 
0.2 percent by volume when O2 is greater than or equal to 
15.0 percent. Average the three acceptable values of percent 
O2, and report the results to the nearest 0.1 percent.
    11.3.2.3 For percent CO, repeat the analytical procedure until the 
results of any three analyses differ by no more than 0.3 percent. 
Average the three acceptable values of percent CO, and report the 
results to the nearest 0.1 percent.
    11.3.3 After the analysis is completed, leak-check (mandatory) the 
Orsat analyzer once again, as described in Section 11.5 of Method 3. For 
the results of the analysis to be valid, the Orsat analyzer must pass 
this leak-test before and after the analysis.
    11.4 Standardization. A periodic check of the reagents and of 
operator technique should be conducted at least once every three series 
of test runs as indicated in Section 10.1.

                   12.0 Calculations and Data Analysis

    12.1 Nomenclature. Same as Section 12.1 of Method 3 with the 
addition of the following:
%EA=Percent excess air.
0.264=Ratio of O2 to N2 in air, v/v.

    12.2 Percent Excess Air. Determine the percentage of the gas that is 
N2 by subtracting the sum of the percent CO2, 
percent CO, and percent O2 from 100 percent. Calculate the 
percent excess air (if applicable) by substituting the appropriate 
values of percent O2, CO, and N2 into Equation 3B-
1.
[GRAPHIC] [TIFF OMITTED] TR17OC00.093

    Note: The equation above assumes that ambient air is used as the 
source of O2 and that the fuel does not contain appreciable 
amounts of N2 (as do coke oven or blast furnace gases). For 
those cases when appreciable amounts of N2 are present (coal, 
oil, and natural gas do not contain appreciable amounts of 
N2) or when oxygen enrichment is used, alternative methods, 
subject to approval of the Administrator, are required.

    12.3 Data Validation When Both CO2 and O2 Are 
Measured.
    12.3.1 Fuel Factor, Fo. Calculate the fuel factor (if 
applicable) using Equation 3B-2:
[GRAPHIC] [TIFF OMITTED] TR17OC00.094

Where:

%O2=Percent O2 by volume, dry basis.
%CO2=Percent CO2 by volume, dry basis.
20.9=Percent O2 by volume in ambient air.

    If CO is present in quantities measurable by this method, adjust the 
O2 and CO2 values using Equations 3B-3 and 3B-4 
before performing the calculation for Fo:
[GRAPHIC] [TIFF OMITTED] TR17OC00.095

[GRAPHIC] [TIFF OMITTED] TR17OC00.096

Where:
%CO=Percent CO by volume, dry basis.

    12.3.2 Compare the calculated Fo factor with the expected 
Fo values. Table 3B-1 in Section 17.0 may be used in 
establishing acceptable ranges for the expected Fo if the 
fuel being burned is known. When fuels are burned in combinations, 
calculate the combined fuel Fd and Fc factors (as 
defined in Method 19, Section 12.2) according to the procedure in Method 
19, Sections 12.2 and 12.3. Then calculate the Fo factor 
according to Equation 3B-5.

[[Page 157]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.097

    12.3.3 Calculated Fo values, beyond the acceptable ranges 
shown in this table, should be investigated before accepting the test 
results. For example, the strength of the solutions in the gas analyzer 
and the analyzing technique should be checked by sampling and analyzing 
a known concentration, such as air; the fuel factor should be reviewed 
and verified. An acceptability range of 12 percent 
is appropriate for the Fo factor of mixed fuels with variable 
fuel ratios. The level of the emission rate relative to the compliance 
level should be considered in determining if a retest is appropriate; 
i.e., if the measured emissions are much lower or much greater than the 
compliance limit, repetition of the test would not significantly change 
the compliance status of the source and would be unnecessarily time 
consuming and costly.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 3, Section 16.0.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

                Table 3B-1--Fo Factors for Selected Fuels
------------------------------------------------------------------------
                        Fuel type                            Fo range
------------------------------------------------------------------------
Coal:
    Anthracite and lignite..............................     1.016-1.130
    Bituminous..........................................     1.083-1.230
Oil:
    Distillate..........................................     1.260-1.413
    Residual............................................     1.210-1.370
Gas:
    Natural.............................................     1.600-1.836
    Propane.............................................     1.434-1.586
    Butane..............................................     1.405-1.553
Wood....................................................     1.000-1.120
Wood bark...............................................     1.003-1.130
------------------------------------------------------------------------

   Method 3C--Determination of Carbon Dioxide, Methane, Nitrogen, and 
                     Oxygen From Stationary Sources

                     1. Applicability and Principle

    1.1 Applicability. This method applies to the analysis of carbon 
dioxide (CO2), methane (CH4), nitrogen 
(N2), and oxygen (O2) in samples from municipal 
solid waste landfills and other sources when specified in an applicable 
subpart.
    1.2 Principle. A portion of the sample is injected into a gas 
chromatograph (GC) and the CO2, CH4, 
N2, and O2 concentrations are determined by using 
a thermal conductivity detector (TCD) and integrator.

                        2. Range and Sensitivity

    2.1 Range. The range of this method depends upon the concentration 
of samples. The analytical range of TCD's is generally between 
approximately 10 ppmv and the upper percent range.
    2.2 Sensitivity. The sensitivity limit for a compound is defined as 
the minimum detectable concentration of that compound, or the 
concentration that produces a signal-to-noise ratio of three to one. For 
CO2, CH4, N2, and O2, the 
sensitivity limit is in the low ppmv range.

                            3. Interferences

    Since the TCD exhibits universal response and detects all gas 
components except the carrier, interferences may occur. Choosing the 
appropriate GC or shifting the retention times by changing the column 
flow rate may help to eliminate resolution interferences.
    To assure consistent detector response, helium is used to prepare 
calibration gases. Frequent exposure to samples or carrier gas 
containing oxygen may gradually destroy filaments.

                              4. Apparatus

    4.1 Gas Chromatograph. GC having at least the following components:
    4.1.1 Separation Column. Appropriate column(s) to resolve 
CO2, CH4, N2, O2, and other 
gas components that may be present in the sample.
    4.1.2 Sample Loop. Teflon or stainless steel tubing of the 
appropriate diameter. Note: Mention of trade names or specific products 
does not constitute endorsement or recommendation by the U. S. 
Environmental Protection Agency.
    4.1.3 Conditioning System. To maintain the column and sample loop at 
constant temperature.
    4.1.4 Thermal Conductivity Detector.
    4.2 Recorder. Recorder with linear strip chart. Electronic 
integrator (optional) is recommended.
    4.3 Teflon Tubing. Diameter and length determined by connection 
requirements of cylinder regulators and the GC.
    4.4 Regulators. To control gas cylinder pressures and flow rates.
    4.5 Adsorption Tubes. Applicable traps to remove any O2 
from the carrier gas.

                               5. Reagents

    5.1 Calibration and Linearity Gases. Standard cylinder gas mixtures 
for each compound of interest with at least three concentration levels 
spanning the range of suspected sample concentrations. The calibration 
gases shall be prepared in helium.
    5.2 Carrier Gas. Helium, high-purity.

[[Page 158]]

                               6. Analysis

    6.1 Sample Collection. Use the sample collection procedures 
described in Methods 3 or 25C to collect a sample of landfill gas (LFG).
    6.2 Preparation of GC. Before putting the GC analyzer into routine 
operation, optimize the operational conditions according to the 
manufacturer's specifications to provide good resolution and minimum 
analysis time. Establish the appropriate carrier gas flow and set the 
detector sample and reference cell flow rates at exactly the same 
levels. Adjust the column and detector temperatures to the recommended 
levels. Allow sufficient time for temperature stabilization. This may 
typically require 1 hour for each change in temperature.
    6.3 Analyzer Linearity Check and Calibration. Perform this test 
before sample analysis. Using the gas mixtures in section 5.1, verify 
the detector linearity over the range of suspected sample concentrations 
with at least three points per compound of interest. This initial check 
may also serve as the initial instrument calibration. All subsequent 
calibrations may be performed using a single-point standard gas provided 
the calibration point is within 20 percent of the sample component 
concentration. For each instrument calibration, record the carrier and 
detector flow rates, detector filament and block temperatures, 
attenuation factor, injection time, chart speed, sample loop volume, and 
component concentrations. Plot a linear regression of the standard 
concentrations versus area values to obtain the response factor of each 
compound. Alternatively, response factors of uncorrected component 
concentrations (wet basis) may be generated using instrumental 
integration. Note: Peak height may be used instead of peak area 
throughout this method.
    6.4 Sample Analysis. Purge the sample loop with sample, and allow to 
come to atmospheric pressure before each injection. Analyze each sample 
in duplicate, and calculate the average sample area (A). The results are 
acceptable when the peak areas for two consecutive injections agree 
within 5 percent of their average. If they do not agree, run additional 
samples until consistent area data are obtained. Determine the tank 
sample concentrations according to section 7.2.

                             7. Calculations

    Carry out calculations retaining at least one extra decimal figure 
beyond that of the acquired data. Round off results only after the final 
calculation.
    7.1 Nomenclature.

A=average sample area
Bw=moisture content in the sample, fraction
C=component concentration in the sample, dry basis, ppmv
Ct=calculated NMOC concentration, ppmv C equivalent
Ctm=measured NMOC concentration, ppmv C equivalent
Pbar=barometric pressure, mm Hg
Pti=gas sample tank pressure after evacuation, mm Hg absolute
Pt=gas sample tank pressure after sampling, but before 
pressurizing, mm Hg absolute
Ptf=final gas sample tank pressure after pressurizing, mm Hg 
absolute
Pw=vapor pressure of H2O (from table 3C-1), mm Hg
Tti=sample tank temperature before sampling, [deg]K
Tt=sample tank temperature at completion of sampling, [deg]K
Ttf=sample tank temperature after pressurizing, [deg]K
r=total number of analyzer injections of sample tank during analysis 
(where j=injection number, 1 . . . r)
R=Mean calibration response factor for specific sample component, area/
ppmv

                     Table 3C-1--Moisture Correction
------------------------------------------------------------------------
                                                                Vapor
                     Temperature [deg]C                      Pressure of
                                                              H2O, mm Hg
------------------------------------------------------------------------
4..........................................................          6.1
6..........................................................          7.0
8..........................................................          8.0
10.........................................................          9.2
12.........................................................         10.5
14.........................................................         12.0
16.........................................................         13.6
18.........................................................         15.5
20.........................................................         17.5
22.........................................................         19.8
24.........................................................         22.4
26.........................................................         25.2
28.........................................................         28.3
30.........................................................         31.8
------------------------------------------------------------------------

    7.2 Concentration of Sample Components. Calculate C for each 
compound using Equations 3C-1 and 3C-2. Use the temperature and 
barometric pressure at the sampling site to calculate Bw. If the sample 
was diluted with helium using the procedures in Method 25C, use Equation 
3C-3 to calculate the concentration.

[[Page 159]]

[GRAPHIC] [TIFF OMITTED] TR12MR96.031

                             8. Bibliography

    1. McNair, H.M., and E.J. Bonnelli. Basic Gas Chromatography. 
Consolidated Printers, Berkeley, CA. 1969.

[36 FR 24877, Dec. 23, 1971]

    Editorial Note: For Federal Register citations affecting part 60, 
appendix A-2, see the List of CFR Sections Affected, which appears in 
the Finding Aids section of the printed volume and on GPO Access.

           Appendix A-3 to Part 60--Test Methods 4 through 5I

Method 4--Determination of moisture content in stack gases
Method 5--Determination of particulate matter emissions from stationary 
sources
Method 5A--Determination of particulate matter emissions from the 
asphalt processing and asphalt roofing industry
Method 5B--Determination of nonsulfuric acid particulate matter 
emissions from stationary sources
Method 5C [Reserved]
Method 5D--Determination of particulate matter emissions from positive 
pressure fabric filters
Method 5E--Determination of particulate matter emissions from the wool 
fiberglass insulation manufacturing industry
Method 5F--Determination of nonsulfate particulate matter emissions from 
stationary sources
Method 5G--Determination of particulate matter emissions from wood 
heaters (dilution tunnel sampling location)
Method 5H--Determination of particulate emissions from wood heaters from 
a stack location
Method 5I--Determination of Low Level Particulate Matter Emissions From 
Stationary Sources
    The test methods in this appendix are referred to in Sec.  60.8 
(Performance Tests) and Sec.  60.11 (Compliance With Standards and 
Maintenance Requirements) of 40 CFR part 60, subpart A (General 
Provisions). Specific uses of these test methods are described in the 
standards of performance contained in the subparts, beginning with 
Subpart D.
    Within each standard of performance, a section title ``Test Methods 
and Procedures'' is provided to: (1) Identify the test methods to be 
used as reference methods to the facility subject to the respective 
standard and (2) identify any special instructions or conditions to be 
followed when applying a method to the respective facility. Such 
instructions (for example, establish sampling rates, volumes, or 
temperatures) are to be used either in addition to, or as a substitute 
for procedures in a test method. Similarly, for sources subject to 
emission monitoring requirements, specific instructions pertaining to 
any use of a test method as a reference method are provided in the 
subpart or in Appendix B.
    Inclusion of methods in this appendix is not intended as an 
endorsement or denial of their applicability to sources that are not 
subject to standards of performance. The methods are potentially 
applicable to other sources; however, applicability should be confirmed 
by careful and appropriate evaluation of the conditions prevalent at 
such sources.
    The approach followed in the formulation of the test methods 
involves specifications for equipment, procedures, and performance. In 
concept, a performance specification approach would be preferable in all 
methods because this allows the greatest flexibility to the user. In 
practice, however, this approach is impractical in most cases because 
performance specifications cannot be established. Most of the methods 
described herein, therefore, involve specific equipment specifications 
and procedures, and only a few methods in this appendix rely on 
performance criteria.
    Minor changes in the test methods should not necessarily affect the 
validity of the results and it is recognized that alternative and 
equivalent methods exist. Section 60.8 provides authority for the 
Administrator to specify or approve (1) equivalent methods, (2) 
alternative methods, and (3) minor changes in the methodology of the 
test methods. It should be clearly understood that unless otherwise 
identified all such methods and changes must have prior approval of the 
Administrator. An owner employing such methods or deviations from the 
test methods without obtaining prior approval does so at the risk of 
subsequent disapproval and retesting with approved methods.
    Within the test methods, certain specific equipment or procedures 
are recognized as being acceptable or potentially acceptable and are 
specifically identified in the methods. The items identified as 
acceptable options may be used without approval but

[[Page 160]]

must be identified in the test report. The potentially approvable 
options are cited as ``subject to the approval of the Administrator'' or 
as ``or equivalent.'' Such potentially approvable techniques or 
alternatives may be used at the discretion of the owner without prior 
approval. However, detailed descriptions for applying these potentially 
approvable techniques or alternatives are not provided in the test 
methods. Also, the potentially approvable options are not necessarily 
acceptable in all applications. Therefore, an owner electing to use such 
potentially approvable techniques or alternatives is responsible for: 
(1) assuring that the techniques or alternatives are in fact applicable 
and are properly executed; (2) including a written description of the 
alternative method in the test report (the written method must be clear 
and must be capable of being performed without additional instruction, 
and the degree of detail should be similar to the detail contained in 
the test methods); and (3) providing any rationale or supporting data 
necessary to show the validity of the alternative in the particular 
application. Failure to meet these requirements can result in the 
Administrator's disapproval of the alternative.

       Method 4--Determination of Moisture Content in Stack Gases

    Note: This method does not include all the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling) essential to its 
performance. Some material is incorporated by reference from other 
methods in this part. Therefore, to obtain reliable results, persons 
using this method should have a thorough knowledge of at least the 
following additional test methods: Method 1, Method 5, and Method 6.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Water vapor (H2O).................       7732-18-5  N/A
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of the moisture content of stack gas.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted at a constant rate from the source; 
moisture is removed from the sample stream and determined either 
volumetrically or gravimetrically.
    2.2 The method contains two possible procedures: a reference method 
and an approximation method.
    2.2.1 The reference method is used for accurate determinations of 
moisture content (such as are needed to calculate emission data). The 
approximation method, provides estimates of percent moisture to aid in 
setting isokinetic sampling rates prior to a pollutant emission 
measurement run. The approximation method described herein is only a 
suggested approach; alternative means for approximating the moisture 
content (e.g., drying tubes, wet bulb-dry bulb techniques, condensation 
techniques, stoichiometric calculations, previous experience, etc.) are 
also acceptable.
    2.2.2 The reference method is often conducted simultaneously with a 
pollutant emission measurement run. When it is, calculation of percent 
isokinetic, pollutant emission rate, etc., for the run shall be based 
upon the results of the reference method or its equivalent. These 
calculations shall not be based upon the results of the approximation 
method, unless the approximation method is shown, to the satisfaction of 
the Administrator, to be capable of yielding results within one percent 
H2O of the reference method.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    4.1 The moisture content of saturated gas streams or streams that 
contain water droplets, as measured by the reference method, may be 
positively biased. Therefore, when these conditions exist or are 
suspected, a second determination of the moisture content shall be made 
simultaneously with the reference method, as follows: Assume that the 
gas stream is saturated. Attach a temperature sensor [capable of 
measuring to 1 [deg]C (2 [deg]F)] to the reference 
method probe. Measure the stack gas temperature at each traverse point 
(see Section 8.1.1.1) during the reference method traverse, and 
calculate the average stack gas temperature. Next, determine the 
moisture percentage, either by: (1) Using a psychrometric chart and 
making appropriate corrections if the stack pressure is different from 
that of the chart, or (2) using saturation vapor pressure tables. In 
cases where the psychrometric chart or the saturation vapor pressure 
tables are not applicable (based on evaluation of the process), 
alternative methods, subject to the approval of the Administrator, shall 
be used.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety

[[Page 161]]

and health practices and determine the applicability of regulatory 
limitations prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Reference Method. A schematic of the sampling train used in this 
reference method is shown in Figure 4-1.
    6.1.1 Probe. Stainless steel or glass tubing, sufficiently heated to 
prevent water condensation, and equipped with a filter, either in-stack 
(e.g., a plug of glass wool inserted into the end of the probe) or 
heated out-of-stack (e.g., as described in Method 5), to remove 
particulate matter. When stack conditions permit, other metals or 
plastic tubing may be used for the probe, subject to the approval of the 
Administrator.
    6.1.2 Condenser. Same as Method 5, Section 6.1.1.8.
    6.1.3 Cooling System. An ice bath container, crushed ice, and water 
(or equivalent), to aid in condensing moisture.
    6.1.4 Metering System. Same as in Method 5, Section 6.1.1.9, except 
do not use sampling systems designed for flow rates higher than 0.0283 
m\3\/min (1.0 cfm). Other metering systems, capable of maintaining a 
constant sampling rate to within 10 percent and determining sample gas 
volume to within 2 percent, may be used, subject to the approval of the 
Administrator.
    6.1.5 Barometer and Graduated Cylinder and/or Balance. Same as 
Method 5, Sections 6.1.2 and 6.2.5, respectively.
    6.2. Approximation Method. A schematic of the sampling train used in 
this approximation method is shown in Figure 4-2.
    6.2.1 Probe. Same as Section 6.1.1.
    6.2.2 Condenser. Two midget impingers, each with 30-ml capacity, or 
equivalent.
    6.2.3 Cooling System. Ice bath container, crushed ice, and water, to 
aid in condensing moisture in impingers.
    6.2.4 Drying Tube. Tube packed with new or regenerated 6- to 16-mesh 
indicating-type silica gel (or equivalent desiccant), to dry the sample 
gas and to protect the meter and pump.
    6.2.5 Valve. Needle valve, to regulate the sample gas flow rate.
    6.2.6 Pump. Leak-free, diaphragm type, or equivalent, to pull the 
gas sample through the train.
    6.2.7 Volume Meter. Dry gas meter, sufficiently accurate to measure 
the sample volume to within 2 percent, and calibrated over the range of 
flow rates and conditions actually encountered during sampling.
    6.2.8 Rate Meter. Rotameter, or equivalent, to measure the flow 
range from 0 to 3 liters/min (0 to 0.11 cfm).
    6.2.9 Graduated Cylinder. 25-ml.
    6.2.10 Barometer. Same as Method 5, Section 6.1.2.
    6.2.11 Vacuum Gauge. At least 760-mm (30-in.) Hg gauge, to be used 
for the sampling leak check.

                  7.0 Reagents and Standards [Reserved]

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Reference Method. The following procedure is intended for a 
condenser system (such as the impinger system described in Section 
6.1.1.8 of Method 5) incorporating volumetric analysis to measure the 
condensed moisture, and silica gel and gravimetric analysis to measure 
the moisture leaving the condenser.
    8.1.1 Preliminary Determinations.
    8.1.1.1 Unless otherwise specified by the Administrator, a minimum 
of eight traverse points shall be used for circular stacks having 
diameters less than 0.61 m (24 in.), a minimum of nine points shall be 
used for rectangular stacks having equivalent diameters less than 0.61 m 
(24 in.), and a minimum of twelve traverse points shall be used in all 
other cases. The traverse points shall be located according to Method 1. 
The use of fewer points is subject to the approval of the Administrator. 
Select a suitable probe and probe length such that all traverse points 
can be sampled. Consider sampling from opposite sides of the stack (four 
total sampling ports) for large stacks, to permit use of shorter probe 
lengths. Mark the probe with heat resistant tape or by some other method 
to denote the proper distance into the stack or duct for each sampling 
point.
    8.1.1.2 Select a total sampling time such that a minimum total gas 
volume of 0.60 scm (21 scf) will be collected, at a rate no greater than 
0.021 m\3\/min (0.75 cfm). When both moisture content and pollutant 
emission rate are to be determined, the moisture determination shall be 
simultaneous with, and for the same total length of time as, the 
pollutant emission rate run, unless otherwise specified in an applicable 
subpart of the standards.
    8.1.2 Preparation of Sampling Train.
    8.1.2.1 Place known volumes of water in the first two impingers; 
alternatively, transfer water into the first two impingers and record 
the weight of each impinger (plus water) to the nearest 0.5 g. Weigh and 
record the weight of the silica gel to the nearest 0.5 g, and transfer 
the silica gel to the fourth impinger; alternatively, the silica gel may 
first be transferred to the impinger, and the weight of the silica gel 
plus impinger recorded.
    8.1.2.2 Set up the sampling train as shown in Figure 4-1. Turn on 
the probe heater and (if applicable) the filter heating system to 
temperatures of approximately 120 [deg]C (248 [deg]F), to prevent water 
condensation ahead of the condenser. Allow time for the temperatures to 
stabilize. Place crushed ice and water in the ice bath container.

[[Page 162]]

    8.1.3 Leak Check Procedures. It is recommended, but not required, 
that the volume metering system and sampling train be leak-checked as 
follows:
    8.1.3.1 Metering System. Same as Method 5, Section 8.4.1.
    8.1.3.2 Sampling Train. Disconnect the probe from the first impinger 
or (if applicable) from the filter holder. Plug the inlet to the first 
impinger (or filter holder), and pull a 380 mm (15 in.) Hg vacuum. A 
lower vacuum may be used, provided that it is not exceeded during the 
test. A leakage rate in excess of 4 percent of the average sampling rate 
or 0.00057 m\3\/min (0.020 cfm), whichever is less, is unacceptable. 
Following the leak check, reconnect the probe to the sampling train.
    8.1.4 Sampling Train Operation. During the sampling run, maintain a 
sampling rate within 10 percent of constant rate, or as specified by the 
Administrator. For each run, record the data required on a data sheet 
similar to that shown in Figure 4-3. Be sure to record the dry gas meter 
reading at the beginning and end of each sampling time increment and 
whenever sampling is halted. Take other appropriate readings at each 
sample point at least once during each time increment.

    Note: When Method 4 is used concurrently with an isokinetic method 
(e.g., Method 5) the sampling rate should be maintained at isokinetic 
conditions rather than 10 percent of constant rate.

    8.1.4.1 To begin sampling, position the probe tip at the first 
traverse point. Immediately start the pump, and adjust the flow to the 
desired rate. Traverse the cross section, sampling at each traverse 
point for an equal length of time. Add more ice and, if necessary, salt 
to maintain a temperature of less than 20 [deg]C (68 [deg]F) at the 
silica gel outlet.
    8.1.4.2 After collecting the sample, disconnect the probe from the 
first impinger (or from the filter holder), and conduct a leak check 
(mandatory) of the sampling train as described in Section 8.1.3.2. 
Record the leak rate. If the leakage rate exceeds the allowable rate, 
either reject the test results or correct the sample volume as in 
Section 12.3 of Method 5.
    8.2 Approximation Method.

    Note: The approximation method described below is presented only as 
a suggested method (see Section 2.0).

    8.2.1 Place exactly 5 ml water in each impinger. Leak check the 
sampling train as follows: Temporarily insert a vacuum gauge at or near 
the probe inlet. Then, plug the probe inlet and pull a vacuum of at 
least 250 mm (10 in.) Hg. Note the time rate of change of the dry gas 
meter dial; alternatively, a rotameter (0 to 40 ml/min) may be 
temporarily attached to the dry gas meter outlet to determine the 
leakage rate. A leak rate not in excess of 2 percent of the average 
sampling rate is acceptable.

    Note: Release the probe inlet plug slowly before turning off the 
pump.

    8.2.2 Connect the probe, insert it into the stack, and sample at a 
constant rate of 2 liters/min (0.071 cfm). Continue sampling until the 
dry gas meter registers about 30 liters (1.1 ft\3\) or until visible 
liquid droplets are carried over from the first impinger to the second. 
Record temperature, pressure, and dry gas meter readings as indicated by 
Figure 4-4.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
Section 8.1.1.4...............  Leak rate of the   Ensures the accuracy
                                 sampling system    of the volume of gas
                                 cannot exceed      sampled. (Reference
                                 four percent of    Method)
                                 the average
                                 sampling rate or
                                 0.00057 m\3\/min
                                 (0.20 cfm).
Section 8.2.1.................  Leak rate of the   Ensures the accuracy
                                 sampling system    of the volume of gas
                                 cannot exceed      sampled.
                                 two percent of     (Approximation
                                 the average        Method)
                                 sampling rate.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Note: Maintain a laboratory log of all calibrations.

    10.1 Reference Method. Calibrate the metering system, temperature 
sensors, and barometer according to Method 5, Sections 10.3, 10.5, and 
10.6, respectively.
    10.2 Approximation Method. Calibrate the metering system and the 
barometer according to Method 6, Section 10.1 and Method 5, Section 
10.6, respectively.

                        11.0 Analytical Procedure

    11.1 Reference Method. Measure the volume of the moisture condensed 
in each of the impingers to the nearest ml. Alternatively, if the 
impingers were weighed prior to sampling, weigh the impingers after 
sampling

[[Page 163]]

and record the difference in weight to the nearest 0.5 g. Determine the 
increase in weight of the silica gel (or silica gel plus impinger) to 
the nearest 0.5 g. Record this information (see example data sheet, 
Figure 4-5), and calculate the moisture content, as described in Section 
12.0.
    11.2 Approximation Method. Combine the contents of the two 
impingers, and measure the volume to the nearest 0.5 ml.

                   12.0 Data Analysis and Calculations

    Carry out the following calculations, retaining at least one extra 
significant figure beyond that of the acquired data. Round off figures 
after final calculation.
    12.1 Reference Method.
    12.1.1 Nomenclature.
Bws=Proportion of water vapor, by volume, in the gas stream.
Mw=Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-
mole).
Pm=Absolute pressure (for this method, same as barometric 
pressure) at the dry gas meter, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
R=Ideal gas constant, 0.06236 (mm Hg)(m\3\)/(g-mole)([deg]K) for metric 
units and 21.85 (in. Hg)(ft\3\)/(lb-mole)([deg]R) for English units.
Tm=Absolute temperature at meter, [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Vf=Final volume of condenser water, ml.
Vi=Initial volume, if any, of condenser water, ml.
Vm=Dry gas volume measured by dry gas meter, dcm (dcf).
Vm(std)=Dry gas volume measured by the dry gas meter, 
corrected to standard conditions, dscm (dscf).
Vwc(std)=Volume of water vapor condensed, corrected to 
standard conditions, scm (scf).
Vwsg(std)=Volume of water vapor collected in silica gel, 
corrected to standard conditions, scm (scf).
Wf=Final weight of silica gel or silica gel plus impinger, g.
Wi=Initial weight of silica gel or silica gel plus impinger, 
g.
Y=Dry gas meter calibration factor.
[Delta]Vm=Incremental dry gas volume measured by dry gas 
meter at each traverse point, dcm (dcf).
[rho]w=Density of water, 0.9982 g/ml (0.002201 lb/ml).

    12.1.2 Volume of Water Vapor Condensed.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.098
    
Where:

K1=0.001333 m\3\/ml for metric units,
    =0.04706 ft\3\/ml for English units.

    12.1.3 Volume of Water Collected in Silica Gel.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.099
    
Where:

K2=1.0 g/g for metric units,
    =453.6 g/lb for English units.
K3=0.001335 m\3\/g for metric units,
    =0.04715 ft\3\/g for English units.

    12.1.4 Sample Gas Volume.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.100
    
Where:

K4=0.3855 [deg]K/mm Hg for metric units,
    =17.64 [deg]R/in. Hg for English units.

    Note: If the post-test leak rate (Section 8.1.4.2) exceeds the 
allowable rate, correct the value of Vm in Equation 4-3, as described in 
Section 12.3 of Method 5.

    12.1.5 Moisture Content.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.101
    
    12.1.6 Verification of Constant Sampling Rate. For each time 
increment, determine the [Delta]Vm. Calculate the average. If 
the value for any time increment differs from the average by more than 
10 percent, reject the results, and repeat the run.
    12.1.7 In saturated or moisture droplet-laden gas streams, two 
calculations of the moisture content of the stack gas shall be made, one 
using a value based upon the saturated conditions (see Section 4.1), and 
another based upon the results of the impinger analysis. The lower of 
these two values of Bws shall be considered correct.

[[Page 164]]

    12.2 Approximation Method. The approximation method presented is 
designed to estimate the moisture in the stack gas; therefore, other 
data, which are only necessary for accurate moisture determinations, are 
not collected. The following equations adequately estimate the moisture 
content for the purpose of determining isokinetic sampling rate 
settings.
    12.2.1 Nomenclature.
Bwm=Approximate proportion by volume of water vapor in the 
gas stream leaving the second impinger, 0.025.
Bws=Water vapor in the gas stream, proportion by volume.
Mw=Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-
mole).
Pm=Absolute pressure (for this method, same as barometric 
pressure) at the dry gas meter, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
R=Ideal gas constant, 0.06236 [(mm Hg)(m\3\)]/[(g-mole)(K)] for metric 
units and 21.85 [(in. Hg)(ft\3\)]/[(lb-mole)([deg]R)] for English units.
Tm=Absolute temperature at meter, [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Vf=Final volume of impinger contents, ml.
Vi=Initial volume of impinger contents, ml.
Vm=Dry gas volume measured by dry gas meter, dcm (dcf).
Vm(std)=Dry gas volume measured by dry gas meter, corrected 
to standard conditions, dscm (dscf).
Vwc(std)=Volume of water vapor condensed, corrected to 
standard conditions, scm (scf).
Y=Dry gas meter calibration factor.
[rho]w=Density of water, 0.09982 g/ml (0.002201 lb/ml).

    12.2.2 Volume of Water Vapor Collected.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.102
    
Where:

K5=0.001333 m\3\/ml for metric units,
    =0.04706 ft\3\/ml for English units.

    12.2.3 Sample Gas Volume.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.103
    
Where:

K6=0.3855 [deg]K/mm Hg for metric units,
    =17.64 [deg]R/in. Hg for English units.

    12.2.4 Approximate Moisture Content.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.104
    
                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    The procedure described in Method 5 for determining moisture content 
is acceptable as a reference method.

                             17.0 References

    1. Air Pollution Engineering Manual (Second Edition). Danielson, 
J.A. (ed.). U.S. Environmental Protection Agency, Office of Air Quality 
Planning and Standards. Research Triangle Park, NC. Publication No. AP-
40. 1973.
    2. Devorkin, Howard, et al. Air Pollution Source Testing Manual. Air 
Pollution Control District, Los Angeles, CA. November 1963.
    3. Methods for Determination of Velocity, Volume, Dust and Mist 
Content of Gases. Western Precipitation Division of Joy Manufacturing 
Co. Los Angeles, CA. Bulletin WP-50. 1968.

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 165]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.105


[[Page 166]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.106


[[Page 167]]


Plant___________________________________________________________________
Location________________________________________________________________
Operator________________________________________________________________
Date____________________________________________________________________
Run No._________________________________________________________________
Ambient temperature_____________________________________________________
Barometric pressure_____________________________________________________
Probe Length____________________________________________________________

------------------------------------------------------------------------
 
-------------------------------------------------------------------------
 
 
 
 
 
 
 
------------------------------------------------------------------------


[[Page 168]]


--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                    Gas sample  temperature  Temperature
                                                                             Pressure       Meter                      at  dry gas meter        of gas
                                                   Sampling      Stack     differential  reading gas              --------------------------   leaving
                                                     time     temperature      across       sample     [Delta]Vm                              condenser
                Traverse Pt. No.                  ([Delta]),    [deg]C (      orifice       volume        m\3\     Inlet  Tmin     Outlet      or last
                                                     min        [deg]F)        meter         m\3\       (ft\3\)      [deg]C (      Tmout       impinger
                                                                           [Delta]H  mm    (ft\3\)                   [deg]F)      [deg]C (     [deg]C (
                                                                             (in.) H2O                                            [deg]F)      [deg]F)
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                    Average
--------------------------------------------------------------------------------------------------------------------------------------------------------


[[Page 169]]

Location________________________________________________________________
Test____________________________________________________________________
Date____________________________________________________________________
Operator________________________________________________________________
Barometric pressure_____________________________________________________
Comments:_______________________________________________________________
________________________________________________________________________

          Figure 4-3. Moisture Determination--Reference Method

----------------------------------------------------------------------------------------------------------------
                                          Gas Volume through
              Clock time                  meter, (Vm), m\3\     Rate meter setting m\3\/    Meter temperature
                                               (ft\3\)              min (ft\3\/min)          [deg]C ( [deg]F)
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
 
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------

      Figure 4-4. Example Moisture Determination Field Data Sheet--
                          Approximation Method

------------------------------------------------------------------------
                                   Impinger volume,   Silica gel weight,
                                          ml                   g
------------------------------------------------------------------------
Final
Initial
Difference
------------------------------------------------------------------------

              Figure 4-5. Analytical Data--Reference Method

Method 5--Determination of Particulate Matter Emissions From Stationary 
                                 Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3.

                        1.0 Scope and Application

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.
    1.2 Applicability. This method is applicable for the determination 
of PM emissions from stationary sources.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    Particulate matter is withdrawn isokinetically from the source and 
collected on a glass fiber filter maintained at a temperature of 120 
14 [deg]C (248 25 [deg]F) or 
such other temperature as specified by an applicable subpart of the 
standards or approved by the Administrator for a particular application. 
The PM mass, which includes any material that condenses at or above the 
filtration temperature, is determined gravimetrically after the removal 
of uncombined water.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. The following items are required for sample 
collection:
    6.1.1 Sampling Train. A schematic of the sampling train used in this 
method is shown in Figure 5-1 in Section 18.0. Complete construction 
details are given in APTD-0581 (Reference 2 in Section 17.0); commercial

[[Page 170]]

models of this train are also available. For changes from APTD-0581 and 
for allowable modifications of the train shown in Figure 5-1, see the 
following subsections.

    Note: The operating and maintenance procedures for the sampling 
train are described in APTD-0576 (Reference 3 in Section 17.0). Since 
correct usage is important in obtaining valid results, all users should 
read APTD-0576 and adopt the operating and maintenance procedures 
outlined in it, unless otherwise specified herein.

    6.1.1.1 Probe Nozzle. Stainless steel (316) or glass with a sharp, 
tapered leading edge. The angle of taper shall be <=30[deg], and the 
taper shall be on the outside to preserve a constant internal diameter. 
The probe nozzle shall be of the button-hook or elbow design, unless 
otherwise specified by the Administrator. If made of stainless steel, 
the nozzle shall be constructed from seamless tubing. Other materials of 
construction may be used, subject to the approval of the Administrator. 
A range of nozzle sizes suitable for isokinetic sampling should be 
available. Typical nozzle sizes range from 0.32 to 1.27 cm (\1/8\ to \1/
2\ in) inside diameter (ID) in increments of 0.16 cm (\1/16\ in). Larger 
nozzles sizes are also available if higher volume sampling trains are 
used. Each nozzle shall be calibrated, according to the procedures 
outlined in Section 10.1.
    6.1.1.2 Probe Liner. Borosilicate or quartz glass tubing with a 
heating system capable of maintaining a probe gas temperature during 
sampling of 120 14 [deg]C (248 25 [deg]F), or such other temperature as specified by an 
applicable subpart of the standards or as approved by the Administrator 
for a particular application. Since the actual temperature at the outlet 
of the probe is not usually monitored during sampling, probes 
constructed according to APTD-0581 and utilizing the calibration curves 
of APTD-0576 (or calibrated according to the procedure outlined in APTD-
0576) will be considered acceptable. Either borosilicate or quartz glass 
probe liners may be used for stack temperatures up to about 480 [deg]C 
(900 [deg]F); quartz glass liners shall be used for temperatures between 
480 and 900 [deg]C (900 and 1,650 [deg]F). Both types of liners may be 
used at higher temperatures than specified for short periods of time, 
subject to the approval of the Administrator. The softening temperature 
for borosilicate glass is 820 [deg]C (1500 [deg]F), and for quartz glass 
it is 1500 [deg]C (2700 [deg]F). Whenever practical, every effort should 
be made to use borosilicate or quartz glass probe liners. Alternatively, 
metal liners (e.g., 316 stainless steel, Incoloy 825 or other corrosion 
resistant metals) made of seamless tubing may be used, subject to the 
approval of the Administrator.
    6.1.1.3 Pitot Tube. Type S, as described in Section 6.1 of Method 2, 
or other device approved by the Administrator. The pitot tube shall be 
attached to the probe (as shown in Figure 5-1) to allow constant 
monitoring of the stack gas velocity. The impact (high pressure) opening 
plane of the pitot tube shall be even with or above the nozzle entry 
plane (see Method 2, Figure 2-7) during sampling. The Type S pitot tube 
assembly shall have a known coefficient, determined as outlined in 
Section 10.0 of Method 2.
    6.1.1.4 Differential Pressure Gauge. Inclined manometer or 
equivalent device (two), as described in Section 6.2 of Method 2. One 
manometer shall be used for velocity head ([Delta]p) readings, and the 
other, for orifice differential pressure readings.
    6.1.1.5 Filter Holder. Borosilicate glass, with a glass frit filter 
support and a silicone rubber gasket. Other materials of construction 
(e.g., stainless steel, Teflon, or Viton) may be used, subject to the 
approval of the Administrator. The holder design shall provide a 
positive seal against leakage from the outside or around the filter. The 
holder shall be attached immediately at the outlet of the probe (or 
cyclone, if used).
    6.1.1.6 Filter Heating System. Any heating system capable of 
maintaining a temperature around the filter holder of 120 14 [deg]C (248 25 [deg]F) during 
sampling, or such other temperature as specified by an applicable 
subpart of the standards or approved by the Administrator for a 
particular application.
    6.1.1.7 Temperature Sensor. A temperature sensor capable of 
measuring temperature to within 3 [deg]C (5.4 
[deg]F) shall be installed so that the sensing tip of the temperature 
sensor is in direct contact with the sample gas, and the temperature 
around the filter holder can be regulated and monitored during sampling.
    6.1.1.8 Condenser. The following system shall be used to determine 
the stack gas moisture content: Four impingers connected in series with 
leak-free ground glass fittings or any similar leak-free 
noncontaminating fittings. The first, third, and fourth impingers shall 
be of the Greenburg-Smith design, modified by replacing the tip with a 
1.3 cm (\1/2\ in.) ID glass tube extending to about 1.3 cm (\1/2\ in.) 
from the bottom of the flask. The second impinger shall be of the 
Greenburg-Smith design with the standard tip. Modifications (e.g., using 
flexible connections between the impingers, using materials other than 
glass, or using flexible vacuum lines to connect the filter holder to 
the condenser) may be used, subject to the approval of the 
Administrator. The first and second impingers shall contain known 
quantities of water (Section 8.3.1), the third shall be empty, and the 
fourth shall contain a known weight of silica gel, or equivalent 
desiccant. A temperature sensor, capable of measuring temperature to 
within 1 [deg]C (2 [deg]F) shall be placed at the outlet of the fourth 
impinger for monitoring purposes. Alternatively, any system that cools 
the sample

[[Page 171]]

gas stream and allows measurement of the water condensed and moisture 
leaving the condenser, each to within 1 ml or 1 g may be used, subject 
to the approval of the Administrator. An acceptable technique involves 
the measurement of condensed water either gravimetrically or 
volumetrically and the determination of the moisture leaving the 
condenser by: (1) monitoring the temperature and pressure at the exit of 
the condenser and using Dalton's law of partial pressures; or (2) 
passing the sample gas stream through a tared silica gel (or equivalent 
desiccant) trap with exit gases kept below 20 [deg]C (68 [deg]F) and 
determining the weight gain. If means other than silica gel are used to 
determine the amount of moisture leaving the condenser, it is 
recommended that silica gel (or equivalent) still be used between the 
condenser system and pump to prevent moisture condensation in the pump 
and metering devices and to avoid the need to make corrections for 
moisture in the metered volume.

    Note: If a determination of the PM collected in the impingers is 
desired in addition to moisture content, the impinger system described 
above shall be used, without modification. Individual States or control 
agencies requiring this information shall be contacted as to the sample 
recovery and analysis of the impinger contents.

    6.1.1.9 Metering System. Vacuum gauge, leak-free pump, temperature 
sensors capable of measuring temperature to within 3 [deg]C (5.4 
[deg]F), dry gas meter (DGM) capable of measuring volume to within 2 
percent, and related equipment, as shown in Figure 5-1. Other metering 
systems capable of maintaining sampling rates within 10 percent of 
isokinetic and of determining sample volumes to within 2 percent may be 
used, subject to the approval of the Administrator. When the metering 
system is used in conjunction with a pitot tube, the system shall allow 
periodic checks of isokinetic rates.
    6.1.1.10 Sampling trains utilizing metering systems designed for 
higher flow rates than that described in APTD-0581 or APTD-0576 may be 
used provided that the specifications of this method are met.
    6.1.2 Barometer. Mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 2.5 mm Hg (0.1 in.).

    Note: The barometric pressure reading may be obtained from a nearby 
National Weather Service station. In this case, the station value (which 
is the absolute barometric pressure) shall be requested and an 
adjustment for elevation differences between the weather station and 
sampling point shall be made at a rate of minus 2.5 mm Hg (0.1 in.) per 
30 m (100 ft) elevation increase or plus 2.5 mm Hg (0.1 in) per 30 m 
(100 ft) elevation decrease.

    6.1.3 Gas Density Determination Equipment. Temperature sensor and 
pressure gauge, as described in Sections 6.3 and 6.4 of Method 2, and 
gas analyzer, if necessary, as described in Method 3. The temperature 
sensor shall, preferably, be permanently attached to the pitot tube or 
sampling probe in a fixed configuration, such that the tip of the sensor 
extends beyond the leading edge of the probe sheath and does not touch 
any metal. Alternatively, the sensor may be attached just prior to use 
in the field. Note, however, that if the temperature sensor is attached 
in the field, the sensor must be placed in an interference-free 
arrangement with respect to the Type S pitot tube openings (see Method 
2, Figure 2-4). As a second alternative, if a difference of not more 
than 1 percent in the average velocity measurement is to be introduced, 
the temperature sensor need not be attached to the probe or pitot tube. 
(This alternative is subject to the approval of the Administrator.)
    6.2 Sample Recovery. The following items are required for sample 
recovery:
    6.2.1 Probe-Liner and Probe-Nozzle Brushes. Nylon bristle brushes 
with stainless steel wire handles. The probe brush shall have extensions 
(at least as long as the probe) constructed of stainless steel, Nylon, 
Teflon, or similarly inert material. The brushes shall be properly sized 
and shaped to brush out the probe liner and nozzle.
    6.2.2 Wash Bottles. Two Glass wash bottles are recommended. 
Alternatively, polyethylene wash bottles may be used. It is recommended 
that acetone not be stored in polyethylene bottles for longer than a 
month.
    6.2.3 Glass Sample Storage Containers. Chemically resistant, 
borosilicate glass bottles, for acetone washes, 500 ml or 1000 ml. Screw 
cap liners shall either be rubber-backed Teflon or shall be constructed 
so as to be leak-free and resistant to chemical attack by acetone. 
(Narrow mouth glass bottles have been found to be less prone to 
leakage.) Alternatively, polyethylene bottles may be used.
    6.2.4 Petri Dishes. For filter samples; glass or polyethylene, 
unless otherwise specified by the Administrator.
    6.2.5 Graduated Cylinder and/or Balance. To measure condensed water 
to within 1 ml or 0.5 g. Graduated cylinders shall have subdivisions no 
greater than 2 ml.
    6.2.6 Plastic Storage Containers. Air-tight containers to store 
silica gel.
    6.2.7 Funnel and Rubber Policeman. To aid in transfer of silica gel 
to container; not necessary if silica gel is weighed in the field.
    6.2.8 Funnel. Glass or polyethylene, to aid in sample recovery.
    6.3 Sample Analysis. The following equipment is required for sample 
analysis:
    6.3.1 Glass Weighing Dishes.
    6.3.2 Desiccator.

[[Page 172]]

    6.3.3 Analytical Balance. To measure to within 0.1 mg.
    6.3.4 Balance. To measure to within 0.5 g.
    6.3.5 Beakers. 250 ml.
    6.3.6 Hygrometer. To measure the relative humidity of the laboratory 
environment.
    6.3.7 Temperature Sensor. To measure the temperature of the 
laboratory environment.

                       7.0 Reagents and Standards

    7.1 Sample Collection. The following reagents are required for 
sample collection:
    7.1.1 Filters. Glass fiber filters, without organic binder, 
exhibiting at least 99.95 percent efficiency (<0.05 percent penetration) 
on 0.3 micron dioctyl phthalate smoke particles. The filter efficiency 
test shall be conducted in accordance with ASTM Method D 2986-71, 78, or 
95a (incorporated by reference--see Sec.  60.17). Test data from the 
supplier's quality control program are sufficient for this purpose. In 
sources containing SO2 or SO3, the filter material 
must be of a type that is unreactive to SO2 or 
SO3. Reference 10 in Section 17.0 may be used to select the 
appropriate filter.
    7.1.2 Silica Gel. Indicating type, 6 to 16 mesh. If previously used, 
dry at 175 [deg]C (350 [deg]F) for 2 hours. New silica gel may be used 
as received. Alternatively, other types of desiccants (equivalent or 
better) may be used, subject to the approval of the Administrator.
    7.1.3 Water. When analysis of the material caught in the impingers 
is required, deionized distilled water (to conform to ASTM D 1193-77 or 
91 Type 3 (incorporated by reference--see Sec.  60.17)) shall be used. 
Run blanks prior to field use to eliminate a high blank on test samples.
    7.1.4 Crushed Ice.
    7.1.5 Stopcock Grease. Acetone-insoluble, heat-stable silicone 
grease. This is not necessary if screw-on connectors with Teflon 
sleeves, or similar, are used. Alternatively, other types of stopcock 
grease may be used, subject to the approval of the Administrator.
    7.2 Sample Recovery. Acetone, reagent grade, <=0.001 percent 
residue, in glass bottles, is required. Acetone from metal containers 
generally has a high residue blank and should not be used. Sometimes, 
suppliers transfer acetone to glass bottles from metal containers; thus, 
acetone blanks shall be run prior to field use and only acetone with low 
blank values (<=0.001 percent) shall be used. In no case shall a blank 
value of greater than 0.001 percent of the weight of acetone used be 
subtracted from the sample weight.
    7.3 Sample Analysis. The following reagents are required for sample 
analysis:
    7.3.1 Acetone. Same as in Section 7.2.
    7.3.2 Desiccant. Anhydrous calcium sulfate, indicating type. 
Alternatively, other types of desiccants may be used, subject to the 
approval of the Administrator.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Pretest Preparation. It is suggested that sampling equipment be 
maintained according to the procedures described in APTD-0576.
    8.1.1 Place 200 to 300 g of silica gel in each of several air-tight 
containers. Weigh each container, including silica gel, to the nearest 
0.5 g, and record this weight. As an alternative, the silica gel need 
not be preweighed, but may be weighed directly in its impinger or 
sampling holder just prior to train assembly.
    8.1.2 Check filters visually against light for irregularities, 
flaws, or pinhole leaks. Label filters of the proper diameter on the 
back side near the edge using numbering machine ink. As an alternative, 
label the shipping containers (glass or polyethylene petri dishes), and 
keep each filter in its identified container at all times except during 
sampling.
    8.1.3 Desiccate the filters at 20 5.6 [deg]C 
(68 10 [deg]F) and ambient pressure for at least 
24 hours. Weigh each filter (or filter and shipping container) at 
intervals of at least 6 hours to a constant weight (i.e., <=0.5 mg 
change from previous weighing). Record results to the nearest 0.1 mg. 
During each weighing, the period for which the filter is exposed to the 
laboratory atmosphere shall be less than 2 minutes. Alternatively 
(unless otherwise specified by the Administrator), the filters may be 
oven dried at 105 [deg]C (220 [deg]F) for 2 to 3 hours, desiccated for 2 
hours, and weighed. Procedures other than those described, which account 
for relative humidity effects, may be used, subject to the approval of 
the Administrator.
    8.2 Preliminary Determinations.
    8.2.1 Select the sampling site and the minimum number of sampling 
points according to Method 1 or as specified by the Administrator. 
Determine the stack pressure, temperature, and the range of velocity 
heads using Method 2; it is recommended that a leak check of the pitot 
lines (see Method 2, Section 8.1) be performed. Determine the moisture 
content using Approximation Method 4 or its alternatives for the purpose 
of making isokinetic sampling rate settings. Determine the stack gas dry 
molecular weight, as described in Method 2, Section 8.6; if integrated 
Method 3 sampling is used for molecular weight determination, the 
integrated bag sample shall be taken simultaneously with, and for the 
same total length of time as, the particulate sample run.
    8.2.2 Select a nozzle size based on the range of velocity heads, 
such that it is not necessary to change the nozzle size in order to 
maintain isokinetic sampling rates. During the run, do not change the 
nozzle size. Ensure that the proper differential pressure gauge is 
chosen for the range of velocity

[[Page 173]]

heads encountered (see Section 8.3 of Method 2).
    8.2.3 Select a suitable probe liner and probe length such that all 
traverse points can be sampled. For large stacks, consider sampling from 
opposite sides of the stack to reduce the required probe length.
    8.2.4 Select a total sampling time greater than or equal to the 
minimum total sampling time specified in the test procedures for the 
specific industry such that (l) the sampling time per point is not less 
than 2 minutes (or some greater time interval as specified by the 
Administrator), and (2) the sample volume taken (corrected to standard 
conditions) will exceed the required minimum total gas sample volume. 
The latter is based on an approximate average sampling rate.
    8.2.5 The sampling time at each point shall be the same. It is 
recommended that the number of minutes sampled at each point be an 
integer or an integer plus one-half minute, in order to avoid 
timekeeping errors.
    8.2.6 In some circumstances (e.g., batch cycles) it may be necessary 
to sample for shorter times at the traverse points and to obtain smaller 
gas sample volumes. In these cases, the Administrator's approval must 
first be obtained.
    8.3 Preparation of Sampling Train.
    8.3.1 During preparation and assembly of the sampling train, keep 
all openings where contamination can occur covered until just prior to 
assembly or until sampling is about to begin. Place 100 ml of water in 
each of the first two impingers, leave the third impinger empty, and 
transfer approximately 200 to 300 g of preweighed silica gel from its 
container to the fourth impinger. More silica gel may be used, but care 
should be taken to ensure that it is not entrained and carried out from 
the impinger during sampling. Place the container in a clean place for 
later use in the sample recovery. Alternatively, the weight of the 
silica gel plus impinger may be determined to the nearest 0.5 g and 
recorded.
    8.3.2 Using a tweezer or clean disposable surgical gloves, place a 
labeled (identified) and weighed filter in the filter holder. Be sure 
that the filter is properly centered and the gasket properly placed so 
as to prevent the sample gas stream from circumventing the filter. Check 
the filter for tears after assembly is completed.
    8.3.3 When glass probe liners are used, install the selected nozzle 
using a Viton A O-ring when stack temperatures are less than 260 [deg]C 
(500 [deg]F) or a heat-resistant string gasket when temperatures are 
higher. See APTD-0576 for details. Other connecting systems using either 
316 stainless steel or Teflon ferrules may be used. When metal liners 
are used, install the nozzle as discussed above or by a leak-free direct 
mechanical connection. Mark the probe with heat resistant tape or by 
some other method to denote the proper distance into the stack or duct 
for each sampling point.
    8.3.4 Set up the train as shown in Figure 5-1, using (if necessary) 
a very light coat of silicone grease on all ground glass joints, 
greasing only the outer portion (see APTD-0576) to avoid the possibility 
of contamination by the silicone grease. Subject to the approval of the 
Administrator, a glass cyclone may be used between the probe and filter 
holder when the total particulate catch is expected to exceed 100 mg or 
when water droplets are present in the stack gas.
    8.3.5 Place crushed ice around the impingers.
    8.4 Leak-Check Procedures.
    8.4.1 Leak Check of Metering System Shown in Figure 5-1. That 
portion of the sampling train from the pump to the orifice meter should 
be leak-checked prior to initial use and after each shipment. Leakage 
after the pump will result in less volume being recorded than is 
actually sampled. The following procedure is suggested (see Figure 5-2): 
Close the main valve on the meter box. Insert a one-hole rubber stopper 
with rubber tubing attached into the orifice exhaust pipe. Disconnect 
and vent the low side of the orifice manometer. Close off the low side 
orifice tap. Pressurize the system to 13 to 18 cm (5 to 7 in.) water 
column by blowing into the rubber tubing. Pinch off the tubing, and 
observe the manometer for one minute. A loss of pressure on the 
manometer indicates a leak in the meter box; leaks, if present, must be 
corrected.
    8.4.2 Pretest Leak Check. A pretest leak check of the sampling train 
is recommended, but not required. If the pretest leak check is 
conducted, the following procedure should be used.
    8.4.2.1 After the sampling train has been assembled, turn on and set 
the filter and probe heating systems to the desired operating 
temperatures. Allow time for the temperatures to stabilize. If a Viton A 
O-ring or other leak-free connection is used in assembling the probe 
nozzle to the probe liner, leak-check the train at the sampling site by 
plugging the nozzle and pulling a 380 mm (15 in.) Hg vacuum.

    Note: A lower vacuum may be used, provided that it is not exceeded 
during the test.

