Energy

PARTS 200 TO 499
Revised as of January 1, 1998

CONTAINING
A CODIFICATION OF DOCUMENTS
OF GENERAL APPLICABILITY
AND FUTURE EFFECT
AS OF JANUARY 1, 1998

With Ancillaries

Published by
the Office of the Federal Register
National Archives and Records
Administration
as a Special Edition of
the Federal Register
Table of Contents

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

Title 10:

Chapter II—Department of Energy .. 3

Finding Aids:

- Material Approved for Incorporation by Reference 625
- Table of CFR Titles and Chapters .. 637
- Alphabetical List of Agencies Appearing in the CFR 653
- List of CFR Sections Affected ... 663
Cite this Code: CFR

To cite the regulations in this volume use title, part and section number. Thus, 10 CFR 202.21 refers to title 10, part 202, section 21.
Explanation

The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Register by the Executive departments and agencies of the Federal Government. The Code is divided into 50 titles which represent broad areas subject to Federal regulation. Each title is divided into chapters which usually bear the name of the issuing agency. Each chapter is further subdivided into parts covering specific regulatory areas.

Each volume of the Code is revised at least once each calendar year and issued on a quarterly basis approximately as follows:

Title 1 through Title 16 .. as of January 1
Title 17 through Title 27 ... as of April 1
Title 28 through Title 41 ... as of July 1
Title 42 through Title 50 ... as of October 1

The appropriate revision date is printed on the cover of each volume.

LEGAL STATUS

The contents of the Federal Register are required to be judicially noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

The Code of Federal Regulations is kept up to date by the individual issues of the Federal Register. These two publications must be used together to determine the latest version of any given rule.

To determine whether a Code volume has been amended since its revision date (in this case, January 1, 1998), consult the “List of CFR Sections Affected (LSA),” which is issued monthly, and the “Cumulative List of Parts Affected,” which appears in the Reader Aids section of the daily Federal Register. These two lists will identify the Federal Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

Each volume of the Code contains amendments published in the Federal Register since the last revision of that volume of the Code. Source citations for the regulations are referred to by volume number and page number of the Federal Register and date of publication. Publication dates and effective dates are usually not the same and care must be exercised by the user in determining the actual effective date. In instances where the effective date is beyond the cut-off date for the Code a note has been inserted to reflect the future effective date. In those instances where a regulation published in the Federal Register states a date certain for expiration, an appropriate note will be inserted following the text.

OMB CONTROL NUMBERS

The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires Federal agencies to display an OMB control number with their information collection request.
Many agencies have begun publishing numerous OMB control numbers as amendments to existing regulations in the CFR. These OMB numbers are placed as close as possible to the applicable recordkeeping or reporting requirements.

OBSoLETE PROVISIONS

Provisions that become obsolete before the revision date stated on the cover of each volume are not carried. Code users may find the text of provisions in effect on a given date in the past by using the appropriate numerical list of sections affected. For the period before January 1, 1986, consult either the List of CFR Sections Affected, 1949-1963, 1964-1972, or 1973-1985, published in seven separate volumes. For the period beginning January 1, 1986, a “List of CFR Sections Affected” is published at the end of each CFR volume.

INCorPORATION BY REFERENCE

What is incorporation by reference? Incorporation by reference was established by statute and allows Federal agencies to meet the requirement to publish regulations in the Federal Register by referring to materials already published elsewhere. For an incorporation to be valid, the Director of the Federal Register must approve it. The legal effect of incorporation by reference is that the material is treated as if it were published in full in the Federal Register (5 U.S.C. 552(a)). This material, like any other properly issued regulation, has the force of law.

What is a proper incorporation by reference? The Director of the Federal Register will approve an incorporation by reference only when the requirements of 1 CFR part 51 are met. Some of the elements on which approval is based are:

(a) The incorporation will substantially reduce the volume of material published in the Federal Register.

(b) The matter incorporated is in fact available to the extent necessary to afford fairness and uniformity in the administrative process.

(c) The incorporating document is drafted and submitted for publication in accordance with 1 CFR part 51.

Properly approved incorporations by reference in this volume are listed in the Finding Aids at the end of this volume.

What if the material incorporated by reference cannot be found? If you have any problem locating or obtaining a copy of material listed in the Finding Aids of this volume as an approved incorporation by reference, please contact the agency that issued the regulation containing that incorporation. If, after contacting the agency, you find the material is not available, please notify the Director of the Federal Register, National Archives and Records Administration, Washington DC 20408, or call (202) 523-4534.

CFR INDEXES AND TABULAR GUIDES

A subject index to the Code of Federal Regulations is contained in a separate volume, revised annually as of January 1, entitled CFR INDEX AND FINDING AIDS. This volume contains the Parallel Table of Statutory Authorities and Agency Rules (Table I), and Acts Requiring Publication in the Federal Register (Table II). A list of CFR titles, chapters, and parts and an alphabetical list of agencies publishing in the CFR are also included in this volume.

An index to the text of “Title 3—The President” is carried within that volume.

The Federal Register Index is issued monthly in cumulative form. This index is based on a consolidation of the “Contents” entries in the daily Federal Register.
A List of CFR Sections Affected (LSA) is published monthly, keyed to the revision dates of the 50 CFR titles.

REPUBLICATION OF MATERIAL

There are no restrictions on the republication of material appearing in the Code of Federal Regulations.

INQUIRIES

For a legal interpretation or explanation of any regulation in this volume, contact the issuing agency. The issuing agency's name appears at the top of odd-numbered pages.

For inquiries concerning CFR reference assistance, call 202-523-5227 or write to the Director, Office of the Federal Register, National Archives and Records Administration, Washington, DC 20408 or e-mail info@fedreg.nara.gov.

SALES

The Government Printing Office (GPO) processes all sales and distribution of the CFR. For payment by credit card, call 202-512-1800, M-F, 8 a.m. to 4 p.m. e.s.t. or fax your order to 202-512-2233, 24 hours a day. For payment by check, write to the Superintendent of Documents, Attn: New Orders, P.O. Box 371954, Pittsburgh, PA 15250-7954. For GPO Customer Service call 202-512-1803.

ELECTRONIC SERVICES

In addition, the Federal Register's public inspection list and table of contents are also available on the National Archives and Records Administration's Fax-on-Demand system. Phone, 301-713-6905.

RAYMOND A. MOSLEY,
Director,
Office of the Federal Register.

THIS TITLE

Title 10—Energy is composed of four volumes. The parts in these volumes are arranged in the following order: parts 1-50, 51-199, 200-499 and part 500-end. The first and second volumes containing parts 1-199 are comprised of chapter I—Nuclear Regulatory Commission. The third and fourth volumes containing part 200-end are comprised of chapters II, III and X—Department of Energy, chapter XI—United States Enrichment Corporation, chapter XV—Office of the Federal Inspector for the Alaska Natural Gas Transportation System, and chapter XVII—Defense Nuclear Facilities Safety Board. The contents of these volumes represent all current regulations codified under this title of the CFR as of January 1, 1998.

For this volume, Carol Conroy was Chief Editor. The Code of Federal Regulations publication program is under the direction of Frances D. McDonald, assisted by Alomha S. Morris.
Would you like to know... if any changes have been made to the Code of Federal Regulations or what documents have been published in the Federal Register without reading the Federal Register every day? If so, you may wish to subscribe to the LSA (List of CFR Sections Affected), the Federal Register Index, or both.

LSA
The LSA (List of CFR Sections Affected) is designed to lead users of the Code of Federal Regulations to amendatory actions published in the Federal Register. The LSA is issued monthly in cumulative form. Entries indicate the nature of the changes—such as revised, removed, or corrected. $27 per year.

Federal Register Index
The index, covering the contents of the daily Federal Register, is issued monthly in cumulative form. Entries are carried primarily under the names of the issuing agencies. Significant subjects are carried as cross-references. $25 per year.

A finding aid is included in each publication which lists Federal Register page numbers with the date of publication in the Federal Register.

Superintendent of Documents Subscription Order Form

Order Processing Code:

*5421 YES, send me the following indicated subscriptions for one year:

___ LSA (List of CFR Sections Affected), (LCS) for $27 per year.

___ Federal Register Index (FRSU) $25 per year.

The total cost of my order is $.

Price is subject to change. International customers please add 25%.

Company or personal name

Street address

City, State, ZIP code

Daytime phone with area code

Purchase order No. (optional)

Fax your orders (202) 512-2250
Phone your orders (202) 512-1800

(Includes regular shipping and handling.)

For privacy check box below:

☑ Do not make my name available to other mailers

Check method of payment:

☑ Check payable to Superintendent of Documents

☑ GPO Deposit Account

☑ VISA ☐ MasterCard

Expiration date

Credit card No. (must be 20 digits)

Thank you for your order!

Authorizing signature

Mail To: Superintendent of Documents

P O Box 371954

Pittsburgh PA 15250-7954
Title 10—Energy

(This book contains parts 200 to 499)

CHAPTER II—Department of Energy 202
CHAPTER II—DEPARTMENT OF ENERGY

SUBCHAPTER A—OIL

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-201</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>202</td>
<td>Production or disclosure of material or information</td>
</tr>
<tr>
<td>205</td>
<td>Administrative procedures and sanctions</td>
</tr>
<tr>
<td>207</td>
<td>Collection of information</td>
</tr>
<tr>
<td>209</td>
<td>International voluntary agreements</td>
</tr>
<tr>
<td>210</td>
<td>General allocation and price rules</td>
</tr>
<tr>
<td>212</td>
<td>Mandatory petroleum price regulations</td>
</tr>
<tr>
<td>215</td>
<td>Collection of foreign oil supply agreement information</td>
</tr>
<tr>
<td>216</td>
<td>Materials allocation and priority performance under contracts or orders to maximize domestic energy supplies</td>
</tr>
<tr>
<td>218</td>
<td>Standby mandatory international oil allocation</td>
</tr>
<tr>
<td>220</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>221</td>
<td>Priority supply of crude oil and petroleum products to the Department of Defense under the Defense Production Act</td>
</tr>
</tbody>
</table>

SUBCHAPTERS B—C [RESERVED]

SUBCHAPTER D—ENERGY CONSERVATION

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-417</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>420</td>
<td>State energy program</td>
</tr>
<tr>
<td>430</td>
<td>Energy Conservation Program for consumer products</td>
</tr>
<tr>
<td>435</td>
<td>Energy conservation voluntary performance standards for new buildings; mandatory for Federal buildings</td>
</tr>
<tr>
<td>436</td>
<td>Federal energy management and planning programs</td>
</tr>
<tr>
<td>440</td>
<td>Weatherization assistance for low-income persons</td>
</tr>
<tr>
<td>445</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>451</td>
<td>Renewable energy production incentives</td>
</tr>
<tr>
<td>Part</td>
<td>Grant programs for schools and hospitals and buildings owned by units of local government and public care institutions</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>455</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>470</td>
<td>Appropriate Technology Small Grants Program</td>
</tr>
<tr>
<td>473</td>
<td>Automotive propulsion research and development</td>
</tr>
<tr>
<td>474</td>
<td>Electric and Hybrid Vehicle Research, Development and Demonstration Program; equivalent petroleum-based fuel economy calculation</td>
</tr>
<tr>
<td>490</td>
<td>Alternative fuel transportation program</td>
</tr>
<tr>
<td>491-499</td>
<td>[Reserved]</td>
</tr>
</tbody>
</table>

EDITORIAL NOTE: Chapter II—Department of Energy is continued in the volume containing 10 CFR part 500 to End.
§ 202.21 Purpose and scope.

(a) This subpart sets forth the procedures to be followed when a subpoena, order, or other demand (hereinafter referred to as a “demand”) of a court or other authority is issued for the production or disclosure of (1) any material contained in the files of the Department of Energy (DOE), (2) any information relating to material contained in the files of the DOE, or (3) any information or material acquired by any person while such person was an employee of the DOE as a part of the performance of his official duties or because of his official status.

(b) For purposes of this subpart, the term “Employee of the DOE” includes all officers and employees of the United States appointed by, or subject to the supervision, jurisdiction, or control of, the Administrator of DOE.

§ 202.22 Production or disclosure prohibited unless approved by appropriate DOE official.

No employee or former employee of the DOE shall, in response to a demand of a court or other authority, produce any material contained in the file of the DOE or disclose any information relating to material contained in the files of the DOE, or disclose any information or produce any material acquired as part of the performance of his official duties or because of his official status without prior approval of the General Counsel of DOE.

§ 202.23 Procedure in the event of a demand for production or disclosure.

(a) Whenever a demand is made upon an employee or former employee of the DOE for the production of material or the disclosure of information described in §202.21(a), he shall immediately notify the Regional Counsel for the region where the issuing authority is located. The Regional Counsel shall immediately notify the Regional Counsel for the region where the issuing authority is located. The Regional Counsel shall immediately request instructions from the General Counsel of DOE.

(b) If oral testimony is sought by the demand, an affidavit, or, if that is not feasible, a statement by the party seeking the testimony or his attorney, setting forth a summary of the testimony desired, must be furnished for submission by the Regional Counsel to the General Counsel.

§ 202.24 Final action by the appropriate DOE official.

If the General Counsel approves a demand for the production of material or disclosure of information, he shall so notify the Regional Counsel and such other persons as circumstances may warrant.
§ 202.25 Procedure where a decision concerning a demand is not made prior to the time a response to the demand is required.

If response to the demand is required before the instructions from the General Counsel are received, a U.S. attorney or DOE attorney designated for the purpose shall appear with the employee or former employee of the DOE upon whom the demand has been made, and shall furnish the court or other authority with a copy of the regulations contained in this subpart and inform the court or other authority that the demand has been, or is being, as the case may be, referred for the prompt consideration of the appropriate DOE official and shall respectfully request the court or authority to stay the demand pending receipt of the requested instructions.

§ 202.26 Procedure in the event of an adverse ruling.

If the court or other authority declines to stay the effect of the demand in response to a request made in accordance with §202.25 pending receipt of instructions, of if the court or other authority rules that the demand must be complied with irrespective of instructions not to produce the material or disclose the information sought, the employee or former employee upon whom the demand has been made shall respectfully decline to comply with the demand. "United States ex rel Touhy v. Ragen," 340 U.S. 462.

PART 205—ADMINISTRATIVE PROCEDURES AND SANCTIONS

Subpart A—General Provisions

Sec. 205.1 Purpose and scope.
205.2 Definitions.
205.3 Appearance before the DOE or a State Office.
205.4 Filing of documents.
205.5 Computation of time.
205.6 Extension of time.
205.7 Service.
205.8 Subpoenas, special report orders, oaths, witnesses.
205.9 General filing requirements.
205.10 Effective date of orders.
205.11 Order of precedence.
205.12 Addresses for filing documents with the DOE.
205.13 Where to file.
205.14 Ratification of prior directives, orders, and actions.
205.15 Public docket room.

Subparts B-E—[Reserved]

Subpart F—Interpretation

205.80 Purpose and scope.
205.81 What to file.
205.82 Where to file.
205.83 Contents.
205.84 DOE evaluation.
205.85 Decision and effect.
205.86 Appeal.

Subparts G-J—[Reserved]

Subpart K—Rulings

205.150 Purpose and scope.
205.151 Criteria for issuance.
205.152 Modification or rescission.
205.153 Comments.
205.154 Appeal.

Subpart L—[Reserved]

Subpart M—Conferences, Hearings, and Public Hearings

205.170 Purpose and scope.
205.171 Conferences.
205.172 Hearings.
205.173 Public hearings.

Subpart N—[Reserved]

Subpart O—Notice of Probable Violation, Remedial Order, Notice of Proposed Disallowance, and Order of Disallowance

205.190 Purpose and scope.
205.191 [Reserved]
205.192 Proposed remedial order.
205.192A Burden of proof.
205.193 Notice of Objection.
205.193A Submission of ERA supplemental information.
205.194 Participants; official service list.
205.195 Filing and service of all submissions.
205.196 Statement of objections.
205.197 Response to statement of objections; reply.
205.198 Discovery.
205.198A Protective order.
205.199 Evidentiary hearing.
205.199A Hearing for the purpose of oral argument only.
205.199B Remedial order.
205.199C Appeals of remedial order to FERC.
205.199D—205.199E [Reserved]
205.199F Ex parte communications.
205.199G Extension of time; Interim and Ancillary Orders.
§ 205.2 Report of Major Electric Utility System Emergencies

205.350 General purpose.
205.351 Reporting requirements.
205.352 Information to be reported.
205.353 Special investigation and reports.

Emergency Interconnection of Electric Facilities and the Transfer of Electricity to Alleviate an Emergency Shortage of Electric Power

205.370 Applicability.
205.371 Definition of emergency.
205.372 Filing procedures; number of copies.
205.373 Application procedures.
205.374 Responses from “entities” designated in the application.
205.375 Guidelines defining inadequate fuel or energy supply.
205.376 Rates and charges.
205.377 Reports.
205.378 Disconnection of temporary facilities.
205.379 Application for approval of the installation of permanent facilities for emergency use only.

Source: 39 FR 35489, Oct. 1, 1974, unless otherwise noted.

Subpart A—General Provisions

§ 205.1 Purpose and scope.

This part establishes the procedures to be utilized and identifies the sanctions that are available in proceedings before the Department of Energy and State Offices, in accordance with parts 209 through 214 of this chapter. Any exception, exemption, appeal, stay, modification, recession, redress or resolution of private grievance sought under the authority of 42 U.S.C. 7194 shall be governed by the procedural rules set forth in 10 CFR part 1003.

[61 FR 53114, July 5, 1996]

§ 205.2 Definitions.

The definitions set forth in other parts of this chapter shall apply to this part, unless otherwise provided. In addition, as used in this part, the term:

Action means an order, interpretation, notice of probable violation or ruling issued, or a rulemaking undertaken by the DOE or, as appropriate, by a State Office.
Adjustment means a modification of the base period volume or other measure of allocation entitlement in accordance with part 211 of this chapter.

Aggrieved, for purposes of administrative proceedings, describes and means a person with an interest sought to be protected under the FEAA, EPAA, or Proclamation No. 3279, as amended, who is adversely affected by an order or interpretation issued by the DOE or a State Office.

Appropriate Regional Office or appropriate State Office means the office located in the State or DOE region in which the product will be physically delivered.

Assignment means an action designating that an authorized purchaser be supplied at a specified entitlement level by a specified supplier.

Conference means an informal meeting, incident to any proceeding, between DOE or State officials and any person aggrieved by that proceeding.

Consent order means a document of agreement between DOE and a person prohibiting certain acts, requiring the performance of specific acts or including any acts which DOE could prohibit or require pursuant to §205.195.

Duly authorized representative means a person who has been designated to appear before the DOE or a State Office in connection with a proceeding on behalf of a person interested in or aggrieved by that proceeding. Such appearance may consist of the submission of applications, petitions, requests, statements, memoranda of law, other documents, or of a personal appearance, verbal communication, or any other participation in the proceeding.

Exception means the waiver or modification of the requirements of a regulation, ruling or generally applicable requirement under a specific set of facts.

Exemption means the release from the obligation to comply with any part or parts, or any subpart thereof, of this chapter.

DOE means the Department of Energy, created by the FEAA and includes the DOE National Office and Regional Offices.

DOE means the Department of Energy, created by the FEAA and includes the DOE National Office and Regional Offices.

Interpretation means a written statement issued by the General Counsel or his delegate or Regional Counsel, in response to a written request, that applies the regulations, rulings, and other precedents previously issued, to the particular facts of a prospective or completed act or transaction.

Notice of probable violation means a written statement issued to a person by the DOE that states one or more alleged violations of the provisions of this chapter or any order issued pursuant thereto.

Order means a written directive or verbal communication of a written directive, if promptly confirmed in writing, issued by the DOE or a State Office. It may be issued in response to an application, petition or request for DOE action or in response to an appeal from an order, or it may be a remedial order or other directive issued by the DOE or a State Office on its own initiative. A notice of probable violation is not an order. For purposes of this definition a “written directive” shall include telegrams, telecopies and similar transcriptions.

Person means any individual, firm, estate, trust, sole proprietorship, partnership, association, company, joint venture, corporation, governmental unit or instrumentality thereof, or a charitable, educational or other institution, and includes any officer, director, owner or duly authorized representative thereof.

Proceeding means the process and activity, and any part thereof, instituted by the DOE or a State Office, either on its own initiative or in response to an application, complaint, petition or request submitted by a person, that may lead to an action by the DOE or a State Office.

§ 205.2

Adjustment means a modification of the base period volume or other measure of allocation entitlement in accordance with part 211 of this chapter.

Aggrieved, for purposes of administrative proceedings, describes and means a person with an interest sought to be protected under the FEAA, EPAA, or Proclamation No. 3279, as amended, who is adversely affected by an order or interpretation issued by the DOE or a State Office.

Appropriate Regional Office or appropriate State Office means the office located in the State or DOE region in which the product will be physically delivered.

Assignment means an action designating that an authorized purchaser be supplied at a specified entitlement level by a specified supplier.

Conference means an informal meeting, incident to any proceeding, between DOE or State officials and any person aggrieved by that proceeding.

Consent order means a document of agreement between DOE and a person prohibiting certain acts, requiring the performance of specific acts or including any acts which DOE could prohibit or require pursuant to §205.195.

Duly authorized representative means a person who has been designated to appear before the DOE or a State Office in connection with a proceeding on behalf of a person interested in or aggrieved by that proceeding. Such appearance may consist of the submission of applications, petitions, requests, statements, memoranda of law, other documents, or of a personal appearance, verbal communication, or any other participation in the proceeding.

Exception means the waiver or modification of the requirements of a regulation, ruling or generally applicable requirement under a specific set of facts.

Exemption means the release from the obligation to comply with any part or parts, or any subpart thereof, of this chapter.

DOE means the Department of Energy, created by the FEAA and includes the DOE National Office and Regional Offices.

Interpretation means a written statement issued by the General Counsel or his delegate or Regional Counsel, in response to a written request, that applies the regulations, rulings, and other precedents previously issued, to the particular facts of a prospective or completed act or transaction.

Notice of probable violation means a written statement issued to a person by the DOE that states one or more alleged violations of the provisions of this chapter or any order issued pursuant thereto.

Order means a written directive or verbal communication of a written directive, if promptly confirmed in writing, issued by the DOE or a State Office. It may be issued in response to an application, petition or request for DOE action or in response to an appeal from an order, or it may be a remedial order or other directive issued by the DOE or a State Office on its own initiative. A notice of probable violation is not an order. For purposes of this definition a “written directive” shall include telegrams, telecopies and similar transcriptions.

Person means any individual, firm, estate, trust, sole proprietorship, partnership, association, company, joint venture, corporation, governmental unit or instrumentality thereof, or a charitable, educational or other institution, and includes any officer, director, owner or duly authorized representative thereof.

Proceeding means the process and activity, and any part thereof, instituted by the DOE or a State Office, either on its own initiative or in response to an application, complaint, petition or request submitted by a person, that may lead to an action by the DOE or a State Office.

8
Remedial order means a directive issued by the DOE requiring a person to cease a violation or to eliminate or to compensate for the effects of a violation, or both.

Ruling means an official interpretative statement of general applicability issued by the DOE General Counsel and published in the Federal Register that applies the DOE regulations to a specific set of circumstances.

State Office means a State Office of Petroleum Allocation certified by the DOE upon application pursuant to part 211 of this chapter.

Throughout this part the use of a word or term in the singular shall include the plural and the use of the male gender shall include the female gender.

(§ 205.4) Filing of documents.

(a) Any document, including, but not limited to, an application, request, complaint, petition and other documents submitted in connection therewith, filed with the DOE or a State Office under this chapter is considered to be filed when it has been received by the DOE National Office, a Regional Office or a State Office. Documents transmitted to the DOE must be addressed as required by § 205.12. All documents and exhibits submitted become part of an DOE or a State Office file and will not be returned.

(b) Notwithstanding the provisions of paragraph (a) of this section, an appeal, a response to a denial of an appeal or application for modification or recision in accordance with §§ 205.106(a)(3) and 205.135(a)(3), respectively, a reply to a notice of probable violation, the appeal of a remedial order or remedial order for immediate compliance, a response to denial of a claim of confidentiality, or a comment submitted in connection with any proceeding transmitted by registered or certified mail and addressed to the appropriate office is considered to be filed upon mailing.

(c) Hand-delivered documents to be filed with the Office of Exceptions and Appeals shall be submitted to Room 8002 at 2000 M Street, NW., Washington, D.C. All other hand-delivered documents to be filed with the DOE National Office shall be submitted to the Executive Secretariat at 12th and Pennsylvania Avenue, NW., Washington, D.C. Hand-delivered documents to be filed with a Regional Office shall be submitted to the Office of the Regional Administrator. Hand-delivered documents to be filed with a State Office shall be submitted to the office of the chief executive officer of such office.

(1) To have made false or misleading statements, either verbally or in writing;
(2) To have filed false or materially altered documents, affidavits or other writings;
(3) To lack the specific authority to represent the person seeking a DOE or State Office action; or
(4) To have engaged in or to be engaged in contumacious conduct that substantially disrupts a proceeding.
§ 205.5 Computation of time.

(a) Days. (1) Except as provided in paragraph (b) of this section, in computing any period of time prescribed or allowed by these regulations or by an order of the DOE or a State Office, the day of the act, event, or default from which the designated period of time begins to run is not to be included. The last day of the period so computed is to be included unless it is a Saturday, Sunday, or Federal legal holiday in which event the period runs until the end of the next day that is neither a Saturday, Sunday, nor a Federal legal holiday.

(2) Saturdays, Sundays or intervening Federal legal holidays shall be excluded from the computation of time when the period of time allowed or prescribed is 7 days or less.

(b) Hours. If the period of time prescribed in an order issued by the DOE or a State Office is stated in hours rather than days, the period of time shall begin to run upon actual notice of such order, whether by verbal or written communication, to the person directly affected, and shall run without interruption, unless otherwise provided in the order, or unless the order is stayed, modified, suspended or rescinded. When a written order is transmitted by verbal communication, the written order shall be served as soon thereafter as is feasible.

(c) Additional time after service by mail. Whenever a person is required to perform an act, to cease and desist therefrom, or to initiate a proceeding under this part within a prescribed period of time after issuance to such person of an order, notice, interpretation or other document and the order, notice, interpretation or other document is served by mail, 3 days shall be added to the prescribed period.

§ 205.6 Extension of time.

When a document is required to be filed within a prescribed time, an extension of time to file may be granted by the office with which the document is required to be filed upon good cause shown.

§ 205.7 Service.

(a) All orders, notices, interpretations or other documents required to be served under this part shall be served personally or by registered or certified mail or by regular United States mail (only when service is effected by the DOE or a State Office), except as otherwise provided.

(b) Service upon a person’s duly authorized representative shall constitute service upon that person.

(c) Service by registered or certified mail is complete upon mailing. Official United States Postal Service receipts from such registered or certified mailing shall constitute prima facie evidence of service.

§ 205.8 Subpoenas, special report orders, oaths, witnesses.

(a) In this section the following terms have the definitions indicated unless otherwise provided.

(1) “DOE Official” means the Secretary of the Department of Energy, the Administrator of the Economic Regulatory Administration, the Administrator of Energy Information Administration, the General Counsel of the Department of Energy, the Special Counsel for Compliance, the Assistant Administrator for Enforcement, the Director of the Office of Hearings and Appeals, or the duly authorized delegate of any of the foregoing officials.

(2) “SRO” means a Special Report Order issued pursuant to paragraph (b) of this section.

(b) (1) In accordance with the provisions of this section and as otherwise authorized by law, a DOE Official may sign, issue and serve subpoenas; administer oaths and affirmations; take sworn testimony; compel attendance of and sequester witnesses; control dissemination of any record of testimony taken pursuant to this section; subpoena and reproduce books, papers, correspondence, memoranda, contracts, agreements, or other relevant records
or tangible evidence including, but not limited to, information retained in computerized or other automated systems in possession of the subpoenaed person. Unless otherwise provided by Subpart O, the provisions of this section apply to subpoenas issued by the office of Hearings and Appeals with respect to matters in proceedings before it.

(2) A DOE Official may issue a Special Report Order requiring any person subject to the jurisdiction of the ERA to file a special report providing information relating to DOE regulations, including but not limited to written answers to specific questions. The SRO may be in addition to any other reports required by this chapter.

(3) The DOE Official who issues a subpoena or SRO pursuant to this section, for good cause shown, may extend the time prescribed for compliance with the subpoena or SRO and negotiate and approve the terms of satisfactory compliance.

(4) Prior to the time specified for compliance, but in no event more than 10 days after the date of service of the subpoena or SRO, the person upon whom the document was served may file a request for review of the subpoena or SRO with the DOE Official who issued the document. The DOE Official then shall forward the request to his supervisor who shall provide notice of receipt to the person requesting review. The supervisor or his designee may extend the time prescribed for compliance with the subpoena or SRO and negotiate and approve the terms of satisfactory compliance.

(5) If the subpoena or SRO is not modified or rescinded within 10 days of the date of the supervisor's notice of receipt, (i) the subpoena or SRO shall be effective as issued; and (ii) the person upon whom the document was served shall comply with the subpoena or SRO within 20 days of the date of the supervisor's notice of receipt, unless otherwise notified in writing by the supervisor or his designee.

(6) There is no administrative appeal of a subpoena or SRO.

(c) (1) A subpoena or SRO shall be served upon a person named in the document by delivering a copy of the document to the person named.

(2) Delivery of a copy of the document to a natural person may be made by:

(i) Handing it to the person;

(ii) Leaving it at the person's office with the person in charge of the office;

(iii) Leaving it at the person's dwelling or usual place of abode with a person of suitable age and discretion who resides there;

(iv) Mailing it to the person by registered or certified mail, at his last known address; or

(v) Any method that provides the person with actual notice prior to the return date of the document.

(3) Delivery of a copy of the document to a person who is not a natural person may be made by:

(i) Handing it to a registered agent of the person;

(ii) Handing it to any officer, director, or agent in charge of any office of such person;

(iii) Mailing it to the last known address of any registered agent, officer, director, or agent in charge of any office of the person by registered or certified mail, or

(iv) Any method that provides any registered agent, officer, director, or agent in charge of any office of the person with actual notice of the document prior to the return date of the document.

(d)(1) A witness subpoenaed by the DOE shall be paid the same fees and mileage as paid to a witness in the district courts of the United States.

(2) If in the course of a proceeding conducted pursuant to subpart M or O, a subpoena is issued at the request of a person other than an officer or agency of the United States, the witness fees and mileage shall be paid by the person who requested the subpoena. However, at the request of the person, the witness fees and mileage shall be paid by the DOE if the person shows:

(i) The presence of the subpoenaed witness will materially advance the proceeding; and

(ii) The person who requested that the subpoena be issued would suffer a serious hardship if required to pay the witness fees and mileage. The DOE Official issuing the subpoena shall make the determination required by this subsection.
§ 205.8

(e) If any person upon whom a subpoena or SRO is served pursuant to this section, refuses or fails to comply with any provision of the subpoena or SRO, an action may be commenced in the United States District Court to enforce the subpoena or SRO.

(f) (1) Documents produced in response to a subpoena shall be accompanied by the sworn certification, under penalty of perjury, of the person to whom the subpoena was directed or his authorized agent that (i) a diligent search has been made for each document responsive to the subpoena, and (ii) to the best of his knowledge, information, and belief each document responsive to the subpoena is being produced unless withheld on the grounds of privilege pursuant to paragraph (g) of this section.

(2) Any information furnished in response to an SRO shall be accompanied by the sworn certification under penalty of perjury of the person to whom it was directed or his authorized agent who actually provides the information that (i) a diligent effort has been made to provide all information required by the SRO, and (ii) all information furnished is true, complete, and correct unless withheld on grounds of privilege pursuant to paragraph (g) of this section.

(3) If any document responsive to a subpoena is not produced or any information required by an SRO is not furnished, the certification shall include a statement setting forth every reason for failing to comply with the subpoena or SRO.

(g) If a person to whom a subpoena or SRO is directed withholds any document or information because of a claim of attorney-client or other privilege, the person submitting the certification required by paragraph (f) of this section also shall submit a written list of the documents or the information withheld indicating a description of each document or information, the date of the document, each person shown on the document as having received a copy of the document, each person shown on the document as having prepared or been sent the document, the privilege relied upon as the basis for withholding the document or information, and an identification of the person whose privilege is being asserted.

(h)(1) If testimony is taken pursuant to a subpoena, the DOE Official shall determine whether the testimony shall be recorded and the means by which the testimony is recorded.

(2) A witness whose testimony is recorded may procure a copy of his testimony by making a written request for a copy and paying the appropriate fees. However, the DOE official may deny the request for good cause. Upon proper identification, any witness or his attorney has the right to inspect the official transcript of the witness’ own testimony.

(i) The DOE Official may sequester any person subpoenaed to furnish documents or give testimony. Unless permitted by the DOE Official, neither a witness nor his attorney shall be present during the examination of any other witnesses.

(j)(1) Any witness whose testimony is taken may be accompanied, represented and advised by his attorney as follows:

(2) Upon the initiative of the attorney or witness, the attorney may advise his client, in confidence, with respect to the question asked his client, and if the witness refuses to answer any question, the witness or his attorney is required to briefly state the legal grounds for such refusal; and

(ii) If the witness claims a privilege to refuse to answer a question on the grounds of self-incrimination, the witness must assert the privilege personally.

(k) The DOE Official shall take all necessary action to regulate the course of testimony and to avoid delay and prevent or restrain contemptuous or obstructionist conduct or contemptuous language. DOE may take actions as the circumstances may warrant in regard to any instances where any attorney refuses to comply with directions or provisions of this section.

§ 205.9 General filing requirements.

(a) Purpose and scope. The provisions of this section shall apply to all documents required or permitted to be filed with the DOE or with a State Office.

(b) Signing. All applications, petitions, appeals, comments or any other documents that are required to be signed, shall be signed by the person filing the document or a duly authorized representative. Any application, appeal, petition, request, complaint or other document filed by a duly authorized representative shall contain a statement by such person certifying that he is a duly authorized representative, unless an DOE form otherwise requires. (A false certification is unlawful under the provisions of 18 U.S.C. 1001 (1970)).

(c) Labeling. An application, petition, or other request for action by the DOE or a State Office should be clearly labeled according to the nature of the action involved (e.g., “Application for Assignment”) both on the document and on the outside of the envelope in which the document is transmitted.

(d) Obligation to supply information. A person who files an application, petition, complaint, appeal or other request for action is under a continuing obligation during the proceeding to provide the DOE or a State Office with any new or newly discovered information that is relevant to that proceeding. Such information includes, but is not limited to, information regarding any other application, petition, complaint, appeal or request for action that is subsequently filed by that person with any DOE office or State Office.

(e) The same or related matters. A person who files an application, petition, complaint, appeal or other request for action by the DOE or a State Office shall state whether, to the best knowledge of that person, the same or related issue, act or transaction has been or presently is being considered or investigated by any DOE office, other Federal agency, department or instrumentality; or by a State Office, a state or municipal agency or court; or by any law enforcement agency; including, but not limited to, a consideration or investigation in connection with any proceeding described in this part. In addition, the person shall state whether contact has been made by the person or one acting on his behalf with any person who is employed by the DOE or any State Office with regard to the same issue, act or transaction or a related issue, act or transaction arising out of the same factual situation; the name of the person contacted; whether the contact was verbal or in writing; the nature and substance of the contact; and the date or dates of the contact.

(f) Request for confidential treatment. (1) If any person filing a document with the DOE or a State Office claims that some or all the information contained in the document is exempt from the mandatory public disclosure requirements of the Freedom of Information Act (5 U.S.C. 552 (1970)), is information referred to in 18 U.S.C. 1905 (1970), or is otherwise exempt by law from public disclosure, and if such person requests the DOE or a State Office not to disclose such information, such person shall file together with the document a second copy of the document from which has been deleted the information for which such person wishes to claim confidential treatment. The person shall indicate in the original document that it is confidential or contains confidential information and may file a statement specifying the justification for non-disclosure of the information for which confidential treatment is claimed. If the person states that the information comes within the exception in 5 U.S.C. 552(b)(4) for trade secrets and commercial or financial information, such person shall include a statement specifying why such information is privileged or confidential. If the person filing a document does not submit a second copy of the document with the confidential information deleted, the DOE or a State Office may assume that there is no objection to public disclosure of the document in its entirety.
§ 205.10 Effective date of orders.

Any order issued by the DOE or a State Office under this chapter is effective as against all persons having actual notice thereof upon issuance, in accordance with its terms, unless and until it is stayed, modified, suspended, or rescinded. An order is deemed to be issued on the date, as specified in the order, on which it is signed by an authorized representative of the DOE or a State Office, unless the order provides otherwise.

§ 205.11 Order of precedence.

(a) If there is any conflict or inconsistency between the provisions of this part and any other provision of this chapter, the provisions of this part shall control with respect to procedure.

(b) Notwithstanding paragraph (a) of this section, subpart I of part 212 of this chapter shall control with respect to prenotification and reporting and subpart J of part 212 of this chapter shall control with respect to accounting and financial reporting requirements.

§ 205.12 Addresses for filing documents with the DOE.

(a) All applications, requests, petitions, appeals, reports, DOE or FEO forms, written communications and other documents to be submitted to or filed with the DOE National Office in accordance with this chapter shall be addressed as provided in this section. The DOE National Office has facilities for the receipt of transmissions via TWX and FAX. The FAX is a 3M full duplex 4 or 6 minute (automatic) machine.

<table>
<thead>
<tr>
<th>FAX Numbers</th>
<th>TWX Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(202) 254-6175</td>
<td>(701) 822-9454</td>
</tr>
<tr>
<td>(202) 254-6461</td>
<td>(701) 822-9459</td>
</tr>
</tbody>
</table>

(1) Documents for which a specific address and/or code number is not provided in accordance with paragraphs (a)(2) through (7) of this section, shall be addressed as follows: Department of Energy, Attn: (name of person to receive document, if known, or subject), Washington, DC 20461.

(2) Documents to be filed with the Office of Exceptions and Appeals, as provided in this part or otherwise, shall be addressed as follows: Office of Exceptions and Appeals, Department of Energy, Attn: (name of person to receive document, if known, and/or labeling as specified in §205.9(c)), Washington, DC 20461.

(3) Documents to be filed with the Office of General Counsel, as provided in this part or otherwise, shall be addressed as follows: Office of the General Counsel, U.S. Department of Energy, Attn: (name of person to receive document, if known, and labeling as specified in §205.9(c)), 1000 Independence Avenue, Washington, DC 20585.

(4) Documents to be filed with the Office of Private Grievances and Redress, as provided in this part or otherwise, shall be addressed as follows: Office of Private Grievances and Redress, Department of Energy, Attn: (name of person to receive document, if known and/or labeling as specified in §205.9(c)), Washington, DC 20461.

(5) All other documents filed, except those concerning price (see paragraph (a)(6) of this section), those designated as DOE or FEO forms (see paragraph (a)(7) of this section), and “Surplus Product Reports” (see paragraph (a)(8) of this section), but including those pertaining to compliance and allocation (adjustment and assignment) of allocated products, are to be identified by one of the code numbers stated below and addressed as follows: Department of Energy, Code----, labeling as specified in §205.9(c), Washington, DC 20461.
<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude oil</td>
<td>10</td>
</tr>
<tr>
<td>Naphtha and gas oil</td>
<td>15</td>
</tr>
<tr>
<td>Propane, butane and natural gasoline</td>
<td>25</td>
</tr>
<tr>
<td>Other products</td>
<td>30</td>
</tr>
<tr>
<td>Bunker fuel</td>
<td>40</td>
</tr>
<tr>
<td>Residual fuel (nonutility)</td>
<td>50</td>
</tr>
<tr>
<td>Motor gasoline</td>
<td>60</td>
</tr>
<tr>
<td>Middle distillates</td>
<td>70</td>
</tr>
<tr>
<td>Aviation fuels</td>
<td>80</td>
</tr>
</tbody>
</table>

Submissions by specific entities:
- Electric utilities | 45 |
- Department of Defense | 55 |

(6) Documents pertaining to the price of covered products, except those to be submitted to other offices as provided in this part, shall be addressed to the Department of Energy, Code 1000, Attn: (name of person to receive document, if known, and/or labeling as specified in §205.9(c)), Washington, DC 20461.

(7) Documents designated as DOE or FEO forms shall be submitted in accordance with the instructions stated in the form.

(8) “Surplus Product Reports” shall be submitted to the Department of Energy, Post Office Box 19407, Washington, DC 20036.

(9) Documents to be filed with the Director of Oil Imports, as provided in this part or otherwise, shall be addressed as follows: Director of Oil Imports, Department of Energy, P.O. Box 7414, Washington, DC 20044.

(10) Petitions for rulemaking to be filed with the Economic Regulatory Administration National Office shall be addressed as follows: Economic Regulatory Administration, Attn: Assistant Administrator for Regulations and Emergency Planning (labeled as “Petition for Rulemaking,”) 2000 M Street, N.W., Washington, DC 20061.

(b) All reports, applications, requests, notices, complaints, written communications and other documents to be submitted to or filed with an DOE Regional Office in accordance with this chapter shall be directed to one of the following addresses, as appropriate:

REGION 1
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Regional Office, Department of Energy, 150 Causeway Street, Boston, Massachusetts 02114.
§ 205.13 Where to file.

(a) Except as otherwise specifically provided in other subparts of this part, all documents to be filed with the ERA pursuant to this part shall be filed with the appropriate ERA Regional Office (unless otherwise specified in part 211 of this chapter), except that all documents shall be filed with the ERA National Office that relate to:

1. The allocation and pricing of crude oil pursuant to subpart C of part 211 and part 212 of this chapter;
2. Refinery yield controls pursuant to subpart C of this chapter;
3. The pricing of propane, butane and natural gasoline pursuant to part 212 of this chapter and the allocation of butane and natural gasoline pursuant to part 211 of this chapter;
4. The allocation and pricing of middle distillate fuels pursuant to subpart G of part 211 and part 212 of this chapter, filed by electric utilities;
5. The allocation and pricing of aviation fuel pursuant to subpart H of part 211 and part 212 of this chapter, filed by civil air carriers (except air taxi/commercial operators);
6. The allocation and pricing of residual fuel oil pursuant to subpart I of part 211 and part 212 of this chapter, filed by electric utilities;
7. The allocation and pricing of naphtha and gas oil pursuant to subpart J of part 211 and part 212 of this chapter;
8. The allocation and pricing of other products pursuant to subpart K of part 211 and part 212 of this chapter;
9. An application for an exemption under subpart E of this part; requests for a rulemaking proceeding under subpart L of this part or for the issuance of a ruling under subpart K of this part; and petitions to the Office of Private Grievances and Redress under subpart R of this part;
10. The pricing of products pursuant to part 212 of this chapter, filed by a refiner; and
11. The allocation of crude oil and other allocated products to meet Department of Defense needs pursuant to part 211 of this chapter.
12. The allocation of crude oil and other allocated products to be utilized as feedstock in a synthetic natural gas plant, pursuant to §211.29.
13. Allocations, fee-paid and fee-exempt licenses issued pursuant to part 213 of this chapter.

(b) Applications by end-users and wholesale purchasers for an allocation under the state set-aside system in accordance with §211.17 shall be filed with the appropriate State Office.

(c) Applications to a State Office or a DOE Regional Office shall be directed to the office located in the state or region in which the allocated product will be physically delivered. An applicant doing business in more than one state or region must apply separately to each State or region in which a product will be physically delivered, unless the State Offices or Regional Offices involved agree otherwise.

§ 205.14 Ratification of prior directives, orders, and actions.

All interpretations, orders, notices of probable violation or other directives issued, all proceedings initiated, and all other actions taken in accordance with part 205 as it existed prior to the effective date of this amendment, are hereby confirmed and ratified, and shall remain in full force and effect as if issued under this amended part 205, unless or until they are altered, amended, modified or rescinded in accordance with the provisions of this part.

§ 205.15 Public docket room.

There shall be established at the DOE National Office, 12th and Pennsylvania Avenue, NW., Washington, DC, a public docket room in which shall be made available for public inspection and copying:

(a) A list of all persons who have applied for an exception, an exemption, or an appeal, and a digest of each application;
(b) Each decision and statement setting forth the relevant facts and legal basis of an order, with confidential information deleted, issued in response to an application for an exception or exemption or at the conclusion of an appeal;
(c) The comments received during each rulemaking proceeding, with a verbatim transcript of the public hearing if such a public hearing was held; and
(d) Any other information required by statute to be made available for public inspection and copying, and any information that the DOE determines should be made available to the public.

Subparts B-E—[Reserved]

Subpart F—Interpretation

§ 205.80 Purpose and scope.
(a) This subpart establishes the procedures for the filing of a formal request for an interpretation and for the consideration of such request. Responses, which may include verbal or written responses to general inquiries or to other than formal written requests for interpretation filed with the General Counsel or his delegate or a Regional Counsel, are not interpretations and merely provide general information.
(b) A request for interpretation that includes, or could be construed to include an application for an exception or an exemption may be treated solely as a request for interpretation and processed as such.

§ 205.81 What to file.
(a) A person filing under this subpart shall file a "Request for Interpretation," which should be clearly labeled as such both on the request and on the outside of the envelope in which the request is transmitted, and shall be in writing and signed by the person filing the request. The person filing the request shall comply with the general filing requirements stated in § 205.9 in addition to the requirements stated in this subpart.
(b) If the person filing the request wishes to claim confidential treatment for any information contained in the request or other documents submitted under this subpart, the procedures set out in § 205.9(f) shall apply.

§ 205.82 Where to file.
A request for interpretation shall be filed with the General Counsel or his delegate or with the appropriate Regional Counsel at the address provided in § 205.12.

§ 205.83 Contents.
(a) The request shall contain a full and complete statement of all relevant facts pertaining to the circumstances, act or transaction that is the subject of the request and to the DOE action sought. Such facts shall include the names and addresses of all affected persons (if reasonably ascertainable) and a full discussion of the pertinent provisions and relevant facts contained in the documents submitted with the request. Copies of all relevant contracts, agreements, leases, instruments, and other documents shall be submitted with the request. When the request pertains to only one step of a larger integrated transaction, the facts, circumstances, and other relevant information pertaining to the entire transaction must be submitted.
(b) The request for interpretation shall include a discussion of all relevant authorities, including, but not limited to, DOE rulings, regulations,
interpretations and decisions on appeals and exceptions relied upon to support the particular interpretation sought therein.

§ 205.84 DOE evaluation.

(a) Processing. (1) The DOE may initiate an investigation of any statement in a request and utilize in its evaluation any relevant facts obtained by such investigation. The DOE may accept submissions from third persons relevant to any request for interpretation provided that the person making the request is afforded an opportunity to respond to all third person submissions. In evaluating a request for interpretation, the DOE may consider any other source of information. The DOE on its own initiative may convene a conference, if, in its discretion, it considers that such conference will advance its evaluation of the request.

(2) The DOE shall issue its interpretation on the basis of the information provided in the request, unless that information is supplemented by other information brought to the attention of the General Counsel or a Regional Counsel during the proceeding. The interpretation shall, therefore, depend for its authority on the accuracy of the factual statement and may be relied upon only to the extent that the facts of the actual situation correspond to those upon which the interpretation was based.

(3) If the DOE determines that there is insufficient information upon which to base a decision and if upon request additional information is not submitted by the person requesting the interpretation, the DOE may refuse to issue an interpretation.

(b) Criteria. (1) The DOE shall base an interpretation on the FEA and EPAA and the regulations and published rulings of the DOE as applied to the specific factual situation.

(2) The DOE shall take into consideration previously issued interpretations dealing with the same or a related issue.

§ 205.85 Decision and effect.

(a) An interpretation may be issued after consideration of the request for interpretation and other relevant information received or obtained during the proceeding.

(b) The interpretation shall contain a statement of the information upon which it is based and a legal analysis of and conclusions regarding the application of rulings, regulations and other precedent to the situation presented in the request.

(c) Only those persons to whom an interpretation is specifically addressed and other persons upon whom the DOE serves the interpretation and who are directly involved in the same transaction or act may rely upon it. No person entitled to rely upon an interpretation shall be subject to civil or criminal penalties stated in subpart P of this part for any act taken in reliance upon the interpretation, notwithstanding that the interpretation shall thereafter be declared by judicial or other competent authority to be invalid.

(d) An interpretation may be rescinded or modified at any time. Rescission or modification may be effected by notifying persons entitled to rely on the interpretation that it is rescinded or modified. This notification shall include a statement of the reasons for the recision or modification and, in the case of a modification, a restatement of the interpretation as modified.

(e) An interpretation is modified by a subsequent amendment to the regulations or ruling to the extent that it is inconsistent with the amended regulation or ruling.

(f)(1) Any person aggrieved by an interpretation may submit a petition for reconsideration to the General Counsel within 30 days of service of the interpretation from which the reconsideration is sought. There has not been an exhaustion of administrative remedies until a period of 30 days from the date of service of the interpretation has elapsed without receipt by the General Counsel of a petition for reconsideration or, if a petition for reconsideration of the interpretation has been filed in a timely manner, until that petition has been acted on by the General Counsel. However, a petition to which the General Counsel does not respond within 60 days of the date of receipt thereof, or within such extended time as the General Counsel may prescribe
§ 205.170 Purpose and scope.

This subpart establishes the procedures for requesting and conducting a DOE conference, hearing, or public

Subpart K—Rulings

§ 205.150 Purpose and scope.

This subpart establishes the criteria for the issuance of interpretative rulings by the General Counsel. All rulings shall be published in the Federal Register. Any person is entitled to rely upon such ruling, to the extent provided in this subpart.

§ 205.151 Criteria for issuance.

(a) A ruling may be issued, in the discretion of the General Counsel, whenever there have been a substantial number of inquiries with regard to similar factual situations or a particular section of the regulations.

(b) The General Counsel may issue a ruling whenever it is determined that it will be of assistance to the public in applying the regulations to a specific situation.

§ 205.152 Modification or rescission.

(a) A ruling may be modified or rescinded by:

(1) Publication of the modification or rescission in the Federal Register; or

(2) A rulemaking proceeding in accordance with subpart L of this part.

(b) Unless and until a ruling is modified or rescinded as provided in paragraph (a) of this section, no person shall be subject to the sanctions or penalties stated in subpart P of this part for actions taken in reliance upon the ruling, notwithstanding that the ruling shall thereafter be declared by judicial or other competent authority to be invalid. Upon such declaration, no person shall be entitled to rely upon the ruling.

§ 205.153 Comments.

A written comment on or objection to a published ruling may be filed at any time with the General Counsel at the address specified in §205.12.

§ 205.154 Appeal.

There is no administrative appeal of a ruling.

Subpart L—[Reserved]
§ 205.171 Conferences.

(a) The DOE in its discretion may direct that a conference be convened, on its own initiative or upon request by a person, when it appears that such conference will materially advance the proceeding. The determination as to who may attend a conference convened under this subpart shall be in the discretion of the DOE, but a conference will usually not be open to the public.

(b) A conference may be requested in connection with any proceeding of the DOE by any person who might be aggrieved by that proceeding. The request may be made in writing or verbally, but must include a specific showing as to why such conference will materially advance the proceeding. The request shall be addressed to the DOE office that is conducting the proceeding.

(c) A conference may only be convened after actual notice of the time, place, and nature of the conference is provided to the person who requested the conference.

(d) When a conference is convened in accordance with this section, each person may present views as to the issue or issues involved. Documentary evidence may be presented at the conference, but will be treated as if submitted in the regular course of the proceedings. A transcript of the conference will not usually be prepared. However, the DOE in its discretion may have a verbatim transcript prepared.

(e) Because a conference is solely for the exchange of views incident to a proceeding, there will be no formal reports or findings unless the DOE in its discretion determines that such would be advisable.

§ 205.172 Hearings.

(a) The DOE in its discretion may direct that a hearing be convened on its own initiative or upon request by a person, when it appears that such hearing will materially advance the proceeding. The determination as to who may attend a hearing convened under this subpart shall be in the discretion of the DOE, but a hearing will usually not be open to the public. Where the hearing involves a matter arising under part 213, the Director of Oil Imports shall be notified as to its time and place, in order that he or his representative may present views as to the issue or issues involved.

(b) A hearing may only be requested in connection with an application for an exception or an appeal. Such request may be by the applicant, appellant, or any other person who might be aggrieved by the DOE action sought. The request shall be in writing and shall include a specific showing as to why such hearing will materially advance the proceeding. The request shall be addressed to the DOE office that is considering the application for an exception or the appeal.

(c) The DOE will designate an agency official to conduct the hearing, and will specify the time and place for the hearing.

(d) A hearing may only be convened after actual notice of the time, place, and nature of the hearing is provided both to the applicant or appellant and to any other person readily identifiable by the DOE as one who will be aggrieved by the DOE action involved. The notice shall include, as appropriate:

(1) A statement that such person may participate in the hearing; or

(2) A statement that such person may request a separate conference or hearing regarding the application or appeal.

(e) When a hearing is convened in accordance with this section, each person may present views as to the issue or issues involved. Documentary evidence may be presented at the hearing, but will be treated as if submitted in the regular course of the proceedings. A transcript of the hearing will not usually be prepared. However, the DOE in its discretion may have a verbatim transcript prepared.

(f) The official conducting the hearing may administer oaths and affirmations, rule on the presentation of information, receive relevant information, dispose of procedural requests, determine the format of the hearing, and otherwise regulate the course of the hearing.
Because a hearing is solely for the exchange of views incident to a proceeding, there will be no formal reports or findings unless the DOE in its discretion determines that such would be advisable.

[39 FR 35489, Oct. 1, 1974, as amended at 40 FR 36557, Aug. 21, 1975]

§ 205.173 Public hearings.
(a) A public hearing shall be convened incident to a rulemaking:
1. When the proposed rule or regulation is likely to have a substantial impact on the Nation's economy or large numbers of individuals or businesses;
2. When the DOE determines that a public hearing would materially advance the consideration of the issue.
(b) A public hearing may be convened after publication of a notice in the Federal Register, which shall include a statement of the time, place, and nature of the public hearing.
(c) Interested persons may file a request to participate in the public hearing in accordance with the instructions in the notice published in the Federal Register.
(d) The DOE shall appoint a presiding officer to conduct the public hearing.
(e) The transcript, together with any written comments submitted in the course of the proceeding, shall be made available for public inspection and copying in the public docket room, as provided in §205.15.

Subpart N—[Reserved]

Subpart O—Notice of Probable Violation, Remedial Order, Notice of Proposed Disallowance, and Order of Disallowance

SOURCE: 44 FR 7924, Feb. 7, 1979, unless otherwise noted.

§ 205.190 Purpose and scope.
(a) This subpart establishes the procedures for determining the nature and extent of violations of the DOE regulations in parts 210, 211, and 212 and the procedures for issuance of a Notice of Probable Violation, a Proposed Remedial Order, a Remedial Order, an Interim Remedial Order for Immediate Compliance, a Notice of Probable Disallowance, a Proposed Order of Disallowance, or a Consent Order. Nothing in these regulations shall affect the authority of DOE enforcement officials in coordination with the Department of Justice to initiate appropriate civil or criminal enforcement actions in court at any time.

(b) When any report required by the ERA or any audit or investigation discloses, or the ERA otherwise discovers, that there is reason to believe a violation of any provision of this chapter, or
any order issued thereunder, has occurred, is continuing or is about to occur, the ERA may conduct an inquiry to determine the nature and extent of the violation. A Remedial Order or Order of Disallowance may be issued thereafter by the Office of Hearings and Appeals. The ERA may commence enforcement proceedings by serving a Notice of Probable Violation, a Notice of Probable Disallowance, a Proposed Remedial Order, a Proposed Order of Disallowance, or an Interim Remedial Order for Immediate Compliance.

§ 205.192 Proposed remedial order.

(a) If the ERA finds, after the 30-day or other period authorized for reply to the Notice of Probable Violation, that a violation has occurred, is continuing, or is about to occur, it may issue a Proposed Remedial Order, which shall set forth the relevant facts and law.

(b) The ERA may issue a Proposed Remedial Order at any time it finds that a violation has occurred, is continuing, or is about to occur even if it has not previously issued a Notice of Probable Violation.

(c) The ERA shall serve a copy of the Proposed Remedial Order upon the person to whom it is directed. The ERA shall promptly publish a notice in the FEDERAL REGISTER which states the person to whom the Proposed Remedial Order is directed, his address, and the products, dollar amounts, time period, and geographical area specified in the Proposed Remedial Order. The notice shall indicate that a copy of the Proposed Remedial Order with confidential information, if any, deleted may be obtained from the ERA and that within 15 days after the date of publication any aggrieved person may file a Notice of Objection with the Office of Hearings and Appeals. The ERA shall mail copies of the FEDERAL REGISTER notice to all readily identifiable persons who are likely to be aggrieved by issuance of the Proposed Remedial Order as a final order.

(d) The Proposed Remedial Order shall set forth the proposed findings of fact and conclusions of law upon which it is based. It shall also include a discussion of the relevant authorities which support the position asserted, including rules, regulations, rulings, interpretations and previous decisions issued by DOE or its predecessor agencies. The Proposed Remedial Order shall be accompanied by a declaration executed by the DOE employee primarily knowledgeable about the facts of the case stating that, to the best of declarant’s knowledge and belief, the findings of fact are correct.

(e) The ERA may amend or withdraw a Proposed Remedial Order at its discretion prior to the date of service of a Statement of Objections in that proceeding. The date of service of the amended documents shall be considered the date of service of the Proposed Remedial Order in calculating the time periods specified in this part 205.

§ 205.192A Burden of proof.

(a) In a Proposed Remedial Order proceeding the ERA has the burden of establishing a prima facie case as to the validity of the findings of fact and conclusions of law asserted therein. The ERA shall be deemed to meet this burden by the service of a Proposed Remedial Order that meets the requirements of §205.192(d) and any supplemental information that may be made available under §205.193A.

(b) Once a prima facie case has been established, a person who objects to a finding of fact or conclusion of law in the Proposed Remedial Order has the burden of going forward with the evidence. Furthermore, the proponent of additional factual representations has the burden of going forward with the evidence.

(c) Unless otherwise specified by the Director of the Office of Hearings and Appeals or his designee, the proponent of an order or a motion or additional factual representations has the ultimate burden of persuasion.

§ 205.193 Notice of Objection.

(a) Within 15 days after publication of the notice of a Proposed Remedial Order in the FEDERAL REGISTER any aggrieved person may file a Notice of Objection to the Proposed Remedial Order with the Office of Hearings and Appeals. The Notice shall be filed in duplicate, shall briefly describe how the
person would be aggrieved by issuance of the Proposed Remedial Order as a final order and shall state the person’s intention to file a Statement of Objections. No confidential information shall be included in a Notice of Objection. The DOE shall place one copy of the Notice in the Office of Hearings and Appeals Public Docket Room.

(b) A person who fails to file a timely Notice of Objection shall be deemed to have admitted the findings of fact and conclusions of law as stated in the Proposed Remedial Order. If a Notice of Objection is not filed as provided by paragraph (a) of this section, the Proposed Remedial Order may be issued as a final order.

(c) A person who files a Notice of Objection shall on the same day serve a copy of the Notice upon the person to whom the Proposed Remedial Order is directed, the DOE Office that issued the Proposed Remedial Order, and the DOE Assistant General Counsel for Administrative Litigation.

(d) The Notice shall include a certification of compliance with the provisions of this section, the names and addresses of each person served with a copy of the Notice, and the date and manner of service.

(e) If no person files a timely Notice of Objection, ERA may request the Office of Hearings and Appeals to issue the Proposed Remedial Order as a final Remedial Order.

(f) In order to exhaust administrative remedies with respect to a Remedial Order proceeding, a person must file a timely Notice of Objection and Statement of Objections with the Office of Hearings and Appeals.

§ 205.193A Submission of ERA supplemental information.

Within 20 days after service of a Notice of Objection to a Proposed Remedial Order the ERA may serve, upon the person to whom the Proposed Remedial Order was directed, supplemental information relating to the calculations and determinations which support the findings of fact set forth in the Proposed Remedial Order.

§ 205.194 Participants; official service list.

(a) Upon receipt of a Notice of Objection, the Office of Hearings and Appeals shall publish a notice in the Federal Register which states the person to whom the Proposed Remedial Order is directed, his address and the products, dollar amounts, time period, and geographical area specified in the Proposed Remedial Order. The notice shall state that any person who wishes to participate in the proceeding must file an appropriate request with the Office of Hearings and Appeals.

(b) The Office that issued the Proposed Remedial Order and the person to whom the Order is directed shall be considered participants before the Office of Hearings and Appeals at all stages of an enforcement proceeding. Any other person whose interest may be affected by the proceeding may file a request to participate in the proceeding within 20 days after publication of the notice referred to in paragraph (a) of this section. The request shall contain:

1. The person’s name, address, and telephone number and similar information concerning his duly authorized representative, if any;
2. A detailed description of the person’s interest in the proceeding;
3. The specific reasons why the person’s active involvement in the proceeding will substantially contribute to a complete resolution of the issues to be considered in the proceeding;
4. A statement of the position which the person intends to adopt in the proceeding; and
5. A statement of the particular aspects of the proceeding, e.g. oral argument, submission of briefs, or discovery, in which the person wishes to actively participate.

(c) After considering the requests submitted pursuant to paragraph (b) of this section, the Office of Hearings and Appeals shall determine those persons who may participate on an active basis in the proceeding and the nature of their participation. Participants with similar interests may be required to consolidate their submissions and to
(d) Within 30 days after publication of the notice referred to in paragraph (a) of this section, the Office of Hearings and Appeals shall prepare an official service list for the proceeding. Within the same 30 day period the Office of Hearings and Appeals shall mail the official service list to all persons who filed requests to participate. For good cause shown a person may be placed on the official service list as a non-participant, for the receipt of documents only. An opportunity shall be afforded to participants to oppose the placement of a non-participant on the official service list.

(e) A person requesting to participate after the period for submitting requests has expired must show good cause for failure to file a request within the prescribed time period.

(f) The Office of Hearings and Appeals may limit the nature of a person's participation in the proceeding, if it finds that the facts upon which the person's request was based have changed or were incorrect when stated or that the person has not been actively participating or has engaged in disruptive or dilatory conduct. The action referred to in this provision shall be taken only after notice and an opportunity to be heard are afforded.

§ 205.195 Filing and service of all submissions.

(a)(1) Statements of Objections, Responses to such Statements, and any motions or other documents filed in connection with a proceeding shall meet the requirements of §205.9 and shall be filed with the Office of Hearings and Appeals in accordance with §205.4. Unless otherwise specified, any participant may file a response to a motion within five days of service.

(2) All documents shall be filed in duplicate, unless they contain confidential information, in which case they must be filed in triplicate.

(3) If a person claims that any portion of a document which he is filing contains confidential information, such information should be deleted from two of the three copies which are filed. One copy from which confidential information has been deleted will be placed in the Office of Hearings and Appeals Public Docket Room.

(b)(1) Persons other than DOE offices shall on the date a submission is filed serve each person on the official service list. Service shall be made in accordance with §205.7 and may also be made by deposit in the regular United States mail, properly stamped and addressed, when accompanied by proof of service consisting of a certificate of counsel or an affidavit of the person making the service. If any filing arguably contains confidential information, a person may serve copies with the confidential information deleted upon all persons on the official service list except DOE offices, which shall be served both an original filing and one with deletions.

(2) A DOE office shall on the date it files a submission serve all persons on the official service list, unless the filing arguably contains confidential information. In that case the DOE office shall notify the person to whom the information relates of the opportunity to identify and delete the confidential information. The DOE Office may delay the service of a submission containing arguably confidential information upon all persons other than the possessor of the confidential information and other DOE offices up to 14 days. The possessor of the confidential information shall serve the filing with any deletions upon all persons on the official service list within such time period.

(c) Any filing made under this section shall include a certification of compliance by the filer with the provisions of this subpart. The person serving a document shall file a certificate of service, which includes the date and manner of service for each person on the official service list.

§ 205.196 Statement of objections.

(a) A person who has filed a Notice of Objection shall file a Statement of Objections to a Proposed Remedial Order within 40 days after service of the Notice of Objection. A request for an extension of time for filing must be submitted in writing and may be granted for good cause shown.

(b) The Statement of Objections shall set forth the bases for the objections to the issuance of the Proposed Remedial
Department of Energy

§ 205.198 Discovery.

(a) If a person intends to file a Motion for Discovery, he must file it at the same time that he files his Statement of Objections or at the same time he files his Response to a Statement of Objections, whichever is earlier. All Motions for Discovery and related filings must be served upon the person to whom the discovery is directed. If the person to whom the discovery is directed is not on the official service list, the documents served upon him shall include a copy of this section, the address of the Office of Hearings and Appeals and a statement that objections to the Motion may be filed with the Office of Hearings and Appeals.

(b) A Motion for Discovery may request that:

(1) A person produce for inspection and photocopying non-privileged written material in his possession;

(2) A person respond to written interrogatories;

(3) A person admit to the genuineness of any relevant document or the truth of any relevant fact; or

(4) The deposition of a material witness be taken.

(c) A Motion for Discovery shall set forth the reasons why the particular discovery is necessary in order to obtain relevant and material evidence and shall explain why such discovery would not unduly delay the proceeding.

(d) Within 20 days after a Motion for Discovery is served, a participant or a

§ 205.197 Response to statement of objections; reply.

(a) Within 30 days after service of a Statement of Objections each participant may file a Response. If any motions are served with the Statement of Objections, a participant shall have 30 days from the date of service to respond to such submissions, notwithstanding any shorter time periods otherwise required in this subpart. The Response shall contain a full discussion of the position asserted and a discussion of the legal and factual bases which support that position. The Response may also contain a request that any issue of fact or law advanced in a Statement of Objections be dismissed. Any such request shall be accompanied by a full discussion of the reasons supporting the dismissal.

(b) A participant may submit a Reply to any Response within 10 days after the date of service of the Response.
person to whom the discovery is directed may file a request that the Motion be denied in whole or in part, stating the reasons which support the request.

(e) Discovery may be conducted only pursuant to an Order issued by the Office of Hearings and Appeals. A Motion for Discovery will be granted if it is concluded that discovery is necessary for the party to obtain relevant and material evidence and that discovery will not unduly delay the proceeding. Depositions will be permitted if a convincing showing is made that the participant cannot obtain the material sought through one of the other discovery means specified in paragraph (b) of this section.

(f) The Director of the Office of Hearings and Appeals or his designee may issue subpoenas in accordance with §205.8 in support of Discovery Orders, except that §205.8 (h)(2), (3), and (4) shall not apply to such subpoenas.

(g) The Office of Hearings and Appeals may order that any direct expenses incurred by a person to produce evidence pursuant to a Motion for Discovery be charged to the person who filed the Motion.

(h)(1) If a person fails to comply with an order relating to discovery, the Office of Hearings and Appeals may order appropriate sanctions.

(2) It shall be the duty of aggrieved participants to request that appropriate relief be fashioned in such situations.

(i) Any order issued by the Office of Hearings and Appeals with respect to discovery shall be subject to further administrative review or appeal only upon issuance of the determination referred to in §205.199.

§ 205.198A Protective order.

A participant who has unsuccessfully attempted in writing to obtain information that another participant claims is confidential may file a Motion for Discovery and Protective Order. This motion shall meet the requirements of §205.198 and shall specify the particular confidential information that the movant seeks and the reasons why the information is necessary to adequately present the movant’s position in the proceeding. A copy of the written request for information, a certification concerning when and to whom it was served and a copy of the response, if any, shall be appended to the motion. The motion must give the possessor of the information notice that a Response to the Motion must be filed within ten days. The Response shall specify the safeguards, if any, that should be imposed if the information is ordered to be released. The Office of Hearings and Appeals may issue a Protective Order upon consideration of the Motion and the Response.

§ 205.199 Evidentiary hearing.

(a) Filing Requirements. At the time a person files a Statement of Objections he may also file a motion requesting an evidentiary hearing be convened. A motion requesting an evidentiary hearing may be filed by any other participant within 30 days after that participant is served with a Statement of Objections.

(b) Contents of Motion for Evidentiary Hearing. A Motion for Evidentiary Hearing shall specify each disputed issue of fact and the bases for the alternative findings the movant asserts. The movant shall also describe the manner in which each disputed issue of fact was raised in any prior administrative proceeding which led to issuance of the Proposed Remedial Order, or why it was not raised. The movant shall with respect to each disputed or alternative finding of fact:

(1) As specifically as possible, identify the witnesses whose testimony is required;

(2) State the reasons why the testimony of the witnesses is necessary; and

(3) State the reasons why the asserted position can be effectively established only through the direct questioning of witnesses at an evidentiary hearing.

(c) Response to Motion for Evidentiary Hearing. Within 20 days after service of any Motion for Evidentiary Hearing, the Office that issued the Proposed Remedial Order shall, and any other participant may file a Response with the Office of Hearings and Appeals. The Response shall specify:

(1) Each particular factual representation which is accepted as correct for purposes of the proceeding;
(2) Each particular factual representation which is denied;

(3) Each particular factual representation which the participant is not in a position to accept or deny;

(4) Each particular factual representation which is not accepted and the participant wishes proven by the submission of evidence;

(5) Each particular factual representation which the participant is prepared to dispute through the testimony of witnesses or the submission of verified documents; and

(6) Each particular factual representation which the participant asserts should be dismissed as immaterial or irrelevant.

d) Prehearing Conferences. After all submissions with respect to a Motion for Evidentiary Hearing are filed, the Office of Hearings and Appeals may conduct conferences or hearings to resolve differences of view among the participants.

e) Decision on Motion for Evidentiary Hearing. After considering all relevant information received in connection with the Motion, the Office of Hearings and Appeals shall enter an Order. In the Order the Office of Hearings and Appeals shall direct that an evidentiary hearing be convened if it concludes that a genuine dispute exists as to relevant and material issues of fact and an evidentiary hearing would substantially assist it in making findings of fact in an effective manner. If the Motion for Evidentiary Hearing is granted in whole or in part, the Order shall specify the parties to the hearing, any limitations on the participation of a party, and the issues of fact set forth for the evidentiary hearing. The Order may also require parties that have adopted similar positions to consolidate their presentations and to appear at the evidentiary hearing through a common representative. If the Motion is denied, the Order may allow the movant to file affidavits and other documents in support of his asserted findings of fact.

f) Review of Decision. The Order of the Office of Hearings and Appeals with respect to a Motion for Evidentiary Hearing shall be subject to further administrative review or appeal only upon issuance of the determination referred to in § 205.199A.

(g) Conduct of Evidentiary Hearing. All evidentiary hearings convened pursuant to this section shall be conducted by the Director of the Office of Hearings and Appeals or his designee. At any evidentiary hearing the parties shall have the opportunity to present material evidence which directly relates to a particular issue of fact set forth for hearing. The presiding officer shall afford the parties an opportunity to cross examine all witnesses. The presiding officer may administer oaths and affirmations, rule on objections to the presentation of evidence, receive relevant material, rule on any motion to conform the Proposed Remedial Order to the evidence presented, dispose of procedural requests, determine the format of the hearing, modify any order granting a Motion for Evidentiary Hearing, direct that written motions or briefs be provided with respect to issues raised during the course of the hearing, issue subpoenas, and otherwise regulate the conduct of the hearing. The presiding officer may take reasonable measures to exclude duplicative material from the hearing, and may place appropriate limitations on the number of witnesses that may be called by a party. The presiding officer may also require that evidence be submitted through affidavits or other documents if the direct testimony of witnesses will unduly delay the orderly progress of the hearing and would not contribute to resolving the issues involved in the hearing. The provisions of §205.8 which relate to subpoenas and witness fees shall apply to any evidentiary hearing, except that subsection §205.8(h) (2), (3), and (4) shall not apply.

§ 205.199A Hearing for the purpose of oral argument only.

(a) A participant is entitled upon timely request to a hearing to present oral argument with respect to the Proposed Remedial Order, whether or not an evidentiary hearing is requested or convened. A participant's request shall normally be considered untimely, if made more than 10 days after service of a determination regarding any motion
§ 205.199B Remedial order.

(a) After considering all information received during the proceeding, the Director of the Office of Hearings and Appeals or his designee may issue a final Remedial Order. The Remedial Order may adopt the findings and conclusions contained in the Proposed Remedial Order or may modify or rescind any such finding or conclusion to conform the Order to the evidence or on the basis of a determination that the finding or conclusion is erroneous in fact or law or is arbitrary or capricious. In the alternative, the Office of Hearings and Appeals may determine that no Remedial Order should be issued or may remand all or a portion of the Proposed Remedial Order to the issuing DOE office for further consideration or modification. Every determination made pursuant to this section shall state the relevant facts and legal bases supporting the determination.

(b) The DOE shall serve a copy of any determination issued pursuant to paragraph (a) of this section upon the person to whom it is directed, any other person on the official service list. Appropriate deletions may be made in the determinations to ensure that confidentiality of information protected from disclosure under 18 U.S.C. 1905 and 5 U.S.C. 552. A copy of the determination with appropriate deletions to protect confidential and proprietary data shall be placed in the Office of Hearings and Appeals Public Docket Room.

§ 205.199C Appeals of remedial order to FERC.

(a) The person to whom a Remedial Order is issued by the Office of Hearings and Appeals may file an administrative appeal if the Remedial Order proceeding was initiated by a Notice of Probable Violation issued after October 1, 1977, or, in those situations in which no Notice of Probable Violation was issued, if the proceeding was initiated by a Proposed Remedial Order issued after October 1, 1977.

(b) Any such appeal must be initiated within 30 days after service of the Order by giving written notice to the Office of Hearings and Appeals that the person to whom a Remedial Order is issued wishes to contest the Order.

(c) The Office of Hearings and Appeals shall promptly advise the Federal Energy Regulatory Commission of its receipt of a notice described in paragraph (b) of this section.

(d) The Office of Hearings and Appeals may, on a case by case basis, set reasonable time limits for the Federal Energy Regulatory Commission to complete its action on such an appeal proceeding.

(e) In order to exhaust administrative remedies, a person who is entitled to appeal a Remedial Order issued by the Office of Hearings and Appeals must file a timely appeal and await a decision on the merits. Any Remedial Order that is not appealed within the 30-day period shall become effective as a final Order of the DOE and is not subject to review by any court.

§§ 205.199D–205.199E [Reserved]

§ 205.199F Ex parte communications.

(a) No person who is not employed or otherwise supervised by the Office of Hearings and Appeals shall submit ex
parte communications to the Director or any person employed or otherwise supervised by the Office with respect to any matter involved in Remedial Order or Order of Disallowance proceedings.

(1) Ex parte communications include any ex parte oral or written communications relative to the merits of a Proposed Remedial Order, Interim Remedial Order for Immediate Compliance, or Proposed Order of Disallowance proceeding pending before the Office of Hearings and Appeals. The term shall not, however, include requests for status reports, inquiries as to procedures, or the submission of proprietary or confidential information. Notice that proprietary or confidential submissions have been made shall be given to all persons on the official service list.

(b) If any communication occurs that violates the provisions of this section, the Office of Hearings and Appeals shall promptly make the substance of the communication available to the public and serve a copy of a written communication or a memorandum summarizing an oral communication to all participants in the affected proceeding. The Office of Hearings and Appeals may also take any other appropriate action to mitigate the adverse impact to any person whose interest may be affected by the ex parte contact.

§ 205.199G Extension of time; Interim and Ancillary Orders.

The Director of the Office of Hearings and Appeals or his designee may permit upon motion any document or submission referred to in this subpart other than appeals to FERC to be amended or withdrawn after it has been filed or to be filed within a time period different from that specified in this subpart. The Director or his designee may upon motion or on his own initiative issue any Interim or Ancillary Orders, reconsider any determinations, or make any rulings or determinations that are deemed necessary to ensure that the proceedings specified in this subpart are conducted in an appropriate manner and are not unduly delayed.

§ 205.199H Remedies.

(a) A Remedial Order, a Remedial Order for Immediate Compliance, an Order of Disallowance, or a Consent Order may require the person to whom it is directed to roll back prices, to make refunds equal to the amount (plus interest) charged in excess of those amounts permitted under DOE Regulations, to make appropriate compensation to third persons for administrative expenses of effectuating appropriate remedies, and to take such other action as the DOE determines is necessary to eliminate or to compensate for the effects of a violation or any cost disallowance pursuant to §212.83 or §212.84. Such action may include a direction to the person to whom the Order is issued to establish an escrow account or take other measures to make refunds directly to purchasers of the products involved, notwithstanding the fact that those purchasers obtained such products from an intermediate distributor of such person's products, and may require as part of the remedy that the person to whom the Order is issued maintain his prices at certain designated levels, notwithstanding the presence or absence of other regulatory controls on such person's prices. In cases where purchasers cannot be reasonably identified or paid or where the amount of each purchaser's overcharge is incapable of reasonable determination, the DOE may refund the amounts received in such cases directly to the Treasury of the United States on behalf of such purchasers.

§ 205.199I Actions not subject to administrative appeal.

A Notice of Probable Violation, Notice of Proposed Disallowance, Proposed Remedial Order or Interim Remedial Order for Immediate Compliance issued pursuant to this subpart shall not be an action from which there may be an administrative appeal pursuant to subpart H. In addition, a determination by the Office of Hearings and Appeals that a Remedial Order, an Order of Disallowance, or a Remedial Order for Immediate Compliance should not be issued shall not be appealable pursuant to subpart H.
(b) The DOE may, when appropriate, issue final Orders ancillary to a Remedial Order, Remedial Order for Immediate Compliance, Order of Disallowance, or Consent Order requiring that a direct or indirect recipient of a refund pass through, by such means as the DOE deems appropriate, including those described in paragraph (a) of this section, all or a portion of the refund, on a pro rata basis, to those customers of the recipient who were adversely affected by the initial overcharge. Ancillary Orders may be appealed to the Office of Hearings and Appeals only pursuant to subpart H.

§ 205.199J Consent order.

(a) Notwithstanding any other provision of this subpart, the DOE may at any time resolve an outstanding compliance investigation or proceeding, or a proceeding involving the disallowance of costs pursuant to § 205.199E with a Consent Order. A Consent Order must be signed by the person to whom it is issued, or a duly authorized representative, and must indicate agreement to the terms contained therein. A Consent Order need not constitute an admission by any person that DOE regulations have been violated, nor need it constitute a finding by the DOE that such person has violated DOE regulations. A Consent Order shall, however, set forth the relevant facts which form the basis for the Order.

(b) A Consent Order is a final Order of the DOE having the same force and effect as a Remedial Order issued pursuant to § 205.199E or an Order of Disallowance issued pursuant to § 205.199E, and may require one or more of the remedies authorized by § 205.199J and § 212.94(d)(3). A Consent Order becomes effective no sooner than 30 days after publication under paragraph (c) of this section, unless (1) the DOE makes a Consent Order effective immediately, because it expressly deems it necessary in the public interest, or (2) the Consent Order involves a sum of less than $500,000 in the aggregate, excluding penalties and interest, in which case it will be effective when signed both by the person to whom it is issued and the DOE, and will not be subject to the provisions of paragraph (c) of this section unless the DOE determines otherwise. A Consent Order shall not be appealable pursuant to the provisions of § 205.199C or § 205.199D and subpart H, and shall contain an express waiver of such appeal or judicial review rights as might otherwise attach to a final Order of the DOE.

(c) When a Consent Order has been signed, both by the person to whom it is issued and the DOE, the DOE will publish notice of such Consent Order in the Federal Register and in a press release to be issued simultaneously therewith. The Federal Register notice and the press release will state at a minimum the name of the company concerned, a brief summary of the Consent Order and other facts or allegations relevant thereto, the address and telephone number of the DOE office at which copies of the Consent Order will be available free of charge, the address to which comments on the Consent Order will be received by the DOE, and the date by which such comments should be submitted, which date will not be less than 30 days after publication of the Federal Register notice. After the expiration of the comment period the DOE may withdraw its agreement to the Consent Order, attempt to negotiate a modification of the Consent Order, or issue the Consent Order as signed. The DOE will publish in the Federal Register, and by press release, notice of any action taken on a Consent Order and such explanation of the action taken as deemed appropriate. The provisions of this paragraph shall be applicable notwithstanding the fact that a Consent Order may have been made immediately effective pursuant to paragraph (b) of this section (except in cases where the Consent Order involves sums of less than $500,000 in the aggregate, excluding penalties and interest).

(d) At any time and in accordance with the procedures of subpart J, a Consent Order may be modified or rescinded, upon petition by the person to whom the Consent Order was issued, and may be rescinded by the DOE upon discovery of new evidence which is materially inconsistent with evidence upon which the DOE's acceptance of
Department of Energy § 205.260

the Consent Order was based. Modifications of a Consent Order which is subject to public comment under the provisions of paragraph (c) of this section, which in the opinion of the DOE significantly change the terms or the impact of the original Order, shall be re-published under the provisions of that paragraph.

(e) Notwithstanding the issuance of a Consent Order, the DOE may seek civil or criminal penalties or compromise civil penalties pursuant to subpart P concerning matters encompassed by the Consent Order, unless the Consent Order by its terms expressly precludes the DOE from so doing.

(f) If at any time after a Consent Order becomes effective it appears to the DOE that the terms of the Consent Order have been violated, the DOE may refer such violations to the Department of Justice for appropriate action in accordance with subpart P.

Subpart P-T—[Reserved]

Subpart U—Procedures for Electricity Export Cases

Source: 49 FR 35315, Sept. 6, 1984, unless otherwise noted.

§ 205.260 Purpose and scope.

(a) The purpose of this section is to state the procedures that will be followed by the Economic Regulatory Administration of the Department of Energy in electricity export adjudications.

(b) Definitions.

As used in this subpart—

Administrator means the Administrator of the Economic Regulatory Administration.

Decisional employees means the Administrator, presiding officers at adjudicatory hearings, and other employees of the Department, including consultants and contractors, who are, or may reasonably be expected to be, involved in the decision-making process, which includes advising the Administrator in resolving the issues in an adjudication. The term does not include those employees of the Department performing investigative or trial functions in an adjudication, unless they are specifically requested by the Administrator or his delegate to participate in the decision-making process.

Department means the Department of Energy.

Off-the-record communication means an ex parte communication, which is an oral or written communication relevant to the merits of an adjudication and not on the record and with respect to which reasonable prior notice to all participants and opportunity to be present at, or respond to, the communication is not given, but does not include a communication relating solely to procedures which are not relevant to the merits of the adjudication.

Interested person means a person outside the Department whose interest in the adjudication goes beyond the general interest of the public as a whole and includes applicants, intervenors, competitors of applicants, non-profit and public interest organizations, and other individuals and organizations, including state, local and other public officials, with a proprietary, financial or other special interest in the outcome of the adjudication. The term does not include other federal agencies, unless an agency is a participant in the adjudication.

Participant means any applicant or intervenor participating in the adjudication.

Adjudication means a formal proceeding employing procedures identical or similar to those required by the Administrative Procedure Act, as codified in 5 U.S.C. 551, 556, and 557, to consider an application to export electricity.

Reasonable prior notice means 7 days' written notice stating the nature and purpose of the communication.

Relevant to the merits means a communication directly related to the merits of a specific adjudication but does not include general background discussions about an entire industry or communications of a general nature.
§ 205.270

made in the course of developing agency policy for future general application.

§§ 205.261—205.269 [Reserved]

§ 205.270 Off-the-record communications.

(a) In any proceeding which is subject to this subpart—

(1) No interested person shall make an off-the-record communication or knowingly cause an off-the-record communication to be made to any decisional employee.

(2) No decisional employee shall make an off-the-record communication or knowingly cause an off-the-record communication to be made to any interested person.

(3) A decisional employee who receives, makes, or knowingly causes to be made an oral communication prohibited by this section shall prepare a memorandum stating the substance of the communication and any responses made to it.

(4) With 48 hours of receiving, making or knowingly causing to be made a communication prohibited by this section, a decisional employee shall deliver all written off-the-record communications and all memoranda prepared in compliance with paragraph (a)(3) of this section to the Director of the Coal and Electricity Division, ERA, who will immediately place the materials described above in the public record associated with the adjudication, available for public inspection.

(5) Upon receipt of a communication knowingly made or knowingly caused to be made by a participant in violation of this section, the Administrator or presiding officer may, to the extent consistent with the interests of justice and the applicable statutory policy, require the participant to show cause why his or her claim or interest in the adjudication should not be dismissed, denied, disregarded, or otherwise adversely affected on account of the violation.

(6) The prohibitions of this section shall apply beginning at the time an adjudication is noticed for hearing (or the person responsible for the communication acquires knowledge that it will be noticed), a protest is filed, or a petition or notice to intervene in opposition to the requested Department action is filed, whichever occurs first.

(b) The prohibition, cited at 18 CFR 1.30(f), against participation in the decision-making process by Department employees who perform investigative or trial functions in an adjudication, shall no longer be applicable to ERA.

Subpart V—Special Procedures for Distribution of Refunds

SOURCE: 44 FR 8566, Feb. 9, 1979, unless otherwise noted.

§ 205.280 Purpose and scope.

This subpart establishes special procedures pursuant to which refunds may be made to injured persons in order to remedy the effects of a violation of the regulations of the Department of Energy. This subpart shall be applicable to those situations in which the Department of Energy is unable to readily identify persons who are entitled to refunds specified in a Remedial Order, a Remedial Order for Immediate Compliance, an Order of Disallowance or a Consent Order, or to readily ascertain the amounts that such persons are entitled to receive.

§ 205.281 Petition for implementation of special refund procedures.

(a) At any time after the issuance of a Remedial Order (including for purposes of this subpart a Remedial Order for Immediate Compliance and an Order of Disallowance), or a Consent Order, the Special Counsel of the Department of Energy, the ERA Office of Enforcement, or any other enforcement official of the Department of Energy may file with the Office of Hearings
§ 205.282 Evaluation of petition by the Office of Hearings and Appeals.

(a) After considering the Petition, the Director of the Office of Hearings and Appeals or his designee shall issue a Proposed Decision and Order. The Proposed Decision and Order shall generally describe the nature of the particular refund proceeding and shall set forth the standards and procedures that the Office of Hearings and Appeals intends to apply in evaluating refund claims.

(b) The Proposed Decision and Order shall be published in the FEDERAL REGISTER together with a statement that any member of the public may submit written comments to the Office of Hearings and Appeals with respect to the matter. At least 30 days following publication in the FEDERAL REGISTER shall be provided for the submission of comments.

(c) After considering the comments submitted, the Director of the Office of Hearings and Appeals or his designee shall issue a final Decision and Order which shall govern the disposition of the refunds. The final Decision and Order shall also be published in the FEDERAL REGISTER.

(d) The final Decision and Order shall set forth the standards and procedures that will be used in evaluating individual Applications for Refunds and distributing the refund amount. Those standards and procedures shall be consistent with the provisions of this subpart.

(e) In establishing standards and procedures for implementing refund distributions, the Office of Hearings and Appeals shall take into account the desirability of distributing the refunds in an efficient, effective and equitable manner and resolving to the maximum extent practicable all outstanding claims. In order to do so, the standards for evaluation of individual claims may be based upon appropriate presumptions.

§ 205.283 Applications for refund.

(a) Any person entitled to a refund pursuant to a final Decision and Order issued pursuant to §205.282 may file an Application for Refund. All Applications must be signed by the applicant and specify the DOE order to which they pertain. Any Application for a refund in excess of $100 must be file in duplicate, and a copy of that Application will be available for public inspection in the DOE Public Docket Room at 2000 M Street, NW., Washington, DC. Any applicant who believes that his Application contains confidential information must so indicate on the first page of his Application and submit two additional copies of his Application from which the information that the applicant claims is confidential has been deleted, together with a statement specifying why any such information is privileged or confidential.

(b) The contents of an Application for Refund shall be specified in the final Decision and Order referred to in §205.282(c). A filing deadline for Applications shall also be specified in the final Decision and Order, and shall be no less than 90 days after the publication of the Order in the FEDERAL REGISTER.

(c) Each Application shall be in writing and signed by the applicant, and shall indicate whether the applicant or any person acting on his instructions has filed or intends to file any other Application or claim of whatever nature regarding the matters at issue in
the underlying enforcement proceeding. Each Application shall also include a sworn statement by the applicant that all information in his Application is true and correct to the best of his knowledge and belief.

§ 205.284 Processing of applications.

(a) The Director of the Office of Hearings and Appeals may appoint an administrator to evaluate Applications under guidelines established by the Office of Hearings and Appeals. The administrator, if he is not a Federal Government employee, may be compensated from the funds referred to in the Remedial Order or Consent Order. The administrator may design and distribute an optional application form for the convenience of the applicants.

(b) The Office of Hearings and Appeals or its designee may initiate an investigation of any statement made in an Application and may require verification of any document submitted in support of a claim. In evaluating an Application, the Office of Hearings and Appeals or its designee may solicit and consider information obtained from any source and may on its own initiative convene a hearing or conference, if it determines that a hearing or conference will advance its evaluation of an Application.

(c) The Director of the Office of Hearings and Appeals or his designee shall conduct any hearing or conference convened with respect to an Application for Refund and shall specify the time and place for the hearing or conference and notify the applicant. The official conducting the hearing may administer oaths and affirmations, rule on the presentation of information, receive relevant information, dispose of procedural requests, determine the format of the hearing and otherwise regulate the course of the hearing. The provisions of §205.8 of this part which relate to subpoenas and witness fees shall apply to any hearing convened with respect to an application for refund, except that §205.8(h) (2), (3) and (4) shall not apply.

(d) Upon consideration of an Application and other relevant information received during the course of a refund proceeding, the Director of the Office of Hearings and Appeals or his designee shall issue an order granting or denying the Application. The order shall contain a concise statement of the relevant facts and the legal basis for the order. A copy of the order, with such modification as is necessary to ensure the confidentiality of information protected from public disclosure by 18 U.S.C. 1905, may be obtained upon request by an applicant or any other person who participated in the proceeding.

§ 205.285 Effect of failure to file a timely application.

An Application for Refund must be filed no later than the date that the Office of Hearings and Appeals establishes pursuant to §205.283(b). Any Application that is not filed on a timely basis may be summarily dismissed. The Office of Hearings and Appeals or its designee may, however, grant extensions of time for good cause shown. Any request for an extension of time must generally be submitted in writing prior to the deadline.

§ 205.286 Limitations on amount of refunds.

(a) The aggregate amount of all refunds approved by the Office of Hearings and Appeals or its designee in a given case shall not exceed the amount to be remitted pursuant to the relevant DOE enforcement order, plus any accumulated interest, reduced by the amount of any administrative costs approved by the Office of Hearings and Appeals. In the event that the aggregate amount of approved claims exceeds the aggregate amount of funds specified above, the Office of Hearings and Appeals may make refunds on a pro rata basis. The Office of Hearings and Appeals may delay payment of any refunds until all Applications have been processed.

(b) The Office of Hearings and Appeals may decline to consider Applications for refund amounts that, in view of the direct administrative costs involved, are too small to warrant individual consideration.

§ 205.287 Escrow accounts, segregated funds and other guarantees.

(a) In implementing the refund procedures specified in this subpart, the Director of the Office of Hearings and Appeals or his designee shall issue an
§ 205.300 Who shall apply.

(a) An electric utility or other entity subject to DOE jurisdiction under part II of the Federal Power Act who proposes to transmit any electricity from the United States to a foreign country must submit an application or be a party to an application submitted by another entity. The application shall be submitted to the Office of Utility Systems of the Economic Regulatory Administration (EPA).

(b) In connection with an application under §§205.300 through 205.309, attention is directed to the provisions of §§205.320 through 205.327, below, concerning applications for Presidential Permits for the construction, connection, operation, or maintenance, at the borders of the United States, of facilities for the transmission of electric energy between the United States and a foreign country in compliance with Executive Order 10485, as amended by Executive Order 12038.

§ 205.301 Time of filing.

Each application should be made at least six months in advance of the initiation of the proposed electricity export, except when otherwise permitted by the ERA to resolve an emergency situation.

§ 205.302 Contents of application.

Every application shall contain the following information set forth in the order indicated below:

(a) The exact legal name of the applicant.

(b) The exact legal name of all partners.

(c) The name, title, post office address, and telephone number of the person to whom correspondence in regard to the application shall be addressed.
§ 205.303 Required exhibits.

There shall be filed with the application and as a part thereof the following exhibits:

(a) Exhibit A. A copy of the agreement or proposed agreement under which the electricity is to be transmitted including a listing of the terms and conditions. If this agreement contains proprietary information that should not be released to the general public, the applicant must identify such data and include a statement explaining why proprietary treatment is appropriate.

(b) Exhibit B. A showing, including a signed opinion of counsel, that the proposed export of electricity is within the corporate power of the applicant, and that the applicant has complied or will comply with all pertinent Federal and State laws.

(c) Exhibit C. A general map showing the applicant's overall electric system and a detailed map highlighting the location of the facilities or the proposed facilities to be used for the generation and transmission of the electric energy to be exported. The detailed map shall identify the location of the proposed border crossing point(s) or power transfer point(s) by Presidential Permit number whenever possible.

(d) Exhibit D. If an applicant resides or has its principal office outside the United States, such applicant shall designate, by irrevocable power of attorney, an agent residing within the United States. A verified copy of such power of attorney shall be furnished with the application.

(e) Exhibit E. A statement of any corporate relationship or existing contract between the applicant and any other person, corporation, or foreign government, which in any way relates to the control or fixing of rates for the purchase, sale or transmission of electric energy.

(f) Exhibit F. An explanation of the methodology (Operating Procedures) to inform neighboring electric utilities in the United States of the available capacity and energy which may be in excess of the applicant's requirements before delivery of such capacity to the foreign purchaser. Approved firm export, diversity exchange and emergency exports are exempted from this requirement. Those materials required by this section which have been filed previously with the ERA may be incorporated by reference.

§ 205.304 Other information.

Where the application is for authority to export less than 1,000,000 kilowatt hours annually, applicants need not furnish the information called for in §§205.302(g) and 205.303 (Exhibit C). Applicants, regardless of the amount of electric energy to be exported, may be required to furnish such supplemental information as the ERA may deem pertinent.

§ 205.305 Transferability.

(a) An authorization to transmit electric energy from the United States to a foreign country granted by order of the ERA under section 202(e) of the Federal Power Act shall not be transferable or assignable. Provided written
notice is given to the ERA within 30 days, the authorization may continue in effect temporarily in the event of the involuntary transfer of this authority by operation of law (including transfers to receivers, trustees, or purchasers under foreclosure or judicial sale). This continuance is contingent on the filing of an application for permanent authorization and may be effective until a decision is made thereon.

(b) In the event of a proposed voluntary transfer of this authority to export electricity, the transferee and the transferor shall file jointly an application pursuant to this subsection, setting forth such information as required by §§205.300 through 205.304, together with a statement of reasons for the transfer.

(c) The ERA may at any time subsequent to the original order of authorization, after opportunity for hearing, issue such supplemental orders as it may find necessary or appropriate.

§ 205.306 Authorization not exclusive.

No authorization granted pursuant to section 202(e) of the Act shall be deemed to prevent an authorization from being granted to any other person or entity to export electric energy or to prevent any other person or entity from making application for an export authorization.

§ 205.307 Form and style; number of copies

An original and two conformed copies of an application containing the information required under §§205.300 through 205.309 must be filed.

§ 205.308 Filing schedule and annual reports.

(a) Persons authorized to transmit electric energy from the United States shall promptly file all supplements, notices of succession in ownership or operation, notices of cancellation, and certificates of concurrence. In general, these documents should be filed at least 30 days prior to the effective date of any change.

(b) A change in the tariff arrangement does not require an amendment to the authorization. However, any entity with an authorization to export electric energy shall file with the ERA, and the appropriate state regulatory agency, a certified copy of any changed rate schedule and terms. Such changes may take effect upon the date of filing of informational data with the ERA.

(c) Persons receiving authorization to transmit electric energy from the United States shall submit to the ERA, by February 15 each year, a report covering each month of the preceding calendar year detailing the gross amount of kilowatt-hours of energy, by authorized category, received or delivered, and the cost and revenue associated with each category.

(Approved by the Office of Management and Budget under Control No. 1901-0245)

§ 205.309 Filing procedures and fees.

Applications shall be addressed to the Office of Utility Systems of the Economic Regulatory Administration. Every application shall be accompanied by a fee of $500.00. Fee payment shall be by check, draft, or money order payable to the Treasurer of the United States. Copies of applications and notifications of rate changes shall be furnished to the Federal Energy Regulatory Commission and all affected State public utility regulatory agencies.

APPLICABLE FOR PRESIDENTIAL PERMIT AUTHORIZING THE CONSTRUCTION, CONNECTION, OPERATION, AND MAINTENANCE OF FACILITIES FOR TRANSMISSION OF ELECTRIC ENERGY AT INTERNATIONAL BOUNDARIES

§ 205.320 Who shall apply.

(a) Any person, firm, co-operative, corporation or other entity who operates an electric power transmission or distribution facility crossing the border of the United States, for the transmission of electric energy between the United States and a foreign country, shall have a Presidential Permit, in compliance with Executive Order 10485, as amended by Executive Order 12038. Such applications should be filed with the Office of Utility Systems of the Economic Regulatory Administration.
§ 205.321

(b) In connection with applications hereunder, attention is directed to the provisions of §§ 205.300 to 205.309, above, concerning applications for authorization to transmit electric energy from the United States to a foreign country pursuant to section 202(e) of the Federal Power Act.

§ 205.321 Time of filing.

Pursuant to the DOE's responsibility under the National Environmental Policy Act, the DOE must make an environmental determination of the proposed action. If, as a result of this determination, an environmental impact statement (EIS) must be prepared, the permit processing time normally will be 18-24 months. If no environmental impact statement is required, then a six-month processing time normally would be sufficient.

§ 205.322 Contents of application.

Every application shall be accompanied by a fee prescribed in §205.306 of this subpart and shall provide, in the order indicated, the following:

(a) Information regarding the applicant.
(1) The legal name of the applicant;
(2) The legal name of all partners;
(3) The name, title, post office address, and telephone number of the person to whom correspondence in regard to the application shall be addressed;
(4) Whether the applicant or its transmission lines are owned wholly or in part by a foreign government or directly or indirectly assisted by a foreign government or instrumentality thereof; or whether the applicant has any agreement pertaining to such ownership or assistance from any foreign government or instrumentality thereof.
(5) List all existing contracts that the applicant has with any foreign government, or any foreign private concerns, relating to any purchase, sale or delivery of electric energy.
(6) A showing, including a signed opinion of counsel, that the construction, connection, operation, or maintenance of the proposed facility is within the corporate power of the applicant, and that the applicant has complied with or will comply with all pertinent Federal and State laws;
(b) Information regarding the transmission lines to be covered by the Presidential Permit. (1)(i) A technical description providing the following information: (A) Number of circuits, with identification as to whether the circuit is overhead or underground; (B) the operating voltage and frequency; and (C) conductor size, type and number of conductors per phase.
(ii) If the proposed interconnection is an overhead line the following additional information must also be provided: (A) The wind and ice loading design parameters; (B) a full description and drawing of a typical supporting structure including strength specifications; (C) structure spacing with typical ruling and maximum spans; (D) conductor (phase) spacing; and (E) the designed line to ground and conductor side clearances.
(iii) If an underground or underwater interconnection is proposed, the following additional information must also be provided: (A) Burial depth; (B) type of cable and a description of any required supporting equipment, such as insulation medium pressurizing or forced cooling; and (C) cathodic protection scheme. Technical diagrams which provide clarification of any of the above items should be included.
(2) A general area map with a scale not greater than 1 inch=40 kilometers (1 inch=25 miles) showing the overall system, and a detailed map at a scale of 1 inch=8 kilometers (1 inch=5 miles) showing the physical location, longitude and latitude of the facility on the international border. The map shall indicate ownership of the facilities at or on each side of the border between the United States and the foreign country. The maps, plans, and description of the facilities shall distinguish the facilities or parts thereof already constructed from those to be constructed.
(3) Applications for the bulk power supply facility which is proposed to be operated at 138 kilovolts or higher.
shall contain the following bulk power system information:

(i) Data regarding the expected power transfer capability, using normal and short time emergency conductor ratings;

(ii) System power flow plots for the applicant’s service area for heavy summer and light spring load periods, with and without the proposed international interconnection, for the year the line is scheduled to be placed in service and for the fifth year thereafter. The power flow plots submitted can be in the format customarily used by the utility, but the ERA requires a detailed legend to be included with the power flow plots;

(iii) Data on the line design features for minimizing television and/or radio interference caused by operation of the subject transmission facilities;

(iv) A description of the relay protection scheme, including equipment and proposed functional devices;

(v) After receipt of the system power flow plots, the ERA may require the applicant to furnish system stability analysis for the applicant’s system.

