E. Riegle Community Development and Regulatory Improvement Act

The final rule does not impose any new reporting or disclosure requirements on insured depository institutions under the Riegle Community Development and Regulatory Improvement Act.

List of Subjects in 12 CFR Parts 309 and 310

Banks, banking, Freedom of information, Privacy, Savings associations.

For the reasons stated above, the Board of Directors of the Federal Deposit Insurance Corporation adopts the interim final rule published June 21, 2011, at 76 FR 35963, as final with the following change:

PART 309—DISCLOSURE OF INFORMATION

■ 1. The authority citation for part 309 continues to read as follows:

Authority: 5 U.S.C. 552; 12 U.S.C. 1819 "Seventh" and "Tenth."

§309.5 [Amended]

■ 2. In § 309.5, in paragraph (b)(1)(ii), remove the fax number "(703) 562–7977: and add in its place the fax number "(703) 562–2797"

By order of the Board of Directors. Dated at Washington, DC this 11th day of

October 2011. Federal Deposit Insurance Corporation.

Robert E. Feldman,

Executive Secretary.

[FR Doc. 2011–26635 Filed 10–13–11; 8:45 am] BILLING CODE 6714–01–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No. FAA-2011-1106; Special Conditions No. 25-448-SC]

Special Conditions: Boeing Model 767– 400ER Series Airplanes; Seats With Inflatable Lapbelts

AGENCY: Federal Aviation Administration (FAA), DOT. **ACTION:** Final special conditions; request for comments.

SUMMARY: These special conditions are issued for the Boeing Model 767–400ER series airplane. These airplanes, as modified by Continental Airlines, will have a novel or unusual design feature associated with seats with inflatable lapbelts. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

DATES: The effective date of these special conditions is October 6, 2011. We must receive your comments by November 28, 2011.

ADDRESSES: Send comments identified by docket number FAA–2011–1106 using any of the following methods:

• *Federal eRegulations Portal:* Go to *http://www.regulations.gov* and follow the online instructions for sending your comments electronically.

• *Mail:* Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue, SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001.

• Hand Delivery of Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue, SE., Washington, DC, between 8 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

• *Fax:* Fax comments to Docket Operations at 202–493–2251.

Privacy: The FAA will post all comments it receives, without change, to http://www.regulations.gov/, including any personal information the commenter provides. Using the search function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477–19478), as well as at http://DocketsInfo.dot.gov.

Docket: Background documents or comments received may be read at *http://www.regulations.gov* at any time. Follow the online instructions for accessing the docket or go to the Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue, SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

FOR FURTHER INFORMATION CONTACT: John Shelden, FAA, Airframe and Cabin Safety Branch, ANM–115, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington 98057–3356; telephone 425–227–2785; facsimile 425–227–1149. **SUPPLEMENTARY INFORMATION:** The FAA has determined that notice of, and opportunity for prior public comment on, these special conditions are impracticable because these procedures would significantly delay issuance of the design approval and thus delivery of the affected aircraft. In addition, the substance of these special conditions has been subject to the public comment process in several prior instances with no substantive comments received. The FAA therefore finds that good cause exists for making these special conditions effective upon issuance.

Comments Invited

We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

We will consider all comments we receive by the closing date for comments. We may change these special conditions based on the comments we receive.

Background

On March 3, 2011, Continental Airlines applied for a supplemental type certificate to install inflatable lapbelts for head injury protection on passenger seats on Boeing Model 767-400ER series airplanes (hereafter referred to as "767-400ER"), similar to Special Condition Numbers 25–431–SC for Boeing Model 787 series airplanes, 25-386-SC for Boeing Model 737 series airplanes, 25– 187A–SC for Boeing Model 777 series airplanes, and 25-148-SC for Boeing Model 767-300 series airplanes. These special conditions are to allow installation of inflatable lapbelts for head injury protection on certain seats in Boeing Model 767-400ER series airplanes.

The inflatable lapbelt is designed to limit occupant forward excursion in the event of an accident. This will reduce the potential for head injury, thereby reducing the Head Injury Criteria (HIC) measurement. The inflatable lapbelt behaves similarly to an automotive inflatable airbag, but in this case the airbag is integrated into the lapbelt and inflates away from the seated occupant. While inflatable airbags are now standard in the automotive industry, the use of an inflatable lapbelt is novel for commercial aviation.