    8.4.2.2 If a heat-resistant string is used, do not connect the probe 
to the train during the leak check. Instead, leak-check the train by 
first plugging the inlet to the filter holder (cyclone, if applicable) 
and pulling a 380 mm (15 in.) Hg vacuum (see Note in Section 8.4.2.1). 
Then connect the probe to the train, and leak-check at approximately 25 
mm (1 in.) Hg vacuum; alternatively, the probe may be leak-checked with 
the rest of the sampling train, in one step, at 380 mm (15 in.) Hg 
vacuum. Leakage rates in excess of 4 percent

[[Page 174]]

of the average sampling rate or 0.00057 m\3\/min (0.020 cfm), whichever 
is less, are unacceptable.
    8.4.2.3 The following leak-check instructions for the sampling train 
described in APTD-0576 and APTD-0581 may be helpful. Start the pump with 
the bypass valve fully open and the coarse adjust valve completely 
closed. Partially open the coarse adjust valve, and slowly close the 
bypass valve until the desired vacuum is reached. Do not reverse the 
direction of the bypass valve, as this will cause water to back up into 
the filter holder. If the desired vacuum is exceeded, either leak-check 
at this higher vacuum, or end the leak check and start over.
    8.4.2.4 When the leak check is completed, first slowly remove the 
plug from the inlet to the probe, filter holder, or cyclone (if 
applicable), and immediately turn off the vacuum pump. This prevents the 
water in the impingers from being forced backward into the filter holder 
and the silica gel from being entrained backward into the third 
impinger.
    8.4.3 Leak Checks During Sample Run. If, during the sampling run, a 
component (e.g., filter assembly or impinger) change becomes necessary, 
a leak check shall be conducted immediately before the change is made. 
The leak check shall be done according to the procedure outlined in 
Section 8.4.2 above, except that it shall be done at a vacuum equal to 
or greater than the maximum value recorded up to that point in the test. 
If the leakage rate is found to be no greater than 0.00057 m\3\/min 
(0.020 cfm) or 4 percent of the average sampling rate (whichever is 
less), the results are acceptable, and no correction will need to be 
applied to the total volume of dry gas metered; if, however, a higher 
leakage rate is obtained, either record the leakage rate and plan to 
correct the sample volume as shown in Section 12.3 of this method, or 
void the sample run.

    Note: Immediately after component changes, leak checks are optional. 
If such leak checks are done, the procedure outlined in Section 8.4.2 
above should be used.

    8.4.4 Post-Test Leak Check. A leak check of the sampling train is 
mandatory at the conclusion of each sampling run. The leak check shall 
be performed in accordance with the procedures outlined in Section 
8.4.2, except that it shall be conducted at a vacuum equal to or greater 
than the maximum value reached during the sampling run. If the leakage 
rate is found to be no greater than 0.00057 m\3\ min (0.020 cfm) or 4 
percent of the average sampling rate (whichever is less), the results 
are acceptable, and no correction need be applied to the total volume of 
dry gas metered. If, however, a higher leakage rate is obtained, either 
record the leakage rate and correct the sample volume as shown in 
Section 12.3 of this method, or void the sampling run.
    8.5 Sampling Train Operation. During the sampling run, maintain an 
isokinetic sampling rate (within 10 percent of true isokinetic unless 
otherwise specified by the Administrator) and a temperature around the 
filter of 120 14 [deg]C (248 25 [deg]F), or such other temperature as specified by an 
applicable subpart of the standards or approved by the Administrator.
    8.5.1 For each run, record the data required on a data sheet such as 
the one shown in Figure 5-3. Be sure to record the initial DGM reading. 
Record the DGM readings at the beginning and end of each sampling time 
increment, when changes in flow rates are made, before and after each 
leak check, and when sampling is halted. Take other readings indicated 
by Figure 5-3 at least once at each sample point during each time 
increment and additional readings when significant changes (20 percent 
variation in velocity head readings) necessitate additional adjustments 
in flow rate. Level and zero the manometer. Because the manometer level 
and zero may drift due to vibrations and temperature changes, make 
periodic checks during the traverse.
    8.5.2 Clean the portholes prior to the test run to minimize the 
chance of collecting deposited material. To begin sampling, verify that 
the filter and probe heating systems are up to temperature, remove the 
nozzle cap, verify that the pitot tube and probe are properly 
positioned. Position the nozzle at the first traverse point with the tip 
pointing directly into the gas stream. Immediately start the pump, and 
adjust the flow to isokinetic conditions. Nomographs are available which 
aid in the rapid adjustment of the isokinetic sampling rate without 
excessive computations. These nomographs are designed for use when the 
Type S pitot tube coefficient (Cp) is 0.85 0.02, and the stack gas equivalent density [dry 
molecular weight (Md)] is equal to 29 4. APTD-0576 details the procedure for using the 
nomographs. If Cp and Md are outside the above 
stated ranges, do not use the nomographs unless appropriate steps (see 
Reference 7 in Section 17.0) are taken to compensate for the deviations.
    8.5.3 When the stack is under significant negative pressure (i.e., 
height of impinger stem), take care to close the coarse adjust valve 
before inserting the probe into the stack to prevent water from backing 
into the filter holder. If necessary, the pump may be turned on with the 
coarse adjust valve closed.
    8.5.4 When the probe is in position, block off the openings around 
the probe and porthole to prevent unrepresentative dilution of the gas 
stream.
    8.5.5 Traverse the stack cross-section, as required by Method 1 or 
as specified by the Administrator, being careful not to bump the probe 
nozzle into the stack walls when sampling near the walls or when 
removing or

[[Page 175]]

inserting the probe through the portholes; this minimizes the chance of 
extracting deposited material.
    8.5.6 During the test run, make periodic adjustments to keep the 
temperature around the filter holder at the proper level; add more ice 
and, if necessary, salt to maintain a temperature of less than 20 [deg]C 
(68 [deg]F) at the condenser/silica gel outlet. Also, periodically check 
the level and zero of the manometer.
    8.5.7 If the pressure drop across the filter becomes too high, 
making isokinetic sampling difficult to maintain, the filter may be 
replaced in the midst of the sample run. It is recommended that another 
complete filter assembly be used rather than attempting to change the 
filter itself. Before a new filter assembly is installed, conduct a leak 
check (see Section 8.4.3). The total PM weight shall include the 
summation of the filter assembly catches.
    8.5.8 A single train shall be used for the entire sample run, except 
in cases where simultaneous sampling is required in two or more separate 
ducts or at two or more different locations within the same duct, or in 
cases where equipment failure necessitates a change of trains. In all 
other situations, the use of two or more trains will be subject to the 
approval of the Administrator.

    Note: When two or more trains are used, separate analyses of the 
front-half and (if applicable) impinger catches from each train shall be 
performed, unless identical nozzle sizes were used on all trains, in 
which case, the front-half catches from the individual trains may be 
combined (as may the impinger catches) and one analysis of front-half 
catch and one analysis of impinger catch may be performed. Consult with 
the Administrator for details concerning the calculation of results when 
two or more trains are used.

    8.5.9 At the end of the sample run, close the coarse adjust valve, 
remove the probe and nozzle from the stack, turn off the pump, record 
the final DGM meter reading, and conduct a post-test leak check, as 
outlined in Section 8.4.4. Also, leak-check the pitot lines as described 
in Method 2, Section 8.1. The lines must pass this leak check, in order 
to validate the velocity head data.
    8.6 Calculation of Percent Isokinetic. Calculate percent isokinetic 
(see Calculations, Section 12.11) to determine whether the run was valid 
or another test run should be made. If there was difficulty in 
maintaining isokinetic rates because of source conditions, consult with 
the Administrator for possible variance on the isokinetic rates.
    8.7 Sample Recovery.
    8.7.1 Proper cleanup procedure begins as soon as the probe is 
removed from the stack at the end of the sampling period. Allow the 
probe to cool.
    8.7.2 When the probe can be safely handled, wipe off all external PM 
near the tip of the probe nozzle, and place a cap over it to prevent 
losing or gaining PM. Do not cap off the probe tip tightly while the 
sampling train is cooling down. This would create a vacuum in the filter 
holder, thereby drawing water from the impingers into the filter holder.
    8.7.3 Before moving the sample train to the cleanup site, remove the 
probe from the sample train, wipe off the silicone grease, and cap the 
open outlet of the probe. Be careful not to lose any condensate that 
might be present. Wipe off the silicone grease from the filter inlet 
where the probe was fastened, and cap it. Remove the umbilical cord from 
the last impinger, and cap the impinger. If a flexible line is used 
between the first impinger or condenser and the filter holder, 
disconnect the line at the filter holder, and let any condensed water or 
liquid drain into the impingers or condenser. After wiping off the 
silicone grease, cap off the filter holder outlet and impinger inlet. 
Either ground-glass stoppers, plastic caps, or serum caps may be used to 
close these openings.
    8.7.4 Transfer the probe and filter-impinger assembly to the cleanup 
area. This area should be clean and protected from the wind so that the 
chances of contaminating or losing the sample will be minimized.
    8.7.5 Save a portion of the acetone used for cleanup as a blank. 
Take 200 ml of this acetone directly from the wash bottle being used, 
and place it in a glass sample container labeled ``acetone blank.''
    8.7.6 Inspect the train prior to and during disassembly, and note 
any abnormal conditions. Treat the samples as follows:
    8.7.6.1 Container No. 1. Carefully remove the filter from the filter 
holder, and place it in its identified petri dish container. Use a pair 
of tweezers and/or clean disposable surgical gloves to handle the 
filter. If it is necessary to fold the filter, do so such that the PM 
cake is inside the fold. Using a dry Nylon bristle brush and/or a sharp-
edged blade, carefully transfer to the petri dish any PM and/or filter 
fibers that adhere to the filter holder gasket. Seal the container.
    8.7.6.2 Container No. 2. Taking care to see that dust on the outside 
of the probe or other exterior surfaces does not get into the sample, 
quantitatively recover PM or any condensate from the probe nozzle, probe 
fitting, probe liner, and front half of the filter holder by washing 
these components with acetone and placing the wash in a glass container. 
Deionized distilled water may be used instead of acetone when approved 
by the Administrator and shall be used when specified by the 
Administrator. In these cases, save a water blank, and follow the 
Administrator's directions on analysis. Perform the acetone rinse as 
follows:

[[Page 176]]

    8.7.6.2.1 Carefully remove the probe nozzle. Clean the inside 
surface by rinsing with acetone from a wash bottle and brushing with a 
Nylon bristle brush. Brush until the acetone rinse shows no visible 
particles, after which make a final rinse of the inside surface with 
acetone.
    8.7.6.2.2 Brush and rinse the inside parts of the fitting with 
acetone in a similar way until no visible particles remain.
    8.7.6.2.3 Rinse the probe liner with acetone by tilting and rotating 
the probe while squirting acetone into its upper end so that all inside 
surfaces will be wetted with acetone. Let the acetone drain from the 
lower end into the sample container. A funnel (glass or polyethylene) 
may be used to aid in transferring liquid washes to the container. 
Follow the acetone rinse with a probe brush. Hold the probe in an 
inclined position, squirt acetone into the upper end as the probe brush 
is being pushed with a twisting action through the probe; hold a sample 
container underneath the lower end of the probe, and catch any acetone 
and particulate matter that is brushed from the probe. Run the brush 
through the probe three times or more until no visible PM is carried out 
with the acetone or until none remains in the probe liner on visual 
inspection. With stainless steel or other metal probes, run the brush 
through in the above prescribed manner at least six times since metal 
probes have small crevices in which particulate matter can be entrapped. 
Rinse the brush with acetone, and quantitatively collect these washings 
in the sample container. After the brushing, make a final acetone rinse 
of the probe.
    8.7.6.2.4 It is recommended that two people clean the probe to 
minimize sample losses. Between sampling runs, keep brushes clean and 
protected from contamination.
    8.7.6.2.5 After ensuring that all joints have been wiped clean of 
silicone grease, clean the inside of the front half of the filter holder 
by rubbing the surfaces with a Nylon bristle brush and rinsing with 
acetone. Rinse each surface three times or more if needed to remove 
visible particulate. Make a final rinse of the brush and filter holder. 
Carefully rinse out the glass cyclone, also (if applicable). After all 
acetone washings and particulate matter have been collected in the 
sample container, tighten the lid on the sample container so that 
acetone will not leak out when it is shipped to the laboratory. Mark the 
height of the fluid level to allow determination of whether leakage 
occurred during transport. Label the container to identify clearly its 
contents.
    8.7.6.3 Container No. 3. Note the color of the indicating silica gel 
to determine whether it has been completely spent, and make a notation 
of its condition. Transfer the silica gel from the fourth impinger to 
its original container, and seal. A funnel may make it easier to pour 
the silica gel without spilling. A rubber policeman may be used as an 
aid in removing the silica gel from the impinger. It is not necessary to 
remove the small amount of dust particles that may adhere to the 
impinger wall and are difficult to remove. Since the gain in weight is 
to be used for moisture calculations, do not use any water or other 
liquids to transfer the silica gel. If a balance is available in the 
field, follow the procedure for Container No. 3 in Section 11.2.3.
    8.7.6.4 Impinger Water. Treat the impingers as follows: Make a 
notation of any color or film in the liquid catch. Measure the liquid 
that is in the first three impingers to within 1 ml by using a graduated 
cylinder or by weighing it to within 0.5 g by using a balance. Record 
the volume or weight of liquid present. This information is required to 
calculate the moisture content of the effluent gas. Discard the liquid 
after measuring and recording the volume or weight, unless analysis of 
the impinger catch is required (see NOTE, Section 6.1.1.8). If a 
different type of condenser is used, measure the amount of moisture 
condensed either volumetrically or gravimetrically.
    8.8 Sample Transport. Whenever possible, containers should be 
shipped in such a way that they remain upright at all times.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.4, 10.1-10.6................  Sampling           Ensures accurate
                                 equipment leak     measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. The following procedures are 
suggested to check the volume metering system calibration values at the 
field test site prior to sample collection. These procedures are 
optional.
    9.2.1 Meter Orifice Check. Using the calibration data obtained 
during the calibration procedure described in Section 10.3, determine 
the [Delta]H@ for the metering system orifice. The [Delta]H@ is the 
orifice pressure differential in units of in. H2O that 
correlates to 0.75 cfm of air at 528 [deg]R and 29.92 in. Hg. The 
[Delta]H@ is calculated as follows:

[[Page 177]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.107

Where:

[Delta]H=Average pressure differential across the orifice meter, in. 
H2O.
Tm=Absolute average DGM temperature, [deg]R.
Pbar=Barometric pressure, in. Hg.
[thetas]=Total sampling time, min.
Y=DGM calibration factor, dimensionless.
Vm=Volume of gas sample as measured by DGM, dcf.
0.0319=(0.0567 in. Hg/[deg]R) (0.75 cfm)\2\

    9.2.1.1 Before beginning the field test (a set of three runs usually 
constitutes a field test), operate the metering system (i.e., pump, 
volume meter, and orifice) at the [Delta]H@ pressure differential for 10 
minutes. Record the volume collected, the DGM temperature, and the 
barometric pressure. Calculate a DGM calibration check value, 
Yc, as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.108

where:

Yc=DGM calibration check value, dimensionless.
10=Run time, min.
    9.2.1.2 Compare the Yc value with the dry gas meter 
calibration factor Y to determine that: 0.97Y < Yc < 1.03Y. 
If the Yc value is not within this range, the volume metering 
system should be investigated before beginning the test.
    9.2.2 Calibrated Critical Orifice. A critical orifice, calibrated 
against a wet test meter or spirometer and designed to be inserted at 
the inlet of the sampling meter box, may be used as a check by following 
the procedure of Section 16.2.

                  10.0 Calibration and Standardization

    Note: Maintain a laboratory log of all calibrations.

    10.1 Probe Nozzle. Probe nozzles shall be calibrated before their 
initial use in the field. Using a micrometer, measure the ID of the 
nozzle to the nearest 0.025 mm (0.001 in.). Make three separate 
measurements using different diameters each time, and obtain the average 
of the measurements. The difference between the high and low numbers 
shall not exceed 0.1 mm (0.004 in.). When nozzles become nicked, dented, 
or corroded, they shall be reshaped, sharpened, and recalibrated before 
use. Each nozzle shall be permanently and uniquely identified.
    10.2 Pitot Tube Assembly. The Type S pitot tube assembly shall be 
calibrated according to the procedure outlined in Section 10.1 of Method 
2.
    10.3 Metering System.
    10.3.1 Calibration Prior to Use. Before its initial use in the 
field, the metering system shall be calibrated as follows: Connect the 
metering system inlet to the outlet of a wet test meter that is accurate 
to within 1 percent. Refer to Figure 5-4. The wet test meter should have 
a capacity of 30 liters/rev (1 ft\3\/rev). A spirometer of 400 liters 
(14 ft\3\) or more capacity, or equivalent, may be used for this 
calibration, although a wet test meter is usually more practical. The 
wet test meter should be periodically calibrated with a spirometer or a 
liquid displacement meter to ensure the accuracy of the wet test meter. 
Spirometers or wet test meters of other sizes may be used, provided that 
the specified accuracies of the procedure are maintained. Run the 
metering system pump for about 15 minutes with the orifice manometer 
indicating a median reading as expected in field use to allow the pump 
to warm up and to permit the interior surface of the wet test meter to 
be thoroughly wetted. Then, at each of a minimum of three orifice 
manometer settings, pass an exact quantity of gas through the wet test 
meter and note the gas volume indicated by the DGM. Also note the 
barometric pressure and the temperatures of the wet test meter, the 
inlet of the DGM, and the outlet of the DGM. Select the highest and 
lowest orifice settings to bracket the expected field operating range of 
the orifice. Use a minimum volume of 0.14 m\3\ (5 ft\3\) at all orifice 
settings. Record all the data on a form similar to Figure 5-5 and 
calculate Y, the DGM calibration factor, and [Delta]H@, the 
orifice calibration factor, at each orifice setting as shown on Figure 
5-5. Allowable tolerances for individual Y and [Delta]H@ 
values are given in Figure 5-5. Use the average of the Y values in the 
calculations in Section 12.0.
    10.3.1.1 Before calibrating the metering system, it is suggested 
that a leak check be conducted. For metering systems having diaphragm 
pumps, the normal leak-check procedure will not detect leakages within 
the pump. For these cases the following leak-check procedure is 
suggested: make a 10-minute calibration run at 0.00057 m\3\/min (0.020 
cfm). At the end of the run, take the difference of the measured wet 
test meter and DGM volumes. Divide the difference by 10 to get the leak 
rate. The leak rate should not exceed 0.00057 m\3\/min (0.020 cfm).
    10.3.2 Calibration After Use. After each field use, the calibration 
of the metering system shall be checked by performing three calibration 
runs at a single, intermediate orifice setting (based on the previous 
field test), with the vacuum set at the maximum value reached during the 
test series. To adjust the vacuum, insert a valve between the wet test 
meter and the inlet of the metering system. Calculate the average value 
of the DGM calibration factor. If the value has changed by more than 5 
percent, recalibrate

[[Page 178]]

the meter over the full range of orifice settings, as detailed in 
Section 10.3.1.

    Note: Alternative procedures (e.g., rechecking the orifice meter 
coefficient) may be used, subject to the approval of the Administrator.

    10.3.3 Acceptable Variation in Calibration. If the DGM coefficient 
values obtained before and after a test series differ by more than 5 
percent, the test series shall either be voided, or calculations for the 
test series shall be performed using whichever meter coefficient value 
(i.e., before or after) gives the lower value of total sample volume.
    10.4 Probe Heater Calibration. Use a heat source to generate air 
heated to selected temperatures that approximate those expected to occur 
in the sources to be sampled. Pass this air through the probe at a 
typical sample flow rate while measuring the probe inlet and outlet 
temperatures at various probe heater settings. For each air temperature 
generated, construct a graph of probe heating system setting versus 
probe outlet temperature. The procedure outlined in APTD-0576 can also 
be used. Probes constructed according to APTD-0581 need not be 
calibrated if the calibration curves in APTD-0576 are used. Also, probes 
with outlet temperature monitoring capabilities do not require 
calibration.

    Note: The probe heating system shall be calibrated before its 
initial use in the field.

    10.5 Temperature Sensors. Use the procedure in Section 10.3 of 
Method 2 to calibrate in-stack temperature sensors. Dial thermometers, 
such as are used for the DGM and condenser outlet, shall be calibrated 
against mercury-in-glass thermometers.
    10.6 Barometer. Calibrate against a mercury barometer.

                        11.0 Analytical Procedure

    11.1 Record the data required on a sheet such as the one shown in 
Figure 5-6.
    11.2 Handle each sample container as follows:
    11.2.1 Container No. 1. Leave the contents in the shipping container 
or transfer the filter and any loose PM from the sample container to a 
tared glass weighing dish. Desiccate for 24 hours in a desiccator 
containing anhydrous calcium sulfate. Weigh to a constant weight, and 
report the results to the nearest 0.1 mg. For the purposes of this 
section, the term ``constant weight'' means a difference of no more than 
0.5 mg or 1 percent of total weight less tare weight, whichever is 
greater, between two consecutive weighings, with no less than 6 hours of 
desiccation time between weighings. Alternatively, the sample may be 
oven dried at 104 [deg]C (220 [deg]F) for 2 to 3 hours, cooled in the 
desiccator, and weighed to a constant weight, unless otherwise specified 
by the Administrator. The sample may be oven dried at 104 [deg]C (220 
[deg]F) for 2 to 3 hours. Once the sample has cooled, weigh the sample, 
and use this weight as a final weight.
    11.2.2 Container No. 2. Note the level of liquid in the container, 
and confirm on the analysis sheet whether leakage occurred during 
transport. If a noticeable amount of leakage has occurred, either void 
the sample or use methods, subject to the approval of the Administrator, 
to correct the final results. Measure the liquid in this container 
either volumetrically to 1 ml or gravimetrically 
to 0.5 g. Transfer the contents to a tared 250 ml 
beaker, and evaporate to dryness at ambient temperature and pressure. 
Desiccate for 24 hours, and weigh to a constant weight. Report the 
results to the nearest 0.1 mg.
    11.2.3 Container No. 3. Weigh the spent silica gel (or silica gel 
plus impinger) to the nearest 0.5 g using a balance. This step may be 
conducted in the field.
    11.2.4 Acetone Blank Container. Measure the acetone in this 
container either volumetrically or gravimetrically. Transfer the acetone 
to a tared 250 ml beaker, and evaporate to dryness at ambient 
temperature and pressure. Desiccate for 24 hours, and weigh to a 
constant weight. Report the results to the nearest 0.1 mg.

    Note: The contents of Container No. 2 as well as the acetone blank 
container may be evaporated at temperatures higher than ambient. If 
evaporation is done at an elevated temperature, the temperature must be 
below the boiling point of the solvent; also, to prevent ``bumping,'' 
the evaporation process must be closely supervised, and the contents of 
the beaker must be swirled occasionally to maintain an even temperature. 
Use extreme care, as acetone is highly flammable and has a low flash 
point.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after the 
final calculation. Other forms of the equations may be used, provided 
that they give equivalent results.
    12.1 Nomenclature.

An=Cross-sectional area of nozzle, m\2\ (ft\2\).
Bws=Water vapor in the gas stream, proportion by volume.
Ca=Acetone blank residue concentration, mg/mg.
cs=Concentration of particulate matter in stack gas, dry 
basis, corrected to standard conditions, g/dscm (gr/dscf).
I=Percent of isokinetic sampling.
L1=Individual leakage rate observed during the leak-check 
conducted prior to the first component change, m\3\/min (ft\3\/min)
La=Maximum acceptable leakage rate for either a pretest leak-
check or for a leak-check following a component change; equal

[[Page 179]]

to 0.00057 m\3\/min (0.020 cfm) or 4 percent of the average sampling 
rate, whichever is less.
Li=Individual leakage rate observed during the leak-check 
conducted prior to the ``i\th\'' component change (i=1, 2, 3 . . . n), 
m\3\/min (cfm).
Lp=Leakage rate observed during the post-test leak-check, 
m\3\/min (cfm).
ma=Mass of residue of acetone after evaporation, mg.
mn=Total amount of particulate matter collected, mg.
Mw=Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-
mole).
Pbar=Barometric pressure at the sampling site, mm Hg (in. 
Hg).
Ps=Absolute stack gas pressure, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
R=Ideal gas constant, 0.06236 ((mm Hg)(m\3\))/((K)(g-mole)) {21.85 ((in. 
Hg) (ft \3\))/(([deg]R) (lb-mole)){time} .
Tm=Absolute average DGM temperature (see Figure 5-3), K 
([deg]R).
Ts=Absolute average stack gas temperature (see Figure 5-3), K 
([deg]R).
Tstd=Standard absolute temperature, 293 K (528 [deg]R).
Va=Volume of acetone blank, ml.
Vaw=Volume of acetone used in wash, ml.
V1c=Total volume of liquid collected in impingers and silica 
gel (see Figure 5-6), ml.
Vm=Volume of gas sample as measured by dry gas meter, dcm 
(dcf).
Vm(std)=Volume of gas sample measured by the dry gas meter, 
corrected to standard conditions, dscm (dscf).
Vw(std)=Volume of water vapor in the gas sample, corrected to 
standard conditions, scm (scf).
Vs=Stack gas velocity, calculated by Method 2, Equation 2-7, 
using data obtained from Method 5, m/sec (ft/sec).
Wa=Weight of residue in acetone wash, mg.
Y=Dry gas meter calibration factor.
[Delta]H=Average pressure differential across the orifice meter (see 
Figure 5-4), mm H2O (in. H2O).
[rho]a=Density of acetone, mg/ml (see label on bottle).
[rho]w=Density of water, 0.9982 g/ml. (0.002201 lb/ml).
[thetas]=Total sampling time, min.
[thetas]1=Sampling time interval, from the beginning of a run 
until the first component change, min.
[thetas]i=Sampling time interval, between two successive 
component changes, beginning with the interval between the first and 
second changes, min.
[thetas]p=Sampling time interval, from the final (n \th\) 
component change until the end of the sampling run, min.
13.6 =Specific gravity of mercury.
60=Sec/min.
100=Conversion to percent.

    12.2 Average Dry Gas Meter Temperature and Average Orifice Pressure 
Drop. See data sheet (Figure 5-3).
    12.3 Dry Gas Volume. Correct the sample volume measured by the dry 
gas meter to standard conditions (20 [deg]C, 760 mm Hg or 68 [deg]F, 
29.92 in. Hg) by using Equation 5-1.
[GRAPHIC] [TIFF OMITTED] TR17OC00.109

Where:

K1=0.3858 [deg]K/mm Hg for metric units,=17.64 [deg]R/in. Hg 
for English units.

    Note: Equation 5-1 can be used as written unless the leakage rate 
observed during any of the mandatory leak checks (i.e., the post-test 
leak check or leak checks conducted prior to component changes) exceeds 
La. If Lp or Li exceeds La, 
Equation 5-1 must be modified as follows:

    (a) Case I. No component changes made during sampling run. In this 
case, replace Vm in Equation 5-1 with the expression:
[GRAPHIC] [TIFF OMITTED] TR17OC00.110

    (b) Case II. One or more component changes made during the sampling 
run. In this case, replace Vm in Equation 5-1 by the 
expression:

[[Page 180]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.111

and substitute only for those leakage rates (Li or 
Lp) which exceed La.
    12.4 Volume of Water Vapor Condensed.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.112
    
Where:

K2=0.001333 m\3\/ml for metric units,=0.04706 ft \3\/ml for 
English units.

    12.5 Moisture Content.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.113
    
    Note: In saturated or water droplet-laden gas streams, two 
calculations of the moisture content of the stack gas shall be made, one 
from the impinger analysis (Equation 5-3), and a second from the 
assumption of saturated conditions. The lower of the two values of 
Bws shall be considered correct. The procedure for 
determining the moisture content based upon the assumption of saturated 
conditions is given in Section 4.0 of Method 4. For the purposes of this 
method, the average stack gas temperature from Figure 5-3 may be used to 
make this determination, provided that the accuracy of the in-stack 
temperature sensor is 1 [deg]C (2 [deg]F).

    12.6 Acetone Blank Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.114
    
    12.7 Acetone Wash Blank.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.115
    
    12.8 Total Particulate Weight. Determine the total particulate 
matter catch from the sum of the weights obtained from Containers 1 and 
2 less the acetone blank (see Figure 5-6).

    Note: In no case shall a blank value of greater than 0.001 percent 
of the weight of acetone used be subtracted from the sample weight. 
Refer to Section 8.5.8 to assist in calculation of results involving two 
or more filter assemblies or two or more sampling trains.
    12.9 Particulate Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.116
    
Where:

K3=0.001 g/mg for metric units.
    =0.0154 gr/mg for English units.
    12.10 Conversion Factors:

------------------------------------------------------------------------
                From                         To            Multiply by
------------------------------------------------------------------------
ft\3\...............................  m\3\              0.02832
gr..................................  mg                64.80004
gr/ft\3\............................  mg/m\3\           2288.4
mg..................................  g                 0.001
gr..................................  lb                1.429 x 10-4
------------------------------------------------------------------------

    12.11 Isokinetic Variation.
    12.11.1 Calculation from Raw Data.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.117
    
Where:

K4=0.003454 ((mm Hg)(m\3\))/((ml)([deg]K)) for metric units,
    =0.002669 ((in. Hg)(ft\3\))/((ml)([deg]R)) for English units.


[[Page 181]]


    12.11.2 Calculation from Intermediate Values.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.118
    
Where:

K5=4.320 for metric units,
    =0.09450 for English units.

    12.11.3 Acceptable Results. If 90 percent <= I <= 110 percent, the 
results are acceptable. If the PM results are low in comparison to the 
standard, and ``I'' is over 110 percent or less than 90 percent, the 
Administrator may opt to accept the results. Reference 4 in Section 17.0 
may be used to make acceptability judgments. If ``I'' is judged to be 
unacceptable, reject the results, and repeat the sampling run.
    12.12 Stack Gas Velocity and Volumetric Flow Rate. Calculate the 
average stack gas velocity and volumetric flow rate, if needed, using 
data obtained in this method and the equations in Sections 12.3 and 12.4 
of Method 2.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 Dry Gas Meter as a Calibration Standard. A DGM may be used as a 
calibration standard for volume measurements in place of the wet test 
meter specified in Section 10.3, provided that it is calibrated 
initially and recalibrated periodically as follows:
    16.1.1 Standard Dry Gas Meter Calibration.
    16.1.1.1. The DGM to be calibrated and used as a secondary reference 
meter should be of high quality and have an appropriately sized capacity 
(e.g., 3 liters/rev (0.1 ft\3\/rev)). A spirometer (400 liters (14 
ft\3\) or more capacity), or equivalent, may be used for this 
calibration, although a wet test meter is usually more practical. The 
wet test meter should have a capacity of 30 liters/rev (1 ft\3\/rev) and 
capable of measuring volume to within 1.0 percent. Wet test meters 
should be checked against a spirometer or a liquid displacement meter to 
ensure the accuracy of the wet test meter. Spirometers or wet test 
meters of other sizes may be used, provided that the specified 
accuracies of the procedure are maintained.
    16.1.1.2 Set up the components as shown in Figure 5-7. A spirometer, 
or equivalent, may be used in place of the wet test meter in the system. 
Run the pump for at least 5 minutes at a flow rate of about 10 liters/
min (0.35 cfm) to condition the interior surface of the wet test meter. 
The pressure drop indicated by the manometer at the inlet side of the 
DGM should be minimized (no greater than 100 mm H2O (4 in. 
H2O) at a flow rate of 30 liters/min (1 cfm)). This can be 
accomplished by using large diameter tubing connections and straight 
pipe fittings.
    16.1.1.3 Collect the data as shown in the example data sheet (see 
Figure 5-8). Make triplicate runs at each of the flow rates and at no 
less than five different flow rates. The range of flow rates should be 
between 10 and 34 liters/min (0.35 and 1.2 cfm) or over the expected 
operating range.
    16.1.1.4 Calculate flow rate, Q, for each run using the wet test 
meter volume, VW, and the run time, [thetas]. Calculate the 
DGM coefficient, Yds, for each run. These calculations are as 
follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.119

[GRAPHIC] [TIFF OMITTED] TR17OC00.120

Where:

K1=0.3858 [deg]C/mm Hg for metric units=17.64 [deg]F/in. Hg 
for English units.
VW=Wet test meter volume, liter (ft\3\).
Vds=Dry gas meter volume, liter (ft\3\).
Tds=Average dry gas meter temperature, [deg]C ( [deg]F).
Tadj=273 [deg]C for metric units=460 [deg]F for English 
units.
TW=Average wet test meter temperature, [deg]C ( [deg]F)
Pbar=Barometric pressure, mm Hg (in. Hg).
[Delta]p=Dry gas meter inlet differential pressure, mm H2O 
(in. H2O).

[[Page 182]]

[thetas]=Run time, min.

    16.1.1.5 Compare the three Yds values at each of the flow 
rates and determine the maximum and minimum values. The difference 
between the maximum and minimum values at each flow rate should be no 
greater than 0.030. Extra sets of triplicate runs may be made in order 
to complete this requirement. In addition, the meter coefficients should 
be between 0.95 and 1.05. If these specifications cannot be met in three 
sets of successive triplicate runs, the meter is not suitable as a 
calibration standard and should not be used as such. If these 
specifications are met, average the three Yds values at each 
flow rate resulting in no less than five average meter coefficients, 
Yds.
    16.1.1.6 Prepare a curve of meter coefficient, Yds, 
versus flow rate, Q, for the DGM. This curve shall be used as a 
reference when the meter is used to calibrate other DGMs and to 
determine whether recalibration is required.
    16.1.2 Standard Dry Gas Meter Recalibration.
    16.1.2.1 Recalibrate the standard DGM against a wet test meter or 
spirometer annually or after every 200 hours of operation, whichever 
comes first. This requirement is valid provided the standard DGM is kept 
in a laboratory and, if transported, cared for as any other laboratory 
instrument. Abuse to the standard meter may cause a change in the 
calibration and will require more frequent recalibrations.
    16.1.2.2 As an alternative to full recalibration, a two-point 
calibration check may be made. Follow the same procedure and equipment 
arrangement as for a full recalibration, but run the meter at only two 
flow rates [suggested rates are 14 and 30 liters/min (0.5 and 1.0 cfm)]. 
Calculate the meter coefficients for these two points, and compare the 
values with the meter calibration curve. If the two coefficients are 
within 1.5 percent of the calibration curve values at the same flow 
rates, the meter need not be recalibrated until the next date for a 
recalibration check.
    16.2 Critical Orifices As Calibration Standards. Critical orifices 
may be used as calibration standards in place of the wet test meter 
specified in Section 16.1, provided that they are selected, calibrated, 
and used as follows:
    16.2.1 Selection of Critical Orifices.
    16.2.1.1 The procedure that follows describes the use of hypodermic 
needles or stainless steel needle tubings which have been found suitable 
for use as critical orifices. Other materials and critical orifice 
designs may be used provided the orifices act as true critical orifices 
(i.e., a critical vacuum can be obtained, as described in Section 
16.2.2.2.3). Select five critical orifices that are appropriately sized 
to cover the range of flow rates between 10 and 34 liters/min (0.35 and 
1.2 cfm) or the expected operating range. Two of the critical orifices 
should bracket the expected operating range. A minimum of three critical 
orifices will be needed to calibrate a Method 5 DGM; the other two 
critical orifices can serve as spares and provide better selection for 
bracketing the range of operating flow rates. The needle sizes and 
tubing lengths shown in Table 5-1 in Section 18.0 give the approximate 
flow rates.
    16.2.1.2 These needles can be adapted to a Method 5 type sampling 
train as follows: Insert a serum bottle stopper, 13 by 20 mm sleeve 
type, into a \1/2\-inch Swagelok (or equivalent) quick connect. Insert 
the needle into the stopper as shown in Figure 5-9.
    16.2.2 Critical Orifice Calibration. The procedure described in this 
section uses the Method 5 meter box configuration with a DGM as 
described in Section 6.1.1.9 to calibrate the critical orifices. Other 
schemes may be used, subject to the approval of the Administrator.
    16.2.2.1 Calibration of Meter Box. The critical orifices must be 
calibrated in the same configuration as they will be used (i.e., there 
should be no connections to the inlet of the orifice).
    16.2.2.1.1 Before calibrating the meter box, leak check the system 
as follows: Fully open the coarse adjust valve, and completely close the 
by-pass valve. Plug the inlet. Then turn on the pump, and determine 
whether there is any leakage. The leakage rate shall be zero (i.e., no 
detectable movement of the DGM dial shall be seen for 1 minute).
    16.2.2.1.2 Check also for leakages in that portion of the sampling 
train between the pump and the orifice meter. See Section 8.4.1 for the 
procedure; make any corrections, if necessary. If leakage is detected, 
check for cracked gaskets, loose fittings, worn O-rings, etc., and make 
the necessary repairs.
    16.2.2.1.3 After determining that the meter box is leakless, 
calibrate the meter box according to the procedure given in Section 
10.3. Make sure that the wet test meter meets the requirements stated in 
Section 16.1.1.1. Check the water level in the wet test meter. Record 
the DGM calibration factor, Y.
    16.2.2.2 Calibration of Critical Orifices. Set up the apparatus as 
shown in Figure 5-10.
    16.2.2.2.1 Allow a warm-up time of 15 minutes. This step is 
important to equilibrate the temperature conditions through the DGM.
    16.2.2.2.2 Leak check the system as in Section 16.2.2.1.1. The 
leakage rate shall be zero.
    16.2.2.2.3 Before calibrating the critical orifice, determine its 
suitability and the appropriate operating vacuum as follows: Turn on the 
pump, fully open the coarse adjust valve, and adjust the by-pass valve 
to give a vacuum reading corresponding to about half of atmospheric 
pressure. Observe the meter box orifice manometer reading, [Delta]H. 
Slowly increase the vacuum reading until a stable

[[Page 183]]

reading is obtained on the meter box orifice manometer. Record the 
critical vacuum for each orifice. Orifices that do not reach a critical 
value shall not be used.
    16.2.2.2.4 Obtain the barometric pressure using a barometer as 
described in Section 6.1.2. Record the barometric pressure, 
Pbar, in mm Hg (in. Hg).
    16.2.2.2.5 Conduct duplicate runs at a vacuum of 25 to 50 mm Hg (1 
to 2 in. Hg) above the critical vacuum. The runs shall be at least 5 
minutes each. The DGM volume readings shall be in increments of complete 
revolutions of the DGM. As a guideline, the times should not differ by 
more than 3.0 seconds (this includes allowance for changes in the DGM 
temperatures) to achieve 0.5 percent in K' (see 
Eq. 5-11). Record the information listed in Figure 5-11.
    16.2.2.2.6 Calculate K' using Equation 5-11.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.121
    
Where:

K'=Critical orifice coefficient,
[m\3\)([deg]K)\1/2\]/
[(mm Hg)(min)] {[(ft \3\)([deg]R)\1/2\)] [(in. Hg)(min)].
Tamb=Absolute ambient temperature, [deg]K ([deg]R).
    Calculate the arithmetic mean of the K' values. The individual K' 
values should not differ by more than 0.5 percent 
from the mean value.

    16.2.3 Using the Critical Orifices as Calibration Standards.
    16.2.3.1 Record the barometric pressure.
    16.2.3.2 Calibrate the metering system according to the procedure 
outlined in Section 16.2.2. Record the information listed in Figure 5-
12.
    16.2.3.3 Calculate the standard volumes of air passed through the 
DGM and the critical orifices, and calculate the DGM calibration factor, 
Y, using the equations below:
[GRAPHIC] [TIFF OMITTED] TR17OC00.122

[GRAPHIC] [TIFF OMITTED] TR17OC00.123

[GRAPHIC] [TIFF OMITTED] TR17OC00.124

Where:

Vcr(std)=Volume of gas sample passed through the critical 
orifice, corrected to standard conditions, dscm (dscf).
K1=0.3858 K/mm Hg for metric units
    =17.64 [deg]R/in. Hg for English units.

    16.2.3.4 Average the DGM calibration values for each of the flow 
rates. The calibration factor, Y, at each of the flow rates should not 
differ by more than 2 percent from the average.
    16.2.3.5 To determine the need for recalibrating the critical 
orifices, compare the DGM Y factors obtained from two adjacent orifices 
each time a DGM is calibrated; for example, when checking orifice 13/
2.5, use orifices 12/10.2 and 13/5.1. If any critical orifice yields a 
DGM Y factor differing by more than 2 percent from the others, 
recalibrate the critical orifice according to Section 16.2.2.

                            17.0 References.

    1. Addendum to Specifications for Incinerator Testing at Federal 
Facilities. PHS, NCAPC. December 6, 1967.
    2. Martin, Robert M. Construction Details of Isokinetic Source-
Sampling Equipment. Environmental Protection Agency. Research Triangle 
Park, NC. APTD-0581. April 1971.
    3. Rom, Jerome J. Maintenance, Calibration, and Operation of 
Isokinetic Source Sampling Equipment. Environmental Protection Agency. 
Research Triangle Park, NC. APTD-0576. March 1972.

[[Page 184]]

    4. Smith, W.S., R.T. Shigehara, and W.F. Todd. A Method of 
Interpreting Stack Sampling Data. Paper Presented at the 63rd Annual 
Meeting of the Air Pollution Control Association, St. Louis, MO. June 
14-19, 1970.
    5. Smith, W.S., et al. Stack Gas Sampling Improved and Simplified 
With New Equipment. APCA Paper No. 67-119. 1967.
    6. Specifications for Incinerator Testing at Federal Facilities. 
PHS, NCAPC. 1967.
    7. Shigehara, R.T. Adjustment in the EPA Nomograph for Different 
Pitot Tube Coefficients and Dry Molecular Weights. Stack Sampling News 
2:4-11. October 1974.
    8. Vollaro, R.F. A Survey of Commercially Available Instrumentation 
for the Measurement of Low-Range Gas Velocities. U.S. Environmental 
Protection Agency, Emission Measurement Branch. Research Triangle Park, 
NC. November 1976 (unpublished paper).
    9. Annual Book of ASTM Standards. Part 26. Gaseous Fuels; Coal and 
Coke; Atmospheric Analysis. American Society for Testing and Materials. 
Philadelphia, PA. 1974. pp. 617-622.
    10. Felix, L.G., G.I. Clinard, G.E. Lacy, and J.D. McCain. Inertial 
Cascade Impactor Substrate Media for Flue Gas Sampling. U.S. 
Environmental Protection Agency. Research Triangle Park, NC 27711. 
Publication No. EPA-600/7-77-060. June 1977. 83 pp.
    11. Westlin, P.R. and R.T. Shigehara. Procedure for Calibrating and 
Using Dry Gas Volume Meters as Calibration Standards. Source Evaluation 
Society Newsletter. 3(1):17-30. February 1978.
    12. Lodge, J.P., Jr., J.B. Pate, B.E. Ammons, and G.A. Swanson. The 
Use of Hypodermic Needles as Critical Orifices in Air Sampling. J. Air 
Pollution Control Association. 16:197-200. 1966.

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

                         Table 5-1 Flor Rates for Various needle Sizes and Tube Lengths
----------------------------------------------------------------------------------------------------------------
                                                                     Flow rate                       Flow rate
                            Gauge/cm                                liters/min.      Gauge/cm       liters/min.
----------------------------------------------------------------------------------------------------------------
12/7.6..........................................................           32.56          14/2.5           19.54
12/10.2.........................................................           30.02          14/5.1           17.27
13/2.5..........................................................           25.77          14/7.6           16.14
13/5.1..........................................................           23.50          15/3.2           14.16
13/7.6..........................................................           22.37          15/7.6           11.61
13/10.2.........................................................           20.67         15/10.2           10.48
----------------------------------------------------------------------------------------------------------------


[[Page 185]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.125


[[Page 186]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.126


[[Page 187]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.127


[[Page 188]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.128


[[Page 189]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.129

Plant___________________________________________________________________
Date____________________________________________________________________
Run No._________________________________________________________________
Filter No.______________________________________________________________
Amount liquid lost during transport_____________________________________
Acetone blank volume, m1________________________________________________
Acetone blank concentration, mg/mg (Equation 5-4)_______________________
Acetone wash blank, mg (Equation 5-5)

[[Page 190]]

________________________________________________________________________

----------------------------------------------------------------------------------------------------------------
                                                          Weight of particulate collected, mg
           Container number           --------------------------------------------------------------------------
                                             Final weight             Tare weight              Weight gain
----------------------------------------------------------------------------------------------------------------
1.
----------------------------------------------------------------------------------------------------------------
2.
----------------------------------------------------------------------------------------------------------------
    Total:
        Less acetone blank...........
        Weight of particulate matter.
----------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------
                                     Volume of liquid water collected
                                 ---------------------------------------
                                   Impinger volume,   Silica gel weight,
                                          ml                   g
------------------------------------------------------------------------
Final
Initial
Liquid collected
      Total volume collected....  ..................  g* ml
------------------------------------------------------------------------
* Convert weight of water to volume by dividing total weight increase by
  density of water (1 g/ml).

                    Figure 5-6. Analytical Data Sheet
[GRAPHIC] [TIFF OMITTED] TR17OC00.147


[[Page 191]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.130


[[Page 192]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.131


[[Page 193]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.132


[[Page 194]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.133

Date____________________________________________________________________
Train ID________________________________________________________________
DGM cal. factor_________________________________________________________
Critical orifice ID_____________________________________________________

------------------------------------------------------------------------
                                                         Run No.
        Dry gas meter                          -------------------------
                                                     1            2
------------------------------------------------------------------------
Final reading................  m\3\ (ft\3\)...  ...........  ...........
Initial reading..............  m\3\ (ft\3\)...  ...........  ...........
Difference, V\m\.............  m\3\ (ft\3\)...  ...........  ...........
Inlet/Outlet.................  ...............  ...........  ...........

[[Page 195]]

 
    Temperatures:............  [deg]C (              /            /
                                [deg]F).
    Initial..................  [deg]C (              /            /
                                [deg]F).
    Final....................  min/sec........       /            /
    Av. Temeperature, t m....  min............  ...........  ...........
Time, [thetas]...............  ...............  ...........  ...........
Orifice man. rdg., [Delta]H..  mm (in.) H 2...  ...........  ...........
Bar. pressure, P \bar\.......  mm (in.) Hg....  ...........  ...........
Ambient temperature, tamb....  mm (in.) Hg....  ...........  ...........
Pump vacuum..................  ...............  ...........  ...........
K' factor....................  ...............  ...........  ...........
    Average..................  ...............  ...........  ...........
------------------------------------------------------------------------

            Figure 5-11. Data sheet of determining K' factor.

Date____________________________________________________________________
Train ID________________________________________________________________
Critical orifice ID_____________________________________________________
Critical orifice K' factor______________________________________________

------------------------------------------------------------------------
                                                         Run No.
        Dry gas meter                          -------------------------
                                                     1            2
------------------------------------------------------------------------
Final reading................  m\3\ (ft\3\)...  ...........  ...........
Initial reading..............  m\3\ (ft\3\)...  ...........  ...........
Difference, Vm...............  m\3\ (ft\3\)...  ...........  ...........
Inlet/outlet temperatures....  [deg]C (              /            /
                                [deg]F).
    Initial..................  [deg]C (              /            /
                                [deg]F).
    Final....................  [deg]C (         ...........  ...........
                                [deg]F).
    Avg. Temperature, tm.....  min/sec........       /            /
Time, [thetas]...............  min............  ...........  ...........
Orifice man. rdg., [Delta]H..  min............  ...........  ...........
Bar. pressure, Pbar..........  mm (in.) H2O...  ...........  ...........
Ambient temperature, tamb....  mm (in.) Hg....  ...........  ...........
Pump vacuum..................  [deg]C (         ...........  ...........
                                [deg]F).
Vm(std)......................  mm (in.) Hg....  ...........  ...........
Vcr(std).....................  m\3\ (ft\3\)...  ...........  ...........
DGM cal. factor, Y...........  m\3\ (ft\3\)...  ...........  ...........
------------------------------------------------------------------------

          Figure 5-12. Data Sheet for Determining DGM Y Factor

   Method 5A--Determination of Particulate Matter Emissions From the 
             Asphalt Processing and Asphalt Roofing Industry

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, and 
Method 5.

                       1.0 Scope and Applications

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.
    1.2 Applicability. This method is applicable for the determination 
of PM emissions from asphalt roofing industry process saturators, 
blowing stills, and other sources as specified in the regulations.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    Particulate matter is withdrawn isokinetically from the source and 
collected on a glass fiber filter maintained at a temperature of 42 
10 [deg]C (108 18 [deg]F). 
The PM mass, which includes any material that condenses at or above the 
filtration temperature, is determined gravimetrically after the removal 
of uncombined water.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the

[[Page 196]]

applicability of regulatory limitations prior to performing this test 
method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. Same as Method 5, Section 6.1, with the 
following exceptions and additions:
    6.1.1 Probe Liner. Same as Method 5, Section 6.1.1.2, with the note 
that at high stack gas temperatures greater than 250 [deg]C (480 
[deg]F), water-cooled probes may be required to control the probe exit 
temperature to 42 10 [deg]C (108 18 [deg]F).
    6.1.2 Precollector Cyclone. Borosilicate glass following the 
construction details shown in Air Pollution Technical Document (APTD)-
0581, ``Construction Details of Isokinetic Source-Sampling Equipment'' 
(Reference 2 in Method 5, Section 17.0).

    Note: The cyclone shall be used when the stack gas moisture is 
greater than 10 percent, and shall not be used otherwise.

    6.1.3 Filter Heating System. Any heating (or cooling) system capable 
of maintaining a sample gas temperature at the exit end of the filter 
holder during sampling at 42 10 [deg]C (108 18 [deg]F).
    6.2 Sample Recovery. The following items are required for sample 
recovery:
    6.2.1 Probe-Liner and Probe-Nozzle Brushes, Graduated Cylinder and/
or Balance, Plastic Storage Containers, and Funnel and Rubber Policeman. 
Same as in Method 5, Sections 6.2.1, 6.2.5, 6.2.6, and 6.2.7, 
respectively.
    6.2.2 Wash Bottles. Glass.
    6.2.3 Sample Storage Containers. Chemically resistant 500-ml or 
1,000-ml borosilicate glass bottles, with rubber-backed Teflon screw cap 
liners or caps that are constructed so as to be leak-free, and resistant 
to chemical attack by 1,1,1-trichloroethane (TCE). (Narrow-mouth glass 
bottles have been found to be less prone to leakage.)
    6.2.4 Petri Dishes. Glass, unless otherwise specified by the 
Administrator.
    6.2.5 Funnel. Glass.
    6.3 Sample Analysis. Same as Method 5, Section 6.3, with the 
following additions:
    6.3.1 Beakers. Glass, 250-ml and 500-ml.
    6.3.2 Separatory Funnel. 100-ml or greater.

                       7.0. Reagents and Standards

    7.1 Sample Collection. The following reagents are required for 
sample collection:
    7.1.1 Filters, Silica Gel, Water, and Crushed Ice. Same as in Method 
5, Sections 7.1.1, 7.1.2, 7.1.3, and 7.1.4, respectively.
    7.1.2 Stopcock Grease. TCE-insoluble, heat-stable grease (if 
needed). This is not necessary if screw-on connectors with Teflon 
sleeves, or similar, are used.
    7.2 Sample Recovery. Reagent grade TCE, <=0.001 percent residue and 
stored in glass bottles. Run TCE blanks before field use, and use only 
TCE with low blank values (<=0.001 percent). In no case shall a blank 
value of greater than 0.001 percent of the weight of TCE used be 
subtracted from the sample weight.
    7.3 Analysis. Two reagents are required for the analysis:
    7.3.1 TCE. Same as in Section 7.2.
    7.3.2 Desiccant. Same as in Method 5, Section 7.3.2.

      8.0. Sample Collection, Preservation, Storage, and Transport

    8.1. Pretest Preparation. Unless otherwise specified, maintain and 
calibrate all components according to the procedure described in APTD-
0576, ``Maintenance, Calibration, and Operation of Isokinetic Source-
Sampling Equipment'' (Reference 3 in Method 5, Section 17.0).
    8.1.1 Prepare probe liners and sampling nozzles as needed for use. 
Thoroughly clean each component with soap and water followed by a 
minimum of three TCE rinses. Use the probe and nozzle brushes during at 
least one of the TCE rinses (refer to Section 8.7 for rinsing 
techniques). Cap or seal the open ends of the probe liners and nozzles 
to prevent contamination during shipping.
    8.1.2 Prepare silica gel portions and glass filters as specified in 
Method 5, Section 8.1.
    8.2 Preliminary Determinations. Select the sampling site, probe 
nozzle, and probe length as specified in Method 5, Section 8.2. Select a 
total sampling time greater than or equal to the minimum total sampling 
time specified in the ``Test Methods and Procedures'' section of the 
applicable subpart of the regulations. Follow the guidelines outlined in 
Method 5, Section 8.2 for sampling time per point and total sample 
volume collected.
    8.3 Preparation of Sampling Train. Prepare the sampling train as 
specified in Method 5, Section 8.3, with the addition of the 
precollector cyclone, if used, between the probe and filter holder. The 
temperature of the precollector cyclone, if used, should be maintained 
in the same range as that of the filter, i.e., 42 10 [deg]C (108 18 [deg]F). Use no 
stopcock grease on ground glass joints unless grease is insoluble in 
TCE.
    8.4 Leak-Check Procedures. Same as Method 5, Section 8.4.
    8.5 Sampling Train Operation. Operate the sampling train as 
described in Method 5, Section 8.5, except maintain the temperature of 
the gas exiting the filter holder at 42 10 [deg]C 
(108 18 [deg]F).
    8.6 Calculation of Percent Isokinetic. Same as Method 5, Section 
8.6.
    8.7 Sample Recovery. Same as Method 5, Section 8.7.1 through 
8.7.6.1, with the addition of the following:
    8.7.1 Container No. 2 (Probe to Filter Holder).
    8.7.1.1 Taking care to see that material on the outside of the probe 
or other exterior

[[Page 197]]

surfaces does not get into the sample, quantitatively recover PM or any 
condensate from the probe nozzle, probe fitting, probe liner, 
precollector cyclone and collector flask (if used), and front half of 
the filter holder by washing these components with TCE and placing the 
wash in a glass container. Carefully measure the total amount of TCE 
used in the rinses. Perform the TCE rinses as described in Method 5, 
Section 8.7.6.2, using TCE instead of acetone.
    8.7.1.2 Brush and rinse the inside of the cyclone, cyclone 
collection flask, and the front half of the filter holder. Brush and 
rinse each surface three times or more, if necessary, to remove visible 
PM.
    8.7.2 Container No. 3 (Silica Gel). Same as in Method 5, Section 
8.7.6.3.
    8.7.3 Impinger Water. Same as Method 5, Section 8.7.6.4.
    8.8 Blank. Save a portion of the TCE used for cleanup as a blank. 
Take 200 ml of this TCE directly from the wash bottle being used, and 
place it in a glass sample container labeled ``TCE Blank.''

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.4, 10.0.....................  Sampling           Ensures accurate
                                 equipment leak     measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
------------------------------------------------------------------------

    9.2 A quality control (QC) check of the volume metering system at 
the field site is suggested before collecting the sample. Use the 
procedure outlined in Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Same as Method 5, Section 10.0.