(c) Information regarding the environmental impacts shall be provided as follows for each routing alternative:

(1) Statement of the environmental impacts of the proposed facilities including a list of each flood plain, wetland, critical wildlife habitat, navigable waterway crossing, Indian land, or historic site which may be impacted by the proposed facility with a description of proposed activities therein.

(2) A list of any known Historic Places, as specified in 36 CFR part 800, which may be eligible for the National Register of Historic Places.

(3) Details regarding the minimum right-of-way width for construction, operation and maintenance of the transmission lines and the rationale for selecting that right-of-way width.

(4) A list of threatened or endangered wildlife or plant life which may be located in the proposed alternative.

(d) A brief description of all practical alternatives to the proposed facility and a discussion of the general environmental impacts of each alternative.

(e) The original of each application shall be signed and verified under oath by an officer of the applicant, having knowledge of the matters therein set forth.

§ 205.323 Transferability.

(a) Neither a permit issued by the ERA pursuant to Executive Order 10485, as amended, nor the facility shall be transferable or assignable. Provided written notice is given to the ERA within 30 days, the authorization may continue in effect temporarily in the event of the involuntary transfer of the facility by operation of law (including transfers to receivers, trustees, or purchasers under foreclosure or judicial sale). This continuance is contingent on the filing of an application for a new permit and may be effective until a decision is made thereon.

(b) In the event of a proposed voluntary transfer of the facility, the permittee and the party to whom the transfer would be made shall file a joint application with the ERA pursuant to this paragraph, setting forth information as required by §205.320 et seq., together with a statement of reasons for the transfer. The application shall be accompanied by a filing fee pursuant to §205.326.

(c) No substantial change shall be made in any facility authorized by permit or in the operation thereof unless or until such change has been approved by the ERA.

(d) Permits may be modified or revoked without notice by the President of the United States, or by the Administrator of the ERA after public notice.

§ 205.324 Form and style; number of copies.

All applicants shall file an original and two conformed copies of the application and all accompanying documents required under §§205.320 through 205.327.

§ 205.325 Annual report.

Persons receiving permits to construct, connect, operate or maintain electric transmission facilities at international boundaries shall submit to the ERA, by February 15 each year, a report covering each month of the preceding calendar year, detailing by category the gross amount of kilowatt-hours of energy received or delivered...
and the cost and revenue associated with each category.

§ 205.326 Filing procedures and fees.

Applications shall be forwarded to the Office of Utility Systems of the Economic Regulatory Administration and shall be accompanied by a filing fee of $150. The application fee will be charged irrespective of the ERA's disposition of the application. Fee payment shall be by check, draft, or money order payable to the Treasurer of the United States. Copies of applications shall be furnished to the Federal Energy Regulatory Commission and all affected State public utility regulatory agencies.

§ 205.327 Other information.

The applicant may be required after filing the application to furnish such supplemental information as the ERA may deem pertinent. Such requests shall be written and a prompt response will be expected. Protest regarding the supplying of such information should be directed to the Administrator of the ERA.

§ 205.328 Environmental requirements for Presidential Permits—Alternative 1.

(a) NEPA Compliance. Except as provided in paragraphs (c) and (e) of this section, when an applicant seeks a Presidential Permit, such applicant will be responsible for the costs of preparing any necessary environmental document, including an Environmental Impact Statement (EIS), arising from ERA's obligation to comply with the National Environmental Policy Act of 1969 (NEPA). ERA will determine whether an environmental assessment (EA) or EIS is required within 45 days of the receipt of the Presidential Permit application and of environmental information submitted pursuant to 10 CFR 205.322 (c) and (d). ERA will use these and other sources of information as the basis for making the environmental determination:

(1) If an EIS is determined to be necessary, the applicant shall enter into a contract with an independent third party, which may be a Government-owned, contractor-operated National Laboratory, or a qualified private entity selected by ERA. The third party contractor must be qualified to conduct an environmental review and prepare an EIS, as appropriate, under the supervision of ERA, and may not have a financial or other interest in the outcome of the proceedings. The NEPA process must be completed and approved before ERA will issue a Presidential Permit.

(2) If an EA is determined to be necessary, the applicant may be permitted to prepare an environmental assessment pursuant to 10 CFR 1506.5(b) for review and adoption by ERA, or the applicant may enter into a third party contract as set forth in this section.

(b) Environmental Review Procedure. Except as provided in paragraphs (c) and (e) of this section, environmental documents, including the EIS, where necessary, will be prepared utilizing the process set forth above. ERA, the applicant, and the independent third party, which may be a Government-owned, contractor-operated National Laboratory or a private entity, shall enter into an agreement in which the applicant will engage and pay directly for the services of the qualified third party to prepare the necessary environmental documents. The agreement shall outline the responsibilities of each party and its relationship to the other two parties regarding the work to be done or supervised. ERA shall approve the information to be developed and supervise the gathering, analysis, and presentation of the information. In addition, ERA will have the authority to approve and modify any statement, analysis, and conclusion contained in the environmental documents prepared by the third party. Before commencing preparation of the environmental document the third party will execute an ERA-prepared disclosure document stating that it does not have any conflict of interest, financial or otherwise, in the outcome of either the environmental process or the Permit application.

(c) Financial Hardship. Whenever ERA determines that a project is no longer economically feasible, or that a substantial financial burden would be imposed by the applicant bearing all of the costs of the NEPA studies, ERA may waive the requirement set forth in
paragraphs (a) and (b) of this section and perform the necessary environmental review, completely or in part, with its own resources.

(d) Discussions Prior to Filing. Prior to the preparation of any Presidential Permit application and environmental report, a potential applicant is encouraged to contact ERA and each affected State public utility regulatory agency to discuss the scope of the proposed project and the potential for joint State and Federal environmental review.

(e) Federal Exemption. Upon a showing by the applicant that it is engaged in the transaction of official business of the Federal Government in filing the application pursuant to 10 CFR 205.320 et seq., it will be exempt from the requirements of this section.

[48 FR 33819, July 25, 1983]

§ 205.329 Environmental requirements for Presidential Permits—Alternative 2.

(a) NEPA Compliance. Except as provided in paragraphs (b) and (e) of this section, applicants seeking Presidential Permits will be financially responsible for the expenses of any contractor chosen by ERA to prepare any necessary environmental document arising from ERA’s obligation to comply with the National Environmental Policy Act of 1969 (NEPA) in issuing such Presidential Permits:

1. ERA will determine whether an Environmental Impact Statement (EIS) or an Environmental Assessment (EA) is required within 45 days of receipt of the Presidential Permit application and of the environmental information submitted pursuant to 10 CFR 205.322 (c) and (d). ERA will use these and other sources of information as the basis for making the environmental determination.

2. If an EIS is determined to be necessary, ERA will notify the applicant of the fee for completing the EIS within 90 days after the submission of the application and environmental information. The fee shall be based on the expenses estimated to be incurred by DOE in contracting to prepare the EIS (i.e., the estimated fee charges to ERA by the contractor). DOE employee salaries and other fixed costs, as set forth in OMB Circular A-25, shall not be included in the applicant’s fee. Fee payment shall be by check, draft, or money order payable to the Treasurer of the United States, and shall be submitted to ERA. Upon submission of fifty percent of the environmental fee, ERA will provide to the applicant a tentative schedule for completion of the EIS.

3. If an EA is determined to be necessary, the applicant may be permitted to prepare an environmental assessment pursuant to 40 CFR 1506.5(b) for review and adoption by ERA, or the applicant may choose to have ERA prepare the EA pursuant to the fee procedures set forth above.

4. The NEPA process must be completed and approved before ERA will issue a Presidential Permit.

(b) Financial Hardship. Whenever ERA determines that a project is no longer economically feasible, or that a substantial financial burden would be imposed by the applicant bearing all of the costs of the NEPA studies, ERA may waive the requirement set forth in paragraphs (a) and (b) of this section and perform the necessary environmental review, completely or in part, with its own resources.

(c) Discussions Prior to Filing. Prior to the preparation of any Presidential Permit application and environmental assessment, a potential applicant is encouraged to contact ERA and each affected State public utility regulatory agency to discuss the scope of the proposed project and the potential for joint State and Federal environmental review.

(d) Fee Payment. The applicant shall make fee payment for completing the EIS to ERA in the following manner:

1. 50 percent of the total amount due to be paid within 30 days of receipt of the fee information from DOE;

2. 25 percent to be paid upon publication of the draft EIS; and

3. 25 percent to be paid upon publication of the final EIS.

If costs are less than the amount collected, ERA will refund to the applicant the excess fee collected. If costs exceed the initial fee, ERA will fund the balance, unless the increase in costs is caused by actions or inactions...
§ 205.350 General purpose.

The purpose of this rule is to establish a procedure for the Office of International Affairs and Energy Emergencies (IE) to obtain current information regarding emergency situations on the electric energy supply systems in the United States so that appropriate Federal emergency response measures can be implemented in a timely and effective manner. The data also may be utilized in developing legislative recommendations and reports to the Congress.

(Approved by the Office of Management and Budget under control number 1901-0288)

§ 205.351 Reporting requirements.

For the purpose of this section, a report or a part of a report may be made jointly by two or more entities. Every electric utility or other entity engaged in the generation, transmission or distribution of electric energy for delivery and/or sale to the public shall report promptly, through the DOE Emergency Operations Center, by telephone, the occurrence of any event such as described in paragraphs (a) through (d) of this section. These reporting procedures are mandatory. Entities that fail to comply within 24 hours will be contacted and reminded of their reporting obligation.

(a) Loss of Firm System Loads, caused by:

1. Any load shedding actions resulting in the reduction of over 100 megawatts (MW) of firm customer load for reasons of maintaining the continuity of the bulk electric power supply system.

2. Equipment failures/system operational actions attributable to the loss of firm system loads for a period in excess of 15 minutes, as described below:

 i. Reports from entities with a previous year recorded peak load of over 3000 MW are required for all such losses of firm loads which total over 300 MW.

 ii. Reports from all other entities are required for all such losses of firm loads which total over 200 MW or 50 percent of the system load being supplied immediately prior to the incident, whichever is less.

(b) Voltage Reductions or Public Appeals:

1. Reports are required for any anticipated or actual system voltage reductions of 3 percent or greater for purposes of maintaining the continuity of the bulk electric power supply system.

2. Reports are required for any issuance of a public appeal to reduce the use of electricity for purposes of maintaining the continuity of the bulk electric power system.

(c) Vulnerabilities that could Impact System Reliability:

1. Reports are required for any actual or suspected act(s) of physical sabotage (not vandalism) or terrorism directed at an electric power supply system, local or regional, in an attempt to either:

 i. Disrupt or degrade the service reliability of the local or regional bulk electric power supply system, or
(ii) Disrupt, degrade, or deny bulk electric power service to:
 (A) A specific facility (industrial, military, governmental, private), or
 (B) A specific service (transportation, communications), or
 (C) A specific locality (town, city, county).

(2) Reports are required for any abnormal emergency system operating condition(s) or other event(s) which in the judgment of the reporting entity could or would constitute a hazard to maintaining the continuity of the bulk electric power supply system. Examples will be provided in the DOE pamphlet on reporting procedures.

(d) Fuel Supply Emergencies:
 (1) Reports are required for any anticipated or existing fuel supply emergency situation which would threaten the continuity of the bulk electric power supply system, such as:
 (i) Fuel stocks or hydro project water storage levels are at 50 percent (or less) of normal for that time of the year, and a continued downward trend is projected.
 (ii) Unscheduled emergency generation is dispatched causing an abnormal use of a particular fuel type, such that the future supply or stocks of that fuel could reach a level which threatens the reliability or adequacy of electric service.

 (Approved by the Office of Management and Budget under control number 1901-0288)

§ 205.352 Information to be reported.

The emergency situation data shall be supplied to the DOE Emergency Operations Center in accordance with the current DOE pamphlet on reporting procedures. The initial report shall include the utility name; the area affected; the time of occurrence of the initiating event; the duration or an estimate of the likely duration; an estimate of the number of customers and amount of load involved; and whether any known critical services such as hospitals, military installations, pumping stations or air traffic control systems, were or are interrupted. To the extent known or reasonably suspected, the report shall include a description of the events initiating the disturbance. The DOE may require further clarification during or after restoration of service.

(Approved by the Office of Management and Budget under control number 1901-0288)

§ 205.353 Special investigation and reports.

If directed by the Director, Office of Energy Emergency Operations in writing and noticed in the Federal Register, a utility or other subject entity experiencing a condition described in §205.351 above shall submit a full report of the technical circumstances surrounding a specific power system disturbance, including the restoration procedures utilized. The report shall be filed at such times as may be directed by the Director, Office of Energy Emergency Operations.

(Approved by the Office of Management and Budget under control number 1901-0288)

EMERGENCY INTERCONNECTION OF ELECTRIC FACILITIES AND THE TRANSFER OF ELECTRICITY TO ALLEVIATE AN EMERGENCY SHORTAGE OF ELECTRIC POWER

SOURCE: Sections 205.370 through 205.379 appear at 46 FR 79087, Aug. 6, 1981, unless otherwise noted.

§ 205.370 Applicability.

Sections 202(c) and 202(d) of the Federal Power Act are applicable to any “entity” which owns or operates electric power generation, transmission or distribution facilities. An “entity” is a private or public corporation (utility), a governmental agency, a municipality, a cooperative or a lawful association of the foregoing. Under this section, the DOE has the authority to order the temporary connection of facilities, or the generation or delivery of electricity, which it deems necessary to alleviate an emergency. Such orders shall be effective for the time specified and will be subject to the terms and conditions the DOE specifies. The DOE retains the right to cancel, modify or otherwise change any order, with or without notice, hearing, or report. Requests for action under
these regulations will be accepted from any “entity,” State Public Utility Commission, State Energy Agency, or State Governor. Actions under these regulations also may be initiated by the DOE on its own motion. Orders under this authority may be made effective without prior notice.

§ 205.371 Definition of emergency.

“Emergency,” as used herein, is defined as an unexpected inadequate supply of electric energy which may result from the unexpected outage or breakdown of facilities for the generation, transmission or distribution of electric power. Such events may be the result of weather conditions, acts of God, or unforeseen occurrences not reasonably within the power of the affected “entity” to prevent. An emergency also can result from a sudden increase in customer demand, an inability to obtain adequate amounts of the necessary fuels to generate electricity, or a regulatory action which prohibits the use of certain electric power supply facilities. Actions under this authority are envisioned as meeting a specific inadequate power supply situation. Extended periods of insufficient power supply as a result of inadequate planning or the failure to construct necessary facilities can result in an emergency as contemplated in these regulations. In such cases, the impacted “entity” will be expected to make firm arrangements to resolve the problem until new facilities become available, so that a continuing emergency order is not needed. Situations where a shortage of electric energy is projected due solely to the failure of parties to agree to terms, conditions or other economic factors relating to service, generally will not be considered as emergencies unless the inability to supply electric service is imminent. Where an electricity outage or service inadequacy qualifies for a section 202(c) order, contractual difficulties alone will not be sufficient to preclude the issuance of an emergency order.

§ 205.372 Filing procedures; number of copies.

An original and two conformed copies of the applications and reports required under §§ 205.370 through 205.379 shall be filed with the Division of Power Supply and Reliability, Department of Energy. Copies of all documents also shall be served on:

(a) The Federal Energy Regulatory Commission;
(b) Any State Regulatory Agency having responsibility for service standards, or rates of the “entities” that are affected by the requested order;
(c) Each “entity” suggested as a potential source for the requested emergency assistance;
(d) Any “entity” that may be a potential supplier of transmission services;
(e) All other “entities” not covered under paragraphs (c) and (d) of this section which may be directly affected by the requested order; and
(f) The appropriate Regional Reliability Council.

§ 205.373 Application procedures.

Every application for an emergency order shall set forth the following information as required. This information shall be considered by the DOE in determining that an emergency exists and in deciding to issue an order pursuant to sections 202(c) and 202(d) of the Federal Power Act.

(a) The exact legal name of the applicant and of all other “entities” named in the application.

(b) The name, title, post office address, and telephone number of the person to whom correspondence in regard to the application shall be addressed.

(c) The political subdivision in which each “entity” named in the application operates, together with a brief description of the area served and the business conducted in each location.

(d) Each application for a section 202(c) order shall include the following baseline data:

(1) Daily peak load and energy requirements for each of the past 30 days and projections for each day of the expected duration of the emergency;

(2) All capacity and energy receipts or deliveries to other electric utilities for each of the past 30 days, indicating the classification for each transaction;

(3) The status of all interruptible customers for each of the past 30 days and
the anticipated status of these customers for each day of the expected duration of the emergency, assuming both the granting and the denial of the relief requested herein;

(4) All scheduled capacity and energy receipts or deliveries to other electric utilities for each day of the expected duration of the emergency.

(e) A description of the situation and a discussion of why this is an emergency, including any necessary background information. This should include any contingency plan of the applicant and the current level of implementation.

(f) A showing that adequate electric service to firm customers cannot be maintained without additional power transfers.

(g) A description of any conservation or load reduction actions that have been implemented. A discussion of the achieved or expected results or these actions should be included.

(h) A description of efforts made to obtain additional power through voluntary means and the results of such efforts; and a showing that the potential sources of power and transmission services designated pursuant to paragraphs (i) through (k) of this section informed that the applicant believed that an emergency existed within the meaning of §205.371.

(i) A listing of proposed sources and amounts of power necessary from each source to alleviate the emergency and a listing of any other “entities” that may be directly affected by the requested order.

(j) Specific proposals to compensate the supplying “entities” for the emergency services requested and to compensate any transmitting “entities” for services necessary to deliver such power.

(k) A showing that, to the best of the applicant’s knowledge, the requested relief will not unreasonably impair the reliability of any “entity” directly affected by the requested order to render adequate service to its customers.

(l) Description of the facilities to be used to transfer the requested emergency service to the applicant’s system.

(1) If a temporary interconnection under the provisions of section 202(c) is proposed independently, the following additional information shall be supplied for each such interconnection:

(1) Proposed location;
(2) Required thermal capacity or power transfer capability of the interconnection;
(3) Type of emergency services requested, including anticipated duration;
(4) An electrical one line diagram;
(5) A description of all necessary materials and equipment; and
(6) The projected length of time necessary to complete the interconnection.

(2) If the requested emergency assistance is to be supplied over existing facilities, the following information shall be supplied for each existing interconnection:

(i) Location;
(ii) Thermal capacity of power transfer capability of interconnection facilities; and
(iii) Type and duration of emergency services requested.

(m) A general or key map on a scale not greater than 100 kilometers to the centimeter showing, in separate colors, the territory serviced by each “entity” named in the application; the location of the facilities to be used for the generation and transmission of the requested emergency service; and all connection points between systems.

(n) An estimate of the construction costs of any proposed temporary facilities and a statement estimating the expected operation and maintenance costs on an annualized basis. (Not required on section 202(d) applications.)

(o) Applicants may be required to furnish such supplemental information as the DOE may deem pertinent.

§205.374 Responses from “entities” designated in the application.

Each “entity” designated as a potential source of emergency assistance or a potential supplier of transmission services and which has received a copy of the application under §205.373, shall have three (3) calendar days from the time of receipt of the application to file the information designated below with the DOE. The DOE will grant extensions of the filing period when appropriate. The designated “entities”
§ 205.375 Guidelines defining inadequate fuel or energy supply.

An inadequate utility system fuel inventory or energy supply is a matter of managerial and engineering judgment based on such factors as fuels in stock, fuels en route, transportation time, and constraints on available storage facilities. A system may be considered to have an inadequate fuel or energy supply capability when, combined with other conditions, the projected energy deficiency upon the applicant's system without emergency action by the DOE, will equal or exceed 10 percent of the applicant's then normal daily net energy for load, or will cause the applicant to be unable to meet its normal peak load requirements based upon use of all of its otherwise available resources so that it is unable to supply adequate electric service to its ultimate customers. The following conditions will be considered in determining that a system has inadequate fuel or energy supply capability:

(1) System coal stocks are reduced to 30 days (or less) of normal burn days and a continued downward trend in stocks is projected;

(2) System distillate oil stocks which cannot be replaced by alternate fuels are reduced to 15 days (or less) of normal burn days and a continued downward trend in stocks is projected;

(3) System natural gas deliveries which cannot be replaced by alternate fuels have been or will be reduced 20 percent below normal requirements and no improvement in natural gas deliveries is projected within 30 days;

(4) Delays in nuclear fuel deliveries will extend a scheduled refueling shutdown by more than 30 days; and

(5) Water supplies required for power generation have been reduced to the level where the future adequacy of the power supply may be endangered and no near term improvement in water supplies is projected.

The use of the prescribed criteria does not preclude an applicant from claiming the existence of an emergency when its stocks of fuel or water exceed the amounts and time frames specified above.

§ 205.376 Rates and charges.

The applicant and the generating or transmitting systems from which emergency service is requested are encouraged to utilize the rates and charges contained in approved existing rate schedules or to negotiate mutually satisfactory rates for the proposed transactions. In the event that the DOE determines that an emergency exists under section 202(c), and the "entities" are unable to agree on the rates to be charged, the DOE shall prescribe the conditions of service and refer the rate issues to the Federal Energy Regulatory Commission for determination by that agency in accordance with its standards and procedures.

§ 205.377 Reports.

In addition to the information specified below, the DOE may require additional reports as it deems necessary.

(a) Where the DOE has authorized the temporary connection of transmission facilities, all "entities" whose transmission facilities are thus temporarily interconnected shall report the following information to the DOE within 15
days following completion of the interconnection:
(1) The date the temporary interconnection was completed;
(2) The location of the interconnection;
(3) A description of the interconnection; and
(4) A one-line electric diagram of the interconnection.

(b) Where the DOE orders the transfer of power, the "entity" receiving such service shall report the following information to the DOE by the 10th of each month for the preceding month's activity for as long as such order shall remain in effect:
(1) Amounts of capacity and/or energy received each day;
(2) The name of the supplier;
(3) The name of any "entity" supplying transmission services; and
(4) Preliminary estimates of the associated costs.

(c) Where the DOE has approved the installation of permanent facilities that will be used only during emergencies, any use of such facilities shall be reported to the DOE within 24 hours. Details of such usage shall be furnished as deemed appropriate by the DOE after such notification.

(d) Any substantial change in the information provided under § 205.373 shall be promptly reported to the DOE.

(Approved by the Office of Management and Budget under Control No. 1904-0066)

§ 205.379 Application for approval of the installation of permanent facilities for emergency use only.
Application for DOE approval of a permanent connection for emergency use only shall conform with the requirements in § 205.373. However, the baseline data specified in § 205.373(d) need not be included in an application made under this section. In addition, the application shall state in full the reasons why such permanent connection for emergency use is in the public interest.

PART 207—COLLECTION OF INFORMATION

Subpart A—Collection of Information Under the Energy Supply and Environmental Coordination Act of 1974

§ 207.1 Purpose.
The purpose of this subpart is to set forth the manner in which energy information which the Administrator is authorized to obtain by sections 11(a) and (b) of ESECA will be collected.

§ 207.2 Definitions.
As used in this subpart:
Administrator means the Federal Energy Administrator of his delegate.
§ 207.3 Method of collecting energy information under ESECA.

(a) Whenever the Administrator determines that:

(1) Certain energy information is necessary to assist in the formulation of energy policy or to carry out the purposes of the ESECA of the EPAA; and

(2) Such energy information is not available to DOE under the authority of statutes other than ESECA or that such energy information should, as a matter of discretion, be collected under the authority of ESECA;

He shall require reports of such information to be submitted to DOE at least every ninety calendar days.

(b) The Administrator may require such reports of any person who is engaged in the production, processing, refining, transportation by pipeline, or distribution (at other than the retail level) of energy resources.

(c) The Administrator may require such reports by rule, order, questionnaire, or such other means as he determines appropriate.

(d) Whenever reports of energy information are requested under this subpart, the rule, order, questionnaire, or other means requesting such reports shall contain (or be accompanied by) a recital that such reports are being requested under the authority of ESECA.

(e) In addition to requiring reports, the Administrator may, at his discretion, in order to obtain energy information under the authority of ESECA:

(1) Sign and issue subpoenas in accordance with the provisions of §205.8 of this chapter for the attendance and testimony of witnesses and the production of books, records, papers, and other documents;

(2) Require any person, by rule or order, to submit answers in writing to interrogatories, requests for reports or for other information, with such answers or other submissions made within such reasonable period as is specified in the rule or order, and under oath; and

(3) Administer oaths.

Any such subpoena or rule or order shall contain (or be accompanied by) a recital that energy information is requested under the authority of ESECA.

(f) For the purpose of verifying the accuracy of any energy information requested, acquired, or collected by the DOE, the Administrator, or any officer or employee duly designated by him, upon presenting appropriate credentials and a written notice from the Administrator to the owner, operator, or agent in charge, may—

(1) Enter, at reasonable times, any business premise of facility; and

(2) Inspect, at reasonable times and in a reasonable manner, any such premise or facility, inventory and sample any stock of energy resources therein, and examine and copy books, records, papers, or other documents, relating to any such energy information.

Such written notice shall reasonably describe the premise or facility to be inspected, the stock to be inventoried or sampled, or the books, records, papers or other documents to be examined or copied.
§ 207.4 Confidentiality of energy information.
(a) Information obtained by the DOE under authority of ESECA shall be available to the public in accordance with the provisions of part 202 of this chapter. Upon a showing satisfactory to the Administrator by any person that any energy information obtained under this subpart from such person would, if made public, divulge methods or processes entitled to protection as trade secrets or other proprietary information of such person, such information, or portion thereof, shall be deemed confidential in accordance with the provisions of section 1905 of title 18, United States Code; except that such information, or part thereof, shall not be deemed confidential pursuant to that section for purposes of disclosure, upon request, to (1) any delegate of the DOE for the purpose of carrying out ESECA or the EPAA, (2) the Attorney General, the Secretary of the Interior, the Federal Trade Commission, the Federal Power Commission, or the General Accounting Office, when necessary to carry out those agencies' duties and responsibilities under ESECA and other statutes, and (3) the Congress, or any Committee of Congress upon request of the Chairman.
(b) Whenever the Administrator requests reports of energy information under this subpart, he may specify (in the rule, order or questionnaire or other means by which he has requested such reports) the nature of the showing required to be made in order to satisfy DOE that certain energy information contained in such reports warrants confidential treatment in accordance with this section. He shall, to the maximum extent practicable, either before or after requesting reports, by ruling or otherwise, inform respondents providing energy information pursuant to requests under the subpart of whether such information will be made available to the public pursuant to requests under the Freedom of Information Act (5 U.S.C. 552).

§ 207.5 Violations.
Any practice that circumvents or contravenes or results in a circumvention or contravention of the requirements of any provision of this subpart or any order issued pursuant thereto is a violation of the DOE regulations stated in this subpart.

§ 207.6 Notice of probable violation and remedial order.
(a) Purpose and scope. (1) This section establishes the procedures for determining the nature and extent of violations of this subpart and the procedures for issuance of a notice of probable violation, a remedial order or a remedial order for immediate compliance.
(2) When the DOE discovers that there is reason to believe a violation of any provision of this subpart, or any order issued thereunder, has occurred, is continuing or is about to occur, the DOE may conduct proceedings to determine the nature and extent of the violation and may issue a remedial order thereafter. The DOE may commence such proceeding by serving a notice of probable violation or by issuing a remedial order for immediate compliance.
(b) Notice of probable violation. (1) The DOE may begin a proceeding under this subpart by issuing a notice of probable violation if the DOE has reason to believe that a violation has occurred, is continuing, or is about to occur.
(2) Within 10 days of the service of a notice of probable violation, the person upon whom the notice is served may file a reply with the DOE office that issued the notice of probable violation at the address provided in § 205.12 of this chapter. The DOE may extend the 10-day period for good cause shown.
(3) The reply shall be in writing and signed by the person filing it. The reply shall contain a full and complete statement of all relevant facts pertaining to the act or transaction that is the subject of the notice of probable violation. Such facts shall include a complete statement of the business or other reasons that justify the act or transaction, it appropriate; a detailed description of the act or transaction; and a full discussion of the pertinent provisions and relevant facts reflected in any documents submitted with the reply. Copies of all relevant documents shall be submitted with the reply.
(4) The reply shall include a discussion of all relevant authorities, including, but not limited to, DOE rulings, regulations, interpretations, and decisions on appeals and exceptions relied upon to support the particular position taken.

(5) The reply should indicate whether the person requests or intends to request a conference regarding the notice. Any request not made at the time of the reply shall be made as soon thereafter as possible to insure that the conference is held when it will be most beneficial. A request for a conference must conform to the requirements of subpart M of part 205 of this chapter.

(6) If a person has not filed a reply with the DOE within the 10-day period provided, and the DOE has not extended the 10-day period, the person shall be deemed to have conceded the accuracy of the factual allegations and legal conclusions stated in the notice of probable violation.

(7) If the DOE finds, after the 10-day period provided in §207.6(b)(2), that no violation has occurred, is continuing, or is about to occur, or that for any reason the issuance of a remedial order would not be appropriate, it shall notify, in writing, the person to whom a notice of probable violation has been issued that the notice is rescinded.

(c) Remedial order. (1) If the DOE finds, after the 10-day period provided in §207.6(b)(2), that a violation has occurred, is continuing, or is about to occur, the DOE may issue a remedial order. The order shall include a written opinion setting forth the relevant facts and the legal basis of the remedial order.

(2) A remedial order issued under this subpart shall be effective upon issuance, in accordance with its terms, until stayed, suspended, modified or rescinded. The DOE may stay, suspend, modify or rescind a remedial order on its own initiative or upon application by the person to whom the remedial order is issued. Such action and application shall be in accordance with the procedures for such proceedings provided for in part 205 of this chapter.

(3) A remedial order may be referred at any time to the Department of Justice for appropriate action in accordance with §207.7.

(d) Remedial order for immediate compliance. (1) Notwithstanding paragraphs (b) and (c) of this section, the DOE may issue a remedial order for immediate compliance, which shall be effective upon issuance and until rescinded or suspended, if it finds:

(i) There is a strong probability that a violation has occurred, is continuing or is about to occur;

(ii) Irreparable harm will occur unless the violation is remedied immediately; and

(iii) The public interest requires the avoidance of such irreparable harm through immediate compliance and waiver of the procedures afforded under paragraphs (b) and (c) of this section.

(2) A remedial order for immediate compliance shall be served promptly upon the person against whom such order is issued by telex or telegram, with a copy served by registered or certified mail. The copy shall contain a written statement of the relevant facts and the legal basis for the remedial order for immediate compliance, including the findings required by paragraph (d)(1) of this section.

(3) The DOE may rescind or suspend a remedial order for immediate compliance if it appears that the criteria set forth in paragraph (d)(1) of this section are no longer satisfied. When appropriate, such a suspension or rescission may be accompanied by a notice of probable violation issued under paragraph (b) of this section.

(4) If at any time in the course of a proceeding commenced by a notice of probable violation the criteria set forth in paragraph (d)(1) of this section are satisfied, the DOE may issue a remedial order for immediate compliance, even if the 10-day period for reply specified in §207.6(b)(2) of this part has not expired.

(5) At any time after a remedial order for immediate compliance has become effective the DOE may refer such order to the Department of Justice for appropriate action in accordance with §207.7 of this part.

(e) Remedies. A remedial order or a remedial order for immediate compliance may require the person to whom it is directed to take such action as the
DOE determines is necessary to eliminate or to compensate for the effects of a violation.

(f) Appeal. (1) No notice of probable violation issued pursuant to this subpart shall be deemed to be an action of which there may be an administrative appeal.

(2) Any person to whom a remedial order or a remedial order for immediate compliance is issued under this subpart may file an appeal with the DOE Office of Exceptions and Appeals in accordance with the procedures for such appeal provided in subpart H of part 205 of this chapter. The appeal must be filed within 10 days of service of the order from which the appeal is taken.

§ 207.7 Sanctions.

(a) General. (1) Penalties and sanctions shall be deemed cumulative and not mutually exclusive.

(2) Each day that a violation of the provisions of this subpart or any order issued pursuant thereto continues shall be deemed to constitute a separate violation within the meaning of the provisions of this subpart relating to criminal fines and civil penalties.

(b) Criminal penalties. Any person who willfully violates any provision of this subpart or any order issued pursuant thereto shall be subject to a fine of not more than $5,000 for each violation. Criminal violations are prosecuted by the Department of Justice upon referral by the DOE.

(c) Civil Penalties. (1) Any person who violates any provision of this subpart or any order issued pursuant thereto shall be subject to a civil penalty of not more than $2,750 for each violation. Actions for civil penalties are prosecuted by the Department of Justice upon referral by the DOE.

(2) When the DOE considers it to be appropriate or advisable, the DOE may compromise and settle, and collect civil penalties.

§ 207.8 Judicial actions.

(a) Enforcement of subpoenas; contempt. Any United States district court within the jurisdiction of which any inquiry is carried on may, upon petition by the Attorney General at the request of the Administrator, in the case of refusal to obey a subpoena or order of the Administrator issued under this subpart, issue an order requiring compliance. Any failure to obey such an order of the court may be punished by the court as contempt.

(b) Injunctions. Whenever it appears to the Administrator that any person has engaged, is engaged, or is about to engage in any act or practice constituting a violation of any regulation or order issued under this subpart, the Administrator may request the Attorney General to bring a civil action in the appropriate district court of the United States to enjoin such acts or practices and, upon a proper showing, a temporary restraining order or preliminary or permanent injunction shall be granted without bond. The relief sought may include a mandatory injunction commanding any person to comply with any provision of such order or regulation, the violation of which is prohibited by section 12(a) of ESECA, as implemented by this subpart.

§ 207.9 Exceptions, exemptions, interpretations, rulings and rulemaking.

Applications for exceptions, exemptions or requests for interpretations relating to this subpart shall be filed in accordance with the procedures provided in subparts D, E and F, respectively, of part 205 of this chapter. Rulings shall be issued in accordance with the procedures of subpart K of part 205 of this chapter. Rulemakings shall be undertaken in accordance with the procedures provided in subpart L of part 205 of this chapter.

PART 209—INTERNATIONAL VOLUNTARY AGREEMENTS

Subpart A—General Provisions

Sec.
209.1 Purpose and scope.
209.2 Delegation.
209.3 Definitions.

Subpart B—Development of Voluntary Agreements

209.21 Purpose and scope.
209.22 Initiation of meetings.
209.23 Conduct of meetings.
§ 209.1 Purpose and scope.

This part implements the provisions of the Energy Policy and Conservation Act (EPCA) authorizing the Administrator to prescribe standards and procedures by which persons engaged in the business of producing, transporting, refining, distributing, or storing petroleum may develop and carry out voluntary agreements, and plans of action which are required to implement the information and allocation provisions of the International Energy Program (IEP). The requirements of this part do not apply to activities other than those for which section 252 of EPCA makes available a defense to the antitrust laws.

§ 209.2 Delegation.

To the extent otherwise permitted by law, any authority, duty, or responsibility vested in DOE or the Administrator under these regulations may be delegated to any regular full-time employee of the Department of Energy, and, by agreement, to any regular full-time employee of the Department of Justice or the Department of State.

§ 209.3 Definitions.

For purposes of this part—

(a) Administrator means the Administrator of the Department of Energy.

(b) Information and allocation provisions of the International Energy Program means the provisions of chapter V of the Program relating to the Information System, and the provisions at chapters III and IV thereof relating to the international allocation of petroleum.

(d) International Energy Program (IEP) means the program established pursuant to the Agreement on an International Energy Program signed at Paris on November 18, 1974, including (1) the Annex entitled “Emergency Reserves”, (2) any amendment to such Agreement which includes another nation as a Party to such Agreement, and (3) any technical or clerical amendment to such Agreement.

(e) International energy supply emergency means any period (1) beginning on any date which the President determines allocation of petroleum products to nations participating in the international energy program is required by chapters III and IV of such program, and (2) ending on a date on which he determines such allocation is no longer required. Such a period shall not exceed 90 days, except where the President establishes one or more additional periods by making the determination under paragraph (e)(1) of this section.

(f) Potential participant means any person engaged in the business of producing, transporting, refining, distributing, or storing petroleum products; “participant” means any such person who agrees to participate in a voluntary agreement pursuant to a request to do so by the Administrator.

(g) Petroleum or petroleum products means crude oil, residual fuel oil, or any refined petroleum product (including any natural gas liquid and any natural gas liquid product).
Subpart B—Development of Voluntary Agreements

§ 209.21 Purpose and scope.
(a) This subpart establishes the standards and procedures by which persons engaged in the business of producing, transporting, refining, distributing, or storing petroleum products shall develop voluntary agreements which are required to implement the allocation and information provisions of the International Energy Program.

(b) This subpart does not apply to meetings of bodies created by the International Energy Agency.

§ 209.22 Initiation of meetings.
(a) Any meeting held for the purpose of developing a voluntary agreement involving two or more potential participants shall be initiated and chaired by the Administrator or other regular full-time Federal employee designated by him.

(b) DOE shall provide notice of meetings held pursuant to this subpart, in writing, to the Attorney General, the Federal Trade Commission, and to the Speaker of the House and the President of the Senate for delivery to the appropriate committees of Congress, and to the public through publication in the Federal Register. Such notice shall identify the time, place, and agenda of the meeting, and such other matters as the Administrator deems appropriate.

Notice in the Federal Register shall be published at least seven days prior to the date of the meeting.

§ 209.23 Conduct of meetings.
(a) Meetings to develop a voluntary agreement held pursuant to this subpart shall be open to all interested persons. Interested persons desiring to attend meetings under this subpart may be required pursuant to notice to advise the Administrator in advance.

(b) Interested persons may, as set out in notice provided by the Administrator, present data, views, and arguments orally and in writing, subject to such reasonable limitations with respect to the manner of presentation as the Administrator may impose.

§ 209.24 Maintenance of records.
(a) The Administrator shall keep a verbatim transcript of any meeting held pursuant to this subpart.

(b)(1) Except as provided in paragraphs (b) (2) through (4) of this section, potential participants shall keep a full and complete record of any communications (other than in a meeting held pursuant to this subpart) between or among themselves for the purpose of developing a voluntary agreement under this part. When two or more potential participants are involved in such a communication, they may agree among themselves who shall keep such record. Such record shall include the names of the parties to the communication and the organizations, if any, which they represent; the date of the communication; the means of communication; and a description of the communication in sufficient detail to convey adequately its substance.

(2) Where any communication is written (including, but not limited to, telex, telegraphic, telecopied, microfilmed and computer printout material), and where such communication demonstrates on its face that the originator or some other source furnished a copy of the communication to the Office of International Affairs, Department of Energy with the notation "Voluntary Agreement" marked on the first page of the document, no participant need record such a communication or send a further copy to the Department of Energy. The Department of Energy may, upon written notice to potential participants, from time to time, or with reference to particular types of documents, require deposit with other offices or officials of the Department of Energy. Where such communication demonstrates that it was sent to the Office of International Affairs, Department of Energy with the notation "Voluntary Agreement" marked on the first page of the document, or such other offices or officials in the Department of Energy has designated pursuant to this section it shall satisfy paragraph (c) of this section, for the purpose of deposit with the Department of Energy.

(3) To the extent that any communication is procedural, administrative
or ministerial (for example, if it involves the location of a record, the place of a meeting, travel arrangements, or similar matters), only a brief notation of the date, time, persons involved and description of the communication need be recorded.

(4) To the extent that any communication involves matters which recapitulate matters already contained in a full and complete record, the substance of such matters shall be identified, but need not be recorded in detail, provided that reference is made to the record and the portion thereof in which the substance is fully set out.

(c) Except where the Department of Energy otherwise provides, all records and transcripts prepared pursuant to paragraphs (a) and (b) of this section, shall be deposited within fifteen (15) days after the close of the month of their preparation together with any agreement resulting therefrom, with the Department of Energy, and shall be available to the Department of Justice, the Federal Trade Commission, and the Department of State. Such records and transcripts shall be available for public inspection and copying to the extent set forth in subpart D. Any person depositing material pursuant to this section, be recorded by such official as provided in § 204.5.

(Approved by the Office of Management and Budget under Control No. 1905-0079)

§ 209.32 Initiation of meetings.

(a) Except for meetings of bodies created by the International Energy Agency, any meeting among participants in a voluntary agreement pursuant to this subpart, for the purpose of carrying out such voluntary agreement or developing or carrying out a plan of action pursuant thereto, shall be initiated and chaired by a full-time Federal employee designated by the Administrator.

(b) Except as provided in paragraph (c) of this section, the Administrator shall provide notice of meetings held pursuant to this subpart, in writing, to the Attorney General, the Federal Trade Commission, and to the Speaker of the House and the President of the Senate for delivery to the appropriate committees of Congress. Except during an international energy supply emergency, notice shall also be provided to the public through publication in the Federal Register. Such notice shall identify the time, place, and agenda of the meeting. Notice in the Federal Register shall be published at least seven days prior to the date of the meeting unless emergency circumstances, IEP requirements or other unanticipated circumstances require the period to be shortened.

(c) During an international energy supply emergency, advance notice shall be given to the Attorney General, the Federal Trade Commission and to the Speaker of the House and the President of the Senate for delivery to the appropriate committees of Congress. Such notice may be telephonic or by such
§ 209.34 Maintenance of records.

(a) The Administrator or his delegate shall keep a verbatim transcript of any meeting held pursuant to this subpart except where (1) due to considerations of time or other overriding circumstances, the keeping of a verbatim transcript is not practicable, or (2) principal participants in the meeting are representatives of foreign governments. If any such record other than a verbatim transcript, is kept by a designee who is not a full-time Federal employee, that record shall be submitted to the full-time Federal employee in attendance at the meeting who shall review the record, promptly make any changes he deems necessary to make the record full and complete, and shall notify the designee of such changes.

(b)(1) Except as provided in paragraphs (b)(2) through (4) of this section, participants shall keep a full and complete record of any communication (other than in a meeting held pursuant to this subpart) between or among themselves or with any other member of a petroleum industry group created by the International Energy Agency, or subgroup thereof for the purpose of carrying out a voluntary agreement or developing or carrying out a plan of action under this subpart, except that where there are several communications within the same day involving the same participants, they may keep a cumulative record for the day. The parties to a communication may agree among themselves who shall keep such record. Such record shall include the names of the parties to the communication and the organizations, if any, which they represent; the date of communication; and a description of the communication in sufficient detail to convey adequately its substance.

(2) Where any communication is written (including, but not limited to, telex, telegraphic, telecopied, microfilmed and computer printout material), and where such communication demonstrates on its face that the originator or some other source furnished a copy of the communication to the Office of International Affairs, Department of Energy with the notation “Voluntary Agreement” on the first page of the document, no participants need record such a communication or send a further copy to the Department of Energy. The Department of Energy may, upon written notice to participants, from time to time, or with reference to particular types of documents, require deposit with other offices or officials of the Department of Energy. Where such communication demonstrates that it was sent to the Office of International Affairs, Department of Energy with the notation “Voluntary Agreement” on the first
§ 209.41 Availability of information relating to meetings and communications.

(a) Except as provided in paragraph (b) of this section, records or transcripts prepared pursuant to this subpart shall be available for public inspection and copying in accordance with section 552 of title 5, United States Code and part 202 of this title.

(b) Matter may be withheld from disclosure under section 552(b) of title 5 only on the grounds specified in:

(1) Section 552(b)(1), applicable to matter specifically required by Executive Order to be kept secret in the interest of the national defense or foreign policy. This section shall be interpreted to include matter protected under Executive Order No. 11652 of March 8, 1972, establishing categories and criteria for classification, as well
as any other such orders dealing specifically with disclosure of IEP related materials;
(2) Section 552(b)(3), applicable to matter specifically exempted from disclosure by statute; and
(3) So much of section 552(b)(4) as relates to trade secrets.

PART 210—GENERAL ALLOCATION AND PRICE RULES

Subpart A—Recordkeeping

Sec. 210.1 Records.

Subparts B–D—[Reserved]

Subpart A—Recordkeeping

§ 210.1 Records.

(a) The recordkeeping requirements that were in effect on January 27, 1981, in parts 210, 211, and 212 will remain in effect for (1) all transactions prior to February 1, 1981; and (2) all allowed expenses incurred and paid prior to April 1, 1981 under §212.78 of part 212. These requirements include, but are not limited to, the requirements that were in effect on January 27, 1981, in §210.92 of this part; in §§211.67(a)(5)(ii); 211.89; 211.109, 211.127; and 211.223 of part 211; and in §§212.78(h)(5)(ii); 212.78(h)(6); 212.83(c)(2)(iii)(E)(i); 212.83(c)(2)(iii)(E)(i); 212.93(a); 212.93(b)(4)(iii)(B)(i); 212.93(4)(i); 212.94(b)(2)(iii); 212.128; 212.132; 212.172; and §212.187 of part 212.

(b) Effective February 5, 1985, paragraph (a) of this section shall apply, to the extent indicated, only to firms in the following categories. A firm may be included in more than one category, and a firm may move from one category to another. The fact that a firm becomes no longer subject to the recordkeeping requirements of one category shall not relieve that firm of compliance with the recordkeeping requirements of any other category in which the firm is still included.

(1) Those firms which are or become parties in litigation with DOE, as defined in paragraph (c)(1) of this section. Any such firm shall remain subject to paragraph (a) of this section. DOE shall notify the firm in writing of the final resolution of the litigation and whether or not any of its records must be maintained for a further period. DOE shall notify a firm which must maintain any records for a further period when such records are no longer needed.

(2)(i) Those firms which as of November 30, 1984, have completed making all restitutionary payments required by an administrative or judicial order, consent order, or other settlement or order but which payments are on February 5, 1985, still subject to distribution by DOE. This requirement is applicable to only those firms listed in appendix B. Any such firm shall maintain all records for the time period covered by the administrative or judicial order, consent order, or other settlement or order requiring the payments, evidencing sales volume data for each product subject to controls and customers’ names and addresses, until one of the following: June 30, 1985, unless this period is extended on a firm-by-firm basis; the end of the individual firm’s extension; or the firm is notified in writing that its records are no longer needed.

(ii) Those firms which as of November 30, 1984, are required to make restitutionary or other payments pursuant to an administrative or judicial order, consent order, or other settlement or order. Any such firm shall remain subject to paragraph (a) of this section until the firm completes all restitutionary payments required by the administrative or judicial order, consent order, or other settlement or order. However, after completing all such payments, a firm shall maintain all records described in paragraph (b)(2)(ii) of this section until one of the following: Six months after the firm completes all such payments, unless this period is extended on a firm-by-firm basis; the end of the individual firm’s extension; or the firm is notified
§ 210.1 10 CFR Ch. II (1-1-98 Edition)

in writing that its records are no longer needed.

(3)(i) Those firms with completed audits in which DOE has not yet made a determination to initiate a formal enforcement action and firms under audit which do not have outstanding subpoenas. Any such firm shall maintain all records for the period covered by the audit including all records necessary to establish historical prices or volumes which serve as the basis for determining the lawful prices or volumes for any subsequent, regulated transaction which is subject to audit, until one of the following: June 30, 1985, unless this period is extended on a firm-by-firm basis; the end of the individual firm's extension; or the firm is notified in writing by DOE that its records are no longer needed.

(ii) Those firms under audit which have outstanding subpoenas on February 5, 1985, or which receive subpoenas at any time thereafter or which have supplied records for an audit as the result of a subpoena enforced after November 1, 1983. Any such firm shall remain subject to paragraph (a) of this section until two years after ERA has notified the firm in writing that it is in full compliance with the subpoena or until ERA has received from the firm a sworn certification of compliance with 10 CFR 205.8.

(4) Those firms which are subject to requests for data necessary to verify that crude oil qualifies as "newly discovered" crude oil under 10 CFR 212.79. Any such firm shall maintain the records evidencing such data until one of the following: June 30, 1985, unless this period is extended on a firm-by-firm basis; the end of an individual firm's extension; or the firm is notified in writing by DOE that its records are no longer needed.

(5) Those firms whose records are determined by DOE as necessary to complete the enforcement activity relating to another firm which is also subject to paragraph (a) of this section unless such firms required to keep records have received certified notice letters specifically describing the records determined as necessary. At that time, the specific notice will control the recordkeeping requirements. These firms have been identified in appendix A. Any such firm shall maintain these records until one of the following: June 30, 1985, unless this period is extended on a firm-by-firm basis; the end of the individual firm's extension; or the firm is notified in writing by DOE that its records are no longer needed.

(6) Those firms which participated in the Entitlements program. Any such firm shall maintain its Entitlements-related records until six months after the final judicial resolution (including any and all appeals) of Texaco v. DOE, Nos. 84-391, 84-410, and 84-456 (D. Del.), or the firm is notified by DOE that its records are no longer needed, whichever occurs first.

(c) For purposes of this section:

(1) A firm is "a party in litigation" if:

(i)(A) The firm has received a Notice of Probable Violation, a Notice of Probable Disallowance, a Proposed Remedial Order, or a Proposed Order of Disallowance; or

(B) The firm and DOE are parties in a lawsuit arising under the Emergency Petroleum Allocation Act of 1973, as amended (15 U.S.C. 751 et seq.) or 10 CFR parts 205, 210, 211, or 212; and

(ii)(A) There has been no final (that is, non-appealable) administrative or judicial resolution, or

(B) DOE has not informed the firm in writing that the Department has completed its review of the matter.

(2) A firm means any association, company, corporation, estate, individual, joint-venture, partnership, or sole proprietorship, or any other entity, however organized, including charitable, educational, or other eleemosynary institutions, and state and local
governments. A firm includes a parent and the consolidated and unconsolidated entities (if any) which it directly or indirectly controls.

APPENDIX A TO 10 CFR 210.1—THIRD PARTY FIRMS

<table>
<thead>
<tr>
<th>Name of Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & R, Inc.</td>
</tr>
<tr>
<td>A. J. Petroleum</td>
</tr>
<tr>
<td>ADA Resources, Inc.</td>
</tr>
<tr>
<td>ATC Petroleum</td>
</tr>
<tr>
<td>Abbco Petroleum, Inc.</td>
</tr>
<tr>
<td>Ada Oil Company</td>
</tr>
<tr>
<td>Adams Grocery</td>
</tr>
<tr>
<td>Advanced Petroleum Distributing Co.</td>
</tr>
<tr>
<td>Agway Inc.</td>
</tr>
<tr>
<td>Allegheny Petroleum Corp.</td>
</tr>
<tr>
<td>Alliance Oil and Refining Company</td>
</tr>
<tr>
<td>Allied Chemical Corp.</td>
</tr>
<tr>
<td>Allied Transport</td>
</tr>
<tr>
<td>Amerada Hess Corp.</td>
</tr>
<tr>
<td>American Natural Crude Oil Assoc.</td>
</tr>
<tr>
<td>Amoco Production Company</td>
</tr>
<tr>
<td>Amoriente Petroleum, Inc.</td>
</tr>
<tr>
<td>An-Son Transportation Co.</td>
</tr>
<tr>
<td>Anadarko Products Co.</td>
</tr>
<tr>
<td>Andrus Energy Corp.</td>
</tr>
<tr>
<td>Antler Petroleum</td>
</tr>
<tr>
<td>Arco Pipeline Company</td>
</tr>
<tr>
<td>Armada Petroleum Corp.</td>
</tr>
<tr>
<td>Armour Oil Company</td>
</tr>
<tr>
<td>Arnold Brooks Const. Inc.</td>
</tr>
<tr>
<td>Ashland Oil</td>
</tr>
<tr>
<td>Asiatic Petroleum Co.</td>
</tr>
<tr>
<td>Aspen Energy, Inc.</td>
</tr>
<tr>
<td>Athens General Hospital</td>
</tr>
<tr>
<td>Atlantic Pacific Energy, Inc.</td>
</tr>
<tr>
<td>Atlas Processing Company</td>
</tr>
<tr>
<td>B & B Trading Company</td>
</tr>
<tr>
<td>BLT, Inc.</td>
</tr>
<tr>
<td>BPM, Ltd.</td>
</tr>
<tr>
<td>Baker Services, Inc.</td>
</tr>
<tr>
<td>Basin Inc.</td>
</tr>
<tr>
<td>Basin Petroleum, Inc.</td>
</tr>
<tr>
<td>Beacon Hill Mobil</td>
</tr>
<tr>
<td>Belcher Oil Company</td>
</tr>
<tr>
<td>Bighart Pipeline Company</td>
</tr>
<tr>
<td>Bigheart Pipeline Corp.</td>
</tr>
<tr>
<td>Bowdoin Square Exxon</td>
</tr>
<tr>
<td>Bowdoin Super Service (Sunoco)</td>
</tr>
<tr>
<td>Brio Petroleum, Inc.</td>
</tr>
<tr>
<td>Brixon</td>
</tr>
<tr>
<td>C.E. Norman</td>
</tr>
<tr>
<td>CPI Oil & Refining</td>
</tr>
<tr>
<td>CRA-Farmland Industries, Inc.</td>
</tr>
<tr>
<td>Calcasieu Refining, Ltd.</td>
</tr>
<tr>
<td>Carbonit Houston, Inc.</td>
</tr>
<tr>
<td>Carr Oil Company, Inc.</td>
</tr>
<tr>
<td>Castle Coal & Oil Co.</td>
</tr>
<tr>
<td>Central Crude Corporation</td>
</tr>
<tr>
<td>Century Trading Co.</td>
</tr>
<tr>
<td>Charter Crude Oil</td>
</tr>
<tr>
<td>Chastain Vineyard</td>
</tr>
<tr>
<td>Chevron USA, Inc.</td>
</tr>
<tr>
<td>Cibro Petroleum, Inc.</td>
</tr>
<tr>
<td>Cirillo Brothers</td>
</tr>
<tr>
<td>Cities Service (Citgo) Station</td>
</tr>
<tr>
<td>Cities Service Company</td>
</tr>
<tr>
<td>Cities Service Midland</td>
</tr>
<tr>
<td>City of Athens</td>
</tr>
<tr>
<td>Clarke County Board of Education</td>
</tr>
<tr>
<td>Claude E. Silvey</td>
</tr>
<tr>
<td>Coastal Corporation (The)</td>
</tr>
<tr>
<td>Coastal Petroleum and Supply Inc.</td>
</tr>
<tr>
<td>Coastal States Trading Company</td>
</tr>
<tr>
<td>Commonwealth Oil Refining Co., Inc.</td>
</tr>
<tr>
<td>Coral Petroleum Canada, Inc.</td>
</tr>
<tr>
<td>Coral Petroleum, Inc.</td>
</tr>
<tr>
<td>Corex of Georgia</td>
</tr>
<tr>
<td>Cothran Interstate Exxon</td>
</tr>
<tr>
<td>Couch’s Standard Chevron</td>
</tr>
<tr>
<td>Cougar Oil Marketers Inc.</td>
</tr>
<tr>
<td>Crude Company (The)</td>
</tr>
<tr>
<td>Crystal Energy Corporation</td>
</tr>
<tr>
<td>Crystal Refining</td>
</tr>
<tr>
<td>D & E Logging</td>
</tr>
<tr>
<td>DDC Corporation of America</td>
</tr>
<tr>
<td>Darrel Williamson</td>
</tr>
<tr>
<td>Davis Ellis</td>
</tr>
<tr>
<td>Days Inn of America, Inc.</td>
</tr>
<tr>
<td>Delta Petroleum & Energy Corp.</td>
</tr>
<tr>
<td>Derby & Company, Inc.</td>
</tr>
<tr>
<td>Derby Refining Company</td>
</tr>
<tr>
<td>Deweall Petroleum</td>
</tr>
<tr>
<td>Dixie Oil Company</td>
</tr>
<tr>
<td>Dixon Oil Co.</td>
</tr>
<tr>
<td>Don Hardy</td>
</tr>
<tr>
<td>Donald Childs</td>
</tr>
<tr>
<td>Dow Chemical Company</td>
</tr>
<tr>
<td>Dr. J.ole L. Griffeth</td>
</tr>
<tr>
<td>Driver Construction Co.</td>
</tr>
<tr>
<td>Drummond Brothers, Inc.</td>
</tr>
<tr>
<td>Duffie Monroe & Sons Co., Inc.</td>
</tr>
<tr>
<td>ECI (AKA Energy Cooperative Inc.)</td>
</tr>
<tr>
<td>Earnest Dalton</td>
</tr>
<tr>
<td>Earth Resources Trading</td>
</tr>
<tr>
<td>Eastern Seaboard Petroleum, Inc.</td>
</tr>
<tr>
<td>Elmer Hammon</td>
</tr>
<tr>
<td>Elvin Knight</td>
</tr>
<tr>
<td>Empire Marketing, Inc.</td>
</tr>
<tr>
<td>Encoorp Energy Cooperative, Inc.</td>
</tr>
<tr>
<td>Energy Distribution Co.</td>
</tr>
<tr>
<td>Englehard Corporation</td>
</tr>
<tr>
<td>Englehard Oil Corporation</td>
</tr>
<tr>
<td>Entex</td>
</tr>
<tr>
<td>Evans Oil Co.</td>
</tr>
<tr>
<td>Exxon Company</td>
</tr>
<tr>
<td>F & S Trading Company, Inc.</td>
</tr>
<tr>
<td>Farmers Union Central Exchange, Inc.</td>
</tr>
<tr>
<td>Farmland Industries Inc.</td>
</tr>
<tr>
<td>Fasgo, Inc.</td>
</tr>
<tr>
<td>Fedco Oil Company</td>
</tr>
<tr>
<td>Federal Employees Distributing Co.</td>
</tr>
<tr>
<td>Fitzpatrick Spreader</td>
</tr>
<tr>
<td>Flutz Oil Company</td>
</tr>
<tr>
<td>Flying J., Inc.</td>
</tr>
<tr>
<td>Foremost Petroleum</td>
</tr>
<tr>
<td>Four Corners Pipe Line</td>
</tr>
<tr>
<td>Frank Katz</td>
</tr>
<tr>
<td>Frank W. Abrahamsen</td>
</tr>
<tr>
<td>Company Name</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Frank's Butane, Inc.</td>
</tr>
<tr>
<td>Friendswood Refinery</td>
</tr>
<tr>
<td>Frontier Manor Collection</td>
</tr>
<tr>
<td>Fuel Oil Supply & Terminaling, Inc.</td>
</tr>
<tr>
<td>G. C. Clark Company</td>
</tr>
<tr>
<td>GPC Marketing Company</td>
</tr>
<tr>
<td>Gary Refining Co.</td>
</tr>
<tr>
<td>Geer Tank Trucks, Inc.</td>
</tr>
<tr>
<td>Gene Clary</td>
</tr>
<tr>
<td>Gene McDonald</td>
</tr>
<tr>
<td>General Crude Oil Company</td>
</tr>
<tr>
<td>Geodynamics Oil & Gas Inc.</td>
</tr>
<tr>
<td>George Kennedy</td>
</tr>
<tr>
<td>George Smith Chevron</td>
</tr>
<tr>
<td>Gleason Oil Company</td>
</tr>
<tr>
<td>Glenn Company</td>
</tr>
<tr>
<td>Globe Oil Co.</td>
</tr>
<tr>
<td>Godfrey's Standard Service</td>
</tr>
<tr>
<td>Good Hope Industries, Inc.</td>
</tr>
<tr>
<td>Good Hope Refineries, Inc.</td>
</tr>
<tr>
<td>Granite Oil Company</td>
</tr>
<tr>
<td>Guam Oil & Refining Co., Inc.</td>
</tr>
<tr>
<td>Gulf States Oil & Refining Company</td>
</tr>
<tr>
<td>H. D. Adkinson</td>
</tr>
<tr>
<td>H. H. Dunson</td>
</tr>
<tr>
<td>H.S. & L, Inc.</td>
</tr>
<tr>
<td>HNG Oil Company</td>
</tr>
<tr>
<td>Harbor Petroleum, Inc.</td>
</tr>
<tr>
<td>Harbor Trading</td>
</tr>
<tr>
<td>Harmony Grove Mills, Inc.</td>
</tr>
<tr>
<td>Harry Rosser</td>
</tr>
<tr>
<td>Hast Oil, Inc.</td>
</tr>
<tr>
<td>Heet Gas Company</td>
</tr>
<tr>
<td>Henry Alva Mercer</td>
</tr>
<tr>
<td>Herndon Oil & Gas Company</td>
</tr>
<tr>
<td>Horizon Petroleum Company</td>
</tr>
<tr>
<td>Houston Oil & Minerals Products Co.</td>
</tr>
<tr>
<td>Houston Oil & Refining</td>
</tr>
<tr>
<td>Howell Corporation</td>
</tr>
<tr>
<td>Hurricane Trading Company, Inc.</td>
</tr>
<tr>
<td>Hydrocarbon Trading and Transport Co.</td>
</tr>
<tr>
<td>Inco Trading</td>
</tr>
<tr>
<td>Independent Refining Corp.</td>
</tr>
<tr>
<td>Independent Trading Corporation</td>
</tr>
<tr>
<td>Indiana Refining, Inc.</td>
</tr>
<tr>
<td>Intercontinental Petroleum Corp.</td>
</tr>
<tr>
<td>International Crude Corporation</td>
</tr>
<tr>
<td>International Petro</td>
</tr>
<tr>
<td>International Petroleum Trading, Inc.</td>
</tr>
<tr>
<td>International Processors</td>
</tr>
<tr>
<td>Isthmus Trading Corporation</td>
</tr>
<tr>
<td>J & M Transport</td>
</tr>
<tr>
<td>J. & J.'s Fast Stop</td>
</tr>
<tr>
<td>J. A. Rackerby Corporation</td>
</tr>
<tr>
<td>J. H. Baccus</td>
</tr>
<tr>
<td>J. H. Baccus & Co.</td>
</tr>
<tr>
<td>J. J. Williamson</td>
</tr>
<tr>
<td>J. M. Petroleum Corporation</td>
</tr>
<tr>
<td>JPK Industries</td>
</tr>
<tr>
<td>Jack W. Grigsby</td>
</tr>
<tr>
<td>Jaguar Petroleum, Inc.</td>
</tr>
<tr>
<td>James L. Bush</td>
</tr>
<tr>
<td>Jay Petroleum Company</td>
</tr>
<tr>
<td>Jay-Ed Petroleum Company</td>
</tr>
<tr>
<td>John W. McGowan</td>
</tr>
<tr>
<td>Kalamta Chemical, Inc.</td>
</tr>
<tr>
<td>Kelly Trading Corp.</td>
</tr>
<tr>
<td>Kenco Refining</td>
</tr>
<tr>
<td>Kerr-McGee Corporation</td>
</tr>
<tr>
<td>Koch Fuel</td>
</tr>
<tr>
<td>Koch Industries, Inc.</td>
</tr>
<tr>
<td>Kocolene Oil</td>
</tr>
<tr>
<td>Kocolene Station</td>
</tr>
<tr>
<td>L & L Resources, Inc.</td>
</tr>
<tr>
<td>L.S. Parker</td>
</tr>
<tr>
<td>LaGloria Oil & Gas</td>
</tr>
<tr>
<td>Laj et, Inc.</td>
</tr>
<tr>
<td>Lamar Refining Co.</td>
</tr>
<tr>
<td>Langham Petroleum Corp.</td>
</tr>
<tr>
<td>Larry Roberts</td>
</tr>
<tr>
<td>Laurel Oil, Inc.</td>
</tr>
<tr>
<td>Lee Allen</td>
</tr>
<tr>
<td>Lincoln Land Sales Company</td>
</tr>
<tr>
<td>Listo Petroleum Inc.</td>
</tr>
<tr>
<td>Longview Refining Corp.</td>
</tr>
<tr>
<td>Love's Standard</td>
</tr>
<tr>
<td>Lucky Stores Inc.</td>
</tr>
<tr>
<td>M. L. Morrow</td>
</tr>
<tr>
<td>Magna Energy Corporation</td>
</tr>
<tr>
<td>Magnolia Oil Company</td>
</tr>
<tr>
<td>Mansfield Oil Co.</td>
</tr>
<tr>
<td>Mapco Petroleum, Inc.</td>
</tr>
<tr>
<td>Mapco, Inc.</td>
</tr>
<tr>
<td>Marion Trading Co.</td>
</tr>
<tr>
<td>Marlex Oil & Refining, Inc.</td>
</tr>
<tr>
<td>Marlin Petroleum, Inc.</td>
</tr>
<tr>
<td>Martin Oil Company</td>
</tr>
<tr>
<td>Mathew's Grocery</td>
</tr>
<tr>
<td>McAuley Oil Company</td>
</tr>
<tr>
<td>Meadows Gathering, Inc.</td>
</tr>
<tr>
<td>Melon Energy Products Co.</td>
</tr>
<tr>
<td>Merit Petroleum, Inc.</td>
</tr>
<tr>
<td>Metro Wash, Inc.</td>
</tr>
<tr>
<td>Miller Oil Purchasing Co.</td>
</tr>
<tr>
<td>Minor Oil, Inc.</td>
</tr>
<tr>
<td>Minro Oil, Inc.</td>
</tr>
<tr>
<td>Mitchell Oil Co.</td>
</tr>
<tr>
<td>Mitsui & Co. (USA) Inc.</td>
</tr>
<tr>
<td>Mobil Bay Refining Company</td>
</tr>
<tr>
<td>Montgomery Well Drilling</td>
</tr>
<tr>
<td>Mundy Food Market</td>
</tr>
<tr>
<td>Munford, Inc.</td>
</tr>
<tr>
<td>Mutual Petroleum</td>
</tr>
<tr>
<td>NRG Oil Company</td>
</tr>
<tr>
<td>National Convenience Stores</td>
</tr>
<tr>
<td>National Cooperative Refinery</td>
</tr>
<tr>
<td>Nicholson Grocery and Gas</td>
</tr>
<tr>
<td>North American Petroleum</td>
</tr>
<tr>
<td>Northeast Petroleum Corp.</td>
</tr>
<tr>
<td>Northeast Petroleum Corporation</td>
</tr>
<tr>
<td>Northgate Auto Center</td>
</tr>
<tr>
<td>Northwest Crude, Inc.</td>
</tr>
<tr>
<td>Nova Refining Corp.</td>
</tr>
<tr>
<td>Occidental Petroleum Corp. (includes Permia)</td>
</tr>
<tr>
<td>Ocean Drilling and Exploration Co.</td>
</tr>
<tr>
<td>Oil Exchange, Inc.</td>
</tr>
<tr>
<td>OiIco</td>
</tr>
<tr>
<td>Omega Petroleum Corp.</td>
</tr>
<tr>
<td>Oteo Corporation</td>
</tr>
<tr>
<td>Oxxo Energy Group, Inc.</td>
</tr>
<tr>
<td>P & O Falco, Inc.</td>
</tr>
<tr>
<td>P. L. Heatley Co.</td>
</tr>
</tbody>
</table>
Department of Energy

§ 210.1

PEH, Inc.
Pib, Inc.
PSW Distributors Company
Pacific Refinery, Inc.
Pacific Resources, Inc.
Pan American Products Corp.
Par Brothers Food Store
Pauley Petroleum Inc.
Pennzoil Co.
Permian Corporation (The)
Pescar International Corp.
Pescar International Trading Co.
Petroco (U.S.A.) Inc.
Petrade International
Petrol Products, Inc.
Phillips Petroleum Company
Phoenix Petroleum Co.
Phoenix Petroleum Co.
Pine Mountains
Poole Petroleum
Port Petroleum
Presley Oil Co.
Procoil Inc.
Publiker Industries, Inc.
Pyramid Dist. Co., Inc.
Questor Crude Oil Company
Quitman Refining Co.
R. H. Garrett Paving
Ra-Gan Fuel, Inc.
Reeder Distributing Co.
Reeder Distributors
Reese Exploration Co.
Research Fuels Inc.
Revere Petroleum Co.
Richardson-Ayres, Inc.
Robert Bishop
Robert Patrick
Roberts Grocer
Rock Island Refining Corporation
Rogers Oil Company
Roy Baerne
Russell Oil Company
S. G. Coplen
SECO (Scruigs Energy)
Saber Crude Oil, Inc.
Saber Refining Company
Salem Ventures, Inc.
Samson Resources Company
Santa Fe Energy Products Co.
Saye's Truck Stop
Scandix Oil Limited
Score, Inc.
Scruigs Energy Company
Scurylic Oil Company
Scurry Oil Company
Seamount Petroleum Company
Seaview Petroleum Company
Sector Refining, Inc.
Selton Miller
Shepherd Trading Corporation
Shulze Processing
Sigmor Corporation
Skelly Oil Company
South Hampton Refining Company
South Texas LP Gas Co.
Southern Crude Oil Resources
Southern Terminal & Transport, Ltd.
Southern Union Company
Southwest Petro. Energy
Southwest Petrochem
Standard Oil Co. (Ohio)
Standard Oil Co. of California
Standard Oil Company (Indiana)
Standard Oil Company (Ohio)
Sterling Energy Company
Steve Childs
Stix Gas Company, Inc.
Sunset Grocery
Sunset Oil & Refining, Inc.
Swanee Petroleum Company
T & P Enterprises
T. B. Eley
T. E. Jawell
Tauber Oil Company
Tenneco, Inc.
Tesoro Crude Oil Company
Texana Oil & Gas Corp.
Texas American Petrochemicals (TAP)
Texas City Refining
Texas Eastern Transmission Corp.
Texas Energy Reserve Corporation
Texas Pacific Oil Company
Thomas Cockvill
Thomas Petroleum Products, Inc.
Thornton Oil Company
Thyssen Incorporated
Tiger Petroleum Company
Time Oil Co.
Tipperary Refining Company
Tom Banks
Tom Smith
Tomlinson Petroleum, Inc.
Tosco Corporation
Total Petroleum, Inc.
Trans-Texas Petroleum Corp.
Transco Trading Company
Turboil Oil and Refining
Two Rivers Oil & Gas Co., Inc.
U-Fill'er Up
USA Gas, Inc.
Uni Oil Company
Union Oil of California
Doram Energy
United Petroleum Marketing
United Refining Company
United Refining, Inc.
Universal Rundle
Val-Cap, Inc.
Vedetta Oil Trading, Inc.
Vedette Oil Trading, Inc.
Vickers Energy Corp.
W. C. Colquitt
W. T. Strickland
W. W. Blanton
W. A. Nunnally, Jr., Construction Co.
W.D. Porterfield
Welven, Inc.
West Texas Marketing Corp.
Western Crude Oil, Inc.
Western Fuels, Inc.
Wight Nurseries of Oglethorpe Co.
William Seabolt
Wilson's Used Tractors
Windsor Gas Corp.
§ 210.1

Wyoming Refining

APPENDIX B TO 10 CFR 210.1—FIRMS WITH COMPLETED PAYMENTS SUBJECT TO DISTRIBUTION

The following firms have completed making restitutionary payments to DOE but their payments are still subject to distribution by DOE. Each such firm must maintain relevant records until June 30, 1985, unless this period is extended on a firm-by-firm basis. Relevant records are all records of the firm, including any affiliates, subsidiaries or predecessors in interest, for the time period covered by the judicial or administrative order, or other settlement or order requiring the payments, evidencing sales volume data for each product subject to controls and customers’ names and addresses.

<table>
<thead>
<tr>
<th>Name of firm</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Tarricone Inc</td>
<td>Yonkers, NY.</td>
</tr>
<tr>
<td>Adolph Coors Company</td>
<td>Golden, CO.</td>
</tr>
<tr>
<td>Allied Materials Corp & Excel</td>
<td>Oklahoma City, OK.</td>
</tr>
<tr>
<td>Aminol USA, Inc</td>
<td>Houston, TX.</td>
</tr>
<tr>
<td>Amtel, Inc</td>
<td>Providence, RI.</td>
</tr>
<tr>
<td>Apache Corporation</td>
<td>Minneapolis, MN.</td>
</tr>
<tr>
<td>APCO Oil Corporation</td>
<td>Oklahoma City, OK.</td>
</tr>
<tr>
<td>Arapaho Petroleum, Inc</td>
<td>Shreveport, LA.</td>
</tr>
<tr>
<td>Arkansas Louisiana Gas Company</td>
<td>Shreveport, LA.</td>
</tr>
<tr>
<td>Arkla Chemical Corporation</td>
<td>San Diego, CA.</td>
</tr>
<tr>
<td>Armour Oil Company</td>
<td>Boca Raton, FL.</td>
</tr>
<tr>
<td>Associated Programs Inc</td>
<td>Fort Worth, TX.</td>
</tr>
<tr>
<td>Atlanta Petroleum Production</td>
<td>Canton, MD.</td>
</tr>
<tr>
<td>Automatic Heat, Inc</td>
<td>Knoxville, TN.</td>
</tr>
<tr>
<td>Ayers Oil Company</td>
<td>Narbeth, PA.</td>
</tr>
<tr>
<td>Axxon Energy Corporation</td>
<td>Shreveport, LA.</td>
</tr>
<tr>
<td>Bak Ltd</td>
<td>Cincinnati, OH.</td>
</tr>
<tr>
<td>Bayou State OHIDA Gasoline</td>
<td>Dallas, TX.</td>
</tr>
<tr>
<td>Bayside Fuel Oil Depot Corp</td>
<td>Kansas City, KS.</td>
</tr>
<tr>
<td>Belridge Oil Company</td>
<td>Denver, CO.</td>
</tr>
<tr>
<td>Blaylock Oil Co., Inc</td>
<td>San Jose, CA.</td>
</tr>
<tr>
<td>Blex Oil Company</td>
<td>Los Angeles, CA.</td>
</tr>
<tr>
<td>Box, Clycey K</td>
<td>Evansville, IN.</td>
</tr>
<tr>
<td>Breckenridge Gasoline Company</td>
<td>Butler, PA.</td>
</tr>
<tr>
<td>Brownlie, Wallace, Armstrong</td>
<td>Worcester, MA.</td>
</tr>
<tr>
<td>Bucks Butane & Propane Service</td>
<td>Tulsa, OK.</td>
</tr>
<tr>
<td>Budget Airport Associates</td>
<td>South Burlington, VT.</td>
</tr>
<tr>
<td>Busler Enterprises Inc</td>
<td>Tulsa, OK.</td>
</tr>
<tr>
<td>Butler Petroleum Corp</td>
<td>Bronx, NY.</td>
</tr>
<tr>
<td>C.K. Smith & Company, Inc</td>
<td>Santa Fe Springs, CA.</td>
</tr>
<tr>
<td>Cajun Oil Co., Inc</td>
<td>Hamilton, OH.</td>
</tr>
<tr>
<td>Chapman, H.A.</td>
<td>East Farmingdale, NY.</td>
</tr>
<tr>
<td>Citgo Gasoline Corporation</td>
<td>New Orleans, LA.</td>
</tr>
<tr>
<td>City Service Inc</td>
<td>Dallas, TX.</td>
</tr>
<tr>
<td>Coastal Corporation</td>
<td>Jacksonville, FL.</td>
</tr>
<tr>
<td>Coline Gasoline Corporation</td>
<td>San Antonio, TX.</td>
</tr>
<tr>
<td>Collins Oil Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Columbia Oil Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Conoco Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Consolidated Gas Supply Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Consolidated Leasing Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Consumers Oil Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Continental Resources Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Cordelia Operating Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Crosby Oil Co., Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Crystal Oil Company (formerly Vally Corp.)</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Crystal Petroleum Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Devon Corporation</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Dorchester Gas Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>E.B. Lynn Oil Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>E.M. Bailey Distributing Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Eagle Petroleum Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Earl Remond Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Earth Resources Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Eastern Petroleum Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Edington Oil Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Elias Oil Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Gate Petroleum Co., Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Gibbs Industries, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Glaser Oil Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Glover, Lawrence H</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Goodman Oil Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Grant Rent a Car Corporation</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Grimes Gasoline Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Gulf Oil Corporation</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Gulf Industries, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>H.C. Lewis Oil Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hamilton Brothers Petroleum Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Harris Enterprise Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hertz, Glenn Martin</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hendel’s Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Henry H. Gungoli Associates</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hertz Corporation, The</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hines Oil Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Horner & Smith, A Partnership</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Houston National Gas Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Howell Corporation/Guamance Re-</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>finery Co.</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hunt Industries</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Hunt Petroleum Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Husky Oil Company of Delaware</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Ideal Gas Co., Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Independent Oil & Tire Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Inland USA, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Inman Oil Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Internorth, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>J.E. DeWitt, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>J.M. Huber Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>James Petroleum Corp</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Jay Oil Company</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Jimmy’s Gas Stations Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Juniper Petroleum Corporation</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Kansas-Nebraska Natural Gas Co</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Kellar Oil Company, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Kenny Larson Oil Co, Inc</td>
<td>Corpus Christi, TX.</td>
</tr>
<tr>
<td>Kent Oil & Trading Company</td>
<td>Corpus Christi, TX.</td>
</tr>
</tbody>
</table>
Department of Energy

§ 210.1

<table>
<thead>
<tr>
<th>Name of firm</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Oil Co., Inc</td>
<td>Tuscaloosa, AL</td>
</tr>
<tr>
<td>Key Oil Co.</td>
<td>Bowling Green, KY</td>
</tr>
<tr>
<td>Kiesel Co</td>
<td>St. Louis, MO</td>
</tr>
<tr>
<td>King & King Enterprise</td>
<td>Kansas City, MO</td>
</tr>
<tr>
<td>Kingston Oil Supply Corp</td>
<td>Port Ewen, NY</td>
</tr>
<tr>
<td>Kirby Oil Company</td>
<td>Boulder, CO</td>
</tr>
<tr>
<td>L & L Oil Co., Inc</td>
<td>Belle Chasse, LA</td>
</tr>
<tr>
<td>L.P. Rech Distributing Co.</td>
<td>Roundup, MT</td>
</tr>
<tr>
<td>La Gloria Oil and Gas Co</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Lakeside Refining Co./Crystal</td>
<td>Forest Lake, MN</td>
</tr>
<tr>
<td>Landside Oil Company</td>
<td>Southfield, MI</td>
</tr>
<tr>
<td>Leathers Oil Co.</td>
<td>Irving, TX</td>
</tr>
<tr>
<td>Leeson Oil Company</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>Leonard E. Belcher, Inc</td>
<td>Pocatello, ID</td>
</tr>
<tr>
<td>Lincoln Land Oil Co.</td>
<td>Springfield, MA</td>
</tr>
<tr>
<td>Liquid Products Recovery</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Little America Refining Co.</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Lockheed Air Terminal Inc.</td>
<td>Burbank, CA</td>
</tr>
<tr>
<td>Lowe Oil Company</td>
<td>Clinton, MO</td>
</tr>
<tr>
<td>Lucida Lodge Arco</td>
<td>Big Sur, CA</td>
</tr>
<tr>
<td>Luke Brothers Inc</td>
<td>Calera, OK</td>
</tr>
<tr>
<td>Lunday Thargard Oil</td>
<td>South Gate, CA</td>
</tr>
<tr>
<td>Malco Industries Inc</td>
<td>Cleveland, OH</td>
</tr>
<tr>
<td>Mapco, Inc</td>
<td>Amarillo, TX</td>
</tr>
<tr>
<td>Marine Petroleum Co</td>
<td>Rock Island, IL</td>
</tr>
<tr>
<td>Marion L. Knutson Dist. Inc.</td>
<td>Fresno, CA</td>
</tr>
<tr>
<td>Martin Oil Service, Inc</td>
<td>Wapakoneta, OH</td>
</tr>
<tr>
<td>Martinol Company</td>
<td>Chambersburg, OH</td>
</tr>
<tr>
<td>Marvel Fuel Oil and Gas Co.</td>
<td>Salisbury, PA</td>
</tr>
<tr>
<td>Marcy Oil Co</td>
<td>Abilene, TX</td>
</tr>
<tr>
<td>McCleary Oil Co</td>
<td>Amarillo, TX</td>
</tr>
<tr>
<td>McClure’s Service Station</td>
<td>Ouachita, TX</td>
</tr>
<tr>
<td>McTan Corporation</td>
<td>Waco, TX</td>
</tr>
<tr>
<td>Mesa Petroleum Company</td>
<td>Waco, TX</td>
</tr>
<tr>
<td>Midwest Oil Co</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Midwest Industrial Fuels, Inc</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Mississippi River Transmission</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Mitchell Energy Corp</td>
<td>Corpus Christi, TX</td>
</tr>
<tr>
<td>Montana Power Co</td>
<td>Butte, MT</td>
</tr>
<tr>
<td>Moore Terminal and Barge Co</td>
<td>Monroe, LA</td>
</tr>
<tr>
<td>Mountain Fuel Supply Company</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Mule Petroleum Co</td>
<td>Rapid City, SD</td>
</tr>
<tr>
<td>Mustang Fuel Corporation</td>
<td>Oklahoma City, OK</td>
</tr>
<tr>
<td>Naftex Refining Company</td>
<td>Muskogee, MI</td>
</tr>
<tr>
<td>National Helium Corporation</td>
<td>Liberal, KS</td>
</tr>
<tr>
<td>National Propane Corp</td>
<td>Wyandanch, NY</td>
</tr>
<tr>
<td>Navajo Refining Co.</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Nielsen Oil & Propane, Inc</td>
<td>West Point, NE</td>
</tr>
<tr>
<td>Northeast Petroleum Industries</td>
<td>Chelsea, MA</td>
</tr>
<tr>
<td>Northwest Oil Co., Inc</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Northwest Pipeline Corp</td>
<td>Pittsfield, MA</td>
</tr>
<tr>
<td>O’Connell Oil Co</td>
<td>Bronx, NY</td>
</tr>
<tr>
<td>O’Connell Corporation</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Okeechobee Corporation</td>
<td>Stamford, CT</td>
</tr>
<tr>
<td>Oneok Corporation</td>
<td>Tulsa, OK</td>
</tr>
<tr>
<td>Ozona Gas Processing Plant</td>
<td>Tyler, TX</td>
</tr>
<tr>
<td>Pacer Oil Co. of Florida, Inc</td>
<td>Orlando Beach, FL</td>
</tr>
<tr>
<td>Pacific Northern Oil</td>
<td>Revere, MA</td>
</tr>
<tr>
<td>Panhandle Eastern (Century)</td>
<td>Danbury, CT</td>
</tr>
<tr>
<td>Paradise Company</td>
<td>Parma, OH</td>
</tr>
<tr>
<td>Parham Oil Corporation</td>
<td>Nashville, TN</td>
</tr>
<tr>
<td>Pasco Petroleum Co., Inc</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>Petersen Oil, Inc</td>
<td>Silverdale, WA</td>
</tr>
<tr>
<td>Pennzoil Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Perry Gas Processors, Inc</td>
<td>Odessa, TX</td>
</tr>
<tr>
<td>Peoples Energy Corp</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>People’s Energy Corp</td>
<td>Beverly Hills, CA</td>
</tr>
<tr>
<td>Pfizer Petroleum Inc</td>
<td>Denver, CO</td>
</tr>
<tr>
<td>Petro-Lewis Corp</td>
<td>Long Beach, CA</td>
</tr>
<tr>
<td>Petroleum Heat & Power Co. Inc</td>
<td>Stamford, CT</td>
</tr>
<tr>
<td>Petroleum Sales/Services Inc</td>
<td>Buffalo, NY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of firm</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer Corp</td>
<td>Amarillo, TX</td>
</tr>
<tr>
<td>Planet Engineers Inc</td>
<td>Denver, CO</td>
</tr>
<tr>
<td>Plateau, Inc</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td>Plaquemines Oil Sales</td>
<td>Belle Chasse, LA</td>
</tr>
<tr>
<td>Point Landing Inc</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>Port Oil Company, Inc</td>
<td>Mobile, AL</td>
</tr>
<tr>
<td>Post Petroleum Co</td>
<td>West Sacramento, CA</td>
</tr>
<tr>
<td>Power Pak, Inc</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Pride Refining, Inc</td>
<td>Abilene, TX</td>
</tr>
<tr>
<td>Pronto Gas Co</td>
<td>Abilene, TX</td>
</tr>
<tr>
<td>Propane Gas & Appliance Co</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Prosper Energy Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Pyro Energy Corporation</td>
<td>Evansville, IN</td>
</tr>
<tr>
<td>Pyrofax Gas Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Quaker State Oil</td>
<td>Oil City, PA</td>
</tr>
<tr>
<td>Quaries Petroleum, Inc</td>
<td>Frederick, VA</td>
</tr>
<tr>
<td>Resources Extraction Process</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Reynolds Oil Co</td>
<td>Kremmling, CO</td>
</tr>
<tr>
<td>Richardson Ayers Jobbers, Inc</td>
<td>Carroll, IA</td>
</tr>
<tr>
<td>Riverside Oil, Inc</td>
<td>Artesia, NM</td>
</tr>
<tr>
<td>Roberts Oil Co, Inc</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td>Roolwood Oil Terminals Inc</td>
<td>Cincinnati, OH</td>
</tr>
<tr>
<td>Saber Energy, Inc</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Sancresco Oil Co</td>
<td>Escondido, CA</td>
</tr>
<tr>
<td>Schroeder Oil Company</td>
<td>Fort Worth, TX</td>
</tr>
<tr>
<td>Seminole Refining Inc</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>Sid Richardson Carbon & Gas</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Sigmore Corporation</td>
<td>Fitchburg, MA</td>
</tr>
<tr>
<td>Southwestern Refining Co., Inc</td>
<td>Boston, MA</td>
</tr>
<tr>
<td>Speedway Petroleum Co., Inc</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>Standard Oil Co. (Indiana)</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Stinnes Inter Oil Inc</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Tenneco Oil Company</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Texas/Akansas/Colorado/Oklahoma/Oil/Purchasing</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Texas Gas & Exploration</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Texas Oil & Gas Corporation</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>Texas Pacific Oil Company, Inc</td>
<td>Dallas, TX</td>
</tr>
<tr>
<td>The True Companies</td>
<td>Corpus Christi, TX</td>
</tr>
<tr>
<td>Thompson Oil Inc</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Tiger Oil Co</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Tidewater Oil Company</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Tippett Inc</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Tilted Oil & Gas Corp</td>
<td>New York, NY</td>
</tr>
<tr>
<td>U.S. Compressed Gas Company</td>
<td>New York, NY</td>
</tr>
<tr>
<td>U.S.O. Oil Company</td>
<td>New York, NY</td>
</tr>
<tr>
<td>U.S.A. Petroleum, Inc</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Union Texas Petroleum Corp</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>United Oil Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Upham Oil & Gas Co</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Vanguard Inc</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>VGS Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Walker Petroleum Company, Inc</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Wave Elder Co</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Wessman Oil Co</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Willis Distributing Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Winston Refining Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Wtcf Chemical Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>World Oil Company</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>Worldwide Energy Corp</td>
<td>Denver, CO</td>
</tr>
<tr>
<td>Young Refining Corporation</td>
<td>Douglassville, GA</td>
</tr>
<tr>
<td>Zia Fuels (G.G.C. Corp.)</td>
<td>Hobbs, NM</td>
</tr>
</tbody>
</table>

(Approved by the Office of Management and Budget under control number 1903-0073)

[50 FR 4662, Feb. 5, 1985]
Pt. 212

Subparts B–D—Reserved

PART 212—MANDATORY PETROLEUM PRICE REGULATIONS

Subpart A—Reserved

Subpart C—Reserved

Subpart D—Producers of Crude Oil

Sec. 212.78 Tertiary incentive crude oil.

Subparts E–I—Reserved

PART 215—COLLECTION OF FOREIGN OIL SUPPLY AGREEMENT INFORMATION

Sec. 215.1 Purpose.

215.2 Definitions.

215.3 Supply reports.

215.4 Production of contracts and documents.

215.5 Pricing and volume reports.

215.6 Notice of negotiations.

SOURCE: 42 FR 48330, Sept. 23, 1977, unless otherwise noted.

§ 215.1 Purpose.

The purpose of this part is to set forth certain requirements pursuant to section 13 of the Federal Energy Administration Act to furnish information concerning foreign crude oil supply arrangements. The authority set out in this section is not exclusive.

§ 215.2 Definitions.

As used in this subpart:

Administrator means the Federal Energy Administrator or his delegate.

DOE means the Department of Energy.

Host government means the government of the country in which crude oil is produced and includes any entity which it controls, directly or indirectly.

Person means any natural person, corporation, partnership, association, consortium, or any other entity doing...
§ 215.3 Supply reports.

(a) Any person having the right to lift for export by virtue of any equity interest, reimbursement for services, exchange or purchase, from any country, from fields actually in production, (1) an average of 150,000 barrels per day or more of crude oil for a period of at least one year, or (2) a total of 55,000,000 barrels of crude oil for a period of less than one year, or (3) a total of 150,000,000 barrels of crude oil for the period specified in the agreement, pursuant to supply arrangements with the host government, shall report the following information.

(1) Parties (including partners and percentage interest, where applicable).
(2) Grade or grades available; loading terminal or terminals.
(3) Government imposed production limits, if any.
(4) Minimum lifting obligation and maximum lifting rights.
(5) Details of lifting options within the above limits.
(6) Expiration and renegotiation dates.
(7) Price terms including terms of rebates, discounts, and number of days of credit calculated from the date of loading.
(8) Other payments to or interests retained by the host government (i.e. taxes, royalties, and any other payment to the host government) expressed in terms of the applicable rates or payment or preemption terms, or the base to which those rates or terms are applied.
(9) Related service or other fees and cost of providing services.
(10) Restrictions on shipping or disposition.
(11) Other material contract terms.

(b) Reports under this section shall be made no later than (1) 60 days after final issuance of reporting forms implementing this regulation, as announced in the Federal Register, (2) fourteen days after the date when supply arrangements are entered into, or (3) fourteen days after the initial lifting under an agreement in which the parties have tentatively concurred but not signed, whichever occurs first. Reporting shall be based on actual practice between the parties. Material changes in any item which must be reported pursuant to this section shall be reported no later than 30 days after a person receives actual notice of such changes.

(c) Where reports under this section by each participant in a joint operation would be impracticable, or would result in the submission of inaccurate or misleading information, the participants acting together may designate a single participant to report on any of the rights, obligations, or limitations affecting the operation as a whole. Any such designation shall be signed by a duly authorized representative of each participant, and shall specify:

(1) The precise rights, obligations, or limitations to be covered by the designation; and
(2) The reasons for the designation. Such designations shall be submitted to the Assistant Administrator for International Energy Affairs, and shall take effect only upon his written approval, which may at any time be revoked.

§ 215.4 Production of contracts and documents.

Whenever the Administrator determines that certain foreign crude oil supply information is necessary to assist in the formulation of energy policy or to carry out any other function of the Administrator, he may require the production by any person of any agreement or document relating to foreign oil supply arrangements or reports related thereto. Such material shall be provided pursuant to the conditions prescribed by the Administrator at the time of such order or subsequently. As used in this section, the term “agreement” includes proposed or draft agreements, and agreements in which the parties have tentatively concurred but have not yet signed, between or among persons and a host country.
§ 215.5 Pricing and volume reports.

To the extent not reported pursuant to § 215.3, any person lifting for export crude oil from a country shall report to the DOE within 30 days of the date on which he receives actual notice:

(a) Any change (including changes in the timing of collection) by the host government in official selling prices, royalties, host government taxes, service fees, quality or port differentials, or any other payments made directly or indirectly for crude oil; changes in participation ratios; changes in concessionary arrangements; and

(b) Any changes in restrictions on lifting, production, or disposition.

§ 215.6 Notice of negotiations.

Any person conducting negotiations with a host government which may reasonably lead to the establishment of any supply arrangement subject to reporting pursuant to § 215.3(a), or may reasonably have a significant effect on the terms and conditions of an arrangement subject to § 215.3(a), shall notify DOE of such negotiations. Such notice shall be made no later than the later of 30 days after the effective date of this regulation or within 14 days after such negotiations meet the conditions of this section, and shall specify all persons involved and the host government affected. Notice must be in writing to the Assistant Administrator for International Energy Affairs. Where this notice pertains to negotiations to modify a supply agreement previously reported to the Department of Energy under this part, such notice shall include the agreement serial number assigned to the basic agreement.

PART 216—MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC ENERGY SUPPLIES

Sec.
216.1 Introduction.
216.2 Definitions.
216.3 Requests for assistance.
216.4 Evaluation by DOE of applications.
216.5 Notification of findings.
216.6 Petition for reconsideration.
216.7 Conflict in priority orders.
216.8 Communications.

216.9 Violations.

SOURCE: 43 FR 6212, Feb. 14, 1978, unless otherwise noted.

§ 216.1 Introduction.

(a) This part describes and establishes the procedures to be used by the Department of Energy ("DOE") in considering and making certain findings required by section 101(c)(3) of the Defense Production Act of 1950, as amended, 50 U.S.C. App. 2071(c)(3) ("DPA"). Section 101(c) authorizes the allocation of, or priority performance under contracts or orders (other than contracts of employment) relating to, supplies of materials and equipment in order to maximize domestic energy supplies if the findings described in section 101(c)(3) are made. Among these findings are that such supplies of materials and equipment are critical and essential to maintain or further exploration, production, refining, transportation or the conservation of energy supplies or for the construction and maintenance of energy facilities. The function of finding if such supplies are critical and essential was delegated to the Administrator of the Department of Energy ("DOE") pursuant to Executive Order 11912 of April 13, 1976, Defense Mobilization Order ("DMO") No. 13 dated September 22, 1976, 41 FR 43720, and Department of Commerce, Bureau of Domestic Commerce, Delegation No. 4, effective date December 1, 1976, 41 FR 52331. Delegation No. 4 was superseded by Defense Priorities and Allocations System Delegation No. 2, effective date August 29, 1984, 49 FR 30430. On October 1, 1977, pursuant to section 301(a) of the Department of Energy Organization Act (Pub. L. 95-91), all of the functions of DOE and all of the functions of the DOE Administrator were transferred to the Secretary of Energy.

(b) The purpose of these regulations is to establish the procedures and the
criteria to be used by DOE in determining whether programs or projects maximize domestic energy supplies and finding whether or not supplies of material and equipment are critical and essential, as required by DPA section 101(c)(3). The critical and essential finding will be made only for supplies of materials and equipment related to those programs or projects determined by DOE to maximize domestic energy supplies. These regulations do not require or imply that the findings, on which the exercise of such authority is conditioned, will be made in any particular case.

(c) If DOE determines that a program or project maximizes domestic energy supplies and finds that supplies of materials and equipment are critical and essential to maintain or further the exploration, production, refining, transportation or conservation of energy supplies or for the construction and maintenance of energy facilities, such determination and finding will be communicated to the Department of Commerce. If not, the applicant will be so informed. If the determination and finding described above are made, the Department of Commerce, pursuant to DPA section 101(c), Executive Order 11912 and DMO No. 13, will find whether or not (1) the supplies of materials and equipment in question are scarce and (2) maintenance or furtherance of exploration, production, refining, transportation, or conservation of energy supplies or the construction and maintenance of energy facilities cannot be reasonably accomplished without exercising the authority specified in section 101(c). If these additional two findings are made, the Department of Commerce will notify DOE, and DOE will inform the applicant that it has been granted the right to use priority ratings under the Defense Priorities and Allocations System ("DPAS") regulation established by the Department of Commerce, 15 CFR 350.

§ 216.3 Requests for assistance.

(a) Persons who believe that they perform work associated with a program or project which may qualify as an eligible energy program or project and wishing to receive assistance as authorized by DPA section 101(c)(1) may submit an application to DOE requesting DOE to determine whether a program or project maximizes domestic energy supplies and to find whether or not specific supplies of materials or equipment identified in the application are critical and essential for a purpose identified in section 101(c). The application should be sent to: Department of Energy.

(b) Applicant means a person requesting priority or allocation assistance in connection with an energy program or project.

(c) Application means the written request of an applicant for assistance.

(d) Assistance means use of the authority vested in the President by DPA section 101(c) to implement priorities and allocation support.

(e) DOC means the Department of Commerce, acting through the Secretary or the delegate of the Secretary.

(f) DOE means the Department of Energy, acting through the Secretary or the delegate of the Secretary.

(g) Eligible energy program or project means a designated activity which maximizes domestic energy supplies by furthering the domestic exploration, production, refining, transportation or conservation of energy supplies or construction and maintenance of energy facilities within the meaning of DPA section 101(c), as determined by DOE.

(h) FEMA means the Federal Emergency Management Agency.

(i) Materials and equipment means any raw, in-process, or manufactured commodity, equipment, component, accessory, part, assembly or product of any kind.

(j) Person means an individual, corporation, partnership, association, or any other organized group of persons (or legal successor or representative thereof), and includes the United States or any other government and any political subdivisions (or any agency) thereof.

of Energy, Procurement and Assistance Management Directorate, Attn: MA-422, Forrestal Building, 1000 Independence Avenue SW., Washington, DC 20585. The application shall contain the following information:

(1) The name and address of the applicant and of its duly authorized representative.

(2) A description of the energy program or project for which assistance is requested and an assessment of its impact on the maximization of domestic energy supplies.

(3) The amount of energy to be produced by the program or project which is directly affected by the supplies of the materials or equipment in question.

(4) A statement explaining why the materials or equipment for which assistance is requested are critical and essential to the construction or operation of the energy project or program.

(5) A detailed description of the specific supplies of materials and equipment in connection with which assistance is requested, including: Components, performance data (capacity, life duration, etc.), standards, acceptable tolerances in dimensions and specifications, current inventory, present and expected rates of use, anticipated deliveries and substitution possibilities (feasibility of using other materials or equipment).

(6) A detailed description of the sources of supply, including: Name of the regular supplying company or companies, other companies capable of supplying the materials and equipment, location of supplying plants or plants capable of supplying the needed materials and equipment, possible suppliers for identical or substitutable materials and equipment and possible foreign sources of supply.

(7) A detailed description of the delivery situation, including: Normal delivery times, promised delivery time without priorities assistance, and delivery time required for expeditious fulfillment or completion of the program or project.

(8) Evidence of the applicant’s unsuccessful efforts to obtain on a timely basis the materials and equipment in question through normal business channels from current or other known suppliers.

(9) A detailed estimate of the delay in fulfilling or completing the energy program or project which will be caused by inability to obtain the specified materials and equipment in the usual course of business.

(10) Any known conflicts with rated or authorized controlled material orders already issued pursuant to the DPA for supplies of the described materials and equipment.

(11) Quarterly estimates of requirements for controlled materials, if applicable, by shapes and forms as prescribed by the DPAS regulation, §350.31(e)(2).

(b) DOE, on consultation with the DOC, may prescribe standard forms of application or letters of instruction for use by all persons seeking assistance.

(c) In addition to the information described above, DOE may from time to time request whatever additional information it reasonably believes is relevant to the discharge of its functions pursuant to DPA section 101(c).

§216.4 Evaluation by DOE of applications.

(a) Based on the information provided by the applicant and other available information, DOE will assess the application and (1) determine whether or not the energy program or project in connection with which the application is made maximizes domestic energy supplies and should be designated an eligible energy program or project and (2) find whether the described supplies of materials and equipment are critical and essential to the eligible energy program or project.

(b) In determining whether the program or project referred to in the application should be designated an eligible energy program or project, DOE will consider all factors which it considers relevant including, but not limited to, the following:

(1) Quantity of energy involved;

(2) Benefits of timely energy program furtherance or project completion;

(3) Socioeconomic impact;
§ 216.7 Conflict in priority orders.

If it appears that the use of assistance pursuant to DPA section 101(c) creates or threatens to create a conflict with priorities and allocation support provided in connection with the national defense pursuant to DPA section 101(a), DOE will work with the DOC and other claimant agencies affected by such conflict in an attempt

§ 216.6 Petition for reconsideration.

If DOE, after evaluating an application in accordance with §216.4, does not determine that the energy program or project maximizes domestic energy supplies or does not find that the supplies of materials and equipment described in the application are critical and essential to an eligible energy program or project, it will so notify the applicant and the applicant may petition DOE for reconsideration. If DOE concludes at any time that findings previously made are no longer valid and should be withdrawn, DOE will so notify the affected applicant(s), and such applicant(s) may petition DOE for reconsideration of the withdrawal decision. Such a petition is deemed accepted when received by DOE at the address stated in §216.8. DOE will consider the petition for reconsideration and either grant or deny the relief requested. Written notice of the decision and of the reasons for the decision will be provided to the applicant. There has not been an exhaustion of administrative remedies until a petition for reconsideration has been submitted and the review procedure completed by grant or denial of the relief requested. The denial of relief requested in a petition for reconsideration is a final administrative decision.

§ 216.8 Communications.

All written communications concerning these regulations shall be addressed to:

§ 216.9 Violations.

Any person who willfully furnishes false information or conceals any material fact in the course of the application process or in a petition for reconsideration is guilty of a crime, and upon conviction may be punished by fine or imprisonment or both.

PART 218—STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION

Subpart A—General Provisions

§ 218.1 Purpose and scope.

(a) This part implements section 251 of the Energy Policy and Conservation Act (Pub. L. 94-163) (42 U.S.C. 6271), as amended, which authorizes the President to take such action as he determines to be necessary for performance of the obligations of the United States under chapters III and IV of the Agreement on an International Energy Program (TIAS 8278), insofar as such obligations relate to the mandatory international allocation of oil by International Energy Program participating countries.