Title 14, Code of Federal Regulations (14 CFR) 25.785 requires that occupants be protected from head injury by either the elimination of any injurious object within the striking radius of the head, or by padding. Traditionally, this has required a setback of 35 inches from any bulkhead or other rigid interior feature or, where not practical, specified types of padding. The relative effectiveness of these means of injury protection was not quantified. With the adoption of Amendment 25–64 to part 25, specifically § 25.562, a new standard that quantifies required head injury protection was created.

Section 25.562 specifies that each seat type design approved for crew or passenger occupancy during takeoff and landing must successfully complete dynamic tests or be shown to be compliant by rational analysis based on dynamic tests of a similar type seat. In particular, the regulations require that persons not suffer serious head injury under the conditions specified in the tests, and that protection must be provided or the seat be designed so that the head impact does not exceed an HIC of 1000 units. While the test conditions described for HIC are detailed and specific, it is the intent of the requirement that an adequate level of head injury protection be provided for passengers in a severe crash.

Because §§ 25.562 and 25.785 and associated guidance do not adequately address seats with inflatable lapbelts, the Federal Aviation Administration (FAA) recognizes that appropriate pass/ fail criteria need to be developed that do fully address the safety concerns specific to occupants of these seats.

The inflatable lapbelt has two potential advantages over other means of head impact protection. First, it can provide significantly greater protection than would be expected with energyabsorbing pads, and second, it can provide essentially equivalent protection for occupants of all stature. These are significant advantages from a safety standpoint, since such devices will likely provide a level of safety that exceeds the minimum standards of the federal aviation regulations. Conversely, inflatable lapbelts in general are active systems and must be relied upon to activate properly when needed, as opposed to an energy-absorbing pad or upper torso restraint that is passive, and always available. Therefore, the potential advantages must be balanced against this and other potential disadvantages in order to develop standards for this design feature.

The FAA has considered the installation of inflatable lapbelts to have two primary safety concerns: first, that they perform properly under foreseeable operating conditions, and second, that they do not perform in a manner or at such times as would constitute a hazard to the airplane or occupants. This latter point has the potential to be the more rigorous of the requirements, owing to the active nature of the system.

The inflatable lapbelt will rely on electronic sensors for signaling and a stored gas canister for inflation. These same devices could be susceptible to inadvertent activation, causing deployment in a potentially unsafe manner. The consequences of inadvertent deployment, as well as failure to deploy, must be considered in establishing the reliability of the system. Continental Airlines must substantiate that the effects of an inadvertent deployment in flight either would not cause injuries to occupants, or that such deployment(s) meet the requirement of § 25.1309(b). The effect of an inadvertent deployment on a passenger or crewmember that might be positioned close to the inflatable lapbelt should also be considered. The person could be either standing or sitting. A minimum reliability level will have to be established for this case, depending upon the consequences, even if the effect on the airplane is negligible.

The potential for an inadvertent deployment could be increased as a result of conditions in service. The installation must take into account wear and tear so that the likelihood of an inadvertent deployment is not increased to an unacceptable level. In this context, an appropriate inspection interval and self-test capability are considered necessary. Other outside influences are lightning and high intensity radiated fields (HIRF). Existing regulations regarding lightning, § 25.1316, and existing HIRF special conditions for the Boeing Model 767–400ER series aircraft, Special Conditions No. 25-152-SC, are applicable. Finally, the inflatable lapbelt installation should be protected from the effects of fire, so that an additional hazard is not created by, for example, a rupture of the pyrotechnic squib.

In order to be an effective safety system, the inflatable lapbelt must function properly and must not introduce any additional hazards to occupants as a result of its functioning. There are several areas where the inflatable lapbelt differs from traditional occupant protection systems, and requires special conditions to ensure adequate performance.