                       11.0 Analytical Procedures

    11.1 Analysis. Record the data required on a sheet such as the one 
shown in Figure 5A-1. Handle each sample container as follows:
    11.1.1 Container No. 1 (Filter). Transfer the filter from the sample 
container to a tared glass weighing dish, and desiccate for 24 hours in 
a desiccator containing anhydrous calcium sulfate. Rinse Container No. 1 
with a measured amount of TCE, and analyze this rinse with the contents 
of Container No. 2. Weigh the filter to a constant weight. For the 
purpose of this analysis, the term ``constant weight'' means a 
difference of no more than 10 percent of the net filter weight or 2 mg 
(whichever is greater) between two consecutive weighings made 24 hours 
apart. Report the ``final weight'' to the nearest 0.1 mg as the average 
of these two values.
    11.1.2 Container No. 2 (Probe to Filter Holder).
    11.1.2.1 Before adding the rinse from Container No. 1 to Container 
No. 2, note the level of liquid in Container No. 2, and confirm on the 
analysis sheet whether leakage occurred during transport. If noticeable 
leakage occurred, either void the sample or take steps, subject to the 
approval of the Administrator, to correct the final results.
    11.1.2.2 Add the rinse from Container No. 1 to Container No. 2 and 
measure the liquid in this container either volumetrically to 1 ml or gravimetrically to 0.5 g. 
Check to see whether there is any appreciable quantity of condensed 
water present in the TCE rinse (look for a boundary layer or phase 
separation). If the volume of condensed water appears larger than 5 ml, 
separate the oil-TCE fraction from the water fraction using a separatory 
funnel. Measure the volume of the water phase to the nearest ml; adjust 
the stack gas moisture content, if necessary (see Sections 12.3 and 
12.4). Next, extract the water phase with several 25-ml portions of TCE 
until, by visual observation, the TCE does not remove any additional 
organic material. Transfer the remaining water fraction to a tared 
beaker and evaporate to dryness at 93 [deg]C (200 [deg]F), desiccate for 
24 hours, and weigh to the nearest 0.1 mg.
    11.1.2.3 Treat the total TCE fraction (including TCE from the filter 
container rinse and water phase extractions) as follows: Transfer the 
TCE and oil to a tared beaker, and evaporate at ambient temperature and 
pressure. The evaporation of TCE from the solution may take several 
days. Do not desiccate the sample until the solution reaches an apparent 
constant volume or until the odor of TCE is not detected. When it 
appears that the TCE has evaporated, desiccate the sample, and weigh it 
at 24-hour intervals to obtain a ``constant weight'' (as defined for 
Container No. 1 above). The ``total weight'' for Container No. 2 is the 
sum of the evaporated PM weight of the TCE-oil and water phase 
fractions. Report the results to the nearest 0.1 mg.
    11.1.3 Container No. 3 (Silica Gel). This step may be conducted in 
the field. Weigh the spent silica gel (or silica gel plus impinger) to 
the nearest 0.5 g using a balance.
    11.1.4 ``TCE Blank'' Container. Measure TCE in this container either 
volumetrically or gravimetrically. Transfer the TCE to a tared 250-ml 
beaker, and evaporate to dryness at ambient temperature and pressure.

[[Page 198]]

Desiccate for 24 hours, and weigh to a constant weight. Report the 
results to the nearest 0.1 mg.

    Note: In order to facilitate the evaporation of TCE liquid samples, 
these samples may be dried in a controlled temperature oven at 
temperatures up to 38 [deg]C (100 [deg]F) until the liquid is 
evaporated.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after the 
final calculation. Other forms of the equations may be used as long as 
they give equivalent results.
    12.1 Nomenclature. Same as Method 5, Section 12.1, with the 
following additions:

Ct=TCE blank residue concentration, mg/g.
mt=Mass of residue of TCE blank after evaporation, mg.
Vpc=Volume of water collected in precollector, ml.
Vt=Volume of TCE blank, ml.
Vtw=Volume of TCE used in wash, ml.
Wt=Weight of residue in TCE wash, mg.
[rho]t=Density of TCE (see label on bottle), g/ml.

    12.2 Dry Gas Meter Temperature, Orifice Pressure Drop, and Dry Gas 
Volume. Same as Method 5, Sections 12.2 and 12.3, except use data 
obtained in performing this test.
    12.3 Volume of Water Vapor.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.134
    
Where:

K2=0.001333 m\3\/ml for metric units.
    =0.04706 ft\3\/ml for English units.

    12.4 Moisture Content.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.135
    
    Note: In saturated or water droplet-laden gas streams, two 
calculations of the moisture content of the stack gas shall be made, one 
from the impinger and precollector analysis (Equations 5A-1 and 5A-2) 
and a second from the assumption of saturated conditions. The lower of 
the two values of moisture content shall be considered correct. The 
procedure for determining the moisture content based upon assumption of 
saturated conditions is given in Section 4.0 of Method 4. For the 
purpose of this method, the average stack gas temperature from Figure 5-
3 of Method 5 may be used to make this determination, provided that the 
accuracy of the in-stack temperature sensor is within 1 [deg]C (2 
[deg]F).

    12.5 TCE Blank Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.136
    
    Note: In no case shall a blank value of greater than 0.001 percent 
of the weight of TCE used be subtracted from the sample weight.

    12.6 TCE Wash Blank.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.137
    
    12.7 Total PM Weight. Determine the total PM catch from the sum of 
the weights obtained from Containers 1 and 2, less the TCE blank.
    12.8 PM Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.138
    
Where:

K3=0.001 g/mg for metric units
    =0.0154 gr/mg for English units

    12.9 Isokinetic Variation. Same as in Method 5, Section 12.11.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 5, Section 17.0.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

Plant___________________________________________________________________
Date____________________________________________________________________
Run No._________________________________________________________________
Filter No.______________________________________________________________
Amount liquid lost during transport_____________________________________
Acetone blank volume, m1________________________________________________
Acetone blank concentration, mg/mg (Equation 5-4)_______________________
Acetone wash blank, mg (Equation 5-5)___________________________________

----------------------------------------------------------------------------------------------------------------
                                                          Weight of particulate collected, mg
           Container number           --------------------------------------------------------------------------
                                             Final weight             Tare weight              Weight gain
----------------------------------------------------------------------------------------------------------------
1.
----------------------------------------------------------------------------------------------------------------
2.
----------------------------------------------------------------------------------------------------------------
    Total:
        Less acetone blank...........

[[Page 199]]

 
        Weight of particulate matter.
----------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------
                                     Volume of liquid water collected
                                 ---------------------------------------
                                   Impinger volume,   Silica gel weight,
                                          ml                   g
------------------------------------------------------------------------
Final
Initial
Liquid collected
      Total volume collected....  ..................  g* ml
------------------------------------------------------------------------
* Convert weight of water to volume by dividing total weight increase by
  density of water (1 g/ml).

  [GRAPHIC] [TIFF OMITTED] TR17OC00.139
  
    Method 5B--Determination of Nonsulfuric Acid Particulate Matter 
                    Emissions From Stationary Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 5.

                        1.0 Scope and Application

    1.1 Analyte. Nonsulfuric acid particulate matter. No CAS number 
assigned.
    1.2 Applicability. This method is determining applicable for the 
determination of nonsulfuric acid particulate matter from stationary 
sources, only where specified by an applicable subpart of the 
regulations or where approved by the Administrator for a particular 
application.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    Particulate matter is withdrawn isokinetically from the source and 
collected on a glass fiber filter maintained at a temperature of 160 
14 [deg]C (320 25 [deg]F). 
The collected sample is then heated in an oven at 160 [deg]C (320 
[deg]F) for 6 hours to volatilize any condensed sulfuric acid that may 
have been collected, and the nonsulfuric acid particulate mass is 
determined gravimetrically.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    Same as Method 5, Section 6.0, with the following addition and 
exceptions:
    6.1 Sample Collection. The probe liner heating system and filter 
heating system must be capable of maintaining a sample gas temperature 
of 160 14 [deg]C (320 25 
[deg]F).
    6.2 Sample Preparation. An oven is required for drying the sample.

                       7.0 Reagents and Standards

    Same as Method 5, Section 7.0.

      8.0 Sample Collection, Preservation, Storage, and Transport.

    Same as Method 5, with the exception of the following:
    8.1 Initial Filter Tare. Oven dry the filter at 160 5 [deg]C (320 10 [deg]F) for 2 to 
3 hours, cool in a desiccator for 2 hours, and weigh. Desiccate to 
constant weight to obtain the initial tare weight. Use the applicable 
specifications and techniques of Section 8.1.3 of Method 5 for this 
determination.
    8.2 Probe and Filter Temperatures. Maintain the probe outlet and 
filter temperatures at 160 14 [deg]C (320 25 [deg]F).

                           9.0 Quality Control

    Same as Method 5, Section 9.0.

                  10.0 Calibration and Standardization

    Same as Method 5, Section 10.0.

[[Page 200]]

                        11.0 Analytical Procedure

    Same as Method 5, Section 11.0, except replace Section
    11.2.2 With the following:
    11.1 Container No. 2. Note the level of liquid in the container, and 
confirm on the analysis sheet whether leakage occurred during transport. 
If a noticeable amount of leakage has occurred, either void the sample 
or use methods, subject to the approval of the Administrator, to correct 
the final results. Measure the liquid in this container either 
volumetrically to 1 ml or gravimetrically to 
0.5 g. Transfer the contents to a tared 250 ml 
beaker, and evaporate to dryness at ambient temperature and pressure. 
Then oven dry the probe and filter samples at a temperature of 160 
5 [deg]C (320 10 [deg]F) for 
6 hours. Cool in a desiccator for 2 hours, and weigh to constant weight. 
Report the results to the nearest 0.1 mg.

                   12.0 Data Analysis and Calculations

    Same as in Method 5, Section 12.0.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 5, Section 17.0.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

                          Method 5C [Reserved]

 Method 5D--Determination of Particulate Matter Emissions from Positive 
                         Pressure Fabric Filters

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 5, Method 17.

                        1.0 Scope and Application

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.
    1.2 Applicability.
    1.2.1 This method is applicable for the determination of PM 
emissions from positive pressure fabric filters. Emissions are 
determined in terms of concentration (mg/m\3\ or gr/ft\3\) and emission 
rate (kg/hr or lb/hr).
    1.2.2 The General Provisions of 40 CFR part 60, Sec.  60.8(e), 
require that the owner or operator of an affected facility shall provide 
performance testing facilities. Such performance testing facilities 
include sampling ports, safe sampling platforms, safe access to sampling 
sites, and utilities for testing. It is intended that affected 
facilities also provide sampling locations that meet the specification 
for adequate stack length and minimal flow disturbances as described in 
Method 1. Provisions for testing are often overlooked factors in 
designing fabric filters or are extremely costly. The purpose of this 
procedure is to identify appropriate alternative locations and 
procedures for sampling the emissions from positive pressure fabric 
filters. The requirements that the affected facility owner or operator 
provide adequate access to performance testing facilities remain in 
effect.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 Particulate matter is withdrawn isokinetically from the source 
and collected on a glass fiber filter maintained at a temperature at or 
above the exhaust gas temperature up to a nominal 120 [deg]C (248 25 [deg]F). The particulate mass, which includes any 
material that condenses at or above the filtration temperature, is 
determined gravimetrically after the removal of uncombined water.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user to establish appropriate safety and health practices and to 
determine the applicability of regulatory limitations prior to 
performing this test method.

                       6.0 Equipment and Supplies

    Same as Section 6.0 of either Method 5 or Method 17.

                       7.0 Reagents and Standards

    Same as Section 7.0 of either Method 5 or Method 17.

       8.0 Sample Collection, Preservation, Storage, and Transport

    Same Section 8.0 of either Method 5 or Method 17, except replace 
Section 8.2.1 of Method 5 with the following:
    8.1 Determination of Measurement Site. The configuration of positive 
pressure fabric filter structures frequently are not amenable

[[Page 201]]

to emission testing according to the requirements of Method 1. Following 
are several alternatives for determining measurement sites for positive 
pressure fabric filters.
    8.1.1 Stacks Meeting Method 1 Criteria. Use a measurement site as 
specified in Method 1, Section 11.1.
    8.1.2 Short Stacks Not Meeting Method 1 Criteria. Use stack 
extensions and the procedures in Method 1. Alternatively, use flow 
straightening vanes of the ``egg-crate'' type (see Figure 5D-1). Locate 
the measurement site downstream of the straightening vanes at a distance 
equal to or greater than two times the average equivalent diameter of 
the vane openings and at least one-half of the overall stack diameter 
upstream of the stack outlet.
    8.1.3 Roof Monitor or Monovent. (See Figure 5D-2). For a positive 
pressure fabric filter equipped with a peaked roof monitor, ridge vent, 
or other type of monovent, use a measurement site at the base of the 
monovent. Examples of such locations are shown in Figure 5D-2. The 
measurement site must be upstream of any exhaust point (e.g., louvered 
vent).
    8.1.4 Compartment Housing. Sample immediately downstream of the 
filter bags directly above the tops of the bags as shown in the examples 
in Figure 5D-2. Depending on the housing design, use sampling ports in 
the housing walls or locate the sampling equipment within the 
compartment housing.
    8.2 Determination of Number and Location of Traverse Points. Locate 
the traverse points according to Method 1, Section 11.3. Because a 
performance test consists of at least three test runs and because of the 
varied configurations of positive pressure fabric filters, there are 
several schemes by which the number of traverse points can be determined 
and the three test runs can be conducted.
    8.2.1 Single Stacks Meeting Method 1 Criteria. Select the number of 
traverse points according to Method 1. Sample all traverse points for 
each test run.
    8.2.2 Other Single Measurement Sites. For a roof monitor or 
monovent, single compartment housing, or other stack not meeting Method 
1 criteria, use at least 24 traverse points. For example, for a 
rectangular measurement site, such as a monovent, use a balanced 5x5 
traverse point matrix. Sample all traverse points for each test run.
    8.2.3 Multiple Measurement Sites. Sampling from two or more stacks 
or measurement sites may be combined for a test run, provided the 
following guidelines are met:
    8.2.3.1 All measurement sites up to 12 must be sampled. For more 
than 12 measurement sites, conduct sampling on at least 12 sites or 50 
percent of the sites, whichever is greater. The measurement sites 
sampled should be evenly, or nearly evenly, distributed among the 
available sites; if not, all sites are to be sampled.
    8.2.3.2 The same number of measurement sites must be sampled for 
each test run.
    8.2.3.3 The minimum number of traverse points per test run is 24. An 
exception to the 24-point minimum would be a test combining the sampling 
from two stacks meeting Method 1 criteria for acceptable stack length, 
and Method 1 specifies fewer than 12 points per site.
    8.2.3.4 As long as the 24 traverse points per test run criterion is 
met, the number of traverse points per measurement site may be reduced 
to eight.
    8.2.3.5 Alternatively, conduct a test run for each measurement site 
individually using the criteria in Section 8.2.1 or 8.2.2 to determine 
the number of traverse points. Each test run shall count toward the 
total of three required for a performance test. If more than three 
measurement sites are sampled, the number of traverse points per 
measurement site may be reduced to eight as long as at least 72 traverse 
points are sampled for all the tests.
    8.2.3.6 The following examples demonstrate the procedures for 
sampling multiple measurement sites.
    8.2.3.6.1 Example 1: A source with nine circular measurement sites 
of equal areas may be tested as follows: For each test run, traverse 
three measurement sites using four points per diameter (eight points per 
measurement site). In this manner, test run number 1 will include 
sampling from sites 1,2, and 3; run 2 will include samples from sites 4, 
5, and 6; and run 3 will include sites 7, 8, and 9. Each test area may 
consist of a separate test of each measurement site using eight points. 
Use the results from all nine tests in determining the emission average.
    8.2.3.6.2 Example 2: A source with 30 rectangular measurement sites 
of equal areas may be tested as follows: For each of the three test 
runs, traverse five measurement sites using a 3x3 matrix of traverse 
points for each site. In order to distribute the sampling evenly over 
all the available measurement sites while sampling only 50 percent of 
the sites, number the sites consecutively from 1 to 30 and sample all 
the even numbered (or odd numbered) sites. Alternatively, conduct a 
separate test of each of 15 measurement sites using Section 8.2.1 or 
8.2.2 to determine the number and location of traverse points, as 
appropriate.
    8.2.3.6.3 Example 3: A source with two measurement sites of equal 
areas may be tested as follows: For each test of three test runs, 
traverse both measurement sites, using Section 8.2.3 in determining the 
number of traverse points. Alternatively, conduct two full emission test 
runs for each measurement site using the criteria in Section 8.2.1 or 
8.2.2 to determine the number of traverse points.

[[Page 202]]

    8.2.3.7 Other test schemes, such as random determination of traverse 
points for a large number of measurement sites, may be used with prior 
approval from the Administrator.
    8.3 Velocity Determination.
    8.3.1 The velocities of exhaust gases from positive pressure 
baghouses are often too low to measure accurately with the type S pitot 
tube specified in Method 2 (i.e., velocity head <1.3 mm H2O 
(0.05 in. H2O)). For these conditions, measure the gas flow 
rate at the fabric filter inlet following the procedures outlined in 
Method 2. Calculate the average gas velocity at the measurement site as 
shown in Section 12.2 and use this average velocity in determining and 
maintaining isokinetic sampling rates.
    8.3.2 Velocity determinations to determine and maintain isokinetic 
rates at measurement sites with gas velocities within the range 
measurable with the type S pitot tube (i.e., velocity head greater than 
1.3 mm H2O (0.05 in. H2O)) shall be conducted 
according to the procedures outlined in Method 2.
    8.4 Sampling. Follow the procedures specified in Sections 8.1 
through 8.6 of Method 5 or Sections 8.1 through 8.25 in Method 17 with 
the exceptions as noted above.
    8.5 Sample Recovery. Follow the procedures specified in Section 8.7 
of Method 5 or Section 8.2 of Method 17.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.0, 10.0.....................  Sampling           Ensures accurate
                                 equipment leak     measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Same as Section 10.0 of either Method 5 or Method 17.

                        11.0 Analytical Procedure

    Same as Section 11.0 of either Method 5 or Method 17.

                   12.0 Data Analysis and Calculations

    Same as Section 12.0 of either Method 5 or Method 17 with the 
following exceptions:
    12.1 Nomenclature.
Ao=Measurement site(s) total cross-sectional area, m\2\ 
(ft\2\).
C or Cavg=Average concentration of PM for all n runs, mg/scm 
(gr/scf).
Qi=Inlet gas volume flow rate, m\3\/sec (ft\3\/sec).
mi=Mass collected for run i of n, mg (gr).
To=Average temperature of gas at measurement site, [deg]K 
([deg]R).
Ti=Average temperature of gas at inlet, [deg]K ([deg]R).
Voli=Sample volume collected for run i of n, scm (scf).
v=Average gas velocity at the measurement site(s), m/s (ft/s)
Qo=Total baghouse exhaust volumetric flow rate, m\3\/sec 
(ft\3\/sec).
Qd=Dilution air flow rate, m\3\/sec (ft\3\/sec).
Tamb=Ambient Temperature, ([deg]K).

    12.2 Average Gas Velocity. When following Section 8.3.1, calculate 
the average gas velocity at the measurement site as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.140

    12.3 Volumetric Flow Rate. Total volumetric flow rate may be 
determined as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.141

    12.4 Dilution Air Flow Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.142
    
    12.5 Average PM Concentration. For multiple measurement sites, 
calculate the average PM concentration as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.143

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 5, Section 17.0.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 203]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.144


[[Page 204]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.145

 Method 5E--Determination of Particulate Matter Emissions From the Wool 
              Fiberglass Insulation Manufacturing Industry

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, and 
Method 5.

                       1.0 Scope and Applications

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.

[[Page 205]]

    1.2 Applicability. This method is applicable for the determination 
of PM emissions from wool fiberglass insulation manufacturing sources.

                          2.0 Summary of Method

    Particulate matter is withdrawn isokinetically from the source and 
is collected either on a glass fiber filter maintained at a temperature 
in the range of 120 14 [deg]C (248 25 [deg]F) and in impingers in solutions of 0.1 N sodium 
hydroxide (NaOH). The filtered particulate mass, which includes any 
material that condenses at or above the filtration temperature, is 
determined gravimetrically after the removal of uncombined water. The 
condensed PM collected in the impinger solutions is determined as total 
organic carbon (TOC) using a nondispersive infrared type of analyzer. 
The sum of the filtered PM mass and the condensed PM is reported as the 
total PM mass.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Corrosive Reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burn as thermal burn.
    5.2.1 Hydrochloric Acid (HCl). Highly toxic. Vapors are highly 
irritating to eyes, skin, nose, and lungs, causing severe damage. May 
cause bronchitis, pneumonia, or edema of lungs. Exposure to 
concentrations of 0.13 to 0.2 percent in air can be lethal in minutes. 
Will react with metals, producing hydrogen.
    5.2.2 Sodium Hydroxide (NaOH). Causes severe damage to eye tissues 
and to skin. Inhalation causes irritation to nose, throat, and lungs. 
Reacts exothermically with limited amounts of water.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. Same as Method 5, Section 6.1, with the 
exception of the following:
    6.1.1 Probe Liner. Same as described in Section 6.1.1.2 of Method 5 
except use only borosilicate or quartz glass liners.
    6.1.2 Filter Holder. Same as described in Section 6.1.1.5 of Method 
5 with the addition of a leak-tight connection in the rear half of the 
filter holder designed for insertion of a temperature sensor used for 
measuring the sample gas exit temperature.
    6.2 Sample Recovery. Same as Method 5, Section 6.2, except three 
wash bottles are needed instead of two and only glass storage bottles 
and funnels may be used.
    6.3 Sample Analysis. Same as Method 5, Section 6.3, with the 
additional equipment for TOC analysis as described below:
    6.3.1 Sample Blender or Homogenizer. Waring type or ultrasonic.
    6.3.2 Magnetic Stirrer.
    6.3.3 Hypodermic Syringe. 0- to 100-[micro]l capacity.
    6.3.4 Total Organic Carbon Analyzer. Rosemount Model 2100A analyzer 
or equivalent and a recorder.
    6.3.5 Beaker. 30-ml.
    6.3.6 Water Bath. Temperature controlled.
    6.3.7 Volumetric Flasks. 1000-ml and 500-ml.

                       7.0 Reagents and Standards

    Unless otherwise indicated, it is intended that all reagents conform 
to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.
    7.1 Sample Collection. Same as Method 5, Section 7.1, with the 
addition of 0.1 N NaOH (Dissolve 4 g of NaOH in water and dilute to 1 
liter).
    7.2 Sample Recovery. Same as Method 5, Section 7.2, with the 
addition of the following:
    7.2.1 Water. Deionized distilled to conform to ASTM Specification D 
1193-77 or 91 Type 3 (incorporated by reference--see Sec.  60.17). The 
potassium permanganate (KMnO4) test for oxidizable organic 
matter may be omitted when high concentrations of organic matter are not 
expected to be present.
    7.2.2 Sodium Hydroxide. Same as described in Section 7.1.
    7.3 Sample Analysis. Same as Method 5, Section 7.3, with the 
addition of the following:
    7.3.1 Carbon Dioxide-Free Water. Distilled or deionized water that 
has been freshly boiled for 15 minutes and cooled to room temperature 
while preventing exposure to ambient air by using a cover vented with an 
Ascarite tube.
    7.3.2 Hydrochloric Acid. HCl, concentrated, with a dropper.
    7.3.3 Organic Carbon Stock Solution. Dissolve 2.1254 g of dried 
potassium biphthalate (HOOCC6H4COOK) in 
CO2-free water, and dilute to 1 liter in a volumetric flask. 
This solution contains 1000 mg/L organic carbon.
    7.3.4 Inorganic Carbon Stock Solution. Dissolve 4.404 g anhydrous 
sodium carbonate

[[Page 206]]

(Na2CO3.) in about 500 ml of CO2-free 
water in a 1-liter volumetric flask. Add 3.497 g anhydrous sodium 
bicarbonate (NaHCO3) to the flask, and dilute to 1 liter with 
CO2 -free water. This solution contains 1000 mg/L inorganic 
carbon.
    7.3.5 Oxygen Gas. CO2 -free.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Pretest Preparation and Preliminary Determinations. Same as 
Method 5, Sections 8.1 and 8.2, respectively.
    8.2 Preparation of Sampling Train. Same as Method 5, Section 8.3, 
except that 0.1 N NaOH is used in place of water in the impingers. The 
volumes of the solutions are the same as in Method 5.
    8.3 Leak-Check Procedures, Sampling Train Operation, Calculation of 
Percent Isokinetic. Same as Method 5, Sections 8.4 through 8.6, 
respectively.
    8.4 Sample Recovery. Same as Method 5, Sections 8.7.1 through 8.7.4, 
with the addition of the following:
    8.4.1 Save portions of the water, acetone, and 0.1 N NaOH used for 
cleanup as blanks. Take 200 ml of each liquid directly from the wash 
bottles being used, and place in glass sample containers labeled ``water 
blank,'' ``acetone blank,'' and ``NaOH blank,'' respectively.
    8.4.2 Inspect the train prior to and during disassembly, and note 
any abnormal conditions. Treat the samples as follows:
    8.4.2.1 Container No. 1. Same as Method 5, Section 8.7.6.1.
    8.4.2.2 Container No. 2. Use water to rinse the sample nozzle, 
probe, and front half of the filter holder three times in the manner 
described in Section 8.7.6.2 of Method 5 except that no brushing is 
done. Put all the water wash in one container, seal, and label.
    8.4.2.3 Container No. 3. Rinse and brush the sample nozzle, probe, 
and front half of the filter holder with acetone as described for 
Container No. 2 in Section 8.7.6.2 of Method 5.
    8.4.2.4 Container No. 4. Place the contents of the silica gel 
impinger in its original container as described for Container No. 3 in 
Section 8.7.6.3 of Method 5.
    8.4.2.5 Container No. 5. Measure the liquid in the first three 
impingers and record the volume or weight as described for the Impinger 
Water in Section 8.7.6.4 of Method 5. Do not discard this liquid, but 
place it in a sample container using a glass funnel to aid in the 
transfer from the impingers or graduated cylinder (if used) to the 
sample container. Rinse each impinger thoroughly with 0.1 N NaOH three 
times, as well as the graduated cylinder (if used) and the funnel, and 
put these rinsings in the same sample container. Seal the container and 
label to clearly identify its contents.
    8.5 Sample Transport. Whenever possible, containers should be 
shipped in such a way that they remain upright at all times.

                          9.0 Quality Control.

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.3, 10.0.....................  Sampling           Ensures accurate
                                 equipment leak-    measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
10.1.2, 11.2.5.3..............  Repetitive         Ensures precise
                                 analyses.          measurement of total
                                                    carbon and inorganic
                                                    carbon concentration
                                                    of samples, blank,
                                                    and standards.
10.1.4........................  TOC analyzer       Ensures linearity of
                                 calibration.       analyzer response to
                                                    standards.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Same as Method 5, Section 10.0, with the addition of the following 
procedures for calibrating the total organic carbon analyzer:
    10.1 Preparation of Organic Carbon Standard Curve.
    10.1.1 Add 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml of the organic 
carbon stock solution to a series of five 1000-ml volumetric flasks. Add 
30 ml, 40 ml, and 50 ml of the same solution to a series of three 500-ml 
volumetric flasks. Dilute the contents of each flask to the mark using 
CO2-free water. These flasks contain 10, 20, 30, 40, 50, 60, 
80, and 100 mg/L organic carbon, respectively.
    10.1.2 Use a hypodermic syringe to withdraw a 20- to 50-[micro]l 
aliquot from the 10 mg/L standard solution and inject it into the total 
carbon port of the analyzer. Measure the peak height. Repeat the 
injections until three consecutive peaks are obtained within 10 percent 
of their arithmetic mean. Repeat this procedure for the remaining 
organic carbon standard solutions.
    10.1.3 Calculate the corrected peak height for each standard by 
deducting the blank correction (see Section 11.2.5.3) as follows:

[[Page 207]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.146

Where:

A=Peak height of standard or sample, mm or other appropriate unit.
B=Peak height of blank, mm or other appropriate unit.

    10.1.4 Prepare a linear regression plot of the arithmetic mean of 
the three consecutive peak heights obtained for each standard solution 
against the concentration of that solution. Calculate the calibration 
factor as the inverse of the slope of this curve. If the product of the 
arithmetic mean peak height for any standard solution and the 
calibration factor differs from the actual concentration by more than 5 
percent, remake and reanalyze that standard.
    10.2 Preparation of Inorganic Carbon Standard Curve. Repeat the 
procedures outlined in Sections 10.1.1 through 10.1.4, substituting the 
inorganic carbon stock solution for the organic carbon stock solution, 
and the inorganic carbon port of the analyzer for the total carbon port.

                        11.0 Analytical Procedure

    11.1 Record the data required on a sheet such as the one shown in 
Figure 5-6 of Method 5.
    11.2 Handle each sample container as follows:
    11.2.1 Container No. 1. Same as Method 5, Section 11.2.1, except 
that the filters must be dried at 20 6 [deg]C (68 
10 [deg]F) and ambient pressure.
    11.2.2 Containers No. 2 and No. 3. Same as Method 5, Section 11.2.2, 
except that evaporation of the samples must be at 20 6 [deg]C (68 10 [deg]F) and 
ambient pressure.
    11.2.3 Container No. 4. Same as Method 5, Section 11.2.3.
    11.2.4 ``Water Blank'' and ``Acetone Blank'' Containers. Determine 
the water and acetone blank values following the procedures for the 
``Acetone Blank'' container in Section 11.2.4 of Method 5. Evaporate the 
samples at ambient temperature (20 6 [deg]C (68 
10 [deg]F)) and pressure.
    11.2.5 Container No. 5. For the determination of total organic 
carbon, perform two analyses on successive identical samples, i.e., 
total carbon and inorganic carbon. The desired quantity is the 
difference between the two values obtained. Both analyses are based on 
conversion of sample carbon into carbon dioxide for measurement by a 
nondispersive infrared analyzer. Results of analyses register as peaks 
on a strip chart recorder.
    11.2.5.1 The principal differences between the operating parameters 
for the two channels involve the combustion tube packing material and 
temperature. In the total carbon channel, a high temperature (950 [deg]C 
(1740 [deg]F)) furnace heats a Hastelloy combustion tube packed with 
cobalt oxide-impregnated asbestos fiber. The oxygen in the carrier gas, 
the elevated temperature, and the catalytic effect of the packing result 
in oxidation of both organic and inorganic carbonaceous material to 
CO2, and steam. In the inorganic carbon channel, a low 
temperature (150 [deg]C (300 [deg]F)) furnace heats a glass tube 
containing quartz chips wetted with 85 percent phosphoric acid. The acid 
liberates CO2 and steam from inorganic carbonates. The 
operating temperature is below that required to oxidize organic matter. 
Follow the manufacturer's instructions for assembly, testing, 
calibration, and operation of the analyzer.
    11.2.5.2 As samples collected in 0.1 N NaOH often contain a high 
measure of inorganic carbon that inhibits repeatable determinations of 
TOC, sample pretreatment is necessary. Measure and record the liquid 
volume of each sample (or impinger contents). If the sample contains 
solids or immiscible liquid matter, homogenize the sample with a blender 
or ultrasonics until satisfactory repeatability is obtained. Transfer a 
representative portion of 10 to 15 ml to a 30-ml beaker, and acidify 
with about 2 drops of concentrated HCl to a pH of 2 or less. Warm the 
acidified sample at 50 [deg]C (120 [deg]F) in a water bath for 15 
minutes.
    11.2.5.3 While stirring the sample with a magnetic stirrer, use a 
hypodermic syringe to withdraw a 20-to 50-[micro]1 aliquot from the 
beaker. Analyze the sample for total carbon and calculate its corrected 
mean peak height according to the procedures outlined in Sections 10.1.2 
and 10.1.3. Similarly analyze an aliquot of the sample for inorganic 
carbon. Repeat the analyses for all the samples and for the 0.1 N NaOH 
blank.
    11.2.5.4 Ascertain the total carbon and inorganic carbon 
concentrations (CTC and CIC, respectively) of each 
sample and blank by comparing the corrected mean peak heights for each 
sample and blank to the appropriate standard curve.

    Note: If samples must be diluted for analysis, apply an appropriate 
dilution factor.

                   12.0 Data Analysis and Calculations

    Same as Method 5, Section 12.0, with the addition of the following:
    12.1 Nomenclature.

Cc=Concentration of condensed particulate matter in stack 
gas, gas dry basis, corrected to standard conditions, g/dscm (gr/dscf).
CIC=Concentration of condensed TOC in the liquid sample, from 
Section 11.2.5, mg/L.

[[Page 208]]

Ct=Total particulate concentration, dry basis, corrected to 
standard conditions, g/dscm (gr/dscf).
CTC=Concentration of condensed TOC in the liquid sample, from 
Section 11.2.5, mg/L.
CTOC=Concentration of condensed TOC in the liquid sample, mg/
L.
mTOC=Mass of condensed TOC collected in the impingers, mg.
Vm(std)=Volume of gas sample measured by the dry gas meter, 
corrected to standard conditions, from Section 12.3 of Method 5, dscm 
(dscf).
Vs=Total volume of liquid sample, ml.

    12.2 Concentration of Condensed TOC in Liquid Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.148
    
    12.3 Mass of Condensed TOC Collected.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.149
    
Where:

0.001 = Liters per milliliter.

    12.4 Concentration of Condensed Particulate Material.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.150
    
Where:

K4=0.001 g/mg for metric units.
    =0.0154 gr/mg for English units.

    12.5 Total Particulate Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.151
    
                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                            16.0 References.

    Same as Section 17.0 of Method 5, with the addition of the 
following:

    1. American Public Health Association, American Water Works 
Association, Water Pollution Control Federation. Standard Methods for 
the Examination of Water and Wastewater. Fifteenth Edition. Washington, 
D.C. 1980.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

Method 5F--Determination of Nonsulfate Particulate Matter Emissions From 
                           Stationary Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, and 
Method 5.

                       1.0 Scope and Applications

    1.1 Analyte. Nonsulfate particulate matter (PM). No CAS number 
assigned.
    1.2 Applicability. This method is applicable for the determination 
of nonsulfate PM emissions from stationary sources. Use of this method 
must be specified by an applicable subpart of the standards, or approved 
by the Administrator for a particular application.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    Particulate matter is withdrawn isokinetically from the source and 
collected on a filter maintained at a temperature in the range 160 
14 [deg]C (320 25 [deg]F). 
The collected sample is extracted with water. A portion of the extract 
is analyzed for sulfate content by ion chromatography. The remainder is 
neutralized with ammonium hydroxide (NH4OH), dried, and 
weighed. The weight of sulfate in the sample is calculated as ammonium 
sulfate ((NH4)2SO4), and is subtracted 
from the total particulate weight; the result is reported as nonsulfate 
particulate matter.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection and Recovery. Same as Method 5, Sections 6.1 
and 6.2, respectively.
    6.2 Sample Analysis. Same as Method 5, Section 6.3, with the 
addition of the following:
    6.2.1 Erlenmeyer Flasks. 125-ml, with ground glass joints.
    6.2.2 Air Condenser. With ground glass joint compatible with the 
Erlenmeyer flasks.
    6.2.3 Beakers. 600-ml.
    6.2.4 Volumetric Flasks. 1-liter, 500-ml (one for each sample), 200-
ml, and 50-ml (one for each sample and standard).
    6.2.5 Pipet. 5-ml (one for each sample and standard).

[[Page 209]]

    6.2.6 Ion Chromatograph. The ion chromatograph should have at least 
the following components.
    6.2.6.1 Columns. An anion separation column or other column capable 
of resolving the sulfate ion from other species present and a standard 
anion suppressor column. Suppressor columns are produced as proprietary 
items; however, one can be produced in the laboratory using the resin 
available from BioRad Company, 32nd and Griffin Streets, Richmond, 
California. Other systems which do not use suppressor columns may also 
be used.
    6.2.6.2 Pump. Capable of maintaining a steady flow as required by 
the system.
    6.2.6.3 Flow Gauges. Capable of measuring the specified system flow 
rate.
    6.2.6.4 Conductivity Detector.
    6.2.6.5 Recorder. Compatible with the output voltage range of the 
detector.

                       7.0 Reagents and Standards

    Unless otherwise indicated, it is intended that all reagents conform 
to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.
    7.1 Sample Collection. Same as Method 5, Section 7.1.
    7.2 Sample Recovery. Same as Method 5, Section 7.2, with the 
addition of the following:
    7.2.1 Water. Deionized distilled, to conform to ASTM D 1193-77 or 91 
Type 3 (incorporated by reference--see Sec.  60.17). The potassium 
permanganate (KMnO4) test for oxidizable organic matter may 
be omitted when high concentrations of organic matter are not expected 
to be present.
    7.3 Analysis. Same as Method 5, Section 7.3, with the addition of 
the following:
    7.3.1 Water. Same as in Section 7.2.1.
    7.3.2 Stock Standard Solution, 1 mg 
(NH4)2SO4/ml. Dry an adequate amount of 
primary standard grade ammonium sulfate 
((NH4)2SO4) at 105 to 110 [deg]C (220 
to 230 [deg]F) for a minimum of 2 hours before preparing the standard 
solution. Then dissolve exactly 1.000 g of dried 
(NH4)2SO4 in water in a 1-liter 
volumetric flask, and dilute to 1 liter. Mix well.
    7.3.3 Working Standard Solution, 25 [micro]g 
(NH4)2SO4/ml. Pipet 5 ml of the stock 
standard solution into a 200-ml volumetric flask. Dilute to 200 ml with 
water.
    7.3.4 Eluent Solution. Weigh 1.018 g of sodium carbonate 
(Na2CO3) and 1.008 g of sodium bicarbonate 
(NaHCO3), and dissolve in 4 liters of water. This solution is 
0.0024 M Na2CO3/0.003 M NaHCO3. Other 
eluents appropriate to the column type and capable of resolving sulfate 
ion from other species present may be used.
    7.3.5 Ammonium Hydroxide. Concentrated, 14.8 M.
    7.3.6 Phenolphthalein Indicator. 3,3-Bis(4-hydroxyphenyl)-1-(3H)-
isobenzo-furanone. Dissolve 0.05 g in 50 ml of ethanol and 50 ml of 
water.

       8.0 Sample Collection, Preservation, Storage, and Transport

    Same as Method 5, Section 8.0, with the exception of the following:
    8.1 Sampling Train Operation. Same as Method 5, Section 8.5, except 
that the probe outlet and filter temperatures shall be maintained at 160 
14 [deg]C (320 25 [deg]F).
    8.2 Sample Recovery. Same as Method 5, Section 8.7, except that the 
recovery solvent shall be water instead of acetone, and a clean filter 
from the same lot as those used during testing shall be saved for 
analysis as a blank.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.3, 10.0.....................  Sampling           Ensures accurate
                                 equipment leak     measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
10.1.2, 11.2.5.3..............  Repetitive         Ensures precise
                                 analyses.          measurement of total
                                                    carbon and inorganic
                                                    carbon concentration
                                                    of samples, blank,
                                                    and standards.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Same as Method 5, Section 10.0, with the addition of the following:
    10.1 Determination of Ion Chromatograph Calibration Factor S. 
Prepare a series of five standards by adding 1.0, 2.0, 4.0, 6.0, and 
10.0 ml of working standard solution (25 [micro]g/ml) to a series of 
five 50-ml volumetric flasks. (The standard masses will equal 25, 50, 
100, 150, and 250 [micro]g.) Dilute each flask to the mark with water, 
and mix well. Analyze each standard according to the chromatograph 
manufacturer's instructions. Take peak height measurements with 
symmetrical peaks; in all other cases, calculate peak areas. Prepare or 
calculate a linear regression plot of the standard masses in [micro]g 
(x-axis) versus their responses (y-axis). From this line, or equation, 
determine the slope

[[Page 210]]

and calculate its reciprocal which is the calibration factor, S. If any 
point deviates from the line by more than 7 percent of the concentration 
at that point, remake and reanalyze that standard. This deviation can be 
determined by multiplying S times the response for each standard. The 
resultant concentrations must not differ by more than 7 percent from 
each known standard mass (i.e., 25, 50, 100, 150, and 250 [micro]g).
    10.2 Conductivity Detector. Calibrate according to manufacturer's 
specifications prior to initial use.

                        11.0 Analytical Procedure

    11.1 Sample Extraction.
    11.1.1 Note on the analytical data sheet, the level of the liquid in 
the container, and whether any sample was lost during shipment. If a 
noticeable amount of leakage has occurred, either void the sample or use 
methods, subject to the approval of the Administrator, to correct the 
final results.
    11.1.2 Cut the filter into small pieces, and place it in a 125-ml 
Erlenmeyer flask with a ground glass joint equipped with an air 
condenser. Rinse the shipping container with water, and pour the rinse 
into the flask. Add additional water to the flask until it contains 
about 75 ml, and place the flask on a hot plate. Gently reflux the 
contents for 6 to 8 hours. Cool the solution, and transfer it to a 500-
ml volumetric flask. Rinse the Erlenmeyer flask with water, and transfer 
the rinsings to the volumetric flask including the pieces of filter.
    11.1.3 Transfer the probe rinse to the same 500-ml volumetric flask 
with the filter sample. Rinse the sample bottle with water, and add the 
rinsings to the volumetric flask. Dilute the contents of the flask to 
the mark with water.
    11.1.4 Allow the contents of the flask to settle until all solid 
material is at the bottom of the flask. If necessary, remove and 
centrifuge a portion of the sample.
    11.1.5 Repeat the procedures outlined in Sections 11.1.1 through 
11.1.4 for each sample and for the filter blank.
    11.2 Sulfate (SO4) Analysis.
    11.2.1 Prepare a standard calibration curve according to the 
procedures outlined in Section 10.1.
    11.2.2 Pipet 5 ml of the sample into a 50-ml volumetric flask, and 
dilute to 50 ml with water. (Alternatively, eluent solution may be used 
instead of water in all sample, standard, and blank dilutions.) Analyze 
the set of standards followed by the set of samples, including the 
filter blank, using the same injection volume used for the standards.
    11.2.3 Repeat the analyses of the standards and the samples, with 
the standard set being done last. The two peak height or peak area 
responses for each sample must agree within 5 percent of their 
arithmetic mean for the analysis to be valid. Perform this analysis 
sequence on the same day. Dilute any sample and the blank with equal 
volumes of water if the concentration exceeds that of the highest 
standard.
    11.2.4 Document each sample chromatogram by listing the following 
analytical parameters: injection point, injection volume, sulfate 
retention time, flow rate, detector sensitivity setting, and recorder 
chart speed.
    11.3 Sample Residue.
    11.3.1 Transfer the remaining contents of the volumetric flask to a 
tared 600-ml beaker or similar container. Rinse the volumetric flask 
with water, and add the rinsings to the tared beaker. Make certain that 
all particulate matter is transferred to the beaker. Evaporate the water 
in an oven at 105 [deg]C (220 [deg]F) until only about 100 ml of water 
remains. Remove the beakers from the oven, and allow them to cool.
    11.3.2 After the beakers have cooled, add five drops of 
phenolphthalein indicator, and then add concentrated ammonium hydroxide 
until the solution turns pink. Return the samples to the oven at 105 
[deg]C (220 [deg]F), and evaporate the samples to dryness. Cool the 
samples in a desiccator, and weigh the samples to constant weight.

                   12.0 Data Analysis and Calculations

    Same as Method 5, Section 12.0, with the addition of the following:
    12.1 Nomenclature.

CW=Water blank residue concentration, mg/ml.
F=Dilution factor (required only if sample dilution was needed to reduce 
the concentration into the range of calibration).
HS=Arithmetic mean response of duplicate sample analyses, mm 
for height or mm2 for area.
Hb=Arithmetic mean response of duplicate filter blank 
analyses, mm for height or mm2 for area.
mb=Mass of beaker used to dry sample, mg.
mf=Mass of sample filter, mg.
mn=Mass of nonsulfate particulate matter in the sample as 
collected, mg.
ms=Mass of ammonium sulfate in the sample as collected, mg.
mt=Mass of beaker, filter, and dried sample, mg.
mw=Mass of residue after evaporation of water blank, mg.
S=Calibration factor, [micro]g/mm.
Vb=Volume of water blank, ml.
VS=Volume of sample collected, 500 ml.

    12.2 Water Blank Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.152
    
    12.3 Mass of Ammonium Sulfate.

[[Page 211]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.153

Where:

100=Aliquot factor, 495 ml/5 ml
1000=Constant, [micro]g/mg

    12.4 Mass of Nonsulfate Particulate Matter.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.154
    
                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 The following procedure may be used as an alternative to the 
procedure in Section 11.0
    16.1.1 Apparatus. Same as for Method 6, Sections 6.3.3 to 6.3.6 with 
the following additions.
    16.1.1.1 Beakers. 250-ml, one for each sample, and 600-ml.
    16.1.1.2 Oven. Capable of maintaining temperatures of 75 5 [deg]C (167 9 [deg]F) and 105 
5 [deg]C (221 9 [deg]F).
    16.1.1.3 Buchner Funnel.
    16.1.1.4 Glass Columns. 25-mmx305-mm (1-in.x12-in.) with Teflon 
stopcock.
    16.1.1.5 Volumetric Flasks. 50-ml and 500-ml, one set for each 
sample, and 100-ml, 200-ml, and 1000-ml.
    16.1.1.6 Pipettes. Two 20-ml and one 200-ml, one set for each 
sample, and 5-ml.
    16.1.1.7 Filter Flasks. 500-ml.
    16.1.1.8 Polyethylene Bottle. 500-ml, one for each sample.
    16.1.2 Reagents. Same as Method 6, Sections 7.3.2 to 7.3.5 with the 
following additions:
    16.1.2.1 Water, Ammonium Hydroxide, and Phenolphthalein. Same as 
Sections 7.2.1, 7.3.5, and 7.3.6 of this method, respectively.
    16.1.2.2 Filter. Glass fiber to fit Buchner funnel.
    16.1.2.3 Hydrochloric Acid (HCl), 1 m. Add 8.3 ml of concentrated 
HCl (12 M) to 50 ml of water in a 100-ml volumetric flask. Dilute to 100 
ml with water.
    16.1.2.4 Glass Wool.
    16.1.2.5 Ion Exchange Resin. Strong cation exchange resin, hydrogen 
form, analytical grade.
    16.1.2.6 pH Paper. Range of 1 to 7.
    16.1.3 Analysis.
    16.1.3.1 Ion Exchange Column Preparation. Slurry the resin with 1 M 
HCl in a 250-ml beaker, and allow to stand overnight. Place 2.5 cm (1 
in.) of glass wool in the bottom of the glass column. Rinse the slurried 
resin twice with water. Resuspend the resin in water, and pour 
sufficient resin into the column to make a bed 5.1 cm (2 in.) deep. Do 
not allow air bubbles to become entrapped in the resin or glass wool to 
avoid channeling, which may produce erratic results. If necessary, stir 
the resin with a glass rod to remove air bubbles, after the column has 
been prepared, never let the liquid level fall below the top of the 
upper glass wool plug. Place a 2.5-cm (1-in.) plug of glass wool on top 
of the resin. Rinse the column with water until the eluate gives a pH of 
5 or greater as measured with pH paper.
    16.1.3.2 Sample Extraction. Followup the procedure given in Section 
11.1.3 except do not dilute the sample to 500 ml.
    16.1.3.3 Sample Residue.
    16.1.3.3.1 Place at least one clean glass filter for each sample in 
a Buchner funnel, and rinse the filters with water. Remove the filters 
from the funnel, and dry them in an oven at 105 5 
[deg]C (221 9 [deg]F); then cool in a desiccator. 
Weigh each filter to constant weight according to the procedure in 
Method 5, Section 11.0. Record the weight of each filter to the nearest 
0.1 mg.
    16.1.3.3.2 Assemble the vacuum filter apparatus, and place one of 
the clean, tared glass fiber filters in the Buchner funnel. Decant the 
liquid portion of the extracted sample (Section 16.1.3.2) through the 
tared glass fiber filter into a clean, dry, 500-ml filter flask. Rinse 
all the particulate matter remaining in the volumetric flask onto the 
glass fiber filter with water. Rinse the particulate matter with 
additional water. Transfer the filtrate to a 500-ml volumetric flask, 
and dilute to 500 ml with water. Dry the filter overnight at 105 5 [deg]C (221 9 [deg]F), cool in a 
desiccator, and weigh to the nearest 0.1 mg.
    16.1.3.3.3 Dry a 250-ml beaker at 75 5 [deg]C 
(167 9 [deg]F), and cool in a desiccator; then 
weigh to constant weight to the nearest 0.1 mg. Pipette 200 ml of the 
filtrate that was saved into a tared 250-ml beaker; add five drops of 
phenolphthalein indicator and sufficient concentrated ammonium hydroxide 
to turn the solution pink. Carefully evaporate the contents of the 
beaker to dryness at 75 5 [deg]C (167 9 [deg]F). Check for dryness every 30 minutes. Do not 
continue to bake the sample once it has dried. Cool the sample in a 
desiccator, and weigh to constant weight to the nearest 0.1 mg.

[[Page 212]]

    16.1.3.4 Sulfate Analysis. Adjust the flow rate through the ion 
exchange column to 3 ml/min. Pipette a 20-ml aliquot of the filtrate 
onto the top of the ion exchange column, and collect the eluate in a 50-
ml volumetric flask. Rinse the column with two 15-ml portions of water. 
Stop collection of the eluate when the volume in the flask reaches 50-
ml. Pipette a 20-ml aliquot of the eluate into a 250-ml Erlenmeyer 
flask, add 80 ml of 100 percent isopropanol and two to four drops of 
thorin indicator, and titrate to a pink end point using 0.0100 N barium 
perchlorate. Repeat and average the titration volumes. Run a blank with 
each series of samples. Replicate titrations must agree within 1 percent 
or 0.2 ml, whichever is larger. Perform the ion exchange and titration 
procedures on duplicate portions of the filtrate. Results should agree 
within 5 percent. Regenerate or replace the ion exchange resin after 20 
sample aliquots have been analyzed or if the end point of the titration 
becomes unclear.

    Note: Protect the 0.0100 N barium perchlorate solution from 
evaporation at all times.

    16.1.3.5 Blank Determination. Begin with a sample of water of the 
same volume as the samples being processed and carry it through the 
analysis steps described in Sections 16.1.3.3 and 16.1.3.4. A blank 
value larger than 5 mg should not be subtracted from the final 
particulate matter mass. Causes for large blank values should be 
investigated and any problems resolved before proceeding with further 
analyses.
    16.1.4 Calibration. Calibrate the barium perchlorate solutions as in 
Method 6, Section 10.5.
    16.1.5 Calculations.
    16.1.5.1 Nomenclature. Same as Section 12.1 with the following 
additions:

ma=Mass of clean analytical filter, mg.
md=Mass of dissolved particulate matter, mg.
me=Mass of beaker and dissolved particulate matter after 
evaporation of filtrate, mg.
mp=Mass of insoluble particulate matter, mg.
mr=Mass of analytical filter, sample filter, and insoluble 
particulate matter, mg.
mbk=Mass of nonsulfate particulate matter in blank sample, 
mg.
mn=Mass of nonsulfate particulate matter, mg.
ms=Mass of Ammonium sulfate, mg.
N=Normality of Ba(ClO4) titrant, meq/ml.
Va=Volume of aliquot taken for titration, 20 ml.
Vc=Volume of titrant used for titration blank, ml.
Vd=Volume of filtrate evaporated, 200 ml.
Ve=Volume of eluate collected, 50 ml.
Vf=Volume of extracted sample, 500 ml.
Vi=Volume of filtrate added to ion exchange column, 20 ml.
Vt=Volume of Ba(C104)2 titrant, ml.
W=Equivalent weight of ammonium sulfate, 66.07 mg/meq.
    16.1.5.2 Mass of Insoluble Particulate Matter.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.155
    
    16.1.5.3 Mass of Dissolved Particulate Matter.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.156
    
    16.1.5.4 Mass of Ammonium Sulfate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.157
    
    16.1.5.5 Mass of Nonsulfate Particulate Matter.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.158
    
                             17.0 References

    Same as Method 5, Section 17.0, with the addition of the following:

    1. Mulik, J.D. and E. Sawicki. Ion Chromatographic Analysis of 
Environmental Pollutants. Ann Arbor, Ann Arbor Science Publishers, Inc. 
Vol. 2, 1979.
    2. Sawicki, E., J.D. Mulik, and E. Wittgenstein. Ion Chromatographic 
Analysis of Environmental Pollutants. Ann Arbor, Ann Arbor Science 
Publishers, Inc. Vol. 1. 1978.
    3. Siemer, D.D. Separation of Chloride and Bromide from Complex 
Matrices Prior to Ion Chromatographic Determination. Analytical 
Chemistry 52(12): 1874-1877. October 1980.
    4. Small, H., T.S. Stevens, and W.C. Bauman. Novel Ion Exchange 
Chromatographic Method Using Conductimetric Determination. Analytical 
Chemistry. 47(11):1801. 1975.

    18.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

   Method 5G--Determination of Particulate Matter Emissions From Wood 
               Heaters (Dilution Tunnel Sampling Location)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 4, Method 5, Method 5H, and Method 28.

[[Page 213]]

                        1.0 Scope and Application

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.
    1.2 Applicability. This method is applicable for the determination 
of PM emissions from wood heaters.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 The exhaust from a wood heater is collected with a total 
collection hood, and is combined with ambient dilution air. Particulate 
matter is withdrawn proportionally from a single point in a sampling 
tunnel, and is collected on two glass fiber filters in series. The 
filters are maintained at a temperature of no greater than 32 [deg]C (90 
[deg]F). The particulate mass is determined gravimetrically after the 
removal of uncombined water.
    2.2 There are three sampling train approaches described in this 
method: (1) One dual-filter dry sampling train operated at about 0.015 
m\3\/min (0.5 cfm), (2) One dual-filter plus impingers sampling train 
operated at about 0.015 m\3\/min (0.5 cfm), and (3) two dual-filter dry 
sampling trains operated simultaneously at any flow rate. Options (2) 
and (3) are referenced in Section 16.0 of this method. The dual-filter 
dry sampling train equipment and operation, option (1), are described in 
detail in this method.