(b) Applicability. This part applies to any firm engaged in producing, transporting, refining, distributing or storing oil which is subject to the jurisdiction of the United States.

§ 218.2 Activation/Deactivation.

(a) This rule shall take effect providing:

(1) The International Energy Program has been activated; and,

(2) The President has transmitted this rule to Congress, has found putting such rule into effect is required in order to fulfill obligations of the United States under the International Energy Program and has transmitted such a finding to the Congress together with a statement of the effective date and manner for exercise of such rule.

(b) This rule shall revert to standby status no later than 60 days after the deactivation of the emergency allocation system activated to implement the International Energy Program.

§ 218.3 Definitions.

DOE means the Department of Energy established by the Department of Energy Organization Act (Pub. L. 95-91), and includes the Secretary of Energy or his delegate.

Firm means any association, company, corporation, estate, individual, joint-venture, partnership, or sole proprietorship or any other entity however organized including charitable, educational, or other eleemosynary institutions, and the Federal Government including corporations, departments, Federal agencies, and other instrumentalities, and State and local governments. The ERA may, in regulations and forms issued in this part, treat as a firm: (a) A parent and the consolidated and unconsolidated entities (if any) which it directly or indirectly controls, (b) a parent and its consolidated entities, (c) an unconsolidated entity, or (d) any part of a firm.

IEA means the International Energy Agency established to implement the IEP.

IEP means the International Energy Program established pursuant to the Agreement on an International Energy Program signed at Paris, France, on November 18, 1974, including (a) the Annex entitled “Emergency Reserves”, (b) any amendment to such Agreement that includes another nation as a Party to such Agreement, and (c) any technical or clerical amendment to such Agreement.

International energy supply emergency means any period (a) beginning on any date that the President determines allocation of petroleum products to nations participating in the IEP is required by chapters III and IV of the IEP and (b) ending on a date on which he determines such allocation is no longer required.

Oil means crude oil, residual fuel oil, unfinished oil, refined petroleum product and natural gas liquids, which is owned or controlled by a firm, including any petroleum product destined directly or indirectly, for import into the United States or any foreign country, or produced in the United States but excludes any oil stored in or owned and controlled by the United States Government in connection with the Strategic Petroleum Reserve authorized in section 151, et seq., of the Energy Policy and Conservation Act (Pub. L. 94-163).

Person means any individual, firm, estate, trust, sole proprietorship, partnership, association, company, joint-venture, corporation, governmental unit or instrumentality thereof, or a charitable, educational or other institution, and includes any officer, director, owner or duly authorized representative thereof.

Supply order means a written directive or a verbal communication of a written directive, if promptly confirmed in writing, issued by the DOE pursuant to subpart B of this part.

United States when used in the geographic sense means the several States, the District of Columbia, Puerto Rico, and the territories and possessions of the United States, and the outer continental shelf as defined in 43 U.S.C. 1331.

Subpart B—Supply Orders

§ 218.10 Rule.

(a) Upon the determination by the President that an international energy supply emergency exists, firms engaged in producing, transporting, refining, distributing, or storing oil shall take such actions as are determined by the DOE to be necessary for implementation of the obligations of the United States under chapters III and IV of the IEP that relate to the mandatory international allocation of oil by IEP participating countries.

(b) Any actions required in accordance with paragraph (a) of this section shall be stated in supply orders issued by DOE.

(c) No firm to which a supply order is issued shall be required to comply with such order unless the firm to which the oil is to be provided in accordance with such supply order has agreed to a procedure for the resolution of any dispute related to the terms and conditions of the sale undertaken pursuant to the supply order. The means for resolving any such disputes may include any procedures that are mutually acceptable to the parties, including arbitration before the IEA if the IEA has established arbitration procedures, arbitration or adjudication before an appropriate body, or any other similar procedure.

§ 218.11 Supply orders.

(a) A supply order shall require that the firm to which it is issued take actions specified therein relating to supplying the stated volume of oil to a
§ 218.12 Pricing.

The price for oil subject to a supply order issued pursuant to this subpart shall be based on the price conditions prevailing for comparable commercial transactions at the time the supply order is served.

Subpart C [Reserved]

Subpart D—Procedures

§ 218.30 Purpose and scope.

This subpart establishes the administrative procedures applicable to supply orders. They shall be exclusive of any other procedures contained in this chapter, unless such other procedures are specifically made applicable hereto by this subpart.

§ 218.31 Incorporated procedures.

The following subparts of part 205 of this chapter are, as appropriate, hereby made applicable to this part:

(a) Subpart A—General Provisions; Provided, that § 205.11 shall not apply; and Provided further, that in addition to the methods of service specified in § 205.7 of this chapter, service shall be effective if a supply order is transmitted by telex, telecopies or other similar means of electronic transmission of a writing and received by the firm to which the supply order is addressed.

(b) Subpart D—Interpretation.

(c) Subpart E—Rulings.

(d) Subpart F—Conferences, Hearings and Public Hearings.

§ 218.32 Review.

(a) Purpose and scope. This subpart establishes the procedures for the filing of an application for review of a supply order. An application for review is a summary proceeding which will be initiated only if the criteria described in paragraph (g)(2) of this section are satisfied.

(b) What to file. (1) A firm filing under this subpart shall file an "Application for Review" which should be clearly labeled as such both on the application and on the outside of the envelope in which the application is transmitted, and shall be in writing and signed by the firm filing the application. The applicant shall comply with the general filing requirements stated in 10 CFR 205.9 in addition to the requirements stated in this section.

(2) If the applicant wishes to claim confidential treatment for any information contained in the application or other documents submitted under this subpart, the procedures set out in 10 CFR 205.9(f) shall apply.

(c) When to file. An application for review shall be filed no later than 5 days after the receipt by the applicant of the supply order that is the subject of the application, or no later than 2 days after the occurrence of an event that results in a substantial change in the facts or circumstances affecting the applicant.

(d) Where to file. The application for review shall be filed with DOE Office of Hearings and Appeals (OHA), 2000 M Street, NW., Washington, DC 20461.

(e) Notice. The applicant shall send by United States mail or deliver by hand a copy of the application and any subsequent amendments or other documents
relating to the application to the Administrator of the Economic Regulatory Administration of DOE, 2000 M Street, NW., Washington, DC 20461.

Service shall be made on the ERA at the same time the document is filed with OHA and each document filed with the OHA shall include certification that the applicant has complied with the requirements of this paragraph.

(f) Contents. (1) The application shall contain a full and complete statement of all relevant facts pertaining to the application and to the DOE action sought. Such facts shall include a complete statement of the business or other reasons that justify review of the supply order and a full description of the pertinent provisions and relevant facts contained in any relevant documents. Copies of all contracts, agreements, leases, instruments, and other documents relevant to the application shall be submitted with the application. A copy of the order of which review is sought shall be included with the application. When the application pertains to only one step of a larger integrated transaction, the facts, circumstances, and other relevant information pertaining to the entire transaction shall be submitted.

(2) The application shall include a discussion of all relevant authorities, including, but not limited to, DOE and DOE rulings, regulations, interpretations and decisions on appeal and exception relied upon to support the action sought therein.

(g) DOE evaluation—(1) Processing. (i) The DOE may initiate an investigation of any statement in an application and utilize in its evaluation any relevant facts obtained by such investigation. The DOE may solicit and accept submissions from third parties relevant to any application for review provided that the applicant is afforded an opportunity to respond to all third party submissions. In evaluating an application for review, the DOE may convene a conference, on its own initiative, if, in its discretion, it considers that a conference will advance its evaluation of the application.

(ii) If the DOE determines that there is insufficient information upon which to base a decision and if upon request the necessary additional information is not submitted, the DOE may dismiss the application without prejudice. If the failure to supply additional information is repeated or willful, the DOE may dismiss the application with prejudice. If the applicant fails to provide the notice required by paragraph (e) of this section, the DOE may dismiss the application without prejudice.

(iii) An order dismissing an application for any of the reasons specified in paragraph (g)(1)(ii) of this section shall contain a statement of the grounds for the dismissal. The order shall become final within 5 days of its service upon the applicant, unless within such 5-day period the applicant files an amendment correcting the deficiencies identified in the order. Within 5 days of the filing of such amendment, the DOE shall notify the applicant whether the amendment corrects the specified deficiencies. If the amendment does not correct the deficiencies specified in the order, the order shall become a final order of the DOE of which the applicant may seek judicial review.

(2) An application for review of an order shall be processed only if the applicant demonstrates that—

(i) There is probable cause to believe that the supply order is erroneous, inequitable, or unduly burdensome; or

(ii) There has been discovered a law, regulation, interpretation, ruling, order or decision that was in effect at the time of the application which, if it had been made known to the DOE, would have been relevant to the supply order and would have substantially altered the supply order; or

(iii) There has been a substantial change in the facts or circumstances affecting the applicant, which change has occurred during the interval between issuance of the supply order and the date of the application and was caused by forces or circumstances beyond the control of the applicant.

(h) Decision. (1) Upon consideration of the application and other relevant information received or obtained during the proceeding, the DOE shall issue an order granting or denying the modification or rescission of the supply order requested in the application for review.

(2) The DOE shall process applications for review as expeditiously as...
§ 218.33 Stay.

(a) The DOE may issue an order granting a stay if the DOE determines that an applicant has made a compelling showing that it would incur serious and irreparable injury unless immediate stay relief is granted pending determination of an application for review pursuant to this subpart. An application for a stay shall be labeled as such on the application and on the outside of the envelope in which the application is transmitted, and shall be in writing and signed by the firm filing the application. It shall include a description of the proceeding incident to which the stay is being sought and of the facts and circumstances which support the applicant's claim that it will incur irreparable injury unless immediate stay relief is granted. The applicant shall comply with the general filing requirements stated in 10 CFR 205.9 in addition to the requirements stated in this section. The DOE on its own initiative may also issue an order granting a stay upon a finding that a firm will incur irreparable injury if such an order is not granted.

(b) An order granting a stay shall expire by its terms within such time after issuance, not to exceed 30 days as the DOE specifies in the order, except that it shall expire automatically 5 days following its issuance if the applicant fails within that period to file an application for review unless within that period the DOE for good cause shown, extends the time during which the applicant may file an application for review.

(c) The order granting or denying a stay is not an order of the DOE subject to administrative review.

§ 218.34 Addresses.

All correspondence, petitions, and any information required by this part shall be submitted to: Administrator, Economic Regulatory Administration, Department of Energy, 2000 M Street, NW., Washington, DC 20461, and to the Director, Office of Hearings and Appeals, Department of Energy, 2000 M Street, NW., Washington, DC 20461.

Subpart E—Investigations, Violations, Sanctions and Judicial Actions

§ 218.40 Investigations.

(a) The DOE may initiate and conduct investigations relating to the scope, nature and extent of compliance by any person with the rules, regulations or statutes of the DOE or any order promulgated by the DOE under the authority of section 251 of EPCA, or any court decree.

(b) Any duly designated and authorized representative of DOE has the authority to conduct an investigation and to take such action as he deems necessary and appropriate to the conduct of the investigation including any action pursuant to § 205.8.

(c) There are no parties, as that term is used in adjudicative proceedings, in an investigation under this subpart, and no person may intervene or participate as a matter of right in any investigation under this subpart.

(d) Any person may request the DOE to initiate an investigation pursuant to paragraph (a) of this section. A request for an investigation shall set forth the subject matter to be investigated as fully as possible and include supporting documentation and information. No particular forms or procedures are required.

(e) Any person who is requested to furnish documentary evidence or testimony in an investigation, upon written request, shall be informed of the general purpose of the investigation.

(f) DOE shall not disclose information or documents that are obtained during any investigation unless (1) DOE directs or authorizes the public...
disclosure of the investigation; (2) the information or documents are a matter of public record; or (3) disclosure is not precluded by the Freedom of Information Act, 5 U.S.C. 552 and 10 CFR part 1004.

(g) During the course of an investigation any person may submit at any time any document, statement of facts or memorandum of law for the purpose of explaining the person's position or furnish evidence which the person considers relevant to a matter under investigation.

(h) If facts disclosed by an investigation indicate that further action is unnecessary or unwarranted, the investigative file may be closed without prejudice to further investigation by the DOE at any time that circumstances so warrant.

§ 218.41 Violations.

Any practice that circumvents, contravenes or results in the circumvention or contravention of the requirements of any provision of this part 218 or any order issued pursuant thereto is a violation of the DOE regulations stated in this part and is unlawful.

§ 218.42 Sanctions.

(a) General. Any person who violates any provisions of this part 218 or any order issued pursuant thereto shall be subject to penalties and sanctions as provided herein.

(1) The provisions herein for penalties and sanctions shall be deemed cumulative and not mutually exclusive.

(2) Each day that a violation of the provisions of this part 218 or any order issued pursuant thereto continues shall be deemed to constitute a separate violation within the meaning of the provisions of this part relating to fines and civil penalties.

(b) Penalties. (1) Any person who violates any provision of part 218 of this chapter or any order issued pursuant thereto shall be subject to a civil penalty of not more than $5,500 for each violation.

(2) Any person who willfully violates any provision of this part 218 or any order issued pursuant thereto shall be subject to a fine of not more than $10,000 for each violation.

(3) Any person who knowingly and willfully violates any provision of this part 218 or any order issued pursuant thereto with respect to the sale, offer of sale, or distribution in commerce of oil in commerce after having been subject to a sanction under paragraph (b)(1) or (2) of this section for a prior violation of the provisions of this part 218 or any order issued pursuant thereto with respect to the sale, offer of sale, or distribution in commerce of oil shall be subject to a fine of not more than $50,000 or imprisonment for not more than six months, or both, for each violation.

(4) Actions for penalties under this section are prosecuted by the Department of Justice upon referral by the DOE.

(5) When the DOE considers it to be appropriate or advisable, the DOE may compromise and settle any action under this paragraph, and collect civil penalties.

(c) Other Penalties. Willful concealment of material facts, or making of false, fictitious or fraudulent statements or representations, or submission of a document containing false, fictitious or fraudulent statements pertaining to matters within the scope of this part 218 by any person shall subject such persons to the criminal penalties provided in 18 U.S.C. 1001 (1970).

§ 218.43 Injunctions.

Whenever it appears to the DOE that any firm has engaged, is engaging, or is about to engage in any act or practice constituting a violation of any regulation or order issued under this part 218, the DOE may request the Attorney General to bring a civil action in the appropriate district court of the United States to enjoin such acts or practices and, upon a proper showing, a temporary restraining order or a preliminary or permanent injunction shall be granted without bond. The relief sought may include a mandatory injunction commanding any firm to comply with any provision of such order or regulation, the violation of which is prohibited by section 524 of the EPCA.
PART 221—PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT

Subpart A—General

Sec.
221.1 Scope.
221.2 Applicability.

Subpart B—Exclusions

221.11 Natural gas and ethane.

Subpart C—Definitions

221.21 Definitions.

For purposes of this part—

Directive means an official action taken by ERA which requires a named person to take an action in accordance with its provisions.

DOD means the Department of Defense, including Military Departments and Defense Agencies, acting through either the Secretary of Defense or the designee of the Secretary.

ERA means the Economic Regulatory Administration of the Department of Energy.

National defense means programs for military and atomic energy production or construction, military assistance to any foreign nation, stockpiling and space, or activities directly related to any of the above.

Person means any individual, corporation, partnership, association or any other organized group of persons, and includes any agency of the United States Government or any other government.

Priority-rated supply order means any delivery order for crude oil or petroleum products issued by DOD bearing a priority rating issued by ERA under this part.

Supplier means any person other than the DOD which supplies, sells, transfers, or otherwise furnishes (as by consignment) crude oil or petroleum product to any other person.

Subpart D—Administrative Procedures and Sanctions

221.31 Requests by DOD.

(a) When DOD finds that (1) a fuel supply shortage for DOD exists or is purchases made by the Department of Defense on behalf of other Federal Government agencies.
§ 221.32 Evaluation of DOD request.

(a) Upon receipt of a request from DOD for a priority rating as provided in §221.31, it shall be reviewed promptly by ERA. The ERA will assess the request in terms of:

(1) The information provided under §221.31;

(2) Whether DOD’s national defense needs for crude oil or petroleum products can reasonably be satisfied without exercising the authority specified in this part;

(3) The capability of the proposed supplier to supply the crude oil or petroleum product in the amounts required;

(4) The known capabilities of alternative suppliers;

(5) The feasibility to DOD of converting to and using a product other than that requested; and

(6) Any other relevant information.

(b) The ERA promptly shall notify the proposed supplier of DOD’s request for a priority rating specified under this part. The proposed supplier shall have a period specified in the notice, not to exceed fifteen (15) days from the date it is notified of DOD’s request, to show cause in writing why it cannot supply the requested quantity and quality of crude oil or petroleum products. ERA shall consider this information in determining whether to issue the priority rating.

(c) If acceptance by a supplier of a rated order would create a conflict with another rated order of the supplier, it shall include all pertinent information regarding such conflict in its response to the show cause order provided for in subsection (b), and ERA, in consultation with DOD and the Federal Emergency Management Agency shall determine the priorities for meeting all such requirements.

(d) ERA may waive some or all of the requirements of §221.31 or this section where the Secretary of Defense or his designee certifies, and has so notified the Federal Emergency Management Agency, that a fuel shortage for DOD exists or is imminent and that compliance with such requirements would have a substantial negative impact on the national defense.

§ 221.33 Order.

(a) Issuance. If ERA determines that issuance of a priority rating for a crude oil or refined petroleum product is necessary to provide the crude oil or petroleum products needed to meet the national defense requirement established by DOD, it shall issue such a rating to DOD for delivery of specified qualities and quantities of the crude oil or refined petroleum products on or
§ 221.34 Effect of order.

Defense against claims for damages. No person shall be liable for damages or penalties for any act or failure to act resulting directly or indirectly from compliance with any ERA authorized priority-rated supply order or ERA directive issued pursuant to this part, notwithstanding that such priority-rated supply order or directive thereafter be declared by judicial or other competent authority to be invalid.

§ 221.35 Contractual requirements.

(a) No supplier may discriminate against an order or contract on which a priority rating has been placed under this part by charging higher prices, by imposing terms and conditions for such orders or contracts different from other generally comparable orders or contracts, or by any other means.

(b) Contracts with priority ratings shall be subject to all applicable laws and regulations which govern the making of such contracts, including those specified in 10 CFR 211.26(e).

§ 221.36 Records and reports.

(a) Each person receiving an order or directive under this part shall keep for at least two years from the date of full compliance with such order or directive accurate and complete records of crude oil and petroleum product deliveries made in accordance with such order or directive.

(b) All records required to be maintained shall be made available upon request for inspection and audit by duly authorized representatives of the ERA.

(Approved by the Office of Management and Budget under control number 1903-0073)

§ 221.37 Violations and sanctions.

(a) Any practice that circumvents or contravenes the requirements of this part or any order or directive issued under this part is a violation of the regulations provided in this part.

(b) Criminal penalties. Any person who willfully performs any act prohibited, or willfully fails to perform any act required by this part or any order or directive issued under this part shall be subject to a fine of not more than $10,000 for each violation or imprisoned for not more than one year for each violation, or both.

(c) Whenever in the judgment of the Administrator of ERA any person has engaged or is about to engage in any acts or practices which constitute or will constitute a violation of any provision of these regulations, the Administrator may make application to the appropriate court for an order enjoining such acts or practices, or for an order enforcing compliance with such provision.
PART 420—STATE ENERGY PROGRAM

§ 420.1 Purpose and scope.

It is the purpose of this part to promote the conservation of energy, to reduce the rate of growth of energy demand, and to reduce dependence on imported oil through the development and implementation of a comprehensive State Energy Program and the provision of Federal financial and technical assistance to States in support of such program.

§ 420.2 Definitions.

As used in this part:

Alternative transportation fuel means methanol, denatured ethanol, and other alcohols; mixtures containing 85 percent or more by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials (including neat biodiesel); and electricity (including electricity from solar energy).

ASHRAE/IESNA 90.1±1989, as amended means the building design standard published in December 1989 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, and the Illuminating Engineering Society of North America titled “Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings,” with Addenda 90.1b±1992; Addenda 90.1d±1992; Addenda 90.1e±1992; Addenda 90.1g±1993; and Addenda 90.1i±1993, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of this incorporation by reference is given in §420.6(b).

Assistant Secretary means the Assistant Secretary for Energy Efficiency.
and Renewable Energy or any official to whom the Assistant Secretary’s functions may be redelegated by the Secretary.

British thermal unit (Btu) means the quantity of heat necessary to raise the temperature of one pound of water one degree Fahrenheit at 39.2 degrees Fahrenheit and at one atmosphere of pressure.

Building means any structure which includes provision for a heating or cooling system, or both, or for a hot water system.

Carpool means the sharing of a ride by two or more people in an automobile.

Carpool matching and promotion campaign means a campaign to coordinate riders with drivers to form carpools and/or vanpools.

Commercial building means any building other than a residential building, including any building constructed for industrial or public purposes.

Commercially available means available for purchase by the general public or target audience in the State.

Deputy Assistant Secretary means the Deputy Assistant Secretary for Building Technology, State and Community Programs or any official to whom the Deputy Assistant Secretary’s functions may be redelegated by the Assistant Secretary.

Director, Office of State and Community Programs means the official responsible for DOE’s formula grant programs to States, or any official to whom the Director’s functions may be redelegated by the Assistant Secretary.

DOE means the Department of Energy.

Energy audit means any process which identifies and specifies the energy and cost savings which are likely to be realized through the purchase and installation of particular energy efficiency measures or renewable energy measures.

Energy efficiency measure means any capital investment that reduces energy costs in an amount sufficient to recover the total cost of purchasing and installing such measure over an appropriate period of time and maintains or reduces non-renewable energy consumption.

Environmental residual means any pollutant or pollution causing factor which results from any activity.

Exterior envelope physical characteristics means the physical nature of those elements of a building which enclose conditioned spaces through which thermal energy may be transferred to or from the exterior.

Governor means the chief executive officer of a State, the District of Columbia, Puerto Rico, or any territory or possession of the United States, or a person duly designated in writing by the Governor to act upon his or her behalf.

Grantee means the State or other entity named in the notice of grant award as the recipient.

HVAC means heating, ventilating and air-conditioning.

IBR means incorporation by reference.

Industrial facility means any fixed equipment or facility which is used in connection with, or as part of, any process or system for industrial production or output.

Institution of higher education has the same meaning as such term is defined in section 1201(a) of the Higher Education Act of 1965 (20 U.S.C. 1141(a)).

Metropolitan Planning Organization means that organization required by the Department of Transportation, and designated by the Governor as being responsible for coordination within the State, to carry out transportation planning provisions in a Standard Metropolitan Statistical Area.

Model Energy Code, 1993, including Errata, means the model building code published by the Council of American Building Officials, which is incorporated by reference in accordance with 42 U.S.C. 552(a) and 1 CFR part 51. The availability of this incorporation by reference is given in §420.6(b).

Park-and-ride lot means a parking facility generally located at or near the trip origin of carpools, vanpools and/or mass transit.

Petroleum violation escrow funds. For purposes both of exempting petroleum
violation escrow funds from the matching requirements of §420.12 and of applying the limitations specified under §420.18(b), this term means any funds distributed to the States by the Department of Energy or any court and identified as Alleged Crude Oil Violation funds, together with any interest earned thereon by the States, but excludes any funds designated as “excess funds” under section 3003(d) of the Petroleum Overcharge Distribution and Restitution Act, subtitle A of title III of the Omnibus Budget Reconciliation Act of 1986, Public Law 99-509, and the funds distributed under the “Warner Amendment,” section 155 of Public Law 97-377.

Plan means a State Energy Program plan including required program activities in accordance with §420.15 and otherwise meeting the applicable provisions of this part.

Political subdivision means a unit of government within a State, including a county, municipality, city, town, township, parish, village, local public authority, school district, special district, council of governments, or any other regional or intrastate governmental entity or instrumentality of a local government exclusive of institutions of higher learning and hospitals.

Preferential traffic control means any one of a variety of traffic control techniques used to give carpools, vanpools and public transportation vehicles priority treatment over single occupant vehicles other than bicycles and other two-wheeled motorized vehicles.

Program activity means one or more State actions, in a particular area, designed to promote energy efficiency, renewable energy and alternative transportation fuel.

Public building means any building which is open to the public during normal business hours, including:

(1) Any building which provides facilities or shelter for public assembly, or which is used for educational office or institutional purposes;

(2) Any inn, hotel, motel, sports arena, supermarket, transportation terminal, retail store, restaurant, or other commercial establishment which provides services or retail merchandise;

(3) Any general office space and any portion of an industrial facility used primarily as office space;

(4) Any building owned by a State or political subdivision thereof, including libraries, museums, schools, hospitals, auditoriums, sport arenas, and university buildings; and

(5) Any public or private non-profit school or hospital.

Public transportation means any scheduled or nonscheduled transportation service for public use.

Regional Support Office Director means the director of a DOE Regional Support Office with responsibility for grants administration or any official to whom that function may be redelegated.

Renewable energy means a non-depletable source of energy.

Renewable energy measure means any capital investment that reduces energy costs in an amount sufficient to recover the total cost of purchasing and installing such measure over an appropriate period of time and that results in the use of renewable energy to replace the use of non-renewable energy.

Residential building means any building which is constructed for residential occupancy.

Secretary means the Secretary of DOE.

SEP means the State Energy Program under this part.

Small business means a private firm that does not exceed the numerical size standard promulgated by the Small Business Administration under section 3(a) of the Small Business Act (15 U.S.C. 632) for the Standard Industrial Classification (SIC) codes designated by the Secretary of Energy.

Start-up business means a small business which has been in existence for 5 years or less.

State means a State, the District of Columbia, Puerto Rico, or any territory or possession of the United States.

State or local government building means any building owned and primarily occupied by offices or agencies of a State; and any building of a unit of local government or a public care institution which could be covered by part H, title III, of the Energy Policy and Conservation Act, 42 U.S.C. 6372-6372a.

Transit level of service means characteristics of transit service provided which indicate its quantity, geographic
area of coverage, frequency and quality (comfort, travel, time, fare and image). Urban area traffic restriction means a setting aside of certain portions of an urban area as restricted zones where varying degrees of limitation are placed on general traffic usage and/or parking. Vanpool means a group of riders using a vehicle, with a seating capacity of not less than eight individuals and not more than fifteen individuals, for transportation to and from their residence or other designated locations and their place of employment, provided the vehicle is driven by one of the pool members. Variable working schedule means a flexible working schedule to facilitate activities such as carpools, vanpools, public transportation usage, and/or telecommuting. Variable working schedule means a flexible working schedule to facilitate activities such as carpools, vanpools, public transportation usage, and/or telecommuting.

§ 420.3 Administration of financial assistance.

(a) Financial assistance under this part shall comply with applicable laws and regulations including, but without limitation, the requirements of:

(1) Executive Order 12372, Intergovernmental Review of Federal Programs, as implemented by 10 CFR part 1005.

(2) DOE Financial Assistance Rules (10 CFR part 600); and

(3) Other procedures which DOE may from time to time prescribe for the administration of financial assistance under this part.

(b) The budget period(s) covered by the financial assistance provided to a State according to § 420.11(b) or § 420.33 shall be consistent with 10 CFR part 600.

(c) Subawards are authorized under this part and are subject to the requirements of this part and 10 CFR part 600.

§ 420.4 Technical assistance.

At the request of the Governor of any State to DOE and subject to the availability of personnel and funds, DOE will provide information and technical assistance to the State in connection with effectuating the purposes of this part.

§ 420.5 Reports.

(a) Each State receiving financial assistance under this part shall submit to the cognizant Regional Support Office Director a quarterly program performance report and a quarterly financial status report.

(b) Reports under this section shall contain such information as the Secretary may prescribe in order to monitor effectively the implementation of a State's activities under this part.

(c) The reports shall be submitted within 30 days following the end of each calendar year quarter.

§ 420.6 Reference standards.

(a) The following standards which are not otherwise set forth in this part are incorporated by reference and made a part of this part. The following standards have been approved for incorporation by reference by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. A notice of any change in these materials will be published in the Federal Register. The standards incorporated by reference are available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC.

(b) The following standards are incorporated by reference in this part:

Subpart B—Formula Grant Procedures

§ 420.10 Purpose.
This subpart specifies the procedures that apply to the Formula Grant part of the State Energy Program, which allows States to apply for financial assistance to undertake a wide range of required and optional energy-related activities provided for under § 420.15 and § 420.17. Funding for these activities is allocated to the States based on funds available for any fiscal year, as described under § 420.11.

§ 420.11 Allocation of funds among the States.
(a) The cognizant Regional Support Office Director shall provide financial assistance to each State having an approved annual application from funds available for any fiscal year to develop, modify, or implement a plan.
(b) DOE shall allocate financial assistance to develop, implement or modify plans among the States from funds available for any fiscal year, as follows:

(1) If the available funds equal $25.5 million, such funds shall be allocated to the States according to Table 1 of this section.

(2) The base allocation for each State is listed in Table 1.

Table 1.—Base Allocation by State—Continued

<table>
<thead>
<tr>
<th>State/Territory</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>$381,000</td>
</tr>
<tr>
<td>Alaska</td>
<td>180,000</td>
</tr>
<tr>
<td>Arizona</td>
<td>344,000</td>
</tr>
<tr>
<td>Arkansas</td>
<td>307,000</td>
</tr>
<tr>
<td>California</td>
<td>1,602,000</td>
</tr>
<tr>
<td>Colorado</td>
<td>399,000</td>
</tr>
<tr>
<td>Connecticut</td>
<td>397,000</td>
</tr>
<tr>
<td>Delaware</td>
<td>164,000</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>158,000</td>
</tr>
<tr>
<td>Florida</td>
<td>631,000</td>
</tr>
<tr>
<td>Georgia</td>
<td>534,000</td>
</tr>
<tr>
<td>Hawaii</td>
<td>170,000</td>
</tr>
<tr>
<td>Idaho</td>
<td>190,000</td>
</tr>
<tr>
<td>Illinois</td>
<td>1,150,000</td>
</tr>
<tr>
<td>Indiana</td>
<td>631,000</td>
</tr>
<tr>
<td>Iowa</td>
<td>373,000</td>
</tr>
<tr>
<td>Kansas</td>
<td>327,000</td>
</tr>
<tr>
<td>Kentucky</td>
<td>411,000</td>
</tr>
<tr>
<td>Louisiana</td>
<td>446,000</td>
</tr>
<tr>
<td>Maine</td>
<td>231,000</td>
</tr>
<tr>
<td>Maryland</td>
<td>486,000</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>617,000</td>
</tr>
<tr>
<td>Michigan</td>
<td>973,000</td>
</tr>
<tr>
<td>Minnesota</td>
<td>584,000</td>
</tr>
<tr>
<td>Mississippi</td>
<td>279,000</td>
</tr>
<tr>
<td>Missouri</td>
<td>518,000</td>
</tr>
<tr>
<td>Montana</td>
<td>162,000</td>
</tr>
<tr>
<td>Nebraska</td>
<td>246,000</td>
</tr>
<tr>
<td>Nevada</td>
<td>196,000</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>216,000</td>
</tr>
<tr>
<td>New Jersey</td>
<td>763,000</td>
</tr>
<tr>
<td>New Mexico</td>
<td>219,000</td>
</tr>
<tr>
<td>New York</td>
<td>1,633,000</td>
</tr>
<tr>
<td>North Carolina</td>
<td>564,000</td>
</tr>
<tr>
<td>North Dakota</td>
<td>172,000</td>
</tr>
<tr>
<td>Ohio</td>
<td>1,073,000</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>362,000</td>
</tr>
<tr>
<td>Oregon</td>
<td>325,000</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1,090,000</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>199,000</td>
</tr>
<tr>
<td>South Carolina</td>
<td>340,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>168,000</td>
</tr>
<tr>
<td>Tennessee</td>
<td>476,000</td>
</tr>
<tr>
<td>Texas</td>
<td>1,322,000</td>
</tr>
<tr>
<td>Utah</td>
<td>242,000</td>
</tr>
<tr>
<td>Vermont</td>
<td>172,000</td>
</tr>
<tr>
<td>Virginia</td>
<td>571,000</td>
</tr>
<tr>
<td>Washington</td>
<td>438,000</td>
</tr>
<tr>
<td>West Virginia</td>
<td>289,000</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>604,000</td>
</tr>
<tr>
<td>Wyoming</td>
<td>155,000</td>
</tr>
<tr>
<td>American Samoa</td>
<td>115,000</td>
</tr>
<tr>
<td>Guam</td>
<td>120,000</td>
</tr>
<tr>
<td>Northern Marianas</td>
<td>114,000</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>322,000</td>
</tr>
<tr>
<td>U.S. Virgin Islands</td>
<td>122,000</td>
</tr>
<tr>
<td>Total</td>
<td>25,600,000</td>
</tr>
</tbody>
</table>

(3) If the available funds for any fiscal year are less than $25.5 million, then the base allocation for each State shall be reduced proportionally.

(4) If the available funds exceed $25.5 million, $25.5 million shall be allocated as specified in Table 1 and any in excess of $25.5 million shall be allocated as follows:

(i) One-third of the available funds is divided among the States equally;

(ii) One-third of the available funds is divided on the basis of the population of the participating States as contained in the most recent reliable Census data available from the Bureau of the Census, Department of Commerce, for all participating States at the time DOE needs to compute State formula shares;

(iii) One-third of the available funds is divided on the basis of the energy consumption of the participating States as contained in the most recent State Energy Data Report available from DOE's Energy Information Administration.

(c) The budget period covered by the financial assistance provided to a State
§ 420.12 State matching contribution.

(a) Each State shall provide cash, in-kind contributions, or both for SEP activities in an amount totalling not less than 20 percent of the financial assistance allocated to the State under §420.11(b).

(b) Cash and in-kind contributions used to meet this State matching requirement are subject to the limitations on expenditures described in §420.18(a), but are not subject to the 20 percent limitation in §420.18(b).

(c) Nothing in this section shall be read to require a match for petroleum violation escrow funds used under this part.

§ 420.13 Annual State applications and amendments to State plans.

(a) To be eligible for financial assistance under subpart B of this part, a State shall submit to the cognizant Regional Support Office Director an original and two copies of the annual application executed by the Governor, including an amended State plan or any amendments to the State plan needed to reflect changes in the activities the State is planning to undertake for the fiscal year concerned. The date for submission of the annual State application shall be set by DOE.

(b) An application shall include:

1. A face sheet containing basic identifying information, on Standard Form (SF) 424;

2. A description of the energy efficiency, renewable energy, and alternative transportation fuel goals to be achieved, including wherever practicable:
 (i) An estimate of the energy to be saved by implementation of the State plan;
 (ii) Why the goals were selected;
 (iii) How the attainment of the goals will be measured by the State; and
 (iv) How the program activities included in the State plan represent a strategy to achieve these goals;

3. With respect to financial assistance under subpart B of this part, a goal, consisting of an improvement of 10 percent or more in the efficiency of use of energy in the State concerned in the calendar year 2000, as compared to the calendar year 1990, and may contain interim goals;

4. For the budget period for which financial assistance will be provided:
 (i) A total program budget with supporting justification, broken out by object category and by source of funding;
 (ii) The source and amount of State matching contribution;
 (iii) A narrative statement detailing the nature of State plan amendments and of new program activities.

5. A reasonable assurance to DOE that it has established policies and procedures designed to assure that Federal financial assistance under subpart B of this part will be used to supplement, and not to supplant the existing DOE program under 10 CFR part 440.

7. An assurance that the State shall comply with all applicable statutes and regulations in effect with respect to the periods for which it receives grant funding; and
(9) For informational purposes only, and not subject to DOE review, an energy emergency plan for an energy supply disruption, as designed by the State consistent with applicable Federal and State law including an implementation strategy or strategies (including regional coordination) for dealing with energy emergencies.

(c) The Governor may request an extension of the annual submission date by submitting a written request to the cognizant Regional Support Office Director not less than 15 days prior to the annual submission date. The extension shall be granted only if, in the cognizant Regional Support Office Director's judgment, acceptable and substantial justification is shown, and the extension would further objectives of the Act.

§ 420.14 Review and approval of annual State applications and amendments to State plans.

(a) After receipt of an application for financial assistance under subpart B of this part and for approval of an amendment, if any, to a State plan, the cognizant Regional Support Office Director may request the State to submit within a reasonable period of time any revisions necessary to make the application complete and to bring the application into compliance with the requirements of this part. The cognizant Regional Support Office Director shall attempt to resolve any dispute over the application informally and to seek voluntary compliance. If a State fails to submit timely appropriate revisions to complete an application or to bring it into compliance, the cognizant Regional Support Office Director may reject the application in a written decision, including a statement of reasons, which shall be subject to administrative review under §420.19 of this part.

(b) On or before 60 days from the date that a timely filed application is complete, the cognizant Regional Support Office Director shall—

(i) Approve the application in whole or in part to the extent that—

(ii) The proposed program activities are consistent with a State's achievement of its energy conservation goals in accordance with §420.13; and

(iii) The provisions of the application regarding program activities satisfy the minimum requirements prescribed by §420.15 and §420.17 as applicable;

(2) Approve the application in whole or in part subject to special conditions designed to ensure compliance with the requirements of this part; or

(3) Disapprove the application if it does not conform to the requirements of this part.

§ 420.15 Minimum criteria for required program activities for plans.

A plan shall satisfy all of the following minimum criteria for required program activities.

(a) Mandatory lighting efficiency standards for public buildings shall:

(1) Be implemented throughout the State, except that the standards shall be adopted by the State as a model code for those local governments of the State for which the State's constitution reserves the exclusive authority to adopt and implement building standards within their jurisdictions;

(2) Apply to all public buildings (except for public buildings owned or leased by the United States), above a certain size, as determined by the State;

(3) For new public buildings, be no less stringent than the provisions of ASHRAE/IESNA 90.1-1989, and should be updated by enactment of, or support for the enactment into local codes or standards, which, at a minimum, are comparable to provisions of ASHRAE/IESNA 90.1-1989 which is incorporated by reference in accordance with 5 U.S.C. 552 (a) and 1 CFR part 51. The availability of this incorporation by reference is given in §420.6; and

(4) For existing public buildings, contain the elements deemed appropriate by the State.

(b) Program activities to promote the availability and use of carpools, vanpools, and public transportation shall:

(1) Have at least one of the following actions under implementation in at
least one urbanized area with a population of 50,000 or more within the State or in the largest urbanized area within the State if that State does not have an urbanized area with a population of 50,000 or more:

(i) A carpool/vanpool matching and promotion campaign;
(ii) Park-and-ride lots;
(iii) Preferential traffic control for carpoolers and public transportation patrons;
(iv) Preferential parking for carpools and vanpools;
(v) Variable working schedules;
(vi) Improvement in transit level of service for public transportation;
(vii) Exemption of carpools and vanpools from regulated carrier status;
(viii) Parking taxes, parking fee regulations or surcharge on parking costs;
(ix) Full-cost parking fees for State and/or local government employees;
(x) Urban area traffic restrictions;
(xi) Geographical or time restrictions on automobile use; or
(xii) Area or facility tolls; and

(2) Be coordinated with the relevant Metropolitan Planning Organization, unless no Metropolitan Planning Organization exists in the urbanized area, and not be inconsistent with any applicable Federal requirements.

(c) Mandatory standards and policies affecting the procurement practices of the State and its political subdivisions to improve energy efficiency shall—

(1) With respect to all State procurement and with respect to procurement of political subdivisions to the extent determined feasible by the State, be under implementation; and

(2) Be coordinated with the relevant Metropolitan Planning Organization, unless no Metropolitan Planning Organization exists in the urbanized area, and not be inconsistent with any applicable Federal requirements.

(c) Mandatory standards and policies affecting the procurement practices of the State and its political subdivisions to improve energy efficiency shall—

(1) With respect to all State procurement and with respect to procurement of political subdivisions to the extent determined feasible by the State, be under implementation; and

(2) Be coordinated with the relevant Metropolitan Planning Organization, unless no Metropolitan Planning Organization exists in the urbanized area, and not be inconsistent with any applicable Federal requirements.

(d) Mandatory thermal efficiency standards for new and renovated buildings shall—

(1) Be implemented throughout the State, with respect to all buildings (other than buildings owned or leased by the United States, buildings whose peak design rate of energy usage for all purposes is less than one watt (3.4 Btu's per hour) per square foot of floor space for all purposes, or manufactured homes), except that the standards shall be adopted by the State as a model code for those local governments of the State for which the State's law reserves the exclusive authority to adopt and implement building standards within their jurisdictions;

(2) Take into account the exterior envelope physical characteristics, HVAC system selection and configuration, HVAC equipment performance and service water heating design and equipment selection;

(3) For all new commercial and multifamily high-rise buildings, be no less stringent than provisions of sections 7-12 of ASHRAE/IESNA 90.1-1989, and should be updated by enactment of, or support for the enactment into local codes or standards, which, at a minimum, are comparable to provisions of ASHRAE/IESNA 90.1-1989; and

(4) For all new single-family and multifamily low-rise residential buildings, be no less stringent than the Model Energy Code, 1993, and should be updated by enactment of, or support for the enactment into local codes or standards, which, at a minimum, are comparable to the Model Energy Code, 1993, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of this incorporation by reference is given in §420.6;

(5) For renovated buildings:

(i) Apply to those buildings determined by the State to be renovated buildings; and

(ii) Contain the elements deemed appropriate by the State regarding thermal efficiency standards for renovated buildings.

(e) A traffic law or regulation which permits the operator of a motor vehicle to make a turn at a red light after stopping shall:

(1) Be in a State's motor vehicle code and under implementation throughout all political subdivisions of the State;

(2) Permit the operator of a motor vehicle to make a right turn (left turn with respect to the Virgin Islands) at a red traffic light after stopping except where specifically prohibited by a traffic sign for reasons of safety or except where generally prohibited in an urban enclave for reasons of safety; and

(3) Permit the operator of a motor vehicle to make a left turn from a one-
way street to a one-way street (right
turn with respect to the Virgin Islands)
at a red traffic light after stopping ex-
cept where specifically prohibited by a
traffic sign for reasons of safety or ex-
cept where generally prohibited in an
urban enclave for reasons of safety.

(f) Procedures must exist for ensur-
ing effective coordination among var-
ious local, State, and Federal energy
efficiency, renewable energy and alter-
native transportation fuel programs
within the State, including any pro-
gram administered within the Office of
Building Technology, State and Com-

§ 420.17 Optional elements of State En-

ergy Program plans.

(a) Other appropriate activities or
programs may be included in the State
plan. These activities may include, but
are not limited to, the following:

(1) Program activities of public edu-
cation to promote energy efficiency,
renewable energy, and alternative
transportation fuels;

(2) Program activities to increase
transportation energy efficiency, in-
cluding programs to accelerate the use
of alternative transportation fuels for
government vehicles, fleet vehicles,
taxi, mass transit, and privately
owned vehicles;

(3) Program activities for financing
energy efficiency measures and renew-
able energy measures—

(i) Which may include loan programs
and performance contracting programs
for leveraging of additional public and
private sector funds and program ac-
tivities which allow rebates, grants, or
other incentives for the purchase of
energy efficiency measures and renewable
energy measures; or

(ii) In addition to or in lieu of pro-
gram activities described in paragraph
(a)(3)(i) of this section, which may be
used in connection with public or non-
profit buildings owned and operated by
a State, a political subdivision of a
State or an agency or instrumentality
of a State, or an organization exempt
from taxation under section 501(c)(3) of
the Internal Revenue Code of 1986 in-
cluding public and private non-profit
schools and hospitals, and local govern-
ment buildings;

(4) Program activities for encourag-
ing and for carrying out energy audits
with respect to buildings and industrial
facilities (including industrial proc-
esses) within the State;

(5) Program activities to promote the
adoption of integrated energy plans
which provide for:

(i) Periodic evaluation of a State's
energy needs, available energy re-
sources (including greater energy effi-
ciency), and energy costs; and

(ii) Utilization of adequate and reli-
able energy supplies, including greater
energy efficiency, that meet applicable
safety, environmental, and policy re-
quirements at the lowest cost;

(6) Program activities to promote en-
ergy efficiency in residential housing,
such as:

(i) Program activities for develop-
ment and promotion of energy effi-
ciency rating systems for newly con-
structed housing and existing housing
so that consumers can compare the en-
ergy efficiency of different housing;

(ii) Program activities for the adop-
tion of incentives for builders, utili-
ties, and mortgage lenders to build,
service, or finance energy efficient housing;

(7) Program activities to identify unfair or deceptive acts or practices which relate to the implementation of energy efficiency measures and renewable energy measures and to educate consumers concerning such acts or practices;

(8) Program activities to modify patterns of energy consumption so as to reduce peak demands for energy and improve the efficiency of energy supply systems, including electricity supply systems;

(9) Program activities to promote energy efficiency as an integral component of economic development planning conducted by State, local, or other governmental entities or by energy utilities;

(10) Program activities (enlisting appropriate trade and professional organizations in the development and financing of such programs) to provide training and education (including, if appropriate, training workshops, practice manuals, and testing for each area of energy efficiency technology) to building designers and contractors involved in building design and construction or in the sale, installation, and maintenance of energy systems and equipment to promote building energy efficiency;

(11) Program activities for the development of building retrofit standards and regulations, including retrofit ordinances enforced at the time of the sale of a building;

(12) Program activities to provide support for prefeasibility and feasibility studies for projects that utilize renewable energy and energy efficiency resource technologies in order to facilitate access to capital and credit for such projects;

(13) Program activities to facilitate and encourage the voluntary use of renewable energy technologies for eligible participants in Federal agency programs, including the Rural Electrification Administration and the Farmers Home Administration; and

(14) In accordance with paragraph (b) of this section, program activities to implement the Energy Technology Commercialization Services Program.

(b) This section prescribes requirements for establishing State-level Energy Technology Commercialization Services Program as an optional element of State plans.

(1) The program activities to implement the functions of the Energy Technology Commercialization Services Program shall:

(i) Aid small and start-up businesses in discovering useful and practical information relating to manufacturing and commercial production techniques and costs associated with new energy technologies;

(ii) Encourage the application of such information in order to solve energy technology product development and manufacturing problems;

(iii) Establish an Energy Technology Commercialization Services Program affiliated with an existing entity in each State;

(iv) Coordinate engineers and manufacturers to aid small and start-up businesses in solving specific technical problems and improving the cost effectiveness of methods for manufacturing new energy technologies;

(v) Assist small and start-up businesses in preparing the technical portions of proposals seeking financial assistance for new energy technology commercialization; and

(vi) Facilitate contract research between university faculty and students and small start-up businesses, in order to improve energy technology product development and independent quality control testing.

(2) Each State Energy Technology Commercialization Services Program shall develop and maintain a data base of engineering and scientific experts in energy technologies and product commercialization interested in participating in the service. Such data base shall, at a minimum, include faculty of institutions of higher education, retired manufacturing experts, and National Laboratory personnel.

(3) The services provided by the Energy Technology Commercialization Services Program established under this part shall be available to any small or start-up business. Such service programs shall charge fees which are affordable to a party eligible for assistance, which shall be determined by
examine factors, including the following: the costs of the services received; the need of the recipient for the services; and the ability of the recipient to pay for the services.

§ 420.18 Expenditure prohibitions and limitations.

(a) No financial assistance provided to a State under this part shall be used:

(1) For construction, such as construction of mass transit systems and exclusive bus lanes, or for construction or repair of buildings or structures;

(2) To purchase land, a building or structure or any interest therein;

(3) To subsidize fares for public transportation;

(4) To subsidize utility rate demonstrations or State tax credits for energy conservation measures or renewable energy measures; or

(5) To conduct, or purchase equipment to conduct, research, development or demonstration of energy efficiency or renewable energy techniques and technologies not commercially available.

(b) No more than 20 percent of the financial assistance awarded to the State for this program shall be used to purchase office supplies, library materials, or other equipment whose purchase is not otherwise prohibited by this section. Nothing in this paragraph shall be read to apply this 20 percent limitation to petroleum violation escrow funds used under this part.

(c) Demonstrations of commercially available energy efficiency or renewable energy techniques and technologies are permitted, and are not subject to the prohibitions of §420.18(a)(1), or to the limitation on equipment purchases of §420.18(b).

(d) A State may use regular or revolving loan mechanisms to fund SEP services which are consistent with this part and which are included in the State's approved SEP plan. The State may use loan repayments and any interest on the loan funds only for activities which are consistent with this part and which are included in the State's approved SEP plan.

(e) A State may use funds under this part for the purchase and installation of equipment and materials for energy efficiency measures and renewable energy measures, including reasonable design costs, subject to the following terms and conditions:

(1) Such use must be included in the State's approved plan and, if funded by petroleum violation escrow funds, must be consistent with any judicial or administrative terms and conditions imposed upon State use of such funds;

(2) A State may use for these purposes no more than 50 percent of all funds allocated by the State to SEP in a given year, regardless of source, except that this limitation shall not include regular and revolving loan programs funded with petroleum violation escrow funds, and is subject to waiver by DOE for good cause. Loan documents shall ensure repayment of principal and interest within a reasonable period of time, and shall not include provisions of loan forgiveness;

(3) Buildings owned or leased by the United States are not eligible for energy efficiency measures or renewable energy measures under this paragraph;

(4) Funds must be used to supplement and no funds may be used to supplant weatherization activities under the Weatherization Assistance Program for Low-Income Persons, under 10 CFR part 440;

(5) Subject to paragraph (f) of this section, a State may use a variety of financial incentives to fund purchases and installation of materials and equipment under this paragraph including, but not limited to, regular loans, revolving loans, loan buy-downs, performance contracting, rebates and grants.

(f) The following mechanisms are not allowed for funding the purchase and installation of materials and equipment under this paragraph:

(1) Rebates for more than 50 percent of the total cost of purchasing and installing materials and equipment under this paragraph including, but not limited to, regular loans, revolving loans, loan buy-downs, performance contracting, rebates and grants;

(2) Loan guarantees.

§ 420.19 Administrative review.

(a) A State shall have 20 days from the date of receipt of a decision under § 420.14 to file a notice requesting administrative review in accordance with paragraph (b) of this section. If an applicant does not timely file such a notice, the decision under § 420.14 shall become final for DOE.

(b) A notice requesting administrative review shall be filed with the cognizant Regional Support Office Director and shall be accompanied by a written statement containing supporting arguments. If the cognizant Regional Support Office Director has disapproved an entire application for financial assistance, the State may request a public hearing.

(c) A notice or any other document shall be deemed filed under this section upon receipt.

(d) On or before 15 days from receipt of a notice requesting administrative review which is timely filed, the cognizant Regional Support Office Director shall forward to the Deputy Assistant Secretary, the notice requesting administrative review, the decision under § 420.14 as to which administrative review is sought, a draft recommended final decision for concurrence, and any other relevant material.

(e) If the State requests a public hearing on the disapproval of an entire application for financial assistance, the Deputy Assistant Secretary, within 15 days, shall give actual notice to the State and FEDERAL REGISTER notice of the date, place, time, and procedures which shall apply to the public hearing. Any public hearing under this section shall be informal and legislative in nature.

(f) On or before 45 days from receipt of documents under paragraph (d) of this section or the conclusion of the public hearing, whichever is later, the Deputy Assistant Secretary shall concur in, concur in as modified, or issue a substitute for the recommended decision of the cognizant Regional Support Office Director.

(g) On or before 15 days from the date of receipt of the determination under paragraph (f) of this section, the Governor may file an application for discretionary review by the Assistant Secretary. On or before 15 days from filing, the Assistant Secretary shall send a notice to the Governor stating whether the Deputy Assistant Secretary's determination will be reviewed. If the Assistant Secretary grants a review, a decision shall be issued no later than 60 days from the date review is granted. The Assistant Secretary may not issue a notice or decision under this paragraph without the concurrence of the DOE Office of General Counsel.

(h) A decision under paragraph (f) of this section shall be final for DOE if there is no review under paragraph (g) of this section. If there is review under paragraph (g) of this section, the decision thereunder shall be final for DOE and no appeal shall lie elsewhere in DOE.

(i) Prior to the effective date of the termination or suspension of a grant award for failure to implement an approved State plan in compliance with the requirements of this part, a grantee shall have the right to written notice of the basis for the enforcement action and of the opportunity for public hearing before the DOE Financial Assistance Appeals Board notwithstanding any provisions to the contrary of 10 CFR 600.22, 600.24, 600.25, and 600.243. To obtain a public hearing, the grantee must request an evidentiary hearing, with prior FEDERAL REGISTER notice, in the election letter submitted under Rule 2 of 10 CFR 1024.4 and the request shall be granted notwithstanding any provisions to the contrary of Rule 2.

Subpart C—Implementation of Special Projects Financial Assistance

§ 420.30 Purpose and scope.

(a) This subpart sets forth DOE's policies and procedures for implementing special projects financial assistance under this part.

(b) For years in which such funding is available, States may apply for financial assistance to undertake a variety of State-oriented energy-related special projects activities in addition to the funds provided under the regular SEP grants.

(c) The types of funded activities may vary from year to year, and from State to State, depending upon funds...
available for each type of activity and
DOE and State priorities.
(d) A number of end-use sector pro-
grams in the Office of Energy Effi-
ciency and Renewable Energy partici-
pate in the funding of these activities,
and the projects must meet the re-
quirements of those programs.
(e) The purposes of the special
project activities are:
(1) To utilize States to accelerate de-
velopment of energy efficiency, renew-
able energy, and alternative transpor-
tation fuel technologies;
(2) To facilitate the commercializa-
tion of emerging and underutilized en-
ergy efficiency and renewable energy
technologies; and
(3) To increase the responsiveness of
Federally funded technology develop-
ment efforts to the needs of the mar-
tketplace.
§ 420.31 Notice of availability.
(a) If in any fiscal year DOE has
funds available for special projects,
DOE shall publish in the FEDERAL REG-
ISTER one or more notice(s) of avail-
ability of SEP special projects finan-
cial assistance.
(b) Each notice of availability shall
cite this part and shall include:
(1) Brief descriptions of the activities
for which funding is available;
(2) The amount of money DOE has
available or estimates it will have
available for award for each type of ac-
tivity, and the total amount available;
(3) The program official to contact
for additional information, application
forms, and the program guidance/solic-
titation document; and
(4) The dates when:
(i) The program guidance/solicitation
will be available; and
(ii) The applications for financial as-
sistance must be received by DOE.
§ 420.32 Program guidance/solicitation.
After the publication of the notice of
availability in the FEDERAL REGISTER,
DOE shall, upon request, provide
States interested in applying for one or
more project(s) under the special
projects financial assistance with a de-
tailed program guidance/solicitation
that will include:
(a) The control number of the pro-
gram;
(b) The expected duration of DOE
support or period of performance;
(c) An application form or the format
to be used, location for application sub-
mission, and number of copies required;
(d) The name of the DOE program of-
office contact from whom to seek addi-
tional information;
(e) Detailed descriptions of each type
of program activity for which financial
assistance is being offered;
(f) The amount of money available
for award, together with any limita-
tions as to maximum or minimum
amounts expected to be awarded;
(g) Deadlines for submitting applica-
tions;
(h) Evaluation criteria that DOE will
apply in the selection and ranking
process for applications for each pro-
gram activity;
(i) The evaluation process to be ap-
plied to each type of program activity;
(j) A listing of program policy factors
if any that DOE may use in the final
selection process, in addition to the re-
results of the evaluations, including:
(1) The importance and relevance of
the proposed applications to SEP and
the participating programs in the Of-
lice of Energy Efficiency and Renew-
able Energy; and
(2) Geographical diversity;
(k) Reporting requirements;
(l) References to:
(1) Statutory authority for the pro-
gram;
(2) Applicable rules; and
(3) Other terms and conditions appli-
cable to awards made under the pro-
gram guidance/solicitation; and
(m) A statement that DOE reserves
the right to fund in whole or in part,
any, all, or none of the applications
submitted.
§ 420.33 Application requirements.
(a) Consistent with § 420.32 of this
part, DOE shall set forth general and
special project activity-specific re-
quirements for applications for special
projects financial assistance in the pro-
gram guidance/solicitation.
(b) In addition to any other require-
ments, all applications shall provide:
(1) A detailed description of the pro-
posed project, including the objectives
of the project in relationship to DOE's
§ 420.34 Matching contributions or cost-sharing.

DOE may require (as set forth in the program guidance/solicitation) States to provide either:

(a) A matching contribution of at least a specified percentage of the Federal financial assistance award; or

(b) A specified share of the total cost of the project for which financial assistance is provided.

§ 420.35 Application evaluation.

(a) DOE staff at the cognizant Regional Support Office shall perform an initial review of all applications to ensure that the State has provided the information required by this part, 10 CFR part 600, or the program guidance/solicitation, when the nature of the omission precludes review of the application.

(b) DOE shall group, and technically evaluate according to program activity, all applications determined to be complete and satisfactory.

(c) DOE shall select evaluators on the basis of their professional qualifications and expertise relating to the particular program activity being evaluated.

(1) DOE anticipates that evaluators will primarily be DOE employees; but

(2) If DOE uses non-DOE evaluators, DOE shall require them to comply with all applicable DOE rules or directives concerning the use of outside evaluators.

§ 420.36 Evaluation criteria.

The evaluation criteria, including program activity-specific criteria, will be set forth in the program guidance/solicitation document.

§ 420.37 Selection.

(a) DOE may make selection of applications for award based on:

(1) The findings of the technical evaluations;

(2) The priorities of DOE, SEP, and the participating program offices;

(3) The availability of funds for the various special project activities; and

(4) Any program policy factors set forth in the program guidance/solicitation.

(b) The Director, Office of State and Community Programs makes the final selections of projects to be awarded financial assistance.

PART 430—ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS

Subpart A—General Provisions

Sec.
430.1 Purpose and scope.
430.2 Definitions.

Subpart B—Test Procedures

430.21 Purpose and scope.
430.22 Reference sources.
430.23 Test procedures for measures of energy consumption.
430.24 Units to be tested.
430.25 Laboratory accreditation program.
430.27 Petitions for waiver and applications for interim waiver.

APPENDIX A1 (ALTERNATIVE) TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF ELECTRIC REFRIGERATORS AND ELECTRIC REFRIGERATOR-FREEZERS

APPENDIX B1 (ALTERNATIVE) TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF FREEZERS

APPENDIX C TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF DISHWASHERS

APPENDIX D TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF CLOTHES DRYERS

APPENDIX E TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF WATER HEATERS
430.1 Subpart D—Petitions To Exempt State Regulation From Preemption; Petitions To Withdraw Exemption of State Regulation

430.40 Purpose and scope.
430.41 Prescriptions of a rule.
430.42 Filing requirements.
430.43 Notice of petition.
430.44 Consolidation.
430.45 Hearing.
430.46 Disposition of petitions.
430.47 Effective dates of final rules.
430.48 Request for reconsideration.
430.49 Finality of decision.

430.50 Purpose and scope.
430.51 Eligibility.
430.52 Requirements for applications.
430.53 Processing of applications.
430.54 Referral to the Attorney General.
430.55 Evaluation of application.
430.56 Decision and order.
430.57 Duration of temporary exemption.

430.60 Purpose and scope.
430.61 Prohibited acts.
430.62 Submission of data.
430.63 Sampling.
430.64 Imported products.
430.65 Exported products.
430.70 Enforcement.
430.71 Cessation of distribution of a basic model.
430.72 Subpoena.
430.73 Remedies.
430.74 Hearings and Appeals.
430.75 Confidentiality.

430.1 Subpart A—General Provisions

This part establishes the regulations for the implementation of part B of title III (42 U.S.C. 6291-6309) of the Energy Policy and Conservation Act (Pub. L. 94-163), as amended by Pub. L. 95-619, Pub. L. 100-12, Pub. L. 100-357, and
§ 430.2 Definitions.

For purposes of this part, words shall be defined as provided for in section 321 of the Act and as follows—

Annual fuel utilization efficiency means the efficiency descriptor for furnaces and boilers, determined using test procedures prescribed under section 323 and based on the assumption that all—

(a) Weatherized warm air furnaces or boilers are located out-of-doors;
(b) Warm air furnaces which are not weatherized are located indoors and all combustion and ventilation air is admitted through grill or ducts from the outdoors and does not communicate with air in the conditioned space;
(c) Boilers which are not weatherized are located within the heated space.

Automatic clothes washer means a class of clothes washer which has a control system which is capable of scheduling a preselected combination of operations, such as regulation of water temperature, regulation of the water fill level, and performance of wash, rinse, drain, and spin functions without the need for user intervention subsequent to the initiation of machine operation. Some models may require user intervention to initiate these different segments of the cycle after the machine has begun operation, but they do not require the user to intervene to regulate the water temperature by adjusting the external water faucet valves.

Ballast efficacy factor means the relative light output divided by the power input of a fluorescent lamp ballast, as measured under test conditions specified in ANSI Standard C82.2–1984.

Baseboard electric heater means an electric heater which is intended to be recessed in or surface mounted on walls at floor level, which is characterized by long, low physical dimensions, and which transfers heat by natural convection and/or radiation.

Basic model means all units of a given type of covered product (or class thereof) manufactured by one manufacturer and—

1. With respect to refrigerators and refrigerator-freezers, which have the same primary energy source, which have electrical characteristics that are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

2. With respect to freezers, which have the same primary energy source, which have electrical characteristics that are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

3. With respect to dishwashers, which have electrical characteristics which are essentially identical and which do not have any differing physical or functional characteristics which affect energy consumption.

4. With respect to clothes dryers, which have the same primary energy source, which have electrical characteristics that are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

5. With respect to water heaters, which have the same primary energy source and which, with the exception of immersed heating elements, do not have any differing electrical, physical, or functional characteristics that affect energy consumption.

6. With respect to room air conditioners, having essentially identical functional physical and electrical characteristics.

7. With respect to unvented home heating equipment, having essentially identical functional physical and electrical characteristics.

8. With respect to television sets, which have identical screen size, which have electrical characteristics that are essentially identical, and which do not
have any differing physical or functional characteristics that affect energy consumption.

(9) With respect to kitchen ranges and ovens, whose major cooking components have the same primary energy source, which have electrical characteristics that are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

(10) With respect to clothes washers, which have the same primary energy source, which have electrical characteristics that are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

(11) With respect to central air conditioners, which have electrical characteristics which are essentially identical and which do not have any differing physical or functional characteristics that affect energy consumption.

(12) With respect to furnaces, having the same primary energy source and essentially identical functional, physical and electrical characteristics.

(13) With respect to vented home heating equipment, having the same primary energy source and essentially identical functional, physical and electrical characteristics.

(14) With respect to fluorescent lamp ballasts, which have electrical characteristics, including a Power Factor (P.F.) of equal value, which are essentially identical, and which do not have any differing physical or functional characteristics that affect energy consumption.

(15) With respect to general service fluorescent lamps, means lamps that have essentially identical light output and electrical characteristics—including lumens per watt and color rendering index (CRI)—and that do not have any differing physical or functional characteristics that affect energy consumption or efficacy.

(16) With respect to incandescent reflector lamps, means lamps that have essentially identical light output and electrical characteristics—including lumens per watt—and that do not have any differing physical or functional characteristics that affect energy consumption or efficacy.

Batch means a collection of production units of a basic model from which a batch sample is selected.

Batch sample means the collection of units of the same basic model from which test units are selected.

Batch sample size means the number of units in a batch.

Batch size means the number of units in a batch.

BR incandescent reflector lamp means a reflector lamp that has a bulged section below the bulb's major diameter and above its approximate base line as shown in Figure 1 (RB) on page 7 of ANSI C79.1-1994. A BR30 lamp has a lamp wattage of 85 or less than 66 and a BR40 lamp has a lamp wattage of 120 or less.

Btu means British thermal unit, which is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit.

Casement-only means a room air conditioner designed for mounting in a casement window with an encased assembly with a width of 14.8 inches or less and a height of 11.2 inches or less.

Casement-slider means a room air conditioner with an encased assembly designed for mounting in a sliding or casement window with a width of 15.5 inches or less.

Ceiling electric heater means an electric heater which is intended to be recessed in, surface mounted on, or hung from a ceiling, and which transfers heat by radiation and/or convection (either natural or forced).

Central air conditioner means a product, other than a packaged terminal air conditioner, which is powered by single phase electric current, air cooled, rated below 65,000 Btu per hour, not contained within the same cabinet as a furnace, the rated capacity of which is above 225,000 Btu per hour, and is a heat pump or a cooling unit only.

Central system humidifier means a class of humidifier designed to add moisture into the air stream of a heating system.

Clothes washer means a consumer product designed to clean clothes, utilizing a water solution of soap and/or detergent and mechanical agitation or other movement, and must be one of the following classes: automatic clothes washers, semi-automatic
clothes washers, and other clothes washers.

Coil family means a group of coils with the same basic design features that affect the heat exchanger performance. These features are the basic configuration, i.e., A-shape, V-shape, slanted or flat top, the heat transfer surfaces on refrigerant and air sides (flat tubes vs. grooved tubes, fin shapes), the tube and fin materials, and the coil circuitry. When a group of coils has all these features in common, it constitutes a “coil family.”

Cold temperature fluorescent lamp means a fluorescent lamp specifically designed to start at \(-20\)\(^\circ\)F when used with a ballast conforming to the requirements of ANSI Standard C78.1-1991, and is expressly designated as a cold temperature lamp both in markings on the lamp and in marketing materials, including but not limited to catalogs, sales literature, and promotional material.

Colored fluorescent lamp means a fluorescent lamp designated and marketed as a colored lamp, and with either of the following characteristics: a CRI less than 40, as determined according to the method given in CIE Publication 13.2 (see 10 CFR 430.22), or a lamp correlated color temperature less than 2,500K or greater than 6,600K.

Colored incandescent lamp means an incandescent lamp designated and marketed as a colored lamp that has a CRI less than 50, as determined according to the method given in CIE Publication 13.2 (see 10 CFR 430.22); has a correlated color temperature less than 2,500K or greater than 4,600K; has a lens containing 5 percent or more neodymium oxide; or contains a filter to suppress yellow and green portions of the spectrum and is specifically designed, designated and marketed as a plant light.

Color Rendering Index or CRI means the measured degree of color shift objects undergo when illuminated by a light source as compared with the color of those same objects when illuminated by a reference source of comparable color temperature.

Color television set means an electrical device designed to convert incoming broadcast signals into color television pictures and associated sound.

Compact refrigerator/freezer means any refrigerator, refrigerator-freezer or freezer with total volume less than 7.75 cubic feet (220 liters)(rated volume as determined in Appendix A1 and B1 of subpart B of this part) and 36 inches (0.91 meters) or less in height.

Condenser-evaporator coil combination means a condensing unit made by one manufacturer and one of several evaporator coils, either manufactured by the same manufacturer or another manufacturer, intended to be combined with that particular condensing unit.

Condensing unit means a component of a central air conditioner which is designed to remove the heat absorbed by the refrigerant and to transfer it to the outside environment, and which consists of an outdoor coil, compressor(s), and air moving device.

Consumer product means any article (other than an automobile, as defined in section 501(1) of the Motor Vehicle Information and Cost Savings Act) of a type:

(a) Which in operation consumes, or is designed to consume, energy; and

(b) Which, to any significant extent, is distributed in commerce for personal use or consumption by individuals; without regard to whether such article or such type is in fact distributed in commerce for personal use or consumption by an individual, except that such term includes fluorescent lamp ballasts distributed in commerce for personal or commercial use or consumption.

Conventional cooking top means a class of kitchen ranges and ovens which is a household cooking appliance consisting of a horizontal surface containing one or more surface units which include either a gas flame or electric resistance heating.

Conventional oven means a class of kitchen ranges and ovens which is a household cooking appliance consisting of one or more compartments intended for the cooking or heating of food by means of either a gas flame or electric resistance heating. It does not include portable or countertop ovens which use electric resistance heating for the cooking or heating of food and are designed for an electrical supply of approximately 120 volts.
Conventional range means a class of kitchen ranges and ovens which is a household cooking appliance consisting of a conventional cooking top and one or more conventional ovens.

Convertible cooking appliance means any kitchen range and oven which is a household cooking appliance designed by the manufacturer to be changed in service from use with natural gas to use with LP-gas, and vice versa, by incorporating in the appliance convertible orifices for the main gas burners and a convertible gas pressure regulator.

Correlated color temperature means the absolute temperature of a blackbody whose chromaticity most nearly resembles that of the light source.

Covered product means a consumer product of a type specified in section 322 of the Act.

Design voltage with respect to an incandescent lamp means:

(1) The voltage marked as the intended operating voltage;

(2) The mid-point of the voltage range if the lamp is marked with a voltage range; or

(3) 120 V if the lamp is not marked with a voltage or voltage range.

Direct vent system means a system supplied by a manufacturer which provides outdoor air or air from an unheated space (such as an attic or crawl space) directly to a furnace or vented heater for combustion and for draft relief if the unit is equipped with a draft control device.

Dishwasher means a cabinet-like appliance which with the aid of water and detergent, washes, rinses, and dries (when a drying process is included) dishware, glassware, eating utensils, and most cooking utensils by chemical, mechanical and/or electrical means and discharges to the plumbing drainage system.

DOE means the Department of Energy.

Electric boiler means an electrically powered furnace designed to supply low pressure steam or hot water for space heating application. A low pressure steam boiler operates at or below 15 pounds per square inch gauge (psig) steam pressure; a hot water boiler operates at or below 160 psig water pressure and 250° F. water temperature.

Electric central furnace means a furnace designed to supply heat through a system of ducts with air as the heating medium, in which heat is generated by one or more electric resistance heating elements and the heated air is circulated by means of a fan or blower.

Electric clothes dryer means a cabinet-like appliance designed to dry fabrics in a tumble-type drum with forced air circulation. The heat source is electricity and the drum and blower(s) are driven by an electric motor(s).

Electric heater means an electric appliance in which heat is generated from electrical energy and dissipated by convection and radiation and includes baseboard electric heaters, ceiling electric heaters, floor electric heaters, portable electric heaters, and wall electric heaters.

Electric refrigerator means a cabinet designed for the refrigerated storage of food at temperatures above 32° F., and having a source of refrigeration requiring single phase, alternating current electric energy input only. An electric refrigerator may include a compartment for the freezing and storage of food at temperatures below 32° F., but does not provide a separate low temperature compartment designed for the freezing and storage of food at temperatures below 8° F.

Electric refrigerator-freezer means a cabinet which consists of two or more compartments with at least one of the compartments designed for the refrigerated storage of food at temperatures above 32° F., and with at least one of the compartments designed for the freezing and storage of food at temperatures below 8° F. which may be adjusted by the user to a temperature of 0° F. or below. The source of refrigeration requires single phase, alternating current electric energy input only.

Energy conservation standard means:

(a) A performance standard which prescribes a minimum level of energy efficiency or a maximum quantity of energy use for a covered product, determined in accordance with test procedures prescribed under section 323; or

(b) A design requirement for the products specified in paragraphs (6), (7), (8), (10), and (13) of section 322(a) of the
Act; and includes any other requirements which the Secretary may prescribe under section 325(o) of the Act.

ER incandescent reflector lamp means a reflector lamp with an elliptical section below the bulb's major diameter and above its approximate baseline as shown in Figure 1 (RE) on page 7 of ANSI C79.1-1994 (see 10 CFR 430.22) and a finished size and shape shown in ANSI C78.21-1989 including the referenced reflective characteristics in part 7 of ANSI C78.21-1989 (see 10 CFR 430.22).

Evaporator coil means a component of a central air conditioner which is designed to absorb heat from an enclosed space and transfer the heat to a refrigerant.

Floor electric heater means an electric heater which is intended to be recessed in a floor, and which transfers by radiation and/or convection (either natural or forced).

Fluorescent lamp means a low pressure mercury electric-discharge source in which a fluorescing coating transforms some of the ultraviolet energy generated by the mercury discharge into light, including only the following:

(1) Any straight-shaped lamp (commonly referred to as 4-foot medium bi-pin lamps) with medium bi-pin bases of nominal overall length of 48 inches and rated wattage of 28 or more.

(2) Any U-shaped lamp (commonly referred to as 2-foot U-shaped lamps) with medium bi-pin bases of nominal overall length between 22 and 25 inches and rated wattage of 28 or more.

(3) Any rapid start lamp (commonly referred to as 8-foot high output lamps) with recessed double contact bases of nominal overall length of 96 inches and 0.800 nominal amperes, as defined in ANSI C78.1-1991.

(4) Any instant start lamp (commonly referred to as 8-foot slimline lamps) with single pin bases of nominal overall length of 96 inches and rated wattage of 52 or more, as defined in ANSI C78.3-1991.

Fluorescent lamp ballast means a device which is used to start and operate fluorescent lamps by providing a starting voltage and current and limiting the current during normal operation.

Forced air central furnace means a gas or oil burning furnace designed to supply heat through a system of ducts with air as the heating medium. The heat generated by combustion of gas or oil is transferred to the air within a casing by conduction through heat exchange surfaces and is circulated through the duct system by means of a fan or blower.

Freezer means a cabinet designed as a unit for the freezing and storage of food at temperatures of 0° F. or below, and having a source of refrigeration requiring single phase, alternating current electric energy input only.

Furnace means a product which utilizes only single-phase electric current, or single-phase electric current or DC current in conjunction with natural gas, propane, or home heating oil, and which—

(a) Is designed to be the principal heating source for the living space of a residence;

(b) Is not contained within the same cabinet with a central air conditioner whose rated cooling capacity is above 65,000 Btu per hour;

(c) Is an electric central furnace, electric boiler, forced-air central furnace, gravity central furnace, or low pressure steam or hot water boiler; and

(d) Has a heat input rate of less than 300,000 Btu per hour for electric boilers and low pressure steam or hot water boilers and less than 225,000 Btu per hour for forced-air central furnaces, gravity central furnaces, and electric central furnaces, gravity central furnaces, and electric central furnaces.

Gas means either natural gas or propane.

Gas clothes dryer means a cabinet-like appliance designed to dry fabrics in a tumble-type drum with forced air circulation. The heat source is gas and the drum and blower(s) are driven by an electric motor(s).

General Service Fluorescent Lamp means any fluorescent lamp which can be used to satisfy the majority of fluorescent lighting applications, but does not include any lamp designed and marketed for the following nongeneral applications:

(1) Fluorescent lamps designed to promote plant growth.
(2) Fluorescent lamps specifically designed for cold temperature applications.
(3) Colored fluorescent lamps.
(4) Impact-resistant fluorescent lamps.
(5) Reflectorized or aperture lamps.
(6) Lamps primarily designed to produce radiation in the ultra-violet region of the spectrum.
(7) Lamps with a Color Rendering Index of 82 or greater.

General Service Incandescent Lamp means any incandescent lamp (other than a miniature or photographic lamp) that has an E26 medium screw base, a rated voltage range at least partially within 115 to 130 volts, and which can be used to satisfy the majority of lighting applications, but does not include any lamps specifically designed for:

(1) Traffic signal, or street lighting service;
(2) Airway, airport, aircraft, or other aviation service;
(3) Marine, or marine signal service;
(4) Photo, projection, sound reproduction, or film viewer service;
(5) Stage, studio, or television service;
(6) Mill, saw mill, or other industrial process service;
(7) Mine service;
(8) Headlight, locomotive, street railway, or other transportation service;
(9) Heating service;
(10) Code beacon, marine signal, lighthouse, reprographic, or other communication service;
(11) Medical or dental service;
(12) Microscope, map, microfilm, or other specialized equipment service;
(13) Swimming pool, or other underwater service;
(14) Decorative or showcase service;
(15) Producing colored light;
(16) Shatter resistance which has an external protective coating; or
(17) Appliance service.

Gravity central furnace means a gas fueled furnace which depends primarily on natural convection for circulation of heated air and which is designed to be used in conjunction with a system of ducts.

Heat pump means a product, other than a packaged terminal heat pump, which consists of one or more assemblies, powered by single phase electric current, rated below 65,000 Btu per hour, utilizing an indoor conditioning coil, compressor, and refrigerant-to-outdoor air heat exchanger to provide air heating, and may also provide air cooling, dehumidifying, humidifying circulating, and air cleaning.

Home heating equipment, not including furnaces means vented home heating equipment and unvented home heating equipment.

Immersed heating element means an electrically powered heating device which is designed to operate while totally immersed in water in such a manner that the heat generated by the device is imparted directly to the water.

Incandescent lamp means a lamp in which light is produced by a filament heated to incandescence by an electric current, including only the following:

(1) Any lamp (commonly referred to as lower wattage non-reflector general service lamps, including any tungsten halogen lamp) that has a rated wattage between 30 and 199, has an E26 medium screw base, has a rated voltage or voltage range that lies at least partially in the range of 115 and 130 volts, and is not a reflector lamp.
(2) Any incandescent reflector lamp.
(3) Any general service incandescent lamp (commonly referred to as a high or higher-wattage lamp) that has a rated wattage above 199 (above 205 for a high wattage reflector lamp).

Incandescent reflector lamp (commonly referred to as a reflector lamp) means any lamp in which light is produced by a filament heated to incandescence by an electric current, which is not colored or designed for rough or vibration service applications that contains an inner reflective coating on the outer bulb to direct the light; has an R, PAR or similar bulb shape (excluding ER or BR) with an E26 medium screw base; has a rated voltage or voltage range that lies at least partially in the range of 115 and 130 volts; has a diameter that exceeds 2.75 inches; and is either a low(er)-wattage reflector lamp that has a rated wattage between 40 and 205; or a high(er)-wattage reflector lamp that has a rated wattage above 205.
Kerosene means No. 1 fuel oil with a viscosity meeting the specifications as specified in UL-730-1974, section 36.9 and in tables 2 and 3 of ANSI Standard Z91.1-1972.

Kitchen ranges and ovens means consumer products that are used as the major household cooking appliances. They are designed to cook or heat different types of food by one or more of the following sources of heat: Gas, electricity, or microwave energy. Each product may consist of a horizontal cooking top containing one or more surface units and/or one or more heating compartments. They must be one of the following classes: Conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, microwave/conventional ranges and other kitchen ranges and ovens.

Lamp Efficacy (LE) means the measured lumen output of a lamp in lumens divided by the measured lamp electrical power input in watts expressed in units of lumens per watt (LPW).

Low pressure steam or hot water boiler means an electric, gas or oil burning furnace designed to supply low pressure steam or hot water for space heating application. A low pressure steam boiler operates at or below 15 pounds psig steam pressure; a hot water boiler operates at or below 160 psig water pressure and 250°F water temperature.

LP-gas means liquefied petroleum gas, and includes propane, butane, and propane/butane mixtures.

Major cooking component means either a conventional cooking top, a conventional oven or a microwave oven.

Manufacturer means any person who manufactures a consumer product.

Medium Base Compact Fluorescent Lamp means an integrally ballasted fluorescent lamp with a medium screw base, a rated input voltage range of 115 to 130 volts and which is designed as a direct replacement for a general service incandescent lamp.

Microwave/conventional range means a class of kitchen ranges and ovens which is a household cooking appliance consisting of a compartment designed to cook or heat food by means of microwave energy.

Mobile home furnace means a direct vent furnace that is designed for use only in mobile homes.

Monochrome television set means an electrical device designed to convert incoming broadcast signals into monochrome television pictures and associated sound.

Natural gas means natural gas as defined by the Federal Power Commission.

Oil means heating oil grade No. 2 as defined in American Society for Testing and Materials (ASTM) D396-71.

Other clothes washer means a class of clothes washer which is not an automatic or semi-automatic clothes washer.

Other kitchen ranges and ovens means any class of kitchen ranges and ovens other than the conventional range, conventional cooking top, conventional oven, microwave oven, and microwave/conventional range classes.

Outdoor furnace or boiler is a furnace or boiler normally intended for installation out-of-doors or in an unheated space (such as an attic or a crawl space).

Packaged terminal air conditioner means a wall sleeve and a separate unencased combination of heating and cooling assemblies specified by the builder and intended for mounting through the wall. It includes a prime source of refrigeration, separable outdoor louvers, forced ventilation, and heating availability energy.

Packaged terminal heat pump means a packaged terminal air conditioner that utilizes reverse cycle refrigeration as its prime heat source and should have supplementary heating availability by builder’s choice of energy.

Person includes any individual, corporation, company, association, firm, partnership, society, trust, joint venture or joint stock company, the government, and any agency of the United States or any State or political subdivision thereof.

Pool heater means an appliance designed for heating nonpotable water contained at atmospheric pressure, including heating water in swimming pools.
pools, spas, hot tubs and similar applications.

Portable electric heater means an electric heater which is intended to stand unsupported, and can be moved from place to place within a structure. It is connected to electric supply by means of a cord and plug, and transfers heat by radiation and/or convention (either natural or forced).

Primary heater means a heating device that is the principal source of heat for a structure and includes baseboard electric heaters, ceiling electric heaters, and wall electric heaters.

Propane means a hydrocarbon whose chemical composition is predominantly C₃H₈, whether recovered from natural gas or crude oil.

Rated voltage with respect to incandescent lamps means:
(1) The design voltage if the design voltage is 115 V, 130 V or between 115 V and 130 V;
(2) 115 V if the design voltage is less than 115 V and greater than or equal to 100 V and the lamp can operate at 115 V; and
(3) 130 V if the design voltage is greater than 130 V and less than or equal to 150 V and the lamp can operate at 130 V.

Rated wattage, with respect to 4-foot medium bi-pin T8, T10 or T12 lamps, means:
(1) If the lamp is listed in ANSI C78.1-1991, the nominal wattage of a lamp determined by the lamp designation in Annex A.2 of ANSI C78.1-1991; or
(2) If the lamp is a residential straight-shaped lamp, the wattage a lamp consumes when operated on a reference ballast for which the lamp is designed; or
(3) If the lamp is neither listed in ANSI C78.1-1991 nor a residential straight-shaped lamp, the wattage a lamp consumes when using reference ballast characteristics of 236 volts, 0.43 amps and 439 ohms for T10 or T12 lamps or reference ballast characteristics of 300 volts, 0.265 amps and 910 ohms for T8 lamps.

Refrigerator means an electric refrigerator.

Refrigerator-freezer means an electric refrigerator-freezer.

Residential straight-shaped lamp means a low pressure mercury electric-discharge source in which a fluorescing coating transforms some of the ultraviolet energy generated by the mercury discharge into light, including a straight-shaped fluorescent lamp with medium bi-pin bases of nominal overall length of 48 inches and is either designed exclusively for residential applications; or designed primarily and marketed exclusively for residential applications.

(1) A lamp is designed exclusively for residential applications if it will not function for more than 100 hours with a commercial high-power-factor ballast.
(2) A lamp is designed primarily and marketed exclusively for residential applications if it:
 (i) Is permanently and clearly marked as being for residential use only;
 (ii) Has a life of 6,000 hours or less when used with a commercial high-power-factor ballast;
 (iii) Is not labeled or represented as a replacement for a fluorescent lamp that is a covered product; and
 (iv) Is marketed and distributed in a manner designed to minimize use of the lamp with commercial high-power-factor ballasts.

(3) A manufacturer may market and distribute a lamp in a manner designed to minimize use of the lamp with commercial high-power-factor ballasts by:
 (i) Packaging and labeling the lamp in a manner that clearly indicates the lamp is for residential use only and includes appropriate instructions concerning proper and improper use; if the lamp is included in a catalog or price list that also includes commercial/industrial lamps, listing the lamp in a separate residential section accompanied by notes about proper use on the same page; and providing as part of any express warranty accompanying the lamp that improper use voids such warranty; or
 (ii) Using other comparably effective measures to minimize use with commercial high-power-factor ballasts.

Room air conditioner means a consumer product, other than a "packaged terminal air conditioner," which is powered by a single phase electric current and which is an encased assembly designed as a unit for mounting in a
window or through the wall for the purpose of providing delivery of conditioned air to an enclosed space. It includes a prime source of refrigeration and may include a means for ventilating and heating.

Rough or vibration service incandescent reflector lamp means a reflector lamp: in which a C-11 (5 support), C-17 (8 support), or C-22 (16 support) filament is mounted (the number of support excludes lead wires); in which the filament configuration is as shown in Chapter 6 of the 1993 Illuminating Engineering Society of North America Lighting Handbook, 8th Edition (see 10 CFR 430.22); and that is designated and marketed specifically for rough or vibration service applications.

Secretary means the Secretary of the Department of Energy.

Semi-automatic clothes washer means a class of clothes washer that is the same as an automatic clothes washer except that user intervention is required to regulate the water temperature by adjusting the external water faucet valves.

State means a State, the District of Columbia, Puerto Rico, or any territory or possession of the United States.

State regulation means a law or regulation of a State or political subdivision thereof.

Supplementary heater means a heating device that provides heat to a space in addition to that which is supplied by a primary heater. Supplementary heaters include portable electric heaters.

Surface unit means either a heating unit mounted in a cooking top, or a heating source and its associated heated area of the cooking top, on which vessels are placed for the cooking or heating of food.

Television set means a color television set or a monochrome television set.

Unvented gas heater means an unvented, self-contained, free-standing, nonrecessed gas-burning appliance which furnishes warm air by gravity or fan circulation.

Unvented home heating equipment means a class of home heating equipment, not including furnaces, used for the purpose of furnishing heat to a space proximate to such heater directly from the heater and without duct connections and includes electric heaters and unvented gas and oil heaters.

Unvented oil heater means an unvented, self-contained, free-standing, nonrecessed oil-burning appliance which furnishes warm air by gravity or fan circulation.

Vented floor furnace means a self-contained vented heater suspended from the floor of the space being heated, taking air for combustion from outside this space. The vented floor furnace supplies heated air circulated by gravity or by a fan directly into the space to be heated through openings in the casing.

Vented home heating equipment or vented heater means a class of home heating equipment, not including furnaces, designed to furnish warmed air to the living space of a residence, directly from the device, without duct connections (except that boots not to exceed 10 inches beyond the casing may be permitted) and includes: vented wall furnace, vented floor furnace, and vented room heater.

Vented room heater means a self-contained, free standing, nonrecessed, vented heater for furnishing warmed air to the space in which it is installed. The vented room heater supplies heated air circulated by gravity or by a fan directly into the space to be heated through openings in the casing.

Vented wall furnace means a self-contained vented heater complete with grilles or the equivalent, designed for incorporation in, or permanent attachment to, a wall of a residence and furnishing heated air circulated by gravity or by a fan directly into the space to be heated through openings in the casing.

Voltage range means a band of operating voltages as marked on an incandescent lamp, indicating that the lamp is designed to operate at any voltage within the band.

Wall electric heater means an electric heater (excluding baseboard electric heaters) which is intended to be recessed in or surface mounted on walls, which transfers heat by radiation and/or convection (either natural or forced) and which includes forced convectors, natural convectors, radiant heaters, high wall or valance heaters.
Water heater means a product which utilizes oil, gas, or electricity to heat potable water for use outside the heater upon demand, including—

(a) Storage type units which heat and store water at a thermostatically controlled temperature, including gas storage water heaters with an input of 75,000 Btu per hour or less, oil storage water heaters with an input of 105,000 Btu per hour or less, and electric storage water heaters with an input of 12 kilowatts or less;

(b) Instantaneous type units which heat water but contain no more than one gallon of water per 4,000 Btu per hour of input, including gas instantaneous water heaters with an input of 200,000 Btu per hour or less, oil instantaneous water heaters with an input of 210,000 Btu per hour or less, and electric instantaneous water heaters with an input of 12 kilowatts or less; and

(c) Heat pump type units, with a maximum current rating of 24 amperes at a voltage no greater than 250 volts, which are products designed to transfer thermal energy from one temperature level to a higher temperature level for the purpose of heating water, including all ancillary equipment such as fans, storage tanks, pumps, or controls necessary for the device to perform its function.

Weatherized warm air furnace or boiler means a furnace or boiler designed for installation outdoors, approved for resistance to wind, rain, and snow, and supplied with its own venting system.

[42 FR 27998, June 1, 1977]

EDITORIAL NOTE: For Federal Register citations affecting § 430.2, see the List of CFR Sections Affected in the Finding Aids section of this volume.

EFFECTIVE DATE NOTE: At 62 FR 23115, Apr. 28, 1997, §430.2 was amended by adding a definition for Compact refrigerator/freezer effective July 1, 2001.

Subpart B—Test Procedures

§ 430.21 Purpose and scope.

This subpart contains test procedures required to be prescribed by DOE pursuant to section 323 of the Act.

§ 430.22 Reference Sources.

(a) Materials incorporated by reference.—(1) General. The following standards which are not otherwise set forth in Part 430 are incorporated by reference and made a part of Part 430. The standards listed in this section have been approved for incorporation by reference by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. The specified versions of the standards are incorporated, and any subsequent amendment to a standard by the standard-setting organization will not affect the DOE test procedures unless and until those test procedures are amended by DOE.

(2) Availability of standards. The standards incorporated by reference are available for inspection at:

(i) Office of the Federal Register Information Center, 800 North Capitol Street, NW., Suite 700, Washington, DC.

(b) List of Sources and Standards Incorporated by Reference.

(1) American National Standards Institute (ANSI). The ANSI standards listed in this paragraph may be obtained from the American National Standards Institute, 1430 Broadway, New York, NY 10018, (212) 642-4600.

1. ANSI C78.1-1991, "for Fluorescent Lamps—Rapid-Start Types—Dimensional and Electrical Characteristics"

2. ANSI C78.2-1991, "for Fluorescent Lamps—Preheat-Start Types—Dimensional and Electrical Characteristics of Fluorescent Lamps"

3. ANSI C78.3-1991, "for Fluorescent Lamps—Instant-Start and Cold-Cathode Types—Dimensional and Electrical Characteristics"
§ 430.23 Test procedures for measures of energy consumption.

(a) Refrigerators and refrigerator-freezers.

(1) The estimated annual operating efficiency of a refrigerator or refrigerator-freezer shall be determined by comparing its measured energy consumption to its rated energy consumption. The estimated annual operating efficiency shall be determined as follows:

\[\text{Estimated Annual Operating Efficiency} = \frac{\text{Measured Energy Consumption}}{\text{Rated Energy Consumption}} \times \frac{1}{100} \times \frac{1}{\text{Number of Days Operated}} \]

(b) Other energy consuming equipment.

(1) The estimated annual operating efficiency of other energy consuming equipment shall be determined by comparing its measured energy consumption to its rated energy consumption. The estimated annual operating efficiency shall be determined as follows:

\[\text{Estimated Annual Operating Efficiency} = \frac{\text{Measured Energy Consumption}}{\text{Rated Energy Consumption}} \times \frac{1}{100} \times \frac{1}{\text{Number of Days Operated}} \]

(c) Reference Standards.

(1) General.

The standards listed in this paragraph are referred to in the DOE test procedures and elsewhere in 10 CFR part 430 but are not incorporated by reference. These sources are given here for information and guidance.

(2) List of References.

3. International Commission on Illumination (CIE). The CIE standards listed in this paragraph may be obtained from the International Commission on Illumination, CIE Bureau Central, Kegelgasse 27, A-1030, Vienna, Austria. CIE publications are also available from TLA Lighting Consultants, 7 Pond Street, Salem, MA 01970, (508) 745-6870.

5. American National Standards Institute/ASHRAE Standard: 103-1993, “Methods of Testing for Annual Fuel Utilization Efficiency of Residential Central Furnaces and Boilers,” (with Errata of October 24, 1996) except for sections 3.0, 7.2.2.5, 8.5.2.1, 9.5.1.2.2, 9.5.2.1, 9.7.1, 10.0, 11.2.12, 11.3.12, 11.4.12, 11.5.12, and appendices B and C.

cost for electric refrigerators and electric refrigerator-freezers without an anti-sweat heater switch shall be the product of the following three factors: (i) The representative average-use cycle of 365 cycles per year, (ii) the average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart, and (iii) the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The estimated annual operating cost for electric refrigerators and electric refrigerator-freezers with an anti-sweat heater switch shall be the product of the following three factors: (i) The representative average-use cycle of 365 cycles per year, (ii) half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just prior to shipping, each in kilowatt-hours per cycle, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart, and (iii) the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the second decimal place.

(3) The estimated annual operating cost for any other specified cycle type for electric refrigerators and electric refrigerator-freezers shall be the product of the following three factors: (i) The representative average-use cycle of 365 cycles per year, (ii) the average per-cycle energy consumption for the specified cycle type, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart, and (iii) the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(4) The energy factor for electric refrigerators and electric refrigerator-freezers, expressed in cubic feet per kilowatt-hour per cycle, shall be—

(i) For electric refrigerators and electric refrigerator-freezers not having an anti-sweat heater switch, the quotient of (A) the adjusted total volume in cubic feet, determined according to 6.1 of appendix A1 of this subpart, divided by (B) the average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart, the resulting quotient then being rounded off to the second decimal place, and

(ii) For electric refrigerators and electric refrigerator-freezers having an anti-sweat heater switch, the quotient of (A) the adjusted total volume in cubic feet, determined according to 6.1 of appendix A1 of this subpart, divided by (B) half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just prior to shipping, each in kilowatt-hours per cycle, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart, the resulting quotient then being rounded off to the second decimal place.

(5) The annual energy use of electric refrigerators and electric refrigerator-freezers equals the representative average use cycle of 365 cycles per year times the average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to 6.2 (6.3.6 for externally vented units) of appendix A1 of this subpart.

(6) Other useful measures of energy consumption for electric refrigerators and electric refrigerator-freezers shall be those measures of energy consumption for electric refrigerators and electric refrigerator-freezers which the Secretary determines are likely to assist consumers in making purchasing decisions which are derived from the application of appendix A1 of this subpart.

(7) The estimated regional annual operating cost for externally vented electric refrigerators and externally vented electric refrigerator-freezers, without an anti-sweat heater switch shall be
§ 430.23

10 CFR Ch. II (1–1–98 Edition)

the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year,
(ii) The regional average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to 6.3.7 of appendix A1 of this subpart, and
(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(8) The estimated regional annual operating cost for externally vented electric refrigerators and externally vented electric refrigerator-freezers with an anti-sweat heater switch shall be the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year,
(ii) Half the sum of the average per-cycle energy consumption for the standard cycle and the regional average per-cycle energy consumption for a test cycle with the anti-sweat heater switch in the position set at the factory just prior to shipping, each in kilowatt-hours per cycle, determined according to 6.3.7 of appendix A1 of this subpart, and
(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(9) The estimated regional annual operating cost for any other specified cycle for externally vented electric refrigerators and externally vented electric refrigerator-freezers shall be the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year,
(ii) The regional average per-cycle energy consumption for the specified cycle, determined according to 6.3.7 of appendix A1 of this subpart, and
(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(b) Freezers.

(1) The estimated annual operating cost for freezers without an anti-sweat heater switch shall be the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year,
(ii) The average per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according to 6.2 of appendix B1 of this subpart, and
(iii) The representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The estimated annual operating cost for freezers with an anti-sweat heater switch shall be the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year, (ii) half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat heater switch in the position set at the factory just prior to shipping, each in kilowatt-hours per cycle, determined according to 6.2 of appendix B1 of this subpart, and (iii) the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(3) The estimated annual operating cost for an other specified cycle type for freezers shall be the product of the following three factors:

(i) The representative average-use cycle of 365 cycles per year, (ii) the average per-cycle energy consumption for the specified cycle type, determined according to 6.2 of appendix B1 of this subpart, and (iii) the representative average unit cost of electricity in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(4) The energy factor for freezers, expressed in cubic feet per kilowatt-hour per cycle, shall be—

(i) For freezers not having an anti-sweat heater switch, the quotient of
(A) the adjusted net refrigerated volume in cubic feet, determined according to 6.1 of appendix B1 of this subpart, divided by (B) the average per-cycle energy consumption for the
(ii) For freezers having an anti-sweat heater switch, the quotient of (A) the adjusted net refrigerated volume in cubic feet, determined according to 6.1 of appendix B1 of this subpart, divided by (B) half the sum of the average per-cycle energy consumption for the standard cycle and the average per-cycle energy consumption for a test cycle type with the anti-sweat switch in the position set at the factory just prior to shipping, each in kilowatt-hours per cycle, determined according to or 6.2 of appendix B1 of this subpart, the resulting quotient then being rounded off to the second decimal place.

(5) The annual energy use of all freezers equals the representative average-use cycle of 365 cycles per year times the sum of (A) the product of the per-cycle machine electrical energy consumption for the normal cycle in kilowatt-hours per cycle, determined according to 6.2 of appendix B1 of this subpart, the resulting quotient then being rounded off to the second decimal place, and

(c) Dishwashers. (1) The estimated annual operating cost for dishwashers not having a truncated normal cycle as defined in 1.5 of appendix C to this subpart shall be—

(i) When electrically-heated water is used, the product of the following three factors: (A) The representative average-use cycle of 322 cycles per year times the sum of (A) the product of the per-cycle machine electrical energy consumption for the normal cycle in kilowatt-hours per cycle, determined according to 4.4 of appendix C to this subpart, the resulting quotient then being rounded off to the second decimal place, and

(ii) When gas-heated or oil-heated water is used, the product of: (A) The representative average-use cycle of 322 cycles per year times the sum of (A) the product of the per-cycle machine electrical energy consumption for the normal cycle in kilowatt-hours per cycle, determined according to 4.3 of appendix C to this subpart, times the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary plus (B) the product of the per-cycle water energy consumption for gas-heated or oil-heated water for the normal cycle, in Btu's per cycle, determined according to 4.2 of appendix C to this subpart, times the representative average unit cost in dollars per Btu for gas or oil, as appropriate, as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(iii) When cold water (50 °F) is used, the product of the following three factors:

(A) The representative average use cycle of 322 cycles per year times,

(B) The product of the per-cycle machine electrical energy consumption for the truncated normal cycle as defined in 1.5 of appendix C to this subpart, each in kilowatt-hours determined according to 4.4 of appendix C to this subpart, and

(C) The representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The estimated annual operating cost for dishwashers having a truncated normal cycle as defined in 1.5 of appendix C to this subpart shall be—

(i) When electrically-heated water is used, the product of the following three factors: (A) The representative average-use cycle of 322 cycles per year, (B) one-half the sum of (1) the total per-cycle energy consumption for the normal cycle as defined in 1.3 of appendix C to this subpart plus (2) the total per-cycle energy consumption for the truncated normal cycle as defined in 1.5 of appendix C to this subpart, each in kilowatt-hours and determined according to 4.4 of appendix C to this subpart, and

(ii) When gas-heated or oil-heated water is used, the product of: The representative average use cycle of 322 cycles per year times the sum of (A) the product of the per-cycle machine electrical energy consumption for the normal cycle in kilowatt-hours per cycle, determined according to 4.3 of appendix C to this subpart, times the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year, and

VerDate 27<Mar>1998 11:35 Mar 11, 1998 Jkt 179034 PO 00000 Frm 00103 Fmt 8010 Sfmt 8010 Y:\SGML\179034.TXT 179034-3
(ii) When gas-heated or oil-heated water is used, the product of: The representative average use cycle of 322 cycles per year times the sum of (A) one-half the product of the per-cycle machine electrical energy consumption for the normal cycle as defined in 1.3 of appendix C to this subpart, determined according to 4.3 of appendix C to this subpart, times the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, plus one-half the product of the per-cycle machine electrical energy consumption for the truncated normal cycle as defined in 1.5 of appendix C to this subpart, determined according to 4.3 of appendix C to this subpart, times the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary plus (B) one-half the product of the per-cycle water energy consumption for gas-heated or oil-heated water for the normal cycle as defined in 1.3 of appendix C to this subpart, in Btu's per cycle, determined according to 4.2 of appendix C to this subpart, times the representative average unit cost in dollars per Btu for gas or oil, as appropriate, as provided by the Secretary, plus one-half the product of the per-cycle water energy consumption for gas-heated or oil-heated water for the truncated normal cycle as defined in 1.5 of appendix C to this subpart, in Btu's per cycle, determined according to 4.2 of appendix C to this subpart, times the representative average unit cost in dollars per Btu for gas or oil, as appropriate, as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(iii) When cold water (50°F) is used, the product of the following three factors:

(A) The representative average use cycle of 322 cycles per year,

(B) One-half the sum of (1) the total per-cycle energy consumption for the normal cycle as defined in 1.3 of appendix C to this subpart plus (2) the truncated normal cycle as defined in 1.5 of appendix C to this subpart, each in kilowatt-hours and determined according to 4.4 of appendix C to this subpart, and

(C) The representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(3) The energy factor for dishwashers, expressed in cycles per kilowatt-hour shall be—

(i) For dishwashers not having a truncated normal cycle, as defined in 1.5 of appendix C to this subpart, capable of being preset, the reciprocal of the total per cycle energy consumption for the normal cycle in kilowatt-hours per cycle, determined according to 4.4 of appendix C to this subpart, and

(ii) For dishwashers having a truncated normal cycle, as defined in 1.5 of appendix C to this subpart, capable of being preset, the reciprocal of one-half the sum of (A) the total per-cycle energy consumption for the normal cycle plus (B) the total per-cycle energy consumption for the truncated normal cycle, each in kilowatt-hours per cycle and determined according to 4.4 of appendix C to this subpart.