Because the inflatable lapbelt is essentially a single use device, there is the potential that it could deploy under crash conditions that are not sufficiently severe as to require head injury protection from the inflatable lapbelt. Since an actual crash is frequently composed of a series of impacts before the airplane comes to rest, this could render the inflatable lapbelt useless if a larger impact follows the initial impact. This situation does not exist with energy absorbing pads or upper torso restraints, which tend to provide continuous protection regardless of severity or number of impacts in a crash event. Therefore, the inflatable lapbelt installation should provide protection, when it is required, by not expending its protection during a less severe impact. Also, it is possible to have several large impact events during the course of a crash, but there is no requirement for the inflatable lapbelt to provide protection for multiple impacts.

Since each occupant's restraint system provides protection for that occupant only, the installation must address seats that are unoccupied. It will be necessary to show that the required protection is provided for each occupant regardless of the number of occupied seats, and considering that unoccupied seats may have lapbelts that are active.

The inflatable lapbelt should be effective for a wide range of occupants. The FAA has historically considered the range from the fifth percentile female to the ninety-fifth percentile male as the range of occupants that must be taken into account. In this case, the FAA is proposing consideration of a broader range of occupants, due to the nature of the lapbelt installation and its close proximity to the occupant. In a similar vein, these persons could have assumed the brace position, for those accidents where an impact is anticipated. Test data indicate that occupants in the brace position do not require supplemental protection, and so it would not be necessary to show that the inflatable lapbelt will enhance the brace position. However, the inflatable lapbelt must not introduce a hazard in the case of deploying into the seated, braced occupant.

Another area of concern is the use of seats, so equipped, by children whether lap-held, in approved child safety seats, or occupying the seat directly. Similarly, if the seat is occupied by a pregnant woman, the installation should address such usage, either by demonstrating that it will function properly, or by adding appropriate limitation on usage.

Since the inflatable lapbelt will be electrically powered, there is the possibility that the system could fail due to a separation in the fuselage. Since this system is intended as crash/ post-crash protection means, failure to deploy due to fuselage separation is not acceptable. As with emergency lighting, the system should function properly if such a separation occurs at any point in the fuselage.

Since the inflatable lapbelt is likely to have a large volume displacement, the inflated bag could potentially impede egress of passengers. Since the bag deflates to absorb energy, it is likely that an inflatable lapbelt would be deflated at the time that persons would be trying to leave their seats. Nonetheless, it is considered appropriate to specify a time interval after which the inflatable lapbelt may not impede rapid egress. Ten seconds has been chosen as a reasonable time, since this corresponds to the maximum time allowed for an exit to be openable (§ 25.809). In actuality, it is unlikely that an exit would be prepared by a flight attendant this quickly in an accident severe enough to warrant deployment of the inflatable lapbelt, and the inflatable lapbelt is expected to deflate much quicker than ten seconds.

The current special conditions for the Boeing Model 777 series airplanes, Special Conditions No. 25-187A-SC were amended to address flammability of the airbag material. During the development of the inflatable lapbelt, the manufacturer was unable to develop a fabric that would meet the inflation requirements for the bag and the flammability requirements of part I(a)(1)(ii) of Appendix F to part 25. The fabrics that were developed that met the flammability requirement, did not produce acceptable deployment characteristics. However, the manufacturer was able to develop a fabric that meets the less stringent flammability requirements of part I(a)(1)(iv) of Appendix F to part 25 and has acceptable deployment characteristics.

Part I of Appendix F to part 25 specifies the flammability requirements for interior materials and components. There is no reference to inflatable restraint systems in Appendix F, because such devices did not exist at the time the flammability requirements were written. The existing requirements are based on both material types, as well as use, and have been specified in light of the state-of-the-art of materials available to perform a given function. In the absence of a specific reference, the default requirement would be for the type of material used to construct the inflatable restraint, which is a fabric in this case. However, in writing a special condition, the FAA must also consider the use of the material, and whether the default requirement is appropriate. In this case, the specialized function of the inflatable restraint means that highly specialized materials are needed. The standard normally applied to fabrics is a 12-second vertical ignition test. However, materials that meet this

standard do not perform adequately as inflatable restraints. Since the safety benefit of the inflatable restraint is significant, the flammability standard appropriate for these devices should not screen out suitable materials, thereby effectively eliminating use of inflatable restraints. The FAA will need to establish a balance between the safety benefit of the inflatable restraint, and its flammability performance. At this time, the 2.5-inch per minute horizontal test is considered to provide that balance. As the technology in materials progresses (which is expected), the FAA may change this standard in subsequent special conditions to account for improved materials.