                       3.0 Definitions [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. The following items are required for sample 
collection:
    6.1.1 Sampling Train. The sampling train configuration is shown in 
Figure 5G-1 and consists of the following components:
    6.1.1.1 Probe. Stainless steel (e.g., 316 or grade more corrosion 
resistant) or glass about 9.5 mm (\3/8\ in.) I.D., 0.6 m (24 in.) in 
length. If made of stainless steel, the probe shall be constructed from 
seamless tubing.
    6.1.1.2 Pitot Tube. Type S, as described in Section 6.1 of Method 2. 
The Type S pitot tube assembly shall have a known coefficient, 
determined as outlined in Method 2, Section 10. Alternatively, a 
standard pitot may be used as described in Method 2, Section 6.1.2.
    6.1.1.3 Differential Pressure Gauge. Inclined manometer or 
equivalent device, as described in Method 2, Section 6.2. One manometer 
shall be used for velocity head ([Delta]p) readings and another 
(optional) for orifice differential pressure readings ([Delta]H).
    6.1.1.4 Filter Holders. Two each made of borosilicate glass, 
stainless steel, or Teflon, with a glass frit or stainless steel filter 
support and a silicone rubber, Teflon, or Viton gasket. The holder 
design shall provide a positive seal against leakage from the outside or 
around the filters. The filter holders shall be placed in series with 
the backup filter holder located 25 to 100 mm (1 to 4 in.) downstream 
from the primary filter holder. The filter holder shall be capable of 
holding a filter with a 100 mm (4 in.) diameter, except as noted in 
Section 16.
    6.1.1.5 Filter Temperature Monitoring System. A temperature sensor 
capable of measuring temperature to within 3 
[deg]C (5 [deg]F). The sensor shall be installed 
at the exit side of the front filter holder so that the sensing tip of 
the temperature sensor is in direct contact with the sample gas or in a 
thermowell as shown in Figure 5G-1. The temperature sensor shall comply 
with the calibration specifications in Method 2, Section 10.3. 
Alternatively, the sensing tip of the temperature sensor may be 
installed at the inlet side of the front filter holder.
    6.1.1.6 Dryer. Any system capable of removing water from the sample 
gas to less than 1.5 percent moisture (volume percent) prior to the 
metering system. The system shall include a temperature sensor for 
demonstrating that sample gas temperature exiting the dryer is less than 
20 [deg]C (68 [deg]F).
    6.1.1.7 Metering System. Same as Method 5, Section 6.1.1.9.
    6.1.2 Barometer. Same as Method 5, Section 6.1.2.
    6.1.3 Dilution Tunnel Gas Temperature Measurement. A temperature 
sensor capable of measuring temperature to within 3 [deg]C (5 [deg]F).
    6.1.4 Dilution Tunnel. The dilution tunnel apparatus is shown in 
Figure 5G-2 and consists of the following components:
    6.1.4.1 Hood. Constructed of steel with a minimum diameter of 0.3 m 
(1 ft) on the large end and a standard 0.15 to 0.3 m (0.5 to 1 ft) 
coupling capable of connecting to standard 0.15 to 0.3 m (0.5 to 1 ft) 
stove pipe on the small end.
    6.1.4.2 90[deg] Elbows. Steel 90[deg] elbows, 0.15 to 0.3 m (0.5 to 
1 ft) in diameter for connecting mixing duct, straight duct and optional 
damper assembly. There shall be at least two 90[deg] elbows upstream of 
the sampling section (see Figure 5G-2).
    6.1.4.3 Straight Duct. Steel, 0.15 to 0.3 m (0.5 to 1 ft) in 
diameter to provide the ducting for the dilution apparatus upstream of

[[Page 214]]

the sampling section. Steel duct, 0.15 m (0.5 ft) in diameter shall be 
used for the sampling section. In the sampling section, at least 1.2 m 
(4 ft) downstream of the elbow, shall be two holes (velocity traverse 
ports) at 90[deg] to each other of sufficient size to allow entry of the 
pitot for traverse measurements. At least 1.2 m (4 ft) downstream of the 
velocity traverse ports, shall be one hole (sampling port) of sufficient 
size to allow entry of the sampling probe. Ducts of larger diameter may 
be used for the sampling section, provided the specifications for 
minimum gas velocity and the dilution rate range shown in Section 8 are 
maintained. The length of duct from the hood inlet to the sampling ports 
shall not exceed 9.1 m (30 ft).
    6.1.4.4 Mixing Baffles. Steel semicircles (two) attached at 90[deg] 
to the duct axis on opposite sides of the duct midway between the two 
elbows upstream of sampling section. The space between the baffles shall 
be about 0.3 m (1 ft).
    6.1.4.5 Blower. Squirrel cage or other fan capable of extracting gas 
from the dilution tunnel of sufficient flow to maintain the velocity and 
dilution rate specifications in Section 8 and exhausting the gas to the 
atmosphere.
    6.2 Sample Recovery. The following items are required for sample 
recovery: probe brushes, wash bottles, sample storage containers, petri 
dishes, and funnel. Same as Method 5, Sections 6.2.1 through 6.2.4, and 
6.2.8, respectively.
    6.3 Sample Analysis. The following items are required for sample 
analysis: glass weighing dishes, desiccator, analytical balance, beakers 
(250-ml or smaller), hygrometer, and temperature sensor. Same as Method 
5, Sections 6.3.1 through 6.3.3 and 6.3.5 through 6.3.7, respectively.

                       7.0 Reagents and Standards

    7.1 Sample Collection. The following reagents are required for 
sample collection:
    7.1.1 Filters. Glass fiber filters with a minimum diameter of 100 mm 
(4 in.), without organic binder, exhibiting at least 99.95 percent 
efficiency (<0.05 percent penetration) on 0.3-micron dioctyl phthalate 
smoke particles. Gelman A/E 61631 has been found acceptable for this 
purpose.
    7.1.2 Stopcock Grease. Same as Method 5, Section 7.1.5. 7.2 Sample 
Recovery. Acetone-reagent grade, same as Method 5, Section 7.2.
    7.3 Sample Analysis. Two reagents are required for the sample 
analysis:
    7.3.1 Acetone. Same as in Section 7.2.
    7.3.2 Desiccant. Anhydrous calcium sulfate, calcium chloride, or 
silica gel, indicating type.

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Dilution Tunnel Assembly and Cleaning. A schematic of a dilution 
tunnel is shown in Figure 5G-2. The dilution tunnel dimensions and other 
features are described in Section 6.1.4. Assemble the dilution tunnel, 
sealing joints and seams to prevent air leakage. Clean the dilution 
tunnel with an appropriately sized wire chimney brush before each 
certification test.
    8.2 Draft Determination. Prepare the wood heater as in Method 28, 
Section 6.2.1. Locate the dilution tunnel hood centrally over the wood 
heater stack exhaust. Operate the dilution tunnel blower at the flow 
rate to be used during the test run. Measure the draft imposed on the 
wood heater by the dilution tunnel (i.e., the difference in draft 
measured with and without the dilution tunnel operating) as described in 
Method 28, Section 6.2.3. Adjust the distance between the top of the 
wood heater stack exhaust and the dilution tunnel hood so that the 
dilution tunnel induced draft is less than 1.25 Pa (0.005 in. 
H2O). Have no fire in the wood heater, close the wood heater 
doors, and open fully the air supply controls during this check and 
adjustment.
    8.3 Pretest Ignition. Same as Method 28, Section 8.7.
    8.4 Smoke Capture. During the pretest ignition period, operate the 
dilution tunnel and visually monitor the wood heater stack exhaust. 
Operate the wood heater with the doors closed and determine that 100 
percent of the exhaust gas is collected by the dilution tunnel hood. If 
less than 100 percent of the wood heater exhaust gas is collected, 
adjust the distance between the wood heater stack and the dilution 
tunnel hood until no visible exhaust gas is escaping. Stop the pretest 
ignition period, and repeat the draft determination procedure described 
in Section 8.2.
    8.5 Velocity Measurements. During the pretest ignition period, 
conduct a velocity traverse to identify the point of average velocity. 
This single point shall be used for measuring velocity during the test 
run.
    8.5.1 Velocity Traverse. Measure the diameter of the duct at the 
velocity traverse port location through both ports. Calculate the duct 
area using the average of the two diameters. A pretest leak-check of 
pitot lines as in Method 2, Section 8.1, is recommended. Place the 
calibrated pitot tube at the centroid of the stack in either of the 
velocity traverse ports. Adjust the damper or similar device on the 
blower inlet until the velocity indicated by the pitot is approximately 
220 m/min (720 ft/min). Continue to read the [Delta]p and temperature 
until the velocity has remained constant (less than 5 percent change) 
for 1 minute. Once a constant velocity is obtained at the centroid of 
the

[[Page 215]]

duct, perform a velocity traverse as outlined in Method 2, Section 8.3 
using four points per traverse as outlined in Method 1. Measure the 
[Delta]p and tunnel temperature at each traverse point and record the 
readings. Calculate the total gas flow rate using calculations contained 
in Method 2, Section 12. Verify that the flow rate is 4 0.40 dscm/min (140 14 dscf/min); 
if not, readjust the damper, and repeat the velocity traverse. The 
moisture may be assumed to be 4 percent (100 percent relative humidity 
at 85 [deg]F). Direct moisture measurements (e.g., according to Method 
4) are also permissible.

    Note: If burn rates exceed 3 kg/hr (6.6 lb/hr), dilution tunnel duct 
flow rates greater than 4 dscm/min (140 dscfm) and sampling section duct 
diameters larger than 150 mm (6 in.) are allowed. If larger ducts or 
flow rates are used, the sampling section velocity shall be at least 220 
m/min (720 fpm). In order to ensure measurable particulate mass catch, 
it is recommended that the ratio of the average mass flow rate in the 
dilution tunnel to the average fuel burn rate be less than 150:1 if 
larger duct sizes or flow rates are used.

    8.5.2 Testing Velocity Measurements. After obtaining velocity 
traverse results that meet the flow rate requirements, choose a point of 
average velocity and place the pitot and temperature sensor at that 
location in the duct. Alternatively, locate the pitot and the 
temperature sensor at the duct centroid and calculate a velocity 
correction factor for the centroidal position. Mount the pitot to ensure 
no movement during the test run and seal the port holes to prevent any 
air leakage. Align the pitot opening to be parallel with the duct axis 
at the measurement point. Check that this condition is maintained during 
the test run (about 30-minute intervals). Monitor the temperature and 
velocity during the pretest ignition period to ensure that the proper 
flow rate is maintained. Make adjustments to the dilution tunnel flow 
rate as necessary.
    8.6 Pretest Preparation. Same as Method 5, Section 8.1.
    8.7 Preparation of Sampling Train. During preparation and assembly 
of the sampling train, keep all openings where contamination can occur 
covered until just prior to assembly or until sampling is about to 
begin.
    Using a tweezer or clean disposable surgical gloves, place one 
labeled (identified) and weighed filter in each of the filter holders. 
Be sure that each filter is properly centered and that the gasket is 
properly placed so as to prevent the sample gas stream from 
circumventing the filter. Check each filter for tears after assembly is 
completed.
    Mark the probe with heat resistant tape or by some other method to 
denote the proper distance into the stack or duct. Set up the train as 
shown in Figure 5G-1.
    8.8 Leak-Check Procedures.
    8.8.1 Leak-Check of Metering System Shown in Figure 5G-1. That 
portion of the sampling train from the pump to the orifice meter shall 
be leak-checked prior to initial use and after each certification or 
audit test. Leakage after the pump will result in less volume being 
recorded than is actually sampled. Use the procedure described in Method 
5, Section 8.4.1. Similar leak-checks shall be conducted for other types 
of metering systems (i.e., without orifice meters).
    8.8.2 Pretest Leak-Check. A pretest leak-check of the sampling train 
is recommended, but not required. If the pretest leak check is 
conducted, the procedures outlined in Method 5, Section 8.4.2 should be 
used. A vacuum of 130 mm Hg (5 in. Hg) may be used instead of 380 mm Hg 
(15 in. Hg).
    8.8.3 Post-Test Leak-Check. A leak-check of the sampling train is 
mandatory at the conclusion of each test run. The leak-check shall be 
performed in accordance with the procedures outlined in Method 5, 
Section 8.4.2. A vacuum of 130 mm Hg (5 in. Hg) or the highest vacuum 
measured during the test run, whichever is greater, may be used instead 
of 380 mm Hg (15 in. Hg).
    8.9 Preliminary Determinations. Determine the pressure, temperature 
and the average velocity of the tunnel gases as in Section 8.5. Moisture 
content of diluted tunnel gases is assumed to be 4 percent for making 
flow rate calculations; the moisture content may be measured directly as 
in Method 4.
    8.10 Sampling Train Operation. Position the probe inlet at the stack 
centroid, and block off the openings around the probe and porthole to 
prevent unrepresentative dilution of the gas stream. Be careful not to 
bump the probe into the stack wall when removing or inserting the probe 
through the porthole; this minimizes the chance of extracting deposited 
material.
    8.10.1 Begin sampling at the start of the test run as defined in 
Method 28, Section 8.8.1. During the test run, maintain a sample flow 
rate proportional to the dilution tunnel flow rate (within 10 percent of 
the initial proportionality ratio) and a filter holder temperature of no 
greater than 32 [deg]C (90 [deg]F). The initial sample flow rate shall 
be approximately 0.015 m\3\/min (0.5 cfm).
    8.10.2 For each test run, record the data required on a data sheet 
such as the one shown in Figure 5G-3. Be sure to record the initial dry 
gas meter reading. Record the dry gas meter readings at the beginning 
and end of each sampling time increment and when sampling is halted. 
Take other readings as indicated on Figure 5G-3 at least once each 10 
minutes during the test run. Since the manometer level and zero may 
drift because of vibrations and temperature changes, make periodic 
checks during the test run.
    8.10.3 For the purposes of proportional sampling rate 
determinations, data from

[[Page 216]]

calibrated flow rate devices, such as glass rotameters, may be used in 
lieu of incremental dry gas meter readings. Proportional rate 
calculation procedures must be revised, but acceptability limits remain 
the same.
    8.10.4 During the test run, make periodic adjustments to keep the 
temperature between (or upstream of) the filters at the proper level. Do 
not change sampling trains during the test run.
    8.10.5 At the end of the test run (see Method 28, Section 6.4.6), 
turn off the coarse adjust valve, remove the probe from the stack, turn 
off the pump, record the final dry gas meter reading, and conduct a 
post-test leak-check, as outlined in Section 8.8.2. Also, leak-check the 
pitot lines as described in Method 2, Section 8.1; the lines must pass 
this leak-check in order to validate the velocity head data.
    8.11 Calculation of Proportional Sampling Rate. Calculate percent 
proportionality (see Section 12.7) to determine whether the run was 
valid or another test run should be made.
    8.12 Sample Recovery. Same as Method 5, Section 8.7, with the 
exception of the following:
    8.12.1 An acetone blank volume of about 50-ml or more may be used.
    8.12.2 Treat the samples as follows:
    8.12.2.1 Container Nos. 1 and 1A. Treat the two filters according to 
the procedures outlined in Method 5, Section 8.7.6.1. The filters may be 
stored either in a single container or in separate containers. Use the 
sum of the filter tare weights to determine the sample mass collected.
    8.12.2.3 Container No. 2.
    8.12.2.3.1 Taking care to see that dust on the outside of the probe 
or other exterior surfaces does not get into the sample, quantitatively 
recover particulate matter or any condensate from the probe and filter 
holders by washing and brushing these components with acetone and 
placing the wash in a labeled glass container. At least three cycles of 
brushing and rinsing are required.
    8.12.2.3.2 Between sampling runs, keep brushes clean and protected 
from contamination.
    8.12.2.3.3 After all acetone washings and particulate matter have 
been collected in the sample containers, tighten the lids on the sample 
containers so that the acetone will not leak out when transferred to the 
laboratory weighing area. Mark the height of the fluid levels to 
determine whether leakage occurs during transport. Label the containers 
clearly to identify contents.
    8.13 Sample Transport. Whenever possible, containers should be 
shipped in such a way that they remain upright at all times.

    Note: Requirements for capping and transport of sample containers 
are not applicable if sample recovery and analysis occur in the same 
room.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.8, 10.1-10.4................  Sampling           Ensures accurate
                                 equipment leak     measurement of stack
                                 check and          gas flow rate,
                                 calibration.       sample volume.
10.5..........................  Analytical         Ensure accurate and
                                 balance            precise measurement
                                 calibration.       of collected
                                                    particulate.
16.2.5........................  Simultaneous,      Ensure precision of
                                 dual-train         measured particulate
                                 sample             concentration.
                                 collection.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Note: Maintain a laboratory record of all calibrations.

    10.1 Pitot Tube. The Type S pitot tube assembly shall be calibrated 
according to the procedure outlined in Method 2, Section 10.1, prior to 
the first certification test and checked semiannually, thereafter. A 
standard pitot need not be calibrated but shall be inspected and 
cleaned, if necessary, prior to each certification test.
    10.2 Volume Metering System.
    10.2.1 Initial and Periodic Calibration. Before its initial use and 
at least semiannually thereafter, calibrate the volume metering system 
as described in Method 5, Section 10.3.1, except that the wet test meter 
with a capacity of 3.0 liters/rev (0.1 ft\3\/rev) may be used. Other 
liquid displacement systems accurate to within 1 
percent, may be used as calibration standards.

    Note: Procedures and equipment specified in Method 5, Section 16.0, 
for alternative calibration standards, including calibrated dry gas 
meters and critical orifices, are allowed for calibrating the dry gas 
meter in the sampling train. A dry gas meter used as a calibration 
standard shall be recalibrated at least once annually.

    10.2.2 Calibration After Use. After each certification or audit test 
(four or more test runs conducted on a wood heater at the four burn 
rates specified in Method 28), check calibration of the metering system 
by performing three calibration runs at a single, intermediate flow rate 
as described in Method 5, Section 10.3.2.


[[Page 217]]


    Note: Procedures and equipment specified in Method 5, Section 16.0, 
for alternative calibration standards are allowed for the post-test dry 
gas meter calibration check.

    10.2.3 Acceptable Variation in Calibration. If the dry gas meter 
coefficient values obtained before and after a certification test differ 
by more than 5 percent, the certification test shall either be voided 
and repeated, or calculations for the certification test shall be 
performed using whichever meter coefficient value (i.e., before or 
after) gives the lower value of total sample volume.
    10.3 Temperature Sensors. Use the procedure in Method 2, Section 
10.3, to calibrate temperature sensors before the first certification or 
audit test and at least semiannually, thereafter.
    10.4 Barometer. Calibrate against a mercury barometer before the 
first certification test and at least semiannually, thereafter. If a 
mercury barometer is used, no calibration is necessary. Follow the 
manufacturer's instructions for operation.
    10.5 Analytical Balance. Perform a multipoint calibration (at least 
five points spanning the operational range) of the analytical balance 
before the first certification test and semiannually, thereafter. Before 
each certification test, audit the balance by weighing at least one 
calibration weight (class F) that corresponds to 50 to 150 percent of 
the weight of one filter. If the scale cannot reproduce the value of the 
calibration weight to within 0.1 mg, conduct the multipoint calibration 
before use.

                        11.0 Analytical Procedure

    11.1 Record the data required on a sheet such as the one shown in 
Figure 5G-4. Use the same analytical balance for determining tare 
weights and final sample weights.
    11.2 Handle each sample container as follows:
    11.2.1 Container Nos. 1 and 1A. Treat the two filters according to 
the procedures outlined in Method 5, Section 11.2.1.
    11.2.2 Container No. 2. Same as Method 5, Section 11.2.2, except 
that the beaker may be smaller than 250 ml.
    11.2.3 Acetone Blank Container. Same as Method 5, Section 11.2.4, 
except that the beaker may be smaller than 250 ml.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after the 
final calculation. Other forms of the equations may be used as long as 
they give equivalent results.
    12.1 Nomenclature.

Bws=Water vapor in the gas stream, proportion by volume 
(assumed to be 0.04).
cs=Concentration of particulate matter in stack gas, dry 
basis, corrected to standard conditions, g/dscm (gr/dscf).
E=Particulate emission rate, g/hr (lb/hr).
Eadj=Adjusted particulate emission rate, g/hr (lb/hr).
La=Maximum acceptable leakage rate for either a pretest or 
post-test leak-check, equal to 0.00057 m\3\/min (0.020 cfm) or 4 percent 
of the average sampling rate, whichever is less.
Lp=Leakage rate observed during the post-test leak-check, 
m\3\/min (cfm).
ma=Mass of residue of acetone blank after evaporation, mg.
maw=Mass of residue from acetone wash after evaporation, mg.
mn=Total amount of particulate matter collected, mg.
Mw=Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-
mole).
Pbar=Barometric pressure at the sampling site, mm Hg (in. 
Hg).
PR=Percent of proportional sampling rate.
Ps=Absolute gas pressure in dilution tunnel, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
Qsd=Average gas flow rate in dilution tunnel, calculated as 
in Method 2, Equation 2-8, dscm/hr (dscf/hr).
Tm=Absolute average dry gas meter temperature (see Figure 5G-
3), [deg]K ([deg]R).
Tmi=Absolute average dry gas meter temperature during each 
10-minute interval, i, of the test run, [deg]K ([deg]R).
Ts=Absolute average gas temperature in the dilution tunnel 
(see Figure 5G-3), [deg]K ([deg]R).
Tsi=Absolute average gas temperature in the dilution tunnel 
during each 10 minute interval, i, of the test run, [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Va=Volume of acetone blank, ml.
Vaw=Volume of acetone used in wash, ml.
Vm=Volume of gas sample as measured by dry gas meter, dcm 
(dcf).
Vmi=Volume of gas sample as measured by dry gas meter during 
each 10-minute interval, i, of the test run, dcm.
Vm(std)=Volume of gas sample measured by the dry gas meter, 
corrected to standard conditions, dscm (dscf).
Vs=Average gas velocity in the dilution tunnel, calculated by 
Method 2, Equation 2-7, m/sec (ft/sec). The dilution tunnel dry gas 
molecular weight may be assumed to be 29 g/g mole (lb/lb mole).
Vsi=Average gas velocity in dilution tunnel during each 10-
minute interval, i, of the test run, calculated by Method 2, Equation 2-
7, m/sec (ft/sec).
Y=Dry gas meter calibration factor.
[Delta]H=Average pressure differential across the orifice meter, if used 
(see Figure 5G-2), mm H\2\O (in. H\2\O).
U=Total sampling time, min.

[[Page 218]]

10=10 minutes, length of first sampling period.
13.6=Specific gravity of mercury.
100=Conversion to percent.
    12.2 Dry Gas Volume. Same as Method 5, Section 12.2, except that 
component changes are not allowable.
    12.3 Solvent Wash Blank.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.159
    
    12.4 Total Particulate Weight. Determine the total particulate 
catch, mn, from the sum of the weights obtained from Container Nos. 1, 
1A, and 2, less the acetone blank (see Figure 5G-4).
    12.5 Particulate Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.160
    
Where:
K2=0.001 g/mg for metric units.
    =0.0154 gr/mg for English units.
    12.6 Particulate Emission Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.161
    
    Note: Particulate emission rate results produced using the sampling 
train described in Section 6 and shown in Figure 5G-1 shall be adjusted 
for reporting purposes by the following method adjustment factor:
[GRAPHIC] [TIFF OMITTED] TR17OC00.162

Where:

K3=constant, 1.82 for metric units.
    =constant, 0.643 for English units.

    12.7 Proportional Rate Variation. Calculate PR for each 10-minute 
interval, i, of the test run.
[GRAPHIC] [TIFF OMITTED] TR17OC00.163

    Alternate calculation procedures for proportional rate variation may 
be used if other sample flow rate data (e.g., orifice flow meters or 
rotameters) are monitored to maintain proportional sampling rates. The 
proportional rate variations shall be calculated for each 10-minute 
interval by comparing the stack to nozzle velocity ratio for each 10-
minute interval to the average stack to nozzle velocity ratio for the 
test run. Proportional rate variation may be calculated for intervals 
shorter than 10 minutes with appropriate revisions to Equation 5G-5. If 
no more than 10 percent of the PR values for all the intervals exceed 90 
percent <= PR <= 110 percent, and if no PR value for any interval 
exceeds 80 percent <= PR <= 120 percent, the results are acceptable. If 
the PR values for the test run are judged to be unacceptable, report the 
test run emission results, but do not include the results in calculating 
the weighted average emission rate, and repeat the test run.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 Method 5H Sampling Train. The sampling train and sample 
collection, recovery, and analysis procedures described in Method 5H, 
Sections 6.1.1, 7.1, 7.2, 8.1, 8.10, 8.11, and 11.0, respectively, may 
be used in lieu of similar sections in Method 5G. Operation of the 
Method 5H sampling train in the dilution tunnel is as described in 
Section 8.10 of this method. Filter temperatures and condenser 
conditions are as described in Method 5H. No adjustment to the measured 
particulate matter emission rate (Equation 5G-4, Section 12.6) is to be 
applied to the particulate emission rate measured by this alternative 
method.
    16.2 Dual Sampling Trains. Two sampling trains may be operated 
simultaneously at sample flow rates other than that specified in Section 
8.10, provided that the following specifications are met.
    16.2.1 Sampling Train. The sampling train configuration shall be the 
same as specified in Section 6.1.1, except the probe, filter, and filter 
holder need not be the same sizes as specified in the applicable 
sections. Filter holders of plastic materials such as Nalgene or 
polycarbonate materials may be used (the Gelman 1119 filter holder has 
been found suitable for this purpose). With such materials, it is 
recommended that solvents not be used in sample recovery. The filter 
face velocity shall not exceed 150 mm/sec (30 ft/min) during the test 
run. The dry gas meter shall be calibrated for the same flow rate range 
as encountered during the test runs. Two separate, complete sampling 
trains are required for each test run.

[[Page 219]]

    16.2.2 Probe Location. Locate the two probes in the dilution tunnel 
at the same level (see Section 6.1.4.3). Two sample ports are necessary. 
Locate the probe inlets within the 50 mm (2 in.) diameter centroidal 
area of the dilution tunnel no closer than 25 mm (1 in.) apart.
    16.2.3 Sampling Train Operation. Operate the sampling trains as 
specified in Section 8.10, maintaining proportional sampling rates and 
starting and stopping the two sampling trains simultaneously. The pitot 
values as described in Section 8.5.2 shall be used to adjust sampling 
rates in both sampling trains.
    16.2.4 Recovery and Analysis of Sample. Recover and analyze the 
samples from the two sampling trains separately, as specified in 
Sections 8.12 and 11.0, respectively.
    16.2.4.1 For this alternative procedure, the probe and filter holder 
assembly may be weighed without sample recovery (use no solvents) 
described above in order to determine the sample weight gains. For this 
approach, weigh the clean, dry probe and filter holder assembly upstream 
of the front filter (without filters) to the nearest 0.1 mg to establish 
the tare weights. The filter holder section between the front and second 
filter need not be weighed. At the end of the test run, carefully clean 
the outside of the probe, cap the ends, and identify the sample (label). 
Remove the filters from the filter holder assemblies as described for 
container Nos. 1 and 1A in Section 8.12.2.1. Reassemble the filter 
holder assembly, cap the ends, identify the sample (label), and transfer 
all the samples to the laboratory weighing area for final weighing. 
Requirements for capping and transport of sample containers are not 
applicable if sample recovery and analysis occur in the same room.
    16.2.4.2 For this alternative procedure, filters may be weighed 
directly without a petri dish. If the probe and filter holder assembly 
are to be weighed to determine the sample weight, rinse the probe with 
acetone to remove moisture before desiccating prior to the test run. 
Following the test run, transport the probe and filter holder to the 
desiccator, and uncap the openings of the probe and the filter holder 
assembly. Desiccate for 24 hours and weigh to a constant weight. Report 
the results to the nearest 0.1 mg.
    16.2.5 Calculations. Calculate an emission rate (Section 12.6) for 
the sample from each sampling train separately and determine the average 
emission rate for the two values. The two emission rates shall not 
differ by more than 7.5 percent from the average emission rate, or 7.5 
percent of the weighted average emission rate limit in the applicable 
subpart of the regulations, whichever is greater. If this specification 
is not met, the results are unacceptable. Report the results, but do not 
include the results in calculating the weighted average emission rate. 
Repeat the test run until acceptable results are achieved, report the 
average emission rate for the acceptable test run, and use the average 
in calculating the weighted average emission rate.

                             17.0 References

    Same as Method 5, Section 17.0, References 1 through 11, with the 
addition of the following:

    1. Oregon Department of Environmental Quality. Standard Method for 
Measuring the Emissions and Efficiencies of Woodstoves. June 8, 1984. 
Pursuant to Oregon Administrative Rules Chapter 340, Division 21.
    2. American Society for Testing and Materials. Proposed Test Methods 
for Heating Performance and Emissions of Residential Wood-fired Closed 
Combustion-Chamber Heating Appliances. E-6 Proposal P 180. August 1986.

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 220]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.164


[[Page 221]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.165


[[Page 222]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.166


[[Page 223]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.167

   Method 5H--Determination of Particulate Matter Emissions From Wood 
                      Heaters From a Stack Location

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 2, Method 3, Method 5, 
Method 5G, Method 6, Method 6C, Method 16A, and Method 28.

                        1.0 Scope and Application

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.

[[Page 224]]

    1.2 Applicability. This method is applicable for the determination 
of PM and condensible emissions from wood heaters.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 Particulate matter is withdrawn proportionally from the wood 
heater exhaust and is collected on two glass fiber filters separated by 
impingers immersed in an ice water bath. The first filter is maintained 
at a temperature of no greater than 120 [deg]C (248 [deg]F). The second 
filter and the impinger system are cooled such that the temperature of 
the gas exiting the second filter is no greater than 20 [deg]C (68 
[deg]F). The particulate mass collected in the probe, on the filters, 
and in the impingers is determined gravimetrically after the removal of 
uncombined water.

                             3.0 Definitions

    Same as in Method 6C, Section 3.0.

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. The following items are required for sample 
collection:
    6.1.1 Sampling Train. The sampling train configuration is shown in 
Figure 5H-1. Same as Method 5, Section 6.1.1, with the exception of the 
following:
    6.1.1.1 Probe Nozzle. The nozzle is optional; a straight sampling 
probe without a nozzle is an acceptable alternative.
    6.1.1.2 Probe Liner. Same as Method 5, Section 6.1.1.2, except that 
the maximum length of the sample probe shall be 0.6 m (2 ft) and probe 
heating is optional.
    6.1.1.3 Filter Holders. Two each of borosilicate glass, with a glass 
frit or stainless steel filter support and a silicone rubber, Teflon, or 
Viton gasket. The holder design shall provide a positive seal against 
leakage from the outside or around the filter. The front filter holder 
shall be attached immediately at the outlet of the probe and prior to 
the first impinger. The second filter holder shall be attached on the 
outlet of the third impinger and prior to the inlet of the fourth 
(silica gel) impinger.
    6.1.2 Barometer. Same as Method 5, Section 6.2.
    6.1.3 Stack Gas Flow Rate Measurement System. A schematic of an 
example test system is shown in Figure 5H-2. The flow rate measurement 
system consists of the following components:
    6.1.3.1 Sample Probe. A glass or stainless steel sampling probe.
    6.1.3.2 Gas Conditioning System. A high density filter to remove 
particulate matter and a condenser capable of lowering the dew point of 
the gas to less than 5 [deg]C (40 [deg]F). Desiccant, such as Drierite, 
may be used to dry the sample gas. Do not use silica gel.
    6.1.3.3 Pump. An inert (e.g., Teflon or stainless steel heads) 
sampling pump capable of delivering more than the total amount of sample 
required in the manufacturer's instructions for the individual 
instruments. A means of controlling the analyzer flow rate and a device 
for determining proper sample flow rate (e.g., precision rotameter, 
pressure gauge downstream of all flow controls) shall be provided at the 
analyzer. The requirements for measuring and controlling the analyzer 
flow rate are not applicable if data are presented that demonstrate that 
the analyzer is insensitive to flow variations over the range 
encountered during the test.
    6.1.3.4 Carbon Monoxide (CO) Analyzer. Any analyzer capable of 
providing a measure of CO in the range of 0 to 10 percent by volume at 
least once every 10 minutes.
    6.1.3.5 Carbon Dioxide (CO2) Analyzer. Any analyzer 
capable of providing a measure of CO2 in the range of 0 to 25 
percent by volume at least once every 10 minutes.

    Note: Analyzers with ranges less than those specified above may be 
used provided actual concentrations do not exceed the range of the 
analyzer.

    6.1.3.6 Manifold. A sampling tube capable of delivering the sample 
gas to two analyzers and handling an excess of the total amount used by 
the analyzers. The excess gas is exhausted through a separate port.
    6.1.3.7 Recorders (optional). To provide a permanent record of the 
analyzer outputs.
    6.1.4 Proportional Gas Flow Rate System. To monitor stack flow rate 
changes and provide a measurement that can be used to adjust and 
maintain particulate sampling flow rates proportional to the stack gas 
flow rate. A schematic of the proportional flow rate system is shown in 
Figure 5H-2 and consists of the following components:
    6.1.4.1 Tracer Gas Injection System. To inject a known concentration 
of sulfur dioxide (SO2) into the flue. The tracer gas 
injection system consists of a cylinder of SO2, a gas 
cylinder regulator, a stainless steel needle valve or flow controller, a 
nonreactive (stainless steel and glass) rotameter, and an injection loop 
to disperse the SO2 evenly in the flue.

[[Page 225]]

    6.1.4.2 Sample Probe. A glass or stainless steel sampling probe.
    6.1.4.3 Gas Conditioning System. A combustor as described in Method 
16A, Sections 6.1.5 and 6.1.6, followed by a high density filter to 
remove particulate matter, and a condenser capable of lowering the dew 
point of the gas to less than 5 [deg]C (40 [deg]F). Desiccant, such as 
Drierite, may be used to dry the sample gas. Do not use silica gel.
    6.1.4.4 Pump. Same as described in Section 6.1.3.3.
    6.1.4.5 SO2 Analyzer. Any analyzer capable of providing a 
measure of the SO2 concentration in the range of 0 to 1,000 
ppm by volume (or other range necessary to measure the SO2 
concentration) at least once every 10 minutes.
    6.1.4.6 Recorder (optional). To provide a permanent record of the 
analyzer outputs.

    Note: Other tracer gas systems, including helium gas systems, are 
acceptable for determination of instantaneous proportional sampling 
rates.

    6.2 Sample Recovery. Same as Method 5, Section 6.2.
    6.3 Sample Analysis. Same as Method 5, Section 6.3, with the 
addition of the following:
    6.3.1 Separatory Funnel. Glass or Teflon, 500-ml or greater.

                       7.0 Reagents and Standards

    7.1 Sample Collection. Same as Method 5, Section 7.1, including 
deionized distilled water.
    7.2 Sample Recovery. Same as Method 5, Section 7.2.
    7.3 Sample Analysis. The following reagents and standards are 
required for sample analysis:
    7.3.1 Acetone. Same as Method 5 Section 7.2.
    7.3.2 Dichloromethane (Methylene Chloride). Reagent grade, <0.001 
percent residue in glass bottles.
    7.3.3 Desiccant. Anhydrous calcium sulfate, calcium chloride, or 
silica gel, indicating type.
    7.3.4 Cylinder Gases. For the purposes of this procedure, span value 
is defined as the upper limit of the range specified for each analyzer 
as described in Section 6.1.3.4 or 6.1.3.5. If an analyzer with a range 
different from that specified in this method is used, the span value 
shall be equal to the upper limit of the range for the analyzer used 
(see Note in Section 6.1.3.5).
    7.3.4.1 Calibration Gases. The calibration gases for the 
CO2, CO, and SO2 analyzers shall be CO2 
in nitrogen (N2), CO in N2, and SO2 in 
N2, respectively. CO2 and CO calibration gases may 
be combined in a single cylinder. Use three calibration gases as 
specified in Method 6C, Sections 7.2.1 through 7.2.3.
    7.3.4.2 SO2 Injection Gas. A known concentration of 
SO2 in N2. The concentration must be at least 2 
percent SO2 with a maximum of 100 percent SO2.

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Pretest Preparation. Same as Method 5, Section 8.1.
    8.2 Calibration Gas and SO2 Injection Gas Concentration 
Verification, Sampling System Bias Check, Response Time Test, and Zero 
and Calibration Drift Tests. Same as Method 6C, Sections 8.2.1, 8.2.3, 
8.2.4, and 8.5, respectively, except that for verification of CO and 
CO2 gas concentrations, substitute Method 3 for Method 6.
    8.3 Preliminary Determinations.
    8.3.1 Sampling Location. The sampling location for the particulate 
sampling probe shall be 2.45 0.15 m (8 0.5 ft) above the platform upon which the wood heater is 
placed (i.e., the top of the scale).
    8.3.2 Sampling Probe and Nozzle. Select a nozzle, if used, sized for 
the range of velocity heads, such that it is not necessary to change the 
nozzle size in order to maintain proportional sampling rates. During the 
run, do not change the nozzle size. Select a suitable probe liner and 
probe length to effect minimum blockage.
    8.4 Preparation of Particulate Sampling Train. Same as Method 5, 
Section 8.3, with the exception of the following:
    8.4.1 The train should be assembled as shown in Figure 5H-1.
    8.4.2 A glass cyclone may not be used between the probe and filter 
holder.
    8.5 Leak-Check Procedures.
    8.5.1 Leak-Check of Metering System Shown in Figure 5H-1. That 
portion of the sampling train from the pump to the orifice meter shall 
be leak-checked after each certification or audit test. Use the 
procedure described in Method 5, Section 8.4.1.
    8.5.2 Pretest Leak-Check. A pretest leak-check of the sampling train 
is recommended, but not required. If the pretest leak-check is 
conducted, the procedures outlined in Method 5, Section 8.5.2 should be 
used. A vacuum of 130 mm Hg (5 in. Hg) may be used instead of 380 mm Hg 
(15 in. Hg).
    8.5.2 Leak-Checks During Sample Run. If, during the sampling run, a 
component (e.g., filter assembly or impinger) change becomes necessary, 
conduct a leak-check as described in Method 5, Section 8.4.3.
    8.5.3 Post-Test Leak-Check. A leak-check is mandatory at the 
conclusion of each sampling run. The leak-check shall be performed in 
accordance with the procedures outlined in Method 5, Section 8.4.4, 
except that a vacuum of 130 mm Hg (5 in. Hg) or the greatest vacuum 
measured during the test run, whichever is greater, may be used instead 
of 380 mm Hg (15 in. Hg).

[[Page 226]]

    8.6 Tracer Gas Procedure. A schematic of the tracer gas injection 
and sampling systems is shown in Figure 5H-2.
    8.6.1 SO2 Injection Probe. Install the SO2 
injection probe and dispersion loop in the stack at a location 2.9 
0.15 m (9.5 0.5 ft) above 
the sampling platform.
    8.6.2 SO2 Sampling Probe. Install the SO2 
sampling probe at the centroid of the stack at a location 4.1 0.15 m (13.5 0.5 ft) above the 
sampling platform.
    8.7 Flow Rate Measurement System. A schematic of the flow rate 
measurement system is shown in Figure 5H-2. Locate the flow rate 
measurement sampling probe at the centroid of the stack at a location 
2.3 0.3 m (7.5 1 ft) above 
the sampling platform.
    8.8 Tracer Gas Procedure. Within 1 minute after closing the wood 
heater door at the start of the test run (as defined in Method 28, 
Section 8.8.1), meter a known concentration of SO2 tracer gas 
at a constant flow rate into the wood heater stack. Monitor the 
SO2 concentration in the stack, and record the SO2 
concentrations at 10-minute intervals or more often. Adjust the 
particulate sampling flow rate proportionally to the SO2 
concentration changes using Equation 5H-6 (e.g., the SO2 
concentration at the first 10-minute reading is measured to be 100 ppm; 
the next 10 minute SO2 concentration is measured to be 75 
ppm: the particulate sample flow rate is adjusted from the initial 0.15 
cfm to 0.20 cfm). A check for proportional rate variation shall be made 
at the completion of the test run using Equation 5H-10.
    8.9 Volumetric Flow Rate Procedure. Apply stoichiometric 
relationships to the wood combustion process in determining the exhaust 
gas flow rate as follows:
    8.9.1 Test Fuel Charge Weight. Record the test fuel charge weight 
(wet) as specified in Method 28, Section 8.8.2. The wood is assumed to 
have the following weight percent composition: 51 percent carbon, 7.3 
percent hydrogen, 41 percent oxygen. Record the wood moisture for each 
fuel charge as described in Method 28, Section 8.6.5. The ash is assumed 
to have negligible effect on associated C, H, and O concentrations after 
the test burn.
    8.9.2 Measured Values. Record the CO and CO2 
concentrations in the stack on a dry basis every 10 minutes during the 
test run or more often. Average these values for the test run. Use as a 
mole fraction (e.g., 10 percent CO2 is recorded as 0.10) in 
the calculations to express total flow (see Equation 5H-6).
    8.10 Sampling Train Operation.
    8.10.1 For each run, record the data required on a data sheet such 
as the one shown in Figure 5H-3. Be sure to record the initial dry gas 
meter reading. Record the dry gas meter readings at the beginning and 
end of each sampling time increment, when changes in flow rates are 
made, before and after each leak-check, and when sampling is halted. 
Take other readings as indicated on Figure 5H-3 at least once each 10 
minutes during the test run.
    8.10.2 Remove the nozzle cap, verify that the filter and probe 
heating systems are up to temperature, and that the probe is properly 
positioned. Position the nozzle, if used, facing into gas stream, or the 
probe tip in the 50 mm (2 in.) centroidal area of the stack.
    8.10.3 Be careful not to bump the probe tip into the stack wall when 
removing or inserting the probe through the porthole; this minimizes the 
chance of extracting deposited material.
    8.10.4 When the probe is in position, block off the openings around 
the probe and porthole to prevent unrepresentative dilution of the gas 
stream.
    8.10.5 Begin sampling at the start of the test run as defined in 
Method 28, Section 8.8.1, start the sample pump, and adjust the sample 
flow rate to between 0.003 and 0.014 m\3\/min (0.1 and 0.5 cfm). Adjust 
the sample flow rate proportionally to the stack gas flow during the 
test run according to the procedures outlined in Section 8. Maintain a 
proportional sampling rate (within 10 percent of the desired value) and 
a filter holder temperature no greater than 120 [deg]C (248 [deg]F).
    8.10.6 During the test run, make periodic adjustments to keep the 
temperature around the filter holder at the proper level. Add more ice 
to the impinger box and, if necessary, salt to maintain a temperature of 
less than 20 [deg]C (68 [deg]F) at the condenser/silica gel outlet.
    8.10.7 If the pressure drop across the filter becomes too high, 
making proportional sampling difficult to maintain, either filter may be 
replaced during a sample run. It is recommended that another complete 
filter assembly be used rather than attempting to change the filter 
itself. Before a new filter assembly is installed, conduct a leak-check 
(see Section 8.5.2). The total particulate weight shall include the 
summation of all filter assembly catches. The total time for changing 
sample train components shall not exceed 10 minutes. No more than one 
component change is allowed for any test run.
    8.10.8 At the end of the test run, turn off the coarse adjust valve, 
remove the probe and nozzle from the stack, turn off the pump, record 
the final dry gas meter reading, and conduct a post-test leak-check, as 
outlined in Section 8.5.3.
    8.11 Sample Recovery. Same as Method 5, Section 8.7, with the 
exception of the following:
    8.11.1 Blanks. The volume of the acetone blank may be about 50-ml, 
rather than 200-ml; a 200-ml water blank shall also be saved for 
analysis.
    8.11.2 Samples.

[[Page 227]]

    8.11.2.1 Container Nos. 1 and 1A. Treat the two filters according to 
the procedures outlined in Method 5, Section 8.7.6.1. The filters may be 
stored either in a single container or in separate containers.
    8.11.2.2 Container No. 2. Same as Method 5, Section 8.7.6.2, except 
that the container should not be sealed until the impinger rinse 
solution is added (see Section 8.10.2.4).
    8.11.2.3 Container No. 3. Treat the impingers as follows: Measure 
the liquid which is in the first three impingers to within 1-ml by using 
a graduated cylinder or by weighing it to within 0.5 g by using a 
balance (if one is available). Record the volume or weight of liquid 
present. This information is required to calculate the moisture content 
of the effluent gas. Transfer the water from the first, second, and 
third impingers to a glass container. Tighten the lid on the sample 
container so that water will not leak out.
    8.11.2.4 Rinse impingers and graduated cylinder, if used, with 
acetone three times or more. Avoid direct contact between the acetone 
and any stopcock grease or collection of any stopcock grease in the 
rinse solutions. Add these rinse solutions to sample Container No. 2.
    8.11.2.5 Container No. 4. Same as Method 5, Section 8.7.6.3
    8.12 Sample Transport. Whenever possible, containers should be 
transferred in such a way that they remain upright at all times.

    Note: Requirements for capping and transport of sample containers 
are not applicable if sample recovery and analysis occur in the same 
room.

                           9.0 Quality Control

    9.1 Miscellaneous Quality Control Measures.

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.2...........................  Sampling system    Ensures that bias
                                 bias check.        introduced by
                                                    measurement system,
                                                    minus analyzer, is
                                                    no greater than 3
                                                    percent of span.
8.2...........................  Analyzer zero and  Ensures that bias
                                 calibration        introduced by drift
                                 drift tests.       in the measurement
                                                    system output during
                                                    the run is no
                                                    greater than 3
                                                    percent of span.
8.5, 10.1, 12.13..............  Sampling           Ensures accurate
                                 equipment leak-    measurement of stack
                                 check and          gas flow rate,
                                 calibration;       sample volume.
                                 proportional
                                 sampling rate
                                 verification.
10.1..........................  Analytical         Ensure accurate and
                                 balance            precise measurement
                                 calibration.       of collected
                                                    particulate.
10.3..........................  Analyzer           Ensures that bias
                                 calibration        introduced by
                                 error check.       analyzer calibration
                                                    error is no greater
                                                    than 2 percent of
                                                    span.
------------------------------------------------------------------------

    9.2 Volume Metering System Checks. Same as Method 5, Section 9.2.

                  10.0 Calibration and Standardization

    Note: Maintain a laboratory record of all calibrations.

    10.1 Volume Metering System, Temperature Sensors, Barometer, and 
Analytical Balance. Same as Method 5G, Sections 10.2 through 10.5, 
respectively.
    10.2 SO2 Injection Rotameter. Calibrate the 
SO2 injection rotameter system with a soap film flowmeter or 
similar direct volume measuring device with an accuracy of 2 percent. 
Operate the rotameter at a single reading for at least three calibration 
runs for 10 minutes each. When three consecutive calibration flow rates 
agree within 5 percent, average the three flow rates, mark the rotameter 
at the calibrated setting, and use the calibration flow rate as the 
SO2 injection flow rate during the test run. Repeat the 
rotameter calibration before the first certification test and 
semiannually thereafter.
    10.3. Gas Analyzers. Same as Method 6C, Section 10.0.

                        11.0 Analytical Procedure

    11.1 Record the data required on a sheet such as the one shown in 
Figure 5H-4.
    11.2 Handle each sample container as follows:
    11.2.1 Container Nos. 1 and 1A. Treat the two filters according to 
the procedures outlined in Method 5, Section 11.2.1.
    11.2.2 Container No. 2. Same as Method 5, Section 11.2.2, except 
that the beaker may be smaller than 250-ml.
    11.2.3 Container No. 3. Note the level of liquid in the container 
and confirm on the analysis sheet whether leakage occurred during 
transport. If a noticeable amount of leakage has occurred, either void 
the sample or use methods, subject to the approval of the Administrator, 
to correct the final results. Determination of sample leakage is not 
applicable if sample recovery and analysis occur in the same room. 
Measure the liquid in this container either volumetrically to within 1-
ml or gravimetrically to within 0.5 g. Transfer the contents to a 500-ml 
or larger separatory funnel. Rinse the container with water, and add to 
the separatory funnel. Add 25-ml of dichloromethane to the separatory 
funnel, stopper and vigorously shake 1 minute, let

[[Page 228]]

separate and transfer the dichloromethane (lower layer) into a tared 
beaker or evaporating dish. Repeat twice more. It is necessary to rinse 
Container No. 3 with dichloromethane. This rinse is added to the 
impinger extract container. Transfer the remaining water from the 
separatory funnel to a tared beaker or evaporating dish and evaporate to 
dryness at 104 [deg]C (220 [deg]F). Desiccate and weigh to a constant 
weight. Evaporate the combined impinger water extracts at ambient 
temperature and pressure. Desiccate and weigh to a constant weight. 
Report both results to the nearest 0.1 mg.
    11.2.4 Container No. 4. Weigh the spent silica gel (or silica gel 
plus impinger) to the nearest 0.5 g using a balance.
    11.2.5 Acetone Blank Container. Same as Method 5, Section 11.2.4, 
except that the beaker may be smaller than 250 ml.
    11.2.6 Dichloromethane Blank Container. Treat the same as the 
acetone blank.
    11.2.7 Water Blank Container. Transfer the water to a tared 250 ml 
beaker and evaporate to dryness at 104 [deg]C (220 [deg]F). Desiccate 
and weigh to a constant weight.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after the 
final calculation. Other forms of the equations may be used as long as 
they give equivalent results.
    12.1 Nomenclature.
a=Sample flow rate adjustment factor.
BR=Dry wood burn rate, kg/hr (lb/hr), from Method 28, Section 8.3.
Bws=Water vapor in the gas stream, proportion by volume.
Cs=Concentration of particulate matter in stack gas, dry 
basis, corrected to standard conditions, g/dscm (g/dscf).
E=Particulate emission rate, g/hr (lb/hr).
[Delta]H=Average pressure differential across the orifice meter (see 
Figure 5H-1), mm H2O (in. H2O).
La=Maximum acceptable leakage rate for either a post-test 
leak-check or for a leak-check following a component change; equal to 
0.00057 cmm (0.020 cfm) or 4 percent of the average sampling rate, 
whichever is less.
L1=Individual leakage rate observed during the leak-check 
conducted before a component change, cmm (cfm).
Lp=Leakage rate observed during the post-test leak-check, cmm 
(cfm).
mn=Total amount of particulate matter collected, mg.
Ma=Mass of residue of solvent after evaporation, mg.
NC=Grams of carbon/gram of dry fuel (lb/lb), equal to 0.0425.
NT=Total dry moles of exhaust gas/kg of dry wood burned, g-
moles/kg (lb-moles/lb).
PR=Percent of proportional sampling rate.
Pbar=Barometric pressure at the sampling site, mm Hg (in.Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in.Hg).
Qsd=Total gas flow rate, dscm/hr (dscf/hr).
S1=Concentration measured at the SO2 analyzer for 
the first 10-minute interval, ppm.
Si=Concentration measured at the SO2 analyzer for 
the ``ith'' 10 minute interval, ppm.
Tm=Absolute average dry gas meter temperature (see Figure 5H-
3), [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Va=volume of solvent blank, ml.
Vaw=Volume of solvent used in wash, ml.
Vlc=Total volume of liquid collected in impingers and silica 
gel (see Figure 5H-4), ml.
Vm=Volume of gas sample as measured by dry gas meter, dcm 
(dcf).
Vm(std)=Volume of gas sample measured by the dry gas meter, 
corrected to standard conditions, dscm (dscf).
Vmi(std)=Volume of gas sample measured by the dry gas meter 
during the ``ith'' 10-minute interval, dscm (dscf).
Vw(std)=Volume of water vapor in the gas sample, corrected to 
standard conditions, scm (scf).
Wa=Weight of residue in solvent wash, mg.
Y=Dry gas meter calibration factor.
YCO=Measured mole fraction of CO (dry), average from Section 
8.2, g/g-mole (lb/lb-mole).
YCO2=Measured mole fraction of CO2 (dry), average 
from Section 8.2, g/g-mole (lb/lb-mole).
YHC=Assumed mole fraction of HC (dry), g/g-mole (lb/lb-mole);
    =0.0088 for catalytic wood heaters;
    =0.0132 for non-catalytic wood heaters;
    =0.0080 for pellet-fired wood heaters.
10=Length of first sampling period, min.
13.6=Specific gravity of mercury.
100=Conversion to percent.
[thetas]=Total sampling time, min.
[thetas]1=Sampling time interval, from the beginning of a run 
until the first component change, min.
    12.2 Average Dry Gas Meter Temperature and Average Orifice Pressure 
Drop. See data sheet (Figure 5H-3).
    12.3 Dry Gas Volume. Same as Method 5, Section 12.3.
    12.4 Volume of Water Vapor.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.168
    
Where:

K2=0.001333 m\3\/ml for metric units.
K2=0.04707 ft\3\/ml for English units.

    12.5 Moisture Content.

[[Page 229]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.169

    12.6 Solvent Wash Blank.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.170
    
    12.7 Total Particulate Weight. Determine the total particulate catch 
from the sum of the weights obtained from containers 1, 2, 3, and 4 less 
the appropriate solvent blanks (see Figure 5H-4).

    Note: Refer to Method 5, Section 8.5 to assist in calculation of 
results involving two filter assemblies.

    12.8 Particulate Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.171
    
    12.9 Sample Flow Rate Adjustment.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.172
    
    12.10 Carbon Balance for Total Moles of Exhaust Gas (dry)/kg of Wood 
Burned in the Exhaust Gas.
[GRAPHIC] [TIFF OMITTED] TR17OC00.173

Where:

K3=1000 g/kg for metric units.
K3=1.0 lb/lb for English units.

    Note: The NOX/SOX portion of the gas is 
assumed to be negligible.

    12.11 Total Stack Gas Flow Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.174
    
Where:

K4=0.02406 dscm/g-mole for metric units.
K4=384.8 dscf/lb-mole for English units.

    12.12 Particulate Emission Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.175
    
    12.13 Proportional Rate Variation. Calculate PR for each 10-minute 
interval, i, of the test run.
[GRAPHIC] [TIFF OMITTED] TR17OC00.176

    12.14 Acceptable Results. If no more than 15 percent of the PR 
values for all the intervals fall outside the range 90 percent <= PR <= 
110 percent, and if no PR value for any interval falls outside the range 
75 <= PR <= 125 percent, the results are acceptable. If the PR values 
for the test runs are judged to be unacceptable, report the test run 
emission results, but do not include the test run results in calculating 
the weighted average emission rate, and repeat the test.

                   13.0 Method Performance [Reserved]

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 5G, Section 17.0.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 230]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.177


[[Page 231]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.178


[[Page 232]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.179


[[Page 233]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.180

Method 5I--Determination of Low Level Particulate Matter Emissions From 
                           Stationary Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Certain information is contained in other 
EPA procedures found in this part. Therefore, to obtain reliable 
results, persons using this method should have experience with and a 
thorough knowledge of the following Methods: Methods 1, 2, 3, 4 and 5.

                        1. Scope and Application.

    1.1 Analyte. Particulate matter (PM). No CAS number assigned.

[[Page 234]]

    1.2 Applicability. This method is applicable for the determination 
of low level particulate matter (PM) emissions from stationary sources. 
The method is most effective for total PM catches of 50 mg or less. This 
method was initially developed for performing correlation of manual PM 
measurements to PM continuous emission monitoring systems (CEMS), 
however it is also useful for other low particulate concentration 
applications.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods. Method 5I requires the use of paired trains. 
Acceptance criteria for the identification of data quality outliers from 
the paired trains are provided in Section 12.2 of this Method.