(4) Other useful measures of energy consumption for dishwashers shall be those measures of energy consumption for dishwashers which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix C to this subpart.

(d) Clothes dryers. (1) The estimated annual operating cost for clothes dryers shall be—

(i) For an electric clothes dryer, the product of the following three factors: (A) The representative average-use cycle of 416 cycles per year, (B) the total per-cycle energy consumption in kilowatt-hours per cycle, determined according to 4.1 of appendix D to this subpart, and (C) the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year, and

(ii) For a gas clothes dryer, the product of the representative average-use cycle of 416 cycles per year, (B) the total per-cycle energy consumption in kilowatt-hours per cycle, determined according to 4.2 of appendix D to this subpart, times the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, plus (B) the product of the total gas dryer gas energy consumption per
cycle, in Btu's per cycle, determined according to 4.5 of appendix D of this subpart, times the representative average unit cost in dollars per Btu as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The energy factor, expressed in pounds of clothes per kilowatt-hour, for clothes dryers shall be either the quotient of a 3-pound bone-dry test load for compact dryers, as defined by 2.6.1 of appendix D to this subpart or the quotient of a 7-pound bone-dry test load for standard dryers, as defined by 2.6.2 of appendix D to this subpart, as applicable, divided by the clothes dryer energy consumption per cycle, as determined according to 4.1 for electric clothes dryers and 4.6 for gas clothes dryers of appendix D to this subpart, the resulting quotient then being rounded off to the nearest hundredth (.01).

(3) Other useful measures of energy consumption for clothes dryers shall be those measures of energy consumption for clothes dryers which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix D to this subpart.

(e) Water Heaters. (1) The estimated annual operating cost for water heaters shall be—

(i) For a gas or oil water heater, the product of the annual energy consumption, determined according to section 6.18 or 6.25 of appendix E of this subpart, times the representative average unit cost of gas or oil, as appropriate, in dollars per Btu as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(ii) For an electric water heater, as determined by section 6.17 or 6.24 of appendix E of this subpart rounded off to the nearest 0.01.

(ii) For an electric water heater, as determined by section 6.17 or 6.24 of appendix E of this subpart rounded off to the nearest 0.01.

(2) The energy efficiency ratio for room air conditioners, expressed in Btu's per watt-hour, shall be the quotient of: (i) The cooling capacity in Btu's per hour as determined in accordance with 4.1 of appendix F to this subpart divided by: (ii) The electrical input power in watts as determined in accordance with 4.2 of appendix F to this subpart the resulting quotient then being rounded off to the nearest 0.1 Btu per watt-hour.

(3) The average annual energy consumption for room air conditioners, expressed in kilowatt-hours per year, shall be determined by multiplying together the following two factors: (i) Electrical input power in kilowatts as determined in accordance with 4.2 of appendix F to this subpart, and (ii) A representative average use cycle of 750 hours of compressor operation per year.
year, the resulting product then being rounded off to the nearest kilowatt-hour per year.

(4) Other useful measures of energy consumption for room air conditioners shall be those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix F to this subpart.

(g) Unvented home heating equipment. (1) The estimated annual operating cost for primary electric heaters shall be the product of: (i) The average annual electric energy consumption in kilowatt-hours per year, determined according to section 3.1 of appendix G of this subpart and (ii) the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year.

(2) The estimated regional annual operating cost for primary electric heaters shall be the product of: (i) The regional annual electric energy consumption in kilowatt-hours per year for primary heaters determined according to section 3.2 of appendix G of this subpart and (ii) the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year.

(3) The estimated operating cost per million Btu output shall be—

(i) For primary and supplementary electric heaters and unvented gas and oil heaters without an auxiliary electric system, the product of: (A) One million; and (B) the representative unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act, as appropriate, or the quotient of the representative unit cost in dollars per kilowatt-hour divided by 3,412 Btu per kilowatt-hour, the resulting product then being rounded off to the nearest 0.01 dollar per million Btu output; and

(ii) For unvented gas and oil heaters with an auxiliary electric system, the product of: (A) The quotient of one million divided by the rated output in Btu's per hour as determined in 3.4 of appendix G of this subpart; and (B) the sum of: (1) The product of the maximum fuel input in Btu's per hour as determined in 2.2. of this appendix times the representative unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (2) the product of the maximum auxiliary electric power in kilowatts as determined in 2.1 of appendix G of this subpart times the representative unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting quantity shall be rounded off to the nearest 0.01 dollar per million Btu output.

(4) The rated output for unvented heaters is the rated output as determined according to either sections 3.3 or 3.4 of appendix G of this subpart, as appropriate, with the result being rounded off to the nearest 100 Btu per hour.

(5) Other useful measures of energy consumption for unvented home heating equipment shall be those measures of energy consumption for unvented home heating equipment which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix G of this subpart.

(h) Television sets. (1) The estimated average annual operating cost for television sets shall be the product of:

(i) The average annual energy consumed by the television set in kilowatt-hours per year, determined according to 3.0 of appendix H of this subpart; and

(ii) The representative average unit cost of energy in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(2) The receiver energy efficiency factor for television sets shall be—

(i) For color television sets, the product of the estimated minimum power requirement (.130 kilowatts) and the average annual hours of use (2,200 hr/yr.), divided by the average annual energy consumed by the television set in kilowatt-hours per year, determined according to 3.0 of appendix H to this
subpart. The resultant is then multiplied by 100 and expressed as a percent.

(ii) For monochrome television sets, the product of the estimated minimum power requirement (.040 kilowatts) and the average annual hours of use (2,200 hr/yr.), divided by the average annual energy consumed by the television set in kilowatt-hours per year determined according to 3.0 of appendix H of this subpart. The result is then multiplied by 100 and expressed as a percent.

(3) Other useful measures of energy consumption for television sets shall be those measures of energy consumption for television sets which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix H of this subpart.

(i) Kitchen ranges and ovens. (1) The estimated annual operating cost for conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, and microwave/conventional ranges shall be the sum of the following products: (i) The total annual electrical energy consumption for any electrical energy usage, in kilowatt-hours (kWh's) per year, times the representative average unit cost for electricity, in dollars per kWh, as provided pursuant to section 323(b)(2) of the Act; plus (ii) the total annual gas energy consumption for any natural gas usage, in British thermal units (Btu's) per year, times the representative average unit cost for natural gas, in dollars per Btu, as provided pursuant to section 323(b)(2) of the Act; plus (iii) the total annual gas energy consumption for any propane usage, in Btu's per year, times the representative average unit cost for propane, in dollars per Btu, as provided pursuant to section 323(b)(2) of the Act. The total annual energy consumption for conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, and microwave/conventional ranges shall be as determined according to 4.3, 4.2.2, 4.1.2, and 4.4.3, respectively, of appendix I to this subpart. The estimated annual operating cost shall be rounded off to the nearest one-quarter of a dollar per year.

(2) The cooking efficiency for conventional cooking tops, conventional ovens, and microwave ovens shall be the ratio of the cooking energy output for the test to the cooking energy input for the test, as determined according to 4.2.1, 4.1.3, and 4.4.4, respectively, of appendix I to this subpart. The final cooking efficiency values shall be rounded off to three significant digits.

(3) Reserved

(4) The energy factor for conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, and microwave/conventional ranges shall be the ratio of the annual useful cooking energy output to the total annual energy input, as determined according to 4.3, 4.2.3, 4.1.4, 4.4.5, respectively, of Appendix I to this subpart. The final energy factor values shall be rounded off to three significant digits.

(5) There shall be two estimated annual operating costs, two cooking efficiencies, and two energy factors for convertible cooking appliances—(i) an estimated annual operating cost, a cooking efficiency and an energy factor which represent values for those three measures of energy consumption for the operation of the appliance with natural gas; and (ii) an estimated annual operating cost, a cooking efficiency and an energy factor which represent values for those three measures of energy consumption for the operation of the appliance with LP-gas.

(6) The estimated annual operating cost for convertible cooking appliances which represents natural gas usage, as described in paragraph (i)(5)(i) of this section, shall be determined according to paragraph (i)(1) of this section using the total annual gas energy consumption for natural gas times the representative average unit cost for natural gas.

(7) The estimated annual operating cost for convertible cooking appliances which represents LP-gas usage, as described in paragraph (i)(5)(ii) of this section, shall be determined according to paragraph (i)(1) of this section using the representative average unit cost...
for propane times the total annual energy consumption of the test gas, either propane or natural gas.

(8) The cooking efficiency for convertible cooking appliances which represents natural gas usage, as described in paragraph (i)(5)(i) of this section, shall be determined according to paragraph (i)(2) of this section when the appliance is tested with natural gas.

(9) The cooking efficiency for convertible cooking appliances which represents LP-gas usage, as described in paragraph (i)(5)(ii) of this section, shall be determined according to paragraph (i)(2) of this section when the appliance is tested with either natural gas or propane.

(10) The energy factor for convertible cooking appliances which represents natural gas usage, as described in paragraph (i)(5)(i) of this section, shall be determined according to paragraph (i)(4) of this section when the appliance is tested with natural gas.

(11) The energy factor for convertible cooking appliances which represents LP-gas usage, as described in paragraph (i)(5)(ii) of this section, shall be determined according to paragraph (i)(4) of this section when the appliance is tested with either natural gas or propane.

(12) The estimated annual operating cost for automatic and semi-automatic clothes washers shall be—

(i) When electrically heated water is used, the product of the following three factors:

(A) The representative average-use of 392 cycles per year,
(B) The total per-cycle energy consumption in kilowatt-hours per cycle determined according to 4.1.6 of appendix J before appendix J 1 becomes mandatory, and
(C) The representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year, and

(ii) When gas-heated or oil-heated water is used, the product of:

(A) The representative average-use of 392 cycles per year and the sum of both:

(A) The product of the per-cycle machine electrical energy consumption in kilowatt-hours per cycle, determined according to 4.1.5 of appendix J before the date that appendix J 1 to the subpart becomes mandatory or 4.1.6 of appendix J 1 upon the date that appendix J 1 to this subpart becomes mandatory,

and the representative average unit cost in dollars per kilowatt-hour for oil or gas, as appropriate, as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

(ii) The energy factor for automatic and semi-automatic clothes washers is determined in accordance with 4.5 of appendix J before the date that appendix J 1 becomes mandatory or 4.4 of appendix J 1 upon the date that appendix J 1 to this subpart becomes mandatory. The result shall be rounded off to the nearest 0.01 cubic foot per kilowatt-hours.

(ii) The modified energy factor for automatic and semi-automatic clothes washers is determined in accordance with 4.4 of appendix J before the date that appendix J 1 becomes mandatory or 4.5 of appendix J 1 upon the date that appendix J 1 to this subpart becomes mandatory. The result shall be rounded off to the nearest 0.01 cubic foot per kilowatt-hours.
those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix J before the date that appendix J1 becomes mandatory or appendix J1 upon the date that appendix J1 to this subpart becomes mandatory. In addition, the annual water consumption of a clothes washer can be determined by the product of:

(A) The representative average-use of 392 cycles per year, and
(B) The total weighted per-cycle water consumption in gallons per cycle determined according to 4.3.2 of appendix J before the date that appendix J1 becomes mandatory or 4.2.2 of appendix J1 upon the date that appendix J1 to this subpart becomes mandatory. The water consumption factor can be determined in accordance with 4.3.3 of appendix J before the date that appendix J1 becomes mandatory or 4.2.3 of appendix J1 upon the date that appendix J1 to this subpart becomes mandatory. The remaining moisture content can be determined in accordance with 3.3 of appendix J before the date that appendix J1 becomes mandatory or 3.8 of appendix J1 upon the date that appendix J1 to this subpart becomes mandatory.

(k)–(l) [Reserved]

(m) Central Air Conditioners. (1) The estimated annual operating cost for cooling-only units and air-source heat pumps shall be one of the following:

(i) For cooling-only units or the cooling portion of the estimated annual operating cost for air-source heat pumps which provide both heating and cooling, the product of: (A) The quotient of the cooling capacity, in Btu's per hour, determined from the steady-state wet-coil test (Test A) measured at the highest compressor speed, as described in section 3.1 of appendix M to this subpart, divided by the seasonal energy efficiency ratio, in Btu's per watt-hour, determined from section 5.1 of appendix M to this subpart; (B) the representative average use cycle for cooling of 1,000 hours per year; (C) a conversion factor of 0.001 kilowatt per watt; and (D) the representative average unit cost of electricity in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year;

(ii) For air-source heat pumps which provide only heating or the heating portion of the estimated annual operating cost for air-source heat pumps which provide both heating and cooling, the product of: (A) The quotient of the standardized design heating requirement, in Btu's per hour, nearest to the capacity measured in the high temperature test, determined in sections 5.2 and 6.2.6 of appendix M to this subpart, divided by the heating season performance factor, in Btu's per watt-hour, calculated for heating region IV corresponding to the above mentioned standardized design heating requirement determined from section 5.2 of appendix M to this subpart; (B) the representative average use cycle for heating of 2,080 hours per year; (C) the adjustment factor of 0.77 which serves to adjust the calculated design heating requirement and heating load hours to the actual load experienced by a heating system; (D) a conversion factor of 0.001 kilowatt per watt; and (E) the representative average unit cost of electricity in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year; or

(iii) For air-source heat pumps which provide both heating and cooling, the estimated annual operating cost is the sum of the quantity determined in paragraph (m)(1)(i) of this section added to the quantity determined in paragraph (m)(1)(ii) of this section.

(2) The estimated regional annual operating cost for cooling-only units and for air-source heat pumps shall be one of the following:

(i) For cooling-only units or the cooling portion of the estimated regional annual operating cost for air-source heat pumps which provide both heating and cooling, the product of: (A) The quotient of the cooling capacity, in Btu's per hour, determined from section 5.1 of appendix M to this subpart, divided by the seasonal energy efficiency ratio, in Btu's per watt-hour, determined from section 3.1 of appendix M to this subpart; (B) the representative average use cycle for cooling of 1,000 hours per year; (C) a conversion factor of 0.001 kilowatt per watt; and (D) the representative average unit cost of electricity in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year;
§ 430.23

10 CFR Ch. II (1–1–98 Edition)

section 5.1 of appendix M to this subpart; (B) the estimated number of regional cooling load hours per year determined from section 6.1.3 of appendix M to this subpart; (C) a conversion factor of 0.001 kilowatts per watt; and (D) the representative average unit cost of electricity in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting product then being rounded off to the nearest dollar per year;

(iii) For air-source heat pumps which provide both heating and cooling, the estimated regional annual operating cost is the sum of the quantity determined in paragraph (m)(3)(i) of this section added to the quantity determined in paragraph (m)(3)(ii) of this section.

(3) The measure(s) of efficiency for cooling-only units and air-source heat pumps shall be one or more of the following:

(i) The seasonal energy efficiency ratio for cooling-only units and air-source heat pumps which provide cooling shall be the seasonal energy efficiency ratio, in Btu's per watt-hour, determined according to section 5.1 of appendix M to this subpart, rounded off to the nearest 0.05.

(ii) The heating seasonal performance factors for air-source heat pumps shall be the heating seasonal performance factors, in Btu's per watt-hour, determined according to section 5.2 of appendix M to this subpart for each applicable standardized design heating requirement within each climatic region, rounded off to the nearest 0.05.

(iii) The annual performance factors for air-source heat pumps which provide both heating and cooling, shall be the annual performance factors, in Btu's per watt-hour, determined according to section 5.3 of appendix M to this subpart for each standardized design heating requirement within each climatic region, rounded off to the nearest 0.05.

(4) Other useful measures of energy consumption for central air conditioners shall be those measures of energy consumption which the Secretary of Energy determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix M to this subpart.

(5) After September 12, 1988, all measures of energy consumption shall be determined by the test method as set forth in appendix M to this subpart; or by an alternate rating method set forth in §430.23(m)(4) as approved by the Assistant Secretary for Conservation and Renewable Energy in accordance with §430.23(m)(5).

(n) Furnaces. (1) The estimated annual operating cost for furnaces is the sum of: (i) The product of the average annual fuel energy consumption, in Btu's per year for gas or oil furnaces or in kilowatt-hours per year for electric furnaces, determined according to section 10.2.2 or 10.3 of appendix N of this subpart, respectively, and the representative average unit cost in dollars per Btu for gas or oil, or dollars per kilowatt-hour for electric, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (ii) the product of the average annual auxiliary
electric energy consumption in kilowatt-hours per year determined according to section 10.2.3 of appendix N of this subpart, and the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting sum then being rounded off to the nearest dollar per year. (For furnaces which operate with variable inputs, an estimated annual operating cost is to be calculated for each degree of oversizing specified in section 10 of appendix N of this subpart.)

(2) The annual fuel utilization efficiency for furnaces, expressed in percent, is the ratio of annual fuel output of useful energy delivered to the heated space to the annual fuel energy input to the furnace determined according to section 10.1 of appendix N of this subpart for gas and oil furnaces and determined in accordance with section 11.1 of American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ANSI/ASHRAE) Standard 103-1993 for electric furnaces.

(3) The estimated regional annual operating cost for furnaces is the sum of:

(i) The product of the regional annual fuel energy consumption in Btu's per year for gas or oil furnaces or in kilowatt-hours per year for electric furnaces, determined according to section 10.5.1 or 10.5.3 of appendix N of this subpart, respectively, and the representative average unit cost in dollars per Btu for gas or oil, or dollars per kilowatt-hour for electric, as appropriate, as provided pursuant to section 323(b)(2) of the Act, plus (ii) the product of the average annual auxiliary electrical energy consumption in kilowatt-hours per year, determined according to section 10.5.2 of appendix N of this subpart, and the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting sum then being rounded off to the nearest dollar per year.

(4) The energy factor for furnaces, expressed in percent, is the ratio of annual fuel output of useful energy delivered to the heated space to the total annual energy input to the furnace determined according to section 10.4 of appendix N of this subpart.

(5) Other useful measures of energy consumption for furnaces shall be those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix N of this subpart.

(o) Vented home heating equipment.

(1) The annual fuel utilization efficiency for vented home heating equipment, expressed in percent, which is the ratio of the annual fuel output of useful energy delivered to the heated space to the annual fuel energy input to the vented heater, shall be determined either according to section 4.1.17 of appendix O of this subpart for vented heaters without either manual controls or thermal stack dampers; according to section 4.2.6 of appendix O of this subpart for vented heaters equipped with manual controls; or according to section 4.3.7 of appendix O of this subpart for vented heaters equipped with thermal stack dampers.

(2) The estimated annual operating cost for vented home heating equipment is the sum of: (i) The product of the average annual fuel energy consumption, in Btu's per year for natural gas, propane, or oil fueled vented home heating equipment, determined according to section 4.6.2 of appendix O of this subpart, and the representative average unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act; plus (ii) The product of the average annual auxiliary electric energy consumption in kilowatt-hours per year determined according to section 4.6.3 of appendix O of this subpart, and the representative average unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting sum then being rounded off to the nearest dollar per year.

(3) The estimated operating cost per million Btu output for gas or oil fueled home heating equipment with an auxiliary electric system shall be the product of: (A) The quotient of one million Btu divided by the sum of: (1) The product of the maximum fuel input in Btu's per hour as determined in 3.1.1 or 3.1.2 of appendix O of this subpart times the annual fuel utilization efficiency in
percent as determined in 4.1.17, 4.2.6, or 4.3.7 of this appendix as appropriate divided by 100, plus (2) the product of the maximum electric power in watts as determined in 3.1.3 of appendix O of this subpart times the representative unit cost in dollars per Btu for natural gas, propane, or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act; plus (2) the product of the maximum auxiliary electric power in kilowatts as determined in 3.1.3 of appendix O of this subpart times the representative unit cost in dollars per kilowatt-hour as provided pursuant to section 323(b)(2) of the Act, the resulting quantity shall be rounded off to the nearest 0.01 dollar per million Btu output.

(4) Other useful measures of energy consumption for vented home heating equipment shall be those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix O of this subpart.

(p) Pool heaters. (1) The estimated annual operating cost for pool heaters is the sum of:

(i) The product of the average annual fuel energy consumption, in Btu's per year, of natural gas or oil fueled pool heaters, determined according to section 4.2 of appendix P of this subpart, and the representative average unit cost in dollars per Btu for natural gas or oil, as appropriate, as provided pursuant to section 323(b)(2) of the Act; plus

(ii) The product of the average annual auxiliary electric energy consumption in kilowatt-hours per year determined according to section 4.3 of appendix P of this subpart, and the representative average unit cost in dollars per Btu as determined in accordance with section 323(b)(2) of the Act, the resulting sum then being rounded off to the nearest dollar per year.

(2) The thermal efficiency of pool heaters, expressed as a percent, shall be determined in accordance with section 4 of appendix P to this subpart.

(q) Fluorescent Lamp Ballasts. (1) The Estimated Annual Energy Consumption (EAEC) for fluorescent lamp ballasts, expressed in kilowatt-hours per year, shall be the product of: (i) The input power in kilowatts as determined in accordance with section 3.3.1 of appendix Q to this subpart and (ii) the representative average use cycle of 1,000 hours per year, the resulting product then being rounded off to the nearest kilowatt-hour per year.

(2) Ballast Efficacy Factor (BEF) shall be as determined in section 4.2 of appendix Q of this subpart.

(3) The Estimated Annual Operating Cost (EAOC) for fluorescent lamp ballasts, expressed in dollars per year, shall be the product of: (i) The representative average unit energy cost of electricity in dollars per kilowatt-hour as provided by the Secretary, (ii) the representative average use cycle of 1,000 hours per year, and (iii) the input power in kilowatts as determined in accordance with section 3.3.1 of appendix Q to this subpart, the resulting product then being rounded off to the nearest dollar per year.

(4) Other useful measures which may be applicable. [Reserved]

(r) General Service Fluorescent Lamps and General Service Incandescent Lamps.

(1) The estimated annual energy consumption for general service fluorescent lamps and incandescent reflector lamps, expressed in kilowatt-hours per year, shall be the product of the input power in kilowatts as determined in accordance with section 4 of Appendix R to this subpart and an average annual use specified by the manufacturer, with the resulting product rounded off to the nearest kilowatt-hour per year. Manufacturers must provide a clear and accurate description of the assumptions used for the estimated annual energy consumption.

(2) The lamp efficacy for general service fluorescent lamps shall be equal to the average lumen output divided by the average lamp wattage as determined in section 4 of Appendix R of this subpart, with the resulting quotient rounded off to the nearest lumen per watt.

(3) The lamp efficacy for incandescent reflector lamps shall be equal to the average lumen output divided by
Components of similar design may be substituted without requiring additional testing if the represented measures of energy consumption continue to satisfy the applicable sampling provision.

The average lamp wattage as determined in section 4 of Appendix R of this subpart, with the resulting quotient rounded off to the nearest tenth of a lumen per watt.

The color rendering index of a general service fluorescent lamp shall be tested and determined in accordance with section 4.5 of Appendix R of this subpart and rounded off to the nearest unit.

The average lamp wattage as determined in section 4 of Appendix R of this subpart, with the resulting quotient rounded off to the nearest tenth of a lumen per watt.

The color rendering index of a general service fluorescent lamp shall be tested and determined in accordance with section 4.5 of Appendix R of this subpart and rounded off to the nearest unit.

The estimated annual operating cost for automatic and semi-automatic clothes washers shall be—

(i) When electrically heated water is used, the product of the following three factors: (A) The representative average-use cycle of 416 cycles per year, (B) the total per-cycle energy consumption for the normal cycle in kilowatt-hours per cycle determined according to 4.6 of appendix J to this subpart, and (C) the representative average unit cost in dollars per kilowatt-hour as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year, and

(ii) When gas-heated or oil-heated water is used, the product of: the representative average-use cycle of 416 cycles per year and the sum of both (A) the product of the per-cycle machine electrical energy consumption for the normal cycle in kilowatt-hours per cycle determined according to 4.4 of appendix J to this subpart, and (B) the product of the per-cycle water energy consumption for gas-heated or oil-heated water for the normal cycle, in Btu per cycle, determined according to 4.5 of appendix J to this subpart, and the representative average unit cost in dollars per Btu for oil or gas, as appropriate, as provided by the Secretary, the resulting product then being rounded off to the nearest dollar per year.

The energy factor for automatic and semi-automatic clothes washers shall be the quotient of the cubic foot capacity of the clothes container as determined in 3.1 of appendix J to this subpart divided by the clothes washer energy consumption per cycle, expressed as the sum of the machine electrical energy consumption and the maximum normal water energy consumption as determined in 4.4 and 4.3, respectively, of appendix J to this subpart. The resulting be rounded off to the nearest 0.01 cubic foot per kilowatt-hour.

Other useful measures of energy consumption for automatic or semi-automatic clothes washers shall be those measures of energy consumption which the Secretary determines are likely to assist consumers in making purchasing decisions and which are derived from the application of appendix J to this subpart.

When testing of a covered product is required to comply with section 323(c) of the Act, or to comply with rules prescribed under sections 324 or 325 of the Act, a sample shall be selected and tested comprised of units which are production units, or are representative of production units of the basic model being tested, and shall meet the following applicable criteria.

(a)(1) For each basic model of electric refrigerators and electric refrigerator-freezers, a sample of sufficient size shall be tested to assure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 95 percent confidence limit of the true mean divided by 1.10, and

(ii) Any represented value of the energy factor or other measure of energy consumption of a basic model for which consumer would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 95 percent confidence limit of the true mean divided by .90.

Components of similar design may be substituted without requiring additional testing if the represented measures of energy consumption continue to satisfy the applicable sampling provision.
§ 430.24

(b)(1) For each basic model of freezers, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 95 percent confidence limit of the true mean divided by 1.10, and

(ii) Any represented value of the energy factor or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 95 percent confidence limit of the true mean divided by .90.

(c)(1) For each basic model of dishwashers, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the energy factor or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(d)(1) For each basic model of clothes dryers a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the energy factor or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(e)(1) For each basic model of water heaters, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 95 percent confidence limit of the true mean divided by 1.10, and

(ii) Any represented value of the energy factor or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 95 percent confidence limit of the true mean divided by .90.

(f)(1) For each basic model of room air conditioners, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the energy efficiency ratio or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(g)(1) For each basic model of unvented home heating equipment (not including furnaces), a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the lower 95 percent confidence limit of the true mean divided by .95.

Components of similar design may be substituted without requiring additional testing if the represented measures of energy consumption continue to satisfy the applicable sampling provision.
(i) Any represented value of the annual fuel utilization efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be not greater than the lower of (A) the mean of the sample or (B) the lower 97½ percent confidence limit of the true mean divided by 1.075, and

(ii) Any represented value of the annual fuel utilization efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be not greater than the lower of (A) the mean of the sample or (B) the lower 97½ percent confidence limit of the true mean divided by 1.05, and

(h)(1) For each basic model of tele-

vision sets, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of esti-
mated annual operating cost, energy
consumption or other measure of en-
ergy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97½ percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the ener-
gy factor or other measure of energy
consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 97½ percent confidence limit of the true mean divided by .95.

(i)(1) Except as provided in paragraph

(i)(2) of this section, for each basic
model of conventional cooking tops,
conventional ovens and microwave
ovens a sample of sufficient size shall
be tested to insure that—

(i) Any represented value of esti-
mated annual operating cost, energy
consumption or other measure of en-
ergy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97½ percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the ener-
gy factor or other measure of energy
consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 97½ percent confidence limit of the true mean divided by .95.

(m)(1) For central air conditioners,
each condensing unit shall have a con-
denser-evaporator coil combination se-
plected and a sample of sufficient size
tested in accordance with applicable
provisions of this subpart such that—

(i) Any represented value of esti-
mated annual operating cost, energy
consumption or other measure of en-
ergy consumption of the condenser-
evaporator coil combination for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 90 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the en-
ergy factor or other measure of energy
consumption of the condenser-
evaporator coil combination for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample or (B) the lower 90 percent confidence limit of the true mean divided by .95.

(k)—(l) [Reserved]
design may be substituted without requiring additional testing if the represented measures of energy consumption continue to satisfy the applicable sampling provisions of paragraphs (m)(1)(i) and (m)(1)(ii) of this section. For every other condenser-evaporator coil combination manufactured by the same manufacturer or in part by a component manufacturer using that same condensing unit, either—

(i) A sample of sufficient size, comprised of production units or representing production units, shall be tested to ensure that the requirements of paragraphs (m)(1)(i) and (m)(1)(ii) of this section are met for such other condenser-evaporator coil combinations; or

(ii) The representative values of the measures of energy consumption shall be based on an alternative rating method that has been approved by DOE in accordance with the provisions of paragraphs (m)(4) and (m)(5) of this section.

(3) Whenever the representative values of the measures of energy consumption, as determined by the provisions of paragraph (m)(2)(ii) of this section, do not agree within five percent of the representative values of the measures of energy consumption as determined by actual testing, the representative values determined by actual testing shall be used to comply with section 323(c) of the Act, or to comply with rules prescribed under section 324 of the Act.

(4) The basis of the alternative rating method referred to in paragraph (m)(2)(ii) of this section shall be a representation of the test data and calculations of a mechanical vapor compression refrigeration cycle. The major components in the refrigeration cycle shall be modeled as “fits” to manufacturer performance data or by graphic or tabular performance data. Heat transfer characteristics of coils may be modeled as a function of face area, number of rows, fins per inch, refrigerant circuitry, air flow rate and entering air enthalpy. Additional performance-related characteristics to be considered may include type of expansion device, refrigerant flow rate through the expansion device, power of the indoor fan and degradation coefficient.

(5) Manufacturers who elect to use an alternative rating method for determining measures of energy consumption under paragraphs (m)(2)(ii) and (m)(4) of this section must submit a request to DOE for reviewing the alternative rating method to the Assistant Secretary of Conservation and Renewable Energy, 1000 Independence Avenue, SW., Washington, DC 20585, and receive approval to use the alternative method before the alternative method may be used for rating central air conditioners.

(6) Each request to DOE for reviewing an alternative rating method shall include:

(i) The name, address and telephone number of the official representing the manufacturer.

(ii) Complete documentation of the alternative rating procedure, including the computer code when a computer model is used.

(iii) Test data for two coils from two different coil families for two different condensing units. The tested capacities for the matched systems for the two condensing units shall differ by at least a factor of two. Rating information for the mixed systems shall include the ratings from testing, and from the alternative rating method.

(iv) Complete test data, product information, and related information to allow DOE to verify the rating information submitted by the manufacturer.

(7) Manufacturers that elect to use an alternative rating method for determining measures of energy consumption under paragraphs (m)(2)(ii) and (m)(4) of this section must either subject a sample of their units to independent testing on a regular basis, e.g., voluntary certification program, or have the representations reviewed and certified by an independent state-registered professional engineer who is not an employee of the manufacturer. The registered professional engineer is to certify that the results of the alternative rating procedure accurately represent the energy consumption of the unit(s). The manufacturer is to keep the registered professional engineer’s certifications on file for review by DOE for as long as said combination is made available for sale by the manufacturer.
Any change to be made to the alternative rating method, must be approved by DOE prior to its use for rating.

(b) Manufacturers who choose to use computer simulation or engineering analysis for determining measures of energy consumption under paragraphs (m)(2)(ii) and (m)(5) of this section shall permit representatives of the Department of Energy to inspect for verification purposes the simulation method or methods used. This inspection may include conducting simulations to predict the performance of particular condenser-evaporator coil combinations specified by DOE, analysis of previous simulations conducted by a manufacturer, or both.

(n)(1) For each basic model of furnaces, other than basic models of those sectional cast-iron boilers which may be aggregated into groups having identical intermediate sections and combustion chambers, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample, or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the annual fuel utilization efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample, or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(2) For the lowest capacity basic model of a group of basic models of sectional cast-iron boilers having identical intermediate sections and combustion chambers, a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample, or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the annual fuel utilization efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (A) the mean of the sample, or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(3) For basic model of capacity other than the highest or lowest of the group of basic models of sectional cast-iron boilers having identical intermediate sections and combustion chambers, represented values of measures of energy consumption shall be determined by either—

(i) A linear interpolation of data obtained for the smallest and largest capacity units of the family, or

(ii) Testing a sample of sufficient size to insure that (A) any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than
§ 430.24

the higher of (1) the mean of the sample, or (2) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and (B) any represented value of the energy factor or other measure of energy consumption of a basic model for which consumers would favor higher values shall be no greater than the lower of (1) the mean of the sample, or (2) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(5) Whenever measures of energy consumption determined by linear interpolation do not agree with measures of energy consumption determined by actual testing, the values determined by testing will be assumed to be the more reliable values.

(6) In calculating the measures of energy consumption for each unit tested, use the design heating requirement corresponding to the mean of the capacities of the units of the sample.

(o)(1) For each basic model of vented home heating equipment (not including furnaces) a sample of sufficient size shall be tested to insure that—

(i) Any represented value of estimated annual operating cost, energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the upper 97 1/2 percent confidence limit of the true mean divided by 1.05, and

(ii) Any represented value of the fuel utilization efficiency or other measure of energy consumption of a basic model for which consumers would favor lower values shall be no less than the higher of (A) the mean of the sample or (B) the lower 97 1/2 percent confidence limit of the true mean divided by .95.

(2) In calculating the measures of energy consumption for each unit tested, use the design heating requirement corresponding to the mean of the capacities of the units of the sample.

(p)(1) For each basic model of pool heater a sample of sufficient size shall be tested to insure that—

(i) [Reserved]

(ii) Any represented value of lamp efficacy of a basic model shall be based on the sample and shall be no greater than the lower of the mean of the sample or the lower 95 percent confidence limit of the true mean \(X_{1i} \) divided by 0.97, i.e.,

\[\frac{X_{1i}}{0.97} \]

\[\text{or} \]

\[\frac{\text{lower 95\% confidence limit of true mean}}{0.97} \]

Components of similar design may be substituted without requiring additional testing if the represented measures of energy consumption continue to satisfy the applicable sampling provision.
where:
\[\bar{x} - \bar{x}_{0.95} \left(\frac{s}{\sqrt{n}} \right) \]

where:
\(\bar{x} \) = the mean luminous efficacy of the sample
\(s \) = the sample standard deviation
\(t_{0.95} \) = the t statistic for a 95-percent confidence limit for n-1 degrees of freedom (from statistical tables)
\(n \) = sample size.

(2) For each basic model of general service fluorescent lamp, the color rendering index (CRI) shall be measured from the same lamps selected for the lumen output and watts input measurements in paragraph (r)(1) of this section, i.e., the manufacturer shall measure all lamps for lumens, watts input, and CRI. The CRI shall be represented as the average of a minimum sample of 21 lamps and shall be no greater than the lower of the mean of the sample or the lower 95-percent confidence limit of the true mean \((X_L) \) divided by 0.97, i.e.,

\[\bar{x} - \bar{x}_{0.95} \left(\frac{s}{\sqrt{n}} \right) \]

where:
\(\bar{x} \) = the mean color rendering index of the sample
\(s \) = the sample standard deviation
\(t_{0.95} \) = the t statistic for a 95-percent confidence limit for n-1 degrees of freedom (from statistical tables)
\(n \) = sample size.

§ 430.27 Petitions for waiver and applications for interim waiver.

(a)(1) Any interested person may submit a petition to waive for a particular basic model any requirements of §430.22, or of any appendix to this subpart, upon the grounds that the basic model contains one or more design characteristics which either prevent testing of the basic model according to the prescribed test procedures, or the prescribed test procedures may evaluate the basic model in a manner so unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative data.

(2) Any interested person who has submitted a Petition for Waiver as provided in this subpart may also file an Application for Interim Waiver of the applicable test procedure requirements.

(b)(1) A Petition for Waiver shall be submitted, in triplicate, to the Assistant Secretary for Conservation and Renewable Energy, United States Department of Energy. Each Petition for Waiver shall:

(i) Identify the particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the grounds for the petition, and the specific requirements sought to be waived and shall discuss in detail the need for the requested waiver;
(ii) Identify manufacturers of all other basic models marketed in the United States and known to the petitioner to incorporate similar design characteristic(s);

(iii) Include any alternate test procedures known to the petitioner to evaluate in a manner representative of the energy consumption characteristics of the basic model; and

(iv) Be signed by the petitioner or by an authorized representative.

In accordance with the provisions set forth in 10 CFR 1004.11, any request for confidential treatment of any information contained in a Petition for Waiver or in supporting documentation must be accompanied by a copy of the petition, application or supporting documentation from which the information claimed to be confidential has been deleted. DOE shall publish in the Federal Register the petition and supporting documents from which confidential information, if any, as determined by DOE, has been deleted in accordance with 10 CFR 1004.11. Each petitioner, in complying with the requirements of this paragraph, shall file with DOE a statement certifying the names and addresses of each person to whom a notice of the Petition for Waiver has been sent.

(2) Each applicant for Interim Waiver, whether filing jointly with, or subsequent to, a Petition for Waiver with DOE, shall concurrently notify in writing all known manufacturers of domestically marketed units of the same product type (as listed in Section 322(a) of the Act) and shall include in the notice a copy of the Petition for Waiver and a copy of the Application for Interim Waiver. In complying with this section, each applicant shall in the written notification include a statement that the Assistant Secretary for Conservation and Renewable Energy will receive and consider timely written comments on the Application for Interim Waiver. Each applicant, upon filing an Application for Interim Waiver, shall in complying with the requirements of this paragraph certify to DOE that a copy of these documents have been sent to all known manufacturers of domestically marked units of the same product type (as listed in Section 322(a) of the Act). Such certification shall include the names and addresses of such persons. Each applicant also shall comply with the provisions of paragraph (c)(1) of this section with respect to the petition for waiver.

(d) Any person submitting written comments to DOE with respect to an Application for Interim Waiver shall also send a copy of the comments to the applicant.
(e) If administratively feasible, applicant shall be notified in writing of the disposition of the Application for Interim Waiver within 15 business days of receipt of the application. Notice of DOE’s determination on the Application for Interim Waiver shall be published in the Federal Register.

(f) The filing of an Application for Interim Waiver shall not constitute grounds for noncompliance with any requirements of this subpart, until an Interim Waiver has been granted.

(g) An Interim Waiver from test procedure requirements will be granted by the Assistant Secretary for Conservation and Renewable Energy if it is determined that the applicant will experience economic hardship if the Application for Interim Waiver is denied, if it appears likely that the Petition for Waiver will be granted, and/or the Assistant Secretary determines that it would be desirable for public policy reasons to grant immediate relief pending a determination on the Petition for Waiver.

(h) An interim waiver will terminate 180 days after issuance or upon the determination on the Petition for Waiver, whichever occurs first. An interim waiver may be extended by DOE for 180 days. Notice of such extension and/or any modification of the terms or duration of the interim waiver shall be published in the Federal Register, and shall be based on relevant information contained in the record and any comments received subsequent to issuance of the interim waiver.

(i) Following publication of the Petition for Waiver in the Federal Register, a petitioner may, within 10 working days of receipt of a copy of any comments submitted in accordance with paragraph (b)(1) of this section, submit a rebuttal statement to the Assistant Secretary for Conservation and Renewable Energy. A petitioner may rebut more than one response in a single rebuttal statement.

(j) The petitioner shall be notified in writing as soon as practicable of the disposition of each Petition for Waiver. The Assistant Secretary for Conservation and Renewable Energy shall issue a decision on the petition as soon as is practicable following receipt and review of the Petition for Waiver and other applicable documents, including, but not limited to, comments and rebuttal statements.

(k) The filing of a Petition for Waiver shall not constitute grounds for noncompliance with any requirements of this subpart, until a waiver or interim waiver has been granted.

(l) Waivers will be granted by the Assistant Secretary for Conservation and Renewable Energy, if it is determined that the basic model for which the waiver was requested contains a design characteristic which either prevents testing of the basic model according to the prescribed test procedures, or the prescribed test procedures may evaluate the basic model in a manner so unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative data. Waivers may be granted subject to conditions, which may include adherence to alternate test procedures specified by the Assistant Secretary for Conservation and Renewable Energy. The Assistant Secretary shall consult with the Federal Trade Commission prior to granting any waiver, and shall promptly publish in the Federal Register notice of each waiver granted or denied, and any limiting conditions of each waiver granted.

(m) Within one year of the granting of any waiver, the Department of Energy will publish in the Federal Register a notice of proposed rulemaking to amend its regulations so as to eliminate any need for the continuation of such waiver. As soon thereafter as practicable, the Department of Energy will publish in the Federal Register a final rule. Such waiver will terminate on the effective date of such final rule.

(n) In order to exhaust administrative remedies, any person aggrieved by an action under this section must file an appeal with the DOE’s Office of Hearings and Appeals as provided in 10 CFR part 1003, subpart C.
APPENDIX A1 TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF ELECTRIC REFRIGERATORS AND ELECTRIC REFRIGERATOR-FREEZERS

1. Definitions

1.1 “HRF±1±1979” means the Association of Home Appliance Manufacturers standard for household refrigerators, combination refrigerator-freezers, and household freezers, also approved as an American National Standard as a revision of ANSI B 38.1-1970.

1.2 “Adjusted total volume” means the sum of (i) the fresh food compartment volume as defined in HRF±1±1979 in cubic feet, and (ii) the product of an adjustment factor and the net freezer compartment volume as defined in HRF±1±1979, in cubic feet.

1.3 “Anti-sweat heater” means a device incorporated into the design of a refrigerator or refrigerator-freezer to prevent the accumulation of moisture on exterior surfaces of the cabinet under conditions of high ambient humidity.

1.4 “All-refrigerator” means an electric refrigerator which does not include a compartment for the freezing and long time storage of food at temperatures below 32°F (0.0°C). It may include a compartment of 0.50 cubic feet capacity (14.2 liters) or less for the freezing and storage of ice.

1.5 “Cycle” means the period of 24 hours for which the energy use of an electric refrigerator or electric refrigerator-freezer is calculated as though the consumer activated compartment temperature controls were set so that the desired compartment temperatures were maintained.

1.6 “Cycle type” means the set of test conditions having the calculated effect of operating an electric refrigerator or electric refrigerator-freezer for a period of 24 hours, with the consumer activated controls other than those that control compartment temperatures set to establish various operating characteristics.

1.7 “Standard cycle” means the cycle type in which the anti-sweat heater control, when provided, is set in the highest energy consuming position.

1.8 “Automatic defrost” means a system in which the defrost cycle is automatically initiated and terminated, with resumption of normal refrigeration at the conclusion of the defrost operation. The system automatically prevents the permanent formation of frost on all refrigerated surfaces. Nominal refrigerated food temperatures are maintained during the operation of the automatic defrost system.

1.9 “Long-time Automatic Defrost” means an automatic defrost system where successive defrost cycles are separated by 14 hours or more of compressor-operating time.

1.10 “Stabilization Period” means the total period of time during which steady-state conditions are being attained or evaluated.

1.11 “Variable defrost control” means a long-time automatic defrost system (except the 14-hour defrost qualification does not apply) where successive defrost cycles are determined by an operating condition variable or variables other than solely compressor operating time. This includes any electrical or mechanical device. Demand defrost is a type of variable defrost control.

1.12 “Externally vented refrigerator or refrigerator-freezer” means an electric refrigerator or electric refrigerator-freezer that has an enclosed condenser or an enclosed condenser/compressor compartment and a set of air ducts for transferring the exterior air from outside the building envelope into, through and out of the refrigerator or refrigerator-freezer cabinet; is capable of mixing exterior air with the room air before discharging into, through, and out of the condenser or condenser/compressor compartment; includes thermostatically controlled dampers or controls that enable the mixing of the exterior and room air at low outdoor temperatures, and the exclusion of exterior air when the outdoor air temperature is above 80°F or the room air temperature; and may have a thermostatically actuated exterior air fan.

2. Test Conditions

2.1 Ambient temperature. The ambient temperature shall be 90.0 ± 1°F (32.3±0.6°C) during the stabilization period and during the test period. The ambient temperature shall be 80±2°F dry bulb and 67°F wet bulb during the stabilization period and during the test period when the unit is tested in accordance with section 3.3.

2.2 Operational conditions. The electric refrigerator or electric refrigerator-freezer shall be installed and its operating conditions maintained in accordance with HRF±1±1979, section 7.2 through section 7.4.3.3, except that the vertical ambient temperature gradient at locations 10 inches (25.4 cm) out from the centers of the two sides of the unit being tested is to be maintained during the test. Unless the area is obstructed by shields or baffles, the gradient is to be maintained from 2 inches (5.1 cm) above the floor or supporting platform to a height one foot (30.5 cm) above the unit under test. Defrost controls are to be operative and the anti-sweat heater switch is to be “on” during one test and “off” during a second test. Other exceptions are noted in 2.3, 2.4, and 5.1 below.

2.3 Conditions for automatic defrost refrigerator-freezers. For automatic defrost refrigerator-freezers, the freezer compartments shall not be loaded with any frozen food.
Department of Energy

packages. Cylindrical metallic masses of dimensions 1.12±0.25 inches (2.9±0.6 cm) in diameter and height shall be attached in good thermal contact with each temperature sensor at the hardware.

All temperature measuring sensor masses shall be supported by nonthermally conductive supports in such a manner that there will be at least one inch (2.5 cm) of air space separating the thermal mass from contact with any surface. In case of interference with hardware at the sensor locations specified in section 5.1, the sensors shall be placed at the nearest adjacent location such that there will be a one inch air space separating the sensor mass from the hardware.

2.4 Conditions for all-refrigerators. There shall be no load in the freezer compartment during the test.

2.5 Steady State Condition. Steady state conditions exist if the temperature measurements in all measured compartments taken at four minute intervals or less during a stabilization period are not changing at a rate greater than 0.042°F (0.023°C) per hour as determined by the applicable condition of A or B.

A. The average of the measurements during a two hour period if no cycling occurs or during a number of complete repetitive compressor cycles through a period of no less than two hours is compare to the average over an equivalent time period with three hours elapsed between the two measurement periods.

B. If A above cannot be used, the average of the measurements during a number of complete repetitive compressor cycles through a period of no less than two hours and including the last complete cycle prior to a defrost period, or if no cycling occurs, the average of the measurements during the last two hours prior to a defrost period, are compared to the same averaging period prior to the following defrost period.

2.6 Exterior air for externally vented refrigerator or refrigerator-freezer. An exterior air source shall be provided with adjustable temperature and pressure capabilities. The exterior air temperature shall be adjustable from 32°F (0.6°C) to 90°F (32°C) and pressure maintained to ±0.5°F (±0.3°C) of stabilized temperature and pressure conditions during steady-state conditions with no door openings. If both settings cannot be obtained, then test with the fresh food compartment temperature at 38°F and the freezer compartment as close to 5°F as possible.

3. Test Control Settings

3.1 Model with no user operable temperature control. A test shall be performed during which the compartment temperatures and energy use shall be measured. A second test shall be performed with the temperature control electrically short-circuited to cause the compressor to run continuously.

3.2 Model with user operable temperature control. Testing shall be performed in accordance with one of the following sections using the standardized temperatures of:

- All-refrigerator: 30°F (3.3°C) fresh food compartment temperature
- Refrigerator: 15°F (−9.4°C) freezer compartment temperature
- Refrigerator-freezer: 5°F (−15°C) freezer compartment temperature

Variable defrost control models: 5°F (−15°C) freezer compartment temperature and 38°F fresh food compartment temperature during steady-state conditions with no door openings. If both settings cannot be obtained, then test with the fresh food compartment temperature at 38°F and the freezer compartment as close to 5°F as possible.

3.2.1 A first test shall be performed with all compartment temperature controls set at their median position midway between their warmest and coldest settings. Knob detents shall be mechanically defeated if necessary to attain a median setting. A second test shall be performed with all controls set at either their warmest or their coldest setting (not electrically or mechanically bypassed).
whichever is appropriate, to attempt to achieve compartment temperatures measured during the two tests which bound (i.e., one is above and one is below) the standardized temperature for the type of product being tested. If the compartment temperatures measured during these two tests bound the appropriate standardized temperature, then the test result shall be used to determine energy consumption. If the compartment temperature measured with all controls set at their coldest setting is above the standardized temperature, a second test shall be performed with all controls set at their warmest setting and the result of this test shall be used with the result of the test performed with all controls set at their coldest setting to determine energy consumption. If the compartment temperature measured with all controls set at their warmest setting is below the standardized temperature; and the fresh food compartment temperature is below 45°F. (7.2°C.) in the case of a refrigerator or a refrigerator-freezer, excluding an all-refrigerator, then the result of this test alone will be used to determine energy consumption.

3.2.1 Alternatively, a first test may be performed with all temperature controls set at their warmest setting. If the compartment temperature is below the appropriate standardized temperature, and the fresh food compartment temperature is below 45°F. (7.2°C.) in the case of a refrigerator or a refrigerator-freezer, excluding an all-refrigerator, then the result of this test alone will be used to determine energy consumption. If the above conditions are not met, then the unit shall be tested in accordance with 3.2.1 above.

3.2.2 Alternatively, a first test may be performed with all temperature controls set at their warmest setting. If the compartment temperature is below the appropriate standardized temperature, and the fresh food compartment temperature is below 45°F. (7.2°C.) in the case of a refrigerator or a refrigerator-freezer, excluding an all-refrigerator, then the result of this test alone will be used to determine energy consumption. If the above conditions are not met, then the unit shall be tested in accordance with 3.2.1 above.

3.2.3 Alternatively, a first test may be performed with all temperature controls set at their warmest setting. If the compartment temperature is above the appropriate standardized temperature, a second test shall be performed with all controls set at their warmest setting and the results of two tests shall be used to determine energy consumption. If the above condition is not met, then the unit shall be tested in accordance with 3.2.1 above.

3.3 Variable defrost control optional test. After a steady-state condition is achieved, the optional test requires door-openings for 12±2 seconds every 60 minutes on the fresh food compartment door and a simultaneous 12±2 second freezer compartment door-opening occurring every 4th hour, to obtain 24 fresh food and six freezer compartment door-openings per 24-hour period. The first freezer door-opening shall be simultaneous with the fresh food door-opening. The doors are to be opened 60° to 90° with an average velocity for the leading edge of the door of approximately 2 ft/sec. Prior to the initiation of the door-opening sequence, the refrigerator defrost control mechanism may be initiated in order to minimize the test duration.

4. Test Period

4.1 Test Period. Tests shall be performed by establishing the conditions set forth in Section 2, and using control settings as set forth in Section 3, above.

4.1.1 Nonautomatic Defrost. If the model being tested has no automatic defrost system, the test time period shall start after steady state conditions have been achieved and be of not less than three hours in duration. During the test period, the compressor motor shall complete two or more whole compressor cycles (a compressor cycle is a complete “on” and a complete “off” period of the motor). If no “off” cycling will occur, as determined during the stabilization period, the test period shall be three hours. If incomplete cycling (less than two compressor cycles) occurs during a 24 hour period, the results of the 24 hour period shall be used.

4.1.2 Automatic Defrost. If the model being tested has an automatic defrost system, the test time period shall start after steady state conditions have been achieved and be from one point during a defrost period to the same point during the next defrost period. If the model being tested has a long-time automatic defrost system, the alternative provisions of 4.1.2.1 may be used. If the model being tested has a variable defrost control, the provisions of 4.1.2.2 or 4.1.2.3 shall apply. If the model has a dual compressor system the provisions of 4.1.2.4 shall apply.

4.1.2.1 Long-time Automatic Defrost. If the model being tested has a long-time automatic defrost system, the test time period may consist of two parts. A first part would be the same as the test for a unit having no defrost provisions (section 4.1.1). The second part would start when a defrost period is initiated during a compressor “on” cycle and terminate at the second turn “on” of the compressor motor or after four hours, whichever comes first.

4.1.2.2 Variable defrost control. If the model being tested has a variable defrost control system, the test shall consist of three parts. Two parts shall be the same as the test for long-time automatic defrost (section 4.1.2.1). The third part is the optional test to determine the time between defrosts (section 5.2.1.3). The third part is used by manufacturers that choose not to accept the default value of F of 0.20, to calculate CT.

4.1.2.3 Variable defrost control optional test. After steady-state conditions with no door openings are achieved in accordance with section 3.3 above, the test is continued using the above daily door-opening sequence until stabilized operation is achieved. Stabilization is defined as a minimum of three
consecutive defrost cycles with times bet-
 tween defrosts that will allow the calcula-
tion of a Mean Time Between Defrosts (MTBD) that satisfies the statistical rela-
tionship of 90 percent confidence. The test is repeated on at least one more unit of the model and until the Mean Time Between De-
frs for the multiple unit tests (MTBD2) satisfies the statistical relationship. If the time between defrosts is greater than 96 hours (compressor “on” time) and this de-
fr period can be repeated on a second unit, the test may be terminated at 96 hours (CT) and the absolute time value used for MTBD for each unit.

4.1.2.4 Dual compressor systems with automatic defrost. If the model being tested has separate compressor systems for the re-
frigerator and freezer sections, each with its own automatic defrost system, then the two-
part method in 4.1.2.1 shall be used. The sec-
ond part of the method will be conducted separately for each automatic defrost sys-

tem. The auxiliary components (fan motors, anti-sweat heaters, etc.) will be identified for each system and the energy consumption measured during each test.

5. Test Measurements

5.1 Temperature Measurements. Tempera-
ture measurements shall be made at the lo-
cations prescribed in Figures 7.1 and 7.2 of HRF-1-1979 and shall be accurate to within ± 0.5° F. (0.3° C.) of true value. No freezer tem-
perature measurements need be taken in an all-refrigerator model.

If the interior arrangements of the cabinet do not conform with those shown in Figure 7.1 and 7.2 of HRF-1-1979, measurements shall be taken at selected locations chosen to represent approximately the entire refrig-
erated compartment. The locations selected shall be a matter of record.

5.1.1 Measured Temperature. The meas-
ured temperature of a compartment is to be the average of all sensor temperature read-
ings taken in that compartment at a par-
ticular time. Measurements shall be taken at regular intervals not to exceed four minutes.

5.1.2 Compartment Temperature. The com-
partment temperature for each test pe-
riod shall be an average of the measured temperatures taken in a compartment dur-
ing a complete cycle or several complete cy-
cles of the compressor motor (one compres-
sor cycle is one complete motor “on” and one complete motor “off” period). For long-
time automatic defrost models, compart-
tement temperatures shall be those measured in the first part of the test period speci-
ied in 4.1.1. For models equipped with variable defrost controls, compartment temperatures shall be those measured in the first part of the test period specified in 4.1.2.2 above.

5.1.2.1 The number of complete compres-
sor motor cycles over which the measured temperatures in a compartment are to be
averaged to determine compartment tem-
perature shall be equal to the number of minutes between measured temperature readings, rounded up to the next whole minute or a number of complete cycles over a time period exceeding one hour. One of the cycles shall be the last complete compressor motor cycle during the test period.

5.1.2.2 If no compressor motor cycling oc-
curs, the compartment temperature shall be the average of the measured temperatures taken during the last thirty-two minutes of the test period.

5.1.2.3 If incomplete cycling occurs, the compartment temperatures shall be the av-

gage of the measured temperatures taken during the last three hours of the last com-
plete “on” period.

5.2 Energy Measurements

5.2.1 Per-day Energy Consumption. The energy consumption in kilowatt-hours per day for each test period shall be the energy expended during the test period as specified in section 4.1 adjusted to a 24 hour period. The adjustment shall be determined as fol-

ows:

$ET = EP \times \frac{1440}{CT}$

where

$ET =$ test cycle energy expended in kilowatt-

hours per day,

$EP =$ energy expended in kilowatt-hours dur-
ing the test period,

$CT =$ defrost timer run time in hours required
to cause it to go through a complete cycle, to the nearest tenth hour per

cycle, and

12 = factor to adjust for a 50% run time of the

compressor in hours per day.

5.2.1.1 Nonautomatic and automatic de-
frst models. The energy consumption in kil-

lowatt-hours per day shall be calculated equivalent to:

$ET = \left(EP1 \times T1\right) + \left(EP2 \times T2\right) \times \frac{1440}{CT}$

where

ET = test cycle energy expended in kilowatt-

hours per day,

$EP1 =$ energy expended in kilowatt-hours dur-
ing the first part of the test,

$EP2 =$ energy expended in kilowatt-hours dur-
ing the second part of the test,

$T1 =$ length of time in minutes of the first test part,

$T2 =$ length of time in minutes of the sec-

ond test part,

$CT =$ defrost timer run time in hours required
to cause it to go through a complete cycle, to the nearest tenth hour per
cycle, and

12 = factor to adjust for a 50% run time of the
compressor in hours per day.

5.2.1.2 Long-time Automatic Defrost. If the two part test method is used, the energy consumption in kilowatt-hours per day shall be calculated equivalent to:

$ET = \left(1440 \times EP\right) \times \left(1 + \frac{T1}{T2}\right) \times \frac{1440}{CT}$

where

ET, EP, $T1$, and $T2$ are defined in

5.2.1.3 Variable defrost control. The energy consumption in kilowatt-hours per day shall be calculated equivalent to:

$ET = \left(1440 \times EP\right) \times \left(1 + \frac{T1}{T2}\right) \times \frac{1440}{CT}$

where

ET, EP, $T1$, and $T2$ are defined in
where:

\[\text{CT} = \text{MTBD} \times (F \times (\text{CT}_{\text{M}} - \text{CT}_{\text{L}}) + \text{CT}_{\text{L}}) \]

\[\text{CT}_{\text{M}} = \text{least or shortest time between defrosts in tenths of an hour (greater than six but less than or equal to 12 hours)} \]

\[\text{CT}_{\text{L}} = \text{maximum time between defrost cycles in tenths of an hour (greater than CT}_{\text{L}} \text{ but not more than 96 hours)} \]

\[F = \text{ratio of per day energy consumption in excess of the least energy, and the maximum difference in per day energy consumption and is equal to} \]

\[F = \frac{(1/\text{CT}_{\text{L}})}{(1/\text{CT}_{\text{M}})} \times \frac{(\text{ET}_{\text{M}} - \text{ET}_{\text{L}})}{(\text{ET}_{\text{M}} - \text{ET}_{\text{L}})} \text{ or 0.20 in lieu of testing to find CT.} \]

\[\text{ET}_{\text{M}} = \text{maximum electrical energy used (kilowatt hours)} \]

\[\text{ET}_{\text{L}} = \text{least electrical energy used (kilowatt hours)} \]

For demand defrost models with no values for CT, and CT in the algorithm the default values of 12 and 84 shall be used, respectively.

5.2.1.4 Optional test method for variable defrost controls.

\[\text{MTBD} = \text{mean time between defrosts} \]

\[\text{MTBD} = \frac{\sum X}{N} \]

where:

\[X = \text{time between defrost cycles} \]

\[N = \text{number of defrost cycles} \]

5.2.1.5 Dual compressor systems with dual automatic defrost. The two-part test method in section 4.1.2.2 must be used, the energy consumption in kilowatt per day shall be calculated equivalent to:

\[\text{ET} = (1440 \times (\text{EP}_{\text{F}} + \text{EP}_{\text{R}})) + (\text{EP}_{\text{R}}) \times (\text{ET}_{\text{F}}) \]

\[\text{ET} = (1440 \times \text{EP}_{\text{F}}) \times (\text{ET}_{\text{F}}) + (\text{EP}_{\text{R}}) \times (\text{ET}_{\text{F}}) \times (\text{ET}_{\text{R}}) \]

where 1440, \text{ET}_{\text{F}}, \text{EP}_{\text{F}}, \text{EP}_{\text{R}}, 12, and \text{CT} are defined in 5.2.1.2

\[\text{EP}_{\text{F}} = \text{energy expended in kilowatt-hours during the second part of the test for the freezer system by the freezer system.} \]

\[\text{EP}_{\text{R}} = \text{total energy expended during the second part of the test for the freezer system.} \]

\[\text{EP}_{\text{R}} = \text{energy expended in kilowatt-hours during the second part of the test for the refrigerator system by the refrigerator system.} \]

\[\text{EP}_{\text{R}} = \text{total energy expended during the second part of the test for the refrigerator system.} \]

\[\text{T}_{\text{F}} = \text{length of time in minutes of the second test part for the freezer and refrigerator systems respectively.} \]

\[\text{CT}_{\text{F}} = \text{compressor "on" time between freezer defrosts (tenths of an hour).} \]

\[\text{CT}_{\text{R}} = \text{compressor "on" time between refrigerator defrosts (tenths of an hour).} \]

5.3 Volume measurements. The electric refrigerator or electric refrigerator-freezer total refrigerated volume, \(\text{VT} \), shall be measured in accordance with HRF±1±1979, section 3.20 and sections 4.2 through 4.3 and be calculated equivalent to:

\[\text{VT} = \frac{\text{VF} + \text{VFF}}{\text{V}} \]

where

\[\text{VT} = \text{total refrigerated volume in cubic feet,} \]

\[\text{VF} = \text{freezer compartment volume in cubic feet,} \]

\[\text{VFF} = \text{fresh food compartment volume in cubic feet.} \]

5.4 Externally vented refrigerator or refrigerator-freezer units. All test measurements for the externally vented refrigerator or refrigerator-freezer shall be made in accordance with the requirements of other sections of this appendix, except as modified in this section 5.4 or other sections expressly applicable to externally vented refrigerators or refrigerator-freezers.

5.4.1 Operability of thermostatic and mixing of air controls. Prior to conducting energy consumption tests, the operability of thermostatic controls that permit the mixing of exterior and ambient air when exterior air temperatures are less than 60 °F must be verified. The operability of such controls shall be verified by operating the unit under ambient air temperature of 90 °F and exterior air temperature of 45 °F. If the inlet air entering the condenser or condenser/compressor compartment is maintained at 60 °F, plus or minus three degrees, energy consumption of the unit shall be measured under 5.4.2.2 and 5.4.2.3. If the inlet air entering the condenser or condenser/compressor compartment is not maintained at 60 °F, plus or minus three degrees, energy consumption of the unit shall also be measured under 5.4.2.4.

5.4.2 Energy consumption tests.

5.4.2.1 Correction factor test. To enable calculation of a correction factor, \(K \), two full cycle tests shall be conducted to measure energy consumption of the unit with air mixing controls disabled and the condenser inlet air temperatures set at 90 °F (32.2 °C) and 80 °F (26.7 °C). Both tests shall be conducted with all compartment temperature controls set at the position midway between their warmest and coldest settings and the antisweat heater switch off. Record the energy consumptions \(e_{\text{osc}} \) and \(e_{\text{rsw}} \) in kWh/day.

5.4.2.2 Energy consumption at 90 °F. The unit shall be tested at 90 °F (32.2 °C) exterior air temperature to record the energy consumptions \(e_{\text{osc}} \) in kWh/day. For a given setting of the anti-sweat heater, \(i \) corresponds to each of the two states of the compartment temperature control positions.

5.4.2.3 Energy consumption at 60 °F. The unit shall be tested at 60 °F (26.7 °C) exterior air temperature to record the energy consumptions \(e_{\text{osc}} \) in kWh/day. For a given setting of the anti-sweat heater, \(i \) corresponds
to each of the two states of the compartment temperature control positions.

5.4.2.4 Energy consumption if mixing controls do not operate properly. If the operability of temperature and mixing controls has not been verified as required under 5.4.1, the unit shall be tested at 50 °F (10.0 °C) and 30 °F (-1.1 °C) exterior air temperatures to record the energy consumptions \((e_{20}) \) and \((e_{30}) \). For a given setting of the anti-sweat heater, \(i \) corresponds to each of the two states of the compartment temperature control positions.

6. Calculation of Derived Results from Test Measurements

6.1. Adjusted Total Volume.

6.1.1 Electric refrigerators. The adjusted total volume, \(VA \), for electric refrigerators under test shall be defined as:

\[
VA = (VF \times CR + VFF)
\]

where

\(VF \) and \(VFF \) are defined in 5.3, and

\(CR \) = adjustment factor of 1.44 for refrigerators other than all-refrigerators, or 1.0 for all-refrigerators, dimensionless.

6.1.2 Electric refrigerator-freezers. The adjusted total volume, \(VA \), for electric refrigerator-freezers under test shall be calculated as follows:

\[
VA = (VF \times CRF + VFF)
\]

where

\(VF \) and \(VFF \) are defined in 5.3 and \(VA \) is defined in 6.1.1,

\(CRF \) = adjustment factor of 1.63, dimensionless.

6.2 Average Per-Cycle Energy consumption.

6.2.1 All-refrigerator Models. The average per-cycle energy consumption for a cycle type is expressed in kilowatt-hours per-cycle to the nearest one hundredth (0.01) kilowatt-hour and shall be defined in the applicable following manner.

6.2.1.1 If the fresh food compartment temperature is always below 38.0 °F (3.3 °C), the average per-cycle energy consumption shall be:

\[
E = ET1
\]

6.2.1.2 If one of the fresh food compartment temperatures measured for a test period is greater than 38.0 °F (3.3 °C), the average per-cycle energy consumption shall be equivalent to:

\[
E = ET1 + ((ET2 - ET1) \times (38.0 - TR1)/(TR2 - TR1))
\]

where

\(E \) is defined in 6.2.1.1,

\(ET \) is defined in 5.2.1,

\(TR \) = fresh food compartment temperature measured according to 5.1.2 in degrees F.

Number 1 and 2 indicates measurements taken during the first and second test period as appropriate, and

38.0 = standardized fresh food compartment temperature in degrees F.

6.2.2 Refrigerators and refrigerator-freezers. The average per-cycle energy consumption for a cycle type is expressed in kilowatt-hours per-cycle to the nearest one hundredth (0.01) kilowatt-hour and shall be defined in the applicable following manner.

6.2.2.1 If the fresh food compartment temperature is always at or below 45.0 °F (7.2 °C) in both of the tests and the freezer compartment temperature is always at or below 15.0 °F (-9.4 °C) in both tests of a refrigerator or at or below 5.0 °F (-15.0 °C) in both tests of a refrigerator-freezer, the per-cycle energy consumption shall be:

\[
E = ET1
\]

6.2.2.2 If the conditions of 6.2.2.1 do not exist, the per-cycle energy consumption shall be defined by the higher of the two values calculated by the following two formulas:

\[
E = ET1 + ((ET2 - ET1) \times (45.0 - TR1)/(TR2 - TR1))
\]

and

\[
E = ET1 + ((ET2 - ET1) \times (K - TF1)/(TF2 - TF1))
\]

where

\(E \) is defined in 6.2.1.1,

\(ET \) is defined in 5.2.1,

\(TR \) and number 1 and 2 are defined in 6.2.1.2,

\(TF \) = freezer compartment temperature determined according to 5.1.2 in degrees F.

45.0 is a specified fresh food compartment temperature in degrees F, and

\(k \) is a constant 15.0 for refrigerators or 5.0 for refrigerator-freezers each being standardized freezer compartment temperature in degrees F.

6.3 Externally vented refrigerator or refrigerator-freezer. Per-cycle energy consumption measurements for the externally vented refrigerator or refrigerator-freezer shall be calculated in accordance with the requirements of this Appendix, as modified in sections 6.3.1-6.3.7.

6.3.1 Correction factor. A correction factor, \(K \), shall be calculated as:

\[
K = ec_{20}/ec_{30}
\]

where \(ec_{20} \) and \(ec_{30} \) = the energy consumption test results as determined under 5.4.2.1.
6.3.2 Combining test results of different settings of compartment temperature controls. For a given setting of the anti-sweat heater, follow the calculation procedures of 6.2 to combine the test results for energy consumption of the unit at different temperature control settings for each condenser inlet air temperature tested under 5.4.2.2, 5.4.2.3, and 5.4.2.4, where applicable, \((e_{\text{w}})_{i}, (e_{\text{n}})_{i}, (e_{\text{w}})_{o}, \text{ and } (e_{\text{n}})_{o})\). The combined values are \(e_{\text{w}o}, e_{\text{n}o}, e_{\text{w}o}, \text{ and } e_{\text{n}o}\), where applicable, in kWh/day.

6.3.3 Energy consumption corrections. For a given setting of the anti-sweat heater, the energy consumptions \(e_{\text{w}o}, e_{\text{n}o}, e_{\text{w}o}, \text{ and } e_{\text{n}o}\) calculated in 6.3.2 shall be adjusted by multiplying the correction factor \(K\) to obtain the corrected energy consumptions per day, in kWh/day:

\[
E_{\text{w}o} = K \times e_{\text{w}o},
E_{\text{n}o} = K \times e_{\text{n}o},
E_{\text{w}o} = K \times e_{\text{w}o}, \text{ and }
E_{\text{n}o} = K \times e_{\text{n}o},
\]

where,

\(K\) is determined under section 6.3.1, and \(e_{\text{w}o}, e_{\text{n}o}, e_{\text{w}o}, \text{ and } e_{\text{n}o}\) are determined under section 6.3.2.

6.3.4 Energy profile equation. For a given setting of the anti-sweat heater, the energy consumption \(E_{\text{n}}\), in kWh/day, at a specific exterior air temperature between 80 °F (26.7 °C) and 60 °F (26.7 °C) shall be calculated by the following equation:

\[
E_{\text{n}} = a + bT_{n},
\]

where,

\(T_{n}\) is exterior air temperature in °F;
\(a = 3E_{\text{w}o} - 2E_{\text{w}o}\), in kWh/day;
\(b = (E_{\text{w}o} - E_{\text{w}o})/30, \text{ in kWh/day per °F.}\)

6.3.5 Energy consumption at 80 °F (26.7 °C), 75 °F (23.9 °C) and 65 °F (18.3 °C). For a given setting of the anti-sweat heater, calculate the energy consumptions at 80 °F (26.7 °C), 75 °F (23.9 °C) and 65 °F (18.3 °C) exterior air temperatures, \(E_{\text{w}o}, E_{75}, \text{ and } E_{65}\), respectively, in kWh/day, using the equation in 6.3.4.

6.3.6 National average per cycle energy consumption. For a given setting of the anti-sweat heater, calculate the national average energy consumption, \(E_{\text{n}}\), in kWh/day, using one of the following equations:

\[
E_{\text{n}} = 0.523 \times E_{\text{w}o} + 0.165 \times E_{75} + 0.181 \times E_{65} + 0.131 \times E_{\text{w}o}, \text{ for units not tested under 5.4.2.4,}
E_{\text{n}} = 0.257 \times E_{\text{w}o} + 0.266 \times E_{75} + 0.169 \times E_{65} + 0.181 \times E_{75} + 0.131 \times E_{65}, \text{ for units tested under 5.4.2.4,}
\]

where,

\(E_{\text{w}o}, E_{75}, \text{ and } E_{65}\) are defined in 6.3.3,
\(E_{\text{w}o}, E_{75}, \text{ and } E_{65}\) are defined in 6.3.5, and the coefficients are weather associated weighting factors.

6.3.7 Regional average per cycle energy consumption. If regional average per cycle energy consumption is required to be calculated, for a given setting of the anti-sweat heater, calculate the regional average per cycle energy consumption, \(E_{\text{n}}\), in kWh/day, for the regions in figure 1 using one of the following equations and the coefficients in the table A:

\[
E_{\text{n}} = a_{1} \times E_{\text{w}o} + c_{1} \times E_{75} + d_{1} \times E_{65} + e_{1} \times E_{\text{w}o}, \text{ for a unit that is not required to be tested under 5.4.2.4,}
E_{\text{n}} = a \times E_{\text{w}o} + b \times E_{75} + c \times E_{65} + d \times E_{75} + e \times E_{65}, \text{ for a unit tested under 5.4.2.4,}
\]

where:

\(E_{\text{w}o}, E_{75}, \text{ and } E_{65}\) are defined in 6.3.3,
\(a_{1}, a, b, c, d, e\) are weather associated weighting factors for the Regions, as specified in Table A.

| TABLE A.—COEFFICIENTS FOR CALCULATING REGIONAL AVERAGE PER CYCLE ENERGY CONSUMPTION |
|---------------------------------|---|---|---|---|---|
| Regions | \(a_{1}\) | \(a\) | \(b\) | \(c\) | \(d\) | \(e\) |
| I | 0.282 | 0.039 | 0.244 | 0.194 | 0.326 | 0.198 |
| II | 0.486 | 0.194 | 0.293 | 0.191 | 0.193 | 0.129 |
| III | 0.584 | 0.302 | 0.282 | 0.178 | 0.159 | 0.079 |
| IV | 0.664 | 0.420 | 0.244 | 0.161 | 0.121 | 0.055 |
1. Definitions.

1.1 "HRF–1–1979" means the Association of Home Appliance Manufacturers standard for household refrigerators, combination refrigerators-freezers, and household freezers, also approved as an American National Standard as a revision of ANSI B38.1–1970.

1.2 “Anti-sweat heater” means a device incorporated into the design of a freezer to prevent the accumulation of moisture on exterior surfaces of the cabinet under conditions of high ambient humidity.

1.3 “Cycle” means the period of 24 hours for which the energy use of a freezer is calculated as though the consumer-activated compartment temperature controls were preset so that the desired compartment temperatures were maintained.

1.4 “Cycle type” means the set of test conditions having the calculated effect of operating a freezer for a period of 24 hours with the consumer-activated controls other than the compartment temperature control set to establish various operating characteristics.

1.5 “Standard cycle” means the cycle type in which the anti-sweat heater switch, when provided, is set in the highest energy consuming position.

1.6 “Adjusted total volume” means the product of, (1) the freezer volume as defined in HRF–1–1979 in cubic feet, times (2) an adjustment factor.

1.7 “Automatic Defrost” means a system in which the defrost cycle is automatically initiated and terminated, with resumption of normal refrigeration at the conclusion of defrost operation. The system automatically prevents the permanent formation of frost on all refrigerated surfaces. Nominal refrigerated food temperatures are maintained during the operation of the automatic defrost system.

1.8 “Long-time Automatic Defrost” means an automatic defrost system where successive defrost cycles are separated by 14 hours or more of compressor-operating time.

1.9 “Stabilization Period” means the total period of time during which steady-state conditions are being attained or evaluated.

1.10 “Variable defrost control” means a long-time automatic defrost system (except the 14-hour defrost qualification does not
apply) where successive defrost cycles are determined by an operating condition variable or variables other than solely compressor operating time. This includes any electrical or mechanical device. Demand defrost is a type of variable defrost control.

1.11 “Quick freeze” means an optional feature on freezers which is initiated manually and shuts off manually. It bypasses the thermostat control and places the compressor in a steady-state operating condition until it is shut off.

2. Test Conditions

2.1 Ambient temperature. The ambient temperature shall be 90.0±0.1°F. (32.2±0.06°C.) during the stabilization period and during the test period. The ambient temperature shall be 80±2°F dry bulb and 67°F wet bulb during the stabilization period and during the test period when the unit is tested in accordance with section 3.3.

2.2 Operational conditions. The freezer shall be installed and its operating conditions maintained in accordance with HRF-1-1979, section 7.2 through section 7.4.3.3 except that the vertical ambient gradient at locations 10 inches (25.4 cm) out from the the centers of the two sides of the unit being tested is to be maintained during the test. Unless the area is obstructed by shields or baffles, the gradient is to be maintained from 2 inches (5.1 cm) above the floor or supporting platform to a height one foot (30.5 cm) above the unit under test. Defrost controls are to be operative and the anti-sweat heater switch is to be “on” during one test and “off” during the second test. The quick freeze option shall be switched off unless specified.

2.3 Steady State Condition. Steady state conditions exist if the temperature measurements taken at four minute intervals or less during a stabilization period are not changing at a rate greater than 0.002°F. (0.002°C.) per hour as determined by the applicable condition of A or B.

A—The average of the measurements during a two hour period if no cycling occurs or during a number of complete repetitive compressor cycles through a period of no less than two hours is compared to the average over an equivalent time period with three hours elapsed between the two measurement periods.

B—If A above cannot be used, the average of the measurements during a number of complete repetitive compressor cycles through a period of no less than two hours and including the last complete cycle prior to a defrost period, or if no cycling occurs, the average of the measurements during the last two hours prior to a defrost period; are compared to the same averaging period prior to the following defrost period.

3. Test Control Settings

3.1 Model with no user operable temperature control. A test shall be performed during which the compartment temperature and energy use shall be measured. A second test shall be performed with the temperature control electrically short circuited to cause the compressor to run continuously. If the model has the quick freeze option, it is to be used to bypass the temperature control.

3.2 Model with user operable temperature control. Testing shall be performed in accordance with one of the following sections using the standardized temperature of 0.0°F. (−17.8°C). Variable defrost control models shall achieve 0.2°F during the steady-state conditions prior to the optional test with no door openings.

3.2.1 A first test shall be performed with all temperature controls set at their median position midway between their warmest and coldest settings. Knob detents shall be mechanically defeated if necessary to attain a median setting. A second test shall be performed with all controls set at either their warmest or their coldest setting (not electrically or mechanically bypassed), whichever is appropriate, to attempt to achieve compartment temperatures measured during the two tests which bound (i.e., one is above and one is below) the standardized temperature. If the compartment temperatures measured during these two tests bound the standardized temperature, then these test results shall be used to determine energy consumption. If the compartment temperature measured with all controls set at their coldest setting is above the standardized temperature, a third test shall be performed with all controls set at their warmest setting to determine energy consumption. If the compartment temperature measured with all controls set at their warmest setting is below the standardized temperature, then the result of this test alone will be used to determine energy consumption.

3.2.2 Alternatively, a first test may be performed with all temperature controls set at their warmest setting. If the compartment temperature is below the standardized temperature, then the result of this test alone will be used to determine energy consumption. If the above condition is not met, then the unit shall be tested in accordance with 3.2.1 above.

3.2.3 Alternatively, a first test may be performed with all temperature controls set at their coldest setting. If the compartment temperature is above the standardized temperature, a second test shall be performed with all controls set at their warmest setting and the results of these two tests shall be used to determine energy consumption. If
the above condition is not met, then the unit shall be tested in accordance with 3.2.1 above.

3.3 Variable defrost control optional test. After a steady-state condition is achieved, the door-opening sequence is initiated with an 8h:2 second freezer door-opening occurring every eight hours to obtain three door-openings per 24-hour period. The first door-opening shall occur at the initiation of the test period. The door(s) are to be opened 60 to 90° with an average velocity for the leading edge of the door of approximately two feet per second. Prior to the initiation of the door-opening sequence, the freezer defrost control mechanism may be re-initiated in order to minimize the test duration.

4. Test Period.

4.1 Test Period. Tests shall be performed by establishing the conditions set forth in Section 2 and using control settings as set forth in Section 3 above.

4.1.1 Nonautomatic Defrost. If the model being tested has no automatic defrost system, the test time period shall start after steady state conditions have been achieved, and be of not less than three hours' duration. During the test period the compressor motor shall complete two or more whole cycles (a compressor cycle is a complete "on" and a complete "off" period of the motor). If no "off" cycling will occur, as determined during the stabilization period, the test period shall be three hours. If incomplete cycling (less than two compressor cycles) occurs during a 24 hour period, the results of the 24 hour period shall be used.

4.1.2 Automatic Defrost. If the model being tested has an automatic defrost system, the test time period shall start after steady state conditions have been achieved and be from one point during a defrost period to the same point during the next defrost period. If the model being tested has a long-time automatic defrost system, the alternate provisions of 4.1.2.1 may be used. If the model being tested has a variable defrost control system, the provisions of 4.1.2.2 shall apply.

4.1.2.1 Long-time Automatic Defrost. If the model being tested has a long-time automatic defrost system, the test time period may consist of two parts. A first part would be the same as the test for a unit having no defrost provisions (section 4.1.1). The second part would start when a defrost period is initiated during a compressor "on" cycle and terminate at the second turn "on" of the compressor motor or after four hours, whichever comes first.

4.1.2.2 Variable defrost control. If the model being tested has a variable defrost control system, the test shall consist of three parts. Two parts shall be the same as the test for long-time automatic defrost in accordance with section 4.1.2.1 above. The third part is the optional test to determine the time between defrosts (5.2.1.3). The third part is used by manufacturers that choose not to accept the default value of F of 0.20, to calculate CT.

4.1.2.3 Variable defrost control optional test. After steady-state conditions with no door-openings are achieved in accordance with section 3.3 above, the test is continued using the above daily door-opening sequence until stabilized operation is achieved. Stabilization is defined as a minimum of three consecutive defrost cycles with times between defrosts that will allow the calculation of a Mean Time Between Defrosts (MTBD1) that satisfies the statistical relationship of 90 percent confidence. The test is repeated on at least one more unit of the model and until the Mean Time Between Defrosts for the multiple unit test (MTBD2) satisfies the statistical relationship. If the time between defrosts is greater than 96 hours (compressor "on" time) and this defrost period can be repeated on a second unit, the test may be terminated at 96 hours (CT) and the absolute time value used for MTBD for each unit.

5. Test Measurements.

5.1 Temperature Measurements. Temperature measurements shall be made at the locations prescribed in Figure 7-2 of HRF-1-1979 and shall be accurate to within ±0.5°F (0.3°C) of true value.

5.1.1 Measured Temperature. The measured temperature is to be the average of all sensor temperature readings taken at a particular time. Measurements shall be taken at regular intervals not to exceed four minutes.

5.1.2 Compartment Temperature. The compartment temperature for each test period shall be an average of the measured temperatures taken during a complete cycle or several complete cycles of the compressor motor (one compressor cycle is one complete motor "on" and one complete motor "off" period). For long-time automatic defrost models, compartment temperature shall be that measured in the first part of the test period specified in 4.1.1. For models equipped with variable defrost controls, compartment temperatures shall be those measured in the first part of the test period specified in 4.1.2.2.

5.1.2.1 The number of complete compressor motor cycles over which the measured temperatures in a compartment are to be averaged to determine compartment temperature shall be equal to the number of minutes between measured temperature readings rounded up to the next whole minute or a number of complete cycles over a time period exceeding one hour. One of the cycles shall be the last complete compressor motor cycles during the test period.

5.1.2.2 If no compressor motor cycling occurs, the compartment temperature shall be the average of the measured temperatures
taken during the last thirty-two minutes of the test period.

5.1.2.3 If incomplete cycling occurs (less than one cycle) the compartment temperature shall be the average of all readings taken during the last three hours of the last complete ‘on’ period.

5.2 Energy Measurements:

5.2.1 Per-day Energy Consumption. The energy consumption in kilowatt-hours per day for each test period shall be the energy expended during the test period as specified in section 4.1 adjusted to a 24 hour period.

The adjustment shall be determined as follows:

5.2.1.1 Nonautomatic and automatic defrost models. The energy consumption in kilowatt-hours per day shall be calculated equivalent to:

\[ET = \left(\frac{EP_1 \times 1440}{CT} \right) + \left(\frac{EP_2}{CT} \right) \]

where:

- \(ET \) = test cycle energy expended in kilowatt-hours per day,
- \(EP_1 \) = energy expended in kilowatt-hours during the first part of the test,
- \(EP_2 \) = energy expended in kilowatt-hours during the second part of the test,
- \(CT \) = defrost timer run time in hours required to cause it to go through a complete cycle, to the nearest tenth hour per cycle,
- \(12 \) = conversion factor to adjust for a 50% run time of the compressor in hours per day, and
- \(T_1 \) and \(T_2 \) = length of time of the first and second test parts respectively.

5.2.1.3 Variable defrost control. The energy consumption in kilowatt-hours per day shall be calculated equivalent to:

\[ET = \left(\frac{EP_1 \times 1440}{CT} \right) + \left(\frac{EP_2}{12CT} \right) \]

where:

- \(ET \) = test cycle energy expended in kilowatt-hours per day,
- \(EP_1 \) = energy expended in kilowatt-hours during the first part of the test,
- \(EP_2 \) = energy expended in kilowatt-hours during the second part of the test,
- \(CT \) = defrost timer run time in hours required to cause it to go through a complete cycle, to the nearest tenth hour per cycle,
- \(12 \) = conversion factor to adjust for a 50% run time of the compressor in hours per day, and
- \(T_1 \) and \(T_2 \) = length of time of the first and second test parts respectively.

5.2.1.4 Variable defrost control optional test. Perform the optional test for variable defrost control models to find \(CT \).

\[CT = \frac{MTBD \times 0.5}{6} \]

\[MTBD = \frac{\sum X}{N} \]

where:

- \(MTBD \) = mean time between defrost
- \(X \) = time between defrost cycles
- \(N \) = number of defrost cycles

5.3 Volume measurements. The total refrigerated volume, \(VT \), shall be measured in accordance with HRF-1-1979, section 3.20 and section 5.1 through 5.3.

6. Calculation of Derived Results From Test Measurements.

6.1 Adjusted Total Volume. The adjusted total volume, \(VA \), for freezers under test shall be defined as:

\[VA = \frac{VT \times CF}{170} \]

where:

- \(VA \) = adjusted total volume in cubic feet,
- \(VT \) = total refrigerated volume in cubic feet,
- \(CF \) = correction factor for chest freezers.

6.2 Average Per Cycle Energy Consumption:

6.2.1 The average per-cycle energy consumption for a cycle type is expressed in kilowatt-hours per cycle to the nearest one hundredth (0.01) kilowatt-hour and shall depend upon the compartment temperature attainable as shown below.

6.2.1.1 If the compartment temperature is always below 0.0°F (−17.8°C), the average per-cycle energy consumption shall be equivalent to:

\[E = ET_1 \]

where:

- \(E \) = total per-cycle energy consumption in kilowatt-hours per day,
- \(ET_1 \) = per-cycle energy consumption in kilowatt-hours per cycle.

5.2.1.2 Long-time Automatic Defrost. If the two part test method is used, the energy consumption in kilowatt-hours per day shall be calculated equivalent to:

\[ET = \left(\frac{EP_1 \times 1440 \times K}{CT} \right) + \left(\frac{EP_2}{12CT} \right) \]

where:

- \(ET \) = test cycle energy expended in kilowatt-hours per day,
- \(EP_1 \) = energy expended in kilowatt-hours during the first part of the test,
- \(EP_2 \) = energy expended in kilowatt-hours during the second part of the test,
- \(CT \) = defrost timer run time in hours required to cause it to go through a complete cycle, to the nearest tenth hour per cycle,
- \(12 \) = conversion factor to adjust for a 50% run time of the compressor in hours per day, and
- \(T_1 \) and \(T_2 \) = length of time of the first and second test parts respectively.

5.2.1.4 Variable defrost control optional test. Perform the optional test for variable defrost control models to find \(CT \).

\[CT = \frac{MTBD \times 0.5}{6} \]

\[MTBD = \frac{\sum X}{N} \]

where:

- \(MTBD \) = mean time between defrost cycles
- \(X \) = time between defrost cycles
- \(N \) = number of defrost cycles

5.3 Volume measurements. The total refrigerated volume, \(VT \), shall be measured in accordance with HRF-1-1979, section 3.20 and section 5.1 through 5.3.

6. Calculation of Derived Results From Test Measurements.

6.1 Adjusted Total Volume. The adjusted total volume, \(VA \), for freezers under test shall be defined as:

\[VA = \frac{VT \times CF}{170} \]

where:

- \(VA \) = adjusted total volume in cubic feet,
- \(VT \) = total refrigerated volume in cubic feet,
- \(CF \) = correction factor for chest freezers.

6.2 Average Per Cycle Energy Consumption:

6.2.1 The average per-cycle energy consumption for a cycle type is expressed in kilowatt-hours per cycle to the nearest one hundredth (0.01) kilowatt-hour and shall depend upon the compartment temperature attainable as shown below.

6.2.1.1 If the compartment temperature is always below 0.0°F (−17.8°C), the average per-cycle energy consumption shall be equivalent to:

\[E = ET_1 \]

where:

- \(E \) = total per-cycle energy consumption in kilowatt-hours per day,
- \(ET_1 \) = per-cycle energy consumption in kilowatt-hours per cycle.

5.2.1.2 Long-time Automatic Defrost. If the two part test method is used, the energy consumption in kilowatt-hours per day shall be calculated equivalent to:

\[ET = \left(\frac{EP_1 \times 1440 \times K}{CT} \right) + \left(\frac{EP_2}{12CT} \right) \]

where:

- \(ET \) = test cycle energy expended in kilowatt-hours per day,
- \(EP_1 \) = energy expended in kilowatt-hours during the first part of the test,
- \(EP_2 \) = energy expended in kilowatt-hours during the second part of the test,
- \(CT \) = defrost timer run time in hours required to cause it to go through a complete cycle, to the nearest tenth hour per cycle,
- \(12 \) = conversion factor to adjust for a 50% run time of the compressor in hours per day, and
- \(T_1 \) and \(T_2 \) = length of time of the first and second test parts respectively.

5.2.1.3 Variable defrost control. The energy consumption in kilowatt-hours per day shall be calculated equivalent to:

\[ET = \left(\frac{EP_1 \times 1440}{CT} \right) + \left(\frac{EP_2}{12CT} \right) \]

where:

- \(ET \) = test cycle energy expended in kilowatt-hours per day,
- \(EP_1 \) = energy expended in kilowatt-hours during the first part of the test,
- \(EP_2 \) = energy expended in kilowatt-hours during the second part of the test,
- \(CT \) = defrost timer run time in hours required to cause it to go through a complete cycle, to the nearest tenth hour per cycle,
- \(12 \) = conversion factor to adjust for a 50% run time of the compressor in hours per day, and
- \(T_1 \) and \(T_2 \) = length of time of the first and second test parts respectively.
Department of Energy

6.2.1.2 If one of the compartment temperatures measured for a test period is greater than 0.0°F (17.8°C), the average per-cycle energy consumption shall be equivalent to:

\[E = \frac{1}{\beta} \left(T F_2 - T F_1 \right) \]

where

E is defined in 6.2.11
ET is defined in 5.2.1
TF is the average temperature determined according to 5.1.2 in degrees F.

Numbers 1 and 2 indicate measurements taken during the first and second test periods as appropriate, and

0.0=Standardized compartment temperature in degrees F.

Appendix C to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Dishwashers

1. Definitions:

1.1 "Cycle" means a sequence of operations of a dishwasher which performs a complete dishwashing operation, and may include variations or combinations of the functions of washing, rinsing and drying.

1.2 "Cycle type" means any complete sequence of operations capable of being preset on the dishwasher prior to the initiation of machine operation.

1.3 "Normal cycle" means the cycle type recommended by the manufacturer for completely washing a full load of normally soiled dishes including the power-dry feature.

1.4 "Power-dry feature" means that function in a cycle in which electrically generated heat is introduced into the washing chamber for the purpose of improving the drying performance of the dishwasher.

1.5 "Truncated normal cycle" means the normal cycle interrupted to eliminate the power-dry feature after the termination of the last rinse operation.

1.6 "Water Heating Dishwasher" means a dishwasher which is designed for hearing cold inlet water (nominal 50°F) or a dishwasher for which the manufacturer recommends operation with a nominal inlet water temperature of 120°F, and may operate at either of these inlet water temperatures by providing internal water heating to above 120°F in at least one wash phase of the normal cycle.

2. Testing conditions:

2.1 Installation. Install the dishwasher in accordance with the manufacturer's instruction, except that undercounter dishwashers need not be installed under a counter.

2.2 Electrical supply.

2.2.1 Dishwashers that operate with an electrical supply of 115 volts. Maintain the electrical supply to the dishwasher within two percent of 115 volts and within one percent of the nameplate frequency as specified by the manufacturer.

2.2.2 Dishwashers that operate with an electrical supply of 240 volts. Maintain the electrical supply to the dishwasher within two percent of 240 volts and within one percent of its nameplate frequency as specified by the manufacturer.

2.3 Water temperature.

2.3.1 Dishwashers to be tested at a nominal 140°F inlet water temperature. Maintain the water supply temperature between 135°F and 145°F.

2.3.2 Dishwashers to be tested at a nominal 120°F inlet water temperature. Maintain the water supply temperature between 118°F and 122°F.

2.3.3 Dishwashers to be tested at a nominal 50°F inlet water temperature. Maintain the water supply temperature between 48°F and 52°F.

2.4 Water pressure. Maintain the pressure of the water supply between 32.5 and 37.5 pounds per square inch.

2.5 Ambient and machine temperature. Maintain the room ambient air temperature between 70°F and 80°F, and assure that the dishwasher and the test load are at room ambient temperature at the start of each test cycle.

2.6 Load.

2.6.1 Dishwashers to be tested at a nominal 140°F inlet water temperature. The dishwasher shall be tested on the normal cycle and the truncated normal cycle without a test load.

2.6.2 Dishwashers to be tested at a nominal inlet water temperature of 50°F or 120°F. The dishwasher shall be tested or normal cycle and the truncated normal cycle with a test load of eight place settings plus six serving pieces as specified in section 6.1.1 of AHAM Standard DW-1. If the capacity of the dishwasher, as stated by the manufacturer, is less than eight place setting then the test load shall be that capacity.

2.7 Testing requirements.

Provisions in this Appendix pertaining to dishwashers which operate with a nominal inlet temperature of 50°F or 120°F shall apply only to water heating dishwashers.

3. Test cycle and measurements.

3.1 Test cycle. Perform a test cycle by establishing the testing conditions set forth in 2 of this Appendix, setting the dishwasher to the cycle type to be tested, initiating the cycle and allowing the cycle to proceed to completion.

3.2 Machine electrical energy consumption.

3.2.1 Dishwashers that operate with a nominal 140°F inlet water temperature, only. Measure the machine electrical energy consumption, M, specified as the number of kilowatt-hours of electrical energy consumed during the entire test cycle using a water supply temperature as set forth in 2.3.1 of this Appendix. Use a kilowatt-hour meter having a resolution no larger than 0.001 kilowatt-hour.
hours and a maximum error no greater than one percent.

3.2.2 Dishwashers that operate with a nominal inlet water temperature of 120°F. Measure the machine electrical energy consumption, M, specified as the number of kilowatt-hours of electrical energy consumed during the entire test cycle using a water supply temperature as set forth in 2.3.2 of this Appendix. Use a kilowatt-hour meter having a resolution no larger than 0.001 kilowatt-hours and a maximum error no greater than one percent.

3.2.3 Dishwashers that operate with a nominal inlet water temperature of 50°F. Measure the machine electrical energy consumption, M, specified as the number of kilowatt-hours of electrical energy consumed during the entire test cycle using a water supply temperature as set forth in 2.3.3 of this Appendix. Use a kilowatt-hour meter having a resolution no larger than 0.001 kilowatt-hours and a maximum error no greater than one percent.

3.3 Water consumption. Measure the water consumption specified as the number of gallons delivered to the dishwasher during the entire test cycle, using a water meter having a resolution no larger than 0.1 gallon and a maximum error no greater than 1.5 percent for all water flow rates from one to five gallons per minute and for all water temperatures encountered in the test cycle.

3.4 Report values. State the reported values of machine electrical energy consumption and water consumption as measured.

4. Calculation of derived results from test measurements: 4.1 Per-cycle water energy consumption using electrically heated water.

4.1.1 Dishwashers that operate with a nominal 140°F inlet water temperature, only. Calculate for the cycle type under test the per cycle water energy consumption using electrically heated water, We, expressed in kilowatt-hours per cycle and defined as:

\[W_e = V \times T \times K \]

where

- V = the reported water consumption in gallons per cycle for the cycle type under test,
- T = nominal water heater temperature rise = 50°F,
- K = specific heat of water in kilowatt-hours per gallon per degree Fahrenheit = 0.00240.

4.1.2 Dishwashers that operate with a nominal inlet water temperature of 120°F. Calculate for the cycle type under test the per cycle water energy consumption using electrically heated water, We, expressed in kilowatt-hours per cycle and defined as:

\[W_e = V \times T \times K \]

where

- V and K are defined in 4.1.1 of this Appendix, and
- T = nominal water heater temperature rise = 70°F.

4.2 Per-cycle water energy consumption using gas-heated or oil-heated water.

4.2.1 Dishwashers that operate with a nominal 140°F inlet water temperature, only. Calculate for the cycle type under test the per cycle water energy consumption using gas-heated or oil-heated water, Wg, expressed in Btu's per cycle and defined as:

\[W_g = V \times T \times e \times C \]

where

- V and T are defined in 4.1.1 of this Appendix, and
- C = specific heat of water in Btu's per gallon per degree Fahrenheit = 0.75
- e = nominal gas or oil water heater recovery efficiency = 0.70.

4.2.2 Dishwashers that operate with a nominal inlet water temperature of 120°F. Calculate for the cycle type under test the per cycle water energy consumption using gas-heated or oil-heated water, Wg, expressed in Btu's per cycle and defined as:

\[W_g = V \times T \times e \times C \]

where

- V and T are defined in 4.1.1 of this Appendix, and
- C and e are defined in 4.2.1 of this Appendix.

4.3 Per-cycle machine electrical energy consumption.

4.3.1 Dishwashers that operate with a nominal 140°F inlet water temperature, only. Use the measured value recorded in 3.2.1 as the per-cycle machine electrical energy consumption, M, expressed in kilowatt-hours per cycle.

4.3.2 Dishwashers that operate with a nominal inlet water temperature of 120°F. Use the measured value recorded in 3.2.2 as the per-cycle machine electrical energy consumption, M, expressed in kilowatt-hours per cycle.

4.3.3 Dishwashers that operate with a nominal inlet water temperature of 50°F. Use the measured value recorded at 3.2.3 as the per-cycle machine electrical energy consumption, M, expressed in kilowatt-hours per cycle.

4.4 Total per-cycle energy consumption. Calculate for the cycle type under test the total per-cycle energy consumption, E, expressed in kilowatt-hours per cycle, and defined as the sum of the per-cycle machine electrical energy consumption, M, plus the per-cycle water energy consumption of electrically-heated water, W, calculated for the cycle type, determined according to 4.3 and 4.1 respectively.

APPENDIX D TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF CLOTHES DRYERS

1. DEFINITIONS

11 “AHAM” means the Association of Home Appliance Manufacturers.
1.2 “Bone dry” means a condition of a load of test clothes which has been dried in a dryer at maximum temperature for a minimum of 10 minutes, removed and weighed before drum cooling. The clothes shall be bone dry after 10-minute periods until the final weight change of the load is 1 percent or less.

1.3 “Compact” or compact size” means a clothes dryer with a drum capacity of less than 4.4 cubic feet.

1.4 “Cool down” means that portion of the drying operation which permits the clothes to cool to room temperature or its moisture content and with a control which automatically terminates the dryer cycle.

1.5 “Cycle” means a sequence of operation of a clothes dryer which performs a clothes drying operation, and may include variations or combinations of the functions of heating, tumbling and drying.

1.6 “Drum capacity” means the volume of the drying drum in cubic feet.

1.7 “HLD±1” means the test standard promulgated by AHAM and titled “AHAM Performance Evaluation Procedure for Household Tumble Type Clothes Dryers,” June 1974, and designated as HLD-D.1.

1.8 “HLD±2EC” means the test standard promulgated by AHAM and titled “Test Method for Measuring Energy Consumption of Household Tumble Type Clothes Dryers,” December 1995, and designated as HLD-2EC.

1.9 “Standard size” means a clothes dryer with a drum capacity of 4.4 cubic feet or greater.

1.10 “Moisture content” means the ratio of the weight of water contained by the test load to the bone-dry weight of the test load, expressed as a percent.

1.11 “Automatic termination control” means a dryer control system with a sensor which monitors either the dryer load temperature or its moisture content and with a controller which automatically terminates the drying process. A mark or detent which indicates a preferred automatic termination control setting must be present if the dryer is to be classified as having an “automatic termination control.” A mark is a visible single control setting on one or more dryer controls.

1.12 “Temperature sensing control” means a system which monitors dryer exhaust air temperature and automatically terminates the dryer cycle.

1.13 “Moisture sensing control” means a system which utilizes a moisture sensing element within the dryer drum that monitors the amount of moisture in the clothes and automatically terminates the dryer cycle.

2. TESTING CONDITIONS

2.1 Installation. Install the clothes dryer in accordance with manufacturer’s instructions. The dryer exhaust shall be restricted by adding the AHAM exhaust simulator described in 3.3.5 of HLD±1. All external joints should be taped to avoid air leakage. Disconnect all console light or other lighting systems on the clothes dryer which do not consume more than 10 watts during the clothes dryer test cycle.

2.2 Ambient temperature and humidity. Maintain the room ambient air temperature at 75±3°F and the room relative humidity at 50±2 percent relative humidity.

2.3 Energy supply.

2.3.1 Electrical supply. Maintain the electrical supply at the clothes dryer terminal block within 1 percent of 120VAC or 120VDC or 120 volts as applicable to the particular terminal block wiring system and within 1 percent of the nameplate frequency as specified by the manufacturer. If the dryer has a dual voltage conversion capability, conduct test at the highest voltage specified by the manufacturer.