Finally, it should be noted that the special conditions are applicable to the inflatable lapbelt system as installed. These special conditions are not an installation approval. Therefore, while these special conditions relate to each such system installed, the overall installation approval is a separate finding and must consider the combined effects of all such systems installed.

Type Certification Basis

Under the provisions of Title 14 Code of Federal Regulations (14 CFR) 21.101, Continental Airlines must show that the 767-400ER, as changed, continues to meet the applicable provisions of the regulations incorporated by reference in Type Certificate No. A1NM or the applicable regulations in effect on the date of application for the change. The regulations incorporated by reference in the type certificate are commonly referred to as the "original type certification basis." The regulations incorporated by reference in Type Certificate No. A1NM are as follows: Amendments 25-1 through 25-89 with exceptions. The U.S. type certification basis for the Model 767-400ER is established in accordance with 14 CFR 21.29 and 21.17 and the type certification application date. The U.S. type certification basis is listed in Type Certification Data Sheet No. A1NM.

If the Administrator finds that the applicable airworthiness regulations (*i.e.*, 14 CFR part 25) do not contain adequate or appropriate safety standards for the 767–400ER series airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of \S 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the applicant apply for a supplemental type certificate to modify any other model included on the same type certificate to incorporate the same novel or unusual design feature, the special conditions would also apply to the other model.

In addition to the applicable airworthiness regulations and special conditions, the 767–400ER must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36.

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.101.

Novel or Unusual Design Features

The 767–400ER will incorporate the following novel or unusual design feature: Continental Airlines is proposing to install an inflatable lapbelt on certain seats of the 767–400ER series airplanes in order to reduce the potential for head injury in the event of an accident. The inflatable lapbelt works similar to an automotive airbag, except that the airbag is integrated with the lapbelt of the restraint system.

The CFR states the performance criteria for head injury protection in objective terms. However, none of these criteria are adequate to address the specific issues raised concerning seats with inflatable lapbelts. The FAA has therefore determined that, in addition to the requirements of part 25, special conditions are needed to address requirements particular to installation of seats with inflatable lapbelts.

Accordingly, in addition to the passenger injury criteria specified in § 25.785, these special conditions are adopted for the 767–400ER series airplanes equipped with inflatable lapbelts. Other conditions may be developed, as needed, based on further FAA review and discussions with the manufacturer and civil aviation authorities.

Discussion

From the standpoint of a passenger safety system, the inflatable lapbelt is unique in that it is both an active and entirely autonomous device. While the automotive industry has good experience with airbags, the conditions of use and reliance on the inflatable lapbelt as the sole means of injury protection are quite different. In automobile installations, the airbag is a supplemental system and works in conjunction with an upper torso restraint. In addition, the crash event is more definable and of typically shorter duration, which can simplify the activation logic. The airplane operating environment is also quite different from automobiles and includes the potential for greater wear and tear, and

unanticipated abuse conditions (due to galley loading, passenger baggage, etc.). Airplanes also operate where exposure to high intensity electromagnetic fields could affect the activation system.

The following special conditions can be characterized as addressing either the safety performance of the system or the system's integrity against inadvertent activation. Because a crash requiring use of the inflatable lapbelts is a relatively rare event, and because the consequences of an inadvertent activation are potentially quite severe, these latter requirements are probably the more rigorous from a design standpoint.

Applicability

As discussed above, these special conditions are applicable to the Continental Airlines 767–400ER series airplane. Should Continental Airlines apply at a later date for a supplemental type certificate to modify any other model included on Type Certificate No. A1NM to incorporate the same novel or unusual design feature, the special conditions would apply to that model as well.

Conclusion

This action affects only certain novel or unusual design features on Continental Airlines 767–400ER series of airplanes. It is not a rule of general applicability and affects only the applicant who applied to the FAA for approval of these features on the airplane.