                          2. Summary of Method.

    2.1. Description. The system setup and operation is essentially 
identical to Method 5. Particulate is withdrawn isokinetically from the 
source and collected on a 47 mm glass fiber filter maintained at a 
temperature of 120 14[deg]C (248 25[deg]F). The PM mass is determined by gravimetric 
analysis after the removal of uncombined water. Specific measures in 
this procedure designed to improve system performance at low particulate 
levels include:
1. Improved sample handling procedures
2 Light weight sample filter assembly
3. Use of low residue grade acetone
Accuracy is improved through the minimization of systemic errors 
associated with sample handling and weighing procedures. High purity 
reagents, all glass, grease free, sample train components, and light 
weight filter assemblies and beakers, each contribute to the overall 
objective of improved precision and accuracy at low particulate 
concentrations.
    2.2 Paired Trains. This method must be performed using a paired 
train configuration. These trains may be operated as co-located trains 
(to trains operating collecting from one port) or as simultaneous trains 
(separate trains operating from different ports at the same time). 
Procedures for calculating precision of the paired trains are provided 
in Section 12.
    2.3 Detection Limit. a. Typical detection limit for manual 
particulate testing is 0.5 mg. This mass is also cited as the accepted 
weight variability limit in determination of ``constant weight'' as 
cited in Section 8.1.2 of this Method. EPA has performed studies to 
provide guidance on minimum PM catch. The minimum detection limit (MDL) 
is the minimum concentration or amount of an analyte that can be 
determined with a specified degree of confidence to be different from 
zero. We have defined the minimum or target catch as a concentration or 
amount sufficiently larger than the MDL to ensure that the results are 
reliable and repeatable. The particulate matter catch is the product of 
the average particulate matter concentration on a mass per volume basis 
and the volume of gas collected by the sample train. The tester can 
generally control the volume of gas collected by increasing the sampling 
time or to a lesser extent by increasing the rate at which sample is 
collected. If the tester has a reasonable estimate of the PM 
concentration from the source, the tester can ensure that the target 
catch is collected by sampling the appropriate gas volume.
    b. However, if the source has a very low particulate matter 
concentration in the stack, the volume of gas sampled may need to be 
very large which leads to unacceptably long sampling times. When 
determining compliance with an emission limit, EPA guidance has been 
that the tester does not always have to collect the target catch. 
Instead, we have suggested that the tester sample enough stack gas, that 
if the source were exactly at the level of the emission standard, the 
sample catch would equal the target catch. Thus, if at the end of the 
test the catch were smaller than the target, we could still conclude 
that the source is in compliance though we might not know the exact 
emission level. This volume of gas becomes a target volume that can be 
translated into a target sampling time by assuming an average sampling 
rate. Because the MDL forms the basis for our guidance on target 
sampling times, EPA has conducted a systematic laboratory study to 
define what is the MDL for Method 5 and determined the Method to have a 
calculated practical quantitation limit (PQL) of 3 mg of PM and an MDL 
of 1 mg.
    c. Based on these results, the EPA has concluded that for PM 
testing, the target catch must be no less than 3 mg. Those sample 
catches between 1 mg and 3 mg are between the detection limit and the 
limit of quantitation. If a tester uses the target catch to estimate a 
target sampling time that results in sample catches that are less than 3 
mg, you should not automatically reject the results. If the tester 
calculated the target sampling time as described above by assuming that 
the source was at the level of the emission limit, the results would 
still be valid for determining that the source was in compliance. For 
purposes other than determining compliance, results should be divided 
into two categories--those that fall between 3 mg and 1 mg and those 
that are below 1 mg. A sample catch between 1 and 3 mg may be used for 
such purposes as calculating emission rates with the understanding that 
the resulting emission rates can have a high degree of uncertainty. 
Results of less than 1 mg should not be used for calculating emission 
rates or pollutant concentrations.
    d. When collecting small catches such as 3 mg, bias becomes an 
important issue. Source testers must use extreme caution to reach the 
PQL of 3 mg by assuring that sampling

[[Page 235]]

probes are very clean (perhaps confirmed by low blank weights) before 
use in the field. They should also use low tare weight sample 
containers, and establish a well-controlled balance room to weigh the 
samples.

                             3. Definitions.

    3.1 Light Weight Filter Housing. A smaller housing that allows the 
entire filtering system to be weighed before and after sample 
collection. (See. 6.1.3)
    3.2 Paired Train. Sample systems trains may be operated as co-
located trains (two sample probes attached to each other in the same 
port) or as simultaneous trains (two separate trains operating from 
different ports at the same time).

                            4. Interferences.

    a. There are numerous potential interferents that may be encountered 
during performance of Method 5I sampling and analyses. This Method 
should be considered more sensitive to the normal interferents typically 
encountered during particulate testing because of the low level 
concentrations of the flue gas stream being sampled.
    b. Care must be taken to minimize field contamination, especially to 
the filter housing since the entire unit is weighed (not just the filter 
media). Care must also be taken to ensure that no sample is lost during 
the sampling process (such as during port changes, removal of the filter 
assemblies from the probes, etc.).
    c. Balance room conditions are a source of concern for analysis of 
the low level samples. Relative humidity, ambient temperatures 
variations, air draft, vibrations and even barometric pressure can 
affect consistent reproducible measurements of the sample media. 
Ideally, the same analyst who performs the tare weights should perform 
the final weights to minimize the effects of procedural differences 
specific to the analysts.
    d. Attention must also be provided to weighing artifacts caused by 
electrostatic charges which may have to be discharged or neutralized 
prior to sample analysis. Static charge can affect consistent and 
reliable gravimetric readings in low humidity environments. Method 5I 
recommends a relative humidity of less than 50 percent in the weighing 
room environment used for sample analyses. However, lower humidity may 
be encountered or required to address sample precision problems. Low 
humidity conditions can increase the effects of static charge.
    e. Other interferences associated with typical Method 5 testing 
(sulfates, acid gases, etc.) are also applicable to Method 5I.

                               5. Safety.

    Disclaimer. This method may involve hazardous materials, operations, 
and equipment. This test method may not address all of the safety 
concerns associated with its use. It is the responsibility of the user 
to establish appropriate safety and health practices and to determine 
the applicability and observe all regulatory limitations before using 
this method.

                       6. Equipment and Supplies.

    6.1 Sample Collection Equipment and Supplies. The sample train is 
nearly identical in configuration to the train depicted in Figure 5-1 of 
Method 5. The primary difference in the sample trains is the lightweight 
Method 5I filter assembly that attaches directly to the exit to the 
probe. Other exceptions and additions specific to Method 5I include:
    6.1.1 Probe Nozzle. Same as Method 5, with the exception that it 
must be constructed of borosilicate or quartz glass tubing.
    6.1.2 Probe Liner. Same as Method 5, with the exception that it must 
be constructed of borosilicate or quartz glass tubing.
    6.1.3 Filter Holder. The filter holder is constructed of 
borosilicate or quartz glass front cover designed to hold a 47-mm glass 
fiber filter, with a wafer thin stainless steel (SS) filter support, a 
silicone rubber or Viton O-ring, and Teflon tape seal. This holder 
design will provide a positive seal against leakage from the outside or 
around the filter. The filter holder assembly fits into a SS filter 
holder and attaches directly to the outlet of the probe. The tare weight 
of the filter, borosilicate or quartz glass holder, SS filter support, 
O-ring and Teflon tape seal generally will not exceed approximately 35 
grams. The filter holder is designed to use a 47-mm glass fiber filter 
meeting the quality criteria in of Method 5. These units are 
commercially available from several source testing equipment vendors. 
Once the filter holder has been assembled, desiccated and tared, protect 
it from external sources of contamination by covering the front socket 
with a ground glass plug. Secure the plug with an impinger clamp or 
other item that will ensure a leak-free fitting.
    6.2 Sample Recovery Equipment and Supplies. Same as Method 5, with 
the following exceptions:
    6.2.1 Probe-Liner and Probe-Nozzle Brushes. Teflon or nylon bristle 
brushes with stainless steel wire handles, should be used to clean the 
probe. The probe brush must have extensions (at least as long as the 
probe) of Teflon, nylon or similarly inert material. The brushes must be 
properly sized and shaped for brushing out the probe liner and nozzle.
    6.2.2 Wash Bottles. Two Teflon wash bottles are recommended however, 
polyethylene wash bottles may be used at the option of the tester. 
Acetone should not be stored in polyethylene bottles for longer than one 
month.

[[Page 236]]

    6.2.3 Filter Assembly Transport. A system should be employed to 
minimize contamination of the filter assemblies during transport to and 
from the field test location. A carrying case or packet with clean 
compartments of sufficient size to accommodate each filter assembly can 
be used. This system should have an air tight seal to further minimize 
contamination during transport to and from the field.
    6.3 Analysis Equipment and Supplies. Same as Method 5, with the 
following exception:
    6.3.1 Lightweight Beaker Liner. Teflon or other lightweight beaker 
liners are used for the analysis of the probe and nozzle rinses. These 
light weight liners are used in place of the borosilicate glass beakers 
typically used for the Method 5 weighings in order to improve sample 
analytical precision.
    6.3.2 Anti-static Treatment. Commercially available gaseous anti-
static rinses are recommended for low humidity situations that 
contribute to static charge problems.

                       7. Reagents and Standards.

    7.1 Sampling Reagents. The reagents used in sampling are the same as 
Method 5 with the following exceptions:
    7.1.1 Filters. The quality specifications for the filters are 
identical to those cited for Method 5. The only difference is the filter 
diameter of 47 millimeters.
    7.1.2 Stopcock Grease. Stopcock grease cannot be used with this 
sampling train. We recommend that the sampling train be assembled with 
glass joints containing O-ring seals or screw-on connectors, or similar.
    7.1.3 Acetone. Low residue type acetone, <=0.001 percent residue, 
purchased in glass bottles is used for the recovery of particulate 
matter from the probe and nozzle. Acetone from metal containers 
generally has a high residue blank and should not be used. Sometimes, 
suppliers transfer acetone to glass bottles from metal containers; thus, 
acetone blanks must be run prior to field use and only acetone with low 
blank values (<=0.001 percent residue, as specified by the manufacturer) 
must be used. Acetone blank correction is not allowed for this method; 
therefore, it is critical that high purity reagents be purchased and 
verified prior to use.
    7.1.4 Gloves. Disposable, powder-free, latex surgical gloves, or 
their equivalent are used at all times when handling the filter housings 
or performing sample recovery.
    7.2 Standards. There are no applicable standards or audit samples 
commercially available for Method 5I analyses.

       8. Sample Collection, Preservation, Storage, and Transport.

    8.1 Pretest Preparation. Same as Method 5 with several exceptions 
specific to filter assembly and weighing.
    8.1.1 Filter Assembly. Uniquely identify each filter support before 
loading filters into the holder assembly. This can be done with an 
engraving tool or a permanent marker. Use powder free latex surgical 
gloves whenever handling the filter holder assemblies. Place the O-ring 
on the back of the filter housing in the O-ring groove. Place a 47 mm 
glass fiber filter on the O-ring with the face down. Place a stainless 
steel filter holder against the back of the filter. Carefully wrap 5 mm 
(\1/4\ inch) wide Teflon'' tape one timearound the outside of the filter 
holder overlapping the stainless steel filter support by approximately 
2.5 mm (\1/8\ inch). Gently brush the Teflon tape down on the back of 
the stainless steel filter support. Store the filter assemblies in their 
transport case until time for weighing or field use.
    8.1.2 Filter Weighing Procedures. a. Desiccate the entire filter 
holder assemblies at 20 5.6[deg]C (68 10[deg]F) and ambient pressure for at least 24 hours. 
Weigh at intervals of at least 6 hours to a constant weight, i.e., 0.5 
mg change from previous weighing. Record the results to the nearest 0.1 
mg. During each weighing, the filter holder assemblies must not be 
exposed to the laboratory atmosphere for a period greater than 2 minutes 
and a relative humidity above 50 percent. Lower relative humidity may be 
required in order to improve analytical precision. However, low humidity 
conditions increase static charge to the sample media.
    b. Alternatively (unless otherwise specified by the Administrator), 
the filters holder assemblies may be oven dried at 105[deg]C (220[deg]F) 
for a minimum of 2 hours, desiccated for 2 hours, and weighed. The 
procedure used for the tare weigh must also be used for the final weight 
determination.
    c. Experience has shown that weighing uncertainties are not only 
related to the balance performance but to the entire weighing procedure. 
Therefore, before performing any measurement, establish and follow 
standard operating procedures, taking into account the sampling 
equipment and filters to be used.
    8.2 Preliminary Determinations. Select the sampling site, traverse 
points, probe nozzle, and probe length as specified in Method 5.
    8.3 Preparation of Sampling Train. Same as Method 5, Section 8.3, 
with the following exception: During preparation and assembly of the 
sampling train, keep all openings where contamination can occur covered 
until justbefore assembly or until sampling is about to begin. Using 
gloves, place a labeled

[[Page 237]]

(identified) and weighed filter holder assembly into the stainless steel 
holder. Then place this whole unit in the Method 5 hot box, and attach 
it to the probe. Do not use stopcock grease.
    8.4 Leak-Check Procedures. Same as Method 5.
    8.5 Sampling Train Operation.
    8.5.1. Operation. Operate the sampling train in a manner consistent 
with those described in Methods 1, 2, 4 and 5 in terms of the number of 
sample points and minimum time per point. The sample rate and total gas 
volume should be adjusted based on estimated grain loading of the source 
being characterized. The total sampling time must be a function of the 
estimated mass of particulate to be collected for the run. Targeted mass 
to be collected in a typical Method 5I sample train should be on the 
order of 10 to 20 mg. Method 5I is most appropriate for total collected 
masses of less than 50 milligrams, however, there is not an exact 
particulate loading cutoff, and it is likely that some runs may exceed 
50 mg. Exceeding 50 mg (or less than 10 mg) for the sample mass does not 
necessarily justify invalidating a sample run if all other Method 
criteria are met.
    8.5.2 Paired Train. This Method requires PM samples be collected 
with paired trains.
    8.5.2.1 It is important that the systems be operated truly 
simultaneously. This implies that both sample systems start and stop at 
the same times. This also means that if one sample system is stopped 
during the run, the other sample systems must also be stopped until the 
cause has been corrected.
    8.5.2.2 Care should be taken to maintain the filter box temperature 
of the paired trains as close as possible to the Method required 
temperature of 120 14[deg]C (248 25[deg]F). If separate ovens are being used for 
simultaneously operated trains, it is recommended that the oven 
temperature of each train be maintained within 14[deg]C (25[deg]F) of each other.
    8.5.2.3 The nozzles for paired trains need not be identically sized.
    8.5.2.4 Co-located sample nozzles must be within the same plane 
perpendicular to the gas flow. Co-located nozzles and pitot assemblies 
should be within a 6.0 cm x 6.0 cm square (as cited for a quadruple 
train in Reference Method 301).
    8.5.3 Duplicate gas samples for molecular weight determination need 
not be collected.
    8.6 Sample Recovery. Same as Method 5 with several exceptions 
specific to the filter housing.
    8.6.1 Before moving the sampling train to the cleanup site, remove 
the probe from the train and seal the nozzle inlet and outlet of the 
probe. Be careful not to lose any condensate that might be present. Cap 
the filter inlet using a standard ground glass plug and secure the cap 
with an impinger clamp. Remove the umbilical cord from the last impinger 
and cap the impinger. If a flexible line is used between the first 
impinger condenser and the filter holder, disconnect the line at the 
filter holder and let any condensed water or liquid drain into the 
impingers or condenser.
    8.6.2 Transfer the probe and filter-impinger assembly to the cleanup 
area. This area must be clean and protected from the wind so that the 
possibility of losing any of the sample will be minimized.
    8.6.3 Inspect the train prior to and during disassembly and note any 
abnormal conditions such as particulate color, filter loading, impinger 
liquid color, etc.
    8.6.4 Container No. 1, Filter Assembly. Carefully remove the cooled 
filter holder assembly from the Method 5 hot box and place it in the 
transport case. Use a pair of clean gloves to handle the filter holder 
assembly.
    8.6.5 Container No. 2, Probe Nozzle and Probe Liner Rinse. Rinse the 
probe and nozzle components with acetone. Be certain that the probe and 
nozzle brushes have been thoroughly rinsed prior to use as they can be a 
source of contamination.
    8.6.6 All Other Train Components. (Impingers) Same as Method 5.
    8.7 Sample Storage and Transport. Whenever possible, containers 
should be shipped in such a way that they remain upright at all times. 
All appropriate dangerous goods shipping requirements must be observed 
since acetone is a flammable liquid.

                           9. Quality Control.

    9.1 Miscellaneous Field Quality Control Measures.
    9.1.1 A quality control (QC) check of the volume metering system at 
the field site is suggested before collecting the sample using the 
procedures in Method 5, Section 4.4.1.
    9.1.2 All other quality control checks outlined in Methods 1, 2, 4 
and 5 also apply to Method 5I. This includes procedures such as leak-
checks, equipment calibration checks, and independent checks of field 
data sheets for reasonableness and completeness.
    9.2 Quality Control Samples.
    9.2.1 Required QC Sample. A laboratory reagent blank must be 
collected and analyzed for each lot of acetone used for a field program 
to confirm that it is of suitable purity. The particulate samples cannot 
be blank corrected.
    9.2.2 Recommended QC Samples. These samples may be collected and 
archived for future analyses.
    9.2.2.1 A field reagent blank is a recommended QC sample collected 
from a portion of the acetone used for cleanup of the probe and nozzle. 
Take 100 ml of this acetone directly from the wash bottle being used and 
place it in a glass sample container labeled ``field acetone reagent 
blank.'' At least one field reagent blank is recommended for every

[[Page 238]]

five runs completed. The field reagent blank samples demonstrate the 
purity of the acetone was maintained throughout the program.
    9.2.2.2 A field bias blank train is a recommended QC sample. This 
sample is collected by recovering a probe and filter assembly that has 
been assembled, taken to the sample location, leak checked, heated, 
allowed to sit at the sample location for a similar duration of time as 
a regular sample run, leak-checked again, and then recovered in the same 
manner as a regular sample. Field bias blanks are not a Method 
requirement, however, they are recommended and are very useful for 
identifying sources of contamination in emission testing samples. Field 
bias blank train results greater than 5 times the method detection limit 
may be considered problematic.

    10. Calibration and Standardization Same as Method 5, Section 5.

                       11. Analytical Procedures.

    11.1 Analysis. Same as Method 5, Sections 11.1-11.2.4, with the 
following exceptions:
    11.1.1 Container No. 1. Same as Method 5, Section 11.2.1, with the 
following exception: Use disposable gloves to remove each of the filter 
holder assemblies from the desiccator, transport container, or sample 
oven (after appropriate cooling).
    11.1.2 Container No. 2. Same as Method 5, Section 11.2.2, with the 
following exception: It is recommended that the contents of Container 
No. 2 be transferred to a 250 ml beaker with a Teflon liner or similar 
container that has a minimal tare weight before bringing to dryness.

                   12. Data Analysis and Calculations.

    12.1 Particulate Emissions. The analytical results cannot be blank 
corrected for residual acetone found in any of the blanks. All other 
sample calculations are identical to Method 5.
    12.2 Paired Trains Outliers. a. Outliers are identified through the 
determination of precision and any systemic bias of the paired trains. 
Data that do not meet this criteria should be flagged as a data quality 
problem. The primary reason for performing dual train sampling is to 
generate information to quantify the precision of the Reference Method 
data. The relative standard deviation (RSD) of paired data is the 
parameter used to quantify data precision. RSD for two simultaneously 
gathered data points is determined according to:
[GRAPHIC] [TIFF OMITTED] TR30SE99.008

where, Ca and Cb are concentration values determined from trains A and B 
respectively. For RSD calculation, the concentration units are 
unimportant so long as they are consistent.
    b. A minimum precision criteria for Reference Method PM data is that 
RSD for any data pair must be less than 10% as long as the mean PM 
concentration is greater than 10 mg/dscm. If the mean PM concentration 
is less than 10 mg/dscm higher RSD values are acceptable. At mean PM 
concentration of 1 mg/dscm acceptable RSD for paired trains is 25%. 
Between 1 and 10 mg/dscm acceptable RSD criteria should be linearly 
scaled from 25% to 10%. Pairs of manual method data exceeding these RSD 
criteria should be eliminated from the data set used to develop a PM 
CEMS correlation or to assess RCA. If the mean PM concentration is less 
than 1 mg/dscm, RSD does not apply and the mean result is acceptable.

                    13. Method Performance [Reserved]

                   14. Pollution Prevention [Reserved]

                     15. Waste Management [Reserved]

    16. Alternative Procedures. Same as Method 5.
    17. Bibliography. Same as Method 5.
    18. Tables, Diagrams, Flowcharts and Validation Data. Figure 5I-1 is 
a schematic of the sample train.

[[Page 239]]

[GRAPHIC] [TIFF OMITTED] TR30SE99.009


[36 FR 24877, Dec. 23, 1971]

    Editorial Note: For Federal Register citations affecting part 60, 
appendix A-3, see the List of CFR Sections Affected, which appears in 
the Finding Aids section of the printed volume and on GPO Access.

[[Page 240]]

           Appendix A-4 to Part 60--Test Methods 6 through 10B

Method 6--Determination of sulfur dioxide emissions from stationary 
sources
Method 6A--Determination of sulfur dioxide, moisture, and carbon dioxide 
emissions from fossil fuel combustion sources
Method 6B--Determination of sulfur dioxide and carbon dioxide daily 
average emissions from fossil fuel combustion sources
Method 6C--Determination of Sulfur Dioxide Emissions From Stationary 
Sources (Instrumental Analyzer Procedure)
Method 7--Determination of nitrogen oxide emissions from stationary 
sources
Method 7A--Determination of nitrogen oxide emissions from stationary 
sources--Ion chromatographic method
Method 7B--Determination of nitrogen oxide emissions from stationary 
sources (Ultraviolet spectrophotometry)
Method 7C--Determination of nitrogen oxide emissions from stationary 
sources--Alkaline-permanganate/colorimetric method
Method 7D--Determination of nitrogen oxide emissions from stationary 
sources--Alkaline-permanganate/ion chromatographic method
Method 7E--Determination of Nitrogen Oxides Emissions From Stationary 
Sources (Instrumental Analyzer Procedure)
Method 8--Determination of sulfuric acid mist and sulfur dioxide 
emissions from stationary sources
Method 9--Visual determination of the opacity of emissions from 
stationary sources
Alternate method 1--Determination of the opacity of emissions from 
stationary sources remotely by lidar
Method 10--Determination of carbon monoxide emissions from stationary 
sources
Method 10A--Determination of carbon monoxide emissions in certifying 
continuous emission monitoring systems at petroleum refineries
Method 10B--Determination of carbon monoxide emissions from stationary 
sources
    The test methods in this appendix are referred to in Sec.  60.8 
(Performance Tests) and Sec.  60.11 (Compliance With Standards and 
Maintenance Requirements) of 40 CFR part 60, subpart A (General 
Provisions). Specific uses of these test methods are described in the 
standards of performance contained in the subparts, beginning with 
Subpart D.
    Within each standard of performance, a section title ``Test Methods 
and Procedures'' is provided to: (1) Identify the test methods to be 
used as reference methods to the facility subject to the respective 
standard and (2) identify any special instructions or conditions to be 
followed when applying a method to the respective facility. Such 
instructions (for example, establish sampling rates, volumes, or 
temperatures) are to be used either in addition to, or as a substitute 
for procedures in a test method. Similarly, for sources subject to 
emission monitoring requirements, specific instructions pertaining to 
any use of a test method as a reference method are provided in the 
subpart or in Appendix B.
    Inclusion of methods in this appendix is not intended as an 
endorsement or denial of their applicability to sources that are not 
subject to standards of performance. The methods are potentially 
applicable to other sources; however, applicability should be confirmed 
by careful and appropriate evaluation of the conditions prevalent at 
such sources.
    The approach followed in the formulation of the test methods 
involves specifications for equipment, procedures, and performance. In 
concept, a performance specification approach would be preferable in all 
methods because this allows the greatest flexibility to the user. In 
practice, however, this approach is impractical in most cases because 
performance specifications cannot be established. Most of the methods 
described herein, therefore, involve specific equipment specifications 
and procedures, and only a few methods in this appendix rely on 
performance criteria.
    Minor changes in the test methods should not necessarily affect the 
validity of the results and it is recognized that alternative and 
equivalent methods exist. Section 60.8 provides authority for the 
Administrator to specify or approve (1) equivalent methods, (2) 
alternative methods, and (3) minor changes in the methodology of the 
test methods. It should be clearly understood that unless otherwise 
identified all such methods and changes must have prior approval of the 
Administrator. An owner employing such methods or deviations from the 
test methods without obtaining prior approval does so at the risk of 
subsequent disapproval and retesting with approved methods.
    Within the test methods, certain specific equipment or procedures 
are recognized as being acceptable or potentially acceptable and are 
specifically identified in the methods. The items identified as 
acceptable options may be used without approval but must be identified 
in the test report. The potentially approvable options are cited as 
``subject to the approval of the Administrator'' or as ``or 
equivalent.'' Such potentially approvable techniques or alternatives may 
be used at the discretion of the owner without prior approval. However, 
detailed descriptions for applying these potentially approvable 
techniques or alternatives are not provided in the test methods. Also, 
the potentially approvable options are not necessarily acceptable in all 
applications. Therefore, an owner electing to use such potentially 
approvable techniques or alternatives is responsible for: (1) assuring 
that

[[Page 241]]

the techniques or alternatives are in fact applicable and are properly 
executed; (2) including a written description of the alternative method 
in the test report (the written method must be clear and must be capable 
of being performed without additional instruction, and the degree of 
detail should be similar to the detail contained in the test methods); 
and (3) providing any rationale or supporting data necessary to show the 
validity of the alternative in the particular application. Failure to 
meet these requirements can result in the Administrator's disapproval of 
the alternative.

  Method 6--Determination of Sulfur Dioxide Emissions From Stationary 
                                 Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 5, and Method 8.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
SO2...............................       7449-09-5  3.4 mg SO2/m\3\
                                                    (2.12 x 10)-7 lb/
                                                     ft\3\
------------------------------------------------------------------------

    1.2 Applicability. This method applies to the measurement of sulfur 
dioxide (SO2) emissions from stationary sources.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from the sampling point in the stack. 
The SO2 and the sulfur trioxide, including those fractions in 
any sulfur acid mist, are separated. The SO2 fraction is 
measured by the barium-thorin titration method.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    4.1 Free Ammonia. Free ammonia interferes with this method by 
reacting with SO2 to form particulate sulfite and by reacting 
with the indicator. If free ammonia is present (this can be determined 
by knowledge of the process and/or noticing white particulate matter in 
the probe and isopropanol bubbler), alternative methods, subject to the 
approval of the Administrator are required. One approved alternative is 
listed in Reference 13 of Section 17.0.
    4.2 Water-Soluble Cations and Fluorides. The cations and fluorides 
are removed by a glass wool filter and an isopropanol bubbler; 
therefore, they do not affect the SO2 analysis. When samples 
are collected from a gas stream with high concentrations of metallic 
fumes (i.e., very fine cation aerosols) a high-efficiency glass fiber 
filter must be used in place of the glass wool plug (i.e., the one in 
the probe) to remove the cation interferent.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user to establish appropriate safety and health practices and determine 
the applicability of regulatory limitations before performing this test 
method.
    5.2 Corrosive reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water for at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burns as thermal 
burns.
    5.2.1 Hydrogen Peroxide (H2O2). Irritating to 
eyes, skin, nose, and lungs. 30% H2O2 is a strong 
oxidizing agent. Avoid contact with skin, eyes, and combustible 
material. Wear gloves when handling.
    5.2.2 Sodium Hydroxide (NaOH). Causes severe damage to eyes and 
skin. Inhalation causes irritation to nose, throat, and lungs. Reacts 
exothermically with limited amounts of water.
    5.2.3 Sulfuric Acid (H2SO4). Rapidly 
destructive to body tissue. Will cause third degree burns. Eye damage 
may result in blindness. Inhalation may be fatal from spasm of the 
larynx, usually within 30 minutes. May cause lung tissue damage with 
edema. 1 mg/m\3\ for 8 hours will cause lung damage or, in higher 
concentrations, death. Provide ventilation to limit inhalation. Reacts 
violently with metals and organics.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. The following items are required for sample 
collection:
    6.1.1 Sampling Train. A schematic of the sampling train is shown in 
Figure 6-1. The sampling equipment described in Method 8 may be 
substituted in place of the midget impinger equipment of Method 6. 
However, the Method 8 train must be modified to include a heated filter 
between the probe and isopropanol impinger, and the operation of the 
sampling train and sample analysis must be at the flow rates and 
solution volumes defined in Method 8. Alternatively, SO2 may 
be determined simultaneously with particulate

[[Page 242]]

matter and moisture determinations by either (1) replacing the water in 
a Method 5 impinger system with a 3 percent H2O2 
solution, or (2) replacing the Method 5 water impinger system with a 
Method 8 isopropanol-filter-H2O2 system. The 
analysis for SO2 must be consistent with the procedure of 
Method 8. The Method 6 sampling train consists of the following 
components:
    6.1.1.1 Probe. Borosilicate glass or stainless steel (other 
materials of construction may be used, subject to the approval of the 
Administrator), approximately 6 mm (0.25 in.) inside diameter, with a 
heating system to prevent water condensation and a filter (either in-
stack or heated out-of-stack) to remove particulate matter, including 
sulfuric acid mist. A plug of glass wool is a satisfactory filter.
    6.1.1.2 Bubbler and Impingers. One midget bubbler with medium-coarse 
glass frit and borosilicate or quartz glass wool packed in top (see 
Figure 6-1) to prevent sulfuric acid mist carryover, and three 30-ml 
midget impingers. The midget bubbler and midget impingers must be 
connected in series with leak-free glass connectors. Silicone grease may 
be used, if necessary, to prevent leakage. A midget impinger may be used 
in place of the midget bubbler.

    Note: Other collection absorbers and flow rates may be used, subject 
to the approval of the Administrator, but the collection efficiency must 
be shown to be at least 99 percent for each test run and must be 
documented in the report. If the efficiency is found to be acceptable 
after a series of three tests, further documentation is not required. To 
conduct the efficiency test, an extra absorber must be added and 
analyzed separately. This extra absorber must not contain more than 1 
percent of the total SO2.

    6.1.1.3 Glass Wool. Borosilicate or quartz.
    6.1.1.4 Stopcock Grease. Acetone-insoluble, heat-stable silicone 
grease may be used, if necessary.
    6.1.1.5 Temperature Sensor. Dial thermometer, or equivalent, to 
measure temperature of gas leaving impinger train to within 1 [deg]C (2 
[deg]F).
    6.1.1.6 Drying Tube. Tube packed with 6- to 16- mesh indicating-type 
silica gel, or equivalent, to dry the gas sample and to protect the 
meter and pump. If silica gel is previously used, dry at 177 [deg]C (350 
[deg]F) for 2 hours. New silica gel may be used as received. 
Alternatively, other types of desiccants (equivalent or better) may be 
used, subject to the approval of the Administrator.
    6.1.1.7 Valve. Needle valve, to regulate sample gas flow rate.
    6.1.1.8 Pump. Leak-free diaphragm pump, or equivalent, to pull gas 
through the train. Install a small surge tank between the pump and rate 
meter to negate the pulsation effect of the diaphragm pump on the rate 
meter.
    6.1.1.9 Rate Meter. Rotameter, or equivalent, capable of measuring 
flow rate to within 2 percent of the selected flow rate of about 1 
liter/min (0.035 cfm).
    6.1.1.10 Volume Meter. Dry gas meter (DGM), sufficiently accurate to 
measure the sample volume to within 2 percent, calibrated at the 
selected flow rate and conditions actually encountered during sampling, 
and equipped with a temperature sensor (dial thermometer, or equivalent) 
capable of measuring temperature accurately to within 3 [deg]C (5.4 
[deg]F). A critical orifice may be used in place of the DGM specified in 
this section provided that it is selected, calibrated, and used as 
specified in Section 16.0.
    6.1.2 Barometer. Mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 2.5 mm Hg (0.1 in. Hg). See the 
Note in Method 5, Section 6.1.2.
    6.1.3 Vacuum Gauge and Rotameter. At least 760-mm Hg (30-in. Hg) 
gauge and 0- to 40-ml/min rotameter, to be used for leak-check of the 
sampling train.
    6.2 Sample Recovery. The following items are needed for sample 
recovery:
    6.2.1 Wash Bottles. Two polyethylene or glass bottles, 500-ml.
    6.2.2 Storage Bottles. Polyethylene bottles, 100-ml, to store 
impinger samples (one per sample).
    6.3 Sample Analysis. The following equipment is needed for sample 
analysis:
    6.3.1 Pipettes. Volumetric type, 5-ml, 20-ml (one needed per 
sample), and 25-ml sizes.
    6.3.2 Volumetric Flasks. 100-ml size (one per sample) and 1000-ml 
size.
    6.3.3 Burettes. 5- and 50-ml sizes.
    6.3.4 Erlenmeyer Flasks. 250-ml size (one for each sample, blank, 
and standard).
    6.3.5 Dropping Bottle. 125-ml size, to add indicator.
    6.3.6 Graduated Cylinder. 100-ml size.
    6.3.7 Spectrophotometer. To measure absorbance at 352 nm.

                       7.0 Reagents and Standards

    Note: Unless otherwise indicated, all reagents must conform to the 
specifications established by the Committee on Analytical Reagents of 
the American Chemical Society. Where such specifications are not 
available, use the best available grade.

    7.1 Sample Collection. The following reagents are required for 
sample collection:
    7.1.1 Water. Deionized distilled to conform to ASTM Specification D 
1193-77 or 91 Type 3 (incorporated by reference--see Sec.  60.17). The 
KMnO4 test for oxidizable organic matter may be omitted when 
high concentrations of organic matter are not expected to be present.

[[Page 243]]

    7.1.2 Isopropanol, 80 Percent by Volume. Mix 80 ml of isopropanol 
with 20 ml of water.
    7.1.2.1 Check each lot of isopropanol for peroxide impurities as 
follows: Shake 10 ml of isopropanol with 10 ml of freshly prepared 10 
percent potassium iodide solution. Prepare a blank by similarly treating 
10 ml of water. After 1 minute, read the absorbance at 352 nm on a 
spectrophotometer using a 1-cm path length. If absorbance exceeds 0.1, 
reject alcohol for use.
    7.1.2.2 Peroxides may be removed from isopropanol by redistilling or 
by passage through a column of activated alumina; however, reagent grade 
isopropanol with suitably low peroxide levels may be obtained from 
commercial sources. Rejection of contaminated lots may, therefore, be a 
more efficient procedure.
    7.1.3 Hydrogen Peroxide (H2O2), 3 Percent by 
Volume. Add 10 ml of 30 percent H2O2 to 90 ml of 
water. Prepare fresh daily.
    7.1.4 Potassium Iodide Solution, 10 Percent Weight by Volume (w/v). 
Dissolve 10.0 g of KI in water, and dilute to 100 ml. Prepare when 
needed.
    7.2 Sample Recovery. The following reagents are required for sample 
recovery:
    7.2.1 Water. Same as in Section 7.1.1.
    7.2.2 Isopropanol, 80 Percent by Volume. Same as in Section 7.1.2.
    7.3 Sample Analysis. The following reagents and standards are 
required for sample analysis:
    7.3.1 Water. Same as in Section 7.1.1.
    7.3.2 Isopropanol, 100 Percent.
    7.3.3 Thorin Indicator. 1-(o-arsonophenylazo)-2-naphthol-3,6-
disulfonic acid, disodium salt, or equivalent. Dissolve 0.20 g in 100 ml 
of water.
    7.3.4 Barium Standard Solution, 0.0100 N. Dissolve 1.95 g of barium 
perchlorate trihydrate [Ba(ClO4)2 3H2O] 
in 200 ml water, and dilute to 1 liter with isopropanol. Alternatively, 
1.22 g of barium chloride dihydrate [BaCl2 2H2O] 
may be used instead of the barium perchlorate trihydrate. Standardize as 
in Section 10.5.
    7.3.5 Sulfuric Acid Standard, 0.0100 N. Purchase or standardize to 
0.0002 N against 0.0100 N NaOH which has 
previously been standardized against potassium acid phthalate (primary 
standard grade).
    7.3.6 Quality Assurance Audit Samples. When making compliance 
determinations, audit samples, if available must be obtained from the 
appropriate EPA Regional Office or from the responsible enforcement 
authority and analyzed in conjunction with the field samples.

    Note: The responsible enforcement authority should be notified at 
least 30 days prior to the test date to allow sufficient time for sample 
delivery.

       8.0 Sample Collection, Preservation, Storage and Transport

    8.1 Preparation of Sampling Train. Measure 15 ml of 80 percent 
isopropanol into the midget bubbler and 15 ml of 3 percent 
H2O2 into each of the first two midget impingers. 
Leave the final midget impinger dry. Assemble the train as shown in 
Figure 6-1. Adjust the probe heater to a temperature sufficient to 
prevent water condensation. Place crushed ice and water around the 
impingers.
    8.2 Sampling Train Leak-Check Procedure. A leak-check prior to the 
sampling run is recommended, but not required. A leak-check after the 
sampling run is mandatory. The leak-check procedure is as follows:
    8.2.1 Temporarily attach a suitable (e.g., 0- to 40- ml/min) 
rotameter to the outlet of the DGM, and place a vacuum gauge at or near 
the probe inlet. Plug the probe inlet, pull a vacuum of at least 250 mm 
Hg (10 in. Hg), and note the flow rate as indicated by the rotameter. A 
leakage rate in excess of 2 percent of the average sampling rate is not 
acceptable.

    Note: Carefully (i.e., slowly) release the probe inlet plug before 
turning off the pump.

    8.2.2 It is suggested (not mandatory) that the pump be leak-checked 
separately, either prior to or after the sampling run. To leak-check the 
pump, proceed as follows: Disconnect the drying tube from the probe-
impinger assembly. Place a vacuum gauge at the inlet to either the 
drying tube or the pump, pull a vacuum of 250 mm Hg (10 in. Hg), plug or 
pinch off the outlet of the flow meter, and then turn off the pump. The 
vacuum should remain stable for at least 30 seconds.
    If performed prior to the sampling run, the pump leak-check shall 
precede the leak-check of the sampling train described immediately 
above; if performed after the sampling run, the pump leak-check shall 
follow the sampling train leak-check.
    8.2.3 Other leak-check procedures may be used, subject to the 
approval of the Administrator.
    8.3 Sample Collection.
    8.3.1 Record the initial DGM reading and barometric pressure. To 
begin sampling, position the tip of the probe at the sampling point, 
connect the probe to the bubbler, and start the pump. Adjust the sample 
flow to a constant rate of approximately 1.0 liter/min as indicated by 
the rate meter. Maintain this constant rate (10 
percent) during the entire sampling run.
    8.3.2 Take readings (DGM volume, temperatures at DGM and at impinger 
outlet, and rate meter flow rate) at least every 5 minutes. Add more ice 
during the run to keep the temperature of the gases leaving the last 
impinger at 20 [deg]C (68 [deg]F) or less.
    8.3.3 At the conclusion of each run, turn off the pump, remove the 
probe from the

[[Page 244]]

stack, and record the final readings. Conduct a leak-check as described 
in Section 8.2. (This leak-check is mandatory.) If a leak is detected, 
void the test run or use procedures acceptable to the Administrator to 
adjust the sample volume for the leakage.
    8.3.4 Drain the ice bath, and purge the remaining part of the train 
by drawing clean ambient air through the system for 15 minutes at the 
sampling rate. Clean ambient air can be provided by passing air through 
a charcoal filter or through an extra midget impinger containing 15 ml 
of 3 percent H2O2. Alternatively, ambient air 
without purification may be used.
    8.4 Sample Recovery. Disconnect the impingers after purging. Discard 
the contents of the midget bubbler. Pour the contents of the midget 
impingers into a leak-free polyethylene bottle for shipment. Rinse the 
three midget impingers and the connecting tubes with water, and add the 
rinse to the same storage container. Mark the fluid level. Seal and 
identify the sample container.

                           9.0 Quality Control

------------------------------------------------------------------------
                             Quality control
         Section                 measure                 Effect
------------------------------------------------------------------------
7.1.2....................  Isopropanol check..  Ensure acceptable level
                                                 of peroxide impurities
                                                 in isopropanol.
8.2, 10.1-10.4...........  Sampling equipment   Ensure accurate
                            leak-check and       measurement of stack
                            calibration.         gas flow rate, sample
                                                 volume.
10.5.....................  Barium standard      Ensure precision of
                            solution             normality
                            standardization.     determination.
11.2.3...................  Replicate            Ensure precision of
                            titrations.          titration
                                                 determinations
11.3.....................  Audit sample         Evaluate analyst's
                            analysis.            technique and standards
                                                 preparation.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Volume Metering System.
    10.1.1 Initial Calibration.
    10.1.1.1 Before its initial use in the field, leak-check the 
metering system (drying tube, needle valve, pump, rate meter, and DGM) 
as follows: Place a vacuum gauge at the inlet to the drying tube and 
pull a vacuum of 250 mm Hg (10 in. Hg). Plug or pinch off the outlet of 
the flow meter, and then turn off the pump. The vacuum must remain 
stable for at least 30 seconds. Carefully release the vacuum gauge 
before releasing the flow meter end.
    10.1.1.2 Remove the drying tube, and calibrate the metering system 
(at the sampling flow rate specified by the method) as follows: Connect 
an appropriately sized wet-test meter (e.g., 1 liter per revolution) to 
the inlet of the needle valve. Make three independent calibration runs, 
using at least five revolutions of the DGM per run. Calculate the 
calibration factor Y (wet-test meter calibration volume divided by the 
DGM volume, both volumes adjusted to the same reference temperature and 
pressure) for each run, and average the results (Yi). If any 
Y-value deviates by more than 2 percent from (Yi), the 
metering system is unacceptable for use. If the metering system is 
acceptable, use (Yi) as the calibration factor for subsequent 
test runs.
    10.1.2 Post-Test Calibration Check. After each field test series, 
conduct a calibration check using the procedures outlined in Section 
10.1.1.2, except that three or more revolutions of the DGM may be used, 
and only two independent runs need be made. If the average of the two 
post-test calibration factors does not deviate by more than 5 percent 
from Yi, then Yi is accepted as the DGM 
calibration factor (Y), which is used in Equation 6-1 to calculate 
collected sample volume (see Section 12.2). If the deviation is more 
than 5 percent, recalibrate the metering system as in Section 10.1.1, 
and determine a post-test calibration factor (Yf). Compare 
Yi and Yf; the smaller of the two factors is 
accepted as the DGM calibration factor. If recalibration indicates that 
the metering system is unacceptable for use, either void the test run or 
use methods, subject to the approval of the Administrator, to determine 
an acceptable value for the collected sample volume.
    10.1.3 DGM as a Calibration Standard. A DGM may be used as a 
calibration standard for volume measurements in place of the wet-test 
meter specified in Section 10.1.1.2, provided that it is calibrated 
initially and recalibrated periodically according to the same procedures 
outlined in Method 5, Section 10.3 with the following exceptions: (a) 
the DGM is calibrated against a wet-test meter having a capacity of 1 
liter/rev (0.035 ft\3\/rev) or 3 liters/rev (0.1 ft\3\/rev) and having 
the capability of measuring volume to within 1 percent; (b) the DGM is 
calibrated at 1 liter/min (0.035 cfm); and (c) the meter box of the 
Method 6 sampling train is calibrated at the same flow rate.
    10.2 Temperature Sensors. Calibrate against mercury-in-glass 
thermometers.
    10.3 Rate Meter. The rate meter need not be calibrated, but should 
be cleaned and maintained according to the manufacturer's instructions.
    10.4 Barometer. Calibrate against a mercury barometer.
    10.5 Barium Standard Solution. Standardize the barium perchlorate or 
chloride solution against 25 ml of standard sulfuric acid to which 100 
ml of 100 percent isopropanol

[[Page 245]]

has been added. Run duplicate analyses. Calculate the normality using 
the average of duplicate analyses where the titrations agree within 1 
percent or 0.2 ml, whichever is larger.

                        11.0 Analytical Procedure

    11.1 Sample Loss Check. Note level of liquid in container and 
confirm whether any sample was lost during shipment; note this finding 
on the analytical data sheet. If a noticeable amount of leakage has 
occurred, either void the sample or use methods, subject to the approval 
of the Administrator, to correct the final results.
    11.2 Sample Analysis.
    11.2.1 Transfer the contents of the storage container to a 100-ml 
volumetric flask, dilute to exactly 100 ml with water, and mix the 
diluted sample.
    11.2.2 Pipette a 20-ml aliquot of the diluted sample into a 250-ml 
Erlenmeyer flask and add 80 ml of 100 percent isopropanol plus two to 
four drops of thorin indicator. While stirring the solution, titrate to 
a pink endpoint using 0.0100 N barium standard solution.
    11.2.3 Repeat the procedures in Section 11.2.2, and average the 
titration volumes. Run a blank with each series of samples. Replicate 
titrations must agree within 1 percent or 0.2 ml, whichever is larger.

    Note: Protect the 0.0100 N barium standard solution from evaporation 
at all times.

    11.3 Audit Sample Analysis.
    11.3.1 When the method is used to analyze samples to demonstrate 
compliance with a source emission regulation, an audit sample, if 
available, must be analyzed.
    11.3.2 Concurrently analyze the audit sample and the compliance 
samples in the same manner to evaluate the technique of the analyst and 
the standards preparation.
    11.3.3 The same analyst, analytical reagents, and analytical system 
must be used for the compliance samples and the audit sample. If this 
condition is met, duplicate auditing of subsequent compliance analyses 
for the same enforcement agency within a 30-day period is waived. An 
audit sample set may not be used to validate different sets of 
compliance samples under the jurisdiction of separate enforcement 
agencies, unless prior arrangements have been made with both enforcement 
agencies.
    11.4 Audit Sample Results.
    11.4.1 Calculate the audit sample concentrations and submit results 
using the instructions provided with the audit samples.
    11.4.2 Report the results of the audit samples and the compliance 
determination samples along with their identification numbers, and the 
analyst's name to the responsible enforcement authority. Include this 
information with reports of any subsequent compliance analyses for the 
same enforcement authority during the 30-day period.
    11.4.3 The concentrations of the audit samples obtained by the 
analyst must agree within 5 percent of the actual concentration. If the 
5 percent specification is not met, reanalyze the compliance and audit 
samples, and include initial and reanalysis values in the test report.
    11.4.4 Failure to meet the 5-percent specification may require 
retests until the audit problems are resolved. However, if the audit 
results do not affect the compliance or noncompliance status of the 
affected facility, the Administrator may waive the reanalysis 
requirement, further audits, or retests and accept the results of the 
compliance test. While steps are being taken to resolve audit analysis 
problems, the Administrator may also choose to use the data to determine 
the compliance or noncompliance status of the affected facility.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculation.
    12.1 Nomenclature.

Ca=Actual concentration of SO2 in audit sample, 
mg/dscm.
Cd=Determined concentration of SO2 in audit 
sample, mg/dscm.
CSO2=Concentration of SO2, dry basis, corrected to 
standard conditions, mg/dscm (lb/dscf).
N=Normality of barium standard titrant, meq/ml.
Pbar=Barometric pressure, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
RE=Relative error of QA audit sample analysis, percent
Tm=Average DGM absolute temperature, [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Va=Volume of sample aliquot titrated, ml.
Vm=Dry gas volume as measured by the DGM, dcm (dcf).
Vm(std)=Dry gas volume measured by the DGM, corrected to 
standard conditions, dscm (dscf).
Vsoln=Total volume of solution in which the SO2 sample is 
contained, 100 ml.
Vt=Volume of barium standard titrant used for the sample 
(average of replicate titration), ml.
Vtb=Volume of barium standard titrant used for the blank, ml.
Y=DGM calibration factor.

    12.2 Dry Sample Gas Volume, Corrected to Standard Conditions.

[[Page 246]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.181

Where:

K1=0.3855 [deg]K/mm Hg for metric units,
K1=17.65 [deg]R/in. Hg for English units.

    12.3 SO2 Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.182
    
Where:

K2=32.03 mg SO2/meq for metric units,
K2=7.061 x 10-5 lb SO2/meq for English 
units.

    12.4 Relative Error for QA Audit Samples.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.183
    
                         13.0 Method Performance

    13.1 Range. The minimum detectable limit of the method has been 
determined to be 3.4 mg SO2/m\3\ (2.12 x 10-7 lb/
ft\3\). Although no upper limit has been established, tests have shown 
that concentrations as high as 80,000 mg/m\3\ (0.005 lb/ft\3\) of 
SO2 can be collected efficiently at a rate of 1.0 liter/min 
(0.035 cfm) for 20 minutes in two midget impingers, each containing 15 
ml of 3 percent H2O2. Based on theoretical 
calculations, the upper concentration limit in a 20 liter (0.7 ft\3\) 
sample is about 93,300 mg/m\3\ (0.00583 lb/ft\3\).

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 Nomenclature. Same as Section 12.1, with the following 
additions:

Bwa=Water vapor in ambient air, proportion by volume.
Ma=Molecular weight of the ambient air saturated at impinger 
temperature, g/g-mole (lb/lb-mole).
Ms=Molecular weight of the sample gas saturated at impinger 
temperature, g/g-mole (lb/lb-mole).
Pc=Inlet vacuum reading obtained during the calibration run, 
mm Hg (in. Hg).
Psr=Inlet vacuum reading obtained during the sampling run, mm 
Hg (in. Hg).
Qstd=Volumetric flow rate through critical orifice, scm/min 
(scf/min).
Qstd=Average flow rate of pre-test and post-test calibration 
runs, scm/min (scf/min).
Tamb=Ambient absolute temperature of air, [deg]K ([deg]R).
Vsb=Volume of gas as measured by the soap bubble meter, m\3\ 
(ft\3\).
    Vsb(std)=Volume of gas as measured by the soap bubble 
meter, corrected to standard conditions, scm (scf).
[thetas]=Soap bubble travel time, min.
[thetas]s=Time, min.

    16.2 Critical Orifices for Volume and Rate Measurements. A critical 
orifice may be used in place of the DGM specified in Section 6.1.1.10, 
provided that it is selected, calibrated, and used as follows:
    16.2.1 Preparation of Sampling Train. Assemble the sampling train as 
shown in Figure 6-2. The rate meter and surge tank are optional but are 
recommended in order to detect changes in the flow rate.

    Note: The critical orifices can be adapted to a Method 6 type 
sampling train as follows: Insert sleeve type, serum bottle stoppers 
into two reducing unions. Insert the needle into the stoppers as shown 
in Figure 6-3.

    16.2.2 Selection of Critical Orifices.
    16.2.2.1 The procedure that follows describes the use of hypodermic 
needles and stainless steel needle tubings, which have been found 
suitable for use as critical orifices. Other materials and critical 
orifice designs may be used provided the orifices act as true critical 
orifices, (i.e., a critical vacuum can be obtained) as described in this 
section. Select a critical orifice that is sized to operate at the 
desired flow rate. The needle sizes and tubing lengths shown in Table 6-
1 give the following approximate flow rates.
    16.2.2.2 Determine the suitability and the appropriate operating 
vacuum of the critical orifice as follows: If applicable, temporarily 
attach a rate meter and surge tank to the outlet of the sampling train, 
if said equipment is not present (see Section 16.2.1). Turn on the pump 
and adjust the valve to give an outlet vacuum reading corresponding to 
about half of the atmospheric pressure. Observe the rate meter reading. 
Slowly increase the vacuum until a stable reading is

[[Page 247]]

obtained on the rate meter. Record the critical vacuum, which is the 
outlet vacuum when the rate meter first reaches a stable value. Orifices 
that do not reach a critical value must not be used.
    16.2.3 Field Procedures.
    16.2.3.1 Leak-Check Procedure. A leak-check before the sampling run 
is recommended, but not required. The leak-check procedure is as 
follows: Temporarily attach a suitable (e.g., 0-40 ml/min) rotameter and 
surge tank, or a soap bubble meter and surge tank to the outlet of the 
pump. Plug the probe inlet, pull an outlet vacuum of at least 250 mm Hg 
(10 in. Hg), and note the flow rate as indicated by the rotameter or 
bubble meter. A leakage rate in excess of 2 percent of the average 
sampling rate (Qstd) is not acceptable. Carefully release the 
probe inlet plug before turning off the pump.
    16.2.3.2 Moisture Determination. At the sampling location, prior to 
testing, determine the percent moisture of the ambient air using the wet 
and dry bulb temperatures or, if appropriate, a relative humidity meter.
    16.2.3.3 Critical Orifice Calibration. At the sampling location, 
prior to testing, calibrate the entire sampling train (i.e., determine 
the flow rate of the sampling train when operated at critical 
conditions). Attach a 500-ml soap bubble meter to the inlet of the 
probe, and operate the sampling train at an outlet vacuum of 25 to 50 mm 
Hg (1 to 2 in. Hg) above the critical vacuum. Record the information 
listed in Figure 6-4. Calculate the standard volume of air measured by 
the soap bubble meter and the volumetric flow rate using the equations 
below:
[GRAPHIC] [TIFF OMITTED] TR17OC00.184

[GRAPHIC] [TIFF OMITTED] TR17OC00.185

    16.2.3.4 Sampling.
    16.2.3.4.1 Operate the sampling train for sample collection at the 
same vacuum used during the calibration run. Start the watch and pump 
simultaneously. Take readings (temperature, rate meter, inlet vacuum, 
and outlet vacuum) at least every 5 minutes. At the end of the sampling 
run, stop the watch and pump simultaneously.
    16.2.3.4.2 Conduct a post-test calibration run using the calibration 
procedure outlined in Section 16.2.3.3. If the Qstd obtained 
before and after the test differ by more than 5 percent, void the test 
run; if not, calculate the volume of the gas measured with the critical 
orifice using Equation 6-6 as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.186

    16.2.3.4.3 If the percent difference between the molecular weight of 
the ambient air at saturated conditions and the sample gas is more that 
3 percent, then the molecular weight of the gas 
sample must be considered in the calculations using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.187

    Note: A post-test leak-check is not necessary because the post-test 
calibration run results will indicate whether there is any leakage.