2.3.2 Gas supply.

2.3.2.1 Natural gas. Maintains the gas supply to the clothes dryer at a normal inlet test pressure immediately ahead of all controls at 7 to 10 inches of water column. If the clothes dryer is equipped with a gas appliance pressure regulator, the regulator outlet pressure at the normal test pressure shall be approximately that recommended by the manufacturer. The hourly Btu rating of the burner shall be maintained within ±5 percent of the rating specified by the manufacturer. The natural gas supplied should have a heating value of approximately 1,025 Btu's per standard cubic foot. The actual heating value, H_n2, in Btu's per standard cubic foot, for the natural gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using a standard continuous flow calorimeter as described in 2.4.6 or by the purchase of bottled natural gas whose Btu rating is certified to be at least as accurate a rating as could be obtained from measurements with a standard continuous flow calorimeter as described in 2.4.6.

2.3.2.2 Propane gas. Maintain the gas supply to the clothes dryer at a normal inlet test pressure immediately ahead of all controls at 11 to 13 inches of water column. If the clothes dryer is equipped with a gas appliance pressure regulator, the regulator outlet pressure at the normal test pressure shall be approximately that recommended by the manufacturer. The hourly Btu rating of the burner shall be maintained within ±5 percent of the rating specified by the manufacturer.

The propane gas supplied should have a heating value of approximately 2,500 Btu's per standard cubic foot. The actual heating value, H_p, in Btu's per standard cubic foot, for the propane gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using a standard continuous flow calorimeter as described in 2.4.6 or by the purchase of bottled gas whose Btu rating is certified to be at least as accurate a rating as...
could be obtained from measurement with a
standard continuous calorimeter as de-
scribed in 2.4.6.

2.4 Instrumentation. Perform all test mea-
surements using the following instruments as
appropriate.

2.4.1 Weighing scale for test cloth. The scale
shall have a range of 0 to a maximum of 50
pounds with a resolution of at least 0.2
ounces and a maximum error no greater than
0.3 percent of any measured value within the
range of 3 to 15 pounds.

2.4.1.2 Weighing scale for drum capacity
measurements. The scale should have a range
of 0 to a maximum of 500 pounds with resolu-
tion of 0.50 pounds and a maximum error no
greater than 0.5 percent of the measured
value.

2.4.2 Kilowatt-hour meter. The kilowatt-
hour meter shall have a resolution of 0.001
kilowatt-hours and a maximum error no
greater than 0.5 percent of the measured
value.

2.4.3 Gas meter. The gas meter shall have a
resolution of 0.001 cubic feet and a maximum error
no greater than 0.5 percent of the measured
value.

2.4.4 Dry and wet bulb psychrometer. The
dry and wet bulb psychrometer shall have an
error no greater than ±0.5 °F.

2.4.5 Temperature. The temperature sensor
shall have an error no greater than ±1°F.

2.4.6 Standard Continuous Flow Calorimeter.
The Calorimeter shall have an operating
range of 750 to 3,500 Btu per cubic feet. The
maximum error of the basic calorimeter
shall be no greater than 0.2 percent of the ac-
tual heating value of the gas used in the
test. The indicator readout shall have a max-
imum error no greater than 0.5 percent of the
measured value within the operating
range and a resolution of 0.2 percent of the
full scale reading of the indicator instru-
ment.

2.5 Lint trap. Clean the lint trap thor-
oughly before each test run.

2.6 Test cloths.

2.6.1 Energy test cloth. The energy test
cloth shall be clean and consist of the follow-
ing:
(a) Pure finished bleached cloth, made with
a momie or granite weave, which is a blended
fabric of 50 percent cotton and 50 percent
polyester and weighs within +10 percent of
5.75 ounces per square yard after test cloth
preconditioning and has 65 ends on the warp
and 57 picks on the fill. The individual warp
and fill yarns are a blend of 50 percent cotton
and 50 percent polyester fibers.
(b) Cloth material that is 24 inches by 36
inches and has been hemmed to 22 inches by
34 inches before washing. The maximum
shrinkage after five washes shall not be more
than four percent on the length and width.
(c) The number of test runs on the same
energy test cloth shall not exceed 25 runs.

2.6.2 Energy stuffer cloths. The energy
cloth test material and shall consist of pieces of
material that are 12 inches by 12 inches and
have been hemmed to 10 inches by 30 inches
before washing. The maximum shrinkage
after five washes shall not be more than four
percent on the length and width. The number
of test runs on the same energy stuffer cloth
shall not exceed 25 runs after test cloth pre-
conditioning.

2.6.3 Test Cloth Preconditioning.
A new test cloth load and energy stuffer
cloths shall be treated as follows:
(1) Bone dry the load to a weight change of
±1 percent, or less, as prescribed in Section
1.2.
(2) Place test cloth load in a standard
clothes washer set at the maximum water
fill level. Wash the load for 10 minutes in
soft water (17 parts per million hardness or
less), using 6.0 grams of AHAM Standard
Test Detergent, IIA, per gallon of water.
Wash water temperature is to be controlled at
140±5°F (60±2°C). Rinse water temperature
is to be controlled at 100±5°F (37.7±2.7°C).
(3) Rinse the load again at the same water
temperature.
(4) Bone dry the load as prescribed in Sec-
tion 1.2 and weigh the load.
(5) This procedure is repeated until there is
a weight change of one percent or less.
(6) A final cycle is to be a hot water wash
with no detergent, followed by two warm
water rinses.

2.7 Test loads.

2.7.1 Compact size dryer load. Prepare a
bone-dry test load of energy cloths which
weighs 3.00 pounds ±0.03 pounds. Adjustments
to the test load to achieve the proper weight
can be made by the use of energy stuffer
cloths, with no more than five stuffer cloths
per load. Dampen the load by agitating it in
water whose temperature is 100±5°F and
consists of 0 to 17 parts per million hardness
for approximately two minutes in order to
saturate the fabric. Then, extract water from
the wet test load by spinning the load until
the moisture content of the load is between
66.5 percent to 73.5 percent of the bone-dry
weight of the test load.

2.7.2 Standard size dryer load. Prepare a
bone-dry test load of energy cloths which
weighs 7.00 pounds ±0.07 pounds. Adjustments
to the test load to achieve the proper weight
can be made by the use of energy stuffer
cloths, with no more than five stuffer cloths
per load. Dampen the load by agitating it in
water whose temperature is 100±5°F and con-
sists of 0 to 17 parts per million hardness for
approximately two minutes in order to satu-
rate the fabric. Then, extract water from the
wet test load by spinning the load until the
moisture content of the load is between 66.5
percent to 73.5 percent of the bone-dry
weight of the test load.
2.7.3 Method of loading. Load the energy test cloths by grasping them in the center, shaking them to hang loosely and then dropping them in the dryer at random.

2.8 Clothes dryer preconditioning. Before any test cycle, operate the dryer without a test load in the non-heat mode for 15 minutes or until the discharge air temperature is varying less than 2°F for 10 minutes, which ever is longer, in the test installation location with the ambient conditions within the specified rest condition tolerances of 2.2.

3. TEST PROCEDURES AND MEASUREMENTS

3.1 Drum capacity. Measure the drum capacity by sealing all openings in the drum except the loading port with a plastic bag, and ensure that all corners and depressions are filled and that there are no extrusions of the plastic bag through the opening in the drum. Support the dryer's rear drum surface on a platform scale to prevent deflection of the door plane and the loading port. Record the weight of the dryer, and record the weight of the empty dryer. Fill the drum with water to a level determined by the intersection of the water and then determine the mass of the water in pounds. Add or subtract the appropriate volume depending on whether or not the plastic bag protrudes into the drum interior. The drum capacity is calculated as follows:

\[C = \frac{w}{d} \]

where:
- \(C \) = capacity in cubic feet.
- \(w \) = weight of water in pounds.
- \(d \) = density of water at the measured temperature in pounds per cubic feet.

3.2 Dryer loading. Load the dryer as specified in 2.7.

3.3 Test cycle. Operate the clothes dryer at the maximum temperature setting and, if equipped with a timer, at the maximum time setting and dry the test load until the moisture content of the test load is between 2.5 percent to 5.0 percent of the bone-dry weight of the test load, but do not permit the dryer to advance into cool down. If required, reset the timer or automatic dry control.

3.4 Data recording. Record for each test:

3.4.1 Bone-dry weight of the test load described in 2.7.

3.4.2 Moisture content of the wet test load before the test, as described in 2.7.

3.4.3 Moisture content of the dry test load obtained after the test described in 3.3.

3.4.4 Test room conditions, temperature and percent relative humidity described in 2.2.

3.4.5 For electric dryers—the total kilowatt-hours of electric energy, \(E_{te} \), consumed during the test described in 3.3.

3.4.6 For gas dryers:

3.4.6.1 Total kilowatt-hours of electrical energy, \(E_{te} \), consumed during the test described in 3.3.

3.4.6.2 Cubic feet of gas per cycle, \(E_{tg} \), consumed during the test described in 3.3.

3.4.6.3 On gas dryers using a continuously burning pilot light—the cubic feet of gas, \(E_{pg} \), consumed by the gas pilot light in one hour.

3.4.6.4 Correct the gas heating value, \(GEF \), as measured in 2.3.2.1 and 2.3.2.2, to standard pressure and temperature conditions in accordance with U.S. Bureau of Standards, circular C417, 1938. A sample calculation is illustrated in Appendix E of HLD-1.

3.5 Test for automatic termination field use factor credits. Credit for automatic termination can be claimed for those dryers which meet the requirements for either temperature-sensing control, 1.12, or moisture sensing control, 1.13, and having present the appropriate mark or detent feed defined in 1.11.

4. CALCULATION OF DERIVED RESULTS FROM TEST MEASUREMENTS

4.1 Total per-cycle electric dryer energy consumption. Calculate the total electric dryer energy consumption per cycle, \(E_{en} \), expressed in kilowatt-hours per cycle and defined as:

\[E_{en} = \frac{66(W_d - W_w) \times FU}{W_d} \]

where:
- \(E_{en} \) = the energy recorded in 3.4.5.
- \(66 \) = an experimentally established value for the percent reduction in the moisture content of the test load during a laboratory test cycle expressed as a percent.
- \(FU \) = field use factor.
- \(W_d \) = the dry test load as recorded in 3.4.2.
- \(W_w \) = the moisture content of the wet test load as recorded in 3.4.1.

4.2 Per-cycle gas dryer electrical energy consumption. Calculate the gas dryer electrical energy consumption per cycle, \(E_{en} \), expressed in kilowatt-hours per cycle and defined as:

\[E_{en} = \frac{66(W_d - W_w) \times E_{ge} \times FU}{W_d} \]

where:
- \(E_{en} \) = the energy recorded in 3.4.6.1.
- \(66 \) = a constant factor.
- \(W_d \) = the dry test load as defined in 4.1.
- \(W_w \) = the moisture content of the dry test load as recorded in 3.4.3.
- \(E_{ge} \) = the energy recorded in 3.4.6.2.
- \(FU \) = field use factor.
- \(W_d \) = the dry test load as defined in 4.1.

4.3 Per-cycle gas dryer gas energy consumption. Calculate the gas dryer gas energy consumption per cycle, \(E_{pg} \), expressed in Btu per cycle as defined as:

\[E_{pg} = \frac{66(W_d - W_w) \times E_{pg} \times GEF}{W_d} \]

where:
- \(E_{pg} \) = the energy recorded in 3.4.6.3.
- \(GEF \) = the corrected gas heat value (Btu per cubic feet) as defined in 3.4.6.4.
- \(FU \) = field use factor.
- \(W_d \) = the dry test load as defined in 4.1.

4.4 Per-cycle gas dryer continuously burning pilot light gas energy consumption. Calculate the gas dryer continuously burning pilot light gas energy consumption. Calculate the gas dryer continuously burning pilot light gas energy consumption.
light gas energy consumption per cycle, E_{up} expressed in Btu's per cycle and defined as:

$$E_{up} = E_{pg} \times \left(\frac{8760 - 140}{416} \right) \times \frac{Btu}{hr}$$

4.5 Total per-cycle gas dryer energy consumption expressed in kilowatt-hours. Calculate the total gas dryer energy consumption per cycle, E_{pg} expressed in Btu's per cycle and defined as:

$$E_{pg} = E_{up} \times \frac{8760}{140} \times \frac{kWh}{Btu}$$

4.6 Total per-cycle gas dryer energy consumption expressed in kilowatt-hours. Calculate the total gas dryer energy consumption per cycle, E_{pg}, expressed in kilowatt-hours per cycle and defined as:

$$E_{pg} = E_{up} \times \frac{8760}{140} \times \frac{Btu}{kWh}$$

4.7 Recovery Efficiency means the ratio of energy delivered to the water to the energy content of the fuel consumed by the water heater.

1.5 Standby means the time during which water is not being withdrawn from the water heater. There are two standby time intervals used within this test procedure: $\tau_{stby,1}$ represents the elapsed time between the time at which the maximum mean tank temperature is observed after the sixth draw and the end of the 24 hour test; $\tau_{stby,2}$ represents the total time during the 24 hour simulated use test when water was not being withdrawn from the water heater.

1.6 Gas fueled storage water heater means a water heater which utilizes gas as the energy source and which is designed to heat and store water at a thermostatically controlled temperature of less than 180 °F with an input of 75,000 Btu per hour or less and a manufacturers specified storage capacity of not less than 20 gallons nor more than 120 gallons.

1.7 Gas fueled instantaneous water heater means a water heater which utilizes electricity as the energy source and which is designed to heat and store water at a thermostatically controlled temperature of less than 180 °F with an input of 12 kilowatts or less and a manufacturers specified storage capacity of not less than 20 gallons nor more than 120 gallons.

1.8 Oil storage water heater means a water heater which utilizes oil as the energy source and which is designed to heat and store water at a thermostatically controlled temperature of less than 180 °F with an input of 50,000 Btu per hour or less, and which has a manufacturers specified storage capacity of 50 gallons or less.

1.9 Gas fueled instantaneous water heater means a water heater which utilizes gas as the energy source and which is designed to heat and store water at a thermostatically controlled temperature of less than 180 °F with an input of 105,000 Btu per hour or less, and which has a manufacturers specified storage capacity of 50 gallons or less.

1.10 Electric storage water heater means a water heater which utilizes electricity as the energy source and which is designed to heat and store water at a thermostatically controlled temperature of less than 180 °F, and which has an input greater than 50,000 Btu per hour and less than 200,000 Btu per hour, and a manufactures specified storage capacity of less than 2 gallons.

1.11 Heat pump water heater means a water heater which utilizes electricity as the energy source with a maximum current rating of 24 amperes at a voltage no greater than 250 volts, and which is designed to transfer thermal energy from one temperature level to a higher temperature level for the purpose of heating water, including all auxiliary equipment such as fans, storage tanks, pumps, or controls necessary for the device to perform its function.

Department of Energy

1.16. “Rated Storage Volume” means the water storage capacity of a water heater, in gallons, as specified by the manufacturer.

2. Test Conditions

2.1. Installation Requirements. Tests shall be performed with the water heater and instrumentation installed in accordance with section 4.

2.2. Ambient Air Temperature. The ambient air temperature shall be controlled to a value between 65.0°F and 70.0°F on a continuous basis. For heat pump water heaters the relative humidity shall be maintained between 49 and 51 percent.

2.3. Supply Water Temperature. The temperature of the water being supplied to the water heater shall be maintained at 58 ± 2°F throughout the test.

2.4. Storage Tank Temperature. The average temperature of the water within the storage tank shall be set to 135 ± 5°F.

2.5. Supply Water Pressure. During the test when water is not being withdrawn, the supply pressure shall be maintained between 40 psig and the maximum allowable pressure specified by the water heater manufacturer.

2.6. Electrical and/or Fossil Fuel Supply.

2.6.1. Electrical. Maintain the electrical supply voltage to within ± 1 percent of the center of the voltage range specified by the water heater and/or heat pump manufacturer.

2.6.2. Natural Gas. Maintain the supply pressure in accordance with the manufacturer’s specifications. If the supply pressure is not specified, maintain a supply pressure of 7 to 10 inches of water column. If the water heater is equipped with a gas appliance pressure regulator, the regulator outlet pressure shall be within ± 10% of the manufacturer’s specified manifold pressure. Use natural gas with a higher heating value of approximately 1,025 Btu per standard cubic foot.

2.6.3. Propane Gas. Maintain the supply pressure in accordance with the manufacturer’s specifications. If the supply pressure is not specified, maintain a supply pressure of 11 to 13 inches of water column. If the water heater is equipped with a gas appliance pressure regulator, the regulator outlet pressure shall be within ± 10% of the manufacturer’s specified manifold pressure. Use propane gas with a higher heating value of approximately 1,930 Btu per standard cubic foot.

2.6.4. Fuel Oil Supply. Maintain an uninterrupted supply of fuel oil. Use fuel oil with a heating value of approximately 138,700 Btu per gallon.

3. Instrumentation

3.1. Pressure Measurements. Pressure measuring instruments shall have an error no greater than the following values:

<table>
<thead>
<tr>
<th>Item measured</th>
<th>Instrument accuracy</th>
<th>Instrument precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pressure</td>
<td>±0.1 inch of water column</td>
<td>±0.05 inch of water column</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>±0.1 inch of mercury column</td>
<td>±0.05 inch of mercury column</td>
</tr>
<tr>
<td>Water pressure</td>
<td>±1.0 pounds per square inch</td>
<td>±1.0 pounds per square inch</td>
</tr>
</tbody>
</table>

3.2. Temperature Measurement

3.2.1. Electrical. Temperature measurements shall be made in accordance with the Standard Measurement Guide: Section on Temperature Measurements, ASHRAE Standard 41.1-86.

3.2.2. Accuracy and Precision. The accuracy and precision of the instruments, including their associated readout devices, shall be within the limits as follows:

<table>
<thead>
<tr>
<th>Item measured</th>
<th>Instrument accuracy</th>
<th>Instrument precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air dry bulb temperature</td>
<td>±0.2°F</td>
<td>±0.1°F</td>
</tr>
<tr>
<td>Air wet bulb temperature</td>
<td>±0.2°F</td>
<td>±0.1°F</td>
</tr>
<tr>
<td>Inlet and outlet water temperatures</td>
<td>±0.2°F</td>
<td>±0.1°F</td>
</tr>
<tr>
<td>Storage tank temperatures</td>
<td>±0.5°F</td>
<td>±0.25°F</td>
</tr>
</tbody>
</table>

3.2.3. Scale Division. In no case shall the smallest scale division of the instrument or instrument system exceed 2 times the specified precision.

3.2.4. Temperature Difference. Temperature difference between the entering and leaving water may be measured with any of the following:

a. A Thermopile
b. Calibrated resistance thermometers
c. Precision thermometers
d. Calibrated thermistors
e. Calibrated thermocouples
f. Quartz thermometers

3.2.5. Thermopile Construction. If a thermopile is used, it shall be made from calibrated thermocouple wire taken from a single spoiled. Extension wires to the recording device shall also be made from that same spoiled.

3.2.6. Time Constant. The time constant of the instruments used to measure the inlet and outlet water temperatures shall be no greater than 5 seconds.

3.3. Liquid Flow Measurements. The accuracy of the liquid flow rate measurement, using the calibration if furnished, shall be equal to or less than ± 1% of the measured value in mass units per unit time.

3.4. Electric Energy. The electrical energy used shall be measured with an instrument...
and associated readout device that are accurate within ±1% of the reading.

3.5. Fossil Fuels. The quantity of fuel used by the water heater shall be measured with an instrument and associated readout device that is accurate within ±1% of the reading.

3.6. Mass Measurements. Mass measurements shall be made measured with instruments that are accurate within ±1% of the reading or 0.1 lbm, whichever is greater.

3.7. Heating Value. The higher heating value of the natural gas, propane, or fuel oil shall be measured with an instrument and associated readout device that is accurate within ±1% of the reading. The heating value of natural gas and propane must be corrected for local temperature and pressure conditions.

3.8. Time. The elapsed time measurements shall be measured with an instrument that is accurate within ±0.5 seconds per hour.

4. Installation

4.1. Water Heating Mounting. A water heater designed to be free standing shall be installed according to the manufacturer’s directions on a ¾ inch thick plywood platform supported by three 2 × 4 inch runners. If the water heater is not approved for installation on combustible flooring, suitable non-combustible material shall be placed between it and the platform. For heat pump water heaters without a storage tank supplied by the manufacturer, connections shall be made with a storage tank as described in section 4.9.3 and in accordance with manufacturer-published installation instructions. The storage tank and heat pump section shall be placed on platform(s) constructed as previously described. If installation materials are not provided by the heat pump manufacturer, use uninsulated 8 foot long connecting hoses, having an inside diameter of ¾ inch. Wall mounted water heaters shall be installed in accordance with manufacturer-published installation instructions on a simulated wall section made from ¾ inch plywood and 2 × 4 inch studs. Placement in the test room shall be in an area protected from drafts.

4.2. Water Supply. The water supply shall be capable of delivering water at conditions as specified in section 2.

4.3. Water Inlet and Outlet Configuration. Inlet and outlet piping connections shall be configured as illustrated in Figures 1, 2, or 3 except a water heater 36 inches high or less, (commonly referred to as an under counter or table top model) intended for installation either beneath, adjacent to or in conjunction with a counter shall have the inlet and outlet connections configured as illustrated in Figures 4a and 4b. Type “L” hard copper tubing, the same size as the connections on the water heater shall be connected to the tank and extend 24 inches in length. If a water heater 36 inches high or less is not factory equipped with pipe to extend the field connection point of the water heater lines to outside of the jacket or cabinet, type “L” hard copper tubing shall be used to extend the water line horizontally to the exterior of the jacket or cabinet. Unions may be utilized to facilitate installation and removal of the piping arrangements. A pressure gauge and diaphragm expansion tank shall be installed in the supply water piping at a location upstream of the 24 inch cold water inlet pipe. An appropriately rated pressure and temperature relief valve shall be installed on all water heaters at the port specified by the manufacturer. Discharge piping for the relief valve shall be non-metallic. If heat traps and/or piping insulation and/or pressure relief valve insulation are supplied with the water heater, then they shall be installed for testing. Clearance shall be provided such that none of the piping contacts other surfaces in the test room.
Figure 4a.

Figure 4b.
4.4. Fuel and/or Electrical Power and Energy Consumption. Install one or more instruments which measure, as appropriate, the quantity and rate of electrical energy and/or fossil fuel consumption in accordance with section 3.

4.5. Internal Storage Tank Temperature Measurements. Install six temperature measurement sensors inside the water heater tank with a vertical distance of at least four inches between successive sensors. A temperature sensor shall be positioned at the vertical midpoint of each of the six equal volume nodes with the tank. Nodes designate the equal volumes used to evenly partition the total volume of the tank. As much as is possible, the temperature sensor should be positioned away from any heating elements, anodic protective devices, tank walls, and flue pipe walls. If the tank cannot accommodate six temperature sensors and meet the installation requirements specified above, install the maximum number of sensors which comply with the installation requirements. The temperature sensors shall be installed either through: (1) The anodic device opening; (2) the relief valve opening; or (3) the hot water outlet. If installed through the relief valve opening or the hot water outlet, a tee fitting or outlet piping, as applicable, shall be installed as close as possible to its original location. If the hot water outlet includes a heat trap, the heat trap shall be installed on top of the tee fitting. Added fittings shall be covered with thermal insulation having an R value of 4 hr·ft²·°F/Btu.

4.6. Ambient Temperature. The ambient air temperature shall be measured approximately at the vertical mid-point of the heater and approximately 2 feet from the surface of the water heater. The sensor shall be shielded against radiation.

4.7. Inlet and Outlet Water Temperature Measurements. Install temperature sensors in the cold-water inlet pipe and hot-water outlet pipe as shown in Figures 1, 2, or 3, as applicable.

4.8. Flow Control. A flow control valve shall be installed to provide flow as specified within section 5.

4.9. Flue Requirements.

4.9.1. Oil-Fired Water Heaters. Establish a draft at the flue collar as specified in the manufacturer’s literature. Establish the draft by using a sufficient length of vent pipe connected to the water heater flue outlet and directed vertically upward. For an oil-fired water heater having a horizontally discharging draft hood outlet, a 90 degree elbow having a diameter equal to the largest flue collar size of the draft hood shall be connected to the draft hood outlet. A length of vent pipe sufficient to establish the draft shall be connected to the elbow fitting and oriented to discharge vertically upward. Direct vent oil-fired water heaters should be installed with venting equipment as specified in the manufacturer’s instructions, using the minimum vertical and horizontal lengths of vent pipe recommended by the manufacturer.

4.9.2. Gas-Fired Water Heaters. Establish a natural draft in the following manner. For gas-fired water heaters having a vertically discharging draft hood outlet, a 5 foot vertical vent pipe extension having a diameter equal to the largest flue collar size of the draft hood shall be connected to the draft hood outlet. For gas-fired water heaters having a horizontally discharging draft hood outlet, a 90 degree elbow having a diameter equal to the largest flue collar size of the draft hood shall be connected to the draft hood outlet. A 5 foot length of vent pipe shall be connected to the elbow and oriented to discharge vertically upward.

Direct vent gas-fired water heaters shall be installed with venting equipment specified in the manufacturer’s instructions using the minimum vertical and horizontal lengths of vent pipe recommended by the manufacturer.

4.9.3. Heat Pump Water Heater Storage Tank. The tank to be used for testing a heat pump water heater without a tank supplied by the manufacturer shall be an electric storage type water heater having a volume of 47.0 gallons ± 1 gallon with an Energy Factor of 0.87 ± .01 as determined in accordance with section 6.17 with two 4.5 kW heating elements controlled in such a manner as to prevent both elements from operating simultaneously.

5. Test Procedures

5.1. Storage Tank and Heat Pump Water Heaters

5.1.1. Determination of Storage Tank Volume. Determine the storage capacity, V_m, of the water heater under test, in gallons, by subtracting the tare weight—measured while the tank is empty—from the gross weight of the storage tank completely filled with water with all air eliminated and line pressure applied as described in section 2.5, and dividing the resulting net weight by the density of water at the appropriate temperature.

5.1.2. Setting the Thermostat for a Thermostatically Operated Water Heater. Starting with a tank of supply water, initiate normal operation of the water heater. After cut-out, observe the mean tank temperature (based on the six temperature sensors) every minute until the maximum value is observed. Determine whether this maximum value of the mean tank temperature is within the range of 135°F ±5°F. If not, turn off the water heater, adjust the thermostat, and refill the tank with supply water. Then, initiate normal operation of the water heater, and once again determine the maximum mean tank temperature after cut-out. Repeat this sequence until the maximum mean tank temperature after cut-out is within the
range of 135°F ±5°F. If a water heater has two thermostats, the thermostat which controls the upper heating element shall be set first to yield a maximum water temperature of 135°F ±5°F, as measured by the temperature tank sensors above the upper heating element. The thermostat which controls the lower heating element shall then be set to yield a maximum mean tank temperature of 135°F ±5°F. For heat pump water heaters, which control an auxiliary resistance element, the thermostat shall be set in accordance with the manufacturer’s installation instructions.

5.1.3 Power Input Determination. For all water heaters except electric types having immersed heating elements and initiates normal operation and determine the power input, P, to the main burners (including pilot light power, if any) after 15 minutes of operation. If the water heater is equipped with a gas appliance pressure regulator, the regulator outlet pressure shall be set within ±10% of that recommended by the manufacturer. For oil fired water heaters the fuel pump pressure shall be within ±10% of the manufacturer’s specified pump pressure. All burners shall be adjusted to achieve an hourly Btu rating that is within ±2% of the value specified by the manufacturer. For an oil-fired water heater, adjust the burner to give a CO reading recommended by the manufacturer and an hourly Btu rating that is within ±2% of that specified by the manufacturer. Smoke in the flue may not exceed No. 1 smoke as measured by the procedure in ASTM-D-2156-80. Gas- and oil-fired water instantaneous water heaters shall have the burners adjusted to the manufacturer’s maximum firing rate value.

5.1.4 First Hour Rating Test. Establish normal water heater operation within the range specified in section 2.1.4. Begin the first hour rating test after the thermostat has actuated to reduce the electrical power or fuel input to the water heater and the maximum storage tank temperature has been achieved. If the water heater incorporates a heat-pump, wait until both the heat pump and the auxiliary heating element(s) have ceased to supply energy to the storage tank. Record the time, oil, gas and/or electrical meter readings as appropriate. Do not interrupt electrical power and/or fuel to the water heater. The rate of water withdrawal shall be 3.00±0.25 gallons per minute. Draw and collect water withdrawn from the water heater in a suitable container for the purpose of determining its weight at the conclusion of the test. During the draw record the inlet and outlet fluid temperature beginning 15 seconds after the start and at every subsequent 5 second interval throughout the duration of each draw. Alternatively, a water meter may be used to directly measure the volume of water withdrawn. Record the maximum outlet temperature which occurs during the draw as \(T_{\text{max}} \). The withdrawal of water shall continue until the outlet temperature drops to a value 25°F below \(T_{\text{max}} \), defined as \(T_{\text{min}} \), at which time the draw shall be terminated. Record the average outlet temperature and mass removed as \(T_{\text{avg}} \) and \(M_{\text{i}} \), respectively. If the thermostat acts to reduce the supply of fuel to the main burner or electrical input to the upper heating element of a multiple element electric water heater, or electrical input to a water heater having a single element or multiple elements which operate simultaneously, before one hour has elapsed, initiate a second draw. During the draw record the outlet fluid temperatures beginning 15 seconds after initiating the draw and at every subsequent 5 second interval throughout the duration of each draw until the outlet temperature drops to \(T_{\text{min}} \), at which time the draw is terminated. Record the average outlet temperatures as well as the mass removed. Continue this sequence of events until one hour has elapsed. If a draw is currently taking place, continue the draw until the thermostat acts to reduce the supply of fuel to the main burner or electrical input to the upper heating element of a multiple element electric water heater, or electrical input to a water heater having a single element or multiple elements which operate simultaneously, to initiate the final draw. During the final draw, record the outlet fluid temperature beginning 15 seconds after initiating the draw and at every subsequent 5 second interval throughout the duration of the draw until the outlet temperature drops to \(T_{\text{min}} \), at which time the draw is terminated. Record the elapsed time between the previously recorded time, at the beginning of the first draw, and the termination of this final draw as \(T_{\text{fhr}} \). If a draw is not taking place at the end of one hour, wait until the thermostat acts to reduce the supply of fuel to the main burner or electrical input to the upper heating element of a multiple element electric water heater, or electrical input to a water heater having a single element or multiple elements which operate simultaneously, to initiate the final draw. During the final draw, record the outlet fluid temperature beginning 15 seconds after initiating the draw and at every subsequent 5 second interval throughout the duration of the draw until the outlet temperature drops to \(T_{\text{min}} \), at which time the draw is terminated. Record the elapsed time between the previously recorded time, at the beginning of the first draw, and the termination of the final draw as \(T_{\text{fhr}} \). In either case, record the outlet temperatures and the mass removed during the final draw.

5.1.5 24 Hour Simulated Use Test. During the simulated use test, a total of 64.3 gallons are removed. With the water heater turned off, fill the water heater with supply water and apply pressure as described in section 2.1.4. Turn on the water heater and associated heat pump unit, if present. Wait until cutout occurs at 120°F ±5°F, as specified in section 2.1.4. After the cutout occurs, measure the mean tank temperature using the temperature sensors described in section 4.5 every minute until the maximum mean storage tank temperature is achieved. The water heater may be operated through up to three successive cycles of drawing 10 gallons per draw, permitting recovery between each draw, prior to the start of the test. Record at
Department of Energy

5.2 Instantaneous Water Heaters

5.2.1 Setting the Outlet Discharge Temperature. Initiate normal operation of the water heater at the full input rating. Monitor the discharge water temperature and set to a value of 135°F ± 5°F in accordance with the manufacturer's instructions. If the water heater is not capable of providing 3.00 ± 0.25 gallons per minute then adjust the flow rate as necessary to achieve the specified discharge water temperature. Record the corresponding flow rate as \(V_{\text{min}} \). If the instantaneous water heater incorporates a controller which permits continuous burner operation at a reduced input rate, adjust the flow rate as necessary to achieve a discharge water temperature of 135°F ± 5°F while maintaining the minimum input rate. Record the corresponding flow rate, \(V_{\text{min}} \). If an outlet temperature of 135°F ± 5°F cannot be achieved at the minimum allowable flow rate permitted by the instantaneous water heater, record the flow rate as \(V_{\text{min}} \) and the outlet temperature as \(T_{\text{min}} \).

5.2.2 Power Input Determination. For oil and gas flow actuated water heaters, adjust the burners to the maximum firing rate value specified by the manufacturer.

5.2.3 First Hour Rating Test for Instantaneous Water Heaters. Establish normal heater operation at the maximum input rate with the discharge water temperature set in accordance with section 5.2.1. Record the time, oil, and/or gas meters as appropriate. Do not interrupt electrical or fuel to the water heater. Draw and collect water withdrawn from the water heater, while recording the inlet and outlet fluid temperatures beginning 15 seconds after the draw is initiated and at every subsequent 5 second interval throughout the duration of the draw in a suitable container for the purpose of determining its weight at the conclusion of the test. Alternatively, a water meter may be used to directly measure the value of water withdrawn. At the end of one hour terminate the draw. Determine the mass of water withdrawn, \(M_{\text{wmin}} \), in pounds, or the volume of water withdrawn, \(V_{\text{wmin}} \), in gallons with an error no greater than 2 percent.

5.2.4 24 Hour Simulated Use Test

5.2.4.1 Fixed Input Instantaneous Water Heaters. Establish normal operation with the discharge water temperature and flow rate set to values of 135°F ± 5°F and \(V_{\text{min}} \), respectively. Record the oil, gas, and electrical energy measurements, as appropriate. Begin
the 24 hour simulated use test by drawing an amount of water out of the water heater equivalent to one-sixth of the daily not water usage, 64.3 gallons. At elapsed time intervals of one, two, three, four, and five hours from \(t=0 \), initiate additional draws removing an amount of water equivalent to one-sixth of 64.3 gallons, with the maximum allowable deviation for any single draw being ± 0.5 gallons. The quantity of water drawn during the sixth draw shall be increased or decreased as necessary such that the total volume of water withdrawn shall be equal to 64.3±1.0 gallons. Measurements of the inlet and outlet water temperatures shall be made beginning 15 seconds after the draw is initiated and at every 5 second interval throughout the duration of the draw. The arithmetic mean of the hot water discharge temperature and the cold water inlet temperature shall be determined for each draw. Record the scale or meter reading, as appropriate, after each draw. At the end of the recovery period following the first draw, record the energy consumption, \(Q_{r,min} \). Record the energy consumption prior to the fourth draw and at the end of the recovery period following the fourth draw, \(Q_{r,max} \).

Allow the water heater to remain in the standby mode until exactly 24 hours have elapsed from the start of the test, \(t=0 \). At 24 hours, record the electric and/or fuel instrument readings. Determine the energy consumption during the entire 24 hours simulated use test, \(Q \).

6. Computations

6.1 Storage Tank Water Heaters

6.1.1 Storage Tank Capacity

The storage tank capacity is computed using the following:

\[V_s = (W_s - W_t) \rho \]

where \(V_s \) is the storage capacity of the water heater, gallons; \(W_s \) is the weight of the storage tank completely filled with water, lbm; \(W_t \) is the tare weight of the empty storage tank, lbm; \(\rho \) is the density of water at the appropriate temperature, lbm/gal.

6.1.2 First Hour Rating Computation

Compute the first hour rating as

\[F_{fr} = \frac{60}{\tau_{fr}} \sum_{i=1}^{n} M_i (\bar{T}_{del,i} - \bar{T}_{in,i}) \]

\[\rho (135^\circ F - 58^\circ F) \]

Which may be expressed as

\[F_{fr} = \frac{60}{\tau_{fr}} \sum_{i=1}^{n} M_i (\bar{T}_{del,i} - \bar{T}_{in,i}) \]

\[\rho (77^\circ F) \]

where \(M_i \) represents the mass removed during the ith draw of the first hour rating test, lbm; \(\bar{T}_{del,i} \) is the average delivery temperature for the ith draw which occurred during the first hour rating test, \(^\circ F \); \(\bar{T}_{in,i} \) is the average inlet temperature for the ith draw which occurred during the first hour rating test, \(^\circ F \); \(\rho \) is the density of water at the average delivery temperature, lbm/gal; and \(n \) represents the number of draws which occur during the test if a water meter is used in lieu of a scale, the first hour rating is

\[F_{fr} = \frac{60}{\tau_{fr}} \sum_{i=1}^{n} V_i (\bar{T}_{del,i} - \bar{T}_{in,i}) \]

\[77^\circ F \]

where \(V_i \) represents the volume removed during the ith draw of the first hour rating test.
6.1.3 Recovery Efficiency. The recovery efficiency for gas, oil, and heat pump storage type water heaters is computed as

\[
\eta_r = \frac{M_1 C_p \theta_{\text{del,1}} - T_{\text{in,1}}}{Q_r} + \frac{V_o P C_p \theta_{\text{max,1}} - T_o}{Q_r}
\]

where \(M_1\) is the mass withdrawn during the first draw, lbm
\(C_p\) is the specific heat of water at the average temperature \((T_{\text{del,1}} + T_{\text{in,1}})/2, \text{ btu/lbm} \cdot ^\circ\F\)
\(T_{\text{del,1}}\) is the average delivery temperature for the first draw, \(^\circ\F\)
\(T_{\text{in,1}}\) is the average inlet temperature for the first draw, \(^\circ\F\)
\(V_o\) is the storage tank capacity, gal
\(\rho\) is the density of water at the average temperature \((T_{\text{max,1}} + T_o)/2, \text{ lbm/gal}\)
\(C_p\) is the specific heat of water at the average temperature \((T_{\text{max,1}} + T_o)/2, \text{ Btu/lbm} \cdot ^\circ\F\)
\(T_{\text{max,1}}\) is the maximum mean tank temperature recorded after cutout following the first draw, \(^\circ\F\)
\(T_o\) is the maximum mean tank temperature recorded prior to the first draw, \(^\circ\F\)
\(Q_r\) is the total energy used by the water heater between cutout prior to the first draw and the end of the 24 hour test period, including auxiliary energy such as pilot lights, pumps, fans, etc., Btu. (Electrical auxiliary energy shall be converted to thermal energy using the following conversion: 1kWh = 3412.76 Btu.)

The recovery efficiency for electric water heaters with immersed heating elements is assumed to be 98 percent.

6.1.4 Hourly Standby Losses. The hourly standby losses are computed as

\[
Q_{hr} = \left[Q_{\text{sby}} - \frac{MC_p (T_{24} - T_{\text{sby}})}{\eta_r} \right] / \tau_{\text{sby}}
\]

where \(Q_{sby}\) is the hourly standby energy losses of the water heater, Btu/hr
\(Q_{sby}\) is the total energy consumer by the water heater between the time at which the maximum mean tank temperature is observed after the sixth draw and the end of the 24 hour test period, Btu
\(M\) is the mass of the water within the storage tank, lbm
\(C_p\) is the specific heat of water at the average temperature \((T_{24} + T_{\text{sby}})/2, \text{ Btu/lbm} \cdot ^\circ\F\)
\(T_{24}\) is the mean tank temperature at the end of the 24 hour test period, \(^\circ\F\)
\(T_{\text{sby}}\) is the average tank temperature at the conclusion of the 24 hours simulated use test, \(^\circ\F\)
\(\eta_r\) is the recovery efficiency of the hot water heater, dimensionless.

The standby heat loss coefficient for the tank is computed as

\[
UA = \frac{Q_{hr}}{T_{\text{t,sby}} - T_{\text{a,sby}}}
\]

where \(T_{\text{t,sby}}\) is the average storage tank temperature between the time at which the maximum mean tank temperature is observed after the sixth draw and the end of the 24 hour test period, \(^\circ\F\)
\(T_{\text{a,sby}}\) is the average ambient temperature between the time at which the maximum mean tank temperature is observed after the sixth draw and the end of the 24 hour test period, \(^\circ\F\)
\(Q_{hr}\) and \(UA\) are the standby heat loss coefficient of the storage tank.

6.1.5 Daily Water Heating Energy Consumption. The daily water heating energy consumption, \(Q_d\), is computed as

\[
Q_d = Q - \frac{C_p M (T_{24} - T_o)}{\eta_r}
\]

where \(Q\) is the total energy used by the water heater during the 24 hours simulated use test including auxiliary energy such as pilot lights, pumps, fans, etc., Btu
\(C_p\) is the specific heat of water at the average temperature \((T_{24} + T_{\text{sby}})/2, \text{ Btu/lbm} \cdot ^\circ\F\)
\(M\) is the mass of water within the storage tank, lbm
\(T_{24}\) is the average tank temperature at the beginning of the 24 hours simulated use test, \(^\circ\F\)
\(T_o\) is the average tank temperature at the conclusion of the 24 hours simulated use test, \(^\circ\F\)
\(\eta_r\) is the recovery efficiency of the hot water heater, dimensionless.
6.1.6 Adjusted Daily Water Heating Energy Consumption. The adjusted daily water heating energy consumption, \(Q_{da} \), takes into account that the temperature difference between the storage tank and surrounding ambient temperature may not be the nominal value of 67.5°F (135°F - 67.5°F) due to the 10°F allowable variation in storage tank temperature, 135°F, and the 5°F allowable variation in surrounding ambient temperature 65°F to 70°F. The adjusted daily water heating energy consumption is computed as

\[
Q_{da} = Q_{dm} + \left[(T_{a,stby} - T_{a,stby,2}) - (135°F - 67.5°F) \right] \times UA \times t_{a,2}
\]

where \(Q_{dm} \) is the adjusted daily water heating consumption, Btu

\(T_{a, stby} \) is the mean tank temperature during the total standby portion, \(t_{a,2} \), of the 24 hour test, °F

\(T_{a, stby, 2} \) is the average ambient temperature during the total standby portion, \(t_{a,2} \), of the 24 hour test, °F

\(UA \) is the standby heat loss coefficient for the storage tank, Btu/hr°F

and \(t_{a,2} \) is the number of hours during the 24 hour simulated test when water was not being withdrawn from the water heater.

A modification is also needed to take into account that the temperature difference between the outlet water temperature and supply water temperature may not be equivalent to the nominal value of 77°F (135°F - 58°F). The following equations adjust the experimental data to a nominal 77°F temperature rise.

The energy used to heat water, Btu per day, may be computed as

\[
Q_{HW} = \sum_{i=1}^{6} \frac{M_i \times C_{pl} \times (T_{del,i} - T_{in,i})}{\eta_r}
\]

where \(M_i \) is the mass withdrawn during the ith test (i = 1 to 6), lbm

\(C_{pl} \) is the specific heat of water, Btu/lbm °F

The energy required to heat the same quantity of water over a 77°F temperature rise, Btu per day, is

\[
Q_{HW, 77} = \sum_{i=1}^{6} \frac{M_i \times C_{pl} \times (135°F - 58°F)}{\eta_r}
\]

The difference between these two values is

\[
Q_{HWD} = Q_{HW, 77} - Q_{HW}
\]

which must be added to the adjusted daily water heating energy consumption value. Thus, the daily energy consumption value which takes into account that the temperature difference between the storage tank and ambient temperature may not be 67.5°F and the temperature rise across the storage tank may not be 77°F is

\[
Q_{da} = Q_{dm} + Q_{HWD}
\]

6.1.7 Energy Factor. The energy factor, \(E_f \), is computed as

\[
E_f = \frac{\sum_{i=1}^{6} M_i \times C_{pl} \times (135°F - 58°F)}{Q_{dm}}
\]

where \(Q_{dm} \) is the modified daily water heating energy consumption as computed in accordance with Section 6.1.6, Btu

6.1.8 Annual Energy Consumption

The annual energy consumption for storage tank and heat pump water heaters is computed as

\[
E_{annual} = Q_{dm} \times 365
\]

where \(Q_{dm} \) is the modified daily energy consumption value, Btu per day and 365 is the number of days within a year, days

6.2 Instantaneous Hot Water Heaters.

6.2.1 First Hour Rating Computation. Compute the first hour rating as

\[
F_{hr} = \frac{M_1 \times (T_{del} - T_{in})}{\rho(135°F - 58°F)}
\]

which may be expressed as

\[
F_{hr} = \frac{M_1 \times (T_{del} - T_{in})}{\rho(77°F)}
\]

where \(M_1 \) represents the mass removed during the one hour continuous draw, lbm

\(T_{del} \) is the average delivery temperature, °F

\(T_{in} \) is the average inlet temperature, °F

and \(\rho \) represents the density of water at the average delivery temperature, lbm/gal

If a water meter is used in lieu of a scale the first hour rating is computed as

\[
F_{hr} = \frac{V \times (T_{del} - T_{in})}{77°F}
\]

where \(V \) represents the volume of water removed during the one hour continuous draw, gal

6.2.2 Recovery Efficiency

6.2.2.1 Fixed Input Instantaneous Water Heaters. The recovery efficiency is computed as

\[
\eta_r = \frac{M_1 \times C_{pl} \times (T_{del,i} - T_{in,i})}{Q_i}
\]

where \(M_i \) is the mass withdrawn during the first draw, lbm

\(C_{pl} \) is the specific heat of water at the average temperature \((T_{del} + T_{in})/2 \), Btu/lbm °F
The recovery efficiency is computed as
\[\eta_r = \eta_{r,\text{max}} + \eta_{r,\text{min}} \]

where \(\eta_r \) is the recovery efficiency, \(\eta_{r,\text{max}} \) is the maximum recovery efficiency, and \(\eta_{r,\text{min}} \) is the minimum recovery efficiency.

\[\eta_{r,\text{max}} = \frac{M_i C_{pi} (T_{\text{del},1} - T_{\text{in},1})}{Q_{r,\text{max}}} \]

\[\eta_{r,\text{min}} = \frac{M_i C_{pi} (T_{\text{del},4} - T_{\text{in},4})}{Q_{r,\text{min}}} \]

where \(M_i \) is the mass associated with the ith draw, lbm
\(C_{pi} \) is the specific heat of water, Btu/lbm °F
\(T_{\text{del},1} \) is the average delivery temperature for the first draw, °F
\(T_{\text{in},1} \) is the average inlet temperature for the first draw, °F
\(Q_{r,\text{max}} \) is the total energy used by the water heater during the cutout prior to the first draw and cutout following the first draw, including auxiliary energy such as pilot lights, pumps, fans, etc., Btu
\(Q_{r,\text{min}} \) is the total energy used by the water heater during the cutout prior to the first draw, including auxiliary energy such as pilot lights, pumps, fans, etc., Btu

The daily water heating energy consumption, \(Q_{\text{dm}} \), is computed as

\[Q_{\text{dm}} = \sum_{i=1}^{6} M_i C_{pi} (135°F - 58°F) \]

where \(Q_{\text{dm}} \) is the modified daily energy consumption, Btu per day.

The energy factor, \(E_f \), is computed as

\[E_f = \frac{\sum_{i=1}^{6} M_i C_{pi} (135°F - 58°F)}{Q_{\text{dm}}} \]

where \(E_f \) is the energy factor, \(Q_{\text{dm}} \) is the modified daily energy consumption, Btu per day.

The energy used to heat water may be computed as

\[Q_{\text{HW}} = \sum_{i=1}^{6} M_i C_{pi} (T_{\text{del},i} - T_{\text{in},i}) \]

where \(Q_{\text{HW}} \) is the energy used by the flow actuated type water heater during the 24 hour simulated use test.

A modification is needed to take into account that the temperature difference between the outlet water temperature and supply water temperature may not be equivalent to the nominal value of 77 °F (135 °F - 58 °F). The following equations adjust the experimental data to a nominal 77 °F temperature rise.

The energy used to heat water may be computed as

\[Q_{\text{HW},77} = \sum_{i=1}^{6} M_i C_{pi} (135°F - 58°F) \eta_r \]

where \(\eta_r \) is the recovery efficiency.

The difference between these two values is

\[Q_{\text{HW,77}} - Q_{\text{HW}} = \sum_{i=1}^{6} M_i C_{pi} (135°F - 58°F) \]

which must be added to the daily water heating energy consumption value. Thus, the daily energy consumption value which takes into account that the temperature rise across the storage tank may not be 77 °F is

\[Q_{\text{dm}} = Q_{\text{dm}} + \sum_{i=1}^{6} M_i C_{pi} (135°F - 58°F) \eta_r \]

\[E_f = \frac{Q_{\text{dm}}}{Q_{\text{dm}}} \]

where \(E_f \) is the energy factor, \(Q_{\text{dm}} \) is the daily water heating energy consumption as computed in accordance with section 6.2.3., Btu
\(M_i \) is the mass associated with the ith draw, lbm
\(C_{pi} \) is the specific heat of water computed at a temperature of (58 °F+135 °F)/2, Btu/lbm °F
\(T_{\text{del},i} \) is the average delivery temperature for the ith draw, °F
\(T_{\text{in},i} \) is the average inlet temperature for the ith draw, °F

6.2.5. Annual Energy Consumption. The annual energy consumption for instantaneous type water heaters is computed as

\[E_{\text{annual}} = Q_{\text{dm}} * 365 \]

where \(Q_{\text{dm}} \) is the modified daily energy consumption, Btu per day.

and 365 is the number of days within a year, days.
Pt. 430, Subpt. B, App. F

7. Ratings for Untested Models

In order to relieve the test burden to manufacturers who offer water heaters which differ only in fuel type or power input, ratings for untested models may be established in accordance with the following procedures. In lieu of the following procedures a manufacturer may elect to test the unit for which a rating is sought.

7.1. Gas Water Heaters. Ratings obtained for gas water heaters using natural gas can be used for an identical water heater which utilizes propane gas if the input ratings are within 10 percent.

7.2. Electric Water Heaters

7.2.1. First Hour Rating. If an electric storage type water heater is available with more than one input rating, the manufacturer shall designate the standard input rating and the water heater need only be tested with heating elements at the designated standard input ratings. The first hour ratings for units having power input rating less than the designated standard input rating shall be assigned a first hour rating equivalent to the first draw of the first hour rating for the electric water heater with the standard input rating. For units having power inputs greater than the designated standard input rating, the first hour rating shall be equivalent to that measured for the water heater with the standard input rating.

7.2.2. Energy Factor. The energy factor for identical electric storage type water heaters, with the exception of heating element wattage, may use the energy factor obtained during testing of the water heater with the designated standard input rating.

[55 FR 42169, Oct. 17, 1990]

APPENDIX F TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF ROOM AIR CONDITIONERS

2. Test conditions. Establish the test conditions described in sections 4 and 5 of ANS Z234.1-1972 and in accordance with ASHRAE Standard 16-69.

4. Calculations. 4.1 Calculate the cooling capacity (expressed in Btu/hr) as required in section 6.1 of ANS Z234.1-1972 and in accordance with ASHRAE Standard 16-69.

4.2 Determine the electrical power input (expressed in watts) as required by section 6.5 of ANS Z234.1-1972 and in accordance with ASHRAE Standard 16-69.

[42 FR 27898, June 1, 1977. Redesignated and amended at 44 FR 37938, June 29, 1979]

APPENDIX G TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF UNVENTED HOME HEATING EQUIPMENT

1. Testing conditions.

11 Installation.

11.1 Electric heater. Install heater according to manufacturer's instructions. Heaters shall be connected to an electrical supply circuit of nameplate voltage with a wattmeter installed in the circuit. The wattmeter shall have a maximum error not greater than one percent.

11.2 Unvented gas heater. Install heater according to manufacturer's instructions. Heaters shall be connected to a gas supply line with a gas displacement meter installed between the supply line and the heater according to manufacturer's specifications. The gas displacement meter shall have a maximum error not greater than one percent. Gas heaters with electrical auxiliaries shall be connected to an electrical supply circuit of nameplate voltage with a wattmeter installed in the circuit. The wattmeter shall have a maximum error not greater than one percent.

11.3 Unvented oil heater. Install heater according to manufacturer's instructions. Oil heaters with electric auxiliaries shall be connected to an electrical supply circuit of nameplate voltage with a wattmeter installed in the circuit. The wattmeter shall have a maximum error not greater than one percent.

12 Temperature regulating controls. All temperature regulating controls shall be shorted out of the circuit or adjusted so that they will not operate during the test period.

13 Fan controls. All fan controls shall be set at the highest fan speed setting.

14 Energy supply.

14.1 Electrical supply. Supply power to the heater within one percent of the nameplate voltage.

14.2 Natural gas supply. For an unvented gas heater utilizing natural gas, maintain the gas supply to the heater with a normal inlet test pressure immediately ahead of all controls at 7 to 10 inches of water column. The regulator outlet pressure at normal supply test pressure shall be approximately that recommended by the manufacturer. The natural gas supplied should have a higher heating value within ± 5 percent of 1,025 Btu's per
standard cubic foot. Determine the higher heating value, in Btu's per standard cubic foot, for the natural gas to be used in the test, with an error no greater than one percent. Alternatively, the test can be conducted using "bottled" natural gas of a higher heating value within ± 5 percent of 1,025 Btu's per standard cubic foot as long as the actual higher heating value of the bottled natural gas has been determined with an error no greater than one percent as certified by the supplier.

1.4.3 Propane gas supply. For an unvented gas heater utilizing propane, maintain the gas supply to the heater with a normal inlet test pressure immediately ahead of all controls at 11 to 13 inches of water column. The regulator outlet pressure at normal supply test pressure shall be that recommended by the manufacturer. The propane supplied should have a higher heating value of within 5 percent of 2,500 Btu's per standard cubic foot. Determine the higher heating value in Btu's per standard foot, for the propane to be used in the test, with an error no greater than one percent. Alternatively, the test can be conducted using "bottled" propane of a higher heating value within ± 5 percent of 2,500 Btu's per standard cubic foot as long as the actual higher heating value of the bottled propane has been determined with an error no greater than one percent as certified by the supplier.

1.4.4 Oil supply. For an unvented oil heater utilizing kerosene, determine the higher heating value in Btu's per gallon with an error no greater than one percent. Alternatively, the test can be conducted using a tested fuel of a higher heating value within ± 5 percent of 137,400 Btu's per gallon as long as the actual higher heating value of the tested fuel has been determined with an error no greater than one percent as certified by the supplier.

1.5 Energy flow instrumentation. Install one or more energy flow instruments which measure, as appropriate and with an error no greater than one percent, the quantity of electrical energy, natural gas, propane gas, or oil supplied to the heater.

2 Testing and measurements.

2.1 Electric power measurement. Establish the test conditions set forth in section 1 of this appendix. Allow an electric heater to warm up for at least five minutes before recording the maximum electric power measurement from the wattmeter. Record the maximum electric power (P_E) expressed in kilowatts.

Allow the auxiliary electrical system of a forced air unvented gas, propane, or oil heater to operate for at least five minutes before recording the maximum auxiliary electric power measurement from the wattmeter. Record the maximum auxiliary electric power (P_A) expressed in kilowatts.

2.2 Natural gas, propane, and oil measurement. Establish the test conditions as set forth in section 1 of this appendix. A natural gas, propane, or oil heater shall be operated for one hour. Using either the nameplate rating or the energy flow instrumentation set forth in section 1.5 of this appendix and the fuel supply rating set forth in sections 1.4.2, 1.4.3, or 1.4.4 of this appendix, as appropriate, determine the maximum fuel input (P_F) of the heater under test in Btu's per hour. The energy flow instrumentation shall measure the maximum fuel input with an error no greater than one percent.

3 Calculations.

3.1 Annual energy consumption for primary electric heaters. For primary electric heaters, calculate the annual energy consumption (E_E) expressed in kilowatt-hours per year and defined as:

\[E_E = 2080 \times (0.77) \times DHR \]

where:

- 2080 = national average annual heating load hours
- 0.77 = adjustment factor
- DHR = design heating requirement and is equal to P_E /1.2 in kilowatts.

P_E = as defined in 2.1 of this appendix

DHR = as defined in 3.1 of this appendix

3.2 Annual energy consumption for primary electric heaters by geographic region of the United States. For primary electric heaters, calculate the annual energy consumption by geographic region of the United States (E_R) expressed in kilowatt-hours per year and defined as:

\[E_R = H_L H (0.77) \times DHR \]

where:

- H_L H = heating load hours for a specific region determined from Figure 1 of this appendix
- DHR = as defined in 3.1 of this appendix

3.3 Rated output for electric heaters. Calculate the rated output (Q_out) for electric heaters, expressed in Btu's per hour, and defined as:

\[Q_{out} = P_E \times (3,412 \text{ Btu/KWh}) \]

where:

- P_E = as defined in 2.1 of this appendix

3.4 Rated output for unvented heaters using either natural gas, propane, or oil. For unvented heaters using either natural gas, propane, or oil equipped without auxiliary electrical systems, the rated output (Q_out) expressed in Btu's per hour, is equal to P_F, as determined in section 2.2 of this appendix.

For unvented heaters using either natural gas, propane, or oil equipped with auxiliary
electrical systems, calculate the rated output \((Q_{out})\), expressed in Btu's per hour, and defined as:

\[
Q_{out} = P_f + P_A \text{ (3,412 Btu/kWh)}
\]

where:

- \(P_f\) as defined in 2.2 of this appendix in Btu/hr
- \(P_A\) as defined in 2.1 of this appendix in Btu/hr

APPENDIX H TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF TELEVISION SETS

1. DEFINITIONS

1.1 “IRE-unit flat field” means a specific video electrical signal which results in a particular level of brightness of the television screen as established by the Institute of Radio Engineers.

1.2 “Filament keep-warm” means a feature that provides a voltage to keep vacuum tube and/or picture tube filaments warm for the purpose of allowing almost instantaneous response to the power control switch.
1.3 “Operating time” \((t_o) \) means the hours per year during which the television set is operating with power control turned on.

1.4 “Remote control” means an optional feature which allows the user to control the television set from more than one location by a hand held device.

1.5 “Standby power consumption” \((P_s) \) means the minimum amount of energy consumed with the power control switch turned off.

1.6 “Standby time” \((t_s) \) means the hours per year during which the television set is connected to a power outlet with the power control switch turned off.

1.7 “Vacation switch or master on-off switch” means an optional energy saving feature incorporated into the design of a television set that permits the user to disconnect the filament keep-warm circuit(s).

1.8 “Remote control defeat switch” means a switch which permits the user to disconnect all standby power to a television set.

2. TESTING CONDITIONS AND MEASUREMENTS

2.1 Test equipment and test signals. The following equipment and test signals shall be used for testing of television sets.

2.1.1 Regulated power source capable of supplying 120 volts \((\pm 1.2 \text{ volts}) \) alternating current.

2.1.2 Signal generator capable of producing radio frequency (RF) television test signals, at a convenient very high frequency (VHF) channel, modulated with, National Television System Committee composite video as follows:

2.1.2.1 Standard White Pattern, RF signal modulated to 87 percent with a 100 IRE-unit flat field.

2.1.2.2 Standard Black Pattern, all adjustments as for 2.1.2.1 except modulated with a zero IRE-unit flat field.

2.1.2.3 The test signals in 2.1.2.1 and 2.1.2.2, supplied by a source whose impedance equals the design antenna impedance of the television set under test, shall be adjusted to a level of 70 decibels (dB) \(\pm 3 \text{ dB} \), referred to a zero dB level of one femtowatt \((1 \times 10^{-15} \text{ watt}) \) available power. (For a 300 ohm source, 70 dB referred to one femtowatt corresponds to an open-circuit voltage of 3.5 millivolts. For the calculation of “available power” use American National Standard C.16.13-1961, Method of Testing Monochrome Television Broadcast Receivers.)

2.1.3 Wattmeter capable of measuring the average power consumption of the television set under test. The wattmeter shall be accurate to within 1 percent of the full-scale value. All measurements shall be made on the upper half of the scale of the wattmeter.

2.2 Initial set-up of television set.

2.2.1 Remove all batteries from television sets designed for both battery and alternating current operation. Deactivate all present or automatic controls affecting brightness which are customer options. Adjust all non-customer controls according to the manufacturer’s service procedure.

2.2.2 Apply power to the television set under test from the power source specified in 2.1.1 through the wattmeter specified in 2.1.3. Adjust the volume control to the lowest possible setting.

2.2.3 Connect the output of the signal generator as specified in 2.1.2 to the VHF antenna terminals of the television set. Tune the television set to the channel of the RF signal.

2.3 Measurement of operating power consumption \((P_o) \)

2.3.1 Turn on the television set and allow at least five minutes warm-up time. With the synchronization controls adjusted for a stable test pattern, apply the standard white pattern specified in 2.1.2.1 to the television set. Adjust any customer controls other than the volume or synchronization controls for maximum power consumption as indicated by the wattmeter specified in 2.1.3. Illuminate any room illuminance sensor which has not been deactivated, to produce maximum power consumption. Record the white pattern power consumption \((P_w) \) as indicated by the wattmeter in watts.

2.3.2 Change the signal source to the standard black pattern specified in 2.1.2.2. Adjust any customer controls, other than the volume or synchronization controls, for the minimum power consumption as indicated by the wattmeter. Cover any room illuminance sensor which has not been deactivated. Record the black pattern power consumption \((P_b) \) as indicated by the wattmeter in watts.

2.3.3 Compute the operating power consumption \((P_o) \) as follows:

\[
P_o = (P_w + P_b)/2
\]

where

\(P_w\) = operating power consumption in watts

\(P_o\) = as determined from 2.3.1

\(P_b\) = as determined from 2.3.2

2.4 Measurements of standby power consumption \((P_s) \)

2.4.1 For television sets without either a vacation switch or a remote control defeat switch, turn the power switch off and after two minutes measure the standby power consumption \((P_s) \).

2.4.2 For a television set equipped with a remote control defeat switch, a vacation switch or both, turn the power switch, any vacation switch, and any remote control defeat switch off and after two minutes measure the standby power consumption \((P_s) \). The standby power is then calculated from the equation:

\[
P_s = (P_{\text{max}} - P_{\text{min}})/2 + P_{\text{min}}
\]

where

\(P_{\text{max}}\) = standby power consumption in watts

\(P_{\text{min}}\) = power consumption, in watts, measured with the television set power switch off and the vacation switch and
remote control defeat switch in the highest energy consuming position.

\[P_{\text{min}} = \text{power consumption, in watts, measured with the television set power switch off and the vacation switch and remote control defeat switch in the lowest energy consuming position.}\]

3.0 Average Annual Energy Consumption

\[E = (P_{o}/1,000) + (P_{s}/1,000) + 2.2P_{o} + 6.56P_{s}\]

where

- \(E = \text{total average energy consumed by the television set (kilowatt-hour per year)}\)
- \(P_{o} = \text{operating power consumption as computed in 2.3.3}\)
- \(t_{o} = \text{operating time, 2,200 h/yr}\)
- \(P_{s} = \text{standby power consumption computed in 2.4}\)
- \(t_{s} = \text{standby time, 6,560 h/yr}\)

APPENDIX I TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF CONVENTIONAL RANGES, CONVENTIONAL COOKING TOPS, CONVENTIONAL OVENS, AND MICROWAVE OVENS

1. Definitions

1.1 Built-in means the product is supported by surrounding cabinetry, walls, or other similar structures.

1.2 Drop-in means the product is supported by horizontal surface cabinetry.

1.3 Forced convection means a mode of conventional oven operation in which a fan is used to circulate the heated air within the oven compartment during cooking.

1.4 Freestanding means the product is not supported by surrounding cabinetry, walls, or other similar structures.

1.6 Normal nonoperating temperature means the temperature of all areas of an appliance to be tested are within 5°F (2.8°C) of the temperature that the identical areas of the same basic model of the appliance would attain if it remained in the test room for 24 hours while not operating with all oven doors closed and with any gas pilot lights on and adjusted in accordance with manufacturer’s instructions.

1.7 Primary energy consumption means either the electrical energy consumption of a conventional electric oven or the gas energy consumption of a conventional gas oven.

1.8 Secondary energy consumption means any electrical energy consumption, other than clock energy consumption, of a conventional gas oven.

1.9 Standard cubic foot (L) of gas means that quantity of gas that occupies 1 cubic foot (L) when saturated with water vapor at a temperature of 60°F (15.6°C) and a pressure of 30 inches of mercury (101.6 kPa) (density of mercury equals 13.595 grams per cubic centimeter).

1.10 Thermocouple means a device consisting of two dissimilar metals which are joined together and, with their associated wires, are used to measure temperature by means of electromotive force.

1.11 Symbol Usage. The following identity relationships are provided to help clarify the symbology used throughout this procedure.

- A—Number of Hours in a Year
- B—Number of Hours Pilot Light Contributes to Cooking
- C—Specific Heat
- E—Energy Consumed
- F—Cooking Efficiency
- H—Heating Value of Gas
- K—Conversion for Watt-hours to Kilowatt-hours
- K_e—3.412 Btu/Wh, Conversion for Watt-hours to Btu's
- M—Mass
- n—Number of Units
- O—Annual Useful Cooking Energy Output
- P—Power
- Q—Gas Flow Rate
- R—Energy Factor, Ratio of useful Cooking Energy Output to Total Energy Input
- S—Number of Self Cleaning Operations per Year
- T—Temperature
- t—Time
- V—Volume of Gas Consumed
- W—Weight of Test Block

2. Test Conditions

2.1 Installation. A free standing kitchen range shall be installed with the back directly against, or as near as possible to, a vertical wall which extends at least 1 foot above and on either side of the appliance. There shall be no side walls. A drop-in, built-in or wall-mounted appliance shall be installed in an enclosure in accordance with the manufacturer’s instructions. These appliances are to be completely assembled with all handles, knobs, guards and the like mounted in place. Any electric resistance heaters, gas burners, baking racks, and baffles shall be in place in accordance with the manufacturer’s instructions; however, broiler pans are to be removed from the oven’s baking compartment. Disconnect any electrical clock which uses energy continuously, except for those that are an integral part of the timing or temperature controlling circuit of the oven, cooktop, or microwave...
oven. Do not disconnect or modify the circuit to any other electrical devices or features.

2.1.1 Conventional electric ranges, ovens, and cooking tops. These products shall be connected to an electrical supply circuit with voltage as specified in Section 2.2.1 with a watt-hour meter installed in the circuit. The watt-hour meter shall be as described in Section 2.9.1.1.

2.1.2 Conventional gas ranges, ovens, and cooking tops. These products shall be connected to a gas supply line with a gas meter installed between the supply line and the appliance being tested, according to manufacturer's specifications. The gas meter shall be as described in Section 2.9.2. Conventional gas ranges, ovens and cooking tops with electrical ignition devices or other electrical components shall be connected to an electrical supply circuit of nameplate voltage with a watt-hour meter installed in the circuit. The watt-hour meter shall be as described in Section 2.9.1.1.

2.1.3 Microwave ovens. Install the microwave oven in accordance with the manufacturer's instructions and connect to an electrical supply circuit with voltage as specified in Section 2.2.1. A watt-hour meter and watt meter shall be installed in the circuit and shall be as described in Section 2.9.1.1 and 2.9.1.2. If trial runs are needed to set the "on" time for the test, the test measurements are to be separated according to Section 4, Paragraph 126 of IEC 705 Amendment 2. (See 10 CFR 430.22)

2.2 Energy supply.

2.2.1 Electrical supply. Maintain the electrical supply to the conventional range, conventional cooking top, and conventional oven being tested at 240/120 volts except that basic models rated only at 288/120 volts shall be tested at that rating. Maintain the voltage within 2 percent of the above specified voltages. For the microwave oven testing, however, maintain the electrical supply to a microwave oven at 120 volts ± 1 volt and 60 hertz.

2.2.2 Gas supply.

2.2.2.1 Gas burner adjustments. Conventional gas ranges, ovens, and cooking tops shall be tested with all of the gas burners adjusted in accordance with the installation and operation instructions provided by the manufacturer. In every case, the burner must be adjusted with sufficient air flow to prevent a yellow flame or a flame with yellow tips.

2.2.2.2 Natural gas. For testing convertible cooking appliances or appliances which are designed to operate using only natural gas, maintain the natural gas pressure immediately ahead of all controls of the unit under test at 7 ± 10 inches of water column (1743.6 to 2490.8 Pa). The regulator outlet pressure shall equal the manufacturer's recommendation. The natural gas supplied should have a heating value of approximately 1.025 Btu's per standard cubic foot (38.2 kJ/L). The actual gross heating value, H, in Btu's per standard cubic foot (kJ/L), for the natural gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using equipment that meets the requirements described in Section 2.9.4 or by the use of bottled natural gas whose gross heating value is certified to be at least as accurate a value that meets the requirements in Section 2.9.4.

2.2.2.3 Propane. For testing convertible cooking appliances with propane or for testing appliances which are designed to operate using only LP-gas, maintain the propane pressure immediately ahead of all controls of the unit under test at 11 ± 13 inches of water column (2740 to 3238 Pa). The regulator outlet pressure shall equal the manufacturer's recommendation. The propane supplied should have a heating value of approximately 1.600 Btu's per standard cubic foot (93.2 kJ/L). The actual gross heating value, H, in Btu's per standard cubic foot (kJ/L), for the propane to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using equipment that meets the requirements described in Section 2.9.4 or by the use of bottled propane whose gross heating value is certified to be at least as accurate a value that meets the requirements described in Section 2.9.4.

2.2.2.4 Test gas. A basic model of a convertible cooking appliance shall be tested with natural gas, but may also be tested with propane. Any basic model of a conventional range, conventional cooking top, or conventional oven which is designed to operate using only natural gas as the energy source must be tested with natural gas. Any basic model of a conventional range, conventional cooking top, or conventional oven which is designed to operate using only LP-gas as the gas energy source must be tested with propane gas.

2.3 Air circulation. Maintain air circulation in the room sufficient to secure a reasonably uniform temperature distribution, but do not cause a direct draft on the unit under test.

2.4 Setting the conventional oven thermostat.

2.4.1 Conventional electric oven. Install a thermocouple approximately in the center of the usable baking space. Provide a temperature indicator system for measuring the oven's temperature with an accuracy as indicated in Section 2.9.2.1. The regulator outlet pressure shall equal the manufacturer's recommendation. The natural gas supplied should have a heating value of approximately 1.025 Btu's per standard cubic foot (38.2 kJ/L). The actual gross heating value, H, in Btu's per standard cubic foot (kJ/L), for the natural gas to be used in the test shall be obtained either from measurements made by the manufacturer conducting the test using equipment that meets the requirements described in Section 2.9.4 or by the use of bottled natural gas whose gross heating value is certified to be at least as accurate a value that meets the requirements in Section 2.9.4.
temperature. If the oven thermostat operates by cycling on and off, adjust or determine the conventional electric oven thermostat setting to provide an average internal temperature which is $325 \pm 5^\circ F$ ($180.6 \pm 2.8^\circ C$) higher than the room ambient air temperature. This shall be done by measuring the maximum and minimum temperatures in any three consecutive cut-off/cut-on actions of the electric resistance heaters, excluding the initial cut-off/cut-on action, by the thermostat after the temperature rise of $325 \pm 5^\circ F$ ($180.6 \pm 2.8^\circ C$) has been attained by the conventional electric oven. Remove the thermocouple after the thermostat has been set.

2.4.2 Conventional gas oven. Install five parallel-connected weighted thermocouples, one located at the center of the conventional gas oven’s usable baking space and the other four equally spaced between the center and the corners of the conventional gas oven on the diagonals of a horizontal plane through the center of the conventional gas oven. Each weighted thermocouple shall be constructed of a copper disc that is 1-inch (25.4 mm) in diameter and 3/16-inch (3.2 mm) thick. The two thermocouple wires shall be located in two holes in the disc spaced 1/2-inch (12.7 mm) apart, with each hole being located 3/16-inch (6.4 mm) from the center of the disc. Both thermocouple wires shall be silver-soldered to the copper disc. Provide a temperature indicator system for measuring the test block temperature with an accuracy as indicated in Section 2.9.3.2. If the oven thermostat does not cycle on or off, adjust or determine the conventional gas oven thermostat setting to provide an average internal temperature which is $325 \pm 5^\circ F$ ($180.6 \pm 2.8^\circ C$) higher than the room ambient air temperature. If the oven thermostat operates by cycling on and off, adjust or determine the conventional gas oven thermostat setting to provide an average internal temperature which is $325 \pm 5^\circ F$ ($180.6 \pm 2.8^\circ C$) higher than the room ambient air temperature. This shall be done by measuring the maximum and minimum temperatures in any three consecutive cut-off/cut-on actions of the gas burners, excluding the initial cut-off/cut-on action, by the thermostat after the temperature rise of $325 \pm 5^\circ F$ ($180.6 \pm 2.8^\circ C$) has been attained by the conventional gas oven. Remove the thermocouples after the thermostat has been set.

2.5 Ambient room air temperature. During the test, maintain an ambient room air temperature, T_{aw}, of $77 \pm 9^\circ F$ ($25 \pm 5^\circ C$) for conventional ovens and cooking tops, or as indicated in Section 4, Paragraph 12.4 of IEC 705 Amendment 2 for microwave ovens, as measured at least 5 feet (1.5 m) and not more than 8 feet (2.4 m) from the nearest surface of the unit under test and approximately 3 feet (0.9 m) above the floor. The temperature shall be measured with a thermometer or temperature indicating system with an accuracy as specified in Section 2.9.3.1.

2.6 Normal nonoperating temperature. All areas of the appliance to be tested shall attain the normal nonoperating temperature, as defined in Section 1.6, before any testing begins. The equipment for measuring the applicable normal nonoperating temperature shall be as described in Sections 2.9.3.1, 2.9.3.2, 2.9.3.3, 2.9.3.4, and 2.9.3.5, as applicable.

2.7 Test blocks for conventional oven and cooking top. The test blocks shall be made of aluminum alloy No. 6061, with a specific heat of 0.23 Btu/lb•°F (0.96 kJ/kg•°C) and with any temper that will give a coefficient of the order of 1073.3 to 1189.1 Btu/in³•ft•°F (154.8 to 171.5 W/(m•°C)). Each block shall have a hole at its top. The hole shall be 0.08 inch (2.03 mm) in diameter and 0.80 inch (20.3 mm) deep. The manufacturer conducting the test may provide other means which will ensure that the thermocouple junction is installed at this same position and depth.

The bottom of each block shall be flat to within 0.002 inch (0.051 mm) TIR (total indicator reading). Determine the actual weight of each test block with a scale with an accuracy as indicated in Section 2.9.5.

2.7.1 Conventional oven test block. The test block for the conventional oven, W_1, shall be 90.005 inches (228.6±1.3 mm) in diameter, approximately 2.8 inches (71 mm) high and shall weigh 8.5±0.1 lbs (3.86±0.05 kg). The block shall be finished with an anodic black coating which has a minimum thickness of 0.001 inch (0.025 mm) or with a finish having the equivalent absorptivity.

2.7.2 Small test block for conventional cooking top. The small test block, W_2, shall be 6.250±0.05 inches (158.8±1.3 mm) in diameter, approximately 2.8 inches (71 mm) high and shall weigh 8.5±0.1 lbs (3.86±0.05 kg).

2.7.3 Large test block for conventional cooking top. The large test block for the conventional cooking top, W_3, shall be 9.000±0.05 inches (228.6±1.3 mm) in diameter, approximately 3.0 inches (76 mm) high and shall weigh 19±0.1 lbs (8.62±0.05 kg).

2.7.4 Thermocouple installation. Install the thermocouple such that the thermocouple junction (where the thermocouple contacts the test block) is at the bottom of the hole provided in the test block and that the thermocouple junction makes good thermal contact with the aluminum block. If the test blocks are to be water cooled between tests, the thermocouple hole should be sealed, or other steps taken, to ensure that the thermocouple hole is completely dry at the start of the next test. Provide a temperature indicator system for measuring the test block temperature with an accuracy as indicated in Section 2.9.3.3.

2.7.5 Initial test block temperature. Maintain the initial temperature of the test...
blocks, T_i, within $±1.1°F (±2.2°C)$ of the ambient room air temperature as specified in Section 2.5. If the test block has been cooled (or heated) to bring it to room temperature, allow the block to stabilize for at least 2 minutes after removal from the cooling (or heating) source, before measuring its initial temperature.

2.8 Microwave oven test load.

2.8.1 Test container. The test container shall be as specified in Section 4, Paragraph 12.1 of IEC 705 Amendment 2.

2.8.2 Test water load. The test water load shall be as specified in Section 4, Paragraph 12.1 of IEC 705 Amendment 2.

2.9 Instrumentation. Perform all test measurements using the following instruments, as appropriate:

2.9.1 Electrical Measurements.

2.9.1.1 Watt-hour meter. The watt-hour meter for measuring the electrical energy consumption of conventional ovens and cooking tops shall have a resolution of 1 watt-hour (3.6 kJ) or less and a maximum error no greater than 1.5 percent of the measured value for any demand greater than 100 watts. The watt-hour meter for measuring the energy consumption of microwave ovens shall have a resolution of 0.1 watt-hour (0.36 kJ) or less and a maximum error no greater than 1.5 percent of the measured value.

2.9.1.2 Watt meter. The watt meter used to measure the conventional oven, conventional range, range clock power or the power input of the microwave oven shall have a resolution of 0.2 watt (0.2 J/s) or less and a maximum error no greater than 1.5 percent of the measured value.

2.9.2 Gas Measurements.

2.9.2.1 Positive displacement meters. The gas meter to be used for measuring the gas consumed by the gas burners of the oven or cooking top shall have a resolution of 0.01 cubic foot (0.28 L) or less and a maximum error no greater than 1 percent of the measured value for any demand greater than 2.2 cubic feet per hour (62.3 L/h). If a positive displacement gas meter is used for measuring the gas consumed by the pilot lights, it shall have a resolution of at least 0.01 cubic foot (0.28 L) or less and have a maximum error no greater than 2 percent of the measured value.

2.9.2.2 Flow meter. If a gas flow meter is used for measuring the gas consumed by the pilot lights, it shall be calibrated to have a maximum error no greater than 1.5 percent of the measured value and a resolution of 1 percent or less of the measured value.

2.9.3 Temperature measurement equipment.

2.9.3.1 Room temperature indicating system. The room temperature indicating system shall be as specified in Section 4, Paragraph 12.3 of IEC 705 Amendment 2 for microwave ovens and Section 2.9.3.5 for ranges, ovens and cooktops.

2.9.3.2 Temperature indicator system for measuring conventional oven temperature. The equipment for measuring the conventional oven temperature shall have an error no greater than $±4°F (±2.2°C)$ over the range of 65° to 50°F (18°C to 26°C).

2.9.3.3 Temperature indicator system for measuring test block temperature. The system shall have an error no greater than $±2°F (±1.1°C)$ when measuring specific temperatures over the range of 65° to 30°F (18.3°C to 166.6°C). It shall also have an error no greater than $±2°F (±1.1°C)$ when measuring any temperature difference up to 240°F (133.3°C) within the above range.

2.9.3.4 Test load temperatures. The thermometer or other temperature measuring instrument used to measure the test water load temperature shall be as specified in Section 4, Paragraph 12.3 of IEC 705 Amendment 2. Use only one thermometer or other temperature measuring device throughout the entire test procedure.

2.9.3.5 Temperature indicator system for measuring surface temperatures. The temperature indicating system shall have an error no greater than $±1°F (±0.6°C)$ over the range 65° to 90°F (18°C to 32°C).

2.9.4 Heating Value. The heating value of the natural gas or propane shall be measured with an instrument and associated readout device that has a maximum error no greater than ±0.5% of the measured value and a resolution of ±0.2% or less of the full scale reading of the indicator instrument. The heating value of natural gas or propane must be corrected for local temperature and pressure conditions.

2.9.5 Scale. The scale used for weighing the test blocks shall have a maximum error no greater than 1 ounce (28.4 g). The scale used for weighing the microwave oven test water load shall be as specified in Section 4, paragraph 12.3 of IEC 705 Amendment 2.

3. Test Methods and Measurements

3.1 Test methods.

3.1.1 Conventional oven. Perform a test by establishing the testing conditions set forth in Section 2, "TEST CONDITIONS," of this Appendix, and adjust any pilot lights of a conventional gas oven in accordance with the manufacturer's instructions and turn off the gas flow to the conventional cooking top.
if so equipped. Before beginning the test, the conventional oven shall be at its normal nonoperating temperature as defined in Section 1.6 and described in Section 2.6. Set the conventional oven test block, \(W_o \), approximately in the center of the usable baking space. If there is a selector switch for selecting the mode of operation of the oven, set it for all cooking modes. If the oven is not equipped with a selector switch for selecting the mode of operation of the oven, set it to伊 the mode of operation of the oven, set it to be tested in each of those two modes. The oven shall remain on for at least one complete cycle as defined in Section 1.6 and described in Section 2.6. Then set the conventional oven's self-cleaning process in accordance with the manufacturer's instructions. If the self-cleaning process is adjustable, use the average time recommended by the manufacturer for a moderately soiled oven.

3.1.2 Continuously burning pilot lights of a conventional gas oven. Establish the test conditions set forth in Section 2, “TEST CONDITIONS,” of this Appendix. Adjust any pilot lights of a conventional gas oven in accordance with the manufacturer's instructions and turn off the gas flow to the conventional cooking top. The temperature of the conventional oven shall be its normal nonoperating temperature as defined in Section 1.6 and described in Section 2.6. Then set the conventional oven's self-cleaning process in accordance with the manufacturer's instructions. If the self-cleaning process is adjustable, use the average time recommended by the manufacturer for a moderately soiled oven.

3.2.1 Conventional cooking top. Establish the test conditions set forth in Section 2, “TEST CONDITIONS,” of this Appendix. Adjust any pilot lights of a conventional gas oven in accordance with the manufacturer's instructions and turn off the gas flow to the conventional cooking top. If a positive displacement gas meter is used, the test duration shall be sufficient to measure a gas consumption which is at least 200 times the resolution of the gas meter.

3.2.2 Conventional oven test energy consumption. If the oven thermostat controls the oven temperature without cycling on and off, measure the energy consumed, \(E_o \), when the temperature of the block reaches \(T_o \) (\(T_o \) is 234 °F (130 °C) above the initial block temperature, \(T_b \)).

3.3.1 Continuous burning pilot lights of a conventional gas cooking top. Establish the test conditions set forth in Section 2, “TEST CONDITIONS,” of this Appendix. Adjust any pilot lights of a conventional gas cooking top in accordance with the manufacturer's instructions and turn off the gas flow to the conventional oven(s). If a positive displacement gas meter is used, the test duration shall be sufficient to measure a gas consumption which is at least 200 times the resolution of the gas meter.

3.3.2 Conventional oven test energy consumption. Establish the test conditions set forth in Section 4, Paragraph 12.4 of IEC 706 Amendment 2. Follow the test procedure as specified in this Appendix. Establish the test conditions set forth in Section 2, “TEST CONDITIONS,” of this Appendix. Adjust any pilot lights of a conventional gas cooking top in accordance with the manufacturer's instructions and turn off the gas flow to the conventional oven(s). If a positive displacement gas meter is used, the test duration shall be sufficient to measure a gas consumption which is at least 200 times the resolution of the gas meter.
or without forced convection and the oven thermostat does not cycle on and off, measure the energy consumed with the forced convection mode, \(E_{O,1} \), and without the forced convection mode, \(E_{O,0} \), when the temper-ature of the block reaches \(T_{0} \) (\(T_{0} \) is 234 °F (130 °C) above the initial block temperature, \(T_{I} \)). If the conventional oven permits baking by either forced convection and the oven thermostat operates by cycling on and off, make the following se ries of measurements with and without the forced convection mode: Measure the block temperature, \(T_{A} \), and the energy consumed, \(E_{A} \), of volume of gas consumed, \(V_{A} \), at the end of the last “ON” period of the conven-tional oven before the block reaches \(T_{0} \). Measure the block temperature, \(T_{B} \), and the energy consumed, \(E_{B} \), or volume of gas con-sumed, \(V_{B} \), at the beginning of the next “ON” period. Measure the block tempera-ture, \(T_{C} \), and the energy consumed, \(E_{C} \), or volume of gas consumed, \(V_{C} \), at the end of that “ON” period. Measure the block tem-perature, \(T_{D} \), and the energy consumed, \(E_{D} \), or volume of gas consumed, \(V_{D} \), at the beginning of the following “ON” period. Energy measurements for \(E_{A} \), \(E_{B} \), \(E_{C} \), and \(E_{D} \) should be expressed in watt-hours (kJ) for conventional electric ovens and volume measurements for \(V_{A} \), \(V_{B} \), \(V_{C} \), and \(V_{D} \) should be expressed in standard cubic feet (L) of gas for conventional gas ovens. For a gas oven that can be operated with or without forced convection, measure in watt-hours (kJ) any electrical energy consumed by an ignition device or other electrical components re quired for the operation of a conventional gas oven while heating the test block to \(T_{0} \) using the forced convection mode, \(E_{O,1} \), and without using the forced convection mode, \(E_{O,0} \). The energy consumed by a continu ously operating clock that is an integral part of the temperature control circuits and cannot be disconnected during the test may be subtracted from the test energy to obtain the specified test energy consumption value.

3.2.1.2 Energy consumption of self-cleaning operation. Measure the energy consumption, \(E_{S} \), in watt-hours (kJ) of electricity or the volume of gas consumed, \(V_{S} \), in standard cubic feet (L) of gas during the test. The energy consumed by a continuously operating clock that is an integral part of the temperature control circuit and cannot be disconnected during the test may be subtracted from the test energy to obtain the test energy consumption, \(E_{S} \). 3.2.1.3 Gas consumption of continuously burning pilot lights. Measure the gas con-sumption of the pilot lights, \(V_{P} \), in standard cubic feet (L) of gas and the test duration, \(t_{CP} \), in hours as specified in Section 3.1.2.1. If a gas flow rate meter is used, measure the flow rate, \(Q_{G} \), in standard cubic feet per hour (L/h).

3.2.3 Microwave oven test energy consumption and power input. Measurements are to be made as specified in Section 4, Paragraphs 12.4 and 13 of IEC 705 and Amendment 2. Measure the electrical input energy, \(E_{M} \), in watt-hours (kJ) consumed by the microwave oven during the test. Repeat the tests three times unless the power output value resulting from the second measurement is within 1.5% of the value obtained from the first measurement as stated in Section 4, Paragraphs 12.6 of IEC 705 Amendment 2. (See 10 CFR 430.22.)

3.3 Recorded values.

3.3.1 Record the test room temperature, \(T_{R} \), at the start and end of each range, oven or cooktop test, as determined in Section 2.5.
3.3.2 Record measured test block weights \(W_1 \), \(W_2 \), and \(W_3 \) in pounds (kg).

3.3.3 Record the initial temperature, \(T_1 \), of the test block under test.

3.3.4 For a conventional oven with a thermostat which operates by cycling on and off, record the conventional oven test measurements \(T_A \), \(E_A \), \(T_B \), \(E_B \), \(T_C \), \(E_C \), \(T_D \), and \(E_D \) for conventional electric ovens or \(T_A \), \(V_A \), \(T_B \), \(V_B \), \(T_C \), \(V_C \), \(T_D \), and \(V_D \) for conventional gas ovens. If the thermostat controls the oven temperature without cycling on and off, record \(E_A \). For a gas oven which also uses electrical energy for the ignition or operation of the oven, also record \(E_B \).

3.3.5 For a conventional oven that can be operated with or without forced convection and the oven thermostat controls the oven temperature without cycling on and off, measure the energy consumed with the forced convection mode, \((E_{B1}) \), and without the forced convection mode, \((E_{B2}) \). If the conventional oven operates with or without forced convection and the thermostat controls the oven temperature by cycling on and off, record the conventional oven test measurements \(T_A \), \(E_A \), \(T_B \), \(E_B \), \(T_C \), \(E_C \), \(T_D \), and \(E_D \) for conventional electric ovens or \(T_A \), \(V_A \), \(T_B \), \(V_B \), \(T_C \), \(V_C \), \(T_D \), and \(V_D \) for conventional gas ovens. For a gas oven that can be operated with or without forced convection, measure any electrical energy consumed by an ignition device or other electrical components used during the forced convection mode, \((E_{B1}) \), and without using the forced convection mode, \((E_{B2}) \).

3.3.6 Record the measured energy consumption, \(E_S \), or gas consumption, \(V_S \), and for a gas oven, any electrical energy, \(E_U \), for the test of the self-cleaning operation of a conventional oven.

3.3.7 Record the gas flow rate, \(Q_{WP} \); or the gas consumption, \(V_{WP} \), and the elapsed time, \(t_{WP} \), that any continuously burning pilot lights of a conventional oven are under test.

3.3.8 Record the clock power measurement or rating, \(P_{Cl} \), in watts (J/s), except for microwave oven tests.

3.3.9 For the surface unit under test, record the electric energy consumption, \(E_{CT} \), or the gas volume consumption, \(V_{CP} \), the final test block temperature, \(T_{CT} \), the total test time, \(t_{CP} \). For a gas cooking top which uses electrical energy for ignition of the burners, also record \(E_{IC} \).

3.3.10 Record the gas flow rate, \(Q_{WP} \); or the gas consumption, \(V_{WP} \), and the elapsed time, \(t_{WP} \), that any continuously burning pilot lights of a conventional gas cooking top are under test.

3.3.11 Record the heating value, \(H_u \), as determined in Section 2.2.2.2 for the natural gas supply.

3.3.12 Record the heating value, \(H_p \), as determined in Section 2.2.2.3 for the propane supply.

3.3.13 Record the electrical input energy and power input, \(E_m \) and \(P_{m} \), for the microwave oven test, the initial and final temperature, \(T_1 \) and \(T_2 \), of the test water load; the mass of the test container before filling with the test water load and the mass of the test water load, \(M_c \) and \(M_w \) respectively; and the measured room temperature, \(T_0 \), as determined in Section 3.2.3.

4. Calculation of Derived Results From Test Measurements

4.1 Conventional oven.

4.1.1 Test energy consumption. For a conventional oven with a thermostat which operates by cycling on and off, calculate the test energy consumption, \(E_{W} \), expressed in watt-hours (kJ) for electric ovens and in Btu's (kJ) for gas ovens, and defined as:

\[
E_O = E_{AB} + \left(\frac{T_O - T_{AB}}{T_{CD} - T_{AB}} \right) \times \left(E_{CD} - E_{AB} \right)
\]

for electric ovens, and,

\[
E_O = (V_{AB} \times H) + \left[\frac{T_O - T_{AB}}{T_{CD} - T_{AB}} \right] \times (V_{CD} - V_{AB}) \times H
\]
For gas ovens
Where:

\[H = \text{either } H_a \text{ or } H_p \text{, the heating value of the gas used in the test as specified in Section 2.2.2.2 and Section 2.2.2.3, expressed in Btu's per standard cubic foot (kF/L).} \]

\[T_o = 294^\circ \text{F} (130^\circ \text{C}) \text{ plus the initial test block temperature.} \]

\[E_{AB} = \frac{(E_A + E_B)}{2}, \quad E_{CD} = \frac{(E_C + E_D)}{2} \]

\[V_{AB} = \frac{(V_A + V_B)}{2}, \quad V_{CD} = \frac{(V_C + V_D)}{2} \]

\[T_{AB} = \frac{(T_A + T_B)}{2}, \quad T_{CD} = \frac{(T_C + T_D)}{2} \]

Where:

\[T_A = \text{block temperature in } ^\circ \text{F (C)} \text{ at the end of the last "ON" period of the conventional oven before the test block reaches } T_o. \]

\[T_B = \text{block temperature in } ^\circ \text{F (C)} \text{ at the beginning of the "ON" period following the measurement of } T_A. \]

\[T_C = \text{block temperature in } ^\circ \text{F (C)} \text{ at the end of the "ON" period which starts with } T_B. \]

\[T_D = \text{block temperature in } ^\circ \text{F (C)} \text{ at the beginning of the "ON" period which follows the measurement of } T_C. \]

\[E_A = \text{electric energy consumed in Wh (kJ) at the end of the last "ON" period before the test block reaches } T_o. \]

\[E_B = \text{electric energy consumed in Wh (kJ) at the beginning of the "ON" period following the measurement of } T_A. \]

\[E_C = \text{electric energy consumed in Wh (kJ) at the end of the "ON" period which starts with } T_B. \]

\[E_D = \text{electric energy consumed in Wh (kJ) at the beginning of the "ON" period which follows the measurement of } T_C. \]

\[V_A = \text{volume of gas consumed in standard cubic feet (L) at the end of the last "ON" period before the test block reaches } T_o. \]

\[V_B = \text{volume of gas consumed in standard cubic feet (L) at the beginning of the "ON" period following the measurement of } T_A. \]

\[V_C = \text{volume of gas consumed in standard cubic feet (L) at the end of the "ON" period which starts with } T_B. \]

\[V_D = \text{volume of gas consumed in standard cubic feet (L) at the beginning of the "ON" period which follows the measurement of } T_C. \]

4.1.1.1 Average test energy consumption. If the conventional oven can be operated with or without forced convection, determine the average test energy consumption, \(E_o \) and \(E_{1o} \) in watt-hours (kJ) for electric ovens and in Btu's (kJ) for gas ovens using the following equations:

\[E_o = \frac{(E_1 + E_2)}{2}, \quad E_{1o} = \frac{(E_{11} + E_{12})}{2} \]

Where:

\((E_o)_1 = \text{test energy consumption using the forced convection mode in watt-hours (kJ) for electric ovens and in Btu's (kJ) for gas ovens as measured in Section 3.2.11.} \)

\((E_o)_2 = \text{test energy consumption without using the forced convection mode in watt-hours (kJ) for electric ovens and in Btu's (kJ) for gas ovens as measured in Section 3.2.11.} \)

\((E_{1o})_1 = \text{electrical energy consumption in watt-hours (kJ) of a gas oven in forced convection mode as measured in Section 3.2.11.} \)

\((E_{1o})_2 = \text{electrical energy consumption in watt-hours (kJ) of a gas oven without using the forced convection mode as measured in Section 3.2.11.} \)

The energy consumed by a continuously operating clock that cannot be disconnected during the test may be subtracted from the oven test energy to obtain the average test energy consumption \(E_o \) and \(E_{1o} \).

4.1.2 Conventional oven annual energy consumption.

4.1.2.1 Annual cooking energy consumption.

4.1.2.1.1 Annual primary energy consumption. Calculate the annual primary energy consumption for cooking, \(E_{CO} \) expressed in kilowatt-hours (kJ) per year for electric ovens and in Btu's (kJ) per year for gas ovens, and defined as:

\[E_{CO} = \frac{E_o \times K_e \times O_o \times W_i \times (C_p + T_S)}{K} \]

Where:

\(E_o = \text{test energy consumption as measured in Section 3.2.1 or as calculated in Section 4.1.1 or Section 4.1.1.1.} \)

\(K = 3.412 \text{ Btu/Wh (3.6 kJ/Wh)} \text{, conversion factor of watt-hours to Btu's.} \)

\(O_o = 29.3 \text{ kWh (105,480 kJ) per year, annual useful cooking energy output of conventional electric oven.} \)

\(W_i = \text{measured weight of test block in pounds (kg).} \)

\(C = 0.23 \text{ Btu/lb} - ^\circ \text{F (0.96 kJ/kg} - ^\circ \text{C), specific heat of test block.} \)

\(T_s = 294^\circ \text{F (130} \text{C)}, \text{temperature rise of test} \)
Annual energy consumption of any continuously burning pilot lights, E_{tr}, expressed in kilowatt-hours (kWh) per year and defined as:

$$E_{tr} = E_{O} \times K \times T_{p}$$

Where:
- E_{O} = test energy consumption as measured in Section 3.2.1 or as calculated in Section 4.1.1.
- K = power rating of clock which is on continuously burning pilot lights, as measured in Section 2.2.2.3 in Btu's per standard cubic foot (kJ/L).
- T_{p} = elapsed test time in hours for any continuously burning pilot lights tested, as measured in Section 3.2.1.

1.2.2.2 Annual energy consumption of any continuously burning pilot lights. Calculate the annual energy consumption of any continuously burning pilot lights, E_{PO}, expressed in Btu's (kJ) per year and defined as:

$$E_{PO} = Q_{op} \times H_{o}(A - B)$$

or,

$$E_{PO} = \frac{V_{op}}{t_{op}} \times H \times (A - B)$$

Where:
- Q_{op} = pilot gas flow rate in standard cubic feet per hour (L/h), as measured in Section 3.2.1.
- V_{op} = standard cubic feet (L) of gas consumed by any continuously burning pilot lights, as measured in Section 3.2.1.
- t_{op} = elapsed test time in hours for any continuously burning pilot lights tested, as measured in Section 3.2.1.
- H_{o} = the heating value of the gas used in the test as specified in Section 2.2.2.2 and 2.2.2.3 in Btu's per standard cubic foot (kJ/L).
- A = 8,760, number of hours in a year.
- B = 8,760, number of hours in a year.

1.2.2.3 Annual conventional oven self-cleaning energy. Calculate the annual conventional oven self-cleaning energy, E_{SC}, expressed in kilowatt-hours (kWh) per year for electric ovens and in Btu's (kJ) for gas ovens, and defined as:

$$E_{SC} = E_{tr} \times S_{p} \times K$$

Where:
- E_{tr} = energy consumption in watt-hours, as measured in Section 3.2.1.
- S_{p} = average number of times a self-cleaning operation of a conventional oven is used per year.
- K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.

The energy consumed by a continuously operating clock that cannot be disconnected during the self-cleaning test procedure may be subtracted from the test energy to obtain the test energy consumption, E_{tr}, for self-cleaning operation of gas ovens. Calculate the annual secondary energy consumption for self-cleaning operations of a gas oven, E_{SC}, expressed in kilowatt-hours (kWh) per year and defined as:

$$E_{SC} = E_{tr} \times S_{p} \times K$$

Where:
- E_{tr} = energy consumption in watt-hours, as measured in Section 3.2.1.
- S_{p} = average number of times a self-cleaning operation of a conventional gas oven is used per year.

The energy consumed by a continuously operating clock that cannot be disconnected during the self-cleaning test procedure may be subtracted from the test energy to obtain the test energy consumption, E_{tr}, for self-cleaning operation of a conventional electric oven. Calculate the annual secondary energy consumption for self-cleaning operations of a gas oven, E_{sc}, expressed in kilowatt-hours (kWh) per year and defined as:

$$E_{sc} = E_{tr} \times S_{p} \times K$$

Where:
- E_{tr} = energy consumption in watt-hours, as measured in Section 3.2.1.
- S_{p} = average number of times a self-cleaning operation of a conventional electric oven is used per year.
- K = 0.001 kWh/Wh conversion factor for watt-hours to kilowatt-hours.
4.1.2.5.1 Conventional electric oven energy consumption. Calculate the total annual energy consumption of a conventional electric oven, E_{AO}, expressed in kilowatt-hours (kJ) per year and defined as:

$$E_{AO} = E_{CO} + E_{SC} + E_{CL},$$

Where:

- E_{CO} = annual primary cooking energy consumption as determined in Section 4.1.2.1.1.
- E_{SC} = annual primary self-cleaning energy consumption as determined in Section 4.1.2.3.1.
- E_{CL} = annual clock energy consumption as determined in Section 4.1.2.4.

4.1.2.5.2 Conventional gas oven energy consumption. Calculate the total annual gas energy consumption of a conventional gas oven, E_{AOG}, expressed in Btu's (kJ) per year and defined as:

$$E_{AOG} = E_{CO} + E_{SC} + E_{PO},$$

Where:

- E_{CO} = annual primary cooking energy consumption as determined in Section 4.1.2.1.1.
- E_{PO} = annual pilot light energy consumption as determined in Section 4.1.2.2.
- E_{SC} = annual primary self-cleaning energy consumption as determined in Section 4.1.2.3.1.

If the conventional gas oven uses electrical energy, calculate the total annual electrical energy consumption, E_{AOE}, expressed in kilowatt-hours (kJ) per year and defined as:

$$E_{AOE} = E_{SO} + E_{SS} + E_{CL},$$

Where:

- E_{SO} = annual secondary cooking energy consumption as determined in Section 4.1.2.1.2.
- E_{SS} = annual secondary self-cleaning energy consumption as determined in Section 4.1.2.3.2.
- E_{CL} = annual clock energy consumption as determined in Section 4.1.2.4.

4.1.2.6. Total annual energy consumption of multiple conventional ovens. If the cooking appliance includes more than one conventional oven, calculate the total annual energy consumption of the conventional ovens using the following equations:

4.1.2.6.1 Conventional electric oven energy consumption. Calculate the total annual energy consumption, ETO, in kilowatt-hours (kJ) per year and defined as:

$$ETO = E_{ACO} + E_{ASC} + E_{CL},$$

Where:

- E_{ACO} = average annual primary energy consumption for cooking in Btu's (kJ) per year and is calculated as:

$$E_{ACO} = \frac{1}{n} \sum_{i=1}^{n} (E_{CO})_i,$$

Where:

- n = number of conventional ovens in the basic model.
- E_{CO} = annual primary energy consumption for cooking as determined in Section 4.1.2.1.1.