The substance of these special conditions has been subjected to the notice and comment period in several prior instances and has been derived without substantive change from those previously issued. It is unlikely that prior public comment would result in a significant change from the substance contained herein. Therefore, because a delay would significantly affect the certification of the airplane, which is imminent, the FAA has determined that prior public notice and comment are unnecessary and impracticable, and good cause exists for adopting these special conditions upon issuance. The FAA is requesting comments to allow interested persons to submit views that may not have been submitted in response to the prior opportunities for comment described above.

List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements.

The authority citation for these special conditions is as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Special Conditions

Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as part of the type certification basis for Boeing Model 767–400ER series airplanes modified by Continental Airlines.

1. Seats with Inflatable Lapbelts. It must be shown that the inflatable lapbelt will deploy and provide protection under crash conditions where it is necessary to prevent serious head injury. The means of protection must take into consideration a range of stature from a two-year-old child to a ninety-fifth percentile male. The inflatable lapbelt must provide a consistent approach to energy absorption throughout that range of occupants. In addition, the following situations must be considered:

a. The seat occupant is holding an infant.

b. The seat occupant is a child in a child restraint device.

c. The seat occupant is a child not using a child restraint device.

d. The seat occupant is a pregnant woman.

2. The inflatable lapbelt must provide adequate protection for each occupant regardless of the number of occupants of the seat assembly, considering that unoccupied seats may have active lapbelts.

3. The design must prevent the inflatable lapbelt from being either incorrectly buckled or incorrectly installed such that the inflatable lapbelt would not properly deploy. Alternatively, it must be shown that such deployment is not hazardous to the occupant and will provide the required head injury protection.

4. It must be shown that the inflatable lapbelt system is not susceptible to inadvertent deployment as a result of wear and tear, inertial loads resulting from in-flight or ground maneuvers (including gusts and hard landings), or other operating and environmental conditions (vibrations, moisture, etc.) likely to be experienced in service.

5. Deployment of the inflatable lapbelt must not introduce injury mechanisms to the seated occupant or result in injuries that could impede rapid egress. This assessment should include an occupant who is in the brace position when it deploys and an occupant whose belt is loosely fastened.

6. It must be shown that inadvertent deployment of the inflatable lapbelt, during the most critical part of the flight, will either not cause a hazard to the airplane or its occupants, or it meets the requirement of \S 25.1309(b).

7. It must be shown that the inflatable lapbelt will not impede rapid egress of occupants 10 seconds after its deployment.

8. The system must be protected from lightning and HIRF. The threats specified in existing regulations regarding lightning, § 25.1316 and existing HIRF special conditions for the Boeing Model 767–400ER series aircraft, Special Condition No. 25–152–SC, are incorporated by reference for the purpose of measuring lightning and HIRF protection.

9. Inflatable lapbelts, once deployed, must not adversely effect the emergency lighting system (*i.e.*, block proximity lights to the extent that the lights no longer meet their intended function).

10. The inflatable lapbelt must function properly after loss of normal airplane electrical power and after a transverse separation of the fuselage at the most critical location. A separation at the location of the lapbelt does not have to be considered.

11. It must be shown that the inflatable lapbelt will not release hazardous quantities of gas or particulate matter into the cabin.

12. The inflatable lapbelt installation must be protected from the effects of fire such that no hazard to occupants will result.

13. There must be a means for a crewmember to verify the integrity of the inflatable lapbelt activation system prior to each flight, or it must be demonstrated to reliably operate between inspection intervals. The FAA considers the loss of the airbag system deployment function alone (*i.e.*, independent of the conditional event that requires the airbag system deployment) to be a major failure condition.

14. The inflatable material may not have an average burn rate of greater than 2.5 inches/minute when tested using the horizontal flammability test as defined in 14 CFR part 25, appendix F, part I, paragraph (b)(5).

Issued in Renton, Washington, on October 6, 2011.

Ali Bahrami,

Manager, Transport Airplane Directorate, Aircraft Certification Service, ANM-100. [FR Doc. 2011-26554 Filed 10-13-11; 8:45 am]

BILLING CODE 4910-13-P