    16.2.3.4.4 Drain the ice bath, and purge the sampling train using 
the procedure described in Section 8.3.4.

[[Page 248]]

    16.3 Elimination of Ammonia Interference. The following alternative 
procedures must be used in addition to those specified in the method 
when sampling at sources having ammonia emissions.
    16.3.1 Sampling. The probe shall be maintained at 275 [deg]C (527 
[deg]F) and equipped with a high-efficiency in-stack filter (glass 
fiber) to remove particulate matter. The filter material shall be 
unreactive to SO2. Whatman 934AH (formerly Reeve Angel 934AH) 
filters treated as described in Reference 10 in Section 17.0 of Method 5 
is an example of a filter that has been shown to work. Where alkaline 
particulate matter and condensed moisture are present in the gas stream, 
the filter shall be heated above the moisture dew point but below 225 
[deg]C (437 [deg]F).
    16.3.2 Sample Recovery. Recover the sample according to Section 8.4 
except for discarding the contents of the midget bubbler. Add the 
bubbler contents, including the rinsings of the bubbler with water, to a 
separate polyethylene bottle from the rest of the sample. Under normal 
testing conditions where sulfur trioxide will not be present 
significantly, the tester may opt to delete the midget bubbler from the 
sampling train. If an approximation of the sulfur trioxide concentration 
is desired, transfer the contents of the midget bubbler to a separate 
polyethylene bottle.
    16.3.3 Sample Analysis. Follow the procedures in Sections 11.1 and 
11.2, except add 0.5 ml of 0.1 N HCl to the Erlenmeyer flask and mix 
before adding the indicator. The following analysis procedure may be 
used for an approximation of the sulfur trioxide concentration. The 
accuracy of the calculated concentration will depend upon the ammonia to 
SO2 ratio and the level of oxygen present in the gas stream. 
A fraction of the SO2 will be counted as sulfur trioxide as 
the ammonia to SO2 ratio and the sample oxygen content 
increases. Generally, when this ratio is 1 or less and the oxygen 
content is in the range of 5 percent, less than 10 percent of the 
SO2 will be counted as sulfur trioxide. Analyze the peroxide 
and isopropanol sample portions separately. Analyze the peroxide portion 
as described above. Sulfur trioxide is determined by difference using 
sequential titration of the isopropanol portion of the sample. Transfer 
the contents of the isopropanol storage container to a 100-ml volumetric 
flask, and dilute to exactly 100 ml with water. Pipette a 20-ml aliquot 
of this solution into a 250-ml Erlenmeyer flask, add 0.5 ml of 0.1 N 
HCl, 80 ml of 100 percent isopropanol, and two to four drops of thorin 
indicator. Titrate to a pink endpoint using 0.0100 N barium perchlorate. 
Repeat and average the titration volumes that agree within 1 percent or 
0.2 ml, whichever is larger. Use this volume in Equation 6-2 to 
determine the sulfur trioxide concentration. From the flask containing 
the remainder of the isopropanol sample, determine the fraction of 
SO2 collected in the bubbler by pipetting 20-ml aliquots into 
250-ml Erlenmeyer flasks. Add 5 ml of 3 percent 
H2O2, 100 ml of 100 percent isopropanol, and two 
to four drips of thorin indicator, and titrate as before. From this 
titration volume, subtract the titrant volume determined for sulfur 
trioxide, and add the titrant volume determined for the peroxide 
portion. This final volume constitutes Vt, the volume of 
barium perchlorate used for the SO2 sample.

                             17.0 References

    1. Atmospheric Emissions from Sulfuric Acid Manufacturing Processes. 
U.S. DHEW, PHS, Division of Air Pollution. Public Health Service 
Publication No. 999-AP-13. Cincinnati, OH. 1965.
    2. Corbett, P.F. The Determination of SO2 and 
SO3 in Flue Gases. Journal of the Institute of Fuel. 24:237-
243. 1961.
    3. Matty, R.E., and E.K. Diehl. Measuring Flue-Gas SO2 
and SO3. Power. 101:94-97. November 1957.
    4. Patton, W.F., and J.A. Brink, Jr. New Equipment and Techniques 
for Sampling Chemical Process Gases. J. Air Pollution Control 
Association. 13:162. 1963.
    5. Rom, J.J. Maintenance, Calibration, and Operation of Isokinetic 
Source Sampling Equipment. Office of Air Programs, U.S. Environmental 
Protection Agency. Research Triangle Park, NC. APTD-0576. March 1972.
    6. Hamil, H.F., and D.E. Camann. Collaborative Study of Method for 
the Determination of Sulfur Dioxide Emissions from Stationary Sources 
(Fossil-Fuel Fired Steam Generators). U.S. Environmental Protection 
Agency, Research Triangle Park, NC. EPA-650/4-74-024. December 1973.
    7. Annual Book of ASTM Standards. Part 31; Water, Atmospheric 
Analysis. American Society for Testing and Materials. Philadelphia, PA. 
1974. pp. 40-42.
    8. Knoll, J.E., and M.R. Midgett. The Application of EPA Method 6 to 
High Sulfur Dioxide Concentrations. U.S. Environmental Protection 
Agency. Research Triangle Park, NC. EPA-600/4-76-038. July 1976.
    9. Westlin, P.R., and R.T. Shigehara. Procedure for Calibrating and 
Using Dry Gas Volume Meters as Calibration Standards. Source Evaluation 
Society Newsletter. 3(1):17-30. February 1978.
    10. Yu, K.K. Evaluation of Moisture Effect on Dry Gas Meter 
Calibration. Source Evaluation Society Newsletter. 5(1):24-28. February 
1980.
    11. Lodge, J.P., Jr., et al. The Use of Hypodermic Needles as 
Critical Orifices in Air Sampling. J. Air Pollution Control Association. 
16:197-200. 1966.
    12. Shigehara, R.T., and C.B. Sorrell. Using Critical Orifices as 
Method 5 CalibrationStandards. Source Evaluation Society Newsletter. 
10:4-15. August 1985.

[[Page 249]]

    13. Curtis, F., Analysis of Method 6 Samples in the Presence of 
Ammonia. Source Evaluation Society Newsletter. 13(1):9-15 February 1988.

          18.0 Tables, Diagrams, Flowcharts and Validation Data

       Table 6-1--Approximate Flow Rates for Various Needle Sizes
------------------------------------------------------------------------
                                                   Needle
             Needle size  (gauge)                  length     Flow rate
                                                    (cm)       (ml/min)
------------------------------------------------------------------------
21............................................          7.6        1,100
22............................................          2.9        1,000
22............................................          3.8          900
23............................................          3.8          500
23............................................          5.1          450
24............................................          3.2          400
------------------------------------------------------------------------


[[Page 250]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.188


[[Page 251]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.189


[[Page 252]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.190


[[Page 253]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.191

Method 6A--Determination of Sulfur Dioxide, Moisture, and Carbon Dioxide 
                   From Fossil Fuel Combustion Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 5, Method 6, and Method 19.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 254]]



------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
SO2...............................      7449-09-05  3.4 mg SO2/m\3\
                                                    (2.12 x 10-7 lb/
                                                     ft\3\)
CO2...............................        124-38-9  N/A
H2O...............................       7732-18-5  N/A
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of sulfur dioxide (SO2) emissions from fossil fuel combustion 
sources in terms of concentration (mg/dscm or lb/dscf) and in terms of 
emission rate (ng/J or lb/10\6\ Btu) and for the determination of carbon 
dioxide (CO2) concentration (percent). Moisture content 
(percent), if desired, may also be determined by this method.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from a sampling point in the stack. 
The SO2 and the sulfur trioxide, including those fractions in 
any sulfur acid mist, are separated. The SO2 fraction is 
measured by the barium-thorin titration method. Moisture and 
CO2 fractions are collected in the same sampling train, and 
are determined gravimetrically.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Same as Method 6, Section 4.0.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user to establish appropriate safety and health practices and determine 
the applicability of regulatory limitations prior to performing this 
test method.
    5.2 Corrosive reagents. Same as Method 6, Section 5.2.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. Same as Method 6, Section 6.1, with the 
exception of the following:
    6.1.1 Sampling Train. A schematic of the sampling train used in this 
method is shown in Figure 6A-1.
    6.1.1.1 Impingers and Bubblers. Two 30=ml midget impingers with a 
1=mm restricted tip and two 30=ml midget bubblers with unrestricted 
tips. Other types of impingers and bubblers (e.g., Mae West for 
SO2 collection and rigid cylinders containing Drierite for 
moisture absorbers), may be used with proper attention to reagent 
volumes and levels, subject to the approval of the Administrator.
    6.1.1.2 CO2 Absorber. A sealable rigid cylinder or bottle 
with an inside diameter between 30 and 90 mm , a length between 125 and 
250 mm, and appropriate connections at both ends. The filter may be a 
separate heated unit or may be within the heated portion of the probe. 
If the filter is within the sampling probe, the filter should not be 
within 15 cm of the probe inlet or any unheated section of the probe, 
such as the connection to the first bubbler. The probe and filter should 
be heated to at least 20 [deg]C (68 [deg]F) above the source 
temperature, but not greater than 120 [deg]C (248 [deg]F). The filter 
temperature (i.e., the sample gas temperature) should be monitored to 
assure the desired temperature is maintained. A heated Teflon connector 
may be used to connect the filter holder or probe to the first impinger.

    Note: For applications downstream of wet scrubbers, a heated out-of-
stack filter (either borosilicate glass wool or glass fiber mat) is 
necessary.

    6.2 Sample Recovery. Same as Method 6, Section 6.2.
    6.3 Sample Analysis. Same as Method 6, Section 6.3, with the 
addition of a balance to measure within 0.05 g.

                       7.0 Reagents and Standards

    Note: Unless otherwise indicated, all reagents must conform to the 
specifications established by the Committee on Analytical Reagents of 
the American Chemical Society. Where such specifications are not 
available, use the best available grade.

    7.1 Sample Collection. Same as Method 6, Section 7.1, with the 
addition of the following:
    7.1.1 Drierite. Anhydrous calcium sulfate (CaSO4) 
desiccant, 8 mesh, indicating type is recommended.

    Note: Do not use silica gel or similar desiccant in this 
application.

    7.1.2 CO2 Absorbing Material. Ascarite II. Sodium 
hydroxide-coated silica, 8- to 20-mesh.
    7.2 Sample Recovery and Analysis. Same as Method 6, Sections 7.2 and 
7.3, respectively.

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Preparation of Sampling Train.
    8.1.1 Measure 15 ml of 80 percent isopropanol into the first midget 
bubbler and 15 ml of 3 percent hydrogen peroxide into

[[Page 255]]

each of the two midget impingers (the second and third vessels in the 
train) as described in Method 6, Section 8.1. Insert the glass wool into 
the top of the isopropanol bubbler as shown in Figure 6A-1. Place about 
25 g of Drierite into the second midget bubbler (the fourth vessel in 
the train). Clean the outside of the bubblers and impingers and allow 
the vessels to reach room temperature. Weigh the four vessels 
simultaneously to the nearest 0.1 g, and record this initial weight 
(mwi).
    8.1.2 With one end of the CO2 absorber sealed, place 
glass wool into the cylinder to a depth of about 1 cm (0.5 in.). Place 
about 150 g of CO2 absorbing material in the cylinder on top 
of the glass wool, and fill the remaining space in the cylinder with 
glass wool. Assemble the cylinder as shown in Figure 6A-2. With the 
cylinder in a horizontal position, rotate it around the horizontal axis. 
The CO2 absorbing material should remain in position during 
the rotation, and no open spaces or channels should be formed. If 
necessary, pack more glass wool into the cylinder to make the 
CO2 absorbing material stable. Clean the outside of the 
cylinder of loose dirt and moisture and allow the cylinder to reach room 
temperature. Weigh the cylinder to the nearest 0.1 g, and record this 
initial weight (mai).
    8.1.3 Assemble the train as shown in Figure 6A-1. Adjust the probe 
heater to a temperature sufficient to prevent condensation (see Note in 
Section 6.1). Place crushed ice and water around the impingers and 
bubblers. Mount the CO2 absorber outside the water bath in a 
vertical flow position with the sample gas inlet at the bottom. Flexible 
tubing (e.g., Tygon) may be used to connect the last SO2 
absorbing impinger to the moisture absorber and to connect the moisture 
absorber to the CO2 absorber. A second, smaller 
CO2 absorber containing Ascarite II may be added in-line 
downstream of the primary CO2 absorber as a breakthrough 
indicator. Ascarite II turns white when CO2 is absorbed.
    8.2 Sampling Train Leak-Check Procedure and Sample Collection. Same 
as Method 6, Sections 8.2 and 8.3, respectively.
    8.3 Sample Recovery.
    8.3.1 Moisture Measurement. Disconnect the isopropanol bubbler, the 
SO2 impingers, and the moisture absorber from the sample 
train. Allow about 10 minutes for them to reach room temperature, clean 
the outside of loose dirt and moisture, and weigh them simultaneously in 
the same manner as in Section 8.1. Record this final weight 
(mwf).
    8.3.2 Peroxide Solution. Discard the contents of the isopropanol 
bubbler and pour the contents of the midget impingers into a leak-free 
polyethylene bottle for shipping. Rinse the two midget impingers and 
connecting tubes with water, and add the washing to the same storage 
container.
    8.3.3 CO2 Absorber. Allow the CO2 absorber to 
warm to room temperature (about 10 minutes), clean the outside of loose 
dirt and moisture, and weigh to the nearest 0.1 g in the same manner as 
in Section 8.1. Record this final weight (maf). Discard used 
Ascarite II material.

                           9.0 Quality Control

    Same as Method 6, Section 9.0.

                  10.0 Calibration and Standardization

    Same as Method 6, Section 10.0.

                        11.0 Analytical Procedure

    11.1 Sample Analysis. The sample analysis procedure for 
SO2 is the same as that specified in Method 6, Section 11.0.
    11.2 Quality Assurance (QA) Audit Samples. Analysis of QA audit 
samples is required only when this method is used for compliance 
determinations. Obtain an audit sample set as directed in Section 7.3.6 
of Method 6. Analyze the audit samples, and report the results as 
directed in Section 11.3 of Method 6. Acceptance criteria for the audit 
results are the same as those in Method 6.

                   12.0 Data Analysis and Calculations

    Same as Method 6, Section 12.0, with the addition of the following:
    12.1 Nomenclature.

Cw=Concentration of moisture, percent.
CCO2=Concentration of CO2, dry basis, percent.
ESO2=Emission rate of SO2, ng/J (lb/10\6\ Btu).
FC=Carbon F-factor from Method 19 for the fuel burned, dscm/J 
(dscf/10\6\ Btu).
mwi=Initial weight of impingers, bubblers, and moisture 
absorber, g.
mwf=Final weight of impingers, bubblers, and moisture 
absorber, g.
mai=Initial weight of CO2 absorber, g.
maf=Final weight of CO2 absorber, g.
mSO2=Mass of SO2 collected, mg.
VCO2(std)=Equivalent volume of CO2 collected at 
standard conditions, dscm (dscf).
Vw(std)=Equivalent volume of moisture collected at standard 
conditions, scm (scf).

    12.2 CO2 Volume Collected, Corrected to Standard 
Conditions.
[GRAPHIC] [TIFF OMITTED] TR17OC00.192

Where:

K3=Equivalent volume of gaseous CO2 at standard 
conditions, 5.467 x 10-4 dscm/g (1.930 x 10-2 
dscf/g).

    12.3 Moisture Volume Collected, Corrected to Standard Conditions.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.193
    
Where:


[[Page 256]]


K4=Equivalent volume of water vapor at standard conditions, 
1.336 x 10-3 scm/g (4.717 x 10-2 scf/g).

    12.4 SO2 Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.194
    
Where:

K2=32.03 mg SO2/meq. SO2 (7.061 x 
10-5 lb SO2/meq. SO2)

    12.5 CO2 Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.195
    
    12.6 Moisture Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.196
    
                         13.0 Method Performance

    13.1 Range and Precision. The minimum detectable limit and the upper 
limit for the measurement of SO2 are the same as for Method 
6. For a 20-liter sample, this method has a precision of 0.5 percent CO2 for concentrations between 
2.5 and 25 percent CO2 and 1.0 percent 
moisture for moisture concentrations greater than 5 percent.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                        16.0 Alternative Methods

    If the only emission measurement desired is in terms of emission 
rate of SO2 (ng/J or lb/10\6\ Btu), an abbreviated procedure 
may be used. The differences between the above procedure and the 
abbreviated procedure are described below.
    16.1 Sampling Train. The sampling train is the same as that shown in 
Figure 6A-1 and as described in Section 6.1, except that the dry gas 
meter is not needed.
    16.2 Preparation of the Sampling Train. Follow the same procedure as 
in Section 8.1, except do not weigh the isopropanol bubbler, the 
SO2 absorbing impingers, or the moisture absorber.
    16.3 Sampling Train Leak-Check Procedure and Sample Collection. 
Leak-check and operate the sampling train as described in Section 8.2, 
except that dry gas meter readings, barometric pressure, and dry gas 
meter temperatures need not be recorded during sampling.
    16.4 Sample Recovery. Follow the procedure in Section 8.3, except do 
not weigh the isopropanol bubbler, the SO2 absorbing 
impingers, or the moisture absorber.
    16.5 Sample Analysis. Analysis of the peroxide solution and QA audit 
samples is the same as that described in Sections 11.1 and 11.2, 
respectively.
    16.6 Calculations.
    16.6.1 SO2 Collected.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.197
    

[[Page 257]]


Where:

K2=32.03 mg SO2/meq. SO2
K2=7.061 x 10-5 lb SO2/meq. 
SO2

    16.6.2 Sulfur Dioxide Emission Rate.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.198
    
Where:

K5=1.829 x 10\9\ mg/dscm
K2=0.1142 lb/dscf

                             17.0 References

    Same as Method 6, Section 17.0, References 1 through 8, with the 
addition of the following:

    1. Stanley, Jon and P.R. Westlin. An Alternate Method for Stack Gas 
Moisture Determination. Source Evaluation Society Newsletter. 3(4). 
November 1978.
    2. Whittle, Richard N. and P.R. Westlin. Air Pollution Test Report: 
Development and Evaluation of an Intermittent Integrated SO2/
CO2 Emission Sampling Procedure. Environmental Protection 
Agency, Emission Standard and Engineering Division, Emission Measurement 
Branch. Research Triangle Park, NC. December 1979. 14 pp.

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 258]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.199


[[Page 259]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.410

  Method 6B--Determination of Sulfur Dioxide and Carbon Dioxide Daily 
          Average Emissions From Fossil Fuel Combustion Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 2, Method 3, 
Method 5, Method 6, and Method 6A.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 260]]



------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Sulfur dioxide (SO2)..............      7449-09-05  3.4 mg SO2/m\3\
                                                    (2.12 x 10-7 lb/
                                                     ft\3\)
Carbon dioxide (CO2)..............        124-38-9  N/A
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of SO2 emissions from combustion sources in terms of 
concentration (ng/dscm or lb/dscf) and emission rate (ng/J or lb/10\6\ 
Btu), and for the determination of CO2 concentration 
(percent) on a daily (24 hours) basis.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A gas sample is extracted from the sampling point in the stack 
intermittently over a 24-hour or other specified time period. The 
SO2 fraction is measured by the barium-thorin titration 
method. Moisture and CO2 fractions are collected in the same 
sampling train, and are determined gravimetrically.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Same as Method 6, Section 4.0.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user to establish appropriate safety and health practices and determine 
the applicability of regulatory limitations prior to performing this 
test method.
    5.2 Corrosive Reagents. Same as Method 6, Section 5.2.

                       6.0 Equipment and Supplies

    Same as Method 6A, Section 6.0, with the following exceptions and 
additions:
    6.1 The isopropanol bubbler is not used. An empty bubbler for the 
collection of liquid droplets, that does not allow direct contact 
between the collected liquid and the gas sample, may be included in the 
sampling train.
    6.2 For intermittent operation, include an industrial timer-switch 
designed to operate in the ``on'' position at least 2 minutes 
continuously and ``off'' the remaining period over a repeating cycle. 
The cycle of operation is designated in the applicable regulation. At a 
minimum, the sampling operation should include at least 12, equal, 
evenly-spaced periods per 24 hours.
    6.3 Stainless steel sampling probes, type 316, are not recommended 
for use with Method 6B because of potential sample contamination due to 
corrosion. Glass probes or other types of stainless steel, e.g., 
Hasteloy or Carpenter 20, are recommended for long-term use.

    Note: For applications downstream of wet scrubbers, a heated out-of-
stack filter (either borosilicate glass wool or glass fiber mat) is 
necessary. Probe and filter heating systems capable of maintaining a 
sample gas temperature of between 20 and 120 [deg]C (68 and 248 [deg]F) 
at the filter are also required in these cases. The electric supply for 
these heating systems should be continuous and separate from the timed 
operation of the sample pump.

                       7.0 Reagents and Standards

    Same as Method 6A, Section 7.0, with the following exceptions:
    7.1 Isopropanol is not used for sampling.
    7.2 The hydrogen peroxide absorbing solution shall be diluted to no 
less than 6 percent by volume, instead of 3 percent as specified in 
Methods 6 and 6A.
    7.3 If the Method 6B sampling train is to be operated in a low 
sample flow condition (less than 100 ml/min or 0.21 ft\3\/hr), molecular 
sieve material may be substituted for Ascarite II as the CO2 
absorbing material. The recommended molecular sieve material is Union 
Carbide \1/16\ inch pellets, 5 A[deg], or equivalent. Molecular sieve 
material need not be discarded following the sampling run, provided that 
it is regenerated as per the manufacturer's instruction. Use of 
molecular sieve material at flow rates higher than 100 ml/min (0.21 
ft\3\/hr) may cause erroneous CO2 results.

       8.0 Sample Collection, Preservation, Transport, and Storage

    8.1 Preparation of Sampling Train. Same as Method 6A, Section 8.1, 
with the addition of the following:
    8.1.1 The sampling train is assembled as shown in Figure 6A-1 of 
Method 6A, except that the isopropanol bubbler is not included.
    8.1.2 Adjust the timer-switch to operate in the ``on'' position from 
2 to 4 minutes on a 2-hour repeating cycle or other cycle specified in 
the applicable regulation. Other timer sequences may be used with the 
restriction that the total sample volume collected is between 25 and 60 
liters (0.9 and 2.1 ft\3\) for the amounts of sampling reagents 
prescribed in this method.
    8.1.3 Add cold water to the tank until the impingers and bubblers 
are covered at least two-thirds of their length. The impingers and 
bubbler tank must be covered and protected from intense heat and direct 
sunlight. If freezing conditions exist, the impinger solution and the 
water bath must be protected.

    Note: Sampling may be conducted continuously if a low flow-rate 
sample pump [20

[[Page 261]]

to 40 ml/min (0.04 to 0.08 ft\3\/hr) for the reagent volumes described 
in this method] is used. If sampling is continuous, the timer-switch is 
not necessary. In addition, if the sample pump is designed for constant 
rate sampling, the rate meter may be deleted. The total gas volume 
collected should be between 25 and 60 liters (0.9 and 2.1 ft\3\) for the 
amounts of sampling reagents prescribed in this method.

    8.2 Sampling Train Leak-Check Procedure. Same as Method 6, Section 
8.2.
    8.3 Sample Collection.
    8.3.1 The probe and filter (either in-stack, out-of-stack, or both) 
must be heated to a temperature sufficient to prevent water 
condensation.
    8.3.2 Record the initial dry gas meter reading. To begin sampling, 
position the tip of the probe at the sampling point, connect the probe 
to the first impinger (or filter), and start the timer and the sample 
pump. Adjust the sample flow to a constant rate of approximately 1.0 
liter/min (0.035 cfm) as indicated by the rotameter. Observe the 
operation of the timer, and determine that it is operating as intended 
(i.e., the timer is in the ``on'' position for the desired period, and 
the cycle repeats as required).
    8.3.3 One time between 9 a.m. and 11 a.m. during the 24-hour 
sampling period, record the dry gas meter temperature (Tm) 
and the barometric pressure (P(bar)).
    8.3.4 At the conclusion of the run, turn off the timer and the 
sample pump, remove the probe from the stack, and record the final gas 
meter volume reading. Conduct a leak-check as described in Section 8.2. 
If a leak is found, void the test run or use procedures acceptable to 
the Administrator to adjust the sample volume for leakage. Repeat the 
steps in Sections 8.3.1 to 8.3.4 for successive runs.
    8.4 Sample Recovery. The procedures for sample recovery (moisture 
measurement, peroxide solution, and CO2 absorber) are the 
same as those in Method 6A, Section 8.3.

                           9.0 Quality Control

    Same as Method 6, Section 9.0., with the exception of the 
isopropanol-check.

                  10.0 Calibration and Standardization

    Same as Method 6, Section 10.0, with the addition of the following:
    10.1 Periodic Calibration Check. After 30 days of operation of the 
test train, conduct a calibration check according to the same procedures 
as the post-test calibration check (Method 6, Section 10.1.2). If the 
deviation between initial and periodic calibration factors exceeds 5 
percent, use the smaller of the two factors in calculations for the 
preceding 30 days of data, but use the most recent calibration factor 
for succeeding test runs.

                       11.0 Analytical Procedures

    11.1 Sample Loss Check and Analysis. Same as Method 6, Sections 11.1 
and 11.2, respectively.
    11.2 Quality Assurance (QA) Audit Samples. Analysis of QA audit 
samples is required only when this method is used for compliance 
determinations. Obtain an audit sample set as directed in Section 7.3.6 
of Method 6. Analyze the audit samples at least once for every 30 days 
of sample collection, and report the results as directed in Section 11.3 
of Method 6. The analyst performing the sample analyses shall perform 
the audit analyses. If more than one analyst performs the sample 
analyses during the 30-day sampling period, each analyst shall perform 
the audit analyses and all audit results shall be reported. Acceptance 
criteria for the audit results are the same as those in Method 6.

                   12.0 Data Analysis and Calculations

    Same as Method 6A, Section 12.0, except that Pbar and 
Tm correspond to the values recorded in Section 8.3.3 of this 
method. The values are as follows:

Pbar=Initial barometric pressure for the test period, mm Hg.
Tm=Absolute meter temperature for the test period, [deg]K.

                         13.0 Method Performance

    13.1 Range.
    13.1.1 Sulfur Dioxide. Same as Method 6.
    13.1.2 Carbon Dioxide. Not determined.
    13.2 Repeatability and Reproducibility. EPA-sponsored collaborative 
studies were undertaken to determine the magnitude of repeatability and 
reproducibility achievable by qualified testers following the procedures 
in this method. The results of the studies evolve from 145 field tests 
including comparisons with Methods 3 and 6. For measurements of emission 
rates from wet, flue gas desulfurization units in (ng/J), the 
repeatability (intra-laboratory precision) is 8.0 percent and the 
reproducibility (inter-laboratory precision) is 11.1 percent.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                        16.0 Alternative Methods

    Same as Method 6A, Section 16.0, except that the timer is needed and 
is operated as outlined in this method.

                             17.0 References

    Same as Method 6A, Section 17.0, with the addition of the following:

    1. Butler, Frank E., et. al. The Collaborative Test of Method 6B: 
Twenty-Four-Hour Analysis of SO2 and CO2. JAPCA. 
Vol. 33, No. 10. October 1983.

[[Page 262]]

    18.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

  Method 6C--Determination of Sulfur Dioxide Emissions From Stationary 
                Sources (Instrumental Analyzer Procedure)

                        1.0 Scope and Application

                           What is Method 6C?

    Method 6C is a procedure for measuring sulfur dioxide 
(SO2) in stationary source emissions using a continuous 
instrumental analyzer. Quality assurance and quality control 
requirements are included to assure that you, the tester, collect data 
of known quality. You must document your adherence to these specific 
requirements for equipment, supplies, sample collection and analysis, 
calculations, and data analysis.
    This method does not completely describe all equipment, supplies, 
and sampling and analytical procedures you will need but refers to other 
methods for some of the details. Therefore, to obtain reliable results, 
you should also have a thorough knowledge of these additional test 
methods which are found in appendix A to this part:
    (a) Method 1--Sample and Velocity Traverses for Stationary Sources.
    (b) Method 4--Determination of Moisture Content in Stack Gases.
    (c) Method 6--Determination of Sulfur Dioxide Emissions from 
Stationary Sources.
    (d) Method 7E--Determination of Nitrogen Oxides Emissions from 
Stationary Sources (Instrumental Analyzer Procedure).
    1.1 Analytes. What does this method determine? This method measures 
the concentration of sulfur dioxide.

------------------------------------------------------------------------
            Analyte                  CAS No.           Sensitivity
------------------------------------------------------------------------
SO2............................       7446-09-5  Typically <2% of
                                                  Calibration Span.
------------------------------------------------------------------------

    1.2 Applicability. When is this method required? The use of Method 
6C may be required by specific New Source Performance Standards, Clean 
Air Marketing rules, State Implementation Plans, and permits where 
SO2 concentrations in stationary source emissions must be 
measured, either to determine compliance with an applicable emission 
standard or to conduct performance testing of a continuous emission 
monitoring system (CEMS). Other regulations may also require the use of 
Method 6C.
    1.3 Data Quality Objectives. How good must my collected data be? 
Refer to Section 1.3 of Method 7E.

                          2.0 Summary of Method

    In this method, you continuously sample the effluent gas and convey 
the sample to an analyzer that measures the concentration of 
SO2. You must meet the performance requirements of this 
method to validate your data.

                             3.0 Definitions

    Refer to Section 3.0 of Method 7E for the applicable definitions.

                            4.0 Interferences

    Refer to Section 4.1 of Method 6.

                               5.0 Safety

    Refer to Section 5.0 of Method 7E.

                       6.0 Equipment and Supplies

    Figure 7E-1 of Method 7E is a schematic diagram of an acceptable 
measurement system.
    6.1 What do I need for the measurement system? The essential 
components of the measurement system are the same as those in Sections 
6.1 and 6.2 of Method 7E, except that the SO2 analyzer 
described in Section 6.2 of this method must be used instead of the 
analyzer described in Section 6.2 of Method 7E. You must follow the 
noted specifications in Section 6.1 of Method 7E.
    6.2 What analyzer must I use? You may use an instrument that uses an 
ultraviolet, non-dispersive infrared, fluorescence, or other detection 
principle to continuously measure SO2 in the gas stream and 
meets the performance specifications in Section 13.0. The low-range and 
dual-range analyzer provisions in Section 6.2.8.1 of Method 7E apply.

                       7.0 Reagents and Standards

    7.1 Calibration Gas. What calibration gases do I need? Refer to 
Section 7.1 of Method 7E for the calibration gas requirements. Example 
calibration gas mixtures are listed below.
    (a) SO2 in nitrogen (N2).
    (b) SO2 in air.
    (c) SO2 and CO2 in N2.
    (d) SO2 andO2 in N2.
    (e) SO2/CO2/O2 gas mixture in 
N2.
    (f) CO2/NOX gas mixture in N2.
    (g) CO2/SO2/NOX gas mixture in 
N2.
    7.2 Interference Check. What additional reagents do I need for the 
interference check? The test gases for the interference check are listed 
in Table 7E-3 of Method 7E. For the alternative interference check, you 
must use the reagents described in Section 7.0 of Method 6.

[[Page 263]]

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sampling Site and Sampling Points. You must follow the 
procedures of Section 8.1 of Method 7E.
    8.2 Initial Measurement System Performance Tests. You must follow 
the procedures in Section 8.2 of Method 7E. If a dilution-type 
measurement system is used, the special considerations in Section 8.3 of 
Method 7E also apply.
    8.3 Interference Check. You must follow the procedures of Section 
8.2.7 of Method 7E to conduct an interference check, substituting 
SO2 for NOX as the method pollutant. For dilution-
type measurement systems, you must use the alternative interference 
check procedure in Section 16 and a co-located, unmodified Method 6 
sampling train.
    8.4 Sample Collection. You must follow the procedures of Section 8.4 
of Method 7E.
    8.5 Post-Run System Bias Check and Drift Assessment. You must follow 
the procedures of Section 8.5 of Method 7E.

                           9.0 Quality Control

    Follow quality control procedures in Section 9.0 of Method 7E.

                  10.0 Calibration and Standardization

    Follow the procedures for calibration and standardization in Section 
10.0 of Method 7E.

                       11.0 Analytical Procedures

    Because sample collection and analysis are performed together (see 
Section 8), additional discussion of the analytical procedure is not 
necessary.

                   12.0 Calculations and Data Analysis

    You must follow the applicable procedures for calculations and data 
analysis in Section 12.0 of Method 7E as applicable, substituting 
SO2 for NOX as appropriate.

                         13.0 Method Performance

    13.1 The specifications for the applicable performance checks are 
the same as in Section 13.0 of Method 7E.
    13.2 Alternative Interference Check. The results are acceptable if 
the difference between the Method 6C result and the modified Method 6 
result is less than 7.0 percent of the Method 6 result for each of the 
three test runs. For the purposes of comparison, the Method 6 and 6C 
results must be expressed in the same units of measure.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 Alternative Interference Check. You may perform an alternative 
interference check consisting of at least three comparison runs between 
Method 6C and Method 6. This check validates the Method 6C results at 
each particular facility of known potential interferences. When testing 
under conditions of low concentrations (< 15 ppm), this alternative 
interference check is not allowed.
    Note: The procedure described below applies to non-dilution sampling 
systems only. If this alternative interference check is used for a 
dilution sampling system, use a standard Method 6 sampling train and 
extract the sample directly from the exhaust stream at points collocated 
with the Method 6C sample probe.
    (1) Build the modified Method 6 sampling train (flow control valve, 
two midget impingers containing 3 percent hydrogen peroxide, and dry gas 
meter) shown in Figure 6C-1. Connect the sampling train to the sample 
bypass discharge vent. Record the dry gas meter reading before you begin 
sampling. Simultaneously collect modified Method 6 and Method 6C 
samples. Open the flow control valve in the modified Method 6 train as 
you begin to sample with Method 6C. Adjust the Method 6 sampling rate to 
1 liter per minute (.10 percent). The sampling time per run must be the 
same as for Method 6 plus twice the average measurement system response 
time. If your modified Method 6 train does not include a pump, you risk 
biasing the results high if you over-pressurize the midget impingers and 
cause a leak. You can reduce this risk by cautiously increasing the flow 
rate as sampling begins.
    (2) After completing a run, record the final dry gas meter reading, 
meter temperature, and barometric pressure. Recover and analyze the 
contents of the midget impingers using the procedures in Method 6. You 
must analyze performance audit samples as described in Method 6 with 
this interference check. Determine the average gas concentration 
reported by Method 6C for the run.

                             17.0 References

    1. ``EPA Traceability Protocol for Assay and Certification of 
Gaseous Calibration Standards'' September 1997 as amended, EPA-600/R-97/
121

         18.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 264]]

[GRAPHIC] [TIFF OMITTED] TR15MY06.000

  Method 7--Determination of Nitrogen Oxide Emissions From Stationary 
                                 Sources

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1 and Method 5.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX), as NO2,
 including:
    Nitric oxide (NO).............      10102-43-9
    Nitrogen dioxide (NO2)........      10102-44-0  2-400 mg/dscm
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the measurement of 
nitrogen oxides (NOX) emitted from stationary sources.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sample methods.

                          2.0 Summary of Method

    A grab sample is collected in an evacuated flask containing a dilute 
sulfuric acid-hydrogen peroxide absorbing solution, and the nitrogen 
oxides, except nitrous oxide, are measured colorimetrically using the 
phenoldisulfonic acid (PDS) procedure.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Biased results have been observed when sampling under conditions of 
high sulfur dioxide concentrations (above 2000 ppm).

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user to establish appropriate safety and health practices and to 
determine the applicability of regulatory limitations prior to 
performing this test method.
    5.2 Corrosive Reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in

[[Page 265]]

preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water for at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burns as thermal 
burns.
    5.2.1 Hydrogen Peroxide (H2O2). Irritating to 
eyes, skin, nose, and lungs.
    5.2.2 Phenoldisulfonic Acid. Irritating to eyes and skin.
    5.2.3 Sodium Hydroxide (NaOH). Causes severe damage to eyes and 
skin. Inhalation causes irritation to nose, throat, and lungs. Reacts 
exothermically with limited amounts of water.
    5.2.4 Sulfuric Acid (H2SO4). Rapidly 
destructive to body tissue. Will cause third degree burns. Eye damage 
may result in blindness. Inhalation may be fatal from spasm of the 
larynx, usually within 30 minutes. May cause lung tissue damage with 
edema. 1 mg/m\3\ for 8 hours will cause lung damage or, in higher 
concentrations, death. Provide ventilation to limit inhalation. Reacts 
violently with metals and organics.
    5.2.5 Phenol. Poisonous and caustic. Do not handle with bare hands 
as it is absorbed through the skin.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. A schematic of the sampling train used in 
performing this method is shown in Figure 7-1. Other grab sampling 
systems or equipment, capable of measuring sample volume to within 2.0 
percent and collecting a sufficient sample volume to allow analytical 
reproducibility to within 5 percent, will be considered acceptable 
alternatives, subject to the approval of the Administrator. The 
following items are required for sample collection:
    6.1.1 Probe. Borosilicate glass tubing, sufficiently heated to 
prevent water condensation and equipped with an in-stack or heated out-
of-stack filter to remove particulate matter (a plug of glass wool is 
satisfactory for this purpose). Stainless steel or Teflon tubing may 
also be used for the probe. Heating is not necessary if the probe 
remains dry during the purging period.
    6.1.2 Collection Flask. Two-liter borosilicate, round bottom flask, 
with short neck and 24/40 standard taper opening, protected against 
implosion or breakage.
    6.1.3 Flask Valve. T-bore stopcock connected to a 24/40 standard 
taper joint.
    6.1.4 Temperature Gauge. Dial-type thermometer, or other temperature 
gauge, capable of measuring 1 [deg]C (2 [deg]F) intervals from -5 to 50 
[deg]C (23 to 122 [deg]F).
    6.1.5 Vacuum Line. Tubing capable of withstanding a vacuum of 75 mm 
(3 in.) Hg absolute pressure, with ``T'' connection and T-bore stopcock.
    6.1.6 Vacuum Gauge. U-tube manometer, 1 meter (39 in.), with 1 mm 
(0.04 in.) divisions, or other gauge capable of measuring pressure to 
within 2.5 mm (0.10 in.) Hg.
    6.1.7 Pump. Capable of evacuating the collection flask to a pressure 
equal to or less than 75 mm (3 in.) Hg absolute.
    6.1.8 Squeeze Bulb. One-way.
    6.1.9 Volumetric Pipette. 25-ml.
    6.1.10 Stopcock and Ground Joint Grease. A high-vacuum, high-
temperature chlorofluorocarbon grease is required. Halocarbon 25-5S has 
been found to be effective.
    6.1.11 Barometer. Mercury, aneroid, or other barometer capable of 
measuring atmospheric pressure to within 2.5 mm (0.1 in.) Hg. See NOTE 
in Method 5, Section 6.1.2.
    6.2 Sample Recovery. The following items are required for sample 
recovery:
    6.2.1 Graduated Cylinder. 50-ml with 1 ml divisions.
    6.2.2 Storage Containers. Leak-free polyethylene bottles.
    6.2.3 Wash Bottle. Polyethylene or glass.
    6.2.4 Glass Stirring Rod.
    6.2.5 Test Paper for Indicating pH. To cover the pH range of 7 to 
14.
    6.3 Analysis. The following items are required for analysis:
    6.3.1 Volumetric Pipettes. Two 1-ml, two 2-ml, one 3-ml, one 4-ml, 
two 10-ml, and one 25-ml for each sample and standard.
    6.3.2 Porcelain Evaporating Dishes. 175- to 250-ml capacity with lip 
for pouring, one for each sample and each standard. The Coors No. 45006 
(shallowform, 195-ml) has been found to be satisfactory. Alternatively, 
polymethyl pentene beakers (Nalge No. 1203, 150-ml), or glass beakers 
(150-ml) may be used. When glass beakers are used, etching of the 
beakers may cause solid matter to be present in the analytical step; the 
solids should be removed by filtration.
    6.3.3 Steam Bath. Low-temperature ovens or thermostatically 
controlled hot plates kept below 70 [deg]C (160 [deg]F) are acceptable 
alternatives.
    6.3.4 Dropping Pipette or Dropper. Three required.
    6.3.5 Polyethylene Policeman. One for each sample and each standard.
    6.3.6 Graduated Cylinder. 100-ml with 1-ml divisions.
    6.3.7 Volumetric Flasks. 50-ml (one for each sample and each 
standard), 100-ml (one for each sample and each standard, and one for 
the working standard KNO3 solution), and 1000-ml (one).
    6.3.8 Spectrophotometer. To measure at 410 nm.
    6.3.9 Graduated Pipette. 10-ml with 0.1-ml divisions.
    6.3.10 Test Paper for Indicating pH. To cover the pH range of 7 to 
14.
    6.3.11 Analytical Balance. To measure to within 0.1 mg.

[[Page 266]]

                       7.0 Reagents and Standards

    Unless otherwise indicated, it is intended that all reagents conform 
to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.
    7.1 Sample Collection. The following reagents are required for 
sampling:
    7.1.1 Water. Deionized distilled to conform to ASTM D 1193-77 or 91 
Type 3 (incorporated by reference--see Sec.  60.17). The 
KMnO4 test for oxidizable organic matter may be omitted when 
high concentrations of organic matter are not expected to be present.
    7.1.2 Absorbing Solution. Cautiously add 2.8 ml concentrated 
H2SO4 to a 1-liter flask partially filled with 
water. Mix well, and add 6 ml of 3 percent hydrogen peroxide, freshly 
prepared from 30 percent hydrogen peroxide solution. Dilute to 1 liter 
of water and mix well. The absorbing solution should be used within 1 
week of its preparation. Do not expose to extreme heat or direct 
sunlight.
    7.2 Sample Recovery. The following reagents are required for sample 
recovery:
    7.2.1 Water. Same as in 7.1.1.
    7.2.2 Sodium Hydroxide, 1 N. Dissolve 40 g NaOH in water, and dilute 
to 1 liter.
    7.3 Analysis. The following reagents and standards are required for 
analysis:
    7.3.1 Water. Same as in 7.1.1.
    7.3.2 Fuming Sulfuric Acid. 15 to 18 percent by weight free sulfur 
trioxide. HANDLE WITH CAUTION.
    7.3.3 Phenol. White solid.
    7.3.4 Sulfuric Acid. Concentrated, 95 percent minimum assay.
    7.3.5 Potassium Nitrate (KNO3). Dried at 105 to 110 
[deg]C (221 to 230 [deg]F) for a minimum of 2 hours just prior to 
preparation of standard solution.
    7.3.6 Standard KNO3 Solution. Dissolve exactly 2.198 g of 
dried KNO3 in water, and dilute to 1 liter with water in a 
1000-ml volumetric flask.
    7.3.7 Working Standard KNO3 Solution. Dilute 10 ml of the 
standard solution to 100 ml with water. One ml of the working standard 
solution is equivalent to 100 [micro]g nitrogen dioxide 
(NO2).
    7.3.8 Phenoldisulfonic Acid Solution. Dissolve 25 g of pure white 
phenol solid in 150 ml concentrated sulfuric acid on a steam bath. Cool, 
add 75 ml fuming sulfuric acid (15 to 18 percent by weight free sulfur 
trioxide--HANDLE WITH CAUTION), and heat at 100 [deg]C (212 [deg]F) for 
2 hours. Store in a dark, stoppered bottle.
    7.3.9 Concentrated Ammonium Hydroxide.
    7.3.10 Quality Assurance Audit Samples. When making compliance 
determinations, and upon availability, audit samples may be obtained 
from the appropriate EPA Regional Office or from the responsible 
enforcement authority.

    Note: The responsible enforcement authority should be notified at 
least 30 days prior to the test date to allow sufficient time for sample 
delivery.

       8.0 Sample Collection, Preservation, Storage and Transport

    8.1 Sample Collection.
    8.1.1 Flask Volume. The volume of the collection flask and flask 
valve combination must be known prior to sampling. Assemble the flask 
and flask valve, and fill with water to the stopcock. Measure the volume 
of water to 10 ml. Record this volume on the 
flask.
    8.1.2 Pipette 25 ml of absorbing solution into a sample flask, 
retaining a sufficient quantity for use in preparing the calibration 
standards. Insert the flask valve stopper into the flask with the valve 
in the ``purge'' position. Assemble the sampling train as shown in 
Figure 7-1, and place the probe at the sampling point. Make sure that 
all fittings are tight and leak-free, and that all ground glass joints 
have been greased properly with a high-vacuum, high temperature 
chlorofluorocarbon-based stopcock grease. Turn the flask valve and the 
pump valve to their ``evacuate'' positions. Evacuate the flask to 75 mm 
(3 in.) Hg absolute pressure, or less. Evacuation to a pressure 
approaching the vapor pressure of water at the existing temperature is 
desirable. Turn the pump valve to its ``vent'' position, and turn off 
the pump. Check for leakage by observing the manometer for any pressure 
fluctuation. (Any variation greater than 10 mm (0.4 in.) Hg over a 
period of 1 minute is not acceptable, and the flask is not to be used 
until the leakage problem is corrected. Pressure in the flask is not to 
exceed 75 mm (3 in.) Hg absolute at the time sampling is commenced.) 
Record the volume of the flask and valve (Vf), the flask 
temperature (Ti), and the barometric pressure. Turn the flask 
valve counterclockwise to its ``purge'' position, and do the same with 
the pump valve. Purge the probe and the vacuum tube using the squeeze 
bulb. If condensation occurs in the probe and the flask valve area, heat 
the probe, and purge until the condensation disappears. Next, turn the 
pump valve to its ``vent'' position. Turn the flask valve clockwise to 
its ``evacuate'' position, and record the difference in the mercury 
levels in the manometer. The absolute internal pressure in the flask 
(Pi) is equal to the barometric pressure less the manometer 
reading. Immediately turn the flask valve to the ``sample'' position, 
and permit the gas to enter the flask until pressures in the flask and 
sample line (i.e., duct, stack) are equal. This will usually require 
about 15 seconds; a longer period indicates a plug in the probe, which 
must be corrected before sampling is continued. After collecting the 
sample, turn the flask valve to

[[Page 267]]

its ``purge'' position, and disconnect the flask from the sampling 
train.
    8.1.3 Shake the flask for at least 5 minutes.
    8.1.4 If the gas being sampled contains insufficient oxygen for the 
conversion of NO to NO2 (e.g., an applicable subpart of the 
standards may require taking a sample of a calibration gas mixture of NO 
in N2), then introduce oxygen into the flask to permit this 
conversion. Oxygen may be introduced into the flask by one of three 
methods: (1) Before evacuating the sampling flask, flush with pure 
cylinder oxygen, then evacuate flask to 75 mm (3 in.) Hg absolute 
pressure or less; or (2) inject oxygen into the flask after sampling; or 
(3) terminate sampling with a minimum of 50 mm (2 in.) Hg vacuum 
remaining in the flask, record this final pressure, and then vent the 
flask to the atmosphere until the flask pressure is almost equal to 
atmospheric pressure.
    8.2 Sample Recovery. Let the flask sit for a minimum of 16 hours, 
and then shake the contents for 2 minutes.
    8.2.1 Connect the flask to a mercury filled U-tube manometer. Open 
the valve from the flask to the manometer, and record the flask 
temperature (Tf), the barometric pressure, and the difference 
between the mercury levels in the manometer. The absolute internal 
pressure in the flask (Pf) is the barometric pressure less 
the manometer reading. Transfer the contents of the flask to a leak-free 
polyethylene bottle. Rinse the flask twice with 5 ml portions of water, 
and add the rinse water to the bottle. Adjust the pH to between 9 and 12 
by adding 1 N NaOH, dropwise (about 25 to 35 drops). Check the pH by 
dipping a stirring rod into the solution and then touching the rod to 
the pH test paper. Remove as little material as possible during this 
step. Mark the height of the liquid level so that the container can be 
checked for leakage after transport. Label the container to identify 
clearly its contents. Seal the container for shipping.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1..........................  Spectrophotometer  Ensure linearity of
                                 calibration.       spectrophotometer
                                                    response to
                                                    standards.
11.4..........................  Audit sample       Evaluate analytical
                                 analysis.          technique,
                                                    preparation of
                                                    standards.
------------------------------------------------------------------------

                  10.0 Calibration and Standardization

    10.1 Spectrophotometer.
    10.1.1 Optimum Wavelength Determination.
    10.1.1.1 Calibrate the wavelength scale of the spectrophotometer 
every 6 months. The calibration may be accomplished by using an energy 
source with an intense line emission such as a mercury lamp, or by using 
a series of glass filters spanning the measuring range of the 
spectrophotometer. Calibration materials are available commercially and 
from the National Institute of Standards and Technology. Specific 
details on the use of such materials should be supplied by the vendor; 
general information about calibration techniques can be obtained from 
general reference books on analytical chemistry. The wavelength scale of 
the spectrophotometer must read correctly within 5 nm at all calibration 
points; otherwise, repair and recalibrate the spectrophotometer. Once 
the wavelength scale of the spectrophotometer is in proper calibration, 
use 410 nm as the optimum wavelength for the measurement of the 
absorbance of the standards and samples.
    10.1.1.2 Alternatively, a scanning procedure may be employed to 
determine the proper measuring wavelength. If the instrument is a 
double-beam spectrophotometer, scan the spectrum between 400 and 415 nm 
using a 200 [micro]g NO2 standard solution in the sample cell 
and a blank solution in the reference cell. If a peak does not occur, 
the spectrophotometer is probably malfunctioning and should be repaired. 
When a peak is obtained within the 400 to 415 nm range, the wavelength 
at which this peak occurs shall be the optimum wavelength for the 
measurement of absorbance of both the standards and the samples. For a 
single-beam spectrophotometer, follow the scanning procedure described 
above, except scan separately the blank and standard solutions. The 
optimum wavelength shall be the wavelength at which the maximum 
difference in absorbance between the standard and the blank occurs.
    10.1.2 Determination of Spectrophotometer Calibration Factor 
Kc. Add 0 ml, 2.0 ml, 4.0 ml, 6.0 ml, and 8.0 ml of the 
KNO3 working standard solution (1 ml=100 [micro]g 
NO2) to a series of five 50-ml volumetric flasks. To each 
flask, add 25 ml of absorbing solution and 10 ml water. Add 1 N NaOH to 
each flask until the pH is between 9 and 12 (about 25 to 35 drops). 
Dilute to the mark with water. Mix thoroughly, and pipette a 25-ml 
aliquot of each solution into a separate porcelain evaporating dish. 
Beginning with the evaporation step, follow the analysis procedure of 
Section 11.2 until the solution has been transferred to the 100-ml 
volumetric flask and diluted to the mark. Measure the absorbance of each 
solution at the optimum wavelength as determined in Section 10.2.1. This 
calibration procedure must be repeated on

[[Page 268]]

each day that samples are analyzed. Calculate the spectrophotometer 
calibration factor as shown in Section 12.2.
    10.1.3 Spectrophotometer Calibration Quality Control. Multiply the 
absorbance value obtained for each standard by the Kc factor 
(reciprocal of the least squares slope) to determine the distance each 
calibration point lies from the theoretical calibration line. The 
difference between the calculated concentration values and the actual 
concentrations (i.e., 100, 200, 300, and 400 [micro]g NO2) 
should be less than 7 percent for all standards.
    10.2 Barometer. Calibrate against a mercury barometer.
    10.3 Temperature Gauge. Calibrate dial thermometers against mercury-
in-glass thermometers.
    10.4 Vacuum Gauge. Calibrate mechanical gauges, if used, against a 
mercury manometer such as that specified in Section 6.1.6.
    10.5 Analytical Balance. Calibrate against standard weights.

                       11.0 Analytical Procedures

    11.1 Sample Loss Check. Note the level of the liquid in the 
container, and confirm whether any sample was lost during shipment. Note 
this on the analytical data sheet. If a noticeable amount of leakage has 
occurred, either void the sample or use methods, subject to the approval 
of the Administrator, to correct the final results.
    11.2 Sample Preparation. Immediately prior to analysis, transfer the 
contents of the shipping container to a 50 ml volumetric flask, and 
rinse the container twice with 5 ml portions of water. Add the rinse 
water to the flask, and dilute to mark with water; mix thoroughly. 
Pipette a 25-ml aliquot into the porcelain evaporating dish. Return any 
unused portion of the sample to the polyethylene storage bottle. 
Evaporate the 25-ml aliquot to dryness on a steam bath, and allow to 
cool. Add 2 ml phenoldisulfonic acid solution to the dried residue, and 
triturate thoroughly with a polyethylene policeman. Make sure the 
solution contacts all the residue. Add 1 ml water and 4 drops of 
concentrated sulfuric acid. Heat the solution on a steam bath for 3 
minutes with occasional stirring. Allow the solution to cool, add 20 ml 
water, mix well by stirring, and add concentrated ammonium hydroxide, 
dropwise, with constant stirring, until the pH is 10 (as determined by 
pH paper). If the sample contains solids, these must be removed by 
filtration (centrifugation is an acceptable alternative, subject to the 
approval of the Administrator) as follows: Filter through Whatman No. 41 
filter paper into a 100-ml volumetric flask. Rinse the evaporating dish 
with three 5-ml portions of water. Filter these three rinses. Wash the 
filter with at least three 15-ml portions of water. Add the filter 
washings to the contents of the volumetric flask, and dilute to the mark 
with water. If solids are absent, the solution can be transferred 
directly to the 100-ml volumetric flask and diluted to the mark with 
water.
    11.3 Sample Analysis. Mix the contents of the flask thoroughly, and 
measure the absorbance at the optimum wavelength used for the standards 
(Section 10.2.1), using the blank solution as a zero reference. Dilute 
the sample and the blank with equal volumes of water if the absorbance 
exceeds A4, the absorbance of the 400-[micro]g NO2 
standard (see Section 10.2.2).
    11.4 Audit Sample Analysis.
    11.4.1 When the method is used to analyze samples to demonstrate 
compliance with a source emission regulation, an audit sample must be 
analyzed, subject to availability.
    11.4.2 Concurrently analyze the audit sample and the compliance 
samples in the same manner to evaluate the technique of the analyst and 
the standards preparation.
    11.4.3 The same analyst, analytical reagents, and analytical system 
must be used for the compliance samples and the audit sample. If this 
condition is met, duplicate auditing of subsequent compliance analyses 
for the same enforcement agency within a 30-day period is waived. An 
audit sample set may not be used to validate different sets of 
compliance samples under the jurisdiction of separate enforcement 
agencies, unless prior arrangements have been made with both enforcement 
agencies.
    11.5 Audit Sample Results.
    11.5.1 Calculate the audit sample concentrations and submit results 
using the instructions provided with the audit samples.
    11.5.2 Report the results of the audit samples and the compliance 
determination samples along with their identification numbers, and the 
analyst's name to the responsible enforcement authority. Include this 
information with reports of any subsequent compliance analyses for the 
same enforcement authority during the 30-day period.
    11.5.3 The concentrations of the audit samples obtained by the 
analyst must agree within 5 percent of the actual concentration. If the 
5 percent specification is not met, reanalyze the compliance and audit 
samples, and include initial and reanalysis values in the test report.
    11.5.4 Failure to meet the 5-percent specification may require 
retests until the audit problems are resolved. However, if the audit 
results do not affect the compliance or noncompliance status of the 
affected facility, the Administrator may waive the reanalysis 
requirement, further audits, or retests and accept the results of the 
compliance test. While steps are being taken to resolve audit analysis 
problems, the Administrator may also choose to use the data to determine 
the compliance or noncompliance status of the affected facility.

[[Page 269]]

                   12.0 Data Analysis and Calculations

    Carry out the calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculations.
    12.1 Nomenclature.