- E_{ASC} = average annual self-cleaning energy consumption, where:

$$E_{ASC} = \frac{1}{n} \sum_{i=1}^{n} (E_{SC})_i,$$

Where:

- n = number of self-cleaning conventional ovens in the basic model.
- E_{SC} = annual primary self-cleaning energy consumption as determined according to Section 4.1.2.3.1.
- E_{CL} = clock energy consumption as determined according to Section 4.1.2.4.

4.1.2.6.2 Conventional gas oven energy consumption. Calculate the total annual gas energy consumption, ETO, in Btu's (kJ) per year and defined as:

$$ETO = E_{ACO} + E_{ASC} + E_{TPO},$$

Where:

- E_{ACO} = average annual primary energy consumption for cooking in Btu's (kJ) per year and is calculated as:

$$E_{ACO} = \frac{1}{n} \sum_{i=1}^{n} (E_{CO})_i,$$

Where:

- n = number of conventional ovens in the basic model.
- E_{CO} = annual primary energy consumption for cooking as determined in Section 4.1.2.1.1.

and,

- E_{ASC} = average annual self-cleaning energy consumption in Btu's (kJ) per year and is calculated as:

$$E_{ASC} = \frac{1}{n} \sum_{i=1}^{n} (E_{SC})_i,$$

Where:

- n = number of self-cleaning conventional ovens in the basic model.
- E_{SC} = annual primary self-cleaning energy consumption as determined according to Section 4.1.2.3.1.

$$E_{TPO} = \sum_{i=1}^{n} (E_{PO})_i,$$

total energy consumption of any pilot lights, Where:

- E_{PO} = annual energy consumption of any continuously burning pilot lights determined according to Section 4.1.2.2.
n = number of pilot lights in the basic model.

If the oven also uses electrical energy, calculate the total annual electrical energy consumption, E_{TEO}, in kilowatt-hours (kJ) per year and defined as:

$$E_{TEO} = E_{ASo} + E_{AAS} + E_{CL}$$

Where:

$$E_{ASo} = \frac{1}{n} \sum_{i=1}^{n} (E_{SO})_{i}$$

is the average annual secondary energy consumption for cooking,

Where:

n=number of conventional ovens in the basic model.

$E_{SO}=$ annual secondary energy consumption for cooking of gas ovens as determined in Section 4.1.2.2.

$$E_{AAS} = \frac{1}{n} \sum_{i=1}^{n} (E_{SS})_{i}$$

is the average annual secondary self-cleaning energy consumption,

Where:

n=number of self-cleaning ovens in the basic model.

$E_{SS}=$ annual secondary self-cleaning energy consumption of gas ovens as determined in Section 4.1.2.3.

4.1.3 Conventional oven cooking efficiency.

4.1.3.1 Single conventional oven.

Calculate the conventional oven cooking efficiency, Eff_{AO}, using the following equations:

For electric ovens:

$$Eff_{AO} = \frac{W \times C_{p} \times T_{S}}{E_{O} \times K_{e}}$$

and,

For gas ovens:

$$Eff_{AO} = \frac{W \times C_{p} \times T_{S}}{E_{O} + (E_{IO} \times K_{e})}$$

Where:

$W =$ measured weight of test block in pounds (kg).

$C_{p} =$ 0.23 Btu/lb·°F (0.96 kJ/kg·°C), specific heat of test block.

$T_{S} =$ 21°F (10°C), temperature rise of test block.

$E_{O} =$ test energy consumption as measured in Section 3.2.1 or calculated in Section 4.1.1 or Section 4.1.11.

$K_{e} =$ 3.412 Btu/kWh (3.6 kJ/kWh), conversion factor for kilowatt-hours to Btu's.

$E_{IO} =$ electrical test energy consumption as determined according to Section 3.2.1 or as calculated in Section 3.2.1.

4.1.3.2 Multiple conventional ovens.

If the cooking appliance includes more than one conventional oven, calculate the cooking efficiency for all of the conventional ovens in the appliance, Eff_{TO}, using the following equation:

$$Eff_{TO} = \frac{\sum_{i=1}^{n} \left(\frac{1}{Eff_{AO}} \right)}{n}$$

Where:

n=number of conventional ovens in the cooking appliance.

$Eff_{AO} =$ cooking efficiency of each oven determined according to Section 4.1.3.

4.1.4 Conventional oven energy factor.

Calculate the energy factor, or the ratio of useful cooking energy output to the total energy input, R_{O}, using the following equations:

For electric ovens:

$$R_{O} = \frac{O_{O}}{E_{AOE}}$$

Where:

$O_{O} =$ 29.3 kWh (105,480 kJ) per year, annual useful cooking energy output.

$E_{AOE} =$ total annual electrical energy consumption for conventional gas ovens as determined in Section 4.1.2.5.2.

4.2 Conventional cooking top

4.2.1 Conventional cooking top cooking efficiency.

4.2.1.1 Electric surface unit cooking efficiency.

Calculate the cooking efficiency, Eff_{SU}, of the electric surface unit under test, defined as:

$$Eff_{SU} = \frac{W \times C_{p} \times \left(\frac{T_{SU}}{K_{e} \times E_{CT}} \right)}{E_{SU}}$$

Where:
Department of Energy

4.2.1.3 Conventional cooking top cooking efficiency. Calculate the conventional cooking top cooking efficiency, \(\text{Eff}_{CT} \), using the following equation:

\[
\text{Eff}_{CT} = \frac{1}{n} \sum_{i=1}^{n} \left(\text{Eff}_{SU} \right)
\]

Where:
- \(n \) = number of surface units in the cooking top
- \(\text{Eff}_{SU} \) = the efficiency of each of the surface units, as determined according to Section 4.2.1.1 or Section 4.2.1.2.

4.2.2 Conventional cooking top annual energy consumption. Calculate the annual energy consumption of a conventional gas cooking top, \(E_{CA} \), in kilowatt-hours (kWh) per year, defined as:

\[
E_{CA} = \frac{O_{CT}}{\text{Eff}_{CT}}
\]

Where:
- \(O_{CT} \) = 173.1 kWh (623,160 kJ) per year, annual useful cooking energy output.
- \(\text{Eff}_{CT} \) = conventional cooking top cooking efficiency as defined in Section 4.2.1.3.

4.2.2.2 Conventional gas cooking top annual energy consumption. Calculate the annual energy consumption of any continuously burning gas pilot lights of the cooking top, \(E_{CP} \), in Btu's (kJ) per year, defined as:

\[
E_{CP} = Q_{CP} \times t_{CP}
\]

Where:
- \(Q_{CP} \) = pilot light gas flow rate as measured in Section 3.2.2.1.
- \(t_{CP} \) = elapsed time of the cooking top pilot lights test as defined in Section 3.2.2.1.
- \(A = 8,760 \) hours, the total number of hours in a year.
- \(H \) = either \(H_a \) or \(H_r \), the heating value of the gas used in the test as specified in Section 2.2.2.2 and Section 2.2.2.3, expressed in Btu's per standard cubic foot (kJ/L) of gas.

4.2.2.3 Total annual energy consumption of a conventional gas cooking top. Calculate the
total annual energy consumption of a conventional gas cooking top, E_{CA}, in Btu's (kJ) per year, defined as:

$$E_{CA} = E_{CC} + E_{PC}.$$

Where:

- E_{CC} = energy consumption for cooking as determined according to Section 4.2.2.2.1.
- E_{PC} = annual energy consumption of the pilot lights as determined in Section 4.2.2.2.2.

4.2.3 Conventional cooking top energy factor.

Calculate the energy factor or ratio of useful cooking energy output to total energy input, R_{CT}, as follows:

For an electric cooking top, the energy factor is the same as the cooking efficiency as determined according to Section 4.2.1.3.

For gas cooking tops,

$$R_{CT} = \frac{O_{CT}}{E_{CA}}.$$

Where:

- O_{CT} = 527.6 kBTu (556,618 kJ) per year, annual useful cooking energy output of cooking top.
- E_{CA} = total annual energy consumption of cooking top determined according to Section 4.2.2.2.3.

4.3 Combined components. The annual energy consumption of a kitchen range, e.g., a cooktop and oven combined, shall be the sum of the annual energy consumption of each of its components. The annual energy consumption for other combinations of ovens, cooktops and microwaves will also be treated as the sum of the annual energy consumption of each of its components. The energy factor of a combined component is the sum of the annual useful cooking energy output of each component divided by the sum of the total annual energy consumption of each component.

4.4 Microwave oven.

4.4.1 Microwave oven test energy output. Calculate the microwave oven test energy output, E_T, in watt-hour's (kJ). The calculation is repeated two or three times as required in section 3.2.3. The average of the E_T's is used for a calculation in section 4.4.3. For calculations specified in units of energy (watt-hours (kJ)), use the equation below:

$$E_T = \frac{C_p M_W (T_2 - T_1) + C_v M_v (T_2 - T_0)}{K_e}.$$

Where:

- M_W = the measured mass of the test water load, in pounds (g).
- M_v = the measured mass of the test container before filling with test water load, in pounds (g).
- T_1 = the initial test water load temperature, in °F (°C).
- T_2 = the final test water load temperature, in °F (°C).

T_0 is the measured ambient room temperature, in °F (°C).

$C_p = 0.210$ Btu/lb °F (0.88 kJ/kg °C), specific heat of test container.

$C_v = 1.0$ Btu/lb °F (4.187 kJ/kg °C), specific heat of water.

$K_e = 3.412$ Btu/kWh (3.600 kJ/kWh) conversion factor of kilowatt-hours to Btu's.

4.4.2 Microwave oven test power output. Calculate the microwave oven test power output, P_T, in watts (J/s) as specified in Section four, paragraph 12.5 of IEC 705 Amendment 2 See Section 430.22. The calculation is repeated for each test as required in section 3.2.3. The average of the two or three P_T's is used for calculations in section 4.4.4. (See 10 CFR 430.22)

4.4.3 Microwave oven annual energy consumption. Calculate the microwave oven annual energy consumption, E_{MO}, in KWh's per year, defined as:

$$E_{MO} = \frac{E_M \times O_M}{E_T}.$$

Where:

- E_M = the energy consumption as defined in Section 3.2.3.
- O_M = 79.8 kWh (287,280 kJ) per year, the microwave oven annual useful cooking energy output.
- E_T = the test energy as calculated in Section 4.4.1.

4.4.4 Microwave oven cooking efficiency. Calculate the microwave oven cooking efficiency, EffMO, as specified in Section four, paragraph 14 of IEC 705.

4.4.5 Microwave oven energy factor. Calculate the microwave oven energy factor or the ratio of the useful cooking energy output to total energy input on a yearly basis, R_{MO}, defined as:

$$R_{MO} = \frac{O_M}{E_{MO}}.$$

Where:

- O_M = 79.8 kWh (287,280 kJ) per year, annual useful cooking energy output.
- E_{MO} = annual total energy consumption as determined in Section 4.4.3.

APPENDIX J TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF AUTOMATIC AND SEMI-AUTOMATIC CLOTHES WASHERS

The procedures and calculations in sections 3.3, 4.3 and 4.4 of this Appendix need not be performed to determine compliance.
with the energy conservation standards for clothes washers.

1. DEFINITIONS

1.1 Adaptive control system means a clothes washer control system, other than an adaptive water fill control system, which is capable of automatically adjusting washer operation or washing conditions based on characteristics of the clothes load placed in the clothes container, without allowing or requiring consumer intervention or actions. The automatic adjustments may, for example, include automatic selection, modification, or control of any of the following: wash water temperature, agitation or tumble cycle time, number of rinse cycles, and spin speed. The characteristics of the clothes load, which could trigger such adjustments, could, for example, consist of or be indicated by the presence of either soil, soap, suds, or any other additive laundering substitute or complementary product.

NOTE: Appendix J does not provide a means for determining the energy consumption of a clothes washer with an adaptive control system. Therefore, pursuant to 10 CFR 430.27, a waiver must be obtained to establish an acceptable test procedure for each such clothes washer.

1.2 Adaptive water fill control system means a clothes washer water fill control system which is capable of automatically adjusting the water fill level based on the size or weight of the clothes load placed in the clothes container, without allowing or requiring consumer intervention and/or actions.

1.3 Bone-dry means a condition of a load of test cloth which has been dried in a dryer at maximum temperature for a minimum of 10 minutes, removed and weighed before cool down, and then dried again for 10-minute periods until the final weight change of the load is 1 percent or less.

1.4 Clothes container means the compartment within the clothes washer that holds the clothes during operation of the machine.

1.5 Compact means a clothes washer which has a clothes container capacity of less than 1.6 ft³ (45 L).

1.6 Deep rinse cycle means a rinse cycle in which the clothes container is filled with water to a selected level and the clothes load is rinsed by agitating it or tumbling it through the water.

1.7 Front-loader clothes washer means a clothes washer which sequentially rotates or tumbles portions of the clothes load above the water level allowing the clothes load to fall freely back into the water. The principal axis of the clothes container is in a horizontal plane and the access to the clothes container is through the front of the machine.

1.8 Lockout means that at least one wash/rinse water temperature combination is not available in the normal cycle that is available in another cycle on the machine.

1.9 Make-up water means the amount of fresh water needed to supplement the amount of stored water pumped from the external laundry tub back into the clothes washer when the suds-return feature is activated in order to achieve the required water fill level in the clothes washer.

1.10 Modified energy factor means the quotient of the cubic foot (or liter) capacity of the clothes container divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, the hot water energy consumption, and the energy required for removal of the remaining moisture in the wash load.

1.11 Most energy intensive cycle means the non-normal cycle that uses the most energy for a given wash/rinse temperature combination.

1.12 Non-normal cycle means a cycle other than the normal cycle, but does not include any manually selected pre-wash, pre-soak, and extra-rinse option.

1.13 Non-water-heating clothes washer means a clothes washer which does not have an internal water heating device to generate hot water.

1.14 Normal cycle means the cycle recommended by the manufacturer for washing cotton and/or linen clothes.

1.15 Sensor filled means a water fill control which automatically terminates the fill when the water reaches an appropriate level in the tub.

1.16 Spray rinse cycle means a rinse cycle in which water is sprayed onto the clothes load for a definite period of time without maintaining any specific water level in the clothes container.

1.17 Standard means a clothes washer which has a clothes container capacity of 16 ft³ (45 L) or greater.

1.18 Suds-return means a feature or option on a clothes washer which causes the stored wash water obtained by utilizing the suds-saver feature to be pumped from the external laundry tub back into the clothes washer.

1.19 Suds-saver means a feature or option on a clothes washer which allows the user to store used wash water in an external laundry tub for use with subsequent wash loads.

1.20 Temperature use factor means the percentage of the total number of washes a user would wash with a particular wash/rinse temperature setting.

1.21 Thermostatically controlled water valves means clothes washer controls that have the ability to sense and adjust the hot and cold supply water.
1.22 Time filled means a water fill control which uses a combination of water flow controls in conjunction with time to terminate the water fill cycle.

1.23 Top-loader-horizontal-axis clothes washer means a clothes washer which: rotates or tumbles portions of the clothes load above the water level allowing the clothes load to fall freely back into the water with the principal axis in a vertical plane; or other movement; has a clothes container with access to the clothes container through the top of the clothes washer.

1.24 Top-loader-vertical-axis clothes washer means a clothes washer that: flexes and oscillates the submerged clothes load through means a clothes washer that: flexes and oscillates the submerged clothes load through the water fill cycle.

1.25 Water consumption factor means the quotient of the total weighted per-cycle water consumption divided by the capacity of the clothes washer.

1.26 Water-heating clothes washer means a clothes washer where some or all of the hot water for clothes washing is generated by a water heating device internal to the clothes washer.

2. TESTING CONDITIONS

2.1 Installation. Install the clothes washer in accordance with manufacturer’s instructions.

2.2 Electrical energy supply. Maintain the electrical supply at the clothes washer terminal block within 2 percent of 120, 120/240 or 120/208Y volts as applicable to the particular terminal block wiring system as specified by the manufacturer. If the clothes washer has a dual voltage conversion capability, the clothes washer may be supplied with 120 or 240 volts as appropriate:

- 120 volts: 120/208Y volts
- 240 volts: 120/240Y volts

2.3 Supply water. For nonwater-heating clothes washers not equipped with thermostatically controlled water valves, the temperature of the hot and cold water supply shall be maintained at 100°F ±10°F (37.8°C ±5.6°C). For water-heating clothes washers, the temperature of the hot water supply shall be maintained at 140°F ±5°F (60.0°C ±2.8°C). The cold water supply shall be maintained at 60°F ±5°F (15.6°C ±2.8°C).

2.4 Water pressure. The static water pressure for a single water inlet connection shall be maintained during the test at 35 psi ±2.5 psi (241.3 kPa ±17.2 kPa). Water pressure gauges shall be installed in both the hot and cold water lines to measure water pressure.

2.5 Instrumentation. Perform all test measurements using the following instruments, as appropriate:

- 2.5.1 Weighing scales.
- 2.5.2 Water pressure gauge. The water pressure gauge shall have a resolution no greater than 2 percent for all water flow rates from 1 gal/min (3.8 L/min) to 5 gal/min (18.9 L/min).

2.6 Test cloths.

2.6.1 Energy test cloth. The energy test cloth shall be clean and consist of the following:

- Pure finished bleached cloth, made with a momie or granite weave, which is 50 percent cotton and 50 percent polyester and weighs 5.75 oz/yd2 (195.0 g/m2) and has 65 ends on the warp and 57 picks on the fill.

- Cloth material that is 24 in by 36 in (61.0 cm by 91.4 cm) and has been hemmed to 22 in by 34 in (55.9 cm by 86.4 cm) before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width.

- The number of test runs on the same energy test cloth shall not exceed 25 runs.

- Energy stuffer cloths. The energy stuffer clothes shall be made from energy test cloth material and shall consist of pieces of material that are 12 in by 12 in (30.5 cm by 30.5 cm) and have been hemmed to 10 in by 10 in (25.4 cm by 25.4 cm) before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width. The number of test runs on the same energy stuffer cloth shall not exceed 25 runs.
2.7 Composition of test loads.

2.7.1 Seven pound test load. The seven pound test load shall consist of bone-dry energy test cloths which weigh 7 lbs ±0.07 lbs (3.18 kg ±0.03 kg). Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths.

2.7.2 Three pound test load. The three pound test load shall consist of bone-dry energy test cloths which weigh 3 lbs ±0.03 lbs (1.36 kg ±0.014 kg). Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths.

2.8 Use of test loads.

2.8.1 For a standard size clothes washer, a seven pound load, as described in section 2.7.1, shall be used to test the maximum water fill and a three pound test load, as described in section 2.7.2, shall be used to test the minimum water fill.

2.8.2 For a compact size clothes washer, a three pound test load as described in section 2.7.2 shall be used to test the maximum and minimum water fill levels.

2.8.3 A vertical-axis clothes washer without adaptive water fill control system also shall be tested without a test load for purposes of calculating the energy factor.

2.8.4 The test load sizes to be used to measure remaining moisture content (RMC) are specified in section 3.3.2.

2.8.5 Load the energy test cloths by grasping them in the center, shaking them to hang loosely and then dropping them into the clothes container prior to activating the clothes washer.

2.9 Preconditioning. If the clothes washer has not been filled with water in the preceding 96 hours, pre-condition it by running it through a cold rinse cycle and then draining it to ensure that the hose, pump, and sump are filled with water.

2.10 Wash time setting. The actual wash time (period of agitation) shall be not less than 9.75 minutes.

2.11 Agitation and spin speed settings. Where controls are provided for agitation and spin speed selections, set them as follows:

2.11.1 For energy and water consumption tests, set at the normal cycle settings. If settings at the normal cycle are not offered, set the control settings to the maximum levels permitted on the clothes washer.

2.11.2 For remaining moisture content tests, see section 3.

3. TEST MEASUREMENTS

3.1 Clothes container capacity. Measure the entire volume which a dry clothes load could occupy within the cloth container during washer operation according to sections 3.1.1 through 3.1.5.

3.1.1 Place the clothes washer in such a position that the uppermost edge of the clothes container opening is leveled horizontally, so that the container will hold the maximum amount of water.

3.1.2 Line the inside of the clothes container with 2 mil (0.051 mm) plastic sheet. All clothes washer components which occupy space within the clothes container and which are recommended for use with the energy test cycle shall be in place and shall be lined with 2 mil (0.051 mm) plastic sheet to prevent water from entering any void space.

3.1.3 Record the total weight of the machine before adding water.

3.1.4 Fill the clothes container manually with either 60°F ±5°F (15.6°C ±2.8°C) or 100°F ±10°F (37.8°C ±5.5°C) water to its uppermost edge. Measure and record the weight of water, W, in pounds.

3.1.5 The clothes container capacity is calculated as follows:

\[C = \frac{W}{d} \]

where:
- \(C \) = Capacity in cubic feet (or liters).
- \(W \) = Mass of water in pounds (or kilograms).
- \(d \) = Density of water (62.0 lbs/ft³ for 100°F (993 kglm⁻¹ for 37.8°C) or 62.3 lbs/ft³ for 60°F (996 kglm⁻¹ for 15.6°C)).

3.2 Test cycle. Establish the test conditions set forth in section 2 of this Appendix.

3.2.1 A clothes washer that has infinite temperature selections shall be tested at the following temperature settings: highest setting available on the machine, hot (a minimum of 140°F (60.0°C) and a maximum of 145°F (62.8°C)), warm (a minimum of 100°F (37.8°C) and a maximum of 105°F (40.6°C)), and coldest setting available on the machine. These temperatures must be confirmed by measurement using a temperature measuring device. If the measured final water temperature is not within the specified range, stop testing, adjust the temperature selector accordingly, and repeat the procedure.

3.2.2 Clothes washers with adaptive water fill control system and/or unique temperature selections.

3.2.2.1 Clothes washers with adaptive water fill control system. When testing a clothes washer that has adaptive water fill control, the maximum and the minimum test loads as specified in 2.8.1 and 2.8.2 shall be used. The amount of water fill shall be determined by the control system. If the clothes washer provides consumer selection of variable water fill amounts for the adaptive water fill control system, two complete sets of tests shall be conducted. The first set of tests shall be conducted with the adaptive water fill control system set in the setting that will use the greatest amount of energy. The second set of tests shall be conducted with the adaptive water fill control system set in the setting that will use the smallest amount of energy. Then, the results from these two tests shall be averaged to determine the adaptive water fill energy consumption value. If a clothes washer with an
adaptive water fill control system allows consumer selection of manual controls as an alternative, both the manual and adaptive modes shall be tested and the energy consumption values, \(E_m \), \(M_m \), and \(D_m \) (if desired), calculated in section 4 for each mode, shall be averaged between the manual and adaptive modes.

3.2.2.2 Clothes washers with multiple warm wash temperature combination selections.

3.2.2.2.1 If a clothes washer’s temperature combination selections are such that the temperature of each warm wash setting that is above the mean warm wash temperature (the mean temperature of the coldest and warmest warm settings) is matched by a warm wash setting that is an equal distance below the mean, then the energy test shall be conducted at the mean warm wash temperature if such a selection is provided, or if there is no position on the control that permits selection of the mean temperature, the energy test shall be conducted with the temperature selection set at the next hotter temperature setting that is available above the mean.

3.2.2.2.2 If the multiple warm wash temperature combination selections do not meet criteria in section 3.2.2.1, the energy test shall be conducted with the temperature selection set at the warmest wash temperature setting that gives the next higher water temperature than the mean temperature of the coldest and warmest warm settings.

3.2.2.3 Clothes washers with multiple temperature settings within a temperature combination selection. When a clothes washer is provided with a secondary control that can modify the wash or rinse temperature within a temperature combination selection, the secondary control shall be set to provide the hottest wash temperature available and the hottest rinse temperature available. For instance, when the temperature combination selection is set for the middle warm wash temperature and a secondary control exists which allows this temperature to be increased or decreased, the secondary control shall be set to provide the hottest warm wash temperature available for the middle warm wash setting.

3.2.3 Clothes washers that do not lockout any wash/rinse temperature combinations in the normal cycle. Test in the normal cycle all temperature combination selections that are required to be tested.

3.2.3.1 Hot water consumption, cold water consumption, and electrical energy consumption at maximum fill. Set the water level selector at maximum fill available on the clothes washer, if manually controlled, and insert the appropriate test load, if applicable. Activate the normal cycle of the clothes washer and also any suds-saver switch.

3.2.3.1.1 For automatic clothes washers, set the wash/rinse temperature selector to the hottest temperature combination setting. For semi-automatic clothes washers, open the hot water faucet valve completely and close the cold water faucet valve completely to achieve the hottest temperature combination setting.

3.2.3.1.2 Measure the electrical energy consumption of the clothes washer for the complete cycle.

3.2.3.1.3 Measure the respective number of gallons (or liters) of hot and cold water used to fill the tub for the wash cycle.

3.2.3.1.4 Measure the respective number of gallons (or liters) of hot and cold water used for all rinse cycles.

3.2.3.1.5 Measure the respective gallons (or liters) of hot and cold water used for all spray rinse cycles.

3.2.3.1.6 For non-water-heating automatic clothes washers, repeat sections 3.2.3.1.3 through 3.2.3.1.5 for each of the other wash/rinse temperature selections available that uses heated water and is required to be tested. For water-heating clothes washers, repeat sections 3.2.3.1.2 through 3.2.3.1.5 for each of the other wash/rinse temperature selections available that uses heated water and is required to be tested. (When calculating water consumption under section 4.3 for any machine covered by the previous two sentences, also test the cold wash/cold rinse selection.) For semi-automatic clothes washers, repeat sections 3.2.3.1.3 through 3.2.3.1.5 for the other wash/rinse temperature settings in section 6 with the following water faucet valve adjustments:

<table>
<thead>
<tr>
<th>Faucet position</th>
<th>Hot valve</th>
<th>Cold valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot</td>
<td>Completely open</td>
<td>Closed</td>
</tr>
<tr>
<td>Warm</td>
<td>Completely open</td>
<td>Completely open</td>
</tr>
<tr>
<td>Cold</td>
<td>Closed</td>
<td>Completely open</td>
</tr>
</tbody>
</table>

3.2.3.1.7 If the clothes washer is equipped with a suds-saver cycle, repeat sections 3.2.3.1.2 to 3.2.3.1.5 with suds-saver switch set to suds return for the Warm/Cold temperature setting.

3.2.3.2 Hot water consumption, cold water consumption, and electrical energy consumption with the water level selector at minimum fill. Set the water level selector at minimum fill, if manually controlled, and insert the appropriate test load, if applicable. Activate the
normal cycle of the clothes washer and also any suds-saver switch. Repeat sections 3.2.3.1.1 through 3.2.3.1.7.

3.2.3.3 Hot and cold water consumption for clothes washers that incorporate a partial fill during the rinse cycle. For clothes washers that incorporate a partial fill during the rinse cycle, activate any suds-saver switch and operate the clothes washer for the complete normal cycle at both the maximum water fill level and the minimum water fill level for each of the wash/rinse temperature selections available. Measure the respective hot and cold water consumed during the complete normal cycle.

3.2.4 Clothes washers that lockout any wash/rinse temperature combinations in the normal cycle. In addition to the normal cycle tests in section 3.2.3, perform the following tests on non-normal cycles for each wash/rinse temperature combination selection that is locked out in the normal cycle.

3.2.4.1 Set the cycle selector to a non-normal cycle which has the wash/rinse temperature combination selection that is locked out. Set the water level selector at maximum fill and insert the appropriate test load, if applicable. Activate the cycle of the clothes washer and also any suds-saver switch. Set the wash/rinse temperature selector to the temperature combination setting that is locked out in the normal cycle.

3.2.4.2 Repeat section 3.2.4.1 under the same temperature combination setting for all other untested non-normal cycles on the machine that have the wash/rinse temperature combination selection that is locked out.

3.2.4.3 Total the measured hot water consumption of the wash, deep rinse, and spray rinse of each non-normal cycle tested in sections 3.2.4.1 through 3.2.4.2 and compare the total for each cycle. The cycle that has the highest hot water consumption shall be the most energy intensive cycle, as determined in section 3.2.4.3, of the clothes washer and also any suds-saver switch. Repeat tests as described in section 3.2.4.3 of the clothes washer and also any suds-saver switch. Repeat tests as described in section 3.2.4.3.

3.2.4.4 Set the water level selector at minimum fill and insert the appropriate test load, if applicable. Activate the most energy intensive cycle, as determined in section 3.2.4.1.

3.3 Remaining Moisture Content (RMC).

3.3.1 Record the actual bone dry weight of the test load (WI), expressed as a percentage and defined as:

$$RMC = \frac{(WC - WI)}{WI} \times 100\%$$

3.3.2 Determine the test load as shown in the following table:

<table>
<thead>
<tr>
<th>Container volume (cu. ft.)</th>
<th>Test load (liter)</th>
<th>Test load (lb)</th>
<th>Test load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.80</td>
<td>0-22.7</td>
<td>3.00</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Notes:
(1) All test load weights are bone dry weights.
(2) Allowable tolerance on the test load weights are +/- 0.10 lbs (0.05 kg).

3.3.3 For clothes washers with cold rinse only.

3.3.3.1 Record the actual bone dry weight of the test load (WI), then place the test load in the clothes washer.

3.3.3.2 Set water level selector to maximum fill.

3.3.3.3 Run the normal cycle.

3.3.3.4 Record the weight of the test load immediately after completion of the normal cycle (WC).

3.3.3.5 Calculate the remaining moisture content of the test load, RMC, expressed as a percentage and defined as:

$$RMC_{COLD} = \frac{(WC - WI)}{WI} \times 100\%$$

3.3.4 For clothes washers with cold and warm rinse options.

3.3.4.1 Complete steps 3.3.3.1 through 3.3.4.4 for the cold rinse. Calculate the remaining moisture content of the test load for cold rinse, RMC_{COLD}, expressed as a percentage and defined as:

$$RMC_{COLD} = \frac{(WC - WI)}{WI} \times 100\%$$

3.3.4.2 Complete steps 3.3.3.1 through 3.3.4.4 for the warm rinse. Calculate the remaining moisture content of the test load for warm rinse, RMC_{WARM}, expressed as a percentage and defined as:

$$RMC_{WARM} = \frac{(WC - WI)}{WI} \times 100\%$$
3.3.4.3 Calculate the remaining moisture content of the test load, RMC, expressed as a percentage and defined as:

\[RMC = 0.73 \times RMC_{\text{COLD}} + 0.27 \times RMC_{\text{WARM}} \]

3.3.5 Clothes washers which have options that result in different RMC values, such as multiple selection of spin speeds or spin times that are available in the normal cycle, shall be tested at the maximum and minimum settings of the available options, excluding any “no spin” (zero spin speed) settings, in accordance with requirements in 3.3.3 or 3.3.4. The calculated \(RMC_{\text{max extraction}} \) and \(RMC_{\text{min extraction}} \) at the maximum and minimum settings, respectively, shall be combined as follows and the final RMC to be used in section 4.2 shall be:

\[RMC = 0.75 \times RMC_{\text{max extraction}} + 0.25 \times RMC_{\text{min extraction}} \]

3.4 Data recording. Record for each test cycle in sections 3.2.1 through 3.3.5.

3.4.1 For non-water-heating clothes washers, record the kilowatt-hours of electrical energy, \(M_E \), consumed during the test to operate the clothes washer in section 3.2.3.1.2. For water-heating clothes washers record the kilowatt-hours of electrical energy, \(E_h \), consumed at maximum fill in sections 3.2.3.1.2 and 3.2.3.1.6, and \(E_h \) consumed at minimum fill in section 3.2.3.2.

3.4.2 Record the individual gallons (or liters) of hot and cold water consumption, \(V_h \) and \(V_c \), measured at maximum fill level for each wash/rinse temperature combination setting tested in section 3.2.3 or in both 3.2.3 and 3.2.4, excluding any fresh make-up water required to complete the fill during a suds-return cycle.

3.4.3 Record the individual gallons (or liters) of hot and cold water, \(S_h \) and \(S_c \), measured at maximum fill for the suds-return cycle.

3.4.4 Record the individual gallons (or liters) of hot and cold water, \(S_h \) and \(S_c \), measured at minimum fill for the suds-return cycle.

3.4.5 Record the individual gallons (or liters) of hot and cold water, \(S_h \) and \(S_c \), measured at maximum fill for the suds-return cycle.

3.4.6 Data recording requirements for RMC tests are listed in sections 3.3.3 through 3.3.5.

4. CALCULATION OF DERIVED RESULTS FROM TEST MEASUREMENTS

4.1 Energy consumption.

4.1.1 Per-cycle temperature-weighted hot water consumption for maximum and minimum water fill levels. Calculate for the cycle under test the per-cycle temperature weighted hot water consumption for the maximum water fill level, \(V_{h_{\text{max}}} \), and for the minimum water fill level, \(V_{h_{\text{min}}} \), expressed in gallons per cycle (or liters per cycle) and defined as:

\[
V_{h_{\text{max}}} = X_1 \sum_{i=1}^{A} [(V_{h_i} \times L) \times TUF_i] + X_2 [TUF_W \times S_{h_{\text{H}}}] \\
V_{h_{\text{min}}} = X_1 \sum_{j=1}^{B} [(V_{h_j} \times L) \times TUF_j] + X_2 [TUF_W \times S_{h_{\text{L}}}]
\]

where:

- \(V_{h_i} \) = reported hot water consumption in gallons per cycle (or liters per cycle) at maximum fill for each wash/rinse temperature combination setting, as provided in section 3.4.2. If a clothes washer is equipped with two or more different wash/rinse temperature selections that have the same basic temperature combination selection label (for example, one of them has its water temperature controlled by thermostatically controlled valves and the other one does not), then the largest \(V_{h_i} \) shall be used for this calculation. If a clothes washer has lock-out(s), there will be “\(V_{h_i}'s\)” for wash/rinse temperature combination settings available in the normal cycle and “\(V_{h_i}'s\)”
Department of Energy

for wash/rinse temperature combination settings in the most energy intensive cycle.

\[V_h = \text{reported hot water consumption in gallons per cycle (or liters per cycle) at minimum fill for each wash/rinse temperature combination setting}, \]

as provided in section 3.4.3. If a clothes washer is equipped with two or more different wash/rinse temperature selections that have the same basic temperature combination selection label (for example, one of them has its water temperature controlled by thermostatically controlled valves and the other one does not), then the largest \(V_h \) shall be used for the calculation. If a clothes washer has lockouts, there will be “\(V_h \)’s” for wash/rinse temperature combination settings available in the normal cycle and “\(V_h \)’s” for wash/rinse temperature combination settings in the most energy intensive cycle.

\[L = \text{lockout factor to be applied to the reported hot water consumption. For wash/rinse temperature combination settings that are not locked out in the normal cycle, } L = 1. \]

For each wash/rinse temperature combination setting that is locked out in the normal cycle, \(L = 0.32 \) in the normal cycle and \(L = 0.68 \) in the most energy intensive cycle.

\[\text{TUF} = \text{applicable temperature use factor in section 5 or 6.} \]

\[\text{TUF}_n = \text{applicable temperature use factor in section 5 or 6.} \]

\[n = \text{number of wash/rinse temperature combination settings available to the user for the clothes washer under test. For clothes washers that lockout temperature selections in the normal cycle, } n = \text{the number of wash/rinse temperature combination settings on the washers plus the number of wash/} \]

\[\text{rinse temperature combination settings that lockout the temperature selections in the normal cycle.} \]

\[\text{TUF}_n = \text{temperature use factor for warm wash setting.} \]

For clothes washers equipped with the suds-saver feature:

\[X_1 = \text{frequency of use without the suds-saver feature}=0.86 \]

\[X_2 = \text{frequency of use with the suds-saver feature}=0.14 \]

\[\text{Sh}_{\text{max}} = \text{fresh make-up water measured during suds-return cycle at maximum water fill level.} \]

\[\text{Sh}_{\text{max}} = \text{fresh hot make-up water measured during suds-return cycle at minimum water fill level.} \]

For clothes washers not equipped with the suds-saver feature:

\[X_1 = 1.0 \]

\[X_2 = 0.0 \]

4.1.2 Total per-cycle hot water energy consumption for maximum and minimum water fill levels. Calculate the total per-cycle hot water energy consumption for the maximum water fill level, \(E_{\text{max}} \) and for the minimum water fill level, \(E_{\text{min}} \), expressed in kilowatt-hours per cycle and defined as:

\[E_{\text{max}} = [Vh_{\text{max}} \times T \times \text{K} \times \text{MF}] \]

\[E_{\text{min}} = [Vh_{\text{min}} \times T \times \text{K} \times \text{MF}] \]

where:

\[T = \text{temperature rise}=90^\circ \text{F (50}^\circ \text{C).} \]

\[\text{K} = \text{water specific heat}=0.00240 \text{kWh} / (\text{gal} \cdot ^\circ \text{F}) \]

\[[0.00114 \text{kWh} / (\text{L} \cdot ^\circ \text{C})]. \]

\[Vh_{\text{max}} = \text{as defined in section 4.1.1.} \]

\[Vh_{\text{min}} = \text{as defined in section 4.1.1.} \]

\[\text{MF} = \text{multiplying factor to account for absence of test load}=0.94 \text{for top-loader} \]

\[\text{vertical axis clothes washers that are sensor filled}, \text{1.0 for all other clothes washers.} \]

4.1.3 Total weighted per-cycle hot water energy consumption expressed in kilowatt-hours. Calculate the total weighted per-cycle hot water energy consumption, \(E_T \), expressed in kilowatt-hours per cycle and defined as:

\[E_T = [E_{\text{max}} \times \text{F}_{\text{max}}] + [E_{\text{min}} \times \text{F}_{\text{min}}] \]

where:

\[\text{F}_{\text{max}} = \text{usage fill factor}=0.72 \]

\[\text{F}_{\text{min}} = \text{usage fill factor}=0.28 \]

\[E_{\text{max}} = \text{as defined in section 4.1.2.} \]

\[E_{\text{min}} = \text{as defined in section 4.1.2.} \]

4.1.4 Per-cycle water energy consumption using gas-heated or oil-heated water. Calculate for the normal cycle the per-cycle energy consumption, \(E_{\text{TG}} \), using gas-heated or oil-heated water, expressed in Btu per cycle (or megajoules per cycle) and defined as:

\[E_{\text{TG}} = E_T \times \frac{1}{e} \times \left[\frac{3412 \text{ Btu}}{\text{kWh}} \right] \]

or

\[E_{\text{TG}} = E_T \times \frac{1}{e} \times \left[3.6 \text{ MJ} / \text{kWh} \right] \]

where:

\[e = \text{nominal gas or oil water heater efficiency}=0.75 \]

\[E_T = \text{as defined in section 4.1.3.} \]

4.1.5 Per-cycle machine electrical energy consumption.

4.1.5.1 Non-water-heating clothes washers. The electrical energy value recorded for the maximum fill in section 3.4.1 is the per-cycle
machine electrical energy consumption, M_{E}, expressed in kilowatt-hours per cycle.

4.1.5.2 Water-heating clothes washers.

4.1.5.2.1 Calculate for the cycle under test the per-cycle temperature weighted electrical energy consumption for the maximum water fill level, $E_{h_{\text{max}}}$, and for the minimum water fill level, $E_{h_{\text{min}}}$, expressed in kilowatt-hours per cycle and defined as:

$$E_{h_{\text{max}}} = \sum_{i=1}^{n} [E_{h_{i}} \times TUF_{i}]$$

where:

- $E_{h_{i}}$ = reported electrical energy consumption in kilowatt-hours per cycle at maximum fill for each wash/cycle temperature combination setting, as provided in section 3.4.1.
- TUF_{i} = applicable temperature use factor in section 5 or 6.
- n = number of wash/rinse temperature combination settings available to the user for the clothes washer under test.

and

$$E_{h_{\text{min}}} = \sum_{j=1}^{n} [E_{h_{j}} \times TUF_{j}]$$

where:

- $E_{h_{j}}$ = reported electrical energy consumption in kilowatt-hours per cycle at minimum fill for each wash/rinse temperature combination setting, as provided in section 3.4.1.
- TUF_{j} = applicable temperature use factor in section 5 or 6.
- n = as defined above in this section.

4.1.5.2.2 Weighted per-cycle machine electrical energy consumption. Calculate the weighted per cycle machine energy consumption, M_{E}, expressed in kilowatt-hours per cycle and defined as:

$$M_{E} = \{E_{h_{\text{max}} \times F_{\text{max}}} + \{E_{h_{\text{min}} \times F_{\text{min}}}}$$

where:

- F_{max} = as defined in section 4.1.3.
- F_{min} = as defined in section 4.1.3.
- $E_{h_{\text{max}}}$ = as defined in section 4.1.5.2.1.
- $E_{h_{\text{min}}}$ = as defined in section 4.1.5.2.1.

4.1.6 Total per-cycle energy consumption when electrically heated water is used. Calculate for the normal cycle the total per-cycle energy consumption, E_{T}, using electrically heated water, expressed in kilowatt-hours per cycle and defined as:

$$E_{T} = E_{T_{E}} + M_{E}$$

where:

- $E_{T_{E}}$ = as defined in section 4.1.1 or 4.1.5.2.2.
- M_{E} = as defined in section 4.1.5.1 or 4.1.5.2.2.

4.2 Per-cycle energy consumption for removal of RMC. Calculate the amount of energy per cycle required to remove RMC. Such amount is D_{E}, expressed in kilowatt-hours per cycle and defined as:

$$D_{E} = (LAF \times (\text{test load weight}) \times (RMC - 4\%) \times (DEF \times (DUF))$$

where:

- LAF = load adjustment factor = 0.52.
- Test load weight = as shown in test load table in 3.3.2 expressed in lbs/cycle.
- RMC = as defined in 3.3.3.5, 3.3.4.3, or 3.3.5.
- DEF = nominal energy required for a clothes dryer to remove moisture from clothes = 0.5 kWh/lb (1.1 kWh/kg).
- DUF = dryer usage factor, percentage of washer loads dried in a clothes dryer = 0.84.

4.3 Water consumption.

4.3.1 Per-cycle temperature-weighted water consumption for maximum and minimum water fill levels. To determine these amounts, calculate for the cycle under test the per-cycle temperature-weighted total water consumption for the maximum water fill level, Q_{max}, and for the minimum water fill level, Q_{min}, expressed in gallons per cycle (or liters per cycle) and defined as:

$$Q_{\text{max}} = X_{1} \sum_{i=1}^{n} [(V_{h_{i}} + V_{c_{i}}) \times TUF_{i}] + X_{2} [TUF_{w} \times (S_{h} + S_{c})]$$

where:

- $V_{h_{i}}$ = hot water consumption in gallons per cycle at maximum fill for each wash/rinse temperature combination setting, as provided in section 3.4.2.
- $V_{c_{i}}$ = total cold water consumption in gallons per cycle at maximum fill for each wash/rinse temperature combination setting, cold wash/cold rinse cycle, as provided in section 3.4.2.
- TUF_{i} = applicable temperature use factor in section 5 or 6.
- n = number of wash/rinse temperature combination settings available to the user for the clothes washer under test.
- TUF_{w} = temperature use factor for warm wash setting.
- X_{1} = frequency of use without suds-saver feature = 0.86.
- X_{2} = frequency of use with suds-saver feature = 0.14.
Sh_m=fresh hot water make-up measured during suds-return cycle at maximum water fill level.
Sc_m=fresh cold water make-up measured during suds-return cycle at maximum water fill level.

\[
Q_{\text{min}} = X_1 \sum_{j=1}^n \left[(V_{h_j} + V_{c_j}) \times TUF_j \right] + X_2 \left[TUF \times (S_{h_L} + S_{c_L}) \right]
\]

where:
V_{h_j}=hot water consumption in gallons per cycle (or liters per cycle) at minimum fill for each wash/rinse temperature combination setting, as provided in section 3.4.3.
V_{c_j}=cold water consumption in gallons per cycle (or liters per cycle) at minimum fill for each wash/rinse temperature combination setting, cold wash/cold rinse cycle, as provided in section 3.4.3.
TUF_w=applicable temperature use factor in section 5 or 6.
Sh_m=fresh hot make-up water measured during suds-return cycle at minimum water fill level.
Sc_m=fresh cold make-up water measured during suds-return cycle at minimum water fill level.

MEF = \frac{C}{(M_E + E_T + D_E)}

where:
C=as defined in section 3.1.5.
M_E=as defined in section 4.1.5.1 or 4.1.5.2.2.
E_T=as defined in section 4.1.3.
D_E=as defined in section 4.2.

For clothes washers not equipped with suds-saver feature:
\[X_1 = 1.0\]
\[X_2 = 0.0\]
and

EF = \frac{C}{(M_E + E_T)}

where:
C=as defined in section 3.1.5.
M_E=as defined in section 4.1.5.1 or 4.1.5.2.2.
E_T=as defined in section 4.1.3.

5. APPLICABLE TEMPERATURE USE FACTORS FOR DETERMINING HOT WATER USAGE FOR VARIOUS WASH/RINSE TEMPERATURE SELECTIONS FOR ALL AUTOMATIC CLOTHES WASHERS

5.1 Clothes washers with discrete temperature selections.

5.1.1 Five-temperature selection (n=5).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot/Warm</td>
<td>0.18</td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.12</td>
</tr>
<tr>
<td>Warm/Warm</td>
<td>0.30</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.25</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

5.1.2 Four-temperature selection (n=4).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot/Warm</td>
<td>0.18</td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.12</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Alternate I:

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot/Warm</td>
<td>0.18</td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.12</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Alternate II:
6. APPLICABLE TEMPERATURE USE FACTORS FOR DETERMINING HOT WATER USAGE FOR VARIOUS WASHER/RINSE TEMPERATURE SETTINGS FOR ALL SEMI-AUTOMATIC, NON-WATER-HEATING CLOTHES WASHERS

6.1 Six-temperature settings (n=6).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot/Cold</td>
<td>0.12</td>
</tr>
<tr>
<td>Warm/Warm</td>
<td>0.30</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.40</td>
</tr>
<tr>
<td>Alternate III:</td>
<td></td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.12</td>
</tr>
<tr>
<td>Warm/Warm</td>
<td>0.18</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

6.2 Clothes washers with infinite temperature selections.

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any heated water/Cold</td>
<td>0.05</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

6.3 Three-temperature selection (n=3).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate I:</td>
<td></td>
</tr>
<tr>
<td>Hot/Warm</td>
<td>0.30</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
<tr>
<td>Alternate II:</td>
<td></td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.30</td>
</tr>
<tr>
<td>Warm/Cold</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
<tr>
<td>Alternate III:</td>
<td></td>
</tr>
<tr>
<td>Hot/Cold</td>
<td>0.30</td>
</tr>
<tr>
<td>Warm/Warm</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold/Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

6.4 Two-temperature selection (n=2).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>1.00</td>
</tr>
</tbody>
</table>

6.5 One-temperature selection (n=1).

<table>
<thead>
<tr>
<th>Wash/rinse temperature setting</th>
<th>Temperature Use Factor (TUF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra-hot</td>
<td>≤ 140°F (≤ 60°C)</td>
</tr>
<tr>
<td>Hot</td>
<td>0.05</td>
</tr>
<tr>
<td>Warm</td>
<td>0.30</td>
</tr>
<tr>
<td>Cold</td>
<td>0.15</td>
</tr>
<tr>
<td>> 140°F (> 60°C)</td>
<td>(n=3)</td>
</tr>
<tr>
<td>Hot</td>
<td>0.25</td>
</tr>
<tr>
<td>Warm</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold</td>
<td>0.15</td>
</tr>
</tbody>
</table>

5.13 Three-temperature selection (n=3).

5.14 Two-temperature selection (n=2).

5.15 One-temperature selection (n=1).

5.2 Clothes washers with infinite temperature selections.

5.1 Three-temperature selection (n=3).

5.2 Two-temperature selection (n=2).

5.3 One-temperature selection (n=1).

6.1 Six-temperature settings (n=6).

7. WAIVERS AND FIELD TESTING

7.1 Waivers and Field Testing for Non-conventional Clothes Washers. Manufacturers of non-conventional clothes washers, such as clothes washers with adaptive control systems, must submit a petition for waiver pursuant to 10 CFR 430.27 to establish an acceptable test procedure for that clothes washer. For these and other clothes washers that have controls or systems such that the DOE test procedures yield results that are so unrepresentative of the clothes washer's true energy consumption characteristics as to provide materially inaccurate comparative data, field testing may be appropriate for establishing an acceptable test procedure. The following are guidelines for field testing which may be used by manufacturers in support of petitions for waiver. These guidelines are not mandatory and the Department may determine that they do not apply to a particular model. Depending upon a manufacturer's approach for conducting field testing, additional data may be required. Manufacturers are encouraged to communicate with the Department prior to the commencement of field tests which may be used to support a petition for waiver. Section 7.3 provides an example of field testing for a clothes washer with an adaptive water fill control system. Other features, such as the use of various spin speed selections, could be the subject of field tests.

7.2 Non-conventional Wash System Energy Consumption Test. The field test may consist of a minimum of 10 of the nonconventional clothes washers ("test clothes washers") and 10 clothes washers already being distributed in commerce ("base clothes washers"). The tests should include a minimum of 50 normal test cycles per clothes washer. The test clothes washers and base clothes washers should be identical in construction except for the controls or systems being tested. Equal numbers of both the test clothes washer and the base clothes washer should be tested simultaneously in comparable settings to minimize seasonal and consumer laundering conditions and/or variations. The clothes washers should be monitored in such a way as to accurately record the total energy consumption per cycle. At a minimum, the following should be measured and recorded throughout the test period for each clothes washer: Hot water usage in gallons.
Department of Energy

(or liters), electrical energy usage in kilo-
watt-hours, and the cycles of usage. The field
test results would be used to determine the
best method to correlate the rating of the
test clothes washer to the rating of the base
clothes washer. If the base clothes washer is
rated at A kWh per year, but field tests at B
kWh per year, and the test clothes washer
field tests at D kWh per year, the test unit
would be rated as follows:
A×(D/B)=G kWh per year

7.3 Adaptive water fill control system field
test. Section 3.2.2.1 defines the test method
for measuring the energy consumption for
clothes washers which incorporate control
systems having both adaptive and alternate
manual selections. Energy consumption cal-
culated by the method defined in section
3.2.2.1 assumes the adaptive cycle will be
used 50 percent of the time. This section can
be used to develop field test data in support
of a petition for waiver when it is believed
that the adaptive cycle will be used more
than 50 percent of the time. The field test
samples size should be a minimum of 10 test
clothes washers. The test clothes washers
should be totally representative of the de-
sign, construction, and control system that
will be placed in commerce. The duration of
field testing in the user's house should be a
minimum of 50 normal test cycles, for each
unit. No special instructions as to cycle se-
lection or product usage should be given to
the field test participants, other than inclu-
sion of the product literature pack which
should be shipped with all units, and instruc-
tions regarding filling out data collection
forms, use of data collection equipment, or
basic procedural methods. Prior to the test
clothes washers being installed in the field
test locations, baseline data should be devel-
oped for all field test units by conducting
laboratory tests as defined by section 1
through section 6 of these test procedures to
determine the energy consumption values.
The following data should be measured and
recorded for each load wash during the test
period: wash cycle selected, the mode of the
clothes washer (adaptive or manual), clothes
load dry weight (measured after the clothes
washer and clothes dryer cycles are com-
pleted) in pounds, and type of articles in the
clothes load (i.e., cottons, linens, permanent
press, etc.). The wash loads used in calculat-
ing the in-home percentage split between
adaptive and manual cycle usage should be
only those wash loads which conform to the
definition of the normal test cycle.

Calculate:
P_m=(T_m/T)×100 (the percentage weighting for
adaptive control selection)
P_a=(T_a/T)×100 (the percentage weighting for
manual control selection)

Energy consumption values, E_m, E_a, and D
(if desired) calculated in section 4 for the
manual and adaptive modes, should be com-
bined using P_m and P_a as the weighting fac-
tors.

Effective Date Note: At 62 FR 45501,
Aug. 27, 1997, Appendix J, Subpart B, Part 430
was revised, effective Feb. 23, 1998. For the
convenience of the user, the superseded text
follows:

Appendix J to Subpart B of Part
430—Uniform Test Method for
Measuring the Energy Consumption
of Automatic and Semi-Auto-
matic Clothes Washers

1. Definitions

1.1 “AHAM” means the Association of
Home Appliance Manufacturers.

1.2 “Bone-dry” means a condition or a
load of test cloth which has been dried in a
dryer at maximum temperature for a mini-
mum of 10 minutes, removed and weighed be-
fore cool down, and then dried again for 10
minute periods until the final weight change
of the load is 1 percent or less.

1.3 “Clothes container” means the com-
partment within the clothes washer that
holds the clothes during the operation of the
machine.

1.4 “Compact” refers to a clothes washer
which has a clothes container capacity of
less than 1.6 cubic feet.

1.5 “Deep rinse cycle” refers to a rinse
cycle in which the clothes container is filled
with water to a selected level and the clothes
load is rinsed by agitating it or tumbling it
through the water.

1.6 “Front-loader” means a clothes wash-
er which sequentially rotates or tumbles por-
tions of the clothes load above the water
level allowing the clothes load to fall freely
back into the water. The principal axis of
the clothes container is in a horizontal plane
and the access to the clothes container is
through the front of the machine.

1.7 “HWL—1” refers to the test standard
published by the AHAM and titled “Amer-
ican National Standard Z224.1-1971 Perform-
ance Evaluation Procedure for Household
Clothes Washers,” December 1971 designated
at HLW—1.

1.8 “HLW—2EC” means AHAM “Test
Method for Measuring Energy Consumption
on Household Clothes Washers,” December
1975, designated as HLW—2EC.

1.9 “Make-up water” means the amount
of fresh water needed to supplement the
amount of stored water pumped from the external laundry tub back into the clothes washer when the suds-return feature is activated in order to achieve the required water fill level in the clothes washer.

1.10 “Normal cycle” means the cycle recommended by the manufacturer for washing clothes and/or linen clothes.

1.11 “Sensor filled” refers to a type of water fill control which automatically terminates the fill control which automatically terminates the fill when the water reaches an appropriate level in the tub.

1.12 “Spray rinse cycle” refers to a rinse cycle in which water is sprayed onto the clothes load for a definite period of time without maintaining any specific water level in the clothes container.

1.13 “Standard” refers to a clothes washer which has a clothes container capacity of 1.6 cubic feet or greater.

1.14 “Suds-return” means a feature or option on a clothes washer which causes the stored wash water obtained by utilizing the suds-saver feature to be pumped from the external laundry tub back into the clothes washer.

1.15 “Suds-saver” means a feature or option on a clothes washer which allows the user to store used wash water in an external laundry tub for use with subsequent wash loads.

1.16 “Temperature use factor” means the percentage of the total number of washes a user would wash with a particular wash/rinse temperature setting.

1.17 “Time filled” refers to a type of water fill control which uses a combination of water flow control in conjunction with time to terminate the water fill cycle.

1.18 “Top-loader” means a clothes washer that flexes and oscillates the submerged clothes load through the water by mean of mechanical agitation or other movement. The principal axis of the clothes container is in a vertical plane and the access to the clothes container is through the top of the clothes washer.

2. TESTING CONDITIONS

2.1 Installation. Install the clothes washer in accordance with manufacturer's instructions.

2.2 Electrical energy supply. Maintain the electrical supply to the clothes washer at 120 volts ± 2 volts. Disconnect all console lights or other lighting systems on the clothes washer which do not consume more than 10 watts during the clothes washer test cycle.

2.3 Water temperature. The temperature of the water supply shall be maintained at 100°F ± 10°F for all clothes washers not equipped with thermostatically controlled inlet water valves. For clothes washers equipped with thermostatic valves, the temperature of the hot water supply shall be maintained at 140°F ± 5°F and the cold water supply shall be maintained at 60°F ± 5°F. The water meter shall be installed in both the hot and cold water lines to measure water consumption.

2.4 Water pressure. The dynamic water pressure at the hot and cold water inlet connection of the machine shall be equalized at 35 pounds per square inch gauge (psig) ± 2.5 psig. The dynamic water pressure for a single water inlet connection shall be maintained at 35 psig ± 2.5 psig. The water pressure gauge shall be installed in both the hot and cold water lines to measure water pressure.

2.5 Instrumentation. Perform all test measurements using the following instruments, as appropriate:

2.5.1 Weighing scales.

2.5.1.1 Weighing scale for test cloth. The scale shall have a range of 0 to a maximum of 30 pounds with a resolution of at least 0.2 ounces and a maximum error no greater than 0.3 percent of any measured value within the range of 3 to 15 pounds.

2.5.1.2 Weighing scale for clothes container capacity measurements. The scale should have a range of 0 to a maximum of 500 pounds with a resolution of 0.50 pounds and a maximum error no greater than 0.5 percent of the measured value.

2.5.2 Watt-hour meter. The watt-hour meter shall have a resolution of no larger than 1 watt-hour and a maximum error no greater than 2 percent of the measured value for any demand greater than 50 watts per hour.

2.5.3 Thermometer. The thermometer shall have an error no greater than ±1°F over the range of 32°F to 200°F.

2.5.4 Water meter. The water meter shall have a resolution no larger than 0.1 gallons and a maximum error no greater than 2 percent for all water flow rates from 1 to 5 gallons per minute.

2.5.5 Water pressure gauge. The water pressure gauge shall have a resolution of 1 pound per square inch gauge (psig) and shall have an error no greater than 5 percent of any measured value over the range of 32.5 to 37.5 psig.

2.6 Test cloths.

2.6.1 Energy test cloth. The energy test cloth shall be clean and consist of the following:

(a) Pure finished bleached cloth, made with a poplin or cotton weave, which is 50 percent cotton and 50 percent polyester and weighs 5.75 ounces per square yard and has 65 ends on the warp and 57 picks on the fill.

(b) Cloth material that is 24 inches by 36 inches and has been hemmed to 22 inches by 34 inches before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width.

(c) The number of test runs on the same energy test cloth shall not exceed 25 runs.

2.6.2 Energy stuffer cloths. The energy stuffer cloths shall be made from energy tests cloth material and shall consist of...
Department of Energy

pieces of material that are 12 inches by 12 inches and have been hemmed to 10 inches by 10 inches before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width. The number of test runs on the same energy stuffer cloth shall not exceed 25 runs.

2.7 Composition of test loads.

2.7.1 Seven pound test load. The seven pound test load shall consist of bone-dry energy test cloths which weigh 7 pounds ± 0.07 pounds. Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths.

2.7.2 Three pound test load. The three pound test load shall consist of bone-dry energy test cloths which weigh 3 pounds ± 0.03 pounds. Adjustments to the test load to achieve the proper weight can be made by the use of energy stuffer cloths.

2.8 Use of test loads.

2.8.1 Top-loader clothes washer. The top-loader clothes washer shall be tested without a test load.

2.8.2 Front-loader clothes washer.

2.8.2.1 Standard size front-loader clothes washer. When the maximum water fill level is being tested, the test load shall be seven pounds as described in 2.7.1. When the minimum water fill level is being tested, the test load shall be three pounds as described in 2.7.2.

2.8.2.2 Compact size front-loader clothes washer. When either the maximum or minimum fill levels are being tested, the test load shall be three pounds as described in 2.7.2.

2.8.3 Method of loading. Load the energy test cloths by grasping them in the center, shaking them to hang loosely and then dropping them into the clothes container prior to activating the clothes washer.

2.9 Preconditioning. If the clothes washer has not previously been tested nor filled with water in the preceding 96 hours, precondition it by running it through a cold rinse cycle and then draining it to insure that the hose, pump, and sump are filled with water.

2.10 Clothes washer setting. Set the wash time for approximately 10 minutes, but the actual wash time (period of agitation) shall not be less than 9.75 minutes. Where controls are provided for agitation and spin speed, set them for the normal cycle.

3. TEST MEASUREMENTS

3.1 Clothes container capacity. Measure the entire volume which a dry clothes load could occupy within the clothes container, according to the procedures described in 3.1.1 and 3.1.2.

3.1.1 Top-loaders clothes washers. Line the clothes container with 2 mil plastic sheet or use some other method to prevent the water from entering the outer tub container. The agitator shall be in place. Fill the clothes container with water to its uppermost edge, (This filling procedure may require overriding of the fill level control, or manually completing the fill to the top of the container after the fill sensor terminates the fill at maximum level.) Record the weight of the machine before filling it with water and then after filling it with water. The clothes container capacity is calculated as follows:

\[C = \frac{W}{d} \]

Where:
- \(C \) = Capacity in cubic feet.
- \(W \) = Mass of water in pounds.
- \(d \) = Density of water at the measured temperature in pounds per cubic foot (at 140°F).

3.2 Test cycle. Establish the testing conditions set forth in 2 of this Appendix.

3.2.1 Per-cycle electrical energy consumption. Set the water level selector at a maximum fill and insert the appropriate test load, if applicable. Activate the normal cycle of the clothes washer and also any suds-saver switch.

3.2.1.1 Measure the electrical energy consumption of the clothes washer for a complete normal cycle.

3.2.2 Hot water consumption for a normal cycle with the water level selector at maximum fill.

3.2.2.1 Set the water level selector at maximum fill and insert the appropriate test load. If applicable, Activate the normal cycle of the clothes washer and also any suds-saver switch.

3.2.2.2 For automatic clothes washers set the wash/rinse temperature selector to the hottest setting available (hot/warm). For semi-automatic clothes washers open the hot water faucet valve completely and close the cold water faucet valve to achieve the hottest setting (hot/hot).

3.2.2.3 Measure the number of gallons of hot water used to fill the tub for the wash cycle.

3.2.2.4 Measure the total number of gallons of hot water used for all deep rinse cycles.

3.2.2.5 Measure the total gallons of hot water used for all spray rinse cycles.

3.2.2.6 For automatic clothes washers repeat 3.2.2.3, 3.2.2.4, and 3.2.2.5 for each of the other wash/rinse temperature selections available that use hot water. For semi-automatic clothes washers repeat 3.2.2.3, 3.2.2.4, and 3.2.2.5 for Hot/Cold, Warm/Cold, Warm, and Warm/Cold temperature settings with the following water faucet valve adjustments:

<table>
<thead>
<tr>
<th>Faucet position</th>
<th>Hot valve</th>
<th>Cold valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot</td>
<td>Completely open</td>
<td>Closed</td>
</tr>
<tr>
<td>Warm</td>
<td>Do</td>
<td>Completely open</td>
</tr>
<tr>
<td>Cold</td>
<td>Closed</td>
<td>Do</td>
</tr>
</tbody>
</table>

3.2.2.7 Set the suds-saver switch to activate the suds-return. Repeat 3.2.2.2 to 3.2.2.5 for a warm/cold temperature setting.

3.2.3 Hot water consumption for a normal cycle with the water level selector at minimum fill. Set the water level selector at minimum fill and insert the appropriate test load, if applicable. Activate the normal cycle of the clothes washer and also any suds-saver switch. Repeat 3.2.2.2 through 3.2.2.7.

3.2.4 Hot water consumption for clothes washers that incorporate a partial fill during the rinse cycle. Where the procedures in 3.2.2 and 3.2.3 cannot be used for clothes washers that incorporate a partial fill during the rinse cycle, activate any suds-saver switch and operate the clothes washer for the complete normal cycle at both the maximum water fill level and the minimum water fill level for each of the wash/rinse temperature selections available that use hot water. Measure the total hot water consumed during the complete normal cycle.

3.3 Data recording. Record for each test cycle in 3.2.

3.3.1 Total the kilowatt-hours of electrical energy, M_k, consumed during the test to operate the clothes washer in 3.2.1.

3.3.2 Total the hot water measured at maximum fill level for each wash/rinse temperature selection, V_i, excluding any fresh make-up water required to complete the fill during a suds-return cycle.

3.3.3 Total the hot water measured at minimum fill level for each wash/rinse temperature selection, V_i, excluding any fresh make-up water required to complete the fill during a suds-return cycle.

3.3.4 Total the hot water measured at maximum fill for the suds-return cycle, S_H.

3.3.5 Total the hot water measured at minimum fill for suds-return cycle, S_L.

4. CALCULATION OF DERIVED RESULTS FROM TEST MEASUREMENTS

4.1 Per-cycle temperature-weighted hot water consumption for maximum and minimum water fill levels. Calculate for the cycle under test the per-cycle temperature-weighted hot water consumption for the maximum water fill level, V_max, and for the minimum water fill level, V_min, expressed in gallons per cycle and defined as:

\[V_{\text{max}} = X_1 \Sigma_i n [V_i \times TUF_i] + X_2 [TUFw \times S_n] \]

where

- \(V_{\text{max}} \) = Reported hot water consumption in gallons per-cycle at maximum fill for each wash/cycle temperature selection, as provided in 3.2.2.
- \(TUF_i \) = Applicable temperature use factor corresponding to wash/rinse temperature selection as shown in 5 or 6.
- \(n \) = Number of wash/rinse temperature selections available to the user for the clothes washer under test.
- \(TUFw \) = Temperature use factor for warm/wash setting.

For clothes washers equipped with suds-saver feature:

\[X_1 = 0.86 \]
\[X_2 = 0.14 \]

For clothes washers not equipped with suds-saver feature:

\[X_1 = 1.0 \]
\[X_2 = 0.0 \]

\(S_n \) = Fresh make-up water measured during suds-return cycle at maximum water fill level.

and

\[V_{\text{min}} = X_1 \Sigma_i n [V_i \times TUF_i] + X_2 [TUFw \times S_n] \]

where

- \(V_{\text{min}} \) = Reported hot water consumption in gallons per-cycle at minimum fill for each wash/rinse temperature selection, as provided in 3.3.3.
- \(TUF_i \) = Applicable temperature factor corresponding to wash/rinse temperature selection as shown in 5 or 6.
- \(S_n \) = Fresh make-up water measured during suds-return cycle at minimum water fill level.

\(n \) = As defined above.

\(TUFw \) = As defined above.

\(X_1 \) = As defined above.

\(X_2 \) = As defined above.

4.2 Total per-cycle hot water energy consumption for maximum and minimum water fill levels. Calculate the total per-cycle hot water energy consumption for the maximum water fill level, \(E_{\text{max}} \), and for the minimum water fill level, \(E_{\text{min}} \), expressed in kilowatt-hours per cycle and defined as:

\[E_{\text{max}} = X_1 \times V_{\text{max}} \times T \times M F \]

where
Department of Energy

\(MF = \text{Multiplying factor to account for the absence of a test load=0.94 for top-loader clothes washers that are sensor filled, 1.0 for top-loader clothes washers that are time filled, and 1.0 for all front-loader clothes washers.} \)

\(T = \text{Temperature rise=00}^\circ \text{F}. \)

\(K = \text{Water specific heat in kilowatt-hours per gallon degree F =0.00240}. \)

\(V_{\text{max}} = \text{As defined in 4.1, and} \)

\[E_{\text{min}} = V_{\text{min}} \times T \times K \times MF \]

where

\(MF = \text{As defined above.} \)

\(T = \text{As defined above.} \)

\(K = \text{As defined above.} \)

\(V_{\text{min}} = \text{As defined in 4.1.} \)

4.3 Total weighted per-cycle hot water energy consumption expressed in kilowatt-hours.

Calculate the total weighted per-cycle hot water energy consumption, \(E_T \), expressed in kilowatt-hours per cycle and defined as:

\[E_T = [E_{\text{max}} \times F_{\text{max}}] + [E_{\text{min}} \times F_{\text{min}}] \]

where

\(F_{\text{max}} = \text{Usage fill factor=0.72.} \)

\(F_{\text{min}} = \text{Usage fill factor=0.28.} \)

\(E_{\text{max}} = \text{As defined in 4.2.} \)

\(E_{\text{min}} = \text{As defined in 4.2.} \)

4.4 Per-cycle machine electrical energy consumption.

The value recorded in 3.3.1 is the per-cycle machine electrical energy consumption, \(M_E \), expressed in kilowatt-hours per cycle.

4.5 Per-cycle water energy consumption using gas-heated or oil-heated water.

Calculate for the normal cycle the per-cycle water consumption, \(E_{W_0} \), using gas-heated or oil-heated water, expressed in Btu per cycle and defined as:

\[E_{W_0} = E_T \times 1/6\times 3412 \text{ Btu/Kwh}. \]

where

\(e = \text{Nominal gas or oil water heater efficiency=0.75.} \)

\(E_T = \text{As defined in 4.3.} \)

4.6 Total per-cycle energy consumption when electrically heated water is used.

Calculate for the normal cycle the total per-cycle energy consumption, \(E_{TE} \), using electrically heated water, expressed in kilowatt-hours per cycle and defined as:

\[E_{TE} = E_T + M_E \]

\(M_E = \text{As defined in 4.4} \)

\(E_T = \text{As defined in 4.3}. \)

5. APPLICABLE TEMPERATURE USE FACTORS FOR DETERMINING HOT WATER USAGE FOR VARIOUS WASH/RINSE TEMPERATURE SELECTIONS FOR ALL AUTOMATIC CLOTHES WASHERS

5.1 Five temperature selection (n=5).

5.2 Four temperature selection (n=4).

5.3 Three temperature selection (n=3).

6. APPLICABLE TEMPERATURE USE FACTORS FOR DETERMINING HOT WATER USAGE FOR VARIOUS WASH/RINSE TEMPERATURE SETTINGS FOR ALL SEMI-AUTOMATIC CLOTHES WASHERS

6.1 Six temperature settings (n=6).

APPENDIX J1 TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF AUTOMATIC AND SEMI-AUTOMATIC CLOTHES WASHERS

NOTE: Appendix J1 to subpart B of part 430 is informational. It will not become mandatory until the energy conservation standards for clothes washers at 10 CFR 430.32(g) are amended and Appendix J1 is removed by a rule published in the Federal Register.

1. DEFINITIONS AND SYMBOLS

1.1 Adaptive control system means a clothes washer control system, other than an adaptive water fill control system, which is capable of automatically adjusting washer operation or washing conditions based on characteristics of the clothes load placed in the clothes container, without allowing or requiring consumer intervention or actions. The automatic adjustments may, for example, include automatic selection, modification, or control of any of the following: wash water temperature, agitation or tumble cycle time, number of rinse cycles, and spin speed. The characteristics of the clothes load, which could trigger such adjustments, could, for example, consist of or be indicated by the presence of either soil, soap, suds, or other additive laundry substitute or complementary product.

NOTE: Appendix J1 does not provide a means for determining the energy consumption of a clothes washer with an adaptive control system. Therefore, pursuant to 10 CFR 430.27, a waiver must be obtained to establish an acceptable test procedure for each such clothes washer.

1.2 Adaptive water fill control system means a clothes washer water fill control system which is capable of automatically adjusting the water fill level based on the size or weight of the clothes load placed in the clothes container, without allowing or requiring consumer intervention or actions.

1.3 Bone-dry means a condition of a load of test cloth which has been dried in a dryer at maximum temperature for a minimum of 10 minutes, removed and weighed before cool down, and then dried again for 10 minute periods until the final weight change of the load is 1 percent or less.

1.4 Clothes container means the compartment within the clothes washer that holds the clothes during the operation of the machine.

1.5 Compact means a clothes washer which has a clothes container capacity of less than 1.6 ft³ (45 L).

1.6 Deep rinse cycle means a rinse cycle in which the clothes container is filled with water to a selected level and the clothes load is rinsed by agitating it or tumbling it through the water.

1.7 Energy test cycle for a basic model means (A) the cycle recommended by the manufacturer for washing cotton or linen clothes, and includes all wash/rinse temperature selections and water levels offered in that cycle, and (B) for each other wash/rinse temperature selection or water level available on that basic model, the portion(s) of other cycle(s) with that temperature selection or water level that, when tested pursuant to these test procedures, will contribute to an accurate representation of the energy consumption of the basic model as used by consumers.Any cycle under (A) or (B) shall include the agitation/tumble operation, spin speed(s), wash times, and rinse times applicable to that cycle, including water heating time for water heating clothes washers.

1.8 Load use factor means the percentage of the total number of wash loads that a user would wash a particular size (weight) load.

1.9 Manual control system means a clothes washer control system which requires that the consumer make the choices that determine washer operation or washing conditions, such as, for example, wash/rinse temperature selections, and wash time before starting the cycle.

1.10 Manual water fill control system means a clothes washer water fill control system which requires the consumer to determine or select the water fill level.

1.11 Modified energy factor means the quotient of the cubic foot (or liter) capacity of the clothes container divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, the hot water energy consumption, and the energy required for removal of the remaining moisture in the wash load.

1.12 Non-water-heating clothes washer means a clothes washer which does not have an internal water heating device to generate hot water.

1.13 Spray rinse cycle means a rinse cycle in which water is sprayed onto the clothes for a period of time without maintaining any specific water level in the clothes container.

1.14 Standard means a clothes washer which has a clothes container capacity of 1.6 ft³ (45 L) or greater.

1.15 Temperature use factor means, for a particular wash/rinse temperature setting, the percentage of the total number of wash loads that an average user would wash at that setting.

1.16 Thermostatically controlled water valves means clothes washer controls that have the ability to sense and adjust the hot and cold supply water.

1.17 Uniformly distributed warm wash temperature selection(s) means (A) multiple warm wash selections for which the warm wash water temperature is in the range of 100°F (38°C) to 110°F (43°C), regardless of the selected wash water temperature. The water temperature for each cycle is selected by the consumer.

1.18 Uniformly distributed warm wash water temperature selection(s) means (A) multiple warm wash temperature selections, for which the warm wash water temperature is in the range of 100°F (38°C) to 110°F (43°C), regardless of the selected wash water temperature. The water temperature for each cycle is selected by the consumer.
water temperatures have a linear relationship with all discrete warm wash selections when the water temperatures are plotted against equally spaced consecutive warm wash selections between the hottest warm wash and the coldest warm wash. If the warm wash has infinite selections, the warm wash water temperature has a linear relationship with all discrete warm wash selections that are below the hottest warm wash and the coldest warm wash. The criteria for a linear relationship as specified above is that the difference between the actual water temperature at any warm wash selection and the point where that temperature is depicted on the temperature/selection line formed by connecting the warmest and the coldest warm wash selections is less than ±5 percent. In all cases, the mean water temperature of the warmest and the coldest warm selections must coincide with the mean of the “hot wash” (maximum wash temperature ≤135°F (57.2°C)) and “cold wash” (minimum wash temperature) water temperatures within ±3.8°F (±2.1°C); or (B) on a clothes washer with only one warm wash temperature selection, a warm wash temperature selection with a water temperature that coincides with the mean of the “hot wash” (maximum wash temperature ≤135°F (57.2°C)) and “cold wash” (minimum wash temperature) water temperatures within ±3.8°F (±2.1°C).

1.18 Warm wash means all wash temperature selections that are below the hottest hot, less than 135°F (57.2°C), and above the coldest cold temperature selection.

1.19 Water consumption factor means the quotient of the total weighted per-cycle water consumption divided by the cubic foot (or liter) capacity of the clothes washer.

1.20 Water-heating clothes washer means a clothes washer where some or all of the hot water for clothes washing is generated by a water heating device internal to the clothes washer.

1.21 Symbol usage. The following identity relationships are provided to help clarify the symbology used throughout this procedure.

E—Electrical Energy Consumption
H—Hot Water Consumption
C—Cold Water Consumption
R—Hot Water Consumed by Warm Rinse
ER—Electrical Energy Consumed by Warm Rinse
TUF—Temperature Use Factor
HE—Hot Water Energy Consumption
F—Load Usage Factor
Q—Total Water Consumption
ME—Machine Electrical Energy Consumption

RMC—Remaining Moisture Content
WC—Weight of Test Load After Extraction
m—Extra Hot Wash (maximum wash temp. >130°F (57.2°C))
h—Hot Wash (maximum wash temp. ≤135°F (57.2°C))
w—Warm Wash
c—Cold Wash (minimum wash temp.)
r—Warm Rinse (hottest rinse temp.)
x or max—Maximum Test Load
a or avg—Average Test Load
n or min—Minimum Test Load

The following examples are provided to show how the above symbols can be used to define variables:

Em w = “Electrical Energy Consumption” for an “Extra Hot Wash” and “Maximum Test Load”
Rm w = “Hot Water Consumed by Warm Rinse” for the “Average Test Load”
TUF m w = “Temperature Use Factor” for an “Extra Hot Wash”
HE m w = “Hot Water Energy Consumption” for the “Minimum Test Load”

2. TESTING CONDITIONS

2.1 Installation. Install the clothes washer in accordance with manufacturer’s instructions.

2.2 Electrical energy supply. Maintain the electrical supply at the clothes washer terminal block within 2 percent of 120, 120/240, or 120/208Y volts as applicable to the particular terminal block wiring system and within 2 percent of the nameplate frequency as specified by the manufacturer. If the clothes washer has a dual voltage conversion capability, conduct test at the highest voltage specified by the manufacturer.

2.3 Supply Water.

2.3.1 Clothes washers in which electrical energy consumption or water energy consumption are affected by the inlet water temperature. (For example, water heating clothes washers or clothes washers with thermostatically controlled water valves.) The temperature of the hot water supply at the water inlets shall not exceed 135°F (57.2°C) and the cold water supply at the water inlets shall not exceed 60°F (15.6°C). A water meter shall be installed in both the hot and cold water lines to measure water consumption.

2.3.2 Clothes washers in which electrical energy consumption and water energy consumption are not affected by the inlet water temperature. The temperature of the hot water supply shall be maintained at ±5°F (±2.8°C) and the cold water supply shall be maintained at ±2°F (±1.1°C). A water meter shall be installed in both the hot and cold water lines to measure water consumption.

2.4 Water pressure. The static water pressure at the hot and cold water inlet connection of the clothes washer shall be maintained at 35 pounds per square inch gauge (psig) ±2.5 psig (241.3 kPa±17.2 kPa) during the test. The static water pressure for a single water inlet connection shall be maintained at 35 psig±2.5 psig (241.3 kPa±17.2 kPa) during the test. A water pressure gauge shall
be installed in both the hot and cold water lines to measure water pressure.

2.5 Instrumentation. Perform all test measurements using the following instruments, as appropriate:

2.5.1 Weighing scales.

2.5.1.1 Weighing scale for test cloth. The scale shall have a resolution of no larger than 0.2 oz (5.7 g) and a maximum error no greater than 0.3 percent of the measured value.

2.5.1.2 Weighing scale for clothes container capacity measurements. The scale should have a resolution no larger than 0.50 lbs (0.23 kg) and a maximum error no greater than 0.5 percent of the measured value.

2.5.2 Watt-hour meter. The watt-hour meter shall have a resolution no larger than 1 Wh (3.6 kJ) and a maximum error no greater than 0.5 percent of the measured value.

2.5.3 Temperature measuring device. The device shall have an error no greater than ±1°F (±0.6°C) over the range being measured.

2.5.4 Water meter. The water meter shall have a resolution no greater than 0.1 gallons (0.4 liters) and a maximum error no greater than 2 percent for the water flow rates being measured.

2.5.5 Water pressure gauge. The water pressure gauge shall have a resolution of 1 pound per square inch gauge (psig) (6.9 kPa) and shall have an error no greater than 5 percent of any measured value.

2.6 Test cloths.

2.6.1 Energy test cloth.

2.6.1.1 The energy test cloth shall not be used for more than 25 test runs and shall be clean and consist of the following:

(A) Pure finished bleached cloth, made with a momie or granite weave, which is 50 percent cotton and 50 percent polyester and weighs 5.75 ounces per square yard (195.0 g/m²) and has 65 ends on the warp and 57 picks on the fill; and

(B) Cloth material that is 24 inches by 36 inches (61.0 cm by 91.4 cm) and has been hemmed to 22 inches by 34 inches (55.9 cm by 86.4 cm) before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width.

2.6.1.2 The new test cloths, including energy test cloths and energy stuffer cloths, shall be pre-conditioned in a clothes washer in the following manner:

2.6.1.2.1 Wash the test cloth using a commercially available clothes washing detergent that is suitable for 135°F (57.2°C) wash water as recommended by the manufacturer, with the washer set on maximum water level. Place detergent in washer and then place the new load to be conditioned in the washer. Wash the load for ten minutes in soft water (17ppm or less). Wash water is to be hot, and controlled at 135°F ±5°F (57.2°C ±2.8°C). Rinse water temperature is to be cold, and controlled at 60°F ±5°F (15.6°C ±2.8°C). Rinse the load through a second rinse using the same water temperature (if an optional second rinse is available on the clothes washer, use it).

2.6.1.2.2 Dry the load.

2.6.1.2.3 A final cycle is to be hot water wash with no detergent followed by two cold water rinses.

2.6.1.2.4 Dry the load.

2.6.2 Energy stuffer cloth. The energy stuffer cloth shall be made from energy test cloth material and shall consist of pieces of material that are 12 inches by 12 inches (30.5 cm by 30.5 cm) and have been hemmed to 10 inches by 10 inches (25.4 cm by 25.4 cm) before washing. The maximum shrinkage after five washes shall not be more than four percent on the length and width. The number of test runs on the same energy stuffer cloth shall not exceed 25 runs.

2.7 Test Load Sizes. Maximum, minimum, and, when required, average test load sizes shall be determined using Table 2.8 and the clothes container capacities as measured in 3.1.1 through 3.1.5. Test loads shall consist of energy test cloths, except that adjustments to the test loads to achieve proper weight can be made by the use of energy stuffer cloths with no more than 5 stuffer clothes per load.

2.8 Use of Test Loads. Table 2.8 defines the test load sizes and corresponding water fill settings which are to be used when measuring water and energy consumptions. Adaptive water fill control system and manual water fill control system are defined in section 1 of this appendix:

Table 2.8.—Test Load Sizes and Water Fill Settings Required

<table>
<thead>
<tr>
<th>Manual water fill control system</th>
<th>Adaptive water fill control system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test load size</td>
<td>Water fill setting</td>
</tr>
<tr>
<td>Max</td>
<td>Min</td>
</tr>
</tbody>
</table>

2.8.1 The test load sizes to be used to measure RMC are specified in section 2.8.1.2.8.2 Test loads for energy and water consumption measurements shall be bone dry prior to the first cycle of the test, and dried
Department of Energy

3. TEST MEASUREMENTS

3.1 Clothes container capacity. Measure the entire volume which a dry clothes load could occupy within the clothes container during washer operation according to the following procedures:

3.1.1 Place the clothes washer in such a position that the uppermost edge of the clothes container opening is leveled horizontally, so that the container will hold the maximum amount of water.

3.1.2 Line the inside of the clothes container with 2 mil (0.051 mm) plastic sheet. All clothes washer components which occupy space within the clothes container and which are recommended for use with the energy test cycle shall be in place and shall be lined with 2 mil (0.051 mm) plastic sheet to prevent water from entering any void space.

3.1.3 Record the total weight of the machine before adding water.

3.1.4 Fill the clothes container manually with either 60°F ±5°F (15.6°C ±2.8°C) or 100°F ±10°F (37.8°C ±5.6°C) water to its uppermost edge. Measure and record the weight of water, W, in pounds.

3.1.5 The clothes container capacity is calculated as follows:

\[C = \frac{W}{d} \]

where:

- \(C \) = Capacity in cubic feet (liters).
- \(W \) = Mass of water in pounds (kilograms).
- \(d \) = Density of water (62.0 lbs/ft\(^3\) for 100°F (998 kg/m\(^3\) for 37.8°C) or 62.3 lbs/ft\(^3\) for 60°F (998 kg/m\(^3\) for 15.6°C)).

3.2 Procedure for measuring water and energy consumption values on all automatic and semi-automatic washers. All energy consumption tests shall be performed under the energy test cycle(s), unless otherwise specified. Table 3.2 defines the sections below which govern tests of particular clothes washers, based on the number of wash/rinse temperature selections available on the model, and also, in some instances, method of water heating. The procedures prescribed are applicable regardless of a clothes washer’s washing capacity, loading port location, primary axis of rotation of the clothes container, and type of control system.

3.2.1 Inlet water temperature and the wash/rinse temperature settings.

3.2.2 Total water consumption during the energy test cycle shall be measured, including hot and cold water consumption during wash, deep rinse, and spray rinse.

3.2.3 Clothes washers with adaptive water fill/manual water fill control systems.

3.2.3.1 Clothes washers with adaptive water fill control system and alternate manual water fill control systems. If a clothes washer with an adaptive water fill control system allows consumer selection of manual controls as an alternative, then both manual and adaptive modes shall be tested and, for each mode, the energy consumption (HE\(_b\), ME\(_b\), and D\(_b\)) and...
water consumption \((Q_a)\), values shall be calculated as set forth in section 4. Then the average of the two values (one from each mode, adaptive and manual) for each variable shall be used in section 4 for the clothes washer.

3.2.3.2 Clothes washers with adaptive water fill control system.

3.2.3.2.1 Not user adjustable. The maximum, minimum, and average water levels as defined in the following sections shall be interpreted to mean that amount of water fill which is selected by the control system when the respective test loads are used, as defined in Table 2.8. The load usage factors which shall be used when calculating energy consumption values are defined in Table 4.1.3.

3.2.3.2.2 User adjustable. Four tests shall be conducted on clothes washers with user adjustable adaptive water fill controls which affect the relative wash water levels. The first test shall be conducted with the maximum test load and with the adaptive water fill control system set in the setting that will give the least energy intensive result for the given test load. The second test shall be conducted with the average test load and with the adaptive water fill control system set in the setting that will give the most energy intensive result for the given test load. The third test shall be conducted with the average test load and with the adaptive water fill control system set in the setting that will give the least energy intensive result for the given test load. The fourth test shall be conducted with the average test load and with the adaptive water fill control system set in the setting that will give the most energy intensive result for the given test load. The energy and water consumption shall be the average of the two values (one from each mode, adaptive and manual) for each variable shall be used when calculating energy consumption values are defined in Table 4.1.3.

3.3 "Extra Hot Wash" (Max Wash Temp \(\leq 135^\circ\text{F} (57.2^\circ\text{C})\) for water heating clothes washers only. Water and electrical energy consumption shall be measured for each water fill level and/or test load size as specified in 3.3.1 through 3.3.3 for the hottest wash setting available.

3.3.1 Maximum test load and water fill. Hot water consumption (\(H_m\)), cold water consumption (\(C_m\)), and electrical energy consumption (\(E_m\)) shall be measured for an extra hot wash/cold rinse energy test cycle, with the controls set for the maximum water fill level. The maximum test load size is to be used and shall be determined per Table 5.1.

3.3.2 Minimum test load and water fill. Hot water consumption (\(H_m\)), cold water consumption (\(C_m\)), and electrical energy consumption (\(E_m\)) shall be measured for an extra hot wash/cold rinse energy test cycle, with the controls set for the minimum water fill level. The minimum test load size is to be used and shall be determined per Table 5.1.

3.3.3 Average test load and water fill. For clothes washers with an adaptive water fill control system, measure the values for hot water consumption (\(H_m\)), cold water consumption (\(C_m\)), and electrical energy consumption (\(E_m\)) for an extra hot wash/cold rinse energy test cycle, with an average test load size as determined per Table 5.1.

3.4 "Hot Wash" (Max Wash Temp \(\leq 135^\circ\text{F} (57.2^\circ\text{C})\)). Water and electrical energy consumption shall be measured for each water fill level or test load size as specified in 3.4.1 through 3.4.3 for a \(135^\circ\text{F} (57.2^\circ\text{C})\) wash, if available, or for the hottest selection less than \(135^\circ\text{F} (57.2^\circ\text{C})\).

3.4.1 Maximum test load and water fill. Hot water consumption (\(H_h\)), cold water consumption (\(C_h\)), and electrical energy consumption (\(E_h\)) shall be measured for a hot wash/cold rinse energy test cycle, with the controls set for the maximum water fill level. The maximum test load size is to be used and shall be determined per Table 5.1.
3.4.2 Minimum test load and water fill. Hot water consumption (H\textsubscript{h}), cold water consumption (H\textsubscript{c}), and electrical energy consumption (E\textsubscript{c}) shall be measured for a cold wash/cold rinse energy test cycle, with the controls set for the minimum water fill level. The minimum test load size is to be used and shall be determined per Table 5.1.

3.4.3 Maximum test load and water fill. For clothes washers with an adaptive water fill control system, measure the values for hot water consumption (H\textsubscript{h}), cold water consumption (H\textsubscript{c}), and electrical energy consumption (E\textsubscript{c}) for a hot wash/cold rinse energy test cycle, with an average test load size as determined per Table 5.1.

3.5 Warm Wash. Water and electrical energy consumption shall be determined for each water fill level and/or test load size as specified in 3.5.1 through 3.5.2.3 for the applicable warm water wash temperatures.

3.5.1 Clothes washers with uniformly distributed warm water wash temperature selection(s). The reportable values to be used for the warm water wash setting shall be the arithmetic average of the measurements for the hot and cold wash selections. This is a calculation only, no testing is required.

3.5.2 Clothes washers that lack uniformly distributed warm water wash temperature selections. For a clothes washer with fewer than four discrete warm wash selections, test all warm wash temperature selections. For a clothes washer that offers four or more warm wash selections, test all discrete selections, or test at 25 percent, 50 percent, and 75 percent positions of the temperature selection device between the hottest hot (≤139°F (57.2°C)) wash and the coldest cold wash. If a selection is not available at the 25, 50 or 75 percent position, in place of each such unavailable selection use the next warmer setting. Each reportable value to be used for the warm water wash setting shall be the arithmetic average of all tests conducted pursuant to this section.

3.5.2.1 Maximum test load and water fill. Hot water consumption (H\textsubscript{w}), cold water consumption (C\textsubscript{w}), and electrical energy consumption (E\textsubscript{w}) shall be measured with the controls set for the maximum water fill level. The maximum test load size is to be used and shall be determined per Table 5.1.

3.5.2.2 Minimum test load and water fill. Hot water consumption (H\textsubscript{w}), cold water consumption (C\textsubscript{w}), and electrical energy consumption (E\textsubscript{w}) shall be measured with the controls set for the minimum water fill level. The minimum test load size is to be used and shall be determined per Table 5.1.

3.5.2.3 Average test load and water fill. For clothes washers with an adaptive water fill control system, measure the values for hot water consumption (H\textsubscript{w}), cold water consumption (C\textsubscript{w}), and electrical energy consumption (E\textsubscript{w}) with an average test load size as determined per Table 5.1.

3.6 Cold Wash. (Minimum Wash Temperature Selection). Water and electrical energy consumption shall be measured for each water fill level or test load size as specified in 3.6.1 through 3.6.3 for the coldest wash temperature selection available.

3.6.1 Maximum test load and water fill. Hot water consumption (H\textsubscript{c}), cold water consumption (C\textsubscript{c}), and electrical energy consumption (E\textsubscript{c}) shall be measured for a cold wash/cold rinse energy test cycle, with the controls set for the maximum water fill level. The maximum test load size is to be used and shall be determined per Table 5.1.

3.6.2 Minimum test load and water fill. Hot water consumption (H\textsubscript{c}), cold water consumption (C\textsubscript{c}), and electrical energy consumption (E\textsubscript{c}) shall be measured for a cold wash/cold rinse energy test cycle, with the controls set for the minimum water fill level. The minimum test load size is to be used and shall be determined per Table 5.1.

3.6.3 Average test load and water fill. For clothes washers with an adaptive water fill control system, measure the values for hot water consumption (H\textsubscript{c}), cold water consumption (C\textsubscript{c}), and electrical energy consumption (E\textsubscript{c}) for a cold wash/cold rinse energy test cycle, with an average test load size as determined per Table 5.1.

3.7 Warm Rinse. Tests in sections 3.7.1 and 3.7.2 shall be conducted with the hottest rinse temperature available. If multiple wash temperatures are available with the hottest rinse temperature, any “warm wash” temperature may be selected to conduct the tests.

3.7.1 For the rinse only, measure the amount of hot water consumed by the clothes washer including all deep and spray rinses, for the maximum (R\textsubscript{m}), minimum (R\textsubscript{min}), and, if required by section 3.5.2.3, average (R\textsubscript{avg}) test load sizes or water fill levels.

3.7.2 Measure the amount of electrical energy consumed by the clothes washer to heat the rinse water only, including all deep and spray rinses, for the maximum (R\textsubscript{m}), minimum (R\textsubscript{min}), and, if required by section 3.5.2.3, average (R\textsubscript{avg}) test load sizes or water fill levels.

3.8 Remaining Moisture Content:

3.8.1 The wash temperature will be the same as the rinse temperature for all testing. Use the maximum test load as defined in Table 5.1 and section 3.1 for testing.

3.8.2 For clothes washers with cold rinse only:

3.8.2.1 Record the actual ‘bone dry’ weight of the test load (W\textsubscript{test}), then place the test load in the clothes washer.

3.8.2.2 Set water level selector to maximum fill.

3.8.2.3 Run the energy test cycle.

3.8.2.4 Record the weight of the test load immediately after completion of the energy test cycle (W\textsubscript{test}).
3.8.2.5 Calculate the remaining moisture content of the maximum test load, RMC_{MAX}, expressed as a percentage and defined as:

$$RMC_{MAX} = \frac{(WC_{MAX} - WI_{MAX})}{WI_{MAX}} \times 100\%$$

3.8.3 For clothes washers with cold and warm rinse options:

3.8.3.1 Complete steps 3.8.2.1 through 3.8.2.4 for cold rinse. Calculate the remaining moisture content of the maximum test load for cold rinse, RMC_{COLD}, expressed as a percentage and defined as:

$$RMC_{COLD} = \frac{(WC_{MAX} - WI_{MAX})}{WI_{MAX}} \times 100\%$$

3.8.3.2 Complete steps 3.8.2.1 through 3.8.2.4 for warm rinse. Calculate the remaining moisture content of the maximum test load for warm rinse, RMC_{WARM}, expressed as a percentage and defined as:

$$RMC_{WARM} = \frac{(WC_{MAX} - WI_{MAX})}{WI_{MAX}} \times 100\%$$

3.8.3.3 Calculate the remaining moisture content of the maximum test load, RMC_{MAX}, expressed as a percentage and defined as:

$$RMC_{MAX} = RMC_{COLD} \times (1 - TUF_{r}) + RMC_{WARM} \times (1 - TUF_{w})$$

where:

- TUF_{r} is the temperature use factor for warm rinse as defined in Table 4.1.1.
- TUF_{w} is the temperature use factor for warm water as defined in Table 4.1.1.

4.1 Clothes washers which have options that result in different RMC values, such as multiple selection of spin speeds or spin times, that are available in the energy test cycle, shall be tested at the maximum and minimum extremes of the available options, excluding any "no spin" (zero spin speed) settings, in accordance with requirements in 3.8.2 or 3.8.3. The calculated RMC_{MAX}, RMC_{COLD}, and RMC_{WARM}, at the maximum and minimum settings, respectively, shall be combined as follows and the final RMC_{MAX} to be used in section 4.3 shall be:

$$RMC = 0.75 \times RMC_{MAX} + 0.25 \times RMC_{MIN}$$

4. Calculation of Derivatives of Test Measurements

4.1 Hot water and machine electrical energy consumption of clothes washers.

4.1.1 Per-cycle temperature-weighted hot water consumption for maximum, average, and minimum water fill levels using each appropriate load size as defined in section 2.8 and Table 5.1. Calculate for the cycle under test the per-cycle temperature weighted hot water consumption for the maximum water fill level, V_{HMAX}, the average water fill level, V_{HAVG}, and the minimum water fill level, V_{HMIN}, expressed in gallons per cycle (or liters per cycle) and defined as:

(a) $V_{HMAX} = H_{WMAX} \times TUF_{r} + H_{CMAX} \times TUF_{w}$

(b) $V_{HAVG} = H_{WMAX} \times TUF_{r} + H_{CMAX} \times TUF_{w}$

(c) $V_{HMIN} = H_{WMAX} \times TUF_{r} + H_{CMAX} \times TUF_{w}$

where:

- H_{WMAX}, H_{CMAX}, and H_{WMIN} are reported hot water consumption values, in gallons per-cycle (or liters per cycle), at maximum, average, and minimum water fill, respectively, for the extra-hot wash cycle with the appropriate test loads as defined in section 2.8.
- H_{WMAX}, H_{CMAX}, and H_{WMIN} are reported hot water consumption values, in gallons per-cycle (or liters per cycle), at maximum, average, and minimum water fill, respectively, for the hot wash cycle with the appropriate test loads as defined in section 2.8.
- H_{WMAX}, H_{CMAX}, and H_{WMIN} are reported hot water consumption values, in gallons per-cycle (or liters per cycle), at maximum, average, and minimum water fill, respectively, for the cold wash cycle with the appropriate test loads as defined in section 2.8.
- H_{WMAX}, H_{CMAX}, and H_{WMIN} are reported hot water consumption values, in gallons per-cycle (or liters per cycle), at maximum, average, and minimum water fill, respectively, for the warm rinse cycle with the appropriate test loads as defined in section 2.8.

4.2 R_{r}, R_{w}, and R_{c} are the reported hot water consumption values, in gallons per-cycle (or liters per cycle), at maximum, average, and minimum water fill, respectively, for the cold wash cycle with the appropriate test loads as defined in section 2.8.

Table 4.1.1—Temperature Use Factors

<table>
<thead>
<tr>
<th>Max Wash Temp Available</th>
<th>≤135 °F (57.2 °C)</th>
<th>≤135 °F (57.2 °C)</th>
<th>≤135 °F (57.2 °C)</th>
<th>≤135 °F (57.2 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Wash Temp Selections</td>
<td>Single</td>
<td>2 Temps</td>
<td>2 Temps</td>
<td>2 Temps</td>
</tr>
<tr>
<td>TUF<sub>r</sub> (extra hot)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TUF<sub>r</sub> (hot)</td>
<td>0.63</td>
<td>0.14</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>TUF<sub>r</sub> (warm)</td>
<td>1.00</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>TUF<sub>r</sub> (warm rinse)</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Department of Energy

4.1.2 Total per-cycle hot water energy consumption for all maximum, average, and minimum water fill levels tested. Calculate the total per-cycle hot water energy consumption for the maximum water fill level, \(HE_{\text{max}} \), the minimum water fill level, \(HE_{\text{min}} \), and the average water fill level, \(HE_{\text{avg}} \), expressed in kilowatt-hours per cycle and defined as:

(a) \(HE_{\text{max}} = [Vh_x T_x K] \text{Total energy when a maximum load is tested.} \)

(b) \(HE_{\text{avg}} = [Vh_x T_x K] \text{Total energy when an average load is tested.} \)

(c) \(HE_{\text{min}} = [Vh_x T_x K] \text{Total energy when a minimum load is tested.} \)

where:

- \(T \) = Temperature rise = 75 \(^\circ \)F (41.7 \(^\circ \)C)
- \(K \) = Water specific heat in kilowatt-hours per gallon degree F = 0.00240 (0.00114 kWh/L-\(^\circ\)C)
- \(Vh_x \), \(Vh_{\text{avg}} \), and \(Vh_{\text{min}} \) are as defined in 4.1.1.

4.1.3 Total weighted per-cycle hot water energy consumption. Calculate the total weighted per cycle hot water energy consumption, \(HE_{T} \), expressed in kilowatt-hours per cycle and defined as:

\[
HE_{T} = (HE_{\text{max}} F_{\text{max}}) + (HE_{\text{avg}} F_{\text{avg}}) + (HE_{\text{min}} F_{\text{min}})
\]

where:

- \(HE_{\text{max}}, HE_{\text{avg}}, \) and \(HE_{\text{min}} \) are as defined in 4.1.2.
- \(F_{\text{max}}, F_{\text{avg}}, \) and \(F_{\text{min}} \) are the load usage factors for the maximum, average, and minimum test loads based on the size and type of control system on the washer being tested. The values are as shown in Table 4.1.3.

<table>
<thead>
<tr>
<th>Water fill control system</th>
<th>Manual</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\text{max}})</td>
<td>0.72</td>
<td>0.12</td>
</tr>
<tr>
<td>(F_{\text{avg}})</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>(F_{\text{min}})</td>
<td>0.12</td>
<td>0.09</td>
</tr>
</tbody>
</table>

1 Reference 3.2.3.3.
2 Reference 3.2.3.2.

4.1.4 Total per-cycle hot water energy consumption using gas-heated or oil-heated water. Calculate for the energy test cycle the per-cycle hot water energy consumption, \(HE_{\text{TG}} \), using gas heated or oil-heated water, expressed in Btu per cycle (or megajoules per cycle) and defined as:

\[
HE_{\text{TG}} = H_{\text{T}} \times 3412 \text{ Btu/kWh or } HE_{\text{TG}} = HE_{\text{f}} \times 1.036 \text{ MJ/kWh}
\]

where:

- \(e \) = Nominal gas or oil water heater efficiency = 0.75
- \(HE_{\text{T}} \) = As defined in 4.1.3.

4.1.5 Per-cycle machine electrical energy consumption for all maximum, average, and minimum test load sizes. Calculate the total per-cycle machine electrical energy consumption for the maximum water fill level, \(ME_{\text{max}} \), the minimum water fill level, \(ME_{\text{min}} \), and the average water fill level, \(ME_{\text{avg}} \), expressed in kilowatt-hours per cycle and defined as:

(a) \(ME_{\text{max}} = [Em_x TUF_{\text{max}}] + [Eh_x TUF_{\text{max}}] + [Er_x TUF_{\text{max}}] \)

(b) \(ME_{\text{avg}} = [Em_x TUF_{\text{avg}}] + [Eh_x TUF_{\text{avg}}] + [Er_x TUF_{\text{avg}}] \)

(c) \(ME_{\text{min}} = [Em_x TUF_{\text{min}}] + [Eh_x TUF_{\text{min}}] + [Er_x TUF_{\text{min}}] \)

where:

- \(Em_{\text{avg}}, Eh_{\text{avg}}, \) and \(Er_{\text{avg}} \) are reported electrical energy consumption values, in kilowatt-hours per cycle, at maximum, average, and minimum test loads, respectively, for the extra-hot wash cycle.

- \(Em_{\text{min}}, Eh_{\text{min}}, \) and \(Er_{\text{min}} \) are reported electrical energy consumption values, in kilowatt-hours per cycle, at maximum, average, and minimum test loads, respectively, for the hot wash cycle.

- \(Em_{\text{max}}, Eh_{\text{max}}, \) and \(Er_{\text{max}} \) are reported electrical energy consumption values, in kilowatt-hours per cycle, at maximum, average, and minimum test loads, respectively, for the warm wash cycle.

- \(Ec_{\text{avg}}, Ec_{\text{min}}, \) and \(Ec_{\text{max}} \) are reported electrical energy consumption values, in kilowatt-hours per cycle, at maximum, average, and minimum test loads, respectively, for the warm rinse cycle.

- \(TUF_{\text{max}}, TUF_{\text{avg}}, TUF_{\text{min}}, TUF_{\text{c}}, \) and \(TUF \) are as defined in Table 4.1.1.

4.1.6 Total weighted per-cycle machine electrical energy consumption. Calculate the total per cycle load size weighted energy consumption, \(ME_{T} \), expressed in kilowatt-hours per cycle and defined as:

\[
ME_{T} = (ME_{\text{max}} F_{\text{max}}) + (ME_{\text{avg}} F_{\text{avg}}) + (ME_{\text{min}} F_{\text{min}})
\]

where:

- \(ME_{\text{max}}, ME_{\text{avg}}, \) and \(ME_{\text{min}} \) are as defined in 4.1.5.
- \(F_{\text{max}}, F_{\text{avg}}, \) and \(F_{\text{min}} \) are as defined in Table 4.1.3.

4.1.7 Total per-cycle energy consumption when electrically heated water is used. Calculate for the energy test cycle the total per-cycle energy consumption, \(E_{\text{T}} \), using electrically heated water, expressed in kilowatt-hours per cycle and defined as:

\[
E_{\text{T}} = HE_{T} + ME_{T}
\]

where:

- \(ME_{\text{T}} \) = As defined in 4.1.6.
- \(HE_{\text{T}} \) = As defined in 4.1.3.

4.2 Water consumption of clothes washers. (The calculations in this Section need not be performed to determine compliance with the energy conservation standards for clothes washers.)

4.2.1 Per-cycle water consumption. Calculate the maximum, average, and minimum total water consumption, expressed in gallons per cycle (or liters per cycle), for the cold wash/cold rinse cycle and defined as:

\[
193
\]
10 CFR Ch. II (1-1-98 Edition)

Pt. 430, Subpt. B, App. J1

Table 5.1—Test Load Sizes

<table>
<thead>
<tr>
<th>Container volume (cu. ft)</th>
<th>Minimum load</th>
<th>Maximum load</th>
<th>Average load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(liter)</td>
<td>lb (kg)</td>
<td>lb (kg)</td>
</tr>
<tr>
<td>0-0.8</td>
<td>0-22.7</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>0.80-0.90</td>
<td>22.7-25.5</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>0.90-1.00</td>
<td>25.5-28.3</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.00-1.10</td>
<td>28.3-31.1</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.10-1.20</td>
<td>31.1-34.0</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.20-1.30</td>
<td>34.0-36.8</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.30-1.40</td>
<td>36.8-39.6</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.40-1.50</td>
<td>39.6-42.5</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.50-1.60</td>
<td>42.5-45.3</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.60-1.70</td>
<td>45.3-48.1</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.70-1.80</td>
<td>48.1-51.0</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.80-1.90</td>
<td>51.0-53.8</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1.90-2.00</td>
<td>53.8-56.6</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.00-2.10</td>
<td>56.6-59.5</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.10-2.20</td>
<td>59.5-62.3</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.20-2.30</td>
<td>62.3-65.1</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.30-2.40</td>
<td>65.1-68.0</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.40-2.50</td>
<td>68.0-70.8</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.50-2.60</td>
<td>70.8-73.6</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.60-2.70</td>
<td>73.6-76.5</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.70-2.80</td>
<td>76.5-79.3</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.80-2.90</td>
<td>79.3-82.1</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.90-3.00</td>
<td>82.1-85.0</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.00-3.10</td>
<td>85.0-87.8</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.10-3.20</td>
<td>87.8-90.6</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.20-3.30</td>
<td>90.6-93.4</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.30-3.40</td>
<td>93.4-96.3</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.40-3.50</td>
<td>96.3-99.1</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.50-3.60</td>
<td>99.1-101.9</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3.60-3.70</td>
<td>101.9-104.8</td>
<td>3.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>
6. WAIVERS AND FIELD TESTING

6.1 Waivers and Field Testing for Non-conventional Clothes Washers. Manufacturers of nonconventional clothes washers, such as clothes washers with adaptive control systems, must submit a petition for waiver pursuant to 10 CFR 430.27 to establish an acceptable test procedure for that clothes washer. For these and other clothes washers that have controls or systems such that the DOE test procedures yield results that are so unrepresentative of the clothes washer’s true energy consumption characteristics as to provide materially inaccurate comparative data, field testing may be appropriate for establishing an acceptable test procedure. The following are guidelines for field testing which may be used by manufacturers in support of petitions for waiver. These guidelines are not mandatory and the Department may determine that they do not apply to a particular model. Depending upon a manufacturer’s approach for conducting field testing, additional data may be required. Manufacturers are encouraged to communicate with the Department prior to the commencement of field tests which may be used to support a petition for waiver. Section 6.3 provides an example of field testing for a clothes washer with an adaptive water fill control system. Other features, such as the use of various spin speed selections, could be the subject of field tests.

6.2 Nonconventional Wash System Energy Consumption Test. The field test may consist of a minimum of 10 of the nonconventional clothes washers (“test clothes washers”) and 10 clothes washers already being distributed in commerce (“base clothes washers”). The tests should include a minimum of 50 energy test cycles per clothes washer. The test clothes washers and base clothes washers should be identical in construction except for the controls or systems being tested. Equal numbers of both the test clothes washer and the base clothes washer should be tested simultaneously in comparable settings to minimize season or consumer laundering conditions or variations. The clothes washers should be monitored in such a way as to accurately record the total energy consumption per cycle. At a minimum, the following should be measured and recorded throughout the test period for each clothes washer: Hot water usage in gallons (or liters), electrical energy usage in kilowatt-hours, and the cycles of usage.

The field test results would be used to determine the best method to correlate the rating of the test clothes washer to the rating of the base clothes washer. If the base clothes washer is rated at A kWh per year, but field tests at B kWh per year, and the test clothes washer field tests at D kWh per year, the test unit would be rated as follows: A×(D/B)=G kWh per year

6.3 Adaptive water fill control system field test. Section 3.2.3.1 defines the test method for measuring energy consumption for clothes washers which incorporate control systems having both adaptive and alternate cycle selections. Energy consumption calculated by the method defined in section 3.2.3.1 assumes the adaptive cycle will be used 50 percent of the time. This section can be used to develop field test data in support of a petition for waiver when it is believed that the adaptive cycle will be used more than 50 percent of the time. The field test sample size should be a minimum of 10 test clothes washers. The test clothes washers should be totally representative of the design, construction, and control system that will be placed in commerce. The duration of field testing in the user’s house should be a minimum of 50 energy test cycles, for each unit. No special instructions as to cycle selection or product usage should be given to the field test participants, other than inclusion of the product literature pack which would be shipped with all units, and instructions regarding filling out data collection forms, use of data collection equipment, or basic procedural methods. Prior to the test clothes washers being installed in the field test locations, baseline data should be developed for all field test units by conducting laboratory tests as defined by section 1 through section 5 of these test procedures to determine the energy consumption, water consumption, and remaining moisture content values. The following data should be measured and recorded for each wash load during the test period: wash cycle selected, the mode of the clothes washer (adaptive or non-adaptive), clothes load dry weight (measured after the clothes washer and clothes dryer cycles are completed) in pounds, and type of...
APPENDIX M TO SUBPART B—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF CENTRAL AIR CONDITIONERS

1. DEFINITIONS

1.1 “Annual performance factor” means the total heating and cooling done by a heat pump in a particular region in one year divided by the total electric power used in one year.

1.2 “ARI” means Air-Conditioning and Refrigeration Institute.

1.3 “ARI Standard 210-79” means the test standard published in 1979 by the ARI and titled “Standard for Unitary Air-Conditioning Equipment”.

1.4 “ARI Standard 240-77” means the test standard published in 1977 by the ARI and titled “Standard for Air-Source Unitary Heat Pump Equipment”.

1.5 “ARI Standard 320-76” means the test standard published in 1976 by the ARI and titled “Standard for Water-Source Heat Pumps”. The single number HSPF energy conservation standard for central air conditioning heat pumps specified in section 325(d)(2) (A) and (B) is based on Region IV and the standardized DHR found in section 6 of this appendix, nearest the capacity measured in the 47°F F test.

1.6 “ASHRAE” means the American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.

1.8 “Continuously recorded” means a method of recording measurements in intervals no greater than 5 seconds.

1.9 “Cooling load factor (CLF)” means the ratio of the total cooling done in a complete cycle of a specified time period, consisting of an “on” and “off” time, to the steady-state cooling done over the same period at constant ambient conditions.

1.10 “Cyclic Test” means a test where the indoor and outdoor conditions are held constant, but the unit is manually turned “on” and “off” for specific time periods to simulate part-load operation.

1.11 “Degradation coefficient (CD)” means the measure of the efficiency loss due to the cycling of the unit.

1.12 “Demand-defrost control system” means a system which is designed to perform the defrost function on the outdoor coil of the heat pump only when a predetermined degradation of performance is measured.

1.13 “Design heating requirement (DHR)” is the amount of heating required to maintain a given indoor temperature at a particular outdoor design temperature.

1.14 “Dry-coil test” means a test conducted at a wet-bulb temperature and a dry-bulb temperature such that moisture will not condense on the evaporator coil of the unit.

1.15 “Heating seasonal performance factor (HSPF)” means the total heat output of a heat pump during its normal annual usage period for heating divided by the total electric power input during the same period.

1.16 “Heating load factor (HLF)” means the ratio of the total heating done in a complete cycle of a specified time period, consisting of an “on” time “off” time, to the steady state heating done over the same period at constant ambient conditions.

1.17 “Latent cooling” means the amount of cooling in Btu’s necessary to remove water vapor from the air passing over the indoor coil by condensation during a period of time.

1.18 “Part-load factor (PLF)” means the ratio of the cyclic energy efficiency ratio to the steady-state energy efficiency ratio at identical ambient conditions.

1.19 “Seasonal energy efficiency ratio (SEER)” means the total cooling of a central air conditioner in Btu’s during its normal annual usage period for cooling divided by the total electric power input in watt-hours during the same period.
1.20 “Sensible cooling” means the amount of cooling in Btu's performed by a unit over a period of time, excluding latent cooling.

1.21 Single package unit” means any central air conditioner in which all the major assemblies are enclosed in one cabinet.

1.22 “Split system” means any central air conditioner in which one or more of the major assemblies are separate from the others.

1.23 “Steady-state test” means a test in which all indoor and outdoor conditions are held constant and the unit is in non-changing operating mode.

1.24 “Temperature bin” means a 5°F increment over a dry-bulb temperature range of 65°F through 104°F for the cooling cycle and −25°F through 64°F for the heating cycle.

1.25 “Time-temperature defrost control system” means a system which automatically provides the defrost function at a predetermined time interval whenever the outdoor temperature drops below a level where frosting will occur.

1.26 “Test condition tolerance” means the maximum permissible variation of the average of the test observations from the standard or desired test condition as provided in 6.1.1, 6.2.1, 6.2.2, and 6.2.3 of this Appendix.

1.27 “Test operating tolerance” means the maximum permissible difference between the maximum and the minimum instrument observation during a test as provided in 6.1.1, 6.2.1, 6.2.2, and 6.2.3 of this Appendix.

1.28 “Wet-coil test” means a test conducted at a wet-bulb temperature and a dry-bulb temperature such that moisture will condense on the test unit evaporator coil.

2. TESTING REQUIRED

2.1 Testing required for air source cooling only units. Two steady state wet coil tests required to be performed, Test A and test B. Test A is to be conducted as an outdoor dry-bulb temperature of 95°F and test B at 82°F. Test C and D are optional tests to be conducted when cyclic performance parameters are to be measured in order to determine the degradation coefficient, C\text{D}. Test C is a steady state dry coil test conducted at an outdoor dry-bulb temperature of 82°F. Test D is a cyclic test also conducted at an outdoor dry-bulb temperature of 82°F. In lieu of conducting tests C and D, an assigned value of 0.25 may be used for the degradation coefficient, C\text{D}.

2.1.1 Testing required for units with single speed compressors and one-speed condenser fans. Test A and test B shall be performed according to the test procedures outlined in 4.1 of this Appendix. In addition, the cyclic performance shall be evaluated by conducting test C and D according to the requirements outlined in 4.1 of this Appendix.

2.2 Testing required for units with two-speed compressors. Two wet coil tests are to be measured in order to determine the degradation coefficient, C\text{D}. Test C and D are conducted at the minum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.

2.2.1 Testing required for units with single speed compressors and multiple-speed condenser fans. The test requirements for multiple-speed condenser fan units shall be the same as described in section 2.1.1 for single speed condenser fan units.

2.2.2 Testing required for units with two-speed compressors, two compressors, or cylinder unloading. The test requirements for two-speed compressor units, two compressor units, or units with cylinder unloading are the same as described in 2.1.1 of this Appendix except that test A and test B shall be performed at each compressor speed or at each compressor capacity.

2.3 Testing required for units with variable-speed compressors. The tests for variable-speed equipment consist of five (5) wet coil tests and two (2) dry coil tests. Two of the wet coil tests, A and B, are conducted at the maximum speed. Two wet coil tests, B and C, and low temperature test, are conducted at the minimum speed. The fifth wet coil test is conducted at an intermediate speed. Dry coil tests, C and D, are conducted at the minimum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.

2.3.1 Testing required for units with two-speed compressors, two compressors, or cylinder unloading capable of varying the sensible to total (S/T) capacity ratio. When a unit employing a two-speed compressor, two compressors, or cylinder unloading provides a method of varying the ratio of the sensible cooling capacity to the total cooling capacity, (S/T), the test requirements are the same as for two-speed compressor units as described in 2.1.3 of this Appendix.

2.3.5 Testing required for units with triple-capacity compressors. (Reserved)

2.4 Testing required for units with variable-speed compressors. The tests for variable-speed equipment consist of five (5) wet coil tests and two (2) dry coil tests. Two of the wet coil tests, A and B, are conducted at the maximum speed. Two wet coil tests, B and C, and low temperature test, are conducted at the minimum speed. The fifth wet coil test is conducted at an intermediate speed. Dry coil tests, C and D, are conducted at the minimum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.

2.5 Testing required for units with triple-capacity compressors. (Reserved)

2.6 Testing required for units with variable-speed compressors. The tests for variable-speed equipment consist of five (5) wet coil tests and two (2) dry coil tests. Two of the wet coil tests, A and B, are conducted at the maximum speed. Two wet coil tests, B and C, and low temperature test, are conducted at the minimum speed. The fifth wet coil test is conducted at an intermediate speed. Dry coil tests, C and D, are conducted at the minimum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.

2.7 Testing required for units with variable-speed compressors. The tests for variable-speed equipment consist of five (5) wet coil tests and two (2) dry coil tests. Two of the wet coil tests, A and B, are conducted at the maximum speed. Two wet coil tests, B and C, and low temperature test, are conducted at the minimum speed. The fifth wet coil test is conducted at an intermediate speed. Dry coil tests, C and D, are conducted at the minimum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.

2.8 Testing required for units with variable-speed compressors. The tests for variable-speed equipment consist of five (5) wet coil tests and two (2) dry coil tests. Two of the wet coil tests, A and B, are conducted at the maximum speed. Two wet coil tests, B and C, and low temperature test, are conducted at the minimum speed. The fifth wet coil test is conducted at an intermediate speed. Dry coil tests, C and D, are conducted at the minimum speed if the coefficient of degradation (C\text{D}) value of 0.25 is not adopted. The test conditions and procedures for the above are outlined in sections 3.1 and 4.1 of this Appendix.
unloading. With the unit operating: at high compressors speed (two-speed compressor), with both compressors in operation (two-compressors), or at the maximum capacity (cylinder unloading); the following tests are required to be performed on all units: the High Temperature Test at 47°F, the Frost Accumulation Test, and the Low Temperature Test.

An additional test (cyclic at 47°F) is required, with the unit operating at the high compressor speed (two-speed compressor), with both compressors in operation (two-compressors), or at the maximum capacity (cylinder unloading); if the normal mode of operation requires cycling “on” and “off” of the compressor(s) at high speed or maximum capacity.

With the unit operating: at the low compressor speed (two-speed compressor), with the single compressor which normally operates at low loads (two-compressors), or at the low compressor capacity (cylinder unloading); the following tests are required to be performed on all units: the High Temperature Test at 47°F, the High Temperature Test at 62°F, and the Cyclic Test. Additional tests, (Frost Accumulation Test and Low Temperature Test) are required, with the unit operating: on low compressor speed (two-speed compressor), with the single compressor which normally operates at low loads (two-compressors) or at the low compressor capacity (cylinder unloading), if the unit’s lowest compressor speed or low capacity performance is needed to calculate its seasonal performance.

2.2.3 Testing required for units with triple-compressor units. (Reserved)

2.2.4 Testing required for units with variable-speed compressors. There are seven basic tests and one optional test for variable-speed units. Three tests (high temperature test, low temperature test, and frost accumulation test) are performed at the maximum speed. Three tests (two high temperature and one cyclic test) are performed with the unit operating at minimum speed. A second frost accumulation test is performed at an intermediate speed. The intermediate speed is the same as in the cooling mode.

In lieu of the maximum speed frost accumulation test, two equations are provided in section 4.2 of this Appendix. In lieu of the cyclic test an assigned value of 0.25 may be used for the coefficient of degradation C0. The optional test is a nominal capacity test applicable to units which have a heating mode maximum speed greater than the cooling mode maximum speed. The conditions and procedures for the above tests are described in sections 3.2 and 4.2 respectively, of this Appendix.

2.2.5 Testing required for split-type ductless system. The type of compressor installed in the outdoor unit determines the testing required, refer to previous sections 2.2.1, 2.2.2, 2.2.3, or 2.2.4. The conditions and procedures will be modified as indicated for the various types as stated in sections 3.2 and 4.2 respectively.

2.3 Testing required for air source units which provide both heating and cooling. The requirements for units which provide both heating and cooling shall be the same as the requirements in Section 2.1 and 2.2 of this Appendix.

3. TESTING CONDITIONS

3.1 Testing conditions for air source cooling only units. The test room requirements and equipment installation procedures are the same as those specified in sections 11.1 and 11.2 of ASHRAE Standard 37-78. Units designed for both horizontal and vertical installation shall be tested in the orientation in which they are most frequently installed. All tests shall be performed at the normal residential voltage and frequency for which the equipment is designed (either 115 or 230 volts and 60 hertz), the test installation shall be designed such that there will be no air flow through the cooling coil due to natural or forced convection while the indoor fan is “off”. This shall be accomplished by installing dampers upstream and downstream of the test unit to block the off period air flow. Values of capacity for rating purposes are to be rounded to the nearest 100 Btu/hour for capacities less than 20,000 Btu/hour; to the nearest 200 Btu/hour for capacities between 20,000 and 37,999 Btu/hour; and to the nearest 500 Btu/hour for capacities between 38,000 and 64,999 Btu/hour.

The following conditions listed in ARI Standard 210.79 shall apply to all tests performed in Section 3.1 of this Appendix:

5.1.3.4 Cooling Coil Air Quantity.

5.1.3.6 Requirements for Separated Assemblies.

3.1 Testing conditions for units with single speed compressors and single speed condenser fans.

3.1.1 Testing conditions for units with single speed compressors and single speed condenser fans.

3.1.1.1 Steady state wet-coil performance tests (Test A and Test B). Test A and test B shall be performed with the air entering the indoor side of the unit having a dry-bulb temperature of 80°F and a wet-bulb temperature of 80°F. The dry-bulb temperature of the air entering the outdoor side of the unit shall be 55°F in test A and 80°F in test B. The temperature of the air surrounding the outdoor side of the unit in each test shall be the same as the outdoor entering air temperature except for units or sections thereof intended to be installed only indoors, in which case the dry-bulb temperature surrounding that indoor side of the unit shall be 80°F. For those units which reject condensate to the condenser, located in the outdoor side of the unit, the outdoor wet-bulb temperature surrounding the outdoor side of the unit shall be 75°F in test A and 85°F in test B.
3.1.2 Steady state dry coil performance test (Test C) and cyclic dry coil performance test (Test D). Test C and test D shall be performed with the air entering the indoor side of the unit having a dry-bulb temperature of 80°F and a wet-bulb temperature of 57°F or less be used. The dry-bulb temperature of the air entering the outdoor portion of the unit shall be 82°F. The outdoor portion of the unit shall be subject to the same conditions as the requirements for conducting test B as stated previously in section 3.1.1. Test C shall be conducted with the unit operating steadily. Test D shall be conducted by cycling the unit on and off by manual or automatic operation of the normal control circuit of the unit. The unit shall cycle with the compressor on for 6 minutes and off for 24 minutes. The indoor fan shall also cycle on and off, the duration of the indoor fan on and off periods being governed by the automatic operation selected by the manufacturer normally supplies with the unit. The results of tests C and D shall be used to calculate a degradation coefficient, \(C_D\), by the procedures outlined in 5.1 of this Appendix.

3.1.3 Testing conditions for units with two-speed compressors and multiple-speed condenser fans. The condenser fan speed to be used in conducting test A shall be that speed which normally occurs at an outdoor dry-bulb temperature of 95°F, and for test B, the fan speed shall be that which normally occurs at an outdoor dry-bulb temperature of 82°F. If elected to be performed, tests C and D shall be conducted at the same condenser fan speed as in test B.

3.1.4 Testing conditions for units with two-speed compressors, two compressors, or cylinder unloading capable of varying the sensible to total (S/T) capacity ratio. The mode of operation selected for controlling the S/T ratio in the performance of test A and test B at each compressor speed shall be such that it does not result in an operating configuration which is not typical of a normal residential installation. If elected to be performed, tests C and D shall be conducted at low compressor speed (single compressor operating) with the same S/T control mode as used in test B when performed at the low compressor speed. Likewise, tests C and D shall also be conducted at high compressor speed (two compressors operating) and with the same S/T control mode as in test A when performed at the high compressor speed.

In the case of units with cylinder unloading, the loaded and unloaded conditions correspond to high and low compressor speed on two-speed units respectively.

3.1.5 Testing conditions for units with triple-speed compressors. (Reserved)

3.1.6 Additional testing conditions for cooling-only units with variable-speed compressors. For cooling-only units and air-source heat pumps with variable-speed compressors, the air flow rate at fan speeds less than the maximum fan speed shall be determined by using the fan law for a fixed resistance system. The air flow rate is given by the ratio of the actual fan speed to the maximum fan speed multiplied by the air flow rate at the maximum fan speed. Minimum static pressure requirements only apply when the fan is running at the maximum speed.

3.1.6.1 Testing conditions for steady-state wet coil tests. Tests A and B shall be performed at the maximum speed at conditions specified in section 3.1.1 of this Appendix. Test B, and the low temperature test are performed at the minimum speed with outdoor dry bulb temperatures of 82°F and 67°F respectively. The intermediate speed wet coil test is performed at the outdoor dry bulb temperature of 87°F. For units which reject the condensate the outdoor wet bulb temperature shall be maintained at 79°F for Test A, 69°F for Tests B and D, 53°F for the low temperature test and 69°F for the intermediate test. The indoor conditions for all wet coil tests are the same as those given in section 3.1.1 of this Appendix.
3.1.6.2 Test conditions for dry coil tests. Dry coil tests C and D are conducted at an outdoor dry bulb temperature of 67°F. For units which reject condensate the outdoor wet bulb temperature shall be 53.5°F. The indoor dry bulb temperature shall be 80°F and the wet bulb temperature shall be sufficiently low so no condensation occurs (either 115 or 230 volts and 60 hertz). Values of capacity for rating purposes are to be rounded off to the nearest 20,000 Btu/hour for capacities less than 20,000 Btu/hour; to the nearest 250 Btu/hour for capacities between 20,000 and 37,999 Btu/hour; and to the nearest 500 Btu/hour for capacities between 38,000 and 64,999 Btu/hour.

3.1.7 Split-type ductless systems. Test conditions shall be the same as those specified for the same single outdoor unit compressor type, assuming it was matched with a single indoor coil.

3.1.7.1 Interconnection. For split-type ductless systems, all standard rating tests shall be performed with a minimum length of 25 feet of interconnected tubing between each indoor fan-coil unit and the common outdoor unit. Such equipment in which the interconnection tubing is furnished as an integral part of the machine not recommended for cutting to length shall be tested with complete length of tubing furnished, or with 25 feet of tubing, whichever is greater. At least 10 feet of the interconnection tubing shall be exposed to the outside conditions. The line sizes, insulation and details of installation shall be in accordance with the manufacturer's published recommendation.

3.1.7.2 Control testing conditions for split-type ductless systems. For split-type ductless systems, a single control circuit shall be substituted for any multiple thermostats in order to maintain a uniform cycling rate during test D and the high temperature heating cycled test. During the steady-state tests, all thermostats shall be shunted resulting in all indoor fan-coil units being in operation.

3.1.7.3 Split-type ductless systems with multiple coils or multiple discharge outlets shall have short plenums attached to each outlet. Each plenum shall discharge into a single common duct section, the duct section in turn discharging into the air measuring device (or a suitable dampering device when direct air measurement is not employed). Each plenum shall have an adjustable restrictor located in the plane where the plenum enter the common duct section for the purpose of equalizing the static pressures in each plenum. The length of the plenum is a minimum of \(2.5 \times (A\times B)\) feet, \(A\) = width and \(B\) = height of duct or outlet. Static pressure readings are taken at a distance of \(2\times(A\times B)\) feet from the outlet.

3.2 Testing conditions for air source heating only units. The equipment under test shall be installed according to the requirements of Section 11.2 of ASHRAE Standard 37-78 and Section 5.1.4.5 of ARI Standard 240-77. Test chamber requirements are the same as given in Section 11.1 of ASHRAE Standard 37-78. Units designed for both horizontal and vertical installation shall be tested in the orientation in which they are most often installed. All tests shall be performed at the normal residential voltage and frequency for which the equipment is designed (either 115 or 230 volts and 60 hertz). Values of capacity for rating purposes are to be rounded off to the nearest 20,000 Btu/hour for capacities less than 20,000 Btu/hour; to the nearest 250 Btu/hour for capacities between 20,000 and 37,999 Btu/hour; and to the nearest 500 Btu/hour for capacities between 38,000 and 64,999 Btu/hour.

3.2.1 Testing conditions for units with single speed compressors.

3.2.1.1 High temperature test conditions. The High Temperature Test at 47°F shall be conducted at an outdoor dry-bulb temperature of 60°F and an outdoor wet-bulb temperature of 60°F. The High Temperature Test at 62°F shall be conducted at an outdoor dry-bulb temperature of 60°F and an outdoor wet-bulb temperature of 56.5°F. For both tests, the dry-bulb temperature entering and surrounding the indoor portion of the unit shall be 70°F and a maximum wet-bulb temperature of 60°F. The duration of the tests shall be for a minimum of 1½ hour.

3.2.1.2 Cycling test conditions. The Cycling Test at 47°F shall be conducted at the same dry-bulb and wet-bulb temperature as the High Temperature Test at 47°F as described in 3.2.1.1. During the Cycling Test, the indoor fan shall cycle "on" and "off", as the compressor cycles "on" and "off", except that the indoor fan cycling times may be delayed due to controls that are normally installed with the unit. The compressor cycling times shall be 6 minutes "On" and 24 minutes "off," The test installation shall be designed such that there will be no airflow through the indoor unit due to natural or forced convection while the indoor fan is "off." This shall be accomplished by installing dampers upstream and downstream of the test unit to block the off period airflow.

3.2.1.3 Frost accumulation test conditions. The frost accumulation test requires that the unit undergo a defrost prior to the actual test. The test then begins at defrost termination and ends at the next defrost termination. Defrost termination occurs when the controls normally installed within the unit are actuated to cause it to change defrost operation to normal heating operation. During the test, auxiliary resistance heaters shall not be employed during either the heating or defrost portion of the test.

3.2.1.4 Low temperature test conditions. The Low Temperature Test shall be conducted at a dry-bulb temperature entering the outdoor portion of the unit of 17°F and a wet-bulb...
temperature of 15°F. The air entering the indoor portion of the unit shall have a dry-bulb temperature of 70°F and a maximum wet-bulb temperature of 60°F.

3.2.1.5 Additional testing conditions. All tests shall be conducted at the indoor-side air quantities specified in Sections 4.1.4.3 and 5.1.4.6 and Table 2 of ARI Standard 240-77. The following conditions listed in ARI Standard 240-77 shall apply to all tests performed in Section 3.2 of this Appendix.

3.2.3 Testing conditions for units with triple-capacity compressors. (Reserved)

3.2.4 Testing conditions for units with variable-speed compressors. The testing condition for variable-speed compressors shall be the same as those for single-speed units as described in section 3.2.1 of this Appendix with the following exceptions; the cyclic test is performed with an outdoor dry-bulb temperature of 62°F and a wet bulb temperature of 56.5°F. The optional, nominal capacity test shall be performed at the conditions specified for the 47°F high temperature test.

3.2.5 Testing conditions for split-type ductless system. The testing conditions for split-type ductless systems shall be based on the type of compressor installed in the single outdoor unit. The heating mode shall have the same piping and control requirements as in 3.1.7.

3.4.4.4 Outdoor-Side Air Quantity; and 5.1.4.5 Requirements for Separated Assemblies.

In all tests, the specified dry-bulb temperature entering the outdoor portion of the unit also applies to the air temperature surrounding that portion of the unit. Similarly, models where portions are intended to be installed indoors shall have the air temperature surrounding that portion of the unit the same as the indoor air temperature.

3.2.2 Testing conditions for units with two-speed compressors, two compressors or cylinder unloading. The testing conditions for two-speed compressors, two compressors, or cylinder unloading shall be the same as those for single-speed units as described in 3.2.1.

3.3 Testing conditions for air source units which provide both heating and cooling. The testing conditions for units which provide both heating and cooling shall be the same as the requirements in Sections 3.1 and 3.2 of this Appendix.

4.0 Testing procedures. Measure all electrical inputs as described in the procedures below. All electrical measurements during all "on" and "off" periods shall include auxiliary power or energy (controls, transformers, crankcase heaters, etc.) delivered to the unit.

4.1 Test procedures for air source cooling-only units. All steady-state wet- and dry-coil performance tests on single package units shall simultaneously employ the Air-Enthalpy Method (Section 3 of ASHRAE Standard 37-78) on the indoor side and one other method consisting of either the Air-Enthalpy Method or the Compressor Calibration Method (Section 4 of ASHRAE Standard 37-78) on the outdoor side. All steady-state dry-coil performance tests on split systems shall simultaneously employ the Air-Enthalpy Method or the Compressor Calibration Method on the indoor side and the Volatile Refrigerant Flow Method (Section 5 of ASHRAE Standard 37-78) on the outside. All cyclic dry-coil performance tests shall employ the Air-Enthalpy Method, indoor side only. The values calculated from the two test methods must agree within 6 percent in order to constitute a valid test. Only the results from the Air-Enthalpy Method on the indoor side shall be used in the calculations in Section 5.1. Units shall be installed and tested in such a manner that when operated under steady-state conditions, the cooling coil and condenser coil air flows meet the requirements of Sections 5.1.3.4, 5.1.3.5, and 5.1.3.7 of ARI Standard 210.79.

4.1.1 Test operating procedures. 4.1.1.1 Steady-state wet-coil performance tests (Test A and Test B). Steady-state wet-coil performance tests (A and B) shall be conducted in accordance with the conditions described in sections 4.1.1.1, 4.1.1.2, 4.1.2, 4.1.3, 4.1.4, and 4.1.5 of this Appendix and the procedures described for cooling tests in Section 11.3 of ASHRAE standard 37-78 and evaluated in accordance with the cooling-related requirements of Section 12 of the ASHRAE Standard 37-78. The test room reconditioning apparatus and the equipment under test shall be operated until equilibrium conditions are attained.

4.1.1.2 Steady-state and cyclic dry-coil performance tests (Test C and Test D). The steady-state and cyclic dry-coil tests (C and D) shall be conducted as described below in accordance with the conditions described in sections 4.1.1.1, 4.1.1.2, 4.1.2, 4.1.3, 4.1.4, and 4.1.5 of this Appendix. The results shall be evaluated in accordance with the cooling related requirements of Sections 12.1.5, 12.1.6, 12.1.7, of ASHRAE Standard 37-78. The test room reconditioning apparatus and the equipment under test shall be operated until equilibrium conditions are attained, but not for less than one hour before data for test C are recorded. For all equipment test methods including the Compressor Calibration Method, test C shall be performed with data recorded at 10-minute intervals until four consecutive sets of readings are attained with the tolerance prescribed in Section 11.6 of ASHRAE Standard 37-78. When the Air-Enthalpy Method is used on the outdoor side for test C, the requirements of this section shall apply to both the preliminary test and the regular equipment test; the requirements of Section 4.1.1.1 of ASHRAE Standard 37-78 shall also
apply. Immediately after test C is completed the test unit shall be manually cycled "off" and "on" using the time periods from 3.1.1 of this Appendix until steadily repeating ambient conditions are achieved in both the indoor and outdoor test chambers, but for not less than 2 complete "off"/"on" cycles. Without a break in the cycling pattern, the unit shall be run through an additional "off"/"on" cycle during which the test data required in 5.1 shall be recorded. During this last cycle, which is referred to as the test cycle, the indoor and outdoor test room ambient conditions shall remain within the tolerances specified in 4.1.3 of this Appendix during the cyclic dry-coil tests, all air moving equipment on the condenser side shall cycle "on" and "off" when the compressor cycles "on" and "off". The indoor air moving equipment shall also cycle "off" as governed by any automatic controls normally installed with the unit. This last requirement applies to units having an indoor fan time delay. Units not supplied with an indoor fan time delay shall have the indoor air moving equipment cycle "on" and "off" as the compressor cycles "on" and "off".

Cooling cyclic tests for variable-speed units shall be conducted by cycling the compressor 12 minutes "on" and 48 minutes "off". The capacity shall be measured for the total integration time (t_{cyc}), which is the compressor "on" time of 12 minutes or the "on" time as extended by fan delay, if so equipped. The electrical energy shall be measured for the total integration time (t_{cyc}) of 60 minutes. In lieu of conducting C and D tests, an assigned value of 0.25 shall be used for the degradation coefficient for cooling, C_D. 4.1.1.3 Testing procedures for triple-capacity compressors. (Reserved)

4.1.1.4 Intermediate cooling steady-state test for units with variable-speed compressors. For units with variable-speed compressors, an intermediate cooling steady-state test shall be conducted in which the unit shall be operated at a constant, intermediate compressor speed ($k = i$) in which the dry-bulb and wet-bulb temperatures of the air entering the indoor coil are 80°F and 67°F, and the outdoor coil are 97°F and 69°F. The tolerances for the dry-bulb and wet-bulb temperatures of the air entering the indoor and outdoor coils shall be ±0.5 percent of indicated value and have a response time of 2.5 seconds or less. Response time in the time required for the instrumentation to obtain 63 percent of the final steady-state temperature difference when subjected to a step change in temperature difference of 15°F or more. Electrical measurement devices (watt-hour meters) used during all tests shall be accurate to within ±0.5 percent of indicated value.

4.1.3 Test tolerances. All steady-state wet-and dry-coil performance tests shall be performed within the applicable operating and test condition tolerances specified in Section 11.6 and Table III of ASHRAE Standard 37.78. 4.1.3.1 The indoor and outdoor average dry-bulb temperature for the cyclic dry-coil test D shall both be within 1.0°F of the indoor and outdoor average dry bulb temperature for the steady-state dry coil test C, respectively. 4.1.3.2 The test condition and test operating tolerances for conducting test D are stated in 6.1.1 of this Appendix. Variation in the test conditions greater than the tolerances prescribed in 6.1.1 of this Appendix shall invalidate the test. It is suggested that an electric resistance heater having a heating capacity approximately equal to the sum of the cooling capacity and compressor and condenser fan power should be installed in the outdoor test room and cycled "off" and "on" as the unit cycles "on" and "off" repeatedly to improve control in the outdoor test room. Similarly, an electric resistance heater having a heating capacity approximately equal to the cooling capacity of the unit could be installed in the indoor test room, and cycled "on" and "off" as the test unit cycles "on" and "off" to improve indoor room control.

4.2 Testing procedures for air source heating only units.

4.2.1 Test operating procedures. All High Temperature Tests, the Cyclic Test, the
Department of Energy

Frost Accumulation Test, and the low Temperature test shall have the performance evaluated by the Air-Enthalpy Method on the indoor side. In addition, the High Temperature Test and the Low Temperature Test shall have a simultaneous test method (as described in 4.1) used as a check. The values calculated from the two methods must agree with the unit shall be defrosted and the test run as a valid test. Only the results from the Air-Enthalpy Method on the indoor side shall be used in the calculations in section 5.2.

4.2.1.1 Test procedure for high temperature test. When the outdoor Air-Enthalpy Method is used, the outdoor chamber must not interfere with the normal air circulating pattern during the preliminary test. It is necessary to determine and adjust for system resistance when the outdoor air measuring apparatus is attached to the outdoor portion of the unit. The test room apparatus and test units must be operated for at least one hour with at least ½ hour at equilibrium and at the specified test conditions prior to starting the test. The High Temperature Test shall then be conducted for a minimum of ½ hour with the unit set to the outdoor portion of the unit. The test room apparatus and test units are used in the calculations in section 5.2.

4.2.1.2 Test procedures for the cyclic test. The cycle times for variable-speed units is the same as the cyclic time in the cooling mode as specified in 4.1.1.2 of this Appendix. Cyclic tests of split-type ductless units will be conducted without dampers, and the data cycle shall be preceded by a minimum of two cycles in which the indoor and outdoor test chambers, but for less units, the indoor fan will operate three minutes prior to compressor "cut-on" and the data cycle shall be preceded by a minimum of two cycles in which the indoor fan cycles on and off with the compressor. During the data cycle for the split type ductless units, the indoor fan will operate three minutes prior to compressor "cut-on" and remain on for three minutes after compressor "cut-off". The integration time for capacity and power will be from compressor "cut-on" time to indoor fan "cut-off" time. The fan power for the three minutes after compressor "cut-off" shall be subtracted from the integrated heating capacity. For split-type ductless systems which turn the indoor fan off during defrost, the indoor supply duct shall not be blocked.

4.2.1.3 Test procedure for the frost accumulation test. The defrost controls shall be set at the normal settings which most typify those encountered in Region IV as described in section 6.2.4 and 6.2.5 of this Appendix. The test room reconditioning equipment and the unit under test shall be operated for at least ½ hour prior to the start of a "preliminary" test period. The preliminary test period and the test period itself are to be conducted within the test tolerances given in section 6.2.3 of this Appendix. In some cases, the preliminary defrost cycle may be manually induced, however, it is important that the normally operating controls govern the defrost termination in all cases. For units containing defrost controls which are
likely to cause defrost at intervals less than one hour when the unit is operating at the required test conditions, the preliminary test period shall start at the termination of a defrost cycle which automatically occurs and shall end at the termination of the next automatically occurring defrost cycle. For units containing defrost controls which are likely to cause defrost at intervals exceeding one hour when operating at the required test condition, the preliminary test period consists of “heating-only” preliminary operation for at least one hour, after which a defrost may be manually or automatically induced. The test period then begins at the termination of this defrost cycle and ends at the termination of the next automatically occurring defrost cycle. If the unit has not undergone a defrost after 12 hours, then the tests shall be concluded and the results calculated for this 12-hour period. For units which turn the indoor fan off during defrost, the indoor supply duct shall be blocked during all defrost cycles to prevent natural or forced convection through the indoor unit. During defrost, resistance heaters normally installed with the unit shall be prevented from operating.

For units with variable-speed compressors, the frost accumulation test at the intermediate speed shall be conducted such that the unit will operate at a constant, intermediate compressor speed (k = i) as determined in Section 4.1.1.4 of this Appendix. The following two equations may be used in lieu of the frost accumulation test for variable-speed.

\[
\begin{align*}
\text{a:} & \quad Q = 0.90 \times \left(1 - \frac{Q}{(17k + \text{Q})} \right) \times \left[\frac{35 - 17}{(47 - 17)}\right] \\
\text{b:} & \quad E = 0.385 \times \left(1 - \frac{E}{(17k + \text{E})} \right) \times \left[\frac{35 - 17}{(47 - 17)}\right]
\end{align*}
\]

4.2.1.4 Test procedures for the low temperature test. Where applicable, the High Temperature Test preparation and performance requirements shall also be used in the Low Temperature Test. The test room reconditioning equipment shall first be operated in a steady-state manner for at least one-half hour at equilibrium and at the specified test conditions. The unit shall then undergo a defrost, either automatic or manually induced. It is important that the unit terminate the defrost sequence by the action of its own defrost controls. The defrost controls are to remain at the same setting as specified in 4.2.1.3. At a time no earlier than 10 minutes after defrost termination, the test shall start. Test duration is one-half hour. For all units, defrost should be prevented during the one-half hour test period.

4.2.2 Test instrumentation.

4.2.2.1 Test instrumentation for the high temperature test. The indoor air flow rate shall be determined as described in Section 7.1 through 7.4 of ASHRAE Standard 37-78. This requires the construction of an air receiving chamber and discharge chamber separated by partition in which one or more nozzles are located. The receiving chamber is connected to the indoor air discharge side of the test specimen through a short plenum. The exhaust side of the air flow rate measuring device contains an exhaust fan with some means to vary its capacity to obtain the desired external resistance to air flow rate. The exhaust side is then left open to the test room or is ducted through a conditioning apparatus and then back to the test specimen inlet. The static pressure across the nozzles, the velocity pressure, and the static pressure measurements at the nozzle throat shall be measured with manometers which will result in errors which are no greater than ±0.1 percent of indicated value and having minimum scale divisions not exceeding 2.0 percent of the reading. Static pressure and temperature measurements must be taken at the nozzle throat in order to obtain density of the air. The areas of the nozzles shall be determined by measuring their diameter with an error no greater than ±0.2 percent in four places approximately 45 degrees apart around the nozzle in each of two places through the nozzle throat, one at the outlets and the others in the straight section near the radius. The energy usage of the compressor, indoor and outdoor fan, and all other equipment components shall be measured with a watt-hour meter which is accurate to within ±0.5 percent of the quantity measured. Measurements of the air temperature entering and leaving the indoor coil or the difference between these two shall be made in accordance with the requirements of ASHRAE Standard 41 part 1. These temperatures shall be continuously recorded with instrumentation having a total system accuracy within ±0.3°F of indicated value and a response time of 2.5 seconds or less. Temperature measurements are to be made upstream of the static pressure tap on the inlet and downstream of the static pressure taps on the outlet. The indoor and outdoor dry-bulb temperatures.
shall be continuously recorded with instrumentation which will result in an error no greater than ±0.3°F of indicated value. The outdoor wet-bulb temperature shall be continuously recorded. All pressure measurements in the ducts and across the unit shall be made in accordance with Section 8 of ASHRAE Standard 37-78 using equipment which will result in an error no greater than ±0.01 inch of water. Static pressure measurements shall be made and recorded at 5 minute intervals. All other data not continuously recorded shall be recorded at 10 minute intervals.

4.2.2.2 Test instrumentation for the cycling test. The air flow rate during the on-period of the Cyclic Test shall be the same agreed within ±1 percent as the air flow rate measured during the previously conducted High Temperature Test. All other instrumentation requirements are identical to 4.2.2.1 of this Appendix.

4.2.2.3 Test instrumentation for the frost accumulation test. The indoor-side dry-bulb temperature and outdoor-side dry-bulb temperature shall be continuously recorded with instrumentation having a total system accuracy within ±0.3°F of indicated value. The outdoor dew point temperature shall be determined with an error no greater than ±0.5°F of indicated value using continuously recording instrumentation. All other data shall be recorded at 10 minute intervals during the heating cycle. Defrost initiation, termination and complete test cycle time (from defrost termination to defrost termination) shall be recorded. Defrost initiation is defined as the actuation (either automatically or manually) of the controls normally installed with the unit which cause it to alter its normal heating operation in order to eliminate possible accumulations of frost on the outdoor coil. Defrost termination occurs when the controls normally within the unit are actuated to change from defrost operation to normal heating operation. Provisions should be made so that instrumentation in capable of recording the cooling done during defrost as well as the total electrical energy usage during defrost. These data and the continuously recorded data need be the only data obtained during defrost.

4.2.2.4 Test instrumentation for the low temperature test. Instrumentation for the Low Temperature Test is identical to that of the High Temperature Test described in section 4.2.2.1 of this Appendix.

4.2.3 Test tolerances.

4.2.3.1 Test tolerances for the high temperature test. All tests shall be conducted within the tolerances specified in Section 6.2.1. Variation greater than those given shall invalidate the test. The heating capacity results by the Indoor Air Enthalpy Method shall agree within 6 percent of the value determined by any other simultaneously conducted capacity test in order for the test to be valid.

4.2.3.2 Test tolerances for the cyclic test. The test condition tolerances and test operating tolerances for the on-period portion of the test cycle are specified in Section 6.2.2. Variations exceeding any specified test tolerance shall invalidate the test results.

4.2.3.3 Test tolerances for the frost accumulation test. Test condition and test operating tolerances for Frost Accumulation Tests are specified in Section 6.2.3. Test operating tolerances during heating applies when the unit is in the heating mode, except for the first 5 minutes after the termination of a defrost cycle. Test operating tolerance during defrost applies during a defrost cycle and during the first 5 minutes after defrost termination when the unit is operating in the heating mode. In determining whether the test condition tolerances are met, only the heating portion of the test period shall be used in calculating the average values. Variations exceeding the tolerances presented in Section 6.2.3 shall invalidate the test.

4.2.3.4 Test tolerances for the low temperature test. During the test period for the Low Temperature Test, the operating conditions shall be within the tolerances specified in Section 6.2.1 of this Appendix.

4.3 Testing procedures for air source units which provide both heating and cooling. The testing procedures for units which provide both heating and cooling shall be the same as those specified in Sections 4.1 and 4.2 of this Appendix. Also during the off-period of the dry-cool cooling test (test D), the switch-over valve shall remain in the cooling mode, unless the controls normally supplied with the unit are designed to reverse it, in which case the controls shall operate the valve. During the off-period of the cyclic heating test at 47°F, the switch-over valve shall remain in the heating mode, unless the controls normally supplied with the unit are designed to reverse it, in which case the controls shall operate the valve.

5.0 Calculations for performance factors.

5.1 Calculations of seasonal energy efficiency ratios (SEER) in air-source units.

The testing data and results required to calculate the seasonal energy efficiency ratio (SEER) in Btu's per watt-hour shall include the following:

(i) Cooling capacities (Btu/hr) from tests A and B and, if applicable, the cooling capacity (Btu/hr) from test C and the total cooling done from test D (Btu's).

\[Q_{\text{cool}, k \ (95^\circ F)} \]

\[Q_{\text{cool}, k \ (82^\circ F)} \]

\[Q_{\text{cool}, \text{dry}} \]

\[Q_{\text{cyc}, \text{dry}} \]

(ii) Electrical power input to all components and controls (watts) from tests A, B, and if applicable the electrical power input to all components and controls (watts) from
test C and the electrical usage (watt-hour) from test D.

\[E_{ss k} (95F) \]
\[E_{ss k} (82F) \]
\[E_{ss k}, \text{ dry} \]

(iii) Indoor air flow rate (SCFM) and external resistance to indoor air flow (inches of water).

(iv) Air temperature (°F)

Outdoor dry bulb
Outdoor wet bulb
Indoor dry bulb
Indoor wet bulb

Where the cooling capacities \(Q_{ss k} \), from test A, \(Q_{ss} \), from test B, and \(Q_{ss, \text{ dry}} \), from test C, are calculated using the equations specified in section 3.7 of ASHRAE Standard 37-78. The total cooling done, \(Q_{cyc, \text{ dry}} \), from test D, is calculated using equation (1) below.

Units which do not have indoor air circulating fans furnished as part of the model shall have their measured total cooling capacities adjusted by subtracting 1250 Btu/hr per 1,000 CFM of measured indoor air flow and adding to the total steady-state electrical power input 365 watts per 1,000 CFM of measured indoor air flow.

Energy efficiency ratios from tests A, B, and C, EER\(_A\), EER\(_B\), EER\(_{ss, \text{ dry}}\) respectively, are each calculated as the ratio of the total cooling capacity in Btu/hr to the total electrical power input in watts.

Units which do not have indoor air circulating fans furnished as part of the model shall adjust their total cooling done and energy used in one complete cycle for the effect of circulating indoor air equipment power. The value to be used for the circulating indoor air equipment power shall be 1250 Btu/hr per 1,000 CFM of circulating indoor air. The energy usage required in one complete cycle required for indoor air circulation is the product of the circulating indoor air equipment power and the duration of time in one cycle that the circulating indoor air equipment is on. The total cooling done shall then be the measured cooling in one complete cycle minus the energy usage required for indoor air circulation in one complete cycle. The total electrical energy usage shall be the sum of the energy usage required for indoor air circulation in one complete cycle and the energy used by the remaining equipment components (compressor(s), outdoor fan, crankcase heater, transformer(s), etc.) in one complete test cycle.

Energy efficiency ratio from tests D, EER\(_{cyc, \text{ dry}}\) is calculated as the ratio of the total cooling done in Btu's to the total electrical energy usage in watt-hours.
The results of the cyclic and steady-state dry-coil performance tests shall be used in the following equations:

\[Q_{rev, dry} = \frac{60 \times T \times C_{w}}{[T_p \times (1 + W_p)]} \]

where

- \(Q_{rev, dry} \) is total cooling over a cycle consisting of one compressor "on" period and one compressor "off" period (Btu/h).
- \(T_p \) is indoor air flow rate (cfm) at the dry-bulb temperature, humidity ratio, and pressure existing in the region of measurement.
- \(C_{w} \) is specific heat of air-water mixture per pound of dry air, calculated as follows:
 \[C_{w} = \frac{U}{W_p} \]
- \(U \) is specific volume of air-water mixture at the same dry-bulb temperature, humidity ratio, and pressure used in the determination of the indoor air flow rate (Btu/hr/ft^3).
- \(W_p \) is humidity ratio (lb/lfm).

and \(T \) (hr^2°F), which is described by the equation:

\[T = \int_{time \text{ indoor fan off}}^{time \text{ indoor fan on}} \left[T_{ind}(t) - T_{a}(t) \right] dt \]

where

- \(T_{ind}(t) \) is dry-bulb temperature of air entering the indoor coil (°F) at time \(t \).
- \(T_{a}(t) \) is dry-bulb temperature of air leaving the indoor coil (°F) at time \(t \).

\[CLF = \frac{Q_{rev, dry}}{Q_{rev}} \times \tau \]

where

- \(CLF \) is cooling load factor.
- \(Q_{rev, dry} \) is total steady-state cooling capacity from test C (Btu/hr).
- \(\tau \) is duration of time (hours) for one complete cycle consisting of one compressor "on" time and one compressor "off" time.

The preceding equations are then used in the following equation to calculate a degradation coefficient \(C_D \) rounded to the nearest .01.

\[C_D = \frac{1}{\frac{EER_{rev, dry}}{EER_{rev}} \times (1 - CLF)} \]

where

- \(EER_{rev, dry} \) is energy efficiency ratio from test C (Btu/hr).
- \(EER_{rev} \) is energy efficiency ratio from test B.

The seasonal energy efficiency ratio in Btu’s/watt-hour shall be determined by the equation:

\[SEER = PLF(0.5) \times EER_B \]

where

- \(EER_B \) is energy efficiency ratio determined from test B as outlined in 2.1.1.
- \(PLF(0.5) \) is part-load performance factor when cooling load factor = 0.5 as determined from the equation:
 \[PLF(0.5) = 1 - 0.5 \times C_D \]

where \(C_D \) is the degradation coefficient described in 2.1.1 as calculated in equation (4) above.

5.1.2 Method for calculating a SEER for units with single-speed compressors and multi-speed condenser fans. The seasonal energy efficiency ratio (SEER) for units employing single-speed compressors and multi-speed condenser fans shall be based on the energy efficiency ratio obtained for test B and the method outlined in 2.1.2 of this Appendix to account for the performance under cyclic conditions. The energy efficiency ratio for test B is obtained with the unit operating with the condenser fan speed which normally occurs at test B ambient conditions.

The seasonal energy efficiency ratio in Btu’s/watt-hour shall be determined by the equation:

\[SEER = PLF(0.5) \times EER_B \]

where

- \(EER_B \) is energy efficiency ratio determined from test B as outlined in 2.1.2.
- \(PLF(0.5) \) is part-load performance factor as determined from the equation:
 \[PLF(0.5) = 1 - 0.5 \times C_D \]

where \(C_D \) is the degradation coefficient described in 2.1.2 as calculated in equation (4) above.

5.1.3 Method for calculating a SEER for units with two speed compressors or two compressors, or cylinder unloading. The calculation procedure described in this section shall be based on the performance of test A and B at each of the compressor speeds for two-speed compressor units, subject to the conditions on condenser fan speed described in 3.1.3.

Units operating with two compressors shall have the SEER calculated in the same manner as two-speed compressor units. The superscripted index \(k = 2 \) (and the term “low-speed”) designates the compressor that normally operates at an outdoor dry-bulb temperature of 82°F and \(k = 2 \) (and the term “high speed”) denotes operation with both compressors.

207
In order to evaluate the steady-state capacity $Q_{st}(T_i)$, and power input, $E_{st}(T_i)$, at temperature T_i for each compressor speed, $k=1$, $k=2$, the results of tests A and B from 5.1 shall be used in the following equation:

$$Q_{st}(T_i) = Q_{st}^{A}(95 \text{ F}) + Q_{st}^{B}(95 \text{ F}) [33 - (5 \times j)]$$

where

- $Q_{st}^{A}(95 \text{ F})$: Steady-state capacity measured from test A as outlined in 2.1.3.
- $Q_{st}^{B}(95 \text{ F})$: Steady-state capacity measured from test B as outlined in 2.1.3.

$$E_{st}(T_i) = E_{st}^{A}(95 \text{ F}) + E_{st}^{B}(95 \text{ F}) [33 - (5 \times j)]$$

When

- $E_{st}^{A}(95 \text{ F})$: Electrical power input measured using test A as outlined in 2.1.3.
- $E_{st}^{B}(95 \text{ F})$: Electrical power input measured using test B as outlined in 2.1.3.

The building cooling load $BL(T_i)$ for the four cases described in section 5.1.3.1 through 5.1.3.4 shall be obtained from the following equation:

$$BL(T_i) = \frac{5 \times j}{11} - 3 \times \frac{Q_{st}^{*}(95 \text{ F})}{95 - 65}$$

where

- $Q_{st}^{*}(95 \text{ F})$: Steady-state capacity measured from test A in 2.1.3 at the high compressor speed.

The value of the degradation coefficient C_{st}^{*} for high compressor speed cycling and C_{st}^{*} for high speed on/off compressor cycling is determined as described in section 2.1.3, or as calculated above in equation (1).

5.1.3.2 When a unit must alternate between high ($k=2$) and low ($k=1$) compressor speeds to satisfy the building cooling load at a temperature T_i, evaluate the following equations:

1. $X^{k=1} = \frac{Q_{st}^{k=1}(T_i) - BL(T_i)}{Q_{st}^{*}(T_i) - Q_{st}^{k=1}(T_i)}$
2. $X^{k=2} = 1 - X^{k=1}$
3. $\frac{Q(T_i)}{N} = \frac{X^{k=1} \times E_{st}^{k=1}(T_i)}{N}$
4. $\frac{E(T_i)}{N} = \frac{X^{k=2} \times E_{st}^{k=2}(T_i)}{N}$

5.1.3.3 When a unit must cycle on and off at high compressor speed ($k=2$) in order to satisfy the building cooling load at a temperature T_i, evaluate the equations provided in section 5.1.3.1 replacing $k=1$ data with the $k=2$ data.

5.1.3.4 When a unit operates continuously at high compressor speed ($k=2$) at an outdoor temperature T_i, evaluate the following equations:

1. $\frac{Q(T_i)}{N} = Q_{st}^{k=1}(T_i) \times \frac{R_i}{N}$
2. $\frac{E(T_i)}{N} = E_{st}^{k=1}(T_i) \times \frac{R_i}{N}$

5.1.3.5 Calculate the SEER in Brtv's/ watt-hr. using the values for the terms

$$\frac{Q(T_i)}{N} \text{ and } \frac{E(T_i)}{N}$$
as determined at each temperature bin according to the applicable conditions described in sections 5.1.3.1 through 5.1.3.4 as follows:

\[
SEER = \frac{\sum_{j=1}^{8} Q(T_j)}{N} \sum_{j=1}^{8} \frac{E(T_j)}{N}
\]

5.1.4 Method for calculating a SEER for units with two speed compressors, two compressor or cylinder unloading capable of varying the sensible to total capacity (S/T) ratio, Multispeed compressor and two-speed compressor units capable of varying the sensible to total capacity ratio (S/T) shall have the seasonal energy efficiency ratio determined as described in section 5.1.3. For such units, the mode of operation selected to determine the steady-state capacities \(Q_a, q(95) \), \(Q_a, q(82) \), \(E_t, q(95) \), \(E_t, q(82) \), and power inputs at each compressor speed \(k = 1, k = 2 \), for tests A and B is outlined in section 2.10.

5.1.5 Seasonal energy efficiency ratio for air-source units with triple-capacity compressors. (Reserved)

5.1.6 Seasonal energy efficiency ratio for air-source units with variable-speed compressors. For air-source units with variable-speed compressors, the seasonal energy efficiency ratio (SEER), shall be defined as follows:

\[
SEER = \frac{\sum_{j=1}^{8} Q(T_j)}{N} \sum_{j=1}^{8} \frac{E(T_j)}{N}
\]

where the number of hours in the \(j \)th temperature bin \((h_j) \) is defined in Table 6.1.2 of this Appendix.

The SEER shall be determined by evaluating three cases of the compressor operation. Case I is the same as specified in 5.1.3.1 with the exception that the quantities \(Q_{a, q}^{*}(T_j) \) and \(E_{t, q}^{*}(T_j) \) shall be calculated by the following equations:

\[
Q_{a, q}^{*}(T_j) = \frac{(82°F) + Q_{a, q}^{*}(82°F) + Q_{a, q}^{*}(87°F) - Q_{a, q}^{*}(82°F)}{82°F - 67°F} \cdot (82°F - T_j)
\]

Case II is when the compressor operates at any intermediate \((k = v) \) speed between the maximum \((k = 2) \) and minimum \((k = 1) \) speeds to satisfy the building cooling load. Evaluate the following equations:

\[
\begin{align*}
Q^{*}(T_j) & = Q^{*}(T) \\
Q^{*}(T) & = \frac{Q^{*}(T)}{EER^{*}(T)} \\
E^{*}(T) & = \frac{E^{*}(T)}{N} \cdot \frac{N}{N}
\end{align*}
\]

where

\[
E_{t, q}^{*}(T_j) = \text{the electrical power input required by the unit to deliver capacity matching the building load at temperature } T_j
\]

\[
Q_{a, q}(T_j) = \text{the capacity delivered by the unit matching the building load at temperature } T_j
\]

\[
\text{EER}_{t, q}^{*}(T_j) = \text{the steady-state energy efficiency ratio at temperature } T_j \text{ and an intermediate speed at which the unit capacity matches the building load.}
\]

Before the steady-state intermediate speed energy efficiency ratio, \(\text{EER}_{t, q}^{*}(T_j) \), can be calculated, the unit performance has to be evaluated at the compressor speed \((k = 1) \) at which the intermediate speed test was conducted. The capacity of the unit at any temperature \(T \) when the compressor operates at the intermediate speed \((k = 1) \) may be determined by:

\[
Q^{*}(T) - Q^{*}(85°F) + M_{o}(T) - 87°F
\]

where

\[
Q^{*}(87°F) = \text{the capacity of the unit at } 87°F \text{ determined by the intermediate cooling steady-state test.}
\]
\[M_0 = \frac{Q_0^{(82)} - Q_0^{(67)} \cdot (1 - N_e)}{82 - 67} + N_e \cdot \frac{Q_0^{(95)} - Q_0^{(82)}}{95 - 82} \]

\[N_e = \frac{Q_0^{(87)} - Q_0^{(87)}}{Q_0^{(87)} - Q_0^{(87)}} \]

Once the equation for \(Q_0^{(87)}(T_0) \) has been determined, the temperature where \(Q_0^{(87)}(T_0) = BL(T_0) \) can be found. This temperature is designated as \((T_{n0}) \). The electrical power input for the unit operating at the intermediate compressor speed \((k=1) \) and the temperature \((T_{n0}) \) is determined by:

\[E_0^{(87)}(T_{n0}) = E_0^{(87)} + M_0 \cdot (T_{n0} - 87) \]

where

\[E_0^{(87)} \] is the electrical power input of the unit at \(87 \)\(^\circ\)F determined by the intermediate cooling steady-state test

\[M_0 = \text{slope of the electrical power input curve for the intermediate compressor speed \(k=1 \)} \]

\[N_e = \frac{E_0^{(87)} - E_0^{(87)}}{E_0^{(87)} - E_0^{(87)}} \]

The energy efficiency ratio of the unit, \(\text{EER}_n^{(T_{n0})} \), at the intermediate speed \((k=1) \) and temperature \(T_{n0} \) can be calculated by the equation:

\[\text{EER}_n^{(T_{n0})} = \frac{Q_0^{(87)}(T_{n0})}{E_0^{(87)}(T_{n0})} \]

Similarly, energy efficiency ratios at temperatures \(T_0 \) and \(T_1 \) can be calculated by the equations:

\[\text{EER}_0^{(T_0)} = \frac{Q_0^{(87)}(T_0)}{E_0^{(87)}(T_0)} \]

\[\text{EER}_0^{(T_1)} = \frac{Q_0^{(87)}(T_1)}{E_0^{(87)}(T_1)} \]

where

\[T_0 = \text{temperature at which the unit, operating at the minimum compressor speed, delivers capacity equal to the building load \((Q_0^{(87)}(T_0) = BL(T_0)) \), found by equating the capacity equation \((Q_0^{(87)}(T_0)) \) and building load equation \((BL(T_0)) \) in section 5.1.3 and solving for temperature.} \]

\[T_1 = \text{temperature at which the unit, operating at the maximum compressor speed, delivers capacity equal to the building load \((Q_0^{(87)}(T_1) = BL(T_1)) \), found by equating the capacity equation \((Q_0^{(87)}(T_1)) \) and the building equation \((BL(T_1)) \) in section 5.1.3 and solving for temperature.} \]

\[\text{EER}_0^{(T_0)} = \text{the steady state energy efficiency ratio at the minimum compressor speed at temperature} \ T_0. \]

\[\text{EER}_0^{(T_1)} = \text{the steady state energy efficiency ratio at the maximum compressor speed at temperature} \ T_1. \]

\[E_0^{(87)}(T_0) = \text{the electrical power input at the minimum compressor speed at temperature} \ T_0 \text{calculated by the equation in section 5.1.3.} \]

\[E_0^{(87)}(T_1) = \text{the electrical power input at the maximum compressor speed at temperature} \ T_1 \text{calculated by the equation in section 5.1.3.} \]

The energy efficiency ratio, \(\text{EER}_n^{(T_{n0})} \), shall be calculated by the following equation:

\[\text{EER}_n^{(T_{n0})} = A + BT_0 + CT_0^{-1} \]

where coefficients \(A, B, \) and \(C \) shall be evaluated using the following calculation steps:

\[D = \frac{T_0 - T_1}{T_n - T_1} \]

210
Department of Energy

Pt. 430, Subpt. B, App. M

\[
\frac{EER^* - EER^*}{EER^* - EER^*} = \frac{D^*}{T_i - T_o}
\]

\[
C_o = \frac{EER^* - EER^*}{T_i - T_o}
\]

\[
A = EER^* - B^*T_i - C^*T_i^2
\]

Case III is the same as specified in 5.1.3.4. The quantities \(EER^*\) and \(EER^*\) shall be calculated by the equations prescribed in 5.1.3.

5.1.7. Seasonal energy efficiency ratio for split-type ductless systems. For split-type ductless systems, SEER shall be defined as specified in section 5.1.1 of this Appendix for each combination set of indoor coils to be used with a common outdoor unit.

5.2 Calculation of Heating Seasonal Performance Factors (HSPF) for Air-Source Units.

The testing data and results required to calculate the heating seasonal performance factor (HSPF), in Btu/hr, shall include the following:

(i) Heating capacities (Btu/hr) from the indoor air enthalpy method for the High Temperature Tests, and the total heating done (Btu/hr) for the cyclic and frost accumulation tests.

\[Q_{a}(47), \quad Q_{a}(62), \quad Q_{a}(17), \quad Q_{a}(47), \quad Q_{a}(62), \quad Q_{b}(47), \quad Q_{b}(62), \quad Q_{b}(47), \quad Q_{b}(62)\]

(ii) Electrical power input to all components (watts) for the steady state tests, and the electrical usage (watt-hours) for the cyclic and frost accumulation tests

\[E_{a}(47), \quad E_{a}(62), \quad E_{a}(47), \quad E_{a}(62), \quad E_{a}(47), \quad E_{a}(62), \quad E_{a}(47), \quad E_{a}(62)\]

(iii) Indoor air flow rate (SCFM) and external resistance to indoor air flow (inches of water).

(iv) Air temperature (°F)

Outdoor dry bulb

Outdoor wet bulb or dew point

Indoor dry bulb and

Indoor wet bulb.

(v) Data as specified in Table II of ASHRAE Standard 37-78.

Where the heating capacities \(Q_{a}(47), \quad Q_{a}(62)\) and \(Q_{a}(17)\) and the indoor air flow rate are calculated using the equations specified in section 5.1.7 of 5.1.4 of ASHRAE Standard 37-78. The total heating done, \(Q_{h}(47)\) and \(Q_{h}(62)\) are calculated using the equations below.

Units not having an indoor fan as part of the model tested shall add 1250 Btu/hr per 1,000 SCFM of indoor air handled to the measured capacity to obtain the total heating capacity, \(Q_{a}(17)\), \(Q_{a}(47)\) or \(Q_{a}(62)\), and add 365 watts per 1,000 SCFM of indoor air handled to the measured power to obtain the total power input, \(E_{a}(17)\), \(E_{a}(47)\), or \(E_{a}(62)\), to the unit.

The coefficients of performance (COP) for the High Temperature Tests \(COP_{a}(47)\) or \(COP_{a}(47)\), and the Low Temperature Test, \(COP_{a}(47)\), are calculated as the ratio of the heating capacity in Btu/hr to the product of 3.413 and the power inputs to the indoor fan in watts and the power inputs to the remaining equipment components (including all controls) in watts.

Units which do not have indoor air circulating fans furnished as part of the model shall have their total heating done (\(Q_{h}(47)\)) and energy used \(E_{a}(47)\) in one complete cycle adjusted for the effect of circulating indoor air equipment power. For units tested without an indoor fan as part of the model, \(Q_{a}(47)\) shall be increased by a quantity of heat equal to the product of 1250 Btu/hr per 1,000 SCFM, the length of the on-period of the test cycle in hours, and the flow rate of indoor air circulated in units of 1,000 SCFM. The total energy usage, \(E_{a}(47)\), shall be the sum of the energy usage required for air circulation during the test cycle and the energy used by the remaining equipment components (including all controls) during the test cycle. Units not having an indoor fan as part of the model tested shall set the energy required for indoor air circulation equal to the quantity given by the product of 365 watts per 1000 SCFM, the length of the on-period of the test cycle in hours, and the rate of indoor air circulated in units of 1,000 SCFM.

The cyclic coefficient of performance, \(COP_{a}(47)\) is calculated as the ratio of the total heating done \(Q_{a}(47)\) in Btu/hr to the product of 3.413 Btu/watt-hour and the total energy usage \(E_{a}(47)\) in watt-hours.

The net heating capacity, \(Q_{a}(35)\) (Btu/hr), is the total net heating done over the test period (including any credit for the indoor fan heat) divided by the total length of the test period, in hours.
For units tested without indoor fans, the value determined for Q_{DIF} (35) below shall be increased by a quantity of heat equal to the product of 1250 Btu/hr per 1000 SCFM, the length of time in hours during the Frost Accumulation Test that there was indoor air circulating, and the average flow rate of indoor air circulated in units of 1000 SCFM.

The total energy usage, E_{EF} (35) shall be the sum of the energy usage required for indoor-air circulation during the test period and the energy used by the remaining equipment components during the test period. Units not having an indoor fan as part of the model tested, shall set the energy required for indoor air circulation equal to the quantity given by the product of 365 watts per 1000 SCFM, the length of time in hours during the Frost Accumulation Test that there was indoor air circulating, and the average flow rate of indoor air circulated in units of 1000 SCFM.

The actual heating done during the Cyclic Test, $Q_{a}(47)$, shall be determined using the following equation:

$$Q_{a}(47) = 60 \times \frac{\Delta T \times \Delta W \times \Gamma}{V(1+\Delta W)}$$

where

- ΔT = the flow rate during the on-period calculated in accordance with section 7.4 of ASHRAE Standard 27-78 in CFM.
- ΔW = Specific heat at constant pressure of air-water mixture per pound of dry air. (Btu/lb$^-\text{°F}$).
- V = Specific volume of air-water mixture at the same dry-bulb temperature, humidity ratio, and pressure used in the determination of the indoor air flow rate (ft3/lb).
- ΔW = Humidity ratio (lb/lb).

and Γ (hr$^-\text{°F}$), which is described by the equation:

$$\Gamma = \int_{\text{time indoor fan off}}^{\text{time indoor fan on}} \frac{[T_{a}(t) - T_{a}(t)]dt}{(T_{a}(t) - T_{a}(t))}$$

where

- $T_{a}(t)$ = Dry-bulb temperature of air entering the indoor coil ($°F$) at time t.
- $T_{a}(t)$ = Dry-bulb temperature of air leaving the indoor coil ($°F$) at time t.

The net heating, Q_{DIF} (35) in Btu's done during the test period shall be determined using the following equation:

$$Q_{\text{DIF}}(35) = 60 \times \frac{\Delta T \times \Delta W \times \Gamma}{V(1+\Delta W)}$$

where

- ΔT = the average of the air flow rate calculated at four or more time intervals throughout the heating phase of the test using the equation in section 7.1 of ASHRAE Standard 27-78.
- ΔW = Specific heat at constant pressure of air-water mixture per pound of dry air. (Btu/lb$^-\text{°F}$).
- V = Specific volume of air-water mixture at the same dry-bulb temperature, humidity ratio, and pressure used in the determination of the indoor air flow rate (ft3/lb).
- ΔW = Humidity ratio (lb/lb).

and Γ (hr$^-\text{°F}$), which is described by the equation:

$$\Gamma = \int_{\text{time next defrost termination}}^{\text{time of defrost termination}} \frac{[T_{a}(t) - T_{a}(t)]dt}{(T_{a}(t) - T_{a}(t))}$$

where

- $T_{a}(t)$ = Dry-bulb temperature of air entering the indoor coil ($°F$) at time t.
- $T_{a}(t)$ = Dry-bulb temperature of air leaving the indoor coil ($°F$) at time t.

The cyclic degradation coefficient shall be calculated as follows:

$$C_C = \frac{1 - \text{COP}_{\text{ave}}(47)}{1 - \text{COP}_{\text{ave}}(47)}$$

where

- C_C = the cyclic degradation coefficient rounded to the nearest $\%$.
- $\text{COP}_{\text{ave}}(47)$ = as defined above.
- $\text{COP}_{\text{ave}}(47)$ = as defined above.

H_LF is the heating load factor calculated as follows:

$$H_LF = \frac{Q_{\text{DIF}}(47)}{Q_{a}(47) \times r}$$

where

- $Q_{\text{DIF}}(47)$ = as defined above.
- $Q_{a}(47)$ = as defined above.
- r = Duration of time (hours) for one complete cycle consisting of one compressor "on" time and one compressor "off" time.

For air-source units that are equipped with "demand defrost control systems", the value for HSPP, as determined above shall be multiplied by an enhancement factor F_{EF} to compensate for improved performance not measured in the Frost Accumulation Test. The factor, F_{EF}, depends on the number of defrost cycles in a 12-hour period and should be calculated as follows:

$$F_{\text{EF}} = 1 + 0.03 \times (T_{\text{in}} - 90)/(T_{\text{out}} - 90)$$
where
\(F_{\text{def}}\) is the demand defrost credit (used as a multiplier to HSPF).

\(T_{\text{def}}\) is the time between defrost terminations in minutes or 90 (whichever is greater).

\(T_{\text{max}}\) is the maximum time between defrosts allowed by controls, in minutes or 720 (whichever is less).

5.2.1 Calculation of the heating seasonal performance factor (HSPF) for air-source heat pumps with single speed compressors.

For each climatic region listed in section 6.2.4, and for design heating requirements equal to or less than the standardized minimum and maximum design heating requirements defined below, calculate the HSPF defined as:

\[
\text{HSPF} = \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j} - T_{b}} \left\{ \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j}} \left(\frac{1}{\text{PLF}(X)_j} \right) \right\}
\]

where

\(N\) is the number of zones in the region.

\(T_{b}\) is the ambient temperature in the region.

\(T_{j}\) is the air temperature at the point of measurement in the region.

\(\text{PLF}(X)\) is the part load factor at the point of measurement in the region.

\(\text{HSPF}\) is a function of the ratio of the air temperature at the point of measurement to the ambient temperature in the region.

The quantities \(\text{BLCT}_{T_j}\), \(\text{K}(T_j)\), \(\text{X}(T_j)\), \(\text{RH}(T_j)\) and \(\text{PLF}(X)\) are defined by the following equations:

\(\text{BLCT}_{T_j} = \frac{\left(T_{j} - T_{b} \right)}{\left(T_{j} - T_{b} \right) + C_{\text{DHE}}} \)

where \(C_{\text{DHE}}\) is a correction factor which tends to improve the agreement between calculated and measured HSPF values.

\(\text{K}(T_j)\) is the heating performance factor for the point of measurement in the region.

\(\text{X}(T_j)\) is the weighted average of the heating performance factor for the point of measurement in the region.

\(\text{RH}(T_j)\) is the relative humidity at the point of measurement in the region.

\(\text{PLF}(X)\) is the part load factor at the point of measurement in the region.

Therefore, the HSPF is calculated as:

\[
\text{HSPF} = \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j} - T_{b}} \left\{ \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j}} \left(\frac{1}{\text{PLF}(X)_j} \right) \right\}
\]

where

\(T_{j}\) is the air temperature at the point of measurement in the region.

\(T_{b}\) is the ambient temperature in the region.

\(\text{PLF}(X)\) is the part load factor at the point of measurement in the region.

\(\text{HSPF}\) is a function of the ratio of the air temperature at the point of measurement to the ambient temperature in the region.

The quantities \(\text{BLCT}_{T_j}\), \(\text{K}(T_j)\), \(\text{X}(T_j)\), \(\text{RH}(T_j)\) and \(\text{PLF}(X)\) are defined by the following equations:

\[
\text{HSPF} = \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j} - T_{b}} \left\{ \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j}} \left(\frac{1}{\text{PLF}(X)_j} \right) \right\}
\]

where

\(T_{j}\) is the air temperature at the point of measurement in the region.

\(T_{b}\) is the ambient temperature in the region.

\(\text{PLF}(X)\) is the part load factor at the point of measurement in the region.

\(\text{HSPF}\) is a function of the ratio of the air temperature at the point of measurement to the ambient temperature in the region.

The quantities \(\text{BLCT}_{T_j}\), \(\text{K}(T_j)\), \(\text{X}(T_j)\), \(\text{RH}(T_j)\) and \(\text{PLF}(X)\) are defined by the following equations:

\[
\text{HSPF} = \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j} - T_{b}} \left\{ \sum_{j=1}^{N} \frac{\left(T_{j} - T_{b} \right)}{T_{j}} \left(\frac{1}{\text{PLF}(X)_j} \right) \right\}
\]

where

\(T_{j}\) is the air temperature at the point of measurement in the region.

\(T_{b}\) is the ambient temperature in the region.

\(\text{PLF}(X)\) is the part load factor at the point of measurement in the region.

\(\text{HSPF}\) is a function of the ratio of the air temperature at the point of measurement to the ambient temperature in the region.
where

\[T_{o-w} \] the outdoor temperature that the compressor is automatically shut off at (if no such temperature exists, \(T_{o-w} \) is always greater than \(T_{o-w} \) and \(T_{o-h} \))

\[T_{o-h} \] the outdoor temperature that the compressor is automatically turned on (if applicable) if designed for low temperature automatic shut-off

\[C_w \] degradation factor determined described in section 5.2.1

In using the above equation to calculate HSPF, the heat pump capacity in Btu/hr, \(Q \), and the power in watts, \(E \), shall be obtained as follows:

\[Q(T_i) = \begin{cases} (Q_{o-w}(47) - Q_{o-h}(17)) / 30 & T_i \geq 45^\circ F \text{ or } T_i \leq 17^\circ F \\ Q_{o-h}(17) & 17^\circ F < T_i < 45^\circ F \\ \end{cases} \]

\[E(T_i) = \begin{cases} (E_{o-w}(47) - E_{o-h}(17)) / 30 & T_i \geq 45^\circ F \text{ or } T_i \leq 17^\circ F \\ E_{o-h}(17) & 17^\circ F < T_i < 45^\circ F \\ \end{cases} \]

For each climatic region listed in section 6.2.4, and for design heating requirements equal to both the standardized minimum and maximum design heating requirements defined below, calculate the HSPF defined as:

\[HSPF = \frac{\sum_{i} n_i B(L_i)}{N} + \frac{\sum_{i} E(L_i)}{N} \]

where

\[\Sigma \] as defined in 5.2.1

\[n_i \] as defined in 5.2.1

\[T_i \] as defined in 5.2.1

\[B(L_i) \] the building load at temperature \(T_i \) in Btu/hr, calculated by:

\[B(L_i) = \frac{65 - T_i}{65 - T_{o-w}} \times (C \times (DHR)) \]

where

\(C \) - 0.37 is a correction factor which tends to improve the agreement between calculated and measured building loads

\(DHR \) - the minimum and maximum design heating requirement which the heat pump is likely to encounter when installed in a residence, rounded off to the nearest standardized DHR in section 6.2.6 in Btu's per hour

where

\[(\text{minimum design heating requirement}) = \begin{cases} Q^{k=1}(47) & \text{for regions I, II, III, IV, and V} \\ Q^{k=2}(47) & \text{for region VI} \end{cases} \]

and

\[(\text{maximum design heating requirement}) = \begin{cases} 2Q^{k=1}(47) & \text{for regions I, II, III, IV and VI} \\ 2.2Q^{k=1}(47) & \text{for region VI} \end{cases} \]

where

\[Q^{k=1}(47) \] is the heat pump capacity measured during the high temperature performance test at \(T_o \) with the unit operating at the high compressor speed or with both compressors in operation, in Btu/hr

\[T_{o-w} \] the outdoor design temperature given in section 6.2.4 in degree \(F \)

Note: The superscript \((k=1)\) and \((k=2)\) refer to the heat pump operating at low speed or single compressor operation and high speed or two compressor operation respectively.
Case I.—Units operating at low compressor speed or with a single compressor, i.e., \(k = 1 \), for which the building heating load, \(BL(T_i) \), is less than or equal to the heating capacity, \(Q^{*+1}(T_i) \).

\[
BL(T_i) \leq Q^{*+1}(T_i)
\]

\[
E(T_i) = \frac{C_{i}^{+1}(T_i) X^{*+1}(T_i) \Delta V^{*+1}(T_i) n_i}{PLF^{*+1}}
\]

\[
RH(T_i) = \frac{n_i BL(T_i) [1 - \delta'(T_i)]}{3.413}
\]

\[
X^{*+1}(T_i) = \frac{BL(T_i)}{Q^{*+1}(T_i)}
\]

\[
PLF^{*+1} = 1 - C_{i}^{+1}(1 - X^{*+1})
\]

\[
\delta'(T_i) = \begin{cases}
0; & T_i \leq T_{FF} \\
\frac{1}{2}; & T_{FF} < T_i \leq T_{ON} \\
1; & T_i > T_{ON}
\end{cases}
\]

Case II.—Units alternating between high speed or two compressor operation \((k = 2) \) and low speed or single compressor operation \((k = 1) \) to satisfy the building heating load at temperature \(T_i \).

\[
Q^{*+1}(T_i) < BL(T_i) < Q^{*+1}(T_i)
\]

\[
E(T_i) = \frac{C_{i}^{+1}(T_i) X^{*+1}(T_i) \Delta V^{*+1}(T_i) n_i}{PLF^{*+1}}
\]

\[
RH(T_i) = \frac{n_i BL(T_i) [1 - \delta'(T_i)]}{3.413}
\]

\[
X^{*+1}(T_i) = \frac{BL(T_i)}{Q^{*+1}(T_i)}
\]

\[
PLF^{*+1} = 1 - C_{i}^{+1}(1 - X^{*+1})
\]

\[
\delta'(T_i) = \begin{cases}
0; & T_i \leq T_{FF} \\
\frac{1}{2}; & T_{FF} < T_i \leq T_{ON} \\
1; & T_i > T_{ON}
\end{cases}
\]

Case III.—Units cycling on and off at high compressor speed or cycling both compressors on and off together \((k = 2) \) in order to satisfy the building heating load at temperature \(T_i \).

\[
Q^{*+1}(T_i) < BL(T_i) < Q^{*+2}(T_i)
\]

\[
E(T_i) = \frac{C_{i}^{+1}(T_i) X^{*+1}(T_i) \Delta V^{*+1}(T_i) n_i}{PLF^{*+1}}
\]

\[
RH(T_i) = \frac{n_i BL(T_i) [1 - \delta'(T_i)]}{3.413}
\]

\[
X^{*+1}(T_i) = \frac{BL(T_i)}{Q^{*+1}(T_i)}
\]

\[
PLF^{*+1} = 1 - C_{i}^{+1}(1 - X^{*+1})
\]

\[
\delta'(T_i) = \begin{cases}
0; & T_i \leq T_{FF} \\
\frac{1}{2}; & T_{FF} < T_i \leq T_{ON} \\
1; & T_i > T_{ON}
\end{cases}
\]

Case IV.—Units operating continuously at high compressor speed or with both compressors in continuous operation \((k = 2) \) in order to satisfy the building heating load at temperature \(T_i \).

\[
BL(T_i) \geq Q^{*+1}(T_i)
\]

\[
E(T_i) = \frac{C_{i}^{+1}(T_i) X^{*+1}(T_i) \Delta V^{*+1}(T_i) n_i}{PLF^{*+1}}
\]

\[
RH(T_i) = \frac{n_i BL(T_i) [1 - \delta'(T_i)]}{3.413}
\]

\[
X^{*+1}(T_i) = \frac{BL(T_i)}{Q^{*+1}(T_i)}
\]

\[
PLF^{*+1} = 1 - C_{i}^{+1}(1 - X^{*+1})
\]

\[
\delta'(T_i) = \begin{cases}
0; & T_i \leq T_{FF} \\
\frac{1}{2}; & T_{FF} < T_i \leq T_{ON} \\
1; & T_i > T_{ON}
\end{cases}
\]

Where in each of the above cases...
Pt. 430, Subpt. B, App. M

10 CFR Ch. II (1–1–98 Edition)

\[P_{H}(T_i) \text{-- heat pump heating load factor,} \]
\[F_{H}(T_i) \text{-- heat pump part load factor (not required for case II and IV).} \]
\[F_{H}(T_i) \text{-- heat pump low temperature cutout factor.} \]
\[T_{in} \text{ as defined in 5.21.} \]
\[C_{h}^{(17)} \text{-- the part load degradation factor described in section 5.2.1 and 5.2 for the unit cycling at high compressor speed or with both compressors simultaneously cycling (if applicable).} \]
\[C_{h}^{(17)} \text{-- the part load degradation factor described in section 5.2.1 and 5.2 for the unit cycling at low compressor speed or with the single compressor that normally operates at low heating loads.} \]

\[\dot{Q}_{h}^{(T_i)} = \begin{cases} \dot{Q}_{h}^{(47)} & \text{if } T_i \geq 40^\circ \text{F} \\ \dot{Q}_{h}^{(17)} & \text{if } 17^\circ \text{F} \leq T_i < 40^\circ \text{F} \\ \dot{Q}_{h}^{(17)} & \text{if } T_i < 17^\circ \text{F} \end{cases} \]

\[\dot{E}_{h}^{(T_i)} = \begin{cases} \dot{E}_{h}^{(47)} & \text{if } T_i \geq 40^\circ \text{F} \\ \dot{E}_{h}^{(17)} & \text{if } 17^\circ \text{F} \leq T_i < 40^\circ \text{F} \\ \dot{E}_{h}^{(17)} & \text{if } T_i < 17^\circ \text{F} \end{cases} \]

For each of the six regions specified in section 6.2.5, calculate the heating seasonal performance factors and seasonal operating costs corresponding to the standardized maximum and minimum design heating requirements and for all other standardized design heating requirements (see section 6.2.6) between the maximum and the minimum.

5.2.3 Heating seasonal performance factor for air-source units with triple-capacity compressors. (Reserved)

5.2.4 Heating seasonal performance factor for units with variable-speed compressors. For units with variable-speed compressors, the heating seasonal performance factor (HSPP) is defined by the following equation:
Department of Energy

Pt. 430, Subpt. B, App. M

\[HSPP = \frac{\sum_{i} \frac{n_{i}}{N} \cdot BL(T_{i})}{\left(\frac{\sum_{j} E(T_{j})}{N} + \frac{\sum_{j} RH(T_{j})}{N} \right)} \]

where all symbols in the above equations are as defined in 5.2.2.

The minimum and maximum heating design requirements, \(DH_{\text{min}} \) and \(DH_{\text{max}} \), which a variable-speed heat pump is likely to encounter, shall be evaluated as described for two-speed units in 5.2.2 with the option of using the nominal capacity, \(Q^{\text{nom}}(47) \), in lieu of the maximum speed capacity, \(Q^{\text{max}}(47) \), in the prescribed equations if the manufacturer performed the nominal capacity test.

In evaluation of HSPP, three cases are considered, the quantities \(\frac{E}{T} \) and \(\frac{RH}{T} \) shall be calculated depending on compressor mode of operation.

Case I

The compressor operates at the minimum speed (\(k=1 \)) for which the building heating load, \(BL(T) \), is less than or equal to the heating capacity, \(Q^{\text{nom}}(T) \). Calculations shall be performed as prescribed for two-speed systems in Case I of 5.2.2 with the exception that system capacity \(Q^{\text{nom}}(T) \), and power, \(E^{\text{nom}}(T) \), shall be calculated by the following equations:

\[Q^{\text{nom}}(T) = Q^{\text{nom}}(47) + \frac{Q^{\text{nom}}(62) - Q^{\text{nom}}(47)}{15} \cdot (T - 47) \]

\[E^{\text{nom}}(T) = E^{\text{nom}}(47) + \frac{E^{\text{nom}}(62) - E^{\text{nom}}(47)}{15} \cdot (T - 47) \]

Case II

The compressor operates at any intermediate (\(k \neq 1 \)) speed between the maximum speed (\(k=2 \)) and minimum (\(k=1 \)) speed to satisfy the building load and evaluate the following equations:

\[Q^{\text{nom}}(T) = BL(T) \]
\[Q^{\text{nom}}(T) = \frac{Q^{\text{nom}}(T) \cdot \frac{n_{i}}{N}}{N} \]
\[E^{\text{nom}}(T) = \frac{Q^{\text{nom}}(T)}{3.413 \cdot \text{COP}^{\text{nom}}(T)} \]
\[E^{\text{nom}}(T) = \frac{E^{\text{nom}}(T) \cdot \frac{n_{i}}{N}}{N} \]

where \(Q^{\text{nom}}(T) \) = capacity delivered by the unit at any intermediate speed between the minimum and maximum compressor speed matching the building load at temperature \(T \).

\(E^{\text{nom}}(T) \) = the electrical power input required by the unit at temperature \(T \), to deliver capacity matching the building load.

\(\text{COP}^{\text{nom}}(T) \) = the coefficient of performance at which the unit delivers capacity matching the building load at temperature \(T \).

Before the coefficient of performance, \(\text{COP}^{\text{nom}}(T) \), can be calculated, the unit performance has to be evaluated at the compressor speed (\(k=1 \)) at which the intermediate speed test was conducted. The capacity of the unit at any temperature \(T \), when compressor operates at the intermediate speed (\(k=1 \)) may be determined by:

\[Q^{\text{nom}}(T) = Q^{\text{nom}}(35) + M_{a}(T - 35) \]

where \(Q^{\text{nom}}(35) \) = the capacity of the unit at 35°F determined at the intermediate compressor speed (\(k=1 \)) in the frost accumulation test.

\(M_{a} \) = slope of the capacity curve for the intermediate compressor speed (\(k=1 \)).

\[M_{a} = \frac{Q^{\text{nom}}(62) - Q^{\text{nom}}(47)}{62 - 47} \cdot (1 - N_{k}) \]

\[N_{k} = \frac{Q^{\text{nom}}(35) - Q^{\text{nom}}(17)}{35 - 17} \]

Once the equation for \(Q^{\text{nom}}(T) \) has been determined, the temperature where \(Q_{\text{nom}}(T) = BL(T) \) can be found.

This temperature is designated by \(T_{\text{nom}} \). A separate \(T_{\text{nom}} \) shall be determined for each design heating requirement.

The electrical power input for the unit operating at the intermediate compressor speed (\(k \neq 1 \)) and at the temperature \(T_{\text{nom}} \) is determined by:
\[E_{\text{net}}(T_a) = E_{\text{net}}(35) + M_e(T_a - 35) \]

where

\[E_{\text{net}}(35) = \text{the electrical power input of} \]

the unit at 35°F determined \n
at the intermediate compressor speed \((k = 1)\) in the \n
frost accumulation test

\[M_e = \text{slope of the electrical power} \]

input curve for the intermediate \n
compressor speed \((k = 1)\)

\[M_e = \frac{E_{\text{net}}(62) - E_{\text{net}}(47)}{62 - 47} \times (1 - N_e) \]

\[+ N_e \frac{E_{\text{net}}(35) - E_{\text{net}}(17)}{35 - 17} \]

\[N_e = \frac{E_{\text{net}}(35) - E_{\text{net}}(35)}{E_{\text{net}}(35) - E_{\text{net}}(35)} \]

The coefficient of performance, \(\text{COP}^{\star\star}(T_a)\), at the intermediate speed \((k = 1)\) and temperature \(T_a\) can be calculated by the equation:

\[\text{COP}^{\star\star}(T_a) = \frac{Q_{\text{net}}(T_a)}{3.413^*E_{\text{net}}(T_a)} \]

Similarly, coefficients of performance at temperature \(T_1\) and \(T_2\) can be calculated by the equations:

\[\text{COP}^{\star\star}(T_1) = \frac{Q_{\text{net}}(T_1)}{3.413^*E_{\text{net}}(T_1)} \]

\[\text{COP}^{\star\star}(T_2) = \frac{Q_{\text{net}}(T_2)}{3.413^*E_{\text{net}}(T_2)} \]

where

\(T_1\) = temperature at which the unit, \n
operating at the maximum, deliv-\n
ers capacity equal to the building \n
load \((Q^{\star\star}(T_1) = BL(T_1))\), \n
found by \n
setting the equation for capacity \n
\(Q^{\star\star}(T_1)\) equal to the equation for \n
building load \(BL(T_1)\) from the \n
two-speed procedure in section \n5.2.2 and solving for temperature \n
\[\text{COP}^{\star\star}(T_1) = \text{the coefficient of perfor-} \]

mance at the mini-\n
mum compressor speed \n
at temperature \(T_1\)

\[\text{COP}^{\star\star}(T_2) = \text{the coefficient of perfor-} \]

mance at the maxi-\n
mum compressor speed \n
at temperature \(T_2\)

\[Q^{\star\star}(T_1) = \text{steady-state capacity at} \]

the intermediate \n
compressor speed \((k = 1)\) \n
at temperature \(T_2\), \n
using equations for \n
\(Q^{\star\star}(T_1)\) from the \n
two-speed procedure

\[Q^{\star\star}(T_2) = \text{steady-state capacity at} \]

the maximum \n
compressor speed \((k = 2)\) \n
at temperature \(T_2\), \n
calculated using the equation \n
for \(Q^{\star\star}(T_2)\) of \n
the two-speed procedure

\[E^{\star\star}(T_1) = \text{the electrical power} \]

input at the minimum compres-\n
sor speed at temperature \(T_1\), \n
calculated using the equation \n
for \(E^{\star\star}(T_1)\) \n
\((k = 1)\) \n
at temperature \(T_1\) \n
\((k = 1)\) \n
\(\text{COP}^{\star\star}(T_2) = \text{the coefficient of perfor-} \]

mance at the minimum compressor speed at temperature T1, calculated using the equation for COP\(^{\star\star}(T_2)\) of the two-speed procedure

\[E^{\star\star}(T_2) = \text{the electrical power input} \]

at the minimum compressor speed at temperature \(T_2\), calculated using the equation for COP\(^{\star\star}(T_2)\) of the two-speed procedure in section 5.2.2 of this Appendix

\[E^{\star\star}(T_2) = \text{the electrical power input} \]

at the minimum compressor speed at temperature \(T_2\), calculated using the equation for COP\(^{\star\star}(T_2)\) of the two-speed procedure in section 5.2.2 of this Appendix

The coefficient of performance, \(\text{COP}^{\star\star\star}(T)\), shall be calculated by the following equation:

\[\text{COP}^{\star\star\star}(T) = A + B^*T_1 + C^*T_1^2 \]

where coefficients A, B and C shall be evaluated using the following calculations step:

\[D = \frac{T_1 - T_s}{T_1 - T_s} \]

218
219

Department of Energy
Pt. 430, Subpt. B, App. M

6.0 Reference material.
6.1 Cooling reference material.
6.1.1 Test operating and test condition tolerances for cyclic dry-coil tests.

<table>
<thead>
<tr>
<th>Readings, remarks</th>
<th>Test operating tolerance</th>
<th>Test condition tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor dry-bulb air temperature, Fahrenheit: Entering</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Indoor dry-bulb air temperature, Fahrenheit: Entering</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

where

\[(CLH_A) = \text{the actual cooling load hours for the particular location determined from the map in section 6.2.2.} \]

\[(Q_{A195F}) \] is defined in 5.1.

\[(HHR) \] is defined in 5.2.

\[(HHR_A) \] is the actual cooling load hours for the particular location determined from the map in section 6.2.2.

\[(SEER) \] is the seasonal energy efficiency ratio determined in section 5.1.

\[(HSPF) \] is the heating seasonal performance factor as determined in section 5.2 for each standard design heating requirement within the particular location's region or for the actual design heating requirement if known.

where the particular location's region is determined from the map in section 6.2.5 and the standardized design heating requirements within the region are determined in sections 5.2 and 6.2.6.

5.3 Calculation of representative regional annual performance factors (AFR) for each region and for each standardized design heating requirement.

\[(AFR) = \frac{(CLH_A)(Q_{A195F})}{(CLH_A)(Q_{A195F}) + (HHR_A)(HHR)(C)} \]

\[(SEER) \] is defined in 5.1.

\[(HHR) \] is defined in 5.2.

\[(C) \] is defined in 5.2.

where

\[(CLH_A) \] is the representative cooling load hours for each heating load hours region, as determined in section 6.3.

\[(HHR_A) \] is the representative cooling load hours for each region as determined in section 6.2.5.

\[(SEER) \] is the seasonal energy efficiency ratio as determined in section 5.1.

\[(HSPF) \] is the heating seasonal performance factor as determined in section 5.2 for each region and for each standardized design heating requirement within each region.

where the regions are listed in section 6.2.5 and the standardized design heating requirements within the regions are determined in sections 5.2 and 6.2.6.
Readings, remarks	Test operating tolerance	Test condition tolerance
Electrical voltage inputs to the test unit, percent | 2.0 | ---

1 Total observed range.
2 Variation of average from specified test condition.
3 Shall at no time exceed that value of the wet-bulb temperature which results in the production of condensate by the indoor coil at the dry-bulb temperature existing for the air entering the indoor portion of the unit.

6.1.2 Distribution of fractional hours in temperature bins to be used for calculation of the SEER for 2-speed compressor and 2-compressor units.

Bin No. j	Bin temperature range (degrees Fahrenheit)	Representative temperature bin (degrees Fahrenheit)	Fraction of total temperature bin hours n_j/N
1	65–69	67	.214
2	70–74	72	.231
3	75–79	77	.216
4	80–84	82	.161
5	85–89	87	.104
6	90–94	92	.052
7	95–99	97	.018
8	100–104	102	.004
6.2 Heating reference material.

6.2.1 Test operating and test condition tolerance for Steady-State High Temperature Test [at 47°F (8.3°C) or 62°F (16.7°C)] and Low Temperature Test [at 17°F (−8.3°C)].

<table>
<thead>
<tr>
<th>Material</th>
<th>Operating Tolerance</th>
<th>Test Condition Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor dry-bulb, °F:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entering</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Leaving</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Indoor wet-bulb, °F:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entering</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Leaving</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
6.2.2 Test operating and test condition tolerances for the on-period portion of cyclic performance tests.

<table>
<thead>
<tr>
<th>Test operating tolerances</th>
<th>Test condition tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor dry-bulb, °F:</td>
<td>2.0</td>
</tr>
<tr>
<td>Entering</td>
<td>1.0</td>
</tr>
<tr>
<td>Leaving</td>
<td>2.0</td>
</tr>
<tr>
<td>Outdoor wet-bulb, °F:</td>
<td>2.0</td>
</tr>
<tr>
<td>Entering</td>
<td>1.0</td>
</tr>
<tr>
<td>Leaving</td>
<td>1.0</td>
</tr>
<tr>
<td>External resistance to air flow, inches of water</td>
<td>.05</td>
</tr>
<tr>
<td>Electrical voltage, percent</td>
<td>2.0</td>
</tr>
</tbody>
</table>

1 Test operating tolerance is the maximum permissible variation of any measurement. When expressed as a percentage, the maximum allowable variation is the specified percentage of the average value.
2 Test condition tolerance is the maximum permissible variation of the average value of the measurement from the standard or desired test condition.