A=Absorbance of sample.
A1=Absorbance of the 100-[micro]g NO2 standard.
A2=Absorbance of the 200-[micro]g NO2 standard.
A3=Absorbance of the 300-[micro]g NO2 standard.
A4=Absorbance of the 400-[micro]g NO2 standard.
C=Concentration of NOX as NO2, dry basis, 
corrected to standard conditions, mg/dsm\3\ (lb/dscf).
Cd=Determined audit sample concentration, mg/dscm.
Ca=Actual audit sample concentration, mg/dscm.
F=Dilution factor (i.e., 25/5, 25/10, etc., required only if sample 
dilution was needed to reduce the absorbance into the range of the 
calibration).
Kc=Spectrophotometer calibration factor.
m=Mass of NOX as NO2 in gas sample, [micro]g.
Pf=Final absolute pressure of flask, mm Hg (in. Hg).
Pi=Initial absolute pressure of flask, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
RE=Relative error for QA audit samples, percent.
Tf=Final absolute temperature of flask, [deg]K ([deg]R).
Ti=Initial absolute temperature of flask, [deg]K ([deg]R).
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Vsc=Sample volume at standard conditions (dry basis), ml.
Vf=Volume of flask and valve, ml.
Va=Volume of absorbing solution, 25 ml.
    12.2 Spectrophotometer Calibration Factor.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.200
    
    12.3 Sample Volume, Dry Basis, Corrected to Standard Conditions.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.201
    
Where:

K1=0.3858 [deg]K/mm Hg for metric units,
K1=17.65 [deg]R/in. Hg for English units.

    12.4 Total [micro]g NO2 per sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.202
    
Where:
2=50/25, the aliquot factor.

    Note: If other than a 25-ml aliquot is used for analysis, the factor 
2 must be replaced by a corresponding factor.

    12.5 Sample Concentration, Dry Basis, Corrected to Standard 
Conditions.
[GRAPHIC] [TIFF OMITTED] TR17OC00.203

Where:

K2=10\3\ (mg/m\3\)/([micro]g/ml) for metric units,
K2=6.242 x 10-5 (lb/scf)/([micro]g/ml) for English 
units.
12.6 Relative Error for QA Audit Samples.
[GRAPHIC] [TIFF OMITTED] TR17OC00.204

                         13.0 Method Performance

    13.1 Range. The analytical range of the method has been determined 
to be 2 to 400 milligrams NOX (as NO2) per dry 
standard

[[Page 270]]

cubic meter, without having to dilute the sample.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Standard Methods of Chemical Analysis. 6th ed. New York, D. Van 
Nostrand Co., Inc. 1962. Vol. 1, pp. 329-330.
    2. Standard Method of Test for Oxides of Nitrogen in Gaseous 
Combustion Products (Phenoldisulfonic Acid Procedure). In: 1968 Book of 
ASTM Standards, Part 26. Philadelphia, PA. 1968. ASTM Designation D 
1608-60, pp. 725-729.
    3. Jacob, M.B. The Chemical Analysis of Air Pollutants. New York. 
Interscience Publishers, Inc. 1960. Vol. 10, pp. 351-356.
    4. Beatty, R.L., L.B. Berger, and H.H. Schrenk. Determination of 
Oxides of Nitrogen by the Phenoldisulfonic Acid Method. Bureau of Mines, 
U.S. Dept. of Interior. R.I. 3687. February 1943.
    5. Hamil, H.F. and D.E. Camann. Collaborative Study of Method for 
the Determination of Nitrogen Oxide Emissions from Stationary Sources 
(Fossil Fuel-Fired Steam Generators). Southwest Research Institute 
Report for Environmental Protection Agency. Research Triangle Park, NC. 
October 5, 1973.
    6. Hamil, H.F. and R.E. Thomas. Collaborative Study of Method for 
the Determination of Nitrogen Oxide Emissions from Stationary Sources 
(Nitric Acid Plants). Southwest Research Institute Report for 
Environmental Protection Agency. Research Triangle Park, NC. May 8, 
1974.
    7. Stack Sampling Safety Manual (Draft). U.S. Environmental 
Protection Agency, Office of Air Quality Planning and Standards, 
Research Triangle Park, NC. September 1978.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 271]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.205

  Method 7A--Determination of Nitrogen Oxide Emissions From Stationary 
                  Sources (Ion Chromatographic Method)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 3, Method 5, and 
Method 7.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 272]]



------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX), as NO2,
 including:
    Nitric oxide (NO).............      10102-43-9  ....................
    Nitrogen dioxide (NO2)........      10102-44-0  65-655 ppmv
------------------------------------------------------------------------

    1.2 Applicability. This method is applicable for the determination 
of NOX emissions from stationary sources.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    A grab sample is collected in an evacuated flask containing a dilute 
sulfuric acid-hydrogen peroxide absorbing solution. The nitrogen oxides, 
excluding nitrous oxide (N2O), are oxidized to nitrate and 
measured by ion chromatography.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Biased results have been observed when sampling under conditions of 
high sulfur dioxide concentrations (above 2000 ppm).

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This test method may not address all of the safety problems 
associated with its use. It is the responsibility of the user of this 
test method to establish appropriate safety and health practices and to 
determine the applicability of regulatory limitations prior to 
performing this test method.
    5.2 Corrosive reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burns as thermal 
burns.
    5.2.1 Hydrogen Peroxide (H2O2). Irritating to 
eyes, skin, nose, and lungs.
    5.2.2 Sulfuric Acid (H2SO4). Rapidly 
destructive to body tissue. Will cause third degree burns. Eye damage 
may result in blindness. Inhalation may be fatal from spasm of the 
larynx, usually within 30 minutes. May cause lung tissue damage with 
edema. 3 mg/m\3\ will cause lung damage in uninitiated. 1 mg/m\3\ for 8 
hours will cause lung damage or, in higher concentrations, death. 
Provide ventilation to limit inhalation. Reacts violently with metals 
and organics.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. Same as in Method 7, Section 6.1.
    6.2 Sample Recovery. Same as in Method 7, Section 6.2, except the 
stirring rod and pH paper are not needed.
    6.3 Analysis. For the analysis, the following equipment and supplies 
are required. Alternative instrumentation and procedures will be allowed 
provided the calibration precision requirement in Section 10.1.2 and 
audit accuracy requirement in Section 11.3 can be met.
    6.3.1 Volumetric Pipets. Class A;1-, 2-, 4-, 5-ml (two for the set 
of standards and one per sample), 6-, 10-, and graduated 5-ml sizes.
    6.3.2 Volumetric Flasks. 50-ml (two per sample and one per 
standard), 200-ml, and 1-liter sizes.
    6.3.3 Analytical Balance. To measure to within 0.1 mg.
    6.3.4 Ion Chromatograph. The ion chromatograph should have at least 
the following components:
    6.3.4.1 Columns. An anion separation or other column capable of 
resolving the nitrate ion from sulfate and other species present and a 
standard anion suppressor column (optional). Suppressor columns are 
produced as proprietary items; however, one can be produced in the 
laboratory using the resin available from BioRad Company, 32nd and 
Griffin Streets, Richmond, California. Peak resolution can be optimized 
by varying the eluent strength or column flow rate, or by experimenting 
with alternative columns that may offer more efficient separation. When 
using guard columns with the stronger reagent to protect the separation 
column, the analyst should allow rest periods between injection 
intervals to purge possible sulfate buildup in the guard column.
    6.3.4.2 Pump. Capable of maintaining a steady flow as required by 
the system.
    6.3.4.3 Flow Gauges. Capable of measuring the specified system flow 
rate.
    6.3.4.4 Conductivity Detector.
    6.3.4.5 Recorder. Compatible with the output voltage range of the 
detector.

                       7.0 Reagents and Standards

    Unless otherwise indicated, it is intended that all reagents conform 
to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.
    7.1 Sample Collection. Same as Method 7, Section 7.1.
    7.2 Sample Recovery. Same as Method 7, Section 7.1.1.

[[Page 273]]

    7.3 Analysis. The following reagents and standards are required for 
analysis:
    7.3.1 Water. Same as Method 7, Section 7.1.1.
    7.3.2 Stock Standard Solution, 1 mg NO2/ml. Dry an 
adequate amount of sodium nitrate (NaNO3) at 105 to 110 
[deg]C (221 to 230 [deg]F) for a minimum of 2 hours just before 
preparing the standard solution. Then dissolve exactly 1.847 g of dried 
NaNO3 in water, and dilute to l liter in a volumetric flask. 
Mix well. This solution is stable for 1 month and should not be used 
beyond this time.
    7.3.3 Working Standard Solution, 25 [micro]g/ml. Dilute 5 ml of the 
standard solution to 200 ml with water in a volumetric flask, and mix 
well.
    7.3.4 Eluent Solution. Weigh 1.018 g of sodium carbonate 
(Na2CO3) and 1.008 g of sodium bicarbonate 
(NaHCO3), and dissolve in 4 liters of water. This solution is 
0.0024 M Na2CO3/0.003 M NaHCO3. Other 
eluents appropriate to the column type and capable of resolving nitrate 
ion from sulfate and other species present may be used.
    7.3.5 Quality Assurance Audit Samples. Same as Method 7, Section 
7.3.8.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sampling. Same as in Method 7, Section 8.1.
    8.2 Sample Recovery. Same as in Method 7, Section 8.2, except delete 
the steps on adjusting and checking the pH of the sample. Do not store 
the samples more than 4 days between collection and analysis.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1..........................  Ion chromatograph  Ensure linearity of
                                 calibration.       ion chromatograph
                                                    response to
                                                    standards.
11.3..........................  Audit sample       Evaluate analytical
                                 analysis.          technique,
                                                    preparation of
                                                    standards.
------------------------------------------------------------------------

                  10.0 Calibration and Standardizations

    10.1 Ion Chromatograph.
    10.1.1 Determination of Ion Chromatograph Calibration Factor S. 
Prepare a series of five standards by adding 1.0, 2.0, 4.0, 6.0, and 
10.0 ml of working standard solution (25 [micro]g/ml) to a series of 
five 50-ml volumetric flasks. (The standard masses will equal 25, 50, 
100, 150, and 250 [micro]g.) Dilute each flask to the mark with water, 
and mix well. Analyze with the samples as described in Section 11.2, and 
subtract the blank from each value. Prepare or calculate a linear 
regression plot of the standard masses in [micro]g (x-axis) versus their 
peak height responses in millimeters (y-axis). (Take peak height 
measurements with symmetrical peaks; in all other cases, calculate peak 
areas.) From this curve, or equation, determine the slope, and calculate 
its reciprocal to denote as the calibration factor, S.
    10.1.2 Ion Chromatograph Calibration Quality Control. If any point 
on the calibration curve deviates from the line by more than 7 percent 
of the concentration at that point, remake and reanalyze that standard. 
This deviation can be determined by multiplying S times the peak height 
response for each standard. The resultant concentrations must not differ 
by more than 7 percent from each known standard mass (i.e., 25, 50, 100, 
150, and 250 [micro]g).
    10.2 Conductivity Detector. Calibrate according to manufacturer's 
specifications prior to initial use.
    10.3 Barometer. Calibrate against a mercury barometer.
    10.4 Temperature Gauge. Calibrate dial thermometers against mercury-
in-glass thermometers.
    10.5 Vacuum Gauge. Calibrate mechanical gauges, if used, against a 
mercury manometer such as that specified in Section 6.1.6 of Method 7.
    10.6 Analytical Balance. Calibrate against standard weights.

                       11.0 Analytical Procedures

    11.1 Sample Preparation.
    11.1.1 Note on the analytical data sheet, the level of the liquid in 
the container, and whether any sample was lost during shipment. If a 
noticeable amount of leakage has occurred, either void the sample or use 
methods, subject to the approval of the Administrator, to correct the 
final results. Immediately before analysis, transfer the contents of the 
shipping container to a 50-ml volumetric flask, and rinse the container 
twice with 5 ml portions of water. Add the rinse water to the flask, and 
dilute to the mark with water. Mix thoroughly.
    11.1.2 Pipet a 5-ml aliquot of the sample into a 50-ml volumetric 
flask, and dilute to the mark with water. Mix thoroughly. For each set 
of determinations, prepare a reagent blank by diluting 5 ml of absorbing 
solution to 50 ml with water. (Alternatively, eluent solution may be 
used instead of water in all sample, standard, and blank dilutions.)
    11.2 Analysis.
    11.2.1 Prepare a standard calibration curve according to Section 
10.1.1. Analyze the set of standards followed by the set of samples 
using the same injection volume for

[[Page 274]]

both standards and samples. Repeat this analysis sequence followed by a 
final analysis of the standard set. Average the results. The two sample 
values must agree within 5 percent of their mean for the analysis to be 
valid. Perform this duplicate analysis sequence on the same day. Dilute 
any sample and the blank with equal volumes of water if the 
concentration exceeds that of the highest standard.
    11.2.2 Document each sample chromatogram by listing the following 
analytical parameters: injection point, injection volume, nitrate and 
sulfate retention times, flow rate, detector sensitivity setting, and 
recorder chart speed.
    11.3 Audit Sample Analysis. Same as Method 7, Section 11.4.

                   12.0 Data Analysis and Calculations

    Carry out the calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculations.
    12.1 Sample Volume. Calculate the sample volume Vsc (in ml), on a 
dry basis, corrected to standard conditions, using Equation 7-2 of 
Method 7.
    12.2 Sample Concentration of NOX as NO2.
    12.2.1 Calculate the sample concentration C (in mg/dscm) as follows:
    [GRAPHIC] [TIFF OMITTED] TR17OC00.206
    
Where:

H=Sample peak height, mm.
S=Calibration factor, [micro]g/mm.
F=Dilution factor (required only if sample dilution was needed to reduce 
the concentration into the range of calibration), dimensionless.
10\4\=1:10 dilution times conversion factor of: (mg/10\3\ 
[micro]g)(10\6\ ml/m\3\).

    12.2.2 If desired, the concentration of NO2 may be 
calculated as ppm NO2 at standard conditions as follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.207

Where:

0.5228=ml/mg NO2.

                         13.0 Method Performance

    13.1 Range. The analytical range of the method is from 125 to 1250 
mg NOX/m\3\ as NO2 (65 to 655 ppmv), and higher 
concentrations may be analyzed by diluting the sample. The lower 
detection limit is approximately 19 mg/m\3\ (10 ppmv), but may vary 
among instruments.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Mulik, J.D., and E. Sawicki. Ion Chromatographic Analysis of 
Environmental Pollutants. Ann Arbor, Ann Arbor Science Publishers, Inc. 
Vol. 2, 1979.
    2. Sawicki, E., J.D. Mulik, and E. Wittgenstein. Ion Chromatographic 
Analysis of Environmental Pollutants. Ann Arbor, Ann Arbor Science 
Publishers, Inc. Vol. 1. 1978.
    3. Siemer, D.D. Separation of Chloride and Bromide from Complex 
Matrices Prior to Ion Chromatographic Determination. Anal. Chem. 
52(12):1874-1877. October 1980.
    4. Small, H., T.S. Stevens, and W.C. Bauman. Novel Ion Exchange 
Chromatographic Method Using Conductimetric Determination. Anal. Chem. 
47(11):1801. 1975.
    5. Yu, K.K., and P.R. Westlin. Evaluation of Reference Method 7 
Flask Reaction Time. Source Evaluation Society Newsletter. 4(4). 
November 1979. 10 pp.
    6. Stack Sampling Safety Manual (Draft). U.S. Environmental 
Protection Agency, Office of Air Quality Planning and Standard, Research 
Triangle Park, NC. September 1978.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

  Method 7B--Determination of Nitrogen Oxide Emissions From Stationary 
             Sources (Ultraviolet Spectrophotometric Method)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 5, and Method 7.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX), as NO2,
 including:
    Nitric oxide (NO).............      10102-43-9
    Nitrogen dioxide (NO2)........      10102-44-0  30-786 ppmv
------------------------------------------------------------------------


[[Page 275]]

    1.2 Applicability. This method is applicable for the determination 
of NOX emissions from nitric acid plants.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    2.1 A grab sample is collected in an evacuated flask containing a 
dilute sulfuric acid-hydrogen peroxide absorbing solution; the 
NOX, excluding nitrous oxide (N2O), are measured 
by ultraviolet spectrophotometry.

                        3.0 Definition [Reserved]

                      4.0 Interferences [Reserved]

                               5.0 Safety

    5.1 This method may involve hazardous materials, operations, and 
equipment. This test method may not address all of the safety problems 
associated with its use. It is the responsibility of the user of this 
test method to establish appropriate safety and health practices and to 
determine the applicability of regulatory limitations prior to 
performing this test method.
    5.2 Corrosive reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burn as thermal burn.
    5.2.1 Hydrogen Peroxide (H2O2). Irritating to 
eyes, skin, nose, and lungs.
    5.2.2 Sodium Hydroxide (NaOH). Causes severe damage to eyes and 
skin. Inhalation causes irritation to nose, throat, and lungs. Reacts 
exothermically with limited amounts of water.
    5.2.3 Sulfuric Acid (H2SO4). Rapidly 
destructive to body tissue. Will cause third degree burns. Eye damage 
may result in blindness. Inhalation may be fatal from spasm of the 
larynx, usually within 30 minutes. May cause lung tissue damage with 
edema. 3 mg/m\3\ will cause lung damage in uninitiated. 1 mg/m\3\ for 8 
hours will cause lung damage or, in higher concentrations, death. 
Provide ventilation to limit inhalation. Reacts violently with metals 
and organics.

                       6.0 Equipment and Supplies

    6.1 Sample Collection. Same as Method 7, Section 6.1.
    6.2 Sample Recovery. The following items are required for sample 
recovery:
    6.2.1 Wash Bottle. Polyethylene or glass.
    6.2.2 Volumetric Flasks. 100-ml (one for each sample).
    6.3 Analysis. The following items are required for analysis:
    6.3.1 Volumetric Pipettes. 5-, 10-, 15-, and 20-ml to make standards 
and sample dilutions.
    6.3.2 Volumetric Flasks. 1000- and 100-ml for preparing standards 
and dilution of samples.
    6.3.3 Spectrophotometer. To measure ultraviolet absorbance at 210 
nm.
    6.3.4 Analytical Balance. To measure to within 0.1 mg.

                       7.0 Reagents and Standards

    Note: Unless otherwise indicated, all reagents are to conform to the 
specifications established by the Committee on Analytical Reagents of 
the American Chemical Society, where such specifications are available. 
Otherwise, use the best available grade.

    7.1 Sample Collection. Same as Method 7, Section 7.1. It is 
important that the amount of hydrogen peroxide in the absorbing solution 
not be increased. Higher concentrations of peroxide may interfere with 
sample analysis.
    7.2 Sample Recovery. Same as Method 7, Section 7.2.
    7.3 Analysis. Same as Method 7, Sections 7.3.1, 7.3.3, and 7.3.4, 
with the addition of the following:
    7.3.1 Working Standard KNO3 Solution. Dilute 10 ml of the 
standard solution to 1000 ml with water. One milliliter of the working 
standard is equivalent to 10 [micro]g NO2.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Sample Collection. Same as Method 7, Section 8.1.
    8.2 Sample Recovery.
    8.2.1 Let the flask sit for a minimum of 16 hours, and then shake 
the contents for 2 minutes.
    8.2.2 Connect the flask to a mercury filled U-tube manometer. Open 
the valve from the flask to the manometer, and record the flask 
temperature (Tf), the barometric pressure, and the difference 
between the mercury levels in the manometer. The absolute internal 
pressure in the flask (Pf) is the barometric pressure less 
the manometer reading.
    8.2.3 Transfer the contents of the flask to a leak-free wash bottle. 
Rinse the flask three times with 10-ml portions of water, and add to the 
bottle. Mark the height of the liquid level so that the container can be 
checked for leakage after transport. Label the container to identify 
clearly its contents. Seal the container for shipping.

                           9.0 Quality Control

[[Page 276]]



------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
10.1..........................  Spectrophometer    Ensures linearity of
                                 calibration.       spectrophotometer
                                                    response to
                                                    standards.
11.4..........................  Audit sample       Evaluates analytical
                                 analysis.          technique and
                                                    preparation of
                                                    standards.
------------------------------------------------------------------------

                  10.0 Calibration and Standardizations

    Same as Method 7, Sections 10.2 through 10.5, with the addition of 
the following:
    10.1 Determination of Spectrophotometer Standard Curve. Add 0 ml, 5 
ml, 10 ml, 15 ml, and 20 ml of the KNO3 working standard 
solution (1 ml=10 [micro]g NO2) to a series of five 100-ml 
volumetric flasks. To each flask, add 5 ml of absorbing solution. Dilute 
to the mark with water. The resulting solutions contain 0.0, 50, 100, 
150, and 200 [micro]g NO2, respectively. Measure the 
absorbance by ultraviolet spectrophotometry at 210 nm, using the blank 
as a zero reference. Prepare a standard curve plotting absorbance vs. 
[micro]g NO2.

    Note: If other than a 20-ml aliquot of sample is used for analysis, 
then the amount of absorbing solution in the blank and standards must be 
adjusted such that the same amount of absorbing solution is in the blank 
and standards as is in the aliquot of sample used.

    10.1.1 Calculate the spectrophotometer calibration factor as 
follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.208

Where:

Mi=Mass of NO2 in standard i, [micro]g.
Ai=Absorbance of NO2 standard i.
n=Total number of calibration standards.

    10.1.2 For the set of calibration standards specified here, Equation 
7B-1 simplifies to the following:
[GRAPHIC] [TIFF OMITTED] TR17OC00.209

    10.2 Spectrophotometer Calibration Quality Control. Multiply the 
absorbance value obtained for each standard by the Kc factor 
(reciprocal of the least squares slope) to determine the distance each 
calibration point lies from the theoretical calibration line. The 
difference between the calculated concentration values and the actual 
concentrations (i.e., 50, 100, 150, and 200 [micro]g NO2) 
should be less than 7 percent for all standards.

                       11.0 Analytical Procedures

    11.1 Sample Loss Check. Note the level of the liquid in the 
container, and confirm whether any sample was lost during shipment. Note 
this on the analytical data sheet. If a noticeable amount of leakage has 
occurred, either void the sample or use methods, subject to the approval 
of the Administrator, to correct the final results.
    11.2 Sample Preparation. Immediately prior to analysis, transfer the 
contents of the shipping container to a 100-ml volumetric flask, and 
rinse the container twice with 5-ml portions of water. Add the rinse 
water to the flask, and dilute to mark with water.
    11.3 Sample Analysis. Mix the contents of the flask thoroughly and 
pipette a 20 ml-aliquot of sample into a 100-ml volumetric flask. Dilute 
to the mark with water. Using the blank as zero reference, read the 
absorbance of the sample at 210 nm.
    11.4 Audit Sample Analysis. Same as Method 7, Section 11.4, except 
that a set of audit samples must be analyzed with each set of compliance 
samples or once per analysis day, or once per week when averaging 
continuous samples.

                   12.0 Data Analysis and Calculations

    Same as Method 7, Section 12.0, except replace Section 12.3 with the 
following:
    12.1 Total [micro]g NO2 Per Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.211
    
Where:

5=100/20, the aliquot factor.

    Note: If other than a 20-ml aliquot is used for analysis, the factor 
5 must be replaced by a corresponding factor.

                         13.0 Method Performance

    13.1 Range. The analytical range of the method as outlined has been 
determined to be 57 to 1500 milligrams NOX (as 
NO2) per dry

[[Page 277]]

standard cubic meter, or 30 to 786 parts per million by volume (ppmv) 
NOX.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. National Institute for Occupational Safety and Health. 
Recommendations for Occupational Exposure to Nitric Acid. In: 
Occupational Safety and Health Reporter. Washington, D.C. Bureau of 
National Affairs, Inc. 1976. p. 149.
    2. Rennie, P.J., A.M. Sumner, and F.B. Basketter. Determination of 
Nitrate in Raw, Potable, and Waste Waters by Ultraviolet 
Spectrophotometry. Analyst. 104:837. September 1979.

    17.0 Tables, Diagrams, Flowcharts, and Validation Data [Reserved]

  Method 7C--Determination of Nitrogen Oxide Emissions From Stationary 
           Sources (Alkaline Permanganate/Colorimetric Method)

    Note: This method does not include all of the specifications (e.g., 
equipment and supplies) and procedures (e.g., sampling and analytical) 
essential to its performance. Some material is incorporated by reference 
from other methods in this part. Therefore, to obtain reliable results, 
persons using this method should have a thorough knowledge of at least 
the following additional test methods: Method 1, Method 3, Method 6 and 
Method 7.

                        1.0 Scope and Application

    1.1 Analytes.

------------------------------------------------------------------------
              Analyte                   CAS no.          Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX), as NO2,
 including:
    Nitric oxide (NO).............      10102-43-9  ....................
    Nitrogen dioxide (NO2)........     10102-44-07  ppmv
------------------------------------------------------------------------

    1.2 Applicability. This method applies to the measurement of 
NOX emissions from fossil-fuel fired steam generators, 
electric utility plants, nitric acid plants, or other sources as 
specified in the regulations.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    An integrated gas sample is extracted from the stack and passed 
through impingers containing an alkaline potassium permanganate 
solution; NOX (NO + NO2) emissions are oxidized to 
NO2 and NO3. Then NO3-is 
reduced to NO2-with cadmium, and the 
NO2-is analyzed colorimetrically.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Possible interferents are sulfur dioxides (SO2) and 
ammonia (NH3).
    4.1 High concentrations of SO2 could interfere because 
SO2 consumes MnO4 (as does NOX) and, 
therefore, could reduce the NOX collection efficiency. 
However, when sampling emissions from a coal-fired electric utility 
plant burning 2.1 percent sulfur coal with no control of SO2 
emissions, collection efficiency was not reduced. In fact, calculations 
show that sampling 3000 ppm SO2 will reduce the 
MnO4 concentration by only 5 percent if all the 
SO2 is consumed in the first impinger.
    4.2 Ammonia (NH3) is slowly oxidized to 
NO3- by the absorbing solution. At 100 ppm 
NH3 in the gas stream, an interference of 6 ppm 
NOX (11 mg NO2/m\3\) was observed when the sample 
was analyzed 10 days after collection. Therefore, the method may not be 
applicable to plants using NH3 injection to control 
NOX emissions unless means are taken to correct the results. 
An equation has been developed to allow quantification of the 
interference and is discussed in Reference 5 of Section 16.0.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Corrosive Reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water for at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burns as thermal 
burns.
    5.2.1 Hydrochloric Acid (HCl). Highly toxic and corrosive. Causes 
severe damage to skin. Vapors are highly irritating to eyes, skin, nose, 
and lungs, causing severe damage. May cause bronchitis, pneumonia, or

[[Page 278]]

edema of lungs. Exposure to vapor concentrations of 0.13 to 0.2 percent 
can be lethal in minutes. Will react with metals, producing hydrogen.
    5.2.2 Oxalic Acid (COOH)2. Poisonous. Irritating to eyes, 
skin, nose, and throat.
    5.2.3 Sodium Hydroxide (NaOH). Causes severe damage to eye tissues 
and to skin. Inhalation causes irritation to nose, throat, and lungs. 
Reacts exothermically with small amounts of water.
    5.2.4 Potassium Permanganate (KMnO4). Caustic, strong 
oxidizer. Avoid bodily contact with.

                       6.0 Equipment and Supplies

    6.1 Sample Collection and Sample Recovery. A schematic of the Method 
7C sampling train is shown in Figure 7C-1, and component parts are 
discussed below. Alternative apparatus and procedures are allowed 
provided acceptable accuracy and precision can be demonstrated to the 
satisfaction of the Administrator.
    6.1.1 Probe. Borosilicate glass tubing, sufficiently heated to 
prevent water condensation and equipped with an in-stack or heated out-
of-stack filter to remove particulate matter (a plug of glass wool is 
satisfactory for this purpose). Stainless steel or Teflon tubing may 
also be used for the probe.
    6.1.2 Impingers. Three restricted-orifice glass impingers, having 
the specifications given in Figure 7C-2, are required for each sampling 
train. The impingers must be connected in series with leak-free glass 
connectors. Stopcock grease may be used, if necessary, to prevent 
leakage. (The impingers can be fabricated by a glass blower if not 
available commercially.)
    6.1.3 Glass Wool, Stopcock Grease, Drying Tube, Valve, Pump, 
Barometer, and Vacuum Gauge and Rotameter. Same as in Method 6, Sections 
6.1.1.3, 6.1.1.4, 6.1.1.6, 6.1.1.7, 6.1.1.8, 6.1.2, and 6.1.3, 
respectively.
    6.1.4 Rate Meter. Rotameter, or equivalent, accurate to within 2 
percent at the selected flow rate of between 400 and 500 ml/min (0.014 
to 0.018 cfm). For rotameters, a range of 0 to 1 liter/min (0 to 0.035 
cfm) is recommended.
    6.1.5 Volume Meter. Dry gas meter (DGM) capable of measuring the 
sample volume under the sampling conditions of 400 to 500 ml/min (0.014 
to 0.018 cfm) for 60 minutes within an accuracy of 2 percent.
    6.1.6 Filter. To remove NOX from ambient air, prepared by 
adding 20 g of 5-angstrom molecular sieve to a cylindrical tube (e.g., a 
polyethylene drying tube).
    6.1.7 Polyethylene Bottles. 1-liter, for sample recovery.
    6.1.8 Funnel and Stirring Rods. For sample recovery.
    6.2 Sample Preparation and Analysis.
    6.2.1 Hot Plate. Stirring type with 50- by 10-mm Teflon-coated 
stirring bars.
    6.2.2 Beakers. 400-, 600-, and 1000-ml capacities.
    6.2.3 Filtering Flask. 500-ml capacity with side arm.
    6.2.4 Buchner Funnel. 75-mm ID, with spout equipped with a 13-mm ID 
by 90-mm long piece of Teflon tubing to minimize possibility of 
aspirating sample solution during filtration.
    6.2.5 Filter Paper. Whatman GF/C, 7.0-cm diameter.
    6.2.6 Stirring Rods.
    6.2.7 Volumetric Flasks. 100-, 200- or 250-, 500-, and 1000-ml 
capacity.
    6.2.8 Watch Glasses. To cover 600- and 1000-ml beakers.
    6.2.9 Graduated Cylinders. 50- and 250-ml capacities.
    6.2.10 Pipettes. Class A.
    6.2.11 pH Meter. To measure pH from 0.5 to 12.0.
    6.2.12 Burette. 50-ml with a micrometer type stopcock. (The stopcock 
is Catalog No. 8225-t-05, Ace Glass, Inc., Post Office Box 996, 
Louisville, Kentucky 50201.) Place a glass wool plug in bottom of 
burette. Cut off burette at a height of 43 cm (17 in.) from the top of 
plug, and have a blower attach a glass funnel to top of burette such 
that the diameter of the burette remains essentially unchanged. Other 
means of attaching the funnel are acceptable.
    6.2.13 Glass Funnel. 75-mm ID at the top.
    6.2.14 Spectrophotometer. Capable of measuring absorbance at 540 nm; 
1-cm cells are adequate.
    6.2.15 Metal Thermometers. Bimetallic thermometers, range 0 to 150 
[deg]C (32 to 300 [deg]F).
    6.2.16 Culture Tubes. 20-by 150-mm, Kimax No. 45048.
    6.2.17 Parafilm ``M.'' Obtained from American Can Company, 
Greenwich, Connecticut 06830.
    6.2.18 CO2 Measurement Equipment. Same as in Method 3, 
Section 6.0.

                       7.0 Reagents and Standards

    Unless otherwise indicated, it is intended that all reagents conform 
to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.
    7.1 Sample Collection.
    7.1.1 Water. Deionized distilled to conform to ASTM Specification D 
1193-77 or 91 Type 3 (incorporated by reference--see Sec.  60.17).
    7.1.2 Potassium Permanganate, 4.0 Percent (w/w), Sodium Hydroxide, 
2.0 Percent (w/w) solution (KMnO4/NaOH solution). Dissolve 
40.0 g of KMnO4 and 20.0 g of NaOH in 940 ml of water.
    7.2 Sample Preparation and Analysis.
    7.2.1 Water. Same as in Section 7.1.1.
    7.2.2 Oxalic Acid Solution. Dissolve 48 g of oxalic acid 
[(COOH)2[middot]2H2O] in water, and dilute to 500 
ml. Do not heat the solution.

[[Page 279]]

    7.2.3 Sodium Hydroxide, 0.5 N. Dissolve 20 g of NaOH in water, and 
dilute to 1 liter.
    7.2.4 Sodium Hydroxide, 10 N. Dissolve 40 g of NaOH in water, and 
dilute to 100 ml.
    7.2.5 Ethylenediamine Tetraacetic Acid (EDTA) Solution, 6.5 percent 
(w/v). Dissolve 6.5 g of EDTA (disodium salt) in water, and dilute to 
100 ml. Dissolution is best accomplished by using a magnetic stirrer.
    7.2.6 Column Rinse Solution. Add 20 ml of 6.5 percent EDTA solution 
to 960 ml of water, and adjust the pH to between 11.7 and 12.0 with 0.5 
N NaOH.
    7.2.7 Hydrochloric Acid (HCl), 2 N. Add 86 ml of concentrated HCl to 
a 500 ml-volumetric flask containing water, dilute to volume, and mix 
well. Store in a glass-stoppered bottle.
    7.2.8 Sulfanilamide Solution. Add 20 g of sulfanilamide (melting 
point 165 to 167 [deg]C (329 to 333 [deg]F)) to 700 ml of water. Add, 
with mixing, 50 ml concentrated phosphoric acid (85 percent), and dilute 
to 1000 ml. This solution is stable for at least 1 month, if 
refrigerated.
    7.2.9 N-(1-Naphthyl)-Ethylenediamine Dihydrochloride (NEDA) 
Solution. Dissolve 0.5 g of NEDA in 500 ml of water. An aqueous solution 
should have one absorption peak at 320 nm over the range of 260 to 400 
nm. NEDA that shows more than one absorption peak over this range is 
impure and should not be used. This solution is stable for at least 1 
month if protected from light and refrigerated.
    7.2.10 Cadmium. Obtained from Matheson Coleman and Bell, 2909 
Highland Avenue, Norwood, Ohio 45212, as EM Laboratories Catalog No. 
2001. Prepare by rinsing in 2 N HCl for 5 minutes until the color is 
silver-grey. Then rinse the cadmium with water until the rinsings are 
neutral when tested with pH paper. CAUTION: H2 is liberated 
during preparation. Prepare in an exhaust hood away from any flame or 
combustion source.
    7.2.11 Sodium Sulfite (NaNO2) Standard Solution, Nominal 
Concentration, 1000 [micro]g NO2-/ml. Desiccate 
NaNO2 overnight. Accurately weigh 1.4 to 1.6 g of NaNO2 
(assay of 97 percent NaNO2 or greater), dissolve in water, 
and dilute to 1 liter. Calculate the exact NO2-concentration 
using Equation 7C-1 in Section 12.2. This solution is stable for at 
least 6 months under laboratory conditions.
    7.2.12 Potassium Nitrate (KNO3) Standard Solution. Dry 
KNO3 at 110 [deg]C (230 [deg]F) for 2 hours, and cool in a 
desiccator. Accurately weigh 9 to 10 g of KNO3 to within 0.1 
mg, dissolve in water, and dilute to 1 liter. Calculate the exact 
NO3- concentration using Equation 7C-2 in Section 
12.3. This solution is stable for 2 months without preservative under 
laboratory conditions.
    7.2.13 Spiking Solution. Pipette 7 ml of the KNO3 
standard into a 100-ml volumetric flask, and dilute to volume.
    7.2.14 Blank Solution. Dissolve 2.4 g of KMnO4 and 1.2 g 
of NaOH in 96 ml of water. Alternatively, dilute 60 ml of 
KMnO4/NaOH solution to 100 ml.
    7.2.15 Quality Assurance Audit Samples. Same as in Method 7, Section 
7.3.10. When requesting audit samples, specify that they be in the 
appropriate concentration range for Method 7C.

       8.0 Sample Collection, Preservation, Storage, and Transport

    8.1 Preparation of Sampling Train. Add 200 ml of KMnO4/
NaOH solution (Section 7.1.2) to each of three impingers, and assemble 
the train as shown in Figure 7C-1. Adjust the probe heater to a 
temperature sufficient to prevent water condensation.
    8.2 Leak-Checks. Same as in Method 6, Section 8.2.
    8.3 Sample Collection.
    8.3.1 Record the initial DGM reading and barometric pressure. 
Determine the sampling point or points according to the appropriate 
regulations (e.g., Sec.  60.46(b)(5) of 40 CFR Part 60). Position the 
tip of the probe at the sampling point, connect the probe to the first 
impinger, and start the pump. Adjust the sample flow to a value between 
400 and 500 ml/min (0.014 and 0.018 cfm). CAUTION: DO NOT EXCEED THESE 
FLOW RATES. Once adjusted, maintain a constant flow rate during the 
entire sampling run. Sample for 60 minutes. For relative accuracy (RA) 
testing of continuous emission monitors, the minimum sampling time is 1 
hour, sampling 20 minutes at each traverse point.

    Note: When the SO2 concentration is greater than 1200 
ppm, the sampling time may have to be reduced to 30 minutes to eliminate 
plugging of the impinger orifice with MnO2. For RA tests with 
SO2 greater than 1200 ppm, sample for 30 minutes (10 minutes 
at each point).

    8.3.2 Record the DGM temperature, and check the flow rate at least 
every 5 minutes. At the conclusion of each run, turn off the pump, 
remove the probe from the stack, and record the final readings. Divide 
the sample volume by the sampling time to determine the average flow 
rate. Conduct the mandatory post-test leak-check. If a leak is found, 
void the test run, or use procedures acceptable to the Administrator to 
adjust the sample volume for the leakage.
    8.4 CO2 Measurement. During sampling, measure the 
CO2 content of the stack gas near the sampling point using 
Method 3. The single-point grab sampling procedure is adequate, provided 
the measurements are made at least three times (near the start, midway, 
and before the end of a run), and the average CO2 
concentration is computed. The Orsat or Fyrite analyzer may be used for 
this analysis.

[[Page 280]]

    8.5 Sample Recovery. Disconnect the impingers. Pour the contents of 
the impingers into a 1-liter polyethylene bottle using a funnel and a 
stirring rod (or other means) to prevent spillage. Complete the 
quantitative transfer by rinsing the impingers and connecting tubes with 
water until the rinsings are clear to light pink, and add the rinsings 
to the bottle. Mix the sample, and mark the solution level. Seal and 
identify the sample container.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.2, 10.1-10.3................  Sampling           Ensure accurate
                                 equipment leak-    measurement of
                                 check and          sample volume.
                                 calibration.
10.4..........................  Spectrophotometer  Ensure linearity of
                                 calibration.       spectrophotometer
                                                    response to
                                                    standards.
11.3..........................  Spiked sample      Ensure reduction
                                 analysis.          efficiency of
                                                    column.
11.6..........................  Audit sample       Evaluate analytical
                                 analysis.          technique,
                                                    preparation of
                                                    standards.
------------------------------------------------------------------------

                  10.0 Calibration and Standardizations

    10.1 Volume Metering System. Same as Method 6, Section 10.1. For 
detailed instructions on carrying out these calibrations, it is 
suggested that Section 3.5.2 of Reference 4 of Section 16.0 be 
consulted.
    10.2 Temperature Sensors and Barometer. Same as in Method 6, 
Sections 10.2 and 10.4, respectively.
    10.3 Check of Rate Meter Calibration Accuracy (Optional). Disconnect 
the probe from the first impinger, and connect the filter. Start the 
pump, and adjust the rate meter to read between 400 and 500 ml/min 
(0.014 and 0.018 cfm). After the flow rate has stabilized, start 
measuring the volume sampled, as recorded by the dry gas meter and the 
sampling time. Collect enough volume to measure accurately the flow 
rate. Then calculate the flow rate. This average flow rate must be less 
than 500 ml/min (0.018 cfm) for the sample to be valid; therefore, it is 
recommended that the flow rate be checked as above prior to each test.
    10.4 Spectrophotometer.
    10.4.1 Dilute 5.0 ml of the NaNO2 standard solution to 
200 ml with water. This solution nominally contains 25 [micro]g 
NO2-/ml. Use this solution to prepare calibration 
standards to cover the range of 0.25 to 3.00 [micro]g 
NO2-/ml. Prepare a minimum of three standards each 
for the linear and slightly nonlinear (described below) range of the 
curve. Use pipettes for all additions.
    10.4.2 Measure the absorbance of the standards and a water blank as 
instructed in Section 11.5. Plot the net absorbance vs. [micro]g 
NO2-/ml. Draw a smooth curve through the points. 
The curve should be linear up to an absorbance of approximately 1.2 with 
a slope of approximately 0.53 absorbance units/[micro]g 
NO2-/ml. The curve should pass through the origin. 
The curve is slightly nonlinear from an absorbance of 1.2 to 1.6.

                       11.0 Analytical Procedures

    11.1 Sample Stability. Collected samples are stable for at least 
four weeks; thus, analysis must occur within 4 weeks of collection.
    11.2 Sample Preparation.
    11.2.1 Prepare a cadmium reduction column as follows: Fill the 
burette with water. Add freshly prepared cadmium slowly, with tapping, 
until no further settling occurs. The height of the cadmium column 
should be 39 cm (15 in). When not in use, store the column under rinse 
solution.

    Note: The column should not contain any bands of cadmium fines. This 
may occur if regenerated cadmium is used and will greatly reduce the 
column lifetime.

    11.2.2 Note the level of liquid in the sample container, and 
determine whether any sample was lost during shipment. If a noticeable 
amount of leakage has occurred, the volume lost can be determined from 
the difference between initial and final solution levels, and this value 
can then be used to correct the analytical result. Quantitatively 
transfer the contents to a 1-liter volumetric flask, and dilute to 
volume.
    11.2.3 Take a 100-ml aliquot of the sample and blank (unexposed 
KMnO4/NaOH) solutions, and transfer to 400-ml beakers 
containing magnetic stirring bars. Using a pH meter, add concentrated 
H2SO4 with stirring until a pH of 0.7 is obtained. 
Allow the solutions to stand for 15 minutes. Cover the beakers with 
watch glasses, and bring the temperature of the solutions to 50 [deg]C 
(122 [deg]F). Keep the temperature below 60 [deg]C (140 [deg]F). 
Dissolve 4.8 g of oxalic acid in a minimum volume of water, 
approximately 50 ml, at room temperature. Do not heat the solution. Add 
this solution slowly, in increments, until the KMnO4 solution 
becomes colorless. If the color is not completely removed, prepare some 
more of the above oxalic acid solution, and add until a colorless 
solution is obtained. Add an excess of oxalic acid by dissolving 1.6 g 
of oxalic acid in 50 ml of water, and add 6 ml of this solution to the 
colorless

[[Page 281]]

solution. If suspended matter is present, add concentrated 
H2SO4 until a clear solution is obtained.
    11.2.4 Allow the samples to cool to near room temperature, being 
sure that the samples are still clear. Adjust the pH to between 11.7 and 
12.0 with 10 N NaOH. Quantitatively transfer the mixture to a Buchner 
funnel containing GF/C filter paper, and filter the precipitate. Filter 
the mixture into a 500-ml filtering flask. Wash the solid material four 
times with water. When filtration is complete, wash the Teflon tubing, 
quantitatively transfer the filtrate to a 500-ml volumetric flask, and 
dilute to volume. The samples are now ready for cadmium reduction. 
Pipette a 50-ml aliquot of the sample into a 150-ml beaker, and add a 
magnetic stirring bar. Pipette in 1.0 ml of 6.5 percent EDTA solution, 
and mix.
    11.3 Determine the correct stopcock setting to establish a flow rate 
of 7 to 9 ml/min of column rinse solution through the cadmium reduction 
column. Use a 50-ml graduated cylinder to collect and measure the 
solution volume. After the last of the rinse solution has passed from 
the funnel into the burette, but before air entrapment can occur, start 
adding the sample, and collect it in a 250-ml graduated cylinder. 
Complete the quantitative transfer of the sample to the column as the 
sample passes through the column. After the last of the sample has 
passed from the funnel into the burette, start adding 60 ml of column 
rinse solution, and collect the rinse solution until the solution just 
disappears from the funnel. Quantitatively transfer the sample to a 200-
ml volumetric flask (a 250-ml flask may be required), and dilute to 
volume. The samples are now ready for NO2-analysis.

    Note: Two spiked samples should be run with every group of samples 
passed through the column. To do this, prepare two additional 50-ml 
aliquots of the sample suspected to have the highest NO2-
concentration, and add 1 ml of the spiking solution to these aliquots. 
If the spike recovery or column efficiency (see Section 12.2) is below 
95 percent, prepare a new column, and repeat the cadmium reduction.

    11.4 Repeat the procedures outlined in Sections 11.2 and 11.3 for 
each sample and each blank.
    11.5 Sample Analysis. Pipette 10 ml of sample into a culture tube. 
Pipette in 10 ml of sulfanilamide solution and 1.4 ml of NEDA solution. 
Cover the culture tube with parafilm, and mix the solution. Prepare a 
blank in the same manner using the sample from treatment of the 
unexposed KMnO4/NaOH solution. Also, prepare a calibration 
standard to check the slope of the calibration curve. After a 10-minute 
color development interval, measure the absorbance at 540 nm against 
water. Read [micro]g NO2-/ml from the calibration 
curve. If the absorbance is greater than that of the highest calibration 
standard, use less than 10 ml of sample, and repeat the analysis. 
Determine the NO2-concentration using the 
calibration curve obtained in Section 10.4.

    Note: Some test tubes give a high blank NO2- 
value but culture tubes do not.

    11.6 Audit Sample Analysis. Same as in Method 7, Section 11.4.

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculation.
    12.1 Nomenclature.
B=Analysis of blank, [micro]g NO2-/ml.
C=Concentration of NOX as NO2, dry basis, mg/
dsm\3\.
E=Column efficiency, dimensionless
K2=10-3 mg/[micro]g.
m=Mass of NOX, as NO2, in sample, [micro]g.
Pbar=Barometric pressure, mm Hg (in. Hg).
Pstd=Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
s=Concentration of spiking solution, [micro]g NO3/ml.
S=Analysis of sample, [micro]g NO2-/ml.
Tm=Average dry gas meter absolute temperature, [deg]K.
Tstd=Standard absolute temperature, 293 [deg]K (528 [deg]R).
Vm(std)=Dry gas volume measured by the dry gas meter, 
corrected to standard conditions, dscm (dscf).
Vm=Dry gas volume as measured by the dry gas meter, scm 
(scf).
x=Analysis of spiked sample, [micro]g NO2-/ml.
X=Correction factor for CO2 collection=100/(100 - 
%CO2(V/V)).
y=Analysis of unspiked sample, [micro]g NO2-/ml.
Y=Dry gas meter calibration factor.
1.0 ppm NO=1.247 mg NO/m\3\ at STP.
1.0 ppm NO2=1.912 mg NO2/m\3\ at STP.
1 ft\3\=2.832 x 10-2 m\3\.

    12.2 NO2 Concentration. Calculate the NO2 
concentration of the solution (see Section 7.2.11) using the following 
equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.212


[[Page 282]]


    12.3 NO3 Concentration. Calculate the NO3 
concentration of the KNO3 solution (see Section 7.2.12) using 
the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.213

    12.4 Sample Volume, Dry Basis, Corrected to Standard Conditions.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.214
    
Where:

K1=0.3855 [deg]K/mm Hg for metric units.
K1=17.65 [deg]R/in. Hg for English units.

    12.5 Efficiency of Cadmium Reduction Column. Calculate this value as 
follows:
[GRAPHIC] [TIFF OMITTED] TR17OC00.215

Where:

200=Final volume of sample and blank after passing through the column, 
ml.
1.0=Volume of spiking solution added, ml.
46.01=[micro]g NO2-/[micro]mole.
62.01=[micro]g NO3-/[micro]mole.

    12.6 Total [micro]g NO2.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.216
    
Where:

500=Total volume of prepared sample, ml.
50=Aliquot of prepared sample processed through cadmium column, ml.
100=Aliquot of KMnO4/NaOH solution, ml.
1000=Total volume of KMnO4/NaOH solution, ml.

    12.7 Sample Concentration.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.217
    
                         13.0 Method Performance

    13.1 Precision. The intra-laboratory relative standard deviation for 
a single measurement is 2.8 and 2.9 percent at 201 and 268 ppm 
NOX, respectively.
    13.2 Bias. The method does not exhibit any bias relative to Method 
7.
    13.3 Range. The lower detectable limit is 13 mg NOX/m\3\, 
as NO2 (7 ppm NOX) when sampling at 500 ml/min for 
1 hour. No upper limit has been established; however, when using the 
recommended sampling conditions, the method has been found to collect 
NOX emissions quantitatively up to 1782 mg NOX/
m\3\, as NO2 (932 ppm NOX).

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    1. Margeson, J.H., W.J. Mitchell, J.C. Suggs, and M.R. Midgett. 
Integrated Sampling and Analysis Methods for Determining NOX 
Emissions at Electric Utility Plants. U.S. Environmental Protection 
Agency, Research Triangle Park, NC. Journal of the Air Pollution Control 
Association. 32:1210-1215. 1982.

[[Page 283]]

    2. Memorandum and attachment from J.H. Margeson, Source Branch, 
Quality Assurance Division, Environmental Monitoring Systems Laboratory, 
to The Record, EPA. March 30, 1983. NH3 Interference in 
Methods 7C and 7D.
    3. Margeson, J.H., J.C. Suggs, and M.R. Midgett. Reduction of 
Nitrate to Nitrite with Cadmium. Anal. Chem. 52:1955-57. 1980.
    4. Quality Assurance Handbook for Air Pollution Measurement Systems. 
Volume III--Stationary Source Specific Methods. U.S. Environmental 
Protection Agency. Research Triangle Park, NC. Publication No. EPA-600/
4-77-027b. August 1977.
    5. Margeson, J.H., et al. An Integrated Method for Determining 
NOX Emissions at Nitric Acid Plants. Analytical Chemistry. 47 
(11):1801. 1975.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 284]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.218


[[Page 285]]


[GRAPHIC] [TIFF OMITTED] TR17OC00.219

  Method 7D--Determination of Nitrogen Oxide Emissions From Stationary 
       Sources (Alkaline-Permanganate/Ion Chromatographic Method)

    Note: This method is not inclusive with respect to specifications 
(e.g., equipment and supplies) and procedures (e.g., sampling and 
analytical) essential to its performance. Some material is incorporated 
by reference from other methods in this part. Therefore, to obtain 
reliable results, persons using this method should have a thorough 
knowledge of at least the following additional test methods: Method 1, 
Method 3, Method 6, Method 7, and Method 7C.

                        1.0 Scope and Application

    1.1 Analytes.

[[Page 286]]



------------------------------------------------------------------------
              Analyte                   CAS No.          Sensitivity
------------------------------------------------------------------------
Nitrogen oxides (NOX), as NO2,
 including:
    Nitric oxide (NO).............      10102-43-9
    Nitrogen dioxide (NO2)........      10102-44-0  7 ppmv
------------------------------------------------------------------------

    1.2 Applicability. This method applies to the measurement of 
NOX emissions from fossil-fuel fired steam generators, 
electric utility plants, nitric acid plants, or other sources as 
specified in the regulations.
    1.3 Data Quality Objectives. Adherence to the requirements of this 
method will enhance the quality of the data obtained from air pollutant 
sampling methods.

                          2.0 Summary of Method

    An integrated gas sample is extracted from the stack and passed 
through impingers containing an alkaline-potassium permanganate 
solution; NOX (NO + NO2) emissions are oxidized to 
NO3-. Then NO3- is analyzed 
by ion chromatography.

                       3.0 Definitions [Reserved]

                            4.0 Interferences

    Same as in Method 7C, Section 4.0.

                               5.0 Safety

    5.1 Disclaimer. This method may involve hazardous materials, 
operations, and equipment. This test method may not address all of the 
safety problems associated with its use. It is the responsibility of the 
user of this test method to establish appropriate safety and health 
practices and to determine the applicability of regulatory limitations 
prior to performing this test method.
    5.2 Corrosive reagents. The following reagents are hazardous. 
Personal protective equipment and safe procedures are useful in 
preventing chemical splashes. If contact occurs, immediately flush with 
copious amounts of water for at least 15 minutes. Remove clothing under 
shower and decontaminate. Treat residual chemical burns as thermal 
burns.
    5.2.1 Hydrogen Peroxide (H2O2). Irritating to 
eyes, skin, nose, and lungs. 30% H2O2 is a strong 
oxidizing agent; avoid contact with skin, eyes, and combustible 
material. Wear gloves when handling.
    5.2.2 Sodium Hydroxide (NaOH). Causes severe damage to eye tissues 
and to skin. Inhalation causes irritation to nose, throat, and lungs. 
Reacts exothermically with limited amounts of water.
    5.2.3 Potassium Permanganate (KMnO4). Caustic, strong 
oxidizer. Avoid bodily contact with.

                       6.0 Equipment and Supplies

    6.1 Sample Collection and Sample Recovery. Same as Method 7C, 
Section 6.1. A schematic of the sampling train used in performing this 
method is shown in Figure 7C-1 of Method 7C.
    6.2 Sample Preparation and Analysis.
    6.2.1 Magnetic Stirrer. With 25- by 10-mm Teflon-coated stirring 
bars.
    6.2.2 Filtering Flask. 500-ml capacity with sidearm.
    6.2.3 Buchner Funnel. 75-mm ID, with spout equipped with a 13-mm ID 
by 90-mm long piece of Teflon tubing to minimize possibility of 
aspirating sample solution during filtration.
    6.2.4 Filter Paper. Whatman GF/C, 7.0-cm diameter.
    6.2.5 Stirring Rods.
    6.2.6 Volumetric Flask. 250-ml.
    6.2.7 Pipettes. Class A.
    6.2.8 Erlenmeyer Flasks. 250-ml.
    6.2.9 Ion Chromatograph. Equipped with an anion separator column to 
separate NO3-, H3+ 
suppressor, and necessary auxiliary equipment. Nonsuppressed and other 
forms of ion chromatography may also be used provided that adequate 
resolution of NO3- is obtained. The system must 
also be able to resolve and detect NO2-.

                       7.0 Reagents and Standards

    Note: Unless otherwise indicated, it is intended that all reagents 
conform to the specifications established by the Committee on Analytical 
Reagents of the American Chemical Society, where such specifications are 
available; otherwise, use the best available grade.

    7.1 Sample Collection.
    7.1.1 Water. Deionized distilled to conform to ASTM specification D 
1193-77 or 91 Type 3 (incorporated by reference--see Sec.  60.17).
    7.1.2 Potassium Permanganate, 4.0 Percent (w/w), Sodium Hydroxide, 
2.0 Percent (w/w). Dissolve 40.0 g of KMnO4 and 20.0 g of 
NaOH in 940 ml of water.
    7.2 Sample Preparation and Analysis.
    7.2.1 Water. Same as in Section 7.1.1.
    7.2.2 Hydrogen Peroxide (H2O2), 5 Percent. 
Dilute 30 percent H2O2 1:5 (v/v) with water.
    7.2.3 Blank Solution. Dissolve 2.4 g of KMnO4 and 1.2 g 
of NaOH in 96 ml of water. Alternatively, dilute 60 ml of 
KMnO4/NaOH solution to 100 ml.
    7.2.4 KNO3 Standard Solution. Dry KNO3 at 110 
[deg]C for 2 hours, and cool in a desiccator. Accurately weigh 9 to 10 g 
of KNO3 to within 0.1 mg, dissolve in water, and dilute to 1 
liter. Calculate the exact NO3- concentration 
using Equation 7D-1 in Section 12.2.

[[Page 287]]

This solution is stable for 2 months without preservative under 
laboratory conditions.
    7.2.5 Eluent, 0.003 M NaHCO3/0.0024 M 
Na2CO3. Dissolve 1.008 g NaHCO3 and 
1.018 g Na2CO3 in water, and dilute to 4 liters. 
Other eluents capable of resolving nitrate ion from sulfate and other 
species present may be used.
    7.2.6 Quality Assurance Audit Samples. Same as Method 7, Section 
7.3.10. When requesting audit samples, specify that they be in the 
appropriate concentration range for Method 7D.

      8.0 Sample Collection, Preservation, Transport, and Storage.

    8.1 Sampling. Same as in Method 7C, Section 8.1.
    8.2 Sample Recovery. Same as in Method 7C, Section 8.2.
    8.3 Sample Preparation for Analysis.

    Note: Samples must be analyzed within 28 days of collection.

    8.3.1 Note the level of liquid in the sample container, and 
determine whether any sample was lost during shipment. If a noticeable 
amount of leakage has occurred, the volume lost can be determined from 
the difference between initial and final solution levels, and this value 
can then be used to correct the analytical result. Quantitatively 
transfer the contents to a 1-liter volumetric flask, and dilute to 
volume.
    8.3.2 Sample preparation can be started 36 hours after collection. 
This time is necessary to ensure that all NO2- is 
converted to NO3- in the collection solution. Take 
a 50-ml aliquot of the sample and blank, and transfer to 250-ml 
Erlenmeyer flasks. Add a magnetic stirring bar. Adjust the stirring rate 
to as fast a rate as possible without loss of solution. Add 5 percent 
H2O2 in increments of approximately 5 ml using a 
5-ml pipette. When the KMnO4 color appears to have been 
removed, allow the precipitate to settle, and examine the supernatant 
liquid. If the liquid is clear, the H2O2 addition 
is complete. If the KMnO4 color persists, add more 
H2O2, with stirring, until the supernatant liquid 
is clear.

    Note: The faster the stirring rate, the less volume of 
H2O2 that will be required to remove the 
KMnO4.) Quantitatively transfer the mixture to a Buchner 
funnel containing GF/C filter paper, and filter the precipitate. The 
spout of the Buchner funnel should be equipped with a 13-mm ID by 90-mm 
long piece of Teflon tubing. This modification minimizes the possibility 
of aspirating sample solution during filtration. Filter the mixture into 
a 500-ml filtering flask. Wash the solid material four times with water. 
When filtration is complete, wash the Teflon tubing, quantitatively 
transfer the filtrate to a 250-ml volumetric flask, and dilute to 
volume. The sample and blank are now ready for 
NO3-analysis.

                           9.0 Quality Control

------------------------------------------------------------------------
                                 Quality control
            Section                  measure               Effect
------------------------------------------------------------------------
8.2, 10.1-10.3................  Sampling           Ensure accurate
                                 equipment leak-    measurement of
                                 check and          sample volume.
                                 calibration.
10.4..........................  Spectrophotometer  Ensure linearity of
                                 calibration.       spectrophotometer
                                                    response to
                                                    standards.
11.3..........................  Spiked sample      Ensure reduction
                                 analysis.          efficiency of
                                                    column.
11.6..........................  Audit sample       Evaluate analytical
                                 analysis.          technique,
                                                    preparation of
                                                    standards.
------------------------------------------------------------------------

                  10.0 Calibration and Standardizations

    10.1 Dry Gas Meter (DGM) System.
    10.1.1 Initial Calibration. Same as in Method 6, Section 10.1.1. For 
detailed instructions on carrying out this calibration, it is suggested 
that Section 3.5.2 of Citation 4 in Section 16.0 of Method 7C be 
consulted.
    10.1.2 Post-Test Calibration Check. Same as in Method 6, Section 
10.1.2.
    10.2 Thermometers for DGM and Barometer. Same as in Method 6, 
Sections 10.2 and 10.4, respectively.
    10.3 Ion Chromatograph.
    10.3.1 Dilute a given volume (1.0 ml or greater) of the 
KNO3 standard solution to a convenient volume with water, and 
use this solution to prepare calibration standards. Prepare at least 
four standards to cover the range of the samples being analyzed. Use 
pipettes for all additions. Run standards as instructed in Section 11.2. 
Determine peak height or area, and plot the individual values versus 
concentration in [micro]g NO3-/ml.
    10.3.2 Do not force the curve through zero. Draw a smooth curve 
through the points. The curve should be linear. With the linear curve, 
use linear regression to determine the calibration equation.

                       11.0 Analytical Procedures

    11.1 The following chromatographic conditions are recommended: 0.003 
M NaHCO3/0.0024 Na2CO3 eluent solution 
(Section 7.2.5), full scale range, 3 [micro]MHO; sample loop, 0.5 ml; 
flow rate, 2.5 ml/min. These conditions should give a 
NO3- retention time of approximately 15 minutes 
(Figure 7D-1).

[[Page 288]]

    11.2 Establish a stable baseline. Inject a sample of water, and 
determine whether any NO3- appears in the 
chromatogram. If NO3- is present, repeat the water 
load/injection procedure approximately five times; then re-inject a 
water sample and observe the chromatogram. When no 
NO3- is present, the instrument is ready for use. 
Inject calibration standards. Then inject samples and a blank. Repeat 
the injection of the calibration standards (to compensate for any drift 
in response of the instrument). Measure the NO3- 
peak height or peak area, and determine the sample concentration from 
the calibration curve.
    11.3 Audit Analysis. Same as in Method 7, Section 11.4

                   12.0 Data Analysis and Calculations

    Carry out calculations, retaining at least one extra significant 
figure beyond that of the acquired data. Round off figures after final 
calculation.
    12.1 Nomenclature. Same as in Method 7C, Section 12.1.
    12.2 NO3- concentration. Calculate the 
NO3- concentration in the KNO3 standard 
solution (see Section 7.2.4) using the following equation:
[GRAPHIC] [TIFF OMITTED] TR17OC00.220

    12.3 Sample Volume, Dry Basis, Corrected to Standard Conditions. 
Same as in Method 7C, Section 12.4.
    12.4 Total [micro]g NO2 Per Sample.
    [GRAPHIC] [TIFF OMITTED] TR17OC00.221
    
Where:

250=Volume of prepared sample, ml.
1000=Total volume of KMnO4 solution, ml.
50=Aliquot of KMnO4/NaOH solution, ml.
46.01=Molecular weight of NO3-.
62.01=Molecular weight of NO3-.

    12.5 Sample Concentration. Same as in Method 7C, Section 12.7.

                         13.0 Method Performance

    13.1 Precision. The intra-laboratory relative standard deviation for 
a single measurement is approximately 6 percent at 200 to 270 ppm 
NOX.
    13.2 Bias. The method does not exhibit any bias relative to Method 
7.
    13.3 Range. The lower detectable limit is similar to that of Method 
7C. No upper limit has been established; however, when using the 
recommended sampling conditions, the method has been found to collect 
NOX emissions quantitatively up to 1782 mg NOX/
m\3\, as NO2 (932 ppm NOX).

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                             16.0 References

    Same as Method 7C, Section 16.0, References 1, 2, 4, and 5.

         17.0 Tables, Diagrams, Flowcharts, and Validation Data

[[Page 289]]

[GRAPHIC] [TIFF OMITTED] TR17OC00.222

 Method 7E--Determination of Nitrogen Oxides Emissions From Stationary 
                Sources (Instrumental Analyzer Procedure)

                        1.0 Scope and Application

                           What is Method 7E?

    Method 7E is a procedure for measuring nitrogen oxides 
(NOX) in stationary source emissions using a continuous 
instrumental analyzer. Quality assurance and quality control 
requirements are included to assure that you, the tester, collect data 
of known quality. You must document your adherence to these specific 
requirements for equipment, supplies, sample collection and analysis, 
calculations, and data analysis. This method does not completely 
describe all equipment, supplies, and sampling and analytical procedures 
you will need but refers to other methods for some of the details. 
Therefore, to obtain reliable results, you should also have a thorough 
knowledge of these additional test methods which are found in appendix A 
to this part:
    (a) Method 1--Sample and Velocity Traverses for Stationary Sources.
    (b) Method 4--Determination of Moisture Content in Stack Gases.
    1.1 Analytes. What does this method determine? This method measures 
the concentration of nitrogen oxides as NO2.

------------------------------------------------------------------------
            Analyte                  CAS No.           Sensitivity
------------------------------------------------------------------------
Nitric oxide (NO)..............      10102-43-9  Typically <2% of
Nitrogen dioxide (NO2).........      10102-44-0  Calibration Span.
------------------------------------------------------------------------

    1.2 Applicability. When is this method required? The use of Method 
7E may be required by specific New Source Performance Standards, Clean 
Air Marketing rules, State Implementation Plans, and permits where 
measurement of NOX concentrations in stationary source 
emissions is required, either to determine compliance with an applicable

[[Page 290]]

emissions standard or to conduct performance testing of a continuous 
monitoring system (CEMS). Other regulations may also require the use of 
Method 7E.
    1.3 Data Quality Objectives (DQO). How good must my collected data 
be? Method 7E is designed to provide high-quality data for determining 
compliance with Federal and State emission standards and for relative 
accuracy testing of CEMS. In these and other applications, the principal 
objective is to ensure the accuracy of the data at the actual emission 
levels encountered. To meet this objective, the use of EPA traceability 
protocol calibration gases and measurement system performance tests are 
required.
    1.4 Data Quality Assessment for Low Emitters. Is performance relief 
granted when testing low-emission units? Yes. For low-emitting sources, 
there are alternative performance specifications for analyzer 
calibration error, system bias, drift, and response time. Also, the 
alternative dynamic spiking procedure in Section 16 may provide 
performance relief for certain low-emitting units.

                          2.0 Summary of Method

    In this method, a sample of the effluent gas is continuously sampled 
and conveyed to the analyzer for measuring the concentration of 
NOX. You may measure NO and NO2 separately or 
simultaneously together but, for the purposes of this method, 
NOX is the sum of NO and NO2. You must meet the 
performance requirements of this method to validate your data.

                             3.0 Definitions

    3.1 Analyzer Calibration Error, for non-dilution systems, means the 
difference between the manufacturer certified concentration of a 
calibration gas and the measured concentration of the same gas when it 
is introduced into the analyzer in direct calibration mode.
    3.2 Calibration Curve means the relationship between an analyzer's 
response to the injection of a series of calibration gases and the 
actual concentrations of those gases.
    3.3 Calibration Gas means the gas mixture containing NOX 
at a known concentration and produced and certified in accordance with 
``EPA Traceability Protocol for Assay and Certification of Gaseous 
Calibration Standards,'' September 1997, as amended August 25, 1999, 
EPA-600/R-97/121 or more recent updates. The tests for analyzer 
calibration error, drift, and system bias require the use of calibration 
gas prepared according to this protocol.
    3.3.1 Low-Level Gas means a calibration gas with a concentration 
that is less than 20 percent of the calibration span and may be a zero 
gas.
    3.3.2 Mid-Level Gas means a calibration gas with a concentration 
that is 40 to 60 percent of the calibration span.
    3.3.3 High-Level Gas means a calibration gas with a concentration 
that is equal to the calibration span.
    3.4 Calibration Span means the upper limit of valid instrument 
response during sampling. To the extent practicable, the measured 
emissions should be between 20 to 100 percent of the selected 
calibration span
    3.5 Centroidal Area means the central area of the stack or duct that 
is no greater than 1 percent of the stack or duct cross section. This 
area has the same geometric shape as the stack or duct.
    3.6 Converter Efficiency Gas means a calibration gas with a known NO 
or NO2 concentration and of Traceability Protocol quality.
    3.7 Data Recorder means the equipment that permanently records the 
concentrations reported by the analyzer.
    3.8 Direct Calibration Mode means introducing the calibration gases 
directly into the analyzer (or into the assembled measurement system at 
a point downstream of all sample conditioning equipment) according to 
manufacturer's recommended calibration procedure. This mode of 
calibration applies to non-dilution-type measurement systems.
    3.9 Drift means the difference between the measurement system 
readings obtained in the pre-run and post-run system bias (or system 
calibration error) checks at a specific calibration gas concentration 
level (i.e. low-, mid-, or high-).
    3.10 Gas Analyzer means the equipment that senses the gas being 
measured and generates an output proportional to its concentration.
    3.11 Interference Check means the test to detect analyzer responses 
to compounds other than the compound of interest, usually a gas present 
in the measured gas stream, that is not adequately accounted for in the 
calibration procedure and may cause measurement bias.
    3.12 Low-Concentration Analyzer means any analyzer that operates 
with a calibration span of 20 ppm NOX or lower. Each analyzer 
model used routinely to measure low NOX concentrations must 
pass a Manufacturer's Stability Test (MST). A MST subjects the analyzer 
to a range of potential effects to demonstrate its stability following 
the procedures provided in 40 CFR 53.23, 53.55, and 53.56 and provides 
the information in a summary format. A copy of this information must be 
included in each test report. Table 7E-5 lists the criteria to be met.
    3.13 Measurement System means all of the equipment used to determine 
the NOX concentration. The measurement system comprises six 
major subsystems: Sample acquisition, sample transport, sample 
conditioning,

[[Page 291]]

calibration gas manifold, gas analyzer, and data recorder.
    3.14 Response Time means the time it takes the measurement system to 
respond to a change in gas concentration occurring at the sampling point 
when the system is operating normally at its target sample flow rate or 
dilution ratio.
    3.15 Run means a series of gas samples taken successively from the 
stack or duct. A test normally consists of a specific number of runs.
    3.16 System Bias means the difference between a calibration gas 
measured in direct calibration mode and in system calibration mode. 
System bias is determined before and after each run at the low- and mid- 
or high-concentration levels. For dilution-type systems, pre- and post-
run system calibration error is measured, rather than system bias.
    3.17 System Calibration Error applies to dilution-type systems and 
means the difference between the measured concentration of low-, mid-, 
or high-level calibration gas and the certified concentration for each 
gas when introduced in system calibration mode. For dilution-type 
systems, a 3-point system calibration error test is conducted in lieu of 
the analyzer calibration error test, and 2-point system calibration 
error tests are conducted in lieu of system bias tests.
    3.18 System Calibration Mode means introducing the calibration gases 
into the measurement system at the probe, upstream of the filter and all 
sample conditioning components.
    3.19 Test refers to the series of runs required by the applicable 
regulation.

                            4.0 Interferences

    Note that interferences may vary among instruments and that 
instrument-specific interferences must be evaluated through the 
interference test.

                               5.0 Safety

    What safety measures should I consider when using this method? This 
method may require you to work with hazardous materials and in hazardous 
conditions. We encourage you to establish safety procedures before using 
the method. Among other precautions, you should become familiar with the 
safety recommendations in the gas analyzer user's manual. Occupational 
Safety and Health Administration (OSHA) regulations concerning cylinder 
and noxious gases may apply. Nitric oxide and NO2 are toxic 
and dangerous gases. Nitric oxide is immediately converted to 
NO2 upon reaction with air. Nitrogen dioxide is a highly 
poisonous and insidious gas. Inflammation of the lungs from exposure may 
cause only slight pain or pass unnoticed, but the resulting edema 
several days later may cause death. A concentration of 100 ppm is 
dangerous for even a short exposure, and 200 ppm may be fatal. 
Calibration gases must be handled with utmost care and with adequate 
ventilation. Emission-level exposure to these gases should be avoided.

                       6.0 Equipment and Supplies

    The performance criteria in this method will be met or exceeded if 
you are properly using equipment designed for this application.
    6.1 What do I need for the measurement system? You may use any 
equipment and supplies meeting the following specifications.
    (1) Sampling system components that are not evaluated in the system 
bias or system calibration error test must be glass, Teflon, or 
stainless steel. Other materials are potentially acceptable, subject to 
approval by the Administrator.
    (2) The interference, calibration error, and system bias criteria 
must be met.
    (3) Sample flow rate must be maintained within 10 percent of the 
flow rate at which the system response time was measured.
    (4) All system components (excluding sample conditioning components, 
if used) must maintain the sample temperature above the moisture dew 
point.
    Section 6.2 provides example equipment specifications for a 
NOX measurement system. Figure 7E-1 is a diagram of an 
example dry basis measurement system that is likely to meet the method 
requirements and is provided as guidance. For wet-basis systems, you may 
use alternative equipment and supplies as needed (some of which are 
described in Section 6.2), provided that the measurement system meets 
the applicable performance specifications of this method.
    6.2 Measurement System Components
    6.2.1 Sample Probe. Glass, stainless steel, or other approved 
material, of sufficient length to traverse the sample points.
    6.2.2 Particulate Filter. An in-stack or out-of-stack filter. The 
filter media must be included in the system bias test and made of 
material that is non-reactive to the gas being sampled. This particulate 
filter requirement may be waived in applications where no significant 
particulate matter is expected (e.g., for emission testing of a 
combustion turbine firing natural gas).
    6.2.3 Sample Line. The sample line from the probe to the 
conditioning system/sample pump should be made of Teflon or other 
material that does not absorb or otherwise alter the sample gas. For a 
dry-basis measurement system (as shown in Figure 7E-1), the temperature 
of the sample line must be maintained at a sufficiently high level to 
prevent condensation before the sample conditioning components. For wet-
basis measurement systems, the temperature of the sample line must be 
maintained at a sufficiently high level to prevent condensation before 
the analyzer.

[[Page 292]]

    6.2.4 Conditioning Equipment. For dry basis measurements, a 
condenser, dryer or other suitable device is required to remove moisture 
continuously from the sample gas. Any equipment needed to heat the probe 
or sample line to avoid condensation prior to the sample conditioning 
component is also required.
    For wet basis systems, you must keep the sample above its dew point 
either by: (1) Heating the sample line and all sample transport 
components up to the inlet of the analyzer (and, for hot-wet extractive 
systems, also heating the analyzer) or (2) by diluting the sample prior 
to analysis using a dilution probe system. The components required to do 
either of the above are considered to be conditioning equipment.
    6.2.5 Sampling Pump. For systems similar to the one shown in Figure 
7E-1, a leak-free pump is needed to pull the sample gas through the 
system at a flow rate sufficient to minimize the response time of the 
measurement system. The pump may be constructed of any material that is 
non-reactive to the gas being sampled. For dilution-type measurement 
systems, an ejector pump (eductor) is used to create a vacuum that draws 
the sample through a critical orifice at a constant rate.
    6.2.6 Calibration Gas Manifold. Prepare a system to allow the 
introduction of calibration gases either directly to the gas analyzer in 
direct calibration mode or into the measurement system, at the probe, in 
system calibration mode, or both, depending upon the type of system 
used. In system calibration mode, the system should be able to block the 
sample gas flow and flood the sampling probe. Alternatively, calibration 
gases may be introduced at the calibration valve following the probe. 
Maintain a constant pressure in the gas manifold. For in-stack dilution-
type systems, a gas dilution subsystem is required to transport large 
volumes of purified air to the sample probe and a probe controller is 
needed to maintain the proper dilution ratio.
    6.2.7 Sample Gas Manifold. For the type of system shown in Figure 
7E-1, the sample gas manifold diverts a portion of the sample to the 
analyzer, delivering the remainder to the by-pass discharge vent. The 
manifold should also be able to introduce calibration gases directly to 
the analyzer (except for dilution-type systems). The manifold must be 
made of material that is non-reactive to the gas sampled or the 
calibration gas and be configured to safely discharge the bypass gas.
    6.2.8 NOX Analyzer. An instrument that continuously measures 
NOX in the gas stream and meets the applicable specifications 
in Section 13.0. An analyzer that operates on the principle of 
chemiluminescence with an NO2 to NO converter is one example 
of an analyzer that has been used successfully in the past. Analyzers 
operating on other principles may also be used provided the performance 
criteria in Section 13.0 are met.
    6.2.8.1 Dual Range Analyzers. For certain applications, a wide range 
of gas concentrations may be encountered, necessitating the use of two 
measurement ranges. Dual-range analyzers are readily available for these 
applications. These analyzers are often equipped with automated range-
switching capability, so that when readings exceed the full-scale of the 
low measurement range, they are recorded on the high range. As an 
alternative to using a dual-range analyzer, you may use two segments of 
a single, large measurement scale to serve as the low and high ranges. 
In all cases, when two ranges are used, you must quality-assure both 
ranges using the proper sets of calibration gases. You must also meet 
the interference, calibration error, system bias, and drift checks. 
However, we caution that when you use two segments of a large 
measurement scale for dual range purposes, it may be difficult to meet 
the performance specifications on the low range due to signal-to-noise 
ratio considerations.
    6.2.8.2 Low Concentration Analyzer. When the calibration span is 
less than or equal to 20 ppmv, the manufacturer's stability test (MST) 
is required. See Table 7E-5.
    6.2.9 Data Recording. A strip chart recorder, computerized data 
acquisition system, digital recorder, or data logger for recording 
measurement data may be used.

                       7.0 Reagents and Standards

    7.1 Calibration Gas. What calibration gases do I need? Your 
calibration gas must be NO in nitrogen and certified (or recertified) 
within an uncertainty of 2.0 percent in accordance with ``EPA 
Traceability Protocol for Assay and Certification of Gaseous Calibration 
Standards'' September 1997, as amended August 25, 1999, EPA-600/R-97/
121. Blended gases meeting the Traceability Protocol are allowed if the 
additional gas components are shown not to interfere with the analysis. 
The calibration gas must not be used after its expiration date.
    Except for applications under part 75 of this chapter, it is 
acceptable to prepare calibration gas mixtures from EPA Traceability 
Protocol gases in accordance with Method 205 in M to part 51 of this 
chapter. For part 75 applications, the use of Method 205 is subject to 
the approval of the Administrator. The goal and recommendation for 
selecting calibration gases is to bracket the sample concentrations.
    The following calibration gas concentrations are required:
    7.1.1 High-Level Gas. This concentration sets the calibration span 
and results in measurements being 20 to 100 percent of the calibration 
span.

[[Page 293]]

    7.1.2 Mid-Level Gas. 40 to 60 percent of the calibration span.
    7.1.3 Low-Level Gas. Less than 20 percent of the calibration span.
    7.1.4 Converter Efficiency Gas. What reagents do I need for the 
converter efficiency test? The converter efficiency gas for the test 
described in Section 8.2.4.1 must have a concentration of NO2 
that is between 40 and 60 ppmv. For the alternative converter efficiency 
tests in Section 16.2, NO is required. In either case, the test gas must 
be prepared according to the EPA Traceability Protocol.
    7.2 Interference Check. What reagents do I need for the interference 
check? Use the appropriate test gases listed in Table 7E-3 (i.e., the 
potential interferents for the test facility, as identified by the 
instrument manufacturer) to conduct the interference check.

       8.0 Sample Collection, Preservation, Storage, and Transport

                         Emission Test Procedure

    Since you are allowed to choose different options to comply with 
some of the performance criteria, it is your responsibility to identify 
the specific options you have chosen, to document that the performance 
criteria for that option have been met, and to identify any deviations 
from the method.
    8.1 What sampling site and sampling points do I select?
    8.1.1 Unless otherwise specified in an applicable regulation or by 
the Administrator, when this method is used to determine compliance with 
an emission standard, conduct a stratification test as described in 
Section 8.1.2 to determine the sampling traverse points to be used. For 
performance testing of continuous emission monitoring systems, follow 
the sampling site selection and traverse point layout procedures 
described in the appropriate performance specification or applicable 
regulation (e.g., Performance Specification 2 in appendix B to this 
part).
    8.1.2 Determination of Stratification. To test for stratification, 
use a probe of appropriate length to measure the NOX (or 
pollutant of interest) concentration at twelve traverse points located 
according to Table 1-1 or Table 1-2 of Method 1. Alternatively, you may 
measure at three points on a line passing through the centroidal area. 
Space the three points at 16.7, 50.0, and 83.3 percent of the 
measurement line. Sample for a minimum of twice the system response time 
(see Section 8.2.6) at each traverse point. Calculate the individual 
point and mean NOX concentrations. If the concentration at 
each traverse point differs from the mean concentration for all traverse 
points by no more than: (a)  5.0 percent of the 
mean concentration; or (b)  0.5 ppm (whichever is 
less restrictive), the gas stream is considered unstratified and you may 
collect samples from a single point that most closely matches the mean. 
If the 5.0 percent or 0.5 ppm criterion is not met, but the 
concentration at each traverse point differs from the mean concentration 
for all traverse points by no more than: (a)  10.0 
percent of the mean; or (b)  1.0 ppm (whichever is 
less restrictive), the gas stream is considered to be minimally 
stratified, and you may take samples from three points. Space the three 
points at 16.7, 50.0, and 83.3 percent of the measurement line. 
Alternatively, if a twelve point stratification test was performed and 
the emissions shown to be minimally stratified (all points within  10.0 percent of their mean or within  1.0 ppm), and if the stack diameter (or equivalent 
diameter, for a rectangular stack or duct) is greater than 2.4 meters 
(7.8 ft), then you may use 3-point sampling and locate the three points 
along the measurement line exhibiting the highest average concentration 
during the stratification test, at 0.4, 1.0 and 2.0 meters from the 
stack or duct wall. If the gas stream is found to be stratified because 
the 10.0 percent or 1.0 ppm criterion for a 3-point test is not met, 
locate twelve traverse points for the test in accordance with Table 1-1 
or Table 1-2 of Method 1.
    8.2 Initial Measurement System Performance Tests. What initial 
performance criteria must my system meet before I begin collecting 
samples? Before measuring emissions, perform the following procedures:
    (a) Calibration gas verification,
    (b) Measurement system preparation,
    (c) Calibration error test,
    (d) NO2 to NO conversion efficiency test, if applicable,
    (e) System bias check,
    (f) System response time test, and
    (g) Interference check
    8.2.1 Calibration Gas Verification. How must I verify the 
concentrations of my calibration gases? Obtain a certificate from the 
gas manufacturer and confirm that the documentation includes all 
information required by the Traceability Protocol. Confirm that the 
manufacturer certification is complete and current. Ensure that your 
calibration gases certifications have not expired. This documentation 
should be available on-site for inspection. To the extent practicable, 
select a high-level gas concentration that will result in the measured 
emissions being between 20 and 100 percent of the calibration span.
    8.2.2 Measurement System Preparation. How do I prepare my 
measurement system? Assemble, prepare, and precondition the measurement 
system according to your standard operating procedure. Adjust the system 
to achieve the correct sampling rate or dilution ratio (as applicable).
    8.2.3 Calibration Error Test. How do I confirm my analyzer 
calibration is correct? After you have assembled, prepared and 
calibrated your sampling system and analyzer, you must conduct a 3-point 
analyzer calibration

[[Page 294]]

error test (or a 3-point system calibration error test for dilution 
systems) before the first run and again after any failed system bias 
test (or 2-point system calibration error test for dilution systems) or 
failed drift test. Introduce the low-, mid-, and high-level calibration 
gases sequentially. For non-dilution-type measurement systems, introduce 
the gases in direct calibration mode. For dilution-type measurement 
systems, introduce the gases in system calibration mode.
    (1) For non-dilution systems, you may adjust the system to maintain 
the correct flow rate at the analyzer during the test, but you may not 
make adjustments for any other purpose. For dilution systems, you must 
operate the measurement system at the appropriate dilution ratio during 
all system calibration error checks, and may make only the adjustments 
necessary to maintain the proper ratio.
    (2) Record the analyzer's response to each calibration gas on a form 
similar to Table 7E-1. For each calibration gas, calculate the analyzer 
calibration error using Equation 7E-1 in Section 12.2 or the system 
calibration error using Equation 7E-3 in Section 12.4 (as applicable). 
The calibration error specification in Section 13.1 must be met for the 
low-, mid-, and high-level gases. If the calibration error specification 
is not met, take corrective action and repeat the test until an 
acceptable 3-point calibration is achieved.
    8.2.4 NO2 to NO Conversion Efficiency Test. Before each 
field test, you must conduct an NO2 to NO conversion 
efficiency test if your system converts NO2 to NO before 
analyzing for NOX. Follow the procedures in Section 8.2.4.1, 
or 8.2.4.2. If desired, the converter efficiency factor derived from 
this test may be used to correct the test results for converter 
efficiency if the NO2 fraction in the measured test gas is 
known. Use Equation 7E-8 in Section 12.8 for this correction.
    8.2.4.1 Introduce a concentration of 40 to 60 ppmv NO2 to 
the analyzer in direct calibration mode and record the NOX 
concentration displayed by the analyzer. If a dilution-system is used, 
introduce the NO2 calibration gas at a point before the 
dilution takes place. Calculate the converter efficiency using Equation 
7E-7 in Section 12.7. The specification for converter efficiency in 
Section 13.5 must be met. The user is cautioned that state-of-the-art 
NO2 calibration gases may not be sufficiently stable and thus 
make it more difficult to pass the 90 percent conversion efficiency 
requirement. The NO2 must be prepared according to the EPA 
Traceability Protocol and have an accuracy within 2.0 percent.
    8.2.4.2 Alternatively, either of the procedures for determining 
conversion efficiency using NO in Section 16.2 may be used.
    8.2.5 Initial System Bias and System Calibration Error Checks. 
Before sampling begins, determine whether the high-level or mid-level 
calibration gas best approximates the emissions and use it as the 
upscale gas. Introduce the upscale gas at the probe upstream of all 
sample conditioning components in system calibration mode. Record the 
time it takes for the measured concentration to increase to a value that 
is within 95 percent or 0.5 ppm (whichever is less restrictive) of the 
certified gas concentration. Continue to observe the gas concentration 
reading until it has reached a final, stable value. Record this value on 
a form similar to Table 7E-2.
    (1) Next, introduce the low-level gas in system calibration mode and 
record the time required for the concentration response to decrease to a 
value that is within 5.0 percent or 0.5 ppm (whichever is less 
restrictive) of the certified low-range gas concentration. If the low-
level gas is a zero gas, use the procedures described above and observe 
the change in concentration until the response is 0.5 ppm or 5.0 percent 
of the upscale gas concentration (whichever is less restrictive).
    (2) Continue to observe the low-level gas reading until it has 
reached a final, stable value and record the result on a form similar to 
Table 7E-2. Operate the measurement system at the normal sampling rate 
during all system bias checks. Make only the adjustments necessary to 
achieve proper calibration gas flow rates at the analyzer.
    (3) From these data, calculate the measurement system response time 
(see Section 8.2.6) and then calculate the initial system bias using 
Equation 7E-2 in Section 12.3. For dilution systems, calculate the 
system calibration error in lieu of system bias using equation 7E-3 in 
Section 12.4. See Section 13.2 for acceptable performance criteria for 
system bias and system calibration error. If the initial system bias (or 
system calibration error) specification is not met, take corrective 
action. Then, you must repeat the applicable calibration error test from 
Section 8.2.3 and the initial system bias (or 2-point system calibration 
error) check until acceptable results are achieved, after which you may 
begin sampling.

    (Note: For dilution-type systems, data from the 3-point system 
calibration error test described in Section 8.2.3 may be used to meet 
the initial 2-point system calibration error test requirement of this 
section, if the calibration gases were injected as described in this 
section, and if response time data were recorded).

    8.2.6 Measurement System Response Time. As described in section 
8.2.5, you must determine the measurement system response time during 
the initial system bias (or 2-point system calibration error) check. 
Observe the times required to achieve 95 percent of a stable response 
for both the low-level and upscale gases. The longer interval is the 
response time.

[[Page 295]]

    8.2.7 Interference Check. Conduct an interference response test of 
the gas analyzer prior to its initial use in the field. If you have 
multiple analyzers of the same make and model, you need only perform 
this alternative interference check on one analyzer. You may also meet 
the interference check requirement if the instrument manufacturer 
performs this or similar check on the same make and model of analyzer 
that you use and provides you with documented results.
    (1) You may introduce the appropriate interference test gases (that 
are potentially encountered during a test, see examples in Table 7E-3) 
into the analyzer (or measurement system for dilution-type systems) 
separately or as mixtures. This test must be performed both with and 
without NOX (NO and NO2) (the applicable pollutant 
gas). For analyzers measuring NOX greater than 20 ppm, use a 
calibration gas with an NOX concentration of 80 to 100 ppm 
and set this concentration equal to the calibration span. For analyzers 
measuring less than 20 ppm NOX, select an NO concentration 
for the calibration span that reflects the emission levels at the 
sources to be tested, and perform the interference check at that level. 
Measure the total interference response of the analyzer to these gases 
in ppmv. Record the responses and determine the interference using Table 
7E-4. The specification in Section 13.4 must be met.
    (2) A copy of this data, including the date completed and signed 
certification, must be available for inspection at the test site and 
included with each test report. This interference test is valid for the 
life of the instrument unless major analytical components (e.g., the 
detector) are replaced. If major components are replaced, the 
interference gas check must be repeated before returning the analyzer to 
service. The tester must ensure that any specific technology, equipment, 
or procedures that are intended to remove interference effects are 
operating properly during testing.
    8.3 Dilution-Type Systems--Special Considerations. When a dilution-
type measurement system is used, there are three important 
considerations that must be taken into account to ensure the quality of 
the emissions data. First, the critical orifice size and dilution ratio 
must be selected properly so that the sample dew point will be below the 
sample line and analyzer temperatures. Second, a high-quality, accurate 
probe controller must be used to maintain the dilution ratio during the 
test. The probe controller should be capable of monitoring the dilution 
air pressure, eductor vacuum, and sample flow rates. Third, differences 
between the molecular weight of calibration gas mixtures and the stack 
gas molecular weight must be addressed because these can affect the 
dilution ratio and introduce measurement bias.
    8.4 Sample Collection. (1) Position the probe at the first sampling 
point. Purge the system for at least two times the response time before 
recording any data. Then, traverse all required sampling points and 
sample at each point for an equal length of time, maintaining the 
appropriate sample flow rate or dilution ratio (as applicable). You must 
record at least one valid data point per minute during the test run. The 
minimum time you must sample at each point is two times the system 
response time. Usually the test is designed for sampling longer than 
this to better characterize the source's temporal variation.
    (2) After recording data for the appropriate period of time at the 
first traverse point, you may move to the next point and continue 
recording, omitting the requirement to wait for two times the system 
response time before recording data at the subsequent traverse points. 
For example, if you use a sampling system with a two-minute system 
response time, initially purge the system for at least four minutes, 
then record a minimum of four one-minute averages at each sample point. 
However, if you remove the probe from the stack, you must recondition 
the sampling system for at least two times the system response time 
prior to your next recording. If the average of any run exceeds the 
calibration span value, the run is invalidated.
    (3) You may satisfy the multipoint traverse requirement by sampling 
sequentially using a single-hole probe or a multi-hole probe designed to 
sample at the prescribed points with a flow within 10 percent of mean 
flow rate. Notwithstanding, for applications under part 75 of this 
chapter, the use of multi-hole probes is subject to the approval of the 
Administrator.
    8.5 Post-Run System Bias Check and Drift Assessment. How do I 
confirm that each sample I collect is valid? After each run, repeat the 
system bias check or 2-point system calibration error check (for 
dilution systems) to validate the run. Do not make adjustments to the 
measurement system (other than to maintain the target sampling rate or 
dilution ratio) between the end of the run and the completion of the 
post-run system bias or system calibration error check. Note that for 
all post-run system bias or 2-point system calibration error checks, you 
may inject the low-level gas first and the upscale gas last, or vice-
versa.
    (1) If you do not pass the post-run system bias (or system 
calibration error) check, then the run is invalid. You must diagnose and 
fix the problem and pass another initial 3-point calibration error test 
(see Section 8.2.3) and another system bias (or 2-point system 
calibration error) check (see Section 8.2.5) before repeating the run. 
In these additional bias and calibration error tests, the gases may be 
injected in any order. Record

[[Page 296]]

the system bias (or system calibration error) check results on a form 
similar to Table 7E-2.
    (2) After each run, calculate the low-level and upscale drift, using 
Equation 7E-4 in Section 12.5. If the post-run low- and upscale bias (or 
2-point system calibration error) checks are passed, but the low-or 
upscale drift exceeds the specification in Section 13.3, the run data 
are valid, but a 3-point calibration error test and a system bias (or 2-
point system calibration error) check must be performed and passed 
before any more test runs are done.
    (3) For dilution systems, data from a 3-point system calibration 
error test may be used to met the pre-run 2-point system calibration 
error requirement for the first run in a test sequence. Also, the post-
run bias (or 2-point calibration error) check data may be used as the 
pre-run data for the next run in the test sequence at the discretion of 
the tester.
    8.6 Alternative Interference and System Bias Checks (Dynamic Spike 
Procedure). If I want to use the dynamic spike procedure to validate my 
data, what procedure should I follow? Except for applications under part 
75 of this chapter, you may use the dynamic spiking procedure and 
requirements provided in Section 16.1 during each test as an alternative 
to the interference check and the pre- and post-run system bias checks. 
The calibration error test is still required under this option. Use of 
the dynamic spiking procedure for Part 75 applications is subject to the 
approval of the Administrator.
    8.7 Moisture correction. You must determine the moisture content of 
the flue gas and correct the measured gas concentrations to a dry basis 
using Method 4 or other appropriate methods, subject to the approval of 
the Administrator, when the moisture basis (wet or dry) of the 
measurements made with this method is different from the moisture basis 
of either: (1) The applicable emissions limit; or (2) the CEMS being 
evaluated for relative accuracy. Moisture correction is also required if 
the applicable limit is in lb/mmBtu and the moisture basis of the Method 
7E NOX analyzer is different from the moisture basis of the 
Method 3A diluent gas (CO2 or O2) analyzer.

                           9.0 Quality Control

               What quality control measures must I take?

    The following table is a summary of the mandatory, suggested, and 
alternative quality assurance and quality control measures and the 
associated frequency and acceptance criteria. All of the QC data, along 
with the sample run data, must be documented and included in the test 
report.

                                             Summary Table of QA/QC
----------------------------------------------------------------------------------------------------------------
      Status         Process or element    QA/QC specification      Acceptance criteria      Checking frequency
----------------------------------------------------------------------------------------------------------------
S................  Identify Data User...  .....................  Regulatory Agency or       Before designing
                                                                  other primary end user     test.
                                                                  of data.
S................  Analyzer Design......  Analyzer resolution    <2.0% of full-scale range  Manufacturer design.
                                           or sensitivity.
M................  .....................  Interference gas       Sum of responses <=2.5%    ....................
                                           check.                 of calibration span.
                                                                  Alternatively, sum of
                                                                  responses:.
                                                                 <=0.5 ppmv for
                                                                  calibration spans of 5
                                                                  to 10 ppmv..
                                                                 <=0.2 ppmv for
                                                                  calibration spans < 5
                                                                  ppmv..
                                                                 See Table 7E-3...........
M................  Calibration on Gases.  Traceability protocol  Valid certificate
                                           (G1, G2).              required. Uncertainty
                                                                  <=2.0% of tag value.
M................  .....................  High-level gas.......  Equal to the calibration   Each test.
                                                                  span.
M................  .....................  Mid-level gas........  40 to 60% of calibration   Each test.
                                                                  span.
M................  .....................  Low-level gas........  <20% of calibration span.  Each test.
S................  Data Recorder Design.  Data resolution......  <=0.5% of full-scale       Manufacturer design.
                                                                  range.
S................  Sample Extraction....  Probe material.......  SS or quartz if stack 500 [deg]F.
M................  Sample Extraction....  Probe, filter and      For dry-basis analyzers,   Each run.
                                           sample line            keep sample above the
                                           temperature.           dew point by heating,
                                                                  prior to sample
                                                                  conditioning.
                                                                 For wet-basis analyzers,
                                                                  keep sample above dew
                                                                  point at all times, by
                                                                  heating or dilution..
S................  Sample Extraction....  Calibration valve      SS.......................  Each test.
                                           material.
S................  Sample Extraction....  Sample pump material.  Inert to sample            Each test.
                                                                  constituents.
S................  Sample Extraction....  Manifolding material.  Inert to sample            Each test.
                                                                  constituents.
S................  Moisture Removal.....  Equipment efficiency.  <5% target compound        Verified through
                                                                  removal.                   system bias check.
S................  Particulate Removal..  Filter inertness.....  Pass system bias check...  Each bias check.

[[Page 297]]

 
M................  Analyzer &             Analyzer calibration   Within 2.0% of the             and after a failed
                    Performance.           system calibration     calibration span of the    system bias test or
                                           error for dilution     analyzer for the low-,     dilution drift
                                           systems).              mid-, and high-level       test.
                                                                  calibration gases.
                                                                 Alternative
                                                                  specification: 0.5 ppmv
                                                                  absolute difference..
M................  System Performance...  System bias (or pre-   Within 5.0% of the analyzer    each run.
                                           system calibration     calibration span for low-
                                           error for dilution     scale and upscale
                                           systems).              calibration gases.
                                                                 Alternative
                                                                  specification: 0.5 ppmv
                                                                  absolute difference..
M................  System Performance...  System response time.  Determines minimum         During initial
                                                                  sampling time per point.   sampling system
                                                                                             bias test.
M................  System Performance...  Drift................  3.0% of calibration span   After each test run.
                                                                  for low-level and mid-
                                                                  or high-level gases.
                                                                 Alternative
                                                                  specification: 0.5 ppmv
                                                                  absolute difference..
M................  System Performance...  NO2-NO conversion      =90% of         Before each test.
                                           efficiency.            certified test gas
                                                                  concentration.
M................  System Performance...  Purge time...........  =2 times        Before starting the
                                                                  system response time.      first run and when
                                                                                             probe is removed
                                                                                             from and re-
                                                                                             inserted into the
                                                                                             stack.
M................  System Performance...  Minimum sample time    Two times the system       Each sample point.
                                           at each point.         response time.
M................  System Performance...  Stable sample flow     Within 10% of flow rate    Each run.
                                           rate (surrogate for    established during
                                           maintaining system     system response time
                                           response time).        check.
M................  Sample Point           Stratification test..  All points within:         Prior to first run.
                    Selection.                                   5%
                                                                  of mean for 1-point
                                                                  sampling..
                                                                 10%
                                                                  of mean for 3-point..
                                                                 Alternatively, all points
                                                                  within:.
                                                                 0.5
                                                                  ppm of mean for 1-point
                                                                  sampling..
                                                                 1.0
                                                                  ppm of mean for 3-point
                                                                  sampling..
A................  Multiple sample        No. of openings in     Multi-hole probe with      Each run.
                    points                 probe.                 verifiable constant flow
                    simultaneously.                               through all holes within
                                                                  10% of mean flow rate
                                                                  (requires Administrative
                                                                  approval for Part 75).
M................  Data Recording.......  Frequency............  1 minute average.........  During run.
S................  Data Parameters......  Sample concentration   All 1-minute averages      Each run.
                                           range.                 within calibration span.
M................  Data Parameters......  Average concentration  Run average <=calibration  Each run.
                                           for the run.           span.
----------------------------------------------------------------------------------------------------------------
S = Suggested.
M = Mandatory.
A = Alternative.

                  10.0 Calibration and Standardization

           What measurement system calibrations are required?

    (1) The initial 3-point calibration error test as described in 
Section 8.2.3 and the system bias (or system calibration error) checks 
described in Section 8.2.5 are required and must meet the specifications 
in Section 13 before you start the test. Make all necessary adjustments 
to calibrate the gas analyzer and data recorder. Then, after the test 
commences, the system bias or system calibration error checks described 
in Section 8.5 are required before and after each run. Your analyzer 
must be calibrated for all species of NOX that it detects. If 
your analyzer measures NO and NO2 separately, then you must 
use both NO and NO2 calibration gases.
    (2) You must include a copy of the manufacturer's certification of 
the calibration gases used in the testing as part of the test report. 
This certification must include the 13 documentation requirements in the 
EPA Traceability Protocol For Assay and Certification of Gaseous 
Calibration Standards, September 1997, as amended August 25, 1999. When 
Method 205 is used to produce diluted calibration gases, you must 
document that the specifications for the gas dilution system are met for 
the test. You must also include the date of the most recent dilution 
system

[[Page 298]]

calibration against flow standards and the name of the person or 
manufacturer who carried out the calibration in the test report.

                       11.0 Analytical Procedures

    Because sample collection and analysis are performed together (see 
Section 8), additional discussion of the analytical procedure is not 
necessary.

                   12.0 Calculations and Data Analysis

    You must follow the procedures for calculations and data analysis 
listed in this section.
    12.1 Nomenclature. The terms used in the equations are defined as 
follows:

ACE = Analyzer calibration error, percent of calibration span.
BWS = Moisture content of sample gas as measured by Method 4 
          or other approved method, percent/100.
CAvg = Average unadjusted gas concentration indicated by data 
          recorder for the test run, ppmv.
CD = Pollutant concentration adjusted to dry conditions, 
          ppmv.
CDir = Measured concentration of a calibration gas (low, mid, 
          or high) when introduced in direct calibration mode, ppmv.
CGas = Average effluent gas concentration adjusted for bias, 
          ppmv.
CM = Average of initial and final system calibration bias (or 
          2-point system calibration error) check responses for the 
          upscale calibration gas, ppmv.
CMA = Actual concentration of the upscale calibration gas, 
          ppmv.
CO = Average of the initial and final system calibration bias 
          (or 2-point system calibration error) check responses from the 
          low-level (or zero) calibration gas, ppmv.
CS = Measured concentration of a calibration gas (low, mid, 
          or high) when introduced in system calibration mode, ppmv.
CSS = Concentration of NOX measured in the spiked 
          sample, ppmv.
CSpike = Concentration of NOX in the undiluted 
          spike gas, ppmv.
CCalc = Calculated concentration of NOX in the 
          spike gas diluted in the sample, ppmv.
CV = Manufacturer certified concentration of a calibration 
          gas (low, mid, or high), ppmv.
CW = Pollutant concentration measured under moist sample 
          conditions, wet basis, ppmv.
CS = Calibration span, ppmv.
D = Drift assessment, percent of calibration span.
EffNO2 = NO2 to NO converter efficiency, percent.
NOFinal = The average NO concentration observed with the 
          analyzer in the NO mode during the converter efficiency test 
          in Section 16.2.2, ppmv.
NOXCorr = The NOX concentration corrected for the 
          converter efficiency, ppmv.
NOXFinal = The final NOX concentration observed 
          during the converter efficiency test in Section 16.2.2, ppmv.
NOXPeak = The highest NOX concentration observed 
          during the converter efficiency test in Section 16.2.2, ppmv.
QSpike = Flow rate of spike gas introduced in system 
          calibration mode, L/min.
QTotal = Total sample flow rate during the spike test, L/min.
R = Spike recovery, percent.
SB = System bias, percent of calibration span.
SBi = Pre-run system bias, percent of calibration span.
SBf = Post-run system bias, percent of calibration span.
SCE = System calibration error, percent of calibration span.
SCEi = Pre-run system calibration error, percent of 
          calibration span.
SCEfinal = Post-run system calibration error, percent of 
          calibration span.
    12.2 Analyzer Calibration Error. For non-dilution systems, use 
Equation 7E-1 to calculate the analyzer calibration error for the low-, 
mid-, and high-level calibration gases.
[GRAPHIC] [TIFF OMITTED] TR15MY06.001

    12.3 System Bias. For non-dilution systems, use Equation 7E-2 to 
calculate the system bias separately for the low-level and upscale 
calibration gases.
[GRAPHIC] [TIFF OMITTED] TR15MY06.002

    12.4 System Calibration Error. Use Equation 7E-3 to calculate the 
system calibration error for dilution systems. Equation 7E-3 applies to 
both the initial 3-point system calibration error test and the 
subsequent 2-point between run tests.
[GRAPHIC] [TIFF OMITTED] TR15MY06.003

    12.5 Drift Assessment. Use Equation 7E-4 to separately calculate the 
low-level and upscale drift over each test run. For dilution systems, 
replace ``SBfinal'' and ``SBi'' with 
``SCEfinal'' and ``SCEi'', respectively, to 
calculate and evaluate drift.
[GRAPHIC] [TIFF OMITTED] TR15MY06.004

    12.6 Effluent Gas Concentration. For each test run, calculate 
Cavg, the arithmetic average of all valid NOX 
concentration values (e.g., 1-minute averages). Then adjust the value of 
Cavg for bias, using Equation 7E-5.

[[Page 299]]

[GRAPHIC] [TIFF OMITTED] TR15MY06.005

    12.7 NO2--NO Conversion Efficiency. If the NOX 
converter efficiency test described in Section 8.2.4.1 is performed, 
calculate the efficiency using Equation 7E-7.
[GRAPHIC] [TIFF OMITTED] TR15MY06.006

    12.8 NO2--NO Conversion Efficiency Correction. If 
desired, calculate the total NOX concentration with a 
correction for converter efficiency using Equations 7E-8.
[GRAPHIC] [TIFF OMITTED] TR15MY06.007

    12.9 Alternative NO2 Converter Efficiency. If the 
alternative procedure of Section 16.2.2 is used, calculate the converter 
efficiency using Equation 7E-9.
[GRAPHIC] [TIFF OMITTED] TR15MY06.008

    12.10 Moisture Correction. Use Equation 7E-10 if your measurements 
need to be corrected to a dry basis.
[GRAPHIC] [TIFF OMITTED] TR15MY06.009

    12.11 Calculated Spike Gas Concentration and Spike Recovery for the 
Example Alternative Dynamic Spiking Procedure in Section 16.1.3. Use 
Equation 7E-11 to determine the calculated spike gas concentration. Use 
Equation 7E-12 to calculate the spike recovery.
[GRAPHIC] [TIFF OMITTED] TR15MY06.010

                         13.0 Method Performance

    13.1 Calibration Error. This specification is applicable to both the 
analyzer calibration error and the 3-point system calibration error 
tests described in Section 8.2.3. At each calibration gas level (low, 
mid, and high) the calibration error must either be within  2.0 percent of the calibration span. Alternatively, the 
results are acceptable if [bond]Cdir - Cv[bond] or 
[bond]Cs-Cv[bond] (as applicable) is <=0.5 ppmv.
    13.2 System Bias. This specification is applicable to both the 
system bias and 2-point system calibration error tests described in 
Section 8.2.5 and 8.5. The pre- and post-run system bias (or system 
calibration error) must be within  5.0 percent of 
the calibration span for the low-level and upscale calibration gases. 
Alternatively, the results are acceptable if [bond] Cs -
Cdir [bond] is <= 0.5 ppmv or if [bond] Cs- 
Cv [bond] is <= 0.5 ppmv (as applicable).
    13.3 Drift. For each run, the low-level and upscale drift must be 
less than or equal to 3.0 percent of the calibration span. The drift is 
also acceptable if the pre- and post-run bias (or the pre- and post-run 
system calibration error) responses do not differ by more than 0.5 ppmv 
at each gas concentration (i.e. [bond] Cs post-run- 
Cs pre-run [bond] <= 0.5 ppmv).
    13.4 Interference Check. The total interference response (i.e., the 
sum of the interference responses of all tested gaseous components) must 
not be greater than 2.50 percent of the calibration span for the 
analyzer tested. In summing the interferences, use the larger of the 
absolute values obtained for the interferent tested with and without the 
pollutant present. The results are also acceptable if the sum of the 
responses does not exceed 0.5 ppmv for a calibration span of 5 to 10 
ppmv, or 0.2 ppmv for a calibration span < 5 ppmv.
    13.5 NO2 to NO Conversion Efficiency Test (as 
applicable). The NO2 to NO conversion efficiency, calculated 
according to Equation 7E-7 or Equation 7E-9, must be greater than or 
equal to 90 percent.
    13.6 Alternative Dynamic Spike Procedure. Recoveries of both pre-
test spikes and post-test spikes must be within 100  10 percent. If the absolute difference between the 
calculated spike value and measured spike value is equal to or less than 
0.20 ppmv, then the requirements of the ADSC are met.

                  14.0 Pollution Prevention [Reserved]

                    15.0 Waste Management [Reserved]

                       16.0 Alternative Procedures

    16.1 Dynamic Spike Procedure. Except for applications under part 75 
of this chapter, you may use a dynamic spiking procedure to validate 
your test data for a specific test matrix in place of the interference 
check and pre- and post-run system bias checks. For part 75 
applications, use of this procedure is subject to the approval of the 
Administrator. Best results are obtained for this procedure when source 
emissions are steady and not varying. Fluctuating emissions may render 
this alternative procedure difficult to pass. To use this alternative, 
you must meet the following requirements.
    16.1.1 Procedure Documentation. You must detail the procedure you 
followed in the test report, including how the spike was measured, 
added, verified during the run, and calculated after the test.
    16.1.2 Spiking Procedure Requirements. The spikes must be prepared 
from EPA

[[Page 300]]

Traceability Protocol gases. Your procedure must be designed to spike 
field samples at two target levels both before and after the test. Your 
target spike levels should bracket the average sample NOX 
concentrations. The higher target concentration must be less than the 
calibration span. You must collect at least 5 data points for each 
target concentration. The spiking procedure must be performed before the 
first run and repeated after the last run of the test program.
    16.1.3 Example Spiking Procedure. Determine the NO concentration 
needed to generate concentrations that are 50 and 150 percent of the 
anticipated NOX concentration in the stack at the total 
sampling flow rate while keeping the spike flow rate at or below 10 
percent of this total. Use a mass flow meter (accurate within 2.0 
percent) to generate these NO spike gas concentrations at a constant 
flow rate. Use Equation 7E-11 in Section 12.11 to determine the 
calculated spike concentration in the collected sample.
    (1) Prepare the measurement system and conduct the analyzer 
calibration error test as described in Sections 8.2.2 and 8.2.3. 
Following the sampling procedures in Section 8.1, determine the stack 
NOX concentration and use this concentration as the average 
stack concentration (Cavg) for the first spike level, or if 
desired, for both pre-test spike levels. Introduce the first level spike 
gas into the system in system calibration mode and begin sample 
collection. Wait for at least two times the system response time before 
measuring the spiked sample concentration. Then record at least five 
successive 1-minute averages of the spiked sample gas. Monitor the spike 
gas flow rate and maintain at the determined addition rate. Average the 
five 1-minute averages and determine the spike recovery using Equation 
7E-12. Repeat this procedure for the other pre-test spike level. The 
recovery at each level must be within the limits in Section 13.6 before 
proceeding with the test.
    (2) Conduct the number of runs required for the test. Then repeat 
the above procedure for the post-test spike evaluation. The last run of 
the test may serve as the average stack concentration for the post-test 
spike test calculations. The results of the post-test spikes must meet 
the limits in Section 13.6.
    16.2 Alternative NO2 to NO Conversion Efficiency 
Procedures. You may use either of the following procedures to determine 
converter efficiency in place of the procedure in Section 8.2.4.1.
    16.2.1 The procedure for determining conversion efficiency using NO 
in 40 CFR 86.123-78.
    16.2.2 Tedlar Bag Procedure. Perform the analyzer calibration error 
test to document the calibration (both NO and NO