6.2.3 Test operating and test tolerances for frost accumulation tests.

<table>
<thead>
<tr>
<th>Test operating tolerance</th>
<th>Test condition tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor dry-bulb, °F:</td>
<td>2.0</td>
</tr>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>Leaving</td>
<td></td>
</tr>
<tr>
<td>Outdoor wet-bulb, °F:</td>
<td>1.0</td>
</tr>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>Leaving</td>
<td></td>
</tr>
<tr>
<td>Outdoor dry-bulb, °F:</td>
<td>2.0</td>
</tr>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>Leaving</td>
<td></td>
</tr>
<tr>
<td>Outdoor dew point, °F:</td>
<td>1.5</td>
</tr>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>Leaving</td>
<td></td>
</tr>
<tr>
<td>External resistance to air flow, inches of water</td>
<td>.05</td>
</tr>
<tr>
<td>Electrical voltage, percent</td>
<td>2.0</td>
</tr>
</tbody>
</table>

1 Test operating tolerance is the maximum permissible variation of any measurement. When expressed as a percentage, the maximum allowable variation is the specified percentage of the average value. Test Operating Tolerance During Heating applies when the heat pump is in the heating mode, except for the first 5 minutes after termination of a defrost cycle. Test Operating Tolerance During Defrost applies during a defrost cycle and during the first 5 minutes after the termination of a defrost cycle when the heat pump is operating in the heating mode.
2 Test condition tolerance is the maximum permissible variation of the average value of the measurement from the standard or desired test condition. Test Condition Tolerance applies only when the heat pump is operating in the heating mode.
3 Not applicable during defrost if the indoor fan is off.

6.2.4 Distribution of fractional hours in temperature bins, heating load hours and outdoor design temperature for the different climatic regions.

<table>
<thead>
<tr>
<th>Fractional hours</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin No.</td>
<td>T_{j} (°F)</td>
</tr>
<tr>
<td>Heating Load Hours, HLH</td>
<td>750</td>
</tr>
<tr>
<td>Heating Design Temperature, T_{OD}, for the region</td>
<td>37</td>
</tr>
<tr>
<td>j=1</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>-3</td>
</tr>
<tr>
<td>Bin No.</td>
<td>T_i (°F)</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>-8</td>
</tr>
<tr>
<td>16</td>
<td>-13</td>
</tr>
<tr>
<td>17</td>
<td>-18</td>
</tr>
<tr>
<td>18</td>
<td>-23</td>
</tr>
</tbody>
</table>

1 Pacific Coast Region.
6.2.6 Standard Design Heating Requirements (Btu/hr)

<table>
<thead>
<tr>
<th>(Btu/hr)</th>
<th>5,000</th>
<th>10,000</th>
<th>15,000</th>
<th>20,000</th>
<th>25,000</th>
<th>30,000</th>
<th>35,000</th>
<th>40,000</th>
<th>45,000</th>
<th>50,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>90,000</td>
<td>110,000</td>
<td>130,000</td>
<td>150,000</td>
<td>170,000</td>
<td>190,000</td>
<td>210,000</td>
<td>230,000</td>
<td>250,000</td>
<td>270,000</td>
</tr>
</tbody>
</table>

6.3 Representative Cooling Load Hours (CLH) for Each Heating Load Hours Region.
Department of Energy
Pt. 430, Subpt. B, App. N

<table>
<thead>
<tr>
<th>Region</th>
<th>CLHe</th>
<th>HLLe</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2,400</td>
<td>750</td>
</tr>
<tr>
<td>II</td>
<td>1,800</td>
<td>1,250</td>
</tr>
<tr>
<td>III</td>
<td>1,200</td>
<td>1,750</td>
</tr>
<tr>
<td>IV</td>
<td>800</td>
<td>2,250</td>
</tr>
<tr>
<td>V</td>
<td>400</td>
<td>2,750</td>
</tr>
<tr>
<td>VI</td>
<td>200</td>
<td>2,750</td>
</tr>
</tbody>
</table>

6.4 Ground Water Temperature Map (Reserved).

APPENDIX N TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF FURNACES AND BOILERS

1.0 Scope. The scope of this appendix is as specified in section 2.0 of ANSI/ASHRAE Standard 103-1993.

2.0 Definitions. Definitions include the definitions specified in section 3 of ANSI/ASHRAE Standard 103-1993 and the following additional and modified definitions:

2.2 ASHRAE means the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

2.3 Thermal stack damper means a type of stack damper which is dependent for operation exclusively upon the direct conversion of thermal energy of the stack gases to open the damper.

2.4 Isolated combustion system. The definition of isolation combustion system in section 3 of ANSI/ASHRAE Standard 103-1993 is incorporated with the addition of the following: “The unit is installed in an un-conditioned indoor space isolated from the heated space.”

2.5 Classifications. Classifications are as specified in section 4 of ANSI/ASHRAE Standard 103-1993.

2.6 Requirements. Requirements are as specified in section 5 of ANSI/ASHRAE Standard 103-1993.

4.0 Apparatus. The apparatus used in conjunction with the furnace or boiler during the testing shall be as specified in section 7 of ANSI/ASHRAE Standard 103-1993 except for the second paragraph of section 7.2.2.2 and except for section 7.2.2.5, and as specified in section 6.1 of this appendix.

6.1 Downflow furnaces. Install the internal section of vent pipe the same size as the flue collar for connecting the flue collar to the top of the unit, if not supplied by the manufacturer. Do not insulate the internal vent pipe during the jacket loss test (if conducted) described in section 8.6 of ANSI/ASHRAE Standard 103-1993 or the steady-state test described in section 9.1 of ANSI/ASHRAE Standard 103-1993. Do not insulate the internal vent pipe before the cool-down and heat-up tests described in sections 9.5 and 9.6, respectively, of ANSI/ASHRAE Standard 103-1993. If the vent pipe is surrounded by a metal jacket, do not insulate the metal jacket. Install a 5-ft test stack of the same cross sectional area or perimeter as the vent pipe above the top of the furnace. Tape or seal around the junction connecting the vent pipe and the 5-ft test stack. Insulate the 5-ft test stack with insulation having an R-value not less than 7 and an outer layer of aluminum foil. (See Figure 3-E of ANSI/ASHRAE Standard 103-1993.)

7.0 Testing conditions. The testing conditions shall be as specified in section 8 of ANSI/ASHRAE Standard 103-1993 with errata of October 24, 1996, except for section 8.6.1.1, and as specified in section 7.1 of this appendix.

7.1 Measurement of jacket surface temperature. The jacket of the furnace or boiler shall be subdivided into 6-inch squares when practical, and otherwise into 36-square-inch regions comprising 4 in. x 9 in. or 3 in. x 12 in. sections, and the surface temperature at the center of each square or section shall be determined with a surface thermocouple. The 36-square-inch areas shall be recorded in groups where the temperature differential of the 36-square-inch area is less than 10°F for temperature up to 100°F above room temperature and less than 20°F for temperature more than 100°F above room temperature. For forced air central furnaces, the circulating air blower compartment is considered as part of the duct system and no surface temperature measurement of the blower compartment needs to be recorded for the purpose of this test. For downflow furnaces, measure all cabinet surface temperatures of the heat exchanger and combustion section, including the bottom around the outlet duct and the burner door, using the 36 square-inch thermocouple grid. The cabinet surface temperatures around the blower section do not need to be measured. (See figure 3-E of ANSI/ASHRAE Standard 103-1993.)

8.0 Test procedure. Testing and measurements shall be as specified in section 9 of ANSI/ASHRAE Standard 103-1993 except for sections 9.5.1.1, 9.5.1.21, 9.5.1.22, 9.5.2.1, and section 9.7.1.; and as specified in sections 8.1, 8.2, 8.3, 8.4, and 8.5 of this appendix.

8.1 Input to interrupted ignition device. For burners equipped with an interrupted ignition device, record the nameplate electric power used by the ignition device, PE, or use PE = 0.4 kW if no nameplate power input...
is provided. Record the nameplate ignition device on-time interval, t_{IG}, or measure the on-time period at the beginning of the test at the time the burner is turned on with a stopwatch, if no nameplate value is given. Set $t_{PE}=0$ and $PE_{pump}=0$ if the device on-time is less than or equal to 5 seconds after the burner is on.

8.2 Gas- and oil-fueled gravity and forced air central furnaces without stack dampers cool-down test. Turn off the main burner after steady-state testing is completed, and measure the flue gas temperature by means of the thermocouple grid described in section 7.6 of ANSI/ASHRAE 103-1993 at 1.5 minutes ($T_{CORE}(t))$ and 9 minutes ($T_{CORE}(t)$) after the burner shuts off. An integral draft diverter shall remain blocked and insulated, and the stack restriction shall remain in place. On atmospheric systems with an integral draft diverter or draft hood, equipped with either an electromechanical inlet damper or an electro-mechanical flue damper that closes within 10 seconds after the burner shuts off to restrict the flow through the heat exchanger in the off-cycle, bypass or adjust the control for the electromechanical damper so that the damper remains open during the cool-down test. For furnaces that employ post purge, measure the length of the post-purge period with a stopwatch. The time from burner OFF to combustion blower OFF (electrically de-energized) shall be recorded as t_p. For the case where t_p is intended to be greater than 180 seconds, stop the combustion blower at 180 seconds and use that value for t_p. Measure the flue gas temperature by means of the thermocouple grid described in section 7.6 of ANSI/ASHRAE 103-1993 at the end of post-purge period, $t_{p}(T_{CORE}(t))$, and at the time (1.5 + t_p) minutes ($T_{CORE}(t)$) and (9.0 + t_p) minutes ($T_{CORE}(t)$) after the main burner shuts off. For the case where the measured t_p is less than or equal to 30 seconds, it shall be tested as if there is no post purge and t_p shall be set equal to 0.

8.3 Gas- and oil-fueled gravity and forced air central furnaces without stack dampers cool-down test. For a furnace with adjustable fan control—cool-down test. For a furnace with adjustable fan control, this time delay will be 3.0 minutes for non-condensing furnaces or 1.5 minutes for condensing furnaces or until the supply air temperature drops to a value of 40°F above the inlet air temperature, whichever results in the longest fan on-time. For a furnace without adjustable fan control or with the type of adjustable fan control whose range of adjustment does not allow for the delay time specified above, the control shall be bypassed and the fan manually controlled to give the delay times specified above. For a furnace which employs a single motor to drive the power burner and the indoor air circulating blower, the power burner and indoor air circulating blower shall be stopped together.

8.4 Gas- and oil-fueled boilers without stack dampers cool-down test. After steady-state testing has been completed, turn the main burner(s) OFF and measure the flue gas temperature at 3.75 (T,F,OFF)) and 22.5 (T,F,OFF)) minutes after the burner shut off, using the thermocouple grid described in section 7.6 of ANSI/ASHRAE 103-1993. During this off period, for units that do not have pump delay after shutoff, no water shall be allowed to circulate through the hot water boilers. For units that have pump delay on shut off, except those having pump controls sensing water temperature, the pump shall be stopped by the unit control and the time t_p between burner shutoff and pump shutoff shall be measured within one-second accuracy. For units having pump delay controls that sense water temperature, the pump shall be operated for 15 minutes and t_p shall be 15 minutes. While the pump is operating, the inlet water temperature and flow rate shall be maintained at the same values as used during the steady-state test as specified in sections 9.1 and 8.4.2.3 of ANSI/ASHRAE 103-1993.

For boilers that employ post purge, measure the length of the post-purge period with a stopwatch. The time from burner OFF to combustion blower OFF (electrically de-energized) shall be recorded as t_p. For the case where t_p is intended to be greater than 180 seconds, stop the combustion blower at 180 seconds and use that value for t_p. Measure the flue gas temperature by means of the thermocouple grid described in section 7.6 of ANSI/ASHRAE 103-1993 at the end of the post purge period $t_{p}(T_{CORE}(t))$ and at the time (3.75 + t_p) minutes ($T_{CORE}(t)$) and (22.5 + t_p) minutes ($T_{CORE}(t)$) after the main burner shuts off. For the case where the measured t_p is less than or equal to 30 seconds, it shall be tested as if there is no post purge and t_p shall be set equal to 0.

8.5 Direct measurement of off-cycle losses testing method. [Reserved.]

9.0 Nomenclature. Nomenclature shall include the nomenclature specified in section 10 of ANSI/ASHRAE Standard 103-1993 and the following additional variables:

- $R_{f,TT}$: Efficiency of power burner motor
- PE_{PUM}: Electrical power to the interrupted ignition device, kW
- $R_{F,D}$: Ratio of combustion air mass flow rate to stoichiometric air mass flow rate
- $R_{F,T}$: Ratio of the sum of combustion air and relief air mass flow rate to stoichiometric air mass flow rate
- t_{EION}: Electrical interrupted ignition device on-time, min.
- $T_{S,S,X}$: If flue gas temperature is measured °F
- $y_{U,TH}$: Ratio of electrical interrupted ignition
Device on-time to average burner on-time

10.0 Calculations of derived results from test measurements. Calculations shall be as specified in section 11 of ANSI/ASHRAE Standard 103-1993 and the October 24, 1996, Errata Sheet for ASHRAE Standard 103-1993, except for appendices B and C, and as specified in sections 10.1 through 10.8 and Figure 1 of this appendix.

10.1 Annual fuel utilization efficiency. The annual fuel utilization efficiency (AFUE) is as defined in sections 11.2.12 (non-condensing systems), 11.3.12 (condensing systems), 11.4.12 (non-condensing modulating systems) and 11.5.12 (condensing modulating systems) of ANSI/ASHRAE Standard 103-1993, except for the definition for the term Effy in the defining equation for AFUE. Effy is defined as:

\[
Eff_y = HEAT \text{seasonal efficiency as defined in sections 11.2.11 (non-condensing systems), 11.3.11 (condensing systems), 11.4.11 (non-condensing modulating systems) and 11.5.11 (condensing modulating systems) of ANSI/ASHRAE Standard 103-1993 and is based on the assumptions that all weatherized warm air furnaces or boilers are located out-of-doors, that warm air furnaces which are not weatherized are installed as isolated combustion systems, and that boilers which are not weatherized are installed indoors.}
\]

10.2 National average burner operating hours; average annual fuel energy consumption and average annual auxiliary electrical energy consumption for gas or oil furnaces and boilers.

10.2.1 National average number of burner operating hours is defined as:

\[
\text{BOPH}_{\text{nat}} = 2,080 (0.77) \times \text{DHR} - 2,080 B
\]

where:

\[
2,080 = \text{nati}onal \text{average heating load hours}
\]

0.77 = adjustment factor to adjust the calculated design heating requirement and heating load hours to the actual heating load experienced by the heating system.

DHR = typical design heating requirements as listed in Table 8 (in unit of kBtu/h) of ANSI/ASHRAE Standard 103-1993, using the proper value of Q_{IN} as defined in 11.2.8.1 of ANSI/ASHRAE Standard 103-1993.

\[
Q_{IN} = 100,000 / \left[341,300 \times y_{PE} \times y_{BE} \times y_{P} \times y_{BE} + (Q_{IN} - Q_{P}) \times Eff_y \right], \text{ for forced draft unit, indoors and}
\]

\[
B = 2,080 \times \text{(Eff}_y \text{in)} / 100,000
\]

where:

\[
Eff_y \text{in} = \text{Power burner motor efficiency provided by manufacturer.}
\]

\[
y = 0.50, \text{ an assumed default power burner efficiency if not provided by manufacturer.}
\]

\[
Q_{IN} \text{was defined in 11.2.8.1 of ANSI/ASHRAE Standard 103-1993}
\]

\[
Q_{P} \text{was defined in 11.2.11 of ANSI/ASHRAE Standard 103-1993}
\]

\[
\text{Boiler power input at full load steady-state operation, including electrical ignition device if energized, as defined in 9.1.2.2 of ANSI/ASHRAE Standard 103-1993}
\]

\[
y = \text{ratio of induced or forced draft burner on-time to average burner on-time, as follows:}
\]

1 for units without post purge;

1+(t_0/3.87) for single stage furnaces with post purge;

1+(t_0/10) for two-stage and step modulating furnaces with post purge;

1+(t_0/9.68) for single stage boilers with post purge;

1+(t_0/15) for two stage and step modulating boilers with post purge.

\[
\text{PE} = \text{burner electrical power input at full load steady-state operation, including electrical ignition device if energized, as defined in 9.1.2.2 of ANSI/ASHRAE Standard 103-1993}
\]

\[
y = \text{ratio of burner interrupted ignition device on-time to average burner on-time, as follows:}
\]

0 for burners not equipped with interrupted ignition device;

1+(t_0/3.87) for single stage furnaces;

1+(t_0/10) for two-stage and step modulating furnaces;

1+(t_0/9.68) for single stage boilers;

1+(t_0/15) for two stage and step modulating boilers.

\[
t_0 \text{ = post purge time as defined in 8.2 (furnace) or 8.4 (boiler) of this appendix}
\]

\[
y = \text{ratio of burner interrupted ignition device on-time to average burner on-time, as follows:}
\]

1 for furnaces without fan delay;

1 for boilers without a pump delay;

1+(t_0/3.87) for single stage furnaces with fan delay;

1+(t_0/10) for two-stage and step modulating furnaces with fan delay;

1+(t_0/9.68) for single stage boilers with pump delay;

1+(t_0/15) for two stage and step modulating boilers with pump delay.

BE = circulating air fan or water pump electrical energy input rate at full load steady-state operation, as defined in ANSI/ASHRAE Standard 103-1993.

\[
\text{Boiler efficiency if not provided by manufacturer.}
\]

\[
y = 0.50, \text{ an assumed default power burner efficiency if not provided by manufacturer.}
\]

\[
\text{Boiler power input at full load steady-state operation, including electrical ignition device if energized, as defined in 9.1.2.2 of ANSI/ASHRAE Standard 103-1993}
\]

\[
y = \text{ratio of burner interrupted ignition device on-time to average burner on-time, as follows:}
\]

0 for burners not equipped with interrupted ignition device;

1+(t_0/3.87) for single stage furnaces;

1+(t_0/10) for two-stage and step modulating furnaces;

1+(t_0/9.68) for single stage boilers;

1+(t_0/15) for two stage and step modulating boilers.

\[
t_0 \text{ = post purge time as defined in 8.2 (furnace) or 8.4 (boiler) of this appendix}
\]

\[
y = \text{ratio of burner interrupted ignition device on-time to average burner on-time, as follows:}
\]

1 for furnaces without fan delay;

1 for boilers without a pump delay;

1+(t_0/3.87) for single stage furnaces with fan delay;

1+(t_0/10) for two-stage and step modulating furnaces with fan delay;

1+(t_0/9.68) for single stage boilers with pump delay;

1+(t_0/15) for two stage and step modulating boilers with pump delay.

\[
\text{Boiler efficiency if not provided by manufacturer.}
\]

\[
y = 0.50, \text{ an assumed default power burner efficiency if not provided by manufacturer.}
\]

\[
\text{Boiler power input at full load steady-state operation, including electrical ignition device if energized, as defined in 9.1.2.2 of ANSI/ASHRAE Standard 103-1993}
\]

\[
Q_{IN} \text{was defined in 11.2.8.1 of ANSI/ASHRAE Standard 103-1993}
\]

\[
Q_{P} \text{was defined in 11.2.11 of ANSI/ASHRAE Standard 103-1993}
\]

227
A = \frac{100,000}{341.30} \text{ Btu/h} = \frac{341.30}{100,000} \text{ Btu/h} = 0.0034130 \text{ Btu/h}

\text{Eff}_{\text{Gas}} = \text{Power burner motor efficiency provided by manufacturer}

\text{Eff}_{\text{Gas}} = 0.30, \text{ an assumed default power burner efficiency if none provided by manufacturer}

\text{Eff}_{\text{Gas}} \text{ as defined in 11.4.11.3 or 11.5.11.3 of ANSI/ASHRAE Standard 103-1993, and calculated on the basis of:}

- ICS installation, for non-weatherized warm air furnaces
- indoor installation, for non-weatherized boilers
- outdoor installation, for furnaces and boilers that are weatherized

8,760 = \text{total number of hours per year}

4,600 = \text{specified in 11.4.12 of ANSI/ASHRAE Standard 103-1993}

10.2.1.2 For furnaces and boilers equipped with two stage or step modulating controls the national average number of burner operating hours at the reduced operating mode is defined as:

\text{BOH}_{\text{SM}} = X_H E_M Q_{\text{IN,M}}

where:

\text{X_H} = \text{as defined in 11.4.8.6 of ANSI/ASHRAE Standard 103-1993}

\text{E_M} = \text{as defined in section 10.2.1.1 of this appendix}

\text{Q_{IN,M}} = \text{as defined in 11.4.8.1.1 of ANSI/ASHRAE Standard 103-1993}

10.2.1.3 For furnaces and boilers equipped with two stage controls the national average number of burner operating hours at the maximum operating mode (BOH_{\text{SM}}) is defined as:

\text{BOH}_{\text{SM}} = X_H E_M Q_{\text{IN,M}}

where:

\text{X_H} = \text{as defined in 11.4.8.6 of ANSI/ASHRAE Standard 103-1993}

\text{E_M} = \text{as defined in section 10.2.1.1 of this appendix}

\text{Q_{IN,M}} = \text{as defined in 11.4.8.1.1 of ANSI/ASHRAE Standard 103-1993}

10.2.1.4 For furnaces and boilers equipped with step modulating controls the national average number of burner operating hours at the modulating operating mode (BOH_{\text{SM}}) is defined as:

\text{BOH}_{\text{SM}} = X_H E_M Q_{\text{IN,M}}

where:

\text{X_H} = \text{as defined in 11.4.8.6 of ANSI/ASHRAE Standard 103-1993}

\text{E_M} = \text{as defined in section 10.2.1.1 of this appendix}

\text{Q_{IN,M}} = \text{as defined in 11.4.8.1.1 of ANSI/ASHRAE Standard 103-1993}

10.2.2 Average annual fuel energy consumption for gas or oil fueled furnaces or boilers. For furnaces or boilers equipped with single stage controls the average annual fuel energy consumption (E_r) is expressed in Btu per year and defined as:

\text{E_r = BOH_{\text{SM}}(Q_{\text{IN,M}} - Q_{m}) + 8,760 Q_{m}}

where:

\text{Q_{m}} = \text{as defined in 11.4.8.1.1 of ANSI/ASHRAE Standard 103-1993}
Average annual auxiliary electrical energy consumption for electric furnaces and boilers

For electric furnaces and boilers, the average annual auxiliary electrical energy consumption (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = BOH_{AE}(y_{PE} + y_{B}E_{AE})$$

where:

- BOH_{AE} is defined as in 10.2.1 of this appendix.
- y_{PE} is specified in 11.2.11 or 11.4.11 for furnaces or boilers and boilers.

Actual energy consumption

Electric furnaces and boilers the average annual energy consumption (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = BOH_{AE}(y_{PE} + y_{B}E_{AE})$$

where:

- BOH_{AE} is defined as in 10.2.1 of this appendix.
- y_{PE} is specified in 11.2.11 or 11.4.11 for furnaces or boilers and boilers.

Average annual fuel consumption

For furnaces or boilers equipped with two stage controls, E_{AE} is defined as:

$$E_{AE} = BOH_{AE}(y_{PE} + y_{B}E_{AE})$$

where:

- BOH_{AE} is defined as in 10.2.1 of this appendix.
- y_{PE} is specified in 11.2.11 or 11.4.11 for furnaces or boilers and boilers.

Average annual fuel consumption for gas or oil fueled furnaces or boilers

The average annual fuel consumption for gas or oil fueled furnaces or boilers (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = BOH_{AE}(y_{PE} + y_{B}E_{AE})$$

where:

- BOH_{AE} is defined as in 10.2.1 of this appendix.
- y_{PE} is specified in 11.2.11 or 11.4.11 for furnaces or boilers and boilers.

Average annual auxiliary fuel consumption

The average annual auxiliary fuel consumption (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = BOH_{AE}(y_{PE} + y_{B}E_{AE})$$

where:

- BOH_{AE} is defined as in 10.2.1 of this appendix.
- y_{PE} is specified in 11.2.11 or 11.4.11 for furnaces or boilers and boilers.

Annual Fuel Utilization Efficiency (AFUE)

AFUE is defined as:

$$AFUE = \frac{100(2,080)(0.77)DHR(3.412 AFUE)}{E_{AE}}$$

where:

- DHR is defined in 9.1.2.2 of ANSI/ASHRAE Standard 103-1993, measured at the maximum fuel input rate.
- $AFUE$ is defined in 11.1 of ANSI/ASHRAE Standard 103-1993, in percent, and calculated on the basis of:
 - ICS installation, for non-weatherized warm air furnaces;
 - indoor installation, for non-weatherized boilers; or
 - outdoor installation, for furnaces and boilers that are weatherized.

Energy factor

The energy factor, EF, for gas or oil furnaces and boilers is defined as:

$$EF = \frac{(E_{F} - 4,600 Q_{P}) \text{Effy}_{HS}}{E_{F} + 3,412 E_{AE}}$$

where:

- E_{F} is the average annual fuel consumption as defined in 10.2.2 of this appendix.
- Q_{P} is the conversion factor from Btu to kWh.
- Effy_{HS} is the Annual Fuel Utilization Efficiency as defined in 11.2.11, 11.3.11, 11.4.11 or 11.5.11 of ANSI/ASHRAE Standard 103-1993, in percent, and calculated on the basis of:
 - ICS installation, for non-weatherized warm air furnaces;
 - indoor installation, for non-weatherized boilers; or
 - outdoor installation, for furnaces and boilers that are weatherized.
10.4.2 Energy factor for electric furnaces and boilers. The energy factor, E_F, for electric furnaces and boilers is defined as:

$$E_F = \text{AFUE}$$

where:

AFUE = Annual Fuel Utilization Efficiency as defined in section 10.3 of this appendix, in percent

10.5 Average annual energy consumption for furnaces and boilers located in a different geographic region of the United States and in buildings with different design heating requirements.

10.5.1 Average annual fuel energy consumption for gas or oil-fueled furnaces and boilers located in a different geographic region of the United States and in buildings with different design heating requirements. For gas or oil-fueled furnaces and boilers the average annual fuel energy consumption for a specific geographic region and a specific typical design heating requirement (E_F) is expressed in Btu per year and defined as:

$$E_F = (E_F - 8,760 \times Q_0)(HLH/2,080) + 8,760 \times Q_0$$

where:

E_F is defined in 10.2.2 of this appendix
8,760 is defined in 10.2.1 of this appendix
Q_0 is defined in 11.2.11 of ANSI/ASHRAE Standard 103-1993
HLH = Heating load hours for a specific geographic region determined from the heating load hour map in Figure 1 of this appendix
2,080 is defined in 10.2.1 of this appendix

10.5.2 Average annual auxiliary electrical energy consumption for gas or oil-fueled furnaces and boilers located in a different geographic region of the United States and in buildings with different design heating requirements. For gas or oil-fueled furnaces and boilers the average annual auxiliary electrical energy consumption for a specific geographic region and a specific typical design heating requirement (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = E_{AE} (HLH/2,080)$$

where:

E_{AE} is defined in 10.2.3 of this appendix
HLH is defined in 10.5.1 of this appendix

10.5.3 Average annual electric energy consumption for electric furnaces and boilers located in a different geographic region of the United States and in buildings with different design heating requirements. For electric furnaces and boilers the average annual electric energy consumption for a specific geographic region and a specific typical design heating requirement (E_{AE}) is expressed in kilowatt-hours and defined as:

$$E_{AE} = 100 (0.77) \times DHR \times HLH/(3.412 \times \text{AFUE})$$

where:

DHR = Direct heater rating (as specified in 10.2.1 of this appendix)
HLH = Heating load hours for a specific geographic region determined from the heating load hour map in Figure 1 of this appendix
3.412 = as specified in 10.3 of this appendix
AE = Average Energy consumption for mobile home furnaces (as defined in 10.6.3 of this appendix, in percent)

10.6 Annual energy consumption for mobile home furnaces

10.6.1 National average number of burner operating hours for mobile home furnaces (BOH_{MHF}). BOH_{MHF} is the same as in 10.2.1 of this appendix, except that the value of $Effy$ in the calculation of the burner operating hours, BOH_{MHF}, is calculated on the basis of a direct vent unit with system number 9 or 10.

10.6.2 Average annual fuel energy for mobile home furnaces (E_F). E_F is same as in 10.2.2 of this appendix except that the burner operating hours, BOH_{MHF}, is calculated as specified in 10.6.1 of this appendix.

10.6.3 Average annual auxiliary electrical energy consumption for mobile home furnaces (E_{AE}). E_{AE} is same as in 10.2.3 of this appendix, except that the burner operating hours, BOH_{MHF}, is calculated as specified in 10.6.1 of this appendix.

10.7 Calculation of sales weighted average annual energy consumption for mobile home furnaces. In order to reflect the distribution of mobile homes to geographical regions with average HLH$_{MHF}$ value different from 2,080, adjust the annual fossil fuel and auxiliary electrical energy consumption values for mobile home furnaces using the following adjustment calculations.

10.7.1 For mobile home furnaces the sales weighted average annual fossil fuel energy consumption is expressed in Btu per year and defined as:

$$E_{F,MHF} = (E_F - 8,760 \times Q_0) \times HLH_{MHF}/2,080 + 8,760 \times Q_0$$

where:

E_F is defined in 10.6.2 of this appendix
8,760 is defined in 10.2.1 of this appendix
Q_0 is defined in 11.2.11 of ANSI/ASHRAE Standard 103-1993
HLH$_{MHF}$ is determined from the heating load hour map in Figure 1 of this appendix
2,080 is defined in 10.2.1 of this appendix

10.7.2 For mobile home furnaces the sales weighted average annual auxiliary electrical energy consumption is expressed in kilowatt-hours and defined as:

$$E_{AE,MHF} = E_{AE} \times HLH_{MHF}/2,080$$

where:

E_{AE} is defined in 10.6.3 of this appendix
HLH$_{MHF}$ is defined in 10.7.1 of this appendix
2,080 is defined in 10.2.1 of this appendix

10.8 Direct determination of off-cycle losses for furnaces and boilers equipped with thermal stack dampers. [Reserved.]
1.0 Definitions.

1.1 "Air shutter" means an adjustable device for varying the size of the primary air...
inlet(s) to the combustion chamber power burner.

1.2 "Air tube" means a tube which carries combustion air from the burner fan to the burner nozzle for combustion.

1.3 "Barometric draft regulator or barometric damper" means a mechanical device designed to maintain a constant draft in a vented heater.

1.4 "Draft hood" means an external device which performs the same function as an integral draft diverter, as defined in section 1.17 of this appendix.

1.5 "Electro-mechanical stack damper" means a type of stack damper which is operated by electrical and/or mechanical means.

1.6 "Excess air" means air which passes through the combustion chamber and the vented heater flues in excess of that which is theoretically required for complete combustion.

1.7 "Flue" means a conduit between the flue outlet of a vented heater and the integral draft diverter, draft hood, barometric damper or vent terminal through which the flue gases pass prior to the point of draft relief.

1.8 "Flue damper" means a device installed between the furnace and the integral draft diverter, draft hood, barometric draft regulator, or vent terminal which is not equipped with a draft control device, designed to open the venting system when the appliance is in operation and to close the venting system when the appliance is in a standby condition.

1.9 "Flue gases" means reaction products resulting from the combustion of a fuel with the oxygen of the air, including the inerts and any excess air.

1.10 "Flue losses" means the sum of sensible and latent heat losses above room temperature of the flue gases leaving a vented heater.

1.11 "Flue outlet" means the opening provided in a vented heater for the exhaust of the flue gases from the combustion chamber.

1.12 "Heat input" (\(Q_{\text{in}}\)) means the rate of energy supplied in a fuel to a vented heater operating under steady-state conditions, expressed in Btu's per hour. It includes any input energy to the pilot light and is obtained by multiplying the measured rate of fuel consumption by the measured higher heating value of the fuel.

1.13 "Heating capacity" (\(Q_{\text{h}}\)) means the rate of useful heat output from a vented heater, operating under steady-state conditions, expressed in Btu's per hour. For room and wall heaters, it is obtained by multiplying the "heat input" (\(Q_{\text{in}}\)) by the steady-state efficiency (\(\eta_{\text{s}}\)) divided by 100. For floor furnaces, it is obtained by multiplying (A) the "heat input" (\(Q_{\text{in}}\)) by (B) the steady-state efficiency divided by 100, minus the quantity (2B (Lj)) divided by 100, where \(L_j\) is the jacket loss as determined in section 3.2 of this appendix.

1.14 "Higher heating value" (HHV) means the heat produced per unit of fuel when complete combustion takes place at constant pressure and the products of combustion are cooled to the initial temperature of the fuel and air and when the water vapor formed during combustion is condensed. The higher heating value is usually expressed in Btu's per pound, Btu's per cubic foot for gaseous fuel, or Btu's per gallon for liquid fuel.

1.15 "Induced draft" means a method of drawing air into the combustion chamber by mechanical means.

1.16 "Infiltration parameter" means that portion of unconditioned outside air drawn into the heated space as a consequence of loss of conditioned air through the exhaust system of a vented heater.

1.17 "Integral draft diverter" means a device which is an integral part of a vented heater, designed to: (1) Provide for the exhaust of the products of combustion in the event of no draft, back draft, or stoppage beyond the draft diverter, (2) prevent a back draft from entering the vented heater, and (3) neutralize the stack action of the chimney or gas vent upon the operation of the vented heater.

1.18 "Manually controlled vented heaters" means either gas or oil fueled vented heaters equipped without thermostats.

1.19 "Modulating control" means either a step-modulating or two-stage control.

1.20 "Power burner" means a vented heater burner which supplies air for combustion at a pressure exceeding atmospheric pressure, or a burner which depends on the draft induced by a fan incorporated in the furnace for proper operation.

1.21 "Reduced heat input rate" means the factory adjusted lowest reduced heat input rate for vented home heating equipment equipped with either two stage thermostats or step-modulating thermostats.

1.22 "Single stage thermostat" means a thermostat that cycles a burner at the maximum heat input rate and off.

1.23 "Stack" means the portion of the exhaust system downstream of the integral draft diverter, draft hood or barometric draft regulator.

1.24 "Stack damper" means a device installed downstream of the integral draft diverter, draft hood, or barometric draft regulator, designed to open the venting system when the appliance is in operation and to close off the venting system when the appliance is in the standby condition.

1.25 "Stack gases" means the flue gases combined with dilution air that enters at the integral draft diverter, draft hood or barometric draft regulator.
1.20 Vent/air intake terminal means a receptacle designed to operate by vaporizing liquid fuel oil by the heat of combustion and mixing the vaporized fuel with air.

1.30 Vaporizing-type oil burner means a device with an oil vaporizing bowl or other receptacle designed to operate by vaporizing liquid fuel oil by the heat of combustion and mixing the vaporized fuel with air.

1.31 Vent/air intake terminal means a device which is located on the outside of a building and is connected to a vented heater by a system of conduits. It is composed of an air intake terminal through which the air for combustion is taken from the outside atmosphere and a vent terminal from which flue gases are discharged.

1.32 Vent limiter means a device which limits the flow of air from the atmospheric diaphragm chamber of a gas pressure regulator to the atmosphere. A vent limiter may be a limiting orifice or other limiting device.

1.33 Vent pipe means the passages and conduits in a direct vent system through which gases pass from the combustion chamber to the outdoor air.

2.0 Testing conditions.

2.1 Installation of test unit.

2.1.1 Vented wall furnaces (including direct vent systems). Install gas fueled vented wall furnaces for test as specified in sections 2.1.3 and 2.1.4 of ANSI Z21.40-1975. Install gas fueled wall furnaces with direct vent systems for test as described in sections 2.1.3 and 2.1.4 of ANSI Z21.44-1993. Install oil fueled vented wall furnaces as specified in UL-729-1974, section 33. Install oil fueled vented wall furnaces with direct vent systems as specified in UL-729-1974, section 34.

2.1.2 Vented floor furnaces. Install vented floor furnaces for test as specified in sections 35.1 through 35.5 of UL-729-1976.

2.1.3 Vented room heaters. Install in accordance with manufacturer’s instructions.

2.2 Flue and stack requirements.

2.2.1 Gas fueled vented home heating equipment employing integral draft diverters and draft hoods (excluding direct vent systems). Attach to, and vertically above the outlet of the gas fueled vented home heating equipment employing draft diverters or draft hoods with vertically discharging outlets, a five (5) foot long test stack having a cross sectional area the same size as the draft diverter outlet.

2.2.2 Oil fueled vented home heating equipment (excluding direct vent systems). Use flue connections for oil fueled vented floor furnaces as specified in section 36 of UL 729-1976, sections 34.10 through 34.14 and UL 730-1974 for oil fueled vented wall furnaces and sections 36.2 and 36.3 of UL 896-1973 for oil fueled vented room heaters.

2.2.3 Direct vent systems. Have the exhaust/air intake system supplied by the manufacturer in place during all tests. Test units intended for installation with a variety of vent pipe lengths with the minimum length recommended by the manufacturer. Do not connect a heater employing a direct vent system to a chimney or induced draft source. Vent the gas solely on the provision for venting incorporated in the heater and the vent/air intake system supplied with it.

2.3 Fuel supply.

2.3.1 Natural gas. For a vented heater utilizing natural gas, maintain the gas supply to the unit under test at a normal inlet test pressure immediately ahead of all controls at 7 to 10 inches water column. Maintain the regulator outlet pressure at normal test pressure approximately at that recommended by the manufacturer. Use natural gas having a specific gravity of approximately 0.65 and a higher heating value within ± 5 percent of 1,025 Btu's per standard cubic foot. Determine the actual higher heating value in Btu's per standard cubic foot for the natural gas to be used in the test with an error no greater than one percent.

2.3.2 Propane gas. For a vented heater utilizing propane gas, maintain the gas supply to the unit under test at a normal inlet pressure of 11 to 13 inches water column and a specific gravity of approximately 1.5. Maintain the regulator outlet pressure, on units so equipped, approximately at that recommended by the manufacturer. Use propane having a specific gravity of approximately 1.5 and a higher heating value within ± 5...
2.2.2 Gas burner adjustments. Adjust the burners of gas fueled vented heaters to their maximum Btu ratings at the test pressure specified in section 2.3 of this appendix. Correct the burner volumetric flow rate to 60°F (15.6°C) and 30 inches of mercury barometric pressure, set the fuel flow rate to obtain a heat rate of within ±2 percent of the hourly Btu rating specified by the manufacturer as measured after 15 minutes of operation starting with all parts of the vented heater at room temperature. Set the primary air shutters in accordance with the manufacturer’s recommendations to give a good flame at this adjustment. Do not allow the deposit of carbon during any test specified herein.

If a vent limiting means is provided on a gas pressure regulator, have it in place during all tests.

For gas fueled heaters with modulating controls adjust the controls to operate the heater at the reduced fuel input rate. Set the thermostat control to the maximum setting. Start the heater by turning the safety control valve to the “on” position. If ambient test room temperature is above the lowest control set point temperature, initiate burner operation by placing the thermostat sensing element in a temperature control bath that is held at a temperature below the minimum set point temperature of the control.

For gas fueled heaters with modulating controls adjust the controls to operate the heater at the reduced fuel input rate. Set the thermostat control to the minimum setting. Start the heater by turning the safety control valve to the “on” position. If ambient test room temperature is above the lowest control set point temperature, initiate burner operation by placing the thermostat sensing element in a temperature control bath that is held at a temperature below the minimum set point temperature of the control.
install thermocouples for measuring the conditioned warm air temperature, as described in sections 35.12 through 35.17 of UL 730-1974. Establish the temperature of the inlet air by means of a single No. 24 AWG bead-type thermocouple, suitably shielded from direct radiation and located in the center of the plane of each inlet air opening.

2.7 Combustion measurement instrumentation. Analyze the samples of stack and flue gases for vented heaters to determine the concentration by volume of carbon dioxide present in the dry gas with instrumentation which will result in a reading having an accuracy of ±0.1 percentage points.

2.8 Energy flow instrumentation. Install one or more instruments, which measure the rate of gas flow or fuel oil supplied to the vented heater, and if appropriate, the electrical energy with an error no greater than one percent.

2.9 Room ambient temperature. During the time period required to perform all the testing and measurement procedures specified in section 3.0 of this appendix, maintain the room temperature within ±5 °F (±2.9°C) of the value T_{RA} measured during the steady-state performance test. At no time during these tests shall the room temperature exceed 100 °F (37.8°C) or fall below 65 °F (18.3°C).

Temperature (T_{AW}) shall be the arithmetic average temperature of the test area, determined by measurement with four No. 24 AWG bead-type thermocouples with junctions shielded against radiation, located approximately at 90-degree positions on a circle circumscribing the heater or heater enclosure under test, in a horizontal plane approximately at the vertical midpoint of the appliance or test enclosure, and with the junctions approximately 24 inches from the inlet opening. The temperature of the air for combustion and the air for draft relief shall not differ more than ±5 °F from room temperature as measured above.
2.10 Equipment used to measure mass flow rate in flue and stack. The tracer gas chosen for this task should have a density which is less than or approximately equal to the density of air. Use a gas unreactive with the environment to be encountered. Using instrumentation of either the batch or continuous type, measure the concentration of tracer gas with an error no greater than 2 percent of the value of the concentration measured.

3.0 Testing and measurements.

3.1 Steady-state testing.

3.1.1 Gas fueled vented home heating equipment (including direct vent systems). Set up the vented heater as specified in sections 2.1, 2.2, and 2.3 of this appendix. The draft diverter shall be in the normal open condition and the stack shall not be insulated. Insulation of the stack is no longer required for the vented heater test. Begin the steady-state performance test by operating the burner and the circulating air blower, on units so equipped, with the adjustments specified by sections 2.4.1 and 2.5 of this appendix, until steady-state conditions are attained as indicated by a temperature variation of not more than 3°F (1.7°C) in the stack gas temperature for vented heaters equipped with draft diverters or 5°F (2.8°C) in the flue gas temperature for vented heaters equipped with either draft hoods or direct vent systems; in three successive readings taken 15 minutes apart.

On units employing draft diverters, measure the room temperature (T_{RN}) as described in section 2.9 of this appendix and measure the steady-state stack gas temperature (T_{SS}) using the nine thermocouples located in the 5-foot test stack as specified in section 2.6.1 of this appendix. Secure a sample of the flue gases in the plane of the stack as specified in section 5.1.1 of this appendix. To obtain this sample of flue gas, move the sampling probe around or use a sample probe with multiple sampling ports in order to assure that an average value is obtained for the CO concentration. For units with multiple heat exchanger outlets, measure the CO concentration in a sample from each outlet to obtain the average CO concentration for the unit. A manifold (parallel connected sampling tubes) may be used to obtain this sample.

For manually controlled gas fueled vented home heating equipment, determine the steady-state efficiency at the maximum fuel input rate as specified in section 2.4 of this appendix.

For gas fueled vented home heating equipment, with either two stage thermostats or step-modulating thermostats, determine the steady-state efficiency at the maximum fuel input rate, as specified in section 2.4 of this appendix, and at the reduced fuel input rate, as specified in section 2.4.1 of this appendix.

For gas fueled vented home heating equipment, with various input rates determine the steady-state efficiency at the maximum fuel input rate. If the heater is designed to use a control that precludes operation at other than maximum output (single firing rate) determine the steady-state efficiency at the maximum fuel input rate.

3.1.2 Oil fueled vented home heating equipment (including direct vent systems). Set up and adjust the vented heater as specified in sections 2.1, 2.2, and 2.3 of this appendix. Begin the steady-state performance test by operating the burner and the circulating air blower, on units so equipped, with the adjustments specified by sections 2.4.2 and 2.5 of this appendix until steady-state conditions are attained as indicated by a temperature variation of not more than 3°F (2.8°C) in the flue gas temperature in three successive readings taken 15 minutes apart.

Do not allow smoke in the flue, for units equipped with power burners, to exceed a No. 1 smoke during the steady-state performance test as measured by the procedure described in ANSI standard Z11.182±1965 (R1971) (ASTM D 2156-65 (1970)). Maintain the average draft over the fire and in the breeching during the test.
steady-state performance test at that recommended by the manufacturer ±0.005 inches of water gauge.

Measure the room temperature (T_{RA}) as described in section 2.9 of this appendix and measure the steady-state flue gas temperature (T_{F,SS}) using nine thermocouples located in the flue pipe as described in section 2.6 of this appendix. Secure a sample of the flue gas in the plane of temperature measurement and determine the concentration by volume of CO₂(x_{CO₂}) present in dry flue gas. Measure and record the steady-state heat input rate (Q_{in}).

For manually controlled oil fueled vented heaters, determine the steady-state efficiency at a fuel input rate that is within ±5 percent of 50 percent of the maximum fuel input rate.

3.1.3 Auxiliary Electric Power Measurement. Allow the auxiliary electrical system of a gas or oil vented heater to operate for at least five minutes before recording the maximum auxiliary electric power measurement from the wattmeter. Record the maximum electric power (Pₐ) expressed in kilowatts. For vented heaters with modulating controls, the recorded (Pₐ) shall be maximum measured electric power multiplied by the following factor (R). For two stage controls, R=1.4; for step modulating controls, R=1.3 when the ratio of minimum-to-maximum fuel input rate is greater than or equal to 0.7, and R=2.2 when the ratio of minimum-to-maximum fuel input rate is less than 0.7.

3.2 Jacket loss measurement. Conduct a jacket loss test for vented floor furnaces. Measure the jacket loss (L_j) in accordance with the ANSI standard Z21.48±1976 section 3.3.1.

3.3 Measurement of the off-cycle losses for vented heaters equipped with thermal stack dampers. Install the thermal stack damper according to the manufacturer's instructions. Unless specified otherwise, the thermal stack damper should be at the draft diverter exit collar. Attach a five foot length of bare stack to the outlet of the damper. Install thermocouples as specified in section 2.6.1 of this appendix.

For vented heaters equipped with single stage thermostats, measure the off-cycle losses at the maximum fuel input rate. For vented heaters equipped with two stage thermostats, measure the off-cycle losses at the maximum fuel input rate and at the reduced fuel input rate. For vented heaters equipped with step-modulating thermostats, measure the off-cycle losses at the reduced fuel input rate.

Let the vented heater heat up to a steady-state condition. Feed a tracer gas at a constant metered rate into the stack directly above and within one foot above the stack damper. Record tracer gas flow rate and temperature. Measure the tracer gas concentration in the stack at several locations in a horizontal plane through a cross section of the stack at a point sufficiently above the stack damper to ensure that the tracer gas is well mixed in the stack.

Continuous measure the tracer gas concentration and temperature during a 10 minute cool down period. Shut the burner off and immediately begin measuring tracer gas concentration in the stack, stack temperature, room temperature, and barometric pressure. Record these values as the midpoint of each one-minute interval between burner shut down and ten minutes after burner shut down. Meter response and sampling delay time shall be considered in timing these measurements.

3.4 Measurement of the effectiveness of electro-mechanical stack dampers. For vented heaters equipped with electro-mechanical stack dampers, measure the cross sectional area of the stack (A_s), the net area of the damper plate (A_p), and the angle that the damper plate makes when closed with a plane perpendicular to the axis of the stack (\(\theta \)). The net area of the damper plate means the area of the damper plate minus the area of any holes through the damper plate.

3.5 Pilot light measurement.

3.5.1 Measure the energy input rate to the pilot light (Qₘₚ) with an error no greater than 3 percent for vented heaters so equipped.

3.5.2 For manually controlled heaters where the pilot light is designed to be turned off by the user when the heater is not in use, that is, turning the control to the OFF position will shut off the gas supply to the burner(s) and to the pilot light, the measurement of Qₘₚ is not needed. This provision applies only if an instruction to turn off the unit is provided on the heater near the gas control valve (e.g. by label) by the manufacturer.

3.6 Optional procedure for determining Dₚ, Dₚ', and Dₜ for systems for all types of vented heaters. For all types of vented heaters, Dₚ', Dₚ, and Dₜ can be measured by the following optional cool down test.

Conduct a cool down test by letting the unit heat up until steady-state conditions are reached, as indicated by temperature variation of not more than 5°F (2.8°C) in the flue gas temperature in three successive readings taken 15 minutes apart, and then shutting the unit off with the stack or flue damper controls by-passed or adjusted so that the stack or flue damper remains open during the resulting cool down period. If a stack was maintained on oil fueled units in the flue pipe during the steady-state performance test described in section 3.1 of this appendix, maintain the same draft (within a range of -0.001 to +0.005 inches of water gauge of the average steady-state draft) during this cool down period.
Obtain the concentration of tracer gas using an instrument which will result in an accuracy of ±2 percent in the value of \(C_T \) measured. Maintain \(V_T \) at less than 1 percent of the air flow rate through the furnace. If a combustible tracer gas is used, there should be a delay period between the time the burner gas is shut off and the time the tracer gas is first injected to prevent ignition of the tracer gas.

Between 5 and 6 minutes after the unit is shut off to start the cool down test, measure the exit of the heat exchanger the average flue gas temperature, \(T_{F, OFF} \). At the same instant the flue gas temperature is measured, also measure the percent volumetric concentration of tracer gas \(C_T \) in the flue gas in the same plane where \(T_{F, OFF} \) is determined. Obtain the concentration of tracer gas using an instrument which will result in an accuracy of ±2 percent in the value of \(C_T \) measured. If use of a continuous reading type instrument results in a delay time between drawing of a sample and its analysis, this delay should be taken into account so that the temperature measurement and the measurement of tracer gas concentration coincide. In addition, determine the temperature of the tracer gas entering the flow meter \(T_J \) and the barometric pressure \(P_B \).

The rate of the flue gas mass flow rate through the vented heater and the factors \(D_P \), \(D_T \), and \(D_S \) are calculated by the equations in sections 4.5.1 through 4.5.3 of this appendix.

4.0 Calculations

4.1 Annual fuel utilization efficiency for gas or oil fueled vented home heating equipment equipped with manual controls and without thermal stack dampers. The following procedure determines the annual fuel utilization efficiency for gas or oil fueled vented home heating equipment equipped with manual controls and without thermal stack dampers.

4.1.1 System number. Obtain the system number from Table 1 of this appendix.

4.1.2 Off-cycle flue gas draft factor. Based on the system number, determine the off-cycle flue gas draft factor \(D_F \) from Table 1 of this appendix.

4.1.3 Off-cycle stack gas draft factor. Based on the system number, determine the off-cycle stack gas draft factor \(D_S \) from Table 1 of this appendix.
Department of Energy

\[L_{SS,A} = C(R_{T,F} + D)(T_{F,SS} - T_{RA}) \]

where:
- \(C \) as determined from Table 2 of this appendix
- \(R_{T,F} \) as defined in 4.1.7 of this appendix
- \(D \) as determined from Table 2 of this appendix
- \(T_{F,SS} \) as defined in 3.1 of this appendix
- \(T_{RA} \) as defined in 2.9 of this appendix

4.1.10 Steady-state efficiency. For vented heaters equipped with single stage thermostats, calculate the steady-state efficiency (excluding jacket loss, \(\eta_{SS} \), expressed in percent and defined as:

\[\eta_{SS} = 100 \times \frac{L_{A}}{L_{SS,A}} \]

where:
- \(L_{A} \) as defined in 4.1.6 of this appendix
- \(L_{SS,A} \) as defined in 4.1.9 of this appendix

For vented heaters equipped with two stage thermostats, calculate the steady-state efficiency at the reduced fuel input rate, \(\eta_{SS,L} \), expressed in percent and defined as:

\[\eta_{SS,L} = 100 - L_{LA} - L_{SS,A} \]

where:
- \(L_{LA} \) as defined in 4.1.6 of this appendix
- \(L_{SS,A} \) as defined in 4.1.9 of this appendix

In which \(L_{SS,A} \) is determined at the reduced fuel input rate.

For vented heaters equipped with step-modulating thermostats, calculate the reduced heat output rate (\(Q_{red-out} \)) defined as:

\[Q_{red-out} = \eta_{SS,L} Q_{max} \]

where:
- \(\eta_{SS,L} \) as defined in 4.1.10 of this appendix
- \(Q_{max} \) the maximum fuel input rate

4.1.11 Reduced heat output rate. For vented heaters equipped with either two stage thermostats or step-modulating thermostats, calculate the reduced heat output rate (\(Q_{red-out} \)) defined as:

\[Q_{red-out} = \eta_{SS,L} Q_{max} \]

where:
- \(\eta_{SS,L} \) as defined in 4.1.10 of this appendix
- \(Q_{max} \) the maximum fuel input rate

4.1.12 Maximum heat output rate. For vented heaters equipped with either two stage thermostats or step-modulating thermostats, calculate the maximum heat output rate (\(Q_{max-out} \)) defined as:

\[Q_{max-out} = Q_{red-out} \times Q_{max} \]

where:
- \(Q_{red-out} \) as defined in 4.1.11 of this appendix
- \(Q_{max} \) as defined in 4.1.12 of this appendix

4.1.13 Ratio of reduced to maximum heat output rates. For vented heaters equipped with either two stage thermostats or step-modulating thermostats, calculate the ratio of reduced to maximum heat output rates (\(R \)) expressed as a decimal and defined as:

\[R = \frac{Q_{red-out}}{Q_{max-out}} \]

where:
- \(Q_{red-out} \) as defined in 4.1.11 of this appendix
- \(Q_{max-out} \) as defined in 4.1.12 of this appendix

4.1.14 Fraction of heating load at reduced operating mode. For vented heaters equipped with either two stage thermostats or step-modulating thermostats, determine the fraction of heating load at the reduced operating mode (\(X \)) expressed as a decimal and listed
10 CFR Ch. II (1-1-98 Edition)

in Table 3 of this appendix or obtained from Figure 2 of this appendix.

4.1.15 Fraction of heating load at maximum operating mode or noncycling mode. For vented heaters equipped with two stage thermostats or step-modulating thermostats, determine the fraction of heating load at the maximum operating mode or noncycling mode \((X_u)\) expressed as a decimal and listed in Table 3 of this appendix or obtained from Figure 2 of this appendix.

4.1.16 Weighted-average steady-state efficiency. For single stage thermostats, the weighted-average steady-state efficiency \((\eta_{SS-WT})\) is equal to \(\eta_{SS}\), as defined in section 4.1.10 of this appendix. For vented heaters equipped with two stage thermostats, \(\eta_{SS-WT}\) is defined as:

\[\eta_{SS-WT} = \frac{\eta_{SS-H} \cdot X_2 + \eta_{SS-L} \cdot X_1}{X_2 + X_1} \]

where:

- \(X_2\) as defined in 4.1.14 of this appendix
- \(X_1\) as defined in 4.1.15 of this appendix
- \(\eta_{SS-H}\) as defined in 4.1.10 of this appendix
- \(\eta_{SS-L}\) as defined in 4.1.10 of this appendix

For vented heaters equipped with step-modulating thermostats, \(\eta_{SS-WT}\) is defined as:

\[\eta_{SS-WT} = \frac{\eta_{SS-L} \cdot X_2 + \eta_{SS-MOD} \cdot X_1}{X_2 + X_1} \]

where:

- \(X_1\) as defined in 4.1.14 of this appendix
- \(X_2\) as defined in 4.1.15 of this appendix
- \(\eta_{SS-MOD}\) as defined in 4.1.10 of this appendix

4.1.17 Annual fuel utilization efficiency. Calculate the annual fuel utilization efficiency \((AFUE)\) expressed as percent and defined as:

\[AFUE = \frac{100(0.24) (S/F) (0.7) \left[1 + R I,ON \right]}{\text{HHV}_A} \]

where:

- \(R I,ON\) as defined in 4.1.7 of this appendix
- \(\text{HHV}_A\) as average higher heating value of the test fuel, determined in accordance with Table 2 of this appendix

4.2.3 On-cycle infiltration heat loss. Calculate the on-cycle infiltration heat loss \((L_{ON})\) expressed as a percent and defined as:

\[L_{ON} = K_{LON}(70-45) \]

where:

- \(K_{LON}\) as defined in 4.2.2 of this appendix
- 70=average indoor temperature
- 45=average outdoor temperature

4.2.4 Weighted-average steady-state efficiency.

4.2.4.1 For manually controlled heaters with various input rates the weighted average steady-state efficiency \((\eta_{SS-WT})\), is determined as follows:

(1) at 50 percent of the maximum fuel input rate as measured in either section 3.1.1 of this appendix for manually controlled gas vented heaters or section 3.1.2 of this appendix for manually controlled oil vented heaters, or

(2) at the minimum fuel input rate as measured in either section 3.1.1 to this appendix for manually controlled gas vented heaters or section 3.1.2 to this appendix for manually controlled oil vented heaters if the design of the heater is such that the ± 5 percent of 50 percent of the maximum fuel input rate cannot be set, provided this minimum rate is no greater than 3% of maximum input rate of the heater.

4.2.4.2 For manually controlled heater with one single firing rate the weighted average steady-state efficiency is the steady-state efficiency measured at the single firing rate.

4.2.5 Part-load fuel utilization efficiency. Calculate the part-load fuel utilization efficiency \((\eta_{u})\) expressed as a percent and defined as:

\[\eta_{u} = \eta_{SS-WT} - L_{ON} \]

where:

- \(\eta_{SS-WT}\) as defined in 4.2.4 of this appendix
- \(L_{ON}\) as defined in 4.2.3 of this appendix
4.2.6 Annual Fuel Utilization Efficiency.

4.2.6.1 For manually controlled vented heaters, calculate the AFUE expressed as a percent and defined as:

$$\text{AFUE} = \frac{2,950 \eta_{SS} \eta_u Q_{in}\text{--max}}{2,950 \eta_{SS} Q_{in}\text{--max} + 2.083(4,600) \eta_u Q_p}$$

where:
- $2,950$ = average number of heating degree days
- η_{SS} = as defined as $\eta_{SS\text{--WT}}$ in 4.2.4 of this appendix
- η_u = as defined in 4.2.5 of this appendix
- $Q_{in}\text{--max}$ = as defined as Q_{in} at the maximum fuel input rate, as defined in 3.1 of this appendix
- $4,600$ = average number of non-heating season hours per year
- Q_p = as defined in 3.5 of this appendix
- $2.083 = (65 \pm 15)/24 = 50/24$
- $65 = \text{degree day base temperature}, ^{\circ}\text{F}$
- $15 = \text{national average outdoor design temperature for vented heaters as defined in section 4.1.10 of this appendix}$
- $24 = \text{number of hours in a day}$

4.2.6.2 For manually controlled vented heaters where the pilot light can be turned off by the user when the heater is not in use as described in section 3.5.2, calculate the AFUE expressed as a percent and defined as:

$$\text{AFUE} = \eta_u$$

where:
- η_u = as defined in section 4.2.5 of this appendix

4.3 Annual fuel utilization efficiency by the tracer gas method.

4.3.1 On-cycle sensible heat loss. For vented heaters equipped with single stage thermostats, calculate the on-cycle sensible heat loss ($L_{S,ON}$) expressed as a percent and defined as:

$$L_{S,ON} = X_1 L_{S,SS,A\text{--red}} + X_2 L_{S,SS,A\text{--max}}$$

where:
- X_1 = as defined in 4.1.14 of this appendix
- $L_{S,SS,A\text{--red}}$ = as defined in 4.3.1 of this appendix
- $L_{S,SS,A\text{--max}}$ = as defined as $L_{S,SS,A}$ in 4.1.9 of this appendix
- X_2 = as defined in 4.1.15 of this appendix
- $L_{S,SS,A\text{--avg}}$ = average sensible heat loss for step-modulating vented heaters operating in the modulating mode

4.3.2 On-cycle infiltration heat loss. For vented heaters equipped with single stage thermostats, calculate the on-cycle infiltration heat loss ($L_{I,ON}$) expressed as a percent and defined as:

$$L_{I,ON} = K_{I,ON}(70 \pm 45)$$

where:
- $K_{I,ON}$ = as defined in 4.2.2 of this appendix
- 70 = as defined in 4.2.3 of this appendix
- 45 = as defined in 4.2.3 of this appendix

For vented heaters equipped with two stage thermostats, calculate $L_{I,ON}$ defined as:

$$L_{I,ON} = K_{I,ON\text{--max}}(70-T_{OA\text{--max}}) + X_1 K_{I,ON\text{--red}}(70-T_{OA\text{--red}})$$

where:
- X_1 = as defined in 4.1.14 of this appendix
- $K_{I,ON\text{--max\text{--avg}}}$ = as defined as $K_{I,ON}$ in 4.2.2 of
For vented heaters equipped with step-modulating thermostats, calculate $L_{I,ON}$ defined as:

$$L_{I,ON} = X_1 K_{I,ON,avg}(70°-T_{OA}^*) + X_2 K_{I,ON,red}(70°-T_{OA})$$

where:

X_1 as defined in 4.1.14 of this appendix

and:

$K_{I,ON,avg} = \frac{K_{I,ON,max} + K_{I,ON,red}}{2}$

For vented heaters equipped with two stage thermostats, calculate $L_{S,OFF}$ defined as:

$$L_{S,OFF} = X_1 L_{S,OFF,red} + X_2 L_{S,OFF,Max}$$

where:

X_1 as defined in 4.1.14 of this appendix

$L_{S,OFF,red}$ as defined as $L_{S,OFF}$ in 4.3.3 of this appendix at the reduced fuel input rate

$L_{S,OFF,Max}$ as defined as $L_{S,OFF}$ in 4.3.3 of this appendix at the maximum fuel input rate

Calculate the off-cycle sensible heat loss ($L_{S,OFF}$) expressed as a percent and defined as:

$$L_{S,OFF} = \frac{100(0.24)}{Q_{in}t_{on}} \sum m_{S,OFF}(T_{S,OFF} - T_{RA})$$

where:

$100 =$ conversion factor for percent

$0.24 =$ specific heat of air in Btu per pound-°F

$Q_{in} =$ fuel input rate, as defined in 3.1 of this appendix in Btu per minute (as appropriate for the firing rate)

$t_{on} =$ average burner on-time per cycle and is 20 minutes

$\Sigma m_{S,OFF}(T_{S,OFF} - T_{RA}) =$ summation of the twenty values of the quantity, $m_{S,OFF}(T_{S,OFF} - T_{RA})$, measured in accordance with 3.3 of this appendix

$m_{S,OFF} =$ stack gas mass flow rate pounds per minute

$$m_{S,OFF} = \frac{1.325P_B V_T (100 - C_T)}{C_T(T_T + 460)}$$

$V_T =$ flow rate of the tracer gas through the stack in cubic feet per minute

$C_T =$ concentration by volume of the active tracer gas in the mixture in percent and is 100 when the tracer gas is a single component gas

$C_T =$ concentration by volume of the active tracer gas in the diluted stack gas in percent

$T_T =$ temperature of the tracer gas entering the flow meter in degrees Fahrenheit

$(T_T + 460) =$ absolute temperature of the tracer gas entering the flow meter in degrees Rankine

$4.3.4$ Average outdoor temperature. For vented heaters equipped with single stage thermostats, the average outdoor temperature (T_{OA}) is 45° F. For vented heaters equipped with either two stage thermostats or step-modulating thermostats, T_{OA} during the reduced operating mode is obtained from Table 3 or Figure 1 of this appendix. For
vented heaters equipped with two stage thermostats, T_{OA} during the maximum operating mode is obtained from Table 3 or Figure 1 of this appendix.

4.3.5 Off-cycle infiltration heat loss. For vented heaters equipped with single stage thermostats, calculate the off-cycle infiltration heat loss ($L_{I,OFF}$) at the maximum fuel input rate. For vented heaters equipped with step-modulating thermostats, calculate $L_{I,OFF}$ defined as:

$$L_{I,OFF} = X_1 L_{I,OFF,red}$$

where:

- X_1 as defined in 4.1.14 of this appendix
- $L_{I,OFF,red}$ as defined as $L_{I,OFF}$ in 4.3.3 of this appendix at the reduced fuel input rate

For vented heaters equipped with two stage thermostats, calculate $L_{I,OFF}$ defined as:

$$L_{I,OFF} = X_1 L_{I,OFF,red} + X_2 L_{I,OFF,max}$$

where:

- X_1 as defined in 4.1.14 of this appendix
- $L_{I,OFF,red}$ as defined as $L_{I,OFF}$ in 4.3.3 of this appendix at the reduced fuel input rate
- X_2 as defined in 4.1.15 of this appendix
- $L_{I,OFF,max}$ as defined as $L_{I,OFF}$ in 4.3.3 of this appendix at the maximum fuel input rate

Calculate the off-cycle infiltration heat loss ($L_{I,OFF}$) expressed as a percent and defined as:

$$L_{I,OFF} = \frac{100(0.24)(1.3)(0.7)(70 - T_{OA})}{Q_{in}t_{on}} \sum m_{S,OFF}$$

where:

- 100 = conversion factor for percent
- 0.24 = specific heat of air in Btu per pound-°F
- 1.3 = dimensionless factor for converting laboratory measured stack flow to typical field conditions
- 0.7 = infiltration parameter
- 70 = assumed average indoor air temperature, °F
- T_{OA} = average outdoor temperature as defined in 4.3.4 of this appendix
- Q_{in} = fuel input rate, as defined in 3.1 of this appendix
- t_{on} = average burner on-time per cycle and is 20 minutes
- $\sum m_{S,OFF}$ = summation of the twenty values of the quantity, $m_{S,OFF}$, measured in accordance with 3.3 of this appendix

4.3.6 Part-load fuel utilization efficiency. Calculate the part-load fuel utilization efficiency (η_u) expressed as a percent and defined as:

$$\eta_u = 100 - L_{L,A} - C_j L_j \left[\frac{t_{on}}{t_{on} + P_{F,off}} \right] + \left[L_{S,ON} + L_{S,OFF} + L_{I,ON} + L_{I,OFF} \right]$$

where:

- C_j = 2.8, adjustment factor
- $L_{L,A}$ = jacket loss as defined in 4.1.5
- L_j = jacket loss as defined in 4.1.6 of this appendix
- t_{on} = average burner on-time per cycle and is 20 minutes
- $P_{F,off}$ = average burner off-time per cycle and is 20 minutes
- $L_{S,ON}$ as defined in 4.3.1 of this appendix
- $L_{S,OFF}$ as defined in 4.3.3 of this appendix
- $L_{I,ON}$ as defined in 4.3.2 of this appendix
- $L_{I,OFF}$ as defined in 4.1.4 of this appendix

4.3.7 Annual Fuel Utilization Efficiency. Calculate the AFUE expressed as a percent and defined as:

$$AFUE = \frac{2,950 \eta_{SS-WT} \eta_u Q_{in-max}}{2,950 \eta_{SS-WT} Q_{in-max} + 2.083(4,600) \eta_u Q_p}$$

where:

- 2,950 = average number of heating degree days
- η_{SS-WT} as defined in 4.1.6 of this appendix
- η_u as defined in 4.3.6 of this appendix

For vented heaters equipped with two stage thermostats, calculate $L_{I,OFF}$ defined as:

$$L_{I,OFF} = X_1 L_{I,OFF,red} + X_2 L_{I,OFF,max}$$

where:

- X_1 as defined in 4.1.14 of this appendix
- $L_{I,OFF,red}$ as defined as $L_{I,OFF}$ in 4.3.3 of this appendix at the reduced fuel input rate
- X_2 as defined in 4.1.15 of this appendix
- $L_{I,OFF,max}$ as defined as $L_{I,OFF}$ in 4.3.3 of this appendix at the maximum fuel input rate

Calculate the off-cycle infiltration heat loss ($L_{I,OFF}$) expressed as a percent and defined as:

$$L_{I,OFF} = \frac{100(0.24)(1.3)(0.7)(70 - T_{OA})}{Q_{in}t_{on}} \sum m_{S,OFF}$$

where:

- 100 = conversion factor for percent
- 0.24 = specific heat of air in Btu per pound-°F
- 1.3 = dimensionless factor for converting laboratory measured stack flow to typical field conditions
- 0.7 = infiltration parameter
- 70 = assumed average indoor air temperature, °F
- T_{OA} = average outdoor temperature as defined in 4.3.4 of this appendix
- Q_{in} = fuel input rate, as defined in 3.1 of this appendix
- t_{on} = average burner on-time per cycle and is 20 minutes
- $\sum m_{S,OFF}$ = summation of the twenty values of the quantity, $m_{S,OFF}$, measured in accordance with 3.3 of this appendix

4.3.6 Part-load fuel utilization efficiency. Calculate the part-load fuel utilization efficiency (η_u) expressed as a percent and defined as:

$$\eta_u = 100 - L_{L,A} - C_j L_j \left[\frac{t_{on}}{t_{on} + P_{F,off}} \right] + \left[L_{S,ON} + L_{S,OFF} + L_{I,ON} + L_{I,OFF} \right]$$

where:

- C_j = 2.8, adjustment factor
- $L_{L,A}$ = jacket loss as defined in 4.1.5
- L_j = jacket loss as defined in 4.1.6 of this appendix
- t_{on} = average burner on-time per cycle and is 20 minutes
- $P_{F,off}$ = average burner off-time per cycle and is 20 minutes
- $L_{S,ON}$ as defined in 4.3.1 of this appendix
- $L_{S,OFF}$ as defined in 4.3.3 of this appendix
- $L_{I,ON}$ as defined in 4.3.2 of this appendix
- $L_{I,OFF}$ as defined in 4.1.4 of this appendix

4.3.7 Annual Fuel Utilization Efficiency. Calculate the AFUE expressed as a percent and defined as:

$$AFUE = \frac{2,950 \eta_{SS-WT} \eta_u Q_{in-max}}{2,950 \eta_{SS-WT} Q_{in-max} + 2.083(4,600) \eta_u Q_p}$$

where:

- 2,950 = average number of heating degree days
- η_{SS-WT} as defined in 4.1.6 of this appendix
- η_u as defined in 4.3.6 of this appendix
4.4 Stack damper effectiveness for vented heaters equipped with electro-mechanical stack dampers. Determine the stack damper effectiveness for vented heaters equipped with electro-mechanical stack dampers (D\textsubscript{o}), defined as:

\[D_o = 1.62 \left[1 - A_o \cos \Omega A_S \right] \]

where:
- \(A_o \) as defined in 3.4 of this appendix
- \(\Omega \) as defined in 3.4 of this appendix
- \(A_S \) as defined in 3.4 of this appendix

4.5 Additional requirements for vented home heating equipment using indoor air for combustion and draft control. For vented home heating equipment using indoor air for combustion and draft control, \(D_F \), as described in section 4.1.2 of this appendix, and \(D_S \), as described in section 4.1.3 of this appendix, shall be determined from Table 1 of this appendix.

4.5.1 Optional procedure for determining \(D_P \) for vented home heating equipment. Calculate the ratio (\(D_P \)) of the rate of flue gas mass flow through the vented heater during the off-period, \(M_{F,\text{OFF}}(T_{F,SS}) \), to the rate of flue gas mass flow during the on-period, \(M_{F,\text{SS}}(T_{F,SS}) \), and defined as:

\[D_P = \frac{M_{F,\text{OFF}}(T_{F,SS})}{M_{F,\text{SS}}(T_{F,SS})} \]

For oil fueled vented heaters in which an imposed draft is maintained, as described in section 3.6 of this appendix, \(M_{F,\text{OFF}}(T_{F,SS}) \) is defined as:

\[M_{F,\text{OFF}}(T_{F,SS}) = M_{F,\text{OFF}}(T^*_F,SS) \]

where:
- \(T_{F,SS} \) as defined in 3.1.1 of this appendix
- \(T^*_F \) is the flue gas temperature during the off-period measured in accordance with 3.6 of this appendix in degrees Fahrenheit
- \(\rho_B \) is the barometric pressure measured in accordance with 3.6 of this appendix in inches of mercury
- \(V_T \) is the flow rate of tracer gas through the vented heater measured in accordance with 3.6 of this appendix in cubic feet per minute
- \(C_T \) is the concentration of tracer gas present in the flue gas sample measured in accordance with 3.6 of this appendix in percent
- \(C^*_T \) is the concentration of the active tracer gas in the mixture in percent and is 100 when the tracer gas is a single component gas
- \(T_T \) is the temperature of the tracer gas entering the flow meter in accordance with 3.6 of this appendix in degrees Fahrenheit
- \((T_T + 460) \) is the absolute temperature of the tracer gas entering the flow meter in degrees Rankine

4.5.2 Optional procedure for determining off-cycle draft factor for flue gas flow for vented heaters. For systems numbered 1 thru 10, calculate the off-cycle draft factor for flue gas flow (\(D_F \)) defined as:

\[D_F = D_P \]

For systems numbered 11 or 12, \(D_F = D_P D_O \) where:
- \(D_P \) as defined in 4.5.1 of this appendix
- \(D_O \) as defined in 4.4 of this appendix

4.5.3 Optional procedure for determining off-cycle draft factor for stack gas flow for vented heaters. Calculate the off-cycle draft factor for stack gas flow (\(D_S \)) defined as:

For systems numbered 1 or 2: \(D_S = 1.0 \)

For systems numbered 3 or 4: \(D_S = (D_P + 0.79)/1.4 \)

For systems numbered 5 or 6: \(D_S = D_O \)

For systems numbered 7 or 8 and if \(D_S(S/F) < 1: D_S = D_P D_O \)

For systems numbered 7 or 8 and if \(D_S(S/F) > 1: D_S = D_P D_O + [0.85 - D_O (D_P) \cdot \frac{1}{S/F}] \cdot (D_O(S/F) - 1)/(S/F - 1) \)

where:
- \(D_P \) as defined in 4.5.1 of this appendix
- \(D_O \) as defined in 4.4 of this appendix

4.6 Annual energy consumption.

4.6.1 National average number of burner operating hours. For vented heaters equipped
Department of Energy

with single stage controls or manual controls, the national average number of burner operating hours (BOH) is defined as:

\[\text{BOH}_{\text{na}} = 1,416 \text{A} \]

where:

\[1,416 = \text{national average heating load hours for vented heaters based on 2,950 degree days and 15°F outdoor design temperature} \]

\[A = 0.7067, \text{adjustment factor to adjust the calculated design heating requirement} \]

and heating load hours to the actual heating load experienced by the heating system

\[\text{DHR} = \text{typical design heating requirements based on } Q_{\text{act}} \text{, from Table 4 of this appendix} \]

\[Q_{\text{uit}} = 100 \times (\eta_{\text{ss}}/100) - C \text{ (L}/1000) \]

\[L = \text{weather loss as defined in 4.1.5 of this appendix} \]

\[C_{\eta} = 2.8, \text{adjustment factor as defined in 4.3.6 of this appendix} \]

\[\eta_{\text{ss}} = \text{steady-state efficiency as defined in 4.1.10 of this appendix} \]

\[Q_{\text{m}} = \text{as defined in 3.1 of this appendix at the maximum fuel input rate} \]

\[A = 100,000 \times 341,300 \times (Q_{\text{m}} - Q_{\text{in}}) \]

\[B = 2.938(Q_{\text{m}} / 100,000) \]

\[100,000 = \text{factor that accounts for percent and kBtu in 3.1.3 of this appendix} \]

\[Q_{\text{m}} = \text{as defined in 3.5 of this appendix} \]

\[Q_{\text{in}} = \text{as defined in 4.2.6 of this appendix for manually controlled vented heaters, percent} \]

\[= 2.950 \times \text{AFUE}_{\text{ss}} \times Q_{\text{m}} - (2.950 \times \text{AFUE}_{\text{ss}}) \times Q_{\text{in}} - \text{AFUE}_{\text{ss}}(2.083 \times 4,600 / Q_{\text{m}}) \]

for vented heaters equipped without thermal stack dampers and not using the optional tracer gas method, where:

\[\text{AFUE} = \text{as defined in 4.1.17 of this appendix, percent} \]

\[2,950 = \text{average number of heating degree days as defined in 4.2.6 of this appendix} \]

\[4,600 = \text{average number of non-heating season hours per year as defined in 4.2.6 of this appendix} \]

\[2.938 = \text{ratio of the average length of the heating season in hours to the average heating load hours} \]

\[2.083 = \text{as specified in 4.2.6 of this appendix} \]

4.6.1.1 For vented heaters equipped with two stage or step modulating controls the national average number of burner operating hours at the reduced operating mode is defined as:

\[\text{BOH}_{\text{st}} = X_{\eta} \text{E}_{\text{alt}} / Q_{\text{m}} \]

where:

\[X_{\eta} = \text{as defined in 4.1.14 of this appendix} \]

\[Q_{\text{m}} = \text{as defined in 4.1.11 of this appendix} \]

\[E_{\text{alt}} = \text{average annual energy used during the heating season} \]

\[\text{BOH}_{\text{st}} = \text{as defined in 3.1 of this appendix at the maximum fuel input rate} \]

\[Q_{\text{m}} = \text{as defined in 3.5 of this appendix} \]

\[\text{BOH}_{\text{st}} = \text{as defined in 4.6.1 of this appendix, in which the term } P_{\text{r}} \text{ in the factor } A \text{ is increased by the factor } R, \text{ which is defined in 3.13 of this appendix as:} \]

\[R = 1.3 \text{ for two stage controls} \]

\[= 1.4 \text{ for step modulating controls when the ratio of minimum-to-maximum fuel input is greater than or equal to 0.7} \]

\[= 1.7 \text{ for step modulating controls when the ratio of minimum-to-maximum fuel input is less than 0.7 and greater than or equal to 0.5} \]

\[= 2.2 \text{ for step modulating controls when the ratio of minimum-to-maximum fuel input is less than 0.5} \]

\[A = 100,000 \times 341,300 \times E_{\text{alt}} \times (Q_{\text{m}} - Q_{\text{in}}) \]

\[8,760 = \text{total number of hours per year} \]

\[4,600 = \text{as specified in 4.2.6 of this appendix} \]

4.6.2 For vented heaters equipped with two stage or step modulating controls the national average number of burner operating hours at the maximum operating mode (BOHNA) is defined as:

\[\text{BOH}_{\text{NA}} = X_{\eta} \text{E}_{\text{alt}} / Q_{\text{m}} \]

where:

\[X_{\eta} = \text{as defined in 4.1.15 of this appendix} \]

\[E_{\text{alt}} = \text{average annual energy used during the heating season} \]

\[\text{BOH}_{\text{NA}} = \text{as defined in 3.1 of this appendix at the maximum fuel input rate} \]

4.6.3 Average annual auxiliary electrical energy consumption for vented heaters. For vented heaters equipped with either single stage controls or manual controls the average annual auxiliary electrical consumption (E_{\text{aux}}) is expressed in kilowatt-hours and defined as:

\[E_{\text{aux}} = \text{BOH}_{\text{st}} \times P_{\text{aux}} \]

where:

\[E_{\text{aux}} = \text{as defined in 4.6.12 of this appendix} \]

\[4,600 = \text{as specified in 4.2.6 of this appendix} \]

\[Q_{\text{m}} = \text{as defined in 3.5 of this appendix} \]

4.6.2.1 For vented heaters equipped with two stage or step modulating controls the term P_{\text{r}} is defined as:

\[E_{\text{alt}} = \text{as specified in 4.6.2.6 of this appendix} \]

\[Q_{\text{m}} = \text{as defined in 3.5 of this appendix} \]

4.6.3 Average annual auxiliary electrical energy consumption for vented heaters. For vented heaters equipped with single stage controls or manual controls the average annual auxiliary electrical consumption (E_{\text{aux}}) is expressed in kilowatt-hours and defined as:

\[E_{\text{aux}} = \text{BOH}_{\text{st}} \times P_{\text{aux}} \]

where:
BOHₐ is as defined in 4.6.1 of this appendix
Pₑ is as defined in 3.1.3 of this appendix

4.6.3.1 For vented heaters equipped with two stage or modulating controls Eₐₑ is defined as:

\[Eₐₑ = (BOHₐ + BOHₜₐ)Pₑ \]

where:

BOHₐ is as defined in 4.6.1 of this appendix
BOHₜₐ is as defined in 4.6.1 of this appendix
Pₑ is as defined in 3.1.3 of this appendix

4.6.4 Average annual energy consumption for vented heaters located in a different geographic region of the United States and in buildings with different design heating requirements.

4.6.4.1 Average annual fuel energy consumption for gas or oil fueled vented home heaters located in a different geographic region of the United States and in buildings with different design heating requirements. For gas or oil fueled vented home heaters the average annual fuel energy consumption for a specific geographic region and a specific typical design heating requirement (Eₐₑ) is expressed in Btu per year and defined as:

\[Eₐₑ = (Eₐₑ₄₈ + 8,760Qₚ)(HLₕₜₐₜ / 1,416) + 8,760Qₚ \]

where:

Eₐₑ₄₈ is as defined in 4.6.2 of this appendix
8,760 is as specified in 4.6.1 of this appendix
Qₚ is as defined in 3.5 of this appendix
HLₕₜₐₜ = heating load hours for a specific geographic region determined from the heating load hour map in Figure 3 of this appendix
1,416 is as specified in 4.6.1 of this appendix

4.6.4.2 Average annual auxiliary electrical energy consumption for gas or oil fueled vented home heaters located in a different geographic region of the United States and in buildings with different design heating requirements. For gas or oil fueled vented home heaters the average annual auxiliary electrical energy consumption for a specific geographic region and a specific typical design heating requirement (Eₐₐₑ) is expressed in kilowatt-hours and defined as:

\[Eₐₐₑ = Eₐₑ HLₕₜₐₜ / 1,416 \]

where:

Eₐₑ is as defined in 4.6.3 of this appendix
HLₕₜₐₜ is as defined in 4.6.4.1 of this appendix
1,416 is as specified in 4.6.1 of this appendix

<table>
<thead>
<tr>
<th>System number (Dₚ)</th>
<th>(Dₛ)</th>
<th>Burner type</th>
<th>Venting system type ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...................</td>
<td>1.0</td>
<td>Atmospheric</td>
<td>Draft hood or diverter.</td>
</tr>
<tr>
<td>2...................</td>
<td>0.4</td>
<td>1.0 Power</td>
<td>Draft hood or diverter.</td>
</tr>
<tr>
<td>3...................</td>
<td>1.0</td>
<td>1.0 Atmospheric</td>
<td>Barometric draft regulator.</td>
</tr>
<tr>
<td>4...................</td>
<td>0.85</td>
<td>0.4 Power</td>
<td>Barometric draft regulator.</td>
</tr>
<tr>
<td>5...................</td>
<td>1.0</td>
<td>Dₛ Atmospheric</td>
<td>Draft hood or diverter with damper.</td>
</tr>
<tr>
<td>6...................</td>
<td>0.4</td>
<td>Dₛ Power</td>
<td>Barometric draft regulator with damper.</td>
</tr>
<tr>
<td>7...................</td>
<td>1.0</td>
<td>Dₛ Atmospheric</td>
<td>Barometric draft regulator with damper.</td>
</tr>
<tr>
<td>8...................</td>
<td>0.4</td>
<td>Dₛ Dₛ Power</td>
<td>Barometric draft regulator with damper.</td>
</tr>
<tr>
<td>9...................</td>
<td>1.0</td>
<td>Atmospheric</td>
<td>Direct vent.</td>
</tr>
<tr>
<td>10..................</td>
<td>0.4</td>
<td>Power</td>
<td>Direct vent.</td>
</tr>
<tr>
<td>11..................</td>
<td>Dₛ</td>
<td>Atmospheric</td>
<td>Direct vent with damper.</td>
</tr>
<tr>
<td>12..................</td>
<td>0.4 Dₛ</td>
<td>Power</td>
<td>Direct vent with damper.</td>
</tr>
</tbody>
</table>

¹ Venting systems listed with dampers means electro-mechanical dampers only.

<table>
<thead>
<tr>
<th>Fuels</th>
<th>HHVₐ (Btu/lb)</th>
<th>A/F</th>
<th>Lₐ,A</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 oil</td>
<td>19,800</td>
<td>14.56</td>
<td>6.55</td>
<td>0.0679</td>
<td>14.22</td>
<td>0.0179</td>
<td>0.167</td>
</tr>
<tr>
<td>No. 2 oil</td>
<td>19,500</td>
<td>14.49</td>
<td>6.50</td>
<td>0.0667</td>
<td>14.34</td>
<td>0.0181</td>
<td>0.167</td>
</tr>
<tr>
<td>Natural gas</td>
<td>20,120</td>
<td>14.45</td>
<td>9.55</td>
<td>0.0919</td>
<td>10.96</td>
<td>0.0178</td>
<td>0.171</td>
</tr>
<tr>
<td>Manufactured gas</td>
<td>18,500</td>
<td>11.81</td>
<td>10.14</td>
<td>0.0965</td>
<td>10.10</td>
<td>0.0155</td>
<td>0.235</td>
</tr>
<tr>
<td>Propane</td>
<td>21,500</td>
<td>15.58</td>
<td>7.99</td>
<td>0.0841</td>
<td>12.60</td>
<td>0.0177</td>
<td>0.151</td>
</tr>
<tr>
<td>Butane</td>
<td>20,000</td>
<td>15.36</td>
<td>7.79</td>
<td>0.0808</td>
<td>12.93</td>
<td>0.0180</td>
<td>0.143</td>
</tr>
</tbody>
</table>
TABLE 3—Fraction of Heating Load at Reduced Operating Mode (X1) and at Maximum Operating Mode (X2), Average Outdoor Temperatures (TOA and TOA*), and Balance Point Temperature (TC) for Vented Heaters Equipped With Either Two-Stage Thermostats or Step-Modulating Thermostats

<table>
<thead>
<tr>
<th>Heat output ratio*</th>
<th>X1</th>
<th>X2</th>
<th>TOA</th>
<th>TOA*</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 to 0.24</td>
<td>0.12</td>
<td>0.88</td>
<td>57</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>0.25 to 0.29</td>
<td>0.16</td>
<td>0.84</td>
<td>56</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>0.30 to 0.34</td>
<td>0.20</td>
<td>0.80</td>
<td>54</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>0.35 to 0.39</td>
<td>0.30</td>
<td>0.70</td>
<td>53</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>0.40 to 0.44</td>
<td>0.36</td>
<td>0.64</td>
<td>52</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>0.45 to 0.49</td>
<td>0.43</td>
<td>0.57</td>
<td>51</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>0.50 to 0.54</td>
<td>0.52</td>
<td>0.48</td>
<td>50</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>0.55 to 0.59</td>
<td>0.60</td>
<td>0.40</td>
<td>49</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>0.60 to 0.64</td>
<td>0.70</td>
<td>0.30</td>
<td>48</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>0.65 to 0.69</td>
<td>0.76</td>
<td>0.24</td>
<td>47</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>0.70 to 0.74</td>
<td>0.84</td>
<td>0.16</td>
<td>46</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>0.75 to 0.79</td>
<td>0.88</td>
<td>0.12</td>
<td>46</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>0.80 to 0.84</td>
<td>0.94</td>
<td>0.06</td>
<td>45</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>0.85 to 0.89</td>
<td>0.96</td>
<td>0.04</td>
<td>45</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>0.90 to 0.94</td>
<td>0.98</td>
<td>0.02</td>
<td>44</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>0.95 to 0.99</td>
<td>0.99</td>
<td>0.01</td>
<td>44</td>
<td>13</td>
<td>17</td>
</tr>
</tbody>
</table>

* The heat output ratio means the ratio of minimum to maximum heat output rates as defined in 4.1.13.

TABLE 4—Average Design Heating Requirements for Vented Heaters With Different Output Capacities

<table>
<thead>
<tr>
<th>Vented heaters output capacity Q_output (Btu/hr)</th>
<th>Average design heating requirements (kBtu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000±7,499</td>
<td>5.0</td>
</tr>
<tr>
<td>7,500±10,499</td>
<td>7.5</td>
</tr>
<tr>
<td>10,500±13,499</td>
<td>10.0</td>
</tr>
<tr>
<td>13,500±16,499</td>
<td>12.5</td>
</tr>
<tr>
<td>16,500±19,499</td>
<td>15.0</td>
</tr>
<tr>
<td>19,500±22,499</td>
<td>17.5</td>
</tr>
<tr>
<td>22,500±26,499</td>
<td>20.5</td>
</tr>
<tr>
<td>26,500±30,499</td>
<td>23.5</td>
</tr>
<tr>
<td>30,500±34,499</td>
<td>26.5</td>
</tr>
<tr>
<td>34,500±38,499</td>
<td>30.0</td>
</tr>
<tr>
<td>38,500±42,499</td>
<td>33.5</td>
</tr>
<tr>
<td>42,500±46,499</td>
<td>36.5</td>
</tr>
<tr>
<td>46,500±51,499</td>
<td>40.0</td>
</tr>
<tr>
<td>50,500±56,499</td>
<td>44.0</td>
</tr>
<tr>
<td>55,500±61,499</td>
<td>48.0</td>
</tr>
<tr>
<td>61,500±66,499</td>
<td>52.0</td>
</tr>
<tr>
<td>66,500±71,499</td>
<td>56.0</td>
</tr>
<tr>
<td>71,500±76,499</td>
<td>60.0</td>
</tr>
</tbody>
</table>
FIGURE 1
Average Outdoor Air Temperature vs. Balance Point Temperature for Modulating Vented Heaters

This figure is based on 4500 degree-days and 15°F outdoor design temperature
FIGURE 2
Fraction of Total Annual Heating Load Applicable to Reduced Operating Mode \(X_1\) and to Maximum Operating Mode or Modulating Mode \(X_2\) vs. Balance Point Temperature for Modulating Vented Heaters

This figure is based on 4500 degree-days and 15\(^\circ\)F outdoor design temperature.
This map is reasonably accurate for most parts of the United States but is necessarily generalized, and consequently not too accurate in mountainous regions, particularly in the rockies.

FIGURE 3- HEATING LOAD HOURS (HLH) FOR THE UNITED STATES
APPENDIX P TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF POOL HEATERS

3. Measurements. Measure the quantities delineated in section 2.9 of ANSI Z21.56-1994. The measurement of energy consumption for oil-fired pool heaters in Btu is to be carried out in appropriate units, e.g., gallons.

4.1 Thermal efficiency. Calculate the thermal efficiency, E_T (expressed as a percent), as specified in section 2.9 of ANSI Z21.56-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu.

4.2 Average annual fossil fuel energy for pool heaters. The average annual fossil fuel energy for pool heater, E_{POH}, is defined as:

$$E_{POH} = BOH \times \left(\frac{Q_{IN} - BOH}{100} \right) Q_Y$$

where:

- BOH = average number of burner operating hours $= 104$ h
- Q_{IN} = rated fuel energy input as defined according to 2.9.1 or 2.9.2 of ANSI Z21.56-1994, as appropriate
- Q_Y = energy consumption of continuously operating pilot light if employed, in Btuh.

4.3 Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heater, E_{AE}, is expressed in Btu and defined as:

$$E_{AE} = BOH \times PE \times \left(\frac{Q_{IN} - BOH}{100} \right) Q_Y$$

where:

- $PE = 2E_T$, if heater tested according to 2.9.1 of ANSI Z21.56-1994
- $PE_{rated} = 3.412 PE$, if heater tested according to 2.9.2 of ANSI Z21.56-1994, in Btuh
- E_T = Electrical consumption of the heater (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if used, during the 30-minute thermal efficiency test, as defined in 2.9.1 of ANSI Z21.56-1994, in Btuh per 30 min.
- $2 = Conversion factor to convert unit from per 30 min. to per h.
- $PE_{rated} =$ Nameplate rating of auxiliary electrical equipment of heater, in Watts

5. Definitions.

1.1 ANSI Standard means a standard developed by a committee accredited by the American National Standards Institute.

1.2 Ballast input voltage means the rated input voltage of a fluorescent lamp ballast.

1.3 F40T12 lamp means a nominal 40 watt tubular fluorescent lamp which is 48 inches in length and one and a half inches in diameter, and conforms to ANSI standard C78.1-1978 (R1984).

1.4 F6T12 lamp means a nominal 75 watt tubular fluorescent lamp which is 96 inches in length and one and one-half inches in diameter, and conforms to ANSI Standard C78.1-1978 (R1984).

1.5 F96T12HO lamp means a nominal 110 watt tubular fluorescent lamp which is 96 inches in length and one and a half inches in diameter, and to operate.
10 CFR Ch. II (1–1–98 Edition)

Pt. 430, Subp. B, App. Q

1.6 Input current means the root-mean-square (RMS) current in amperes delivered to a fluorescent lamp ballast.

1.7 Luminaire means a complete lighting unit consisting of a fluorescent lamp or lamps, together with parts designed to distribute the light, to position and protect such lamps, and to connect such lamps to the power supply through the ballast.

1.8 Nominal lamp watts means the wattage at which a fluorescent lamp is designed to operate.

1.9 Power factor means the power input divided by the product of ballast input voltage and input current of a fluorescent lamp ballast, as measured under test conditions specified in ANSI Standard C82.2-1984.

1.10 Power input means the power consumption in watts of a ballast and fluorescent lamp or lamps, as determined in accordance with the test procedures specified in ANSI Standard C82.2-1984.

1.11 Relative light output means the light output delivered through the use of a ballast divided by the light output delivered through the use of a reference ballast, expressed as a percent, as determined in accordance with the test procedures specified in ANSI Standard C82.2-1984.

1.12 Residential building means a structure or portion of a structure which provides facilities or shelter for human residency, except that such term does not include any multifamily residential structure of more than three stories above grade.

2. Test conditions. The test conditions for testing fluorescent lamp ballasts shall be done in accordance with the American National Standard Institute (ANSI) Standard C82.2-1984, “American National Standard for Fluorescent Lamp Ballasts—Methods of Measurement,” approved October 21, 1983. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from ANSI Publication Sales, 1430 Broadway, New York, NY 10018. Copies may be inspected at the Department of Energy, Freedom of Information Reading Room, Room 1E-100, Fluorescent Lamp Ballasts, Docket No. CE-RM-89-102, 1000 Independence Avenue, SW, Washington DC 20585, or at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC 20001. Any subsequent amendment to this standard by the standard-setting organization will not affect the DOE test procedures unless and until amended by DOE. The test conditions are described in sections 4, 5, 6, 7, and 21 of ANSI Standard C82.2-1984.

3. Test method and measurements.

3.1 The test method for testing fluorescent lamp ballasts shall be done in accordance with ANSI Standard C82.2-1984.

3.2 Instrumentation. The instrumentation shall be as specified by sections 8, 9, 10, 11, 12, 19.1, and 23 of ANSI Standard C82.2-1984.

3.3 Electric supply.

3.3.1 Input power. Measure the input power (watts) to the ballast in accordance with ANSI Standard C82.2-1984, section 3.2.1(3) and section 4.

3.3.2 Input voltage. Measure the input voltage (volts) (RMS) to the ballast in accordance with ANSI Standard C82.2-1984, section 3.2.1(1) and section 4.

3.3.3 Input current. Measure the input current (amps) (RMS) to the ballast in accordance with ANSI Standard C82.2-1984, section 3.2.1(2) and section 4.

3.4 Light output.

3.4.1 Measure the light output of the reference lamp with the reference ballast in accordance with ANSI Standard C82.2-1984, section 16.

3.4.2 Measure the light output of the reference lamp with the test ballast in accordance with ANSI Standard C82.2-1984, section 16.

4.1 Calculate relative light output:

\[
\frac{\text{Photocell output of lamp on test ballast}}{\text{Photocell output of lamp on ref. ballast}} \times 100 = \text{relative light output}
\]

Where:

photocell output of lamp on test ballast is determined in accordance with section 3.4.2, expressed in watts, and photocell output of lamp on ref. ballast is determined in accordance with section 3.4.1, expressed in watts.

4.2 Determine the Ballast Efficacy Factor (BEF) using the following equations:

(a) Single lamp ballast

\[
\text{BEF} = \frac{\text{relative light output}}{\text{input power}}
\]

(b) Multiple lamp ballast

\[
\text{BEF} = \frac{\text{average relative light output}}{\text{input power}}
\]

Where:

input power is determined in accordance with section 3.3.1;
relative light output as defined in section 4.1; and
average relative light output is the relative light output, as defined in section 4.1, for

252
APPENDIX R TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING AVERAGE LAMP EFFICIENCY (LE) AND COLOR RENDERING INDEX (CRI) OF ELECTRIC LAMPS

1. Scope: This appendix applies to the measurement of lamp lumens, electrical characteristics and CRI for general service fluorescent lamps, and to the measurement of lamp lumens and electrical characteristics for general service incandescent lamps, incandescent reflector lamps and medium base compact fluorescent lamps.

2. Definitions

2.1 To the extent that definitions in the IESNA and CIE standards do not conflict with the DOE definitions, the definitions specified in §1.2 of IESNA LM–9, §3.0 of IESNA LM–20, §2 of IESNA LM–45, §2 of IESNA LM–58, §1.2 of IESNA LM–66 and §IV of CIE Publication No. 13.3 shall be included.

2.2 ANSI Standard means a standard developed by a committee accredited by the American National Standards Institute (ANSI).

2.3 CIE means the International Commission on Illumination.

2.4 CRI means Color Rendering Index as defined in §430.2.

2.5 IESNA means the Illuminating Engineering Society of North America.

2.6 Lamp efficacy means the ratio of measured lamp lumen output in lumens to the measured lamp electrical power input in watts, rounded to the nearest whole number, in units of lumens per watt.

2.7 Lamp lumen output means the total luminous flux produced by the lamp, at the reference condition, in units of lumens.

2.8 Lamp electrical power input means the total electrical power input to the lamp, including both arc and cathode power where appropriate, at the reference condition, in units of watts.

3. Test Conditions

3.1 General Service Fluorescent Lamps: For general service fluorescent lamps, the ambient conditions of the test and the electrical circuits, reference ballasts, stabilization requirements, instruments, detectors, and photometric test procedure and test report shall be as described in the relevant sections of IESNA LM–9 (see 10 CFR 430.22).

3.2 General Service Incandescent Lamps: For general service incandescent lamps, the selection and seasoning (initial burn-in) of the test lamps, the equipment and instrumentation, and the test conditions shall be as described in IESNA LM–45 (see 10 CFR 430.22).

3.3 Incandescent Reflector Lamps: For incandescent reflector lamps, the selection and seasoning (initial burn-in) of the test lamps, the equipment and instrumentation, and the test conditions shall conform to sections 4.2 and 5.0 of IESNA LM–20 (see 10 CFR 430.22).

3.4 Medium Base Compact Fluorescent Lamps: For medium base compact fluorescent lamps, the selection, seasoning and stabilization of the test lamps, and the test conditions, shall be as described in Sections 1, 2, 3, and 7 of IESNA LM–66 (see 10 CFR 430.22).

4. Test Methods and Measurements

4.1 General Service Fluorescent Lamps

4.1.1 The measurement procedure shall be as described in IESNA LM–9, except that lamps shall be operated at the appropriate voltage and current conditions as described in ANSI C78.375 and in ANSI C78.1, C78.2 or C78.3, and lamps shall be operated using the appropriate reference ballast as described in ANSI C78.3 (see 10 CFR 430.22).

4.1.2 Lamp lumen output (lumens) and lamp electrical power input (watts), at the reference condition, shall be measured and recorded. Lamp efficacy shall be determined by computing the ratio of the measured lamp lumen output and lamp electrical power input at equilibrium for the reference condition.

4.2 General Service Incandescent Lamps

4.2.1 The measurement procedure shall be as described in IESNA LM–45 (see 10 CFR 430.22). Lamps shall be operated at the rated voltage as defined in §430.2.

4.2.2 The test procedure shall conform with section 7 of IESNA LM–45 and the lumen
§ 430.31

output of the lamp shall be determined in accordance with Sections 4.2a or 4.2b of IESNA LM-45 at the reference condition. Lamp electrical power input in watts shall be measured and recorded. Lamp efficacy shall be determined by computing the ratio of the measured lamp lumen output and lamp electrical power input at equilibrium for the reference condition. The test report shall conform to §8 of IESNA LM-45 (see 10 CFR §430.22).

4.3 Incandescent Reflector Lamps

4.3.1 The measurement procedure shall be as described in IESNA LM-20 (see 10 CFR 430.22). Lamps shall be operated at the rated voltage as defined in §430.2.

4.3.2 Lamp lumen output shall be determined as total forward lumens, and may be measured in an integrating sphere at the reference condition in accordance with §7.2 of IESNA LM-20 (see 10 CFR 430.22) or from an average intensity distribution curve measured at the reference condition specified in §6.0 of IESNA LM-20. Lamp electrical power input in watts shall be measured and recorded.

4.3.3 Lamp efficacy shall be determined by computing the ratio of the measured lamp lumen output and lamp electrical power input at equilibrium for the reference condition. The test report shall conform to section 10.0 of IES LM-20 (see 10 CFR §430.22).

4.4 Medium Base Compact Fluorescent Lamps

4.4.1 The measurement procedure shall be as described in IESNA LM-66 (see 10 CFR 430.22) except that the provisions of IESNA LM-66 which refer to operation of the lamp using a reference ballast do not apply to the testing of integrally ballasted compact fluorescent lamps. Lamps shall be operated at 120 V and 60 Hertz. Lamp lumen output shall be measured with the integral ballast according to section 11.3 of IESNA LM-66. Lamp electrical power input in watts shall be measured and recorded.

4.4.2 Lamp efficacy shall be determined by computing the ratio of the measured lamp lumen output and lamp electrical power input at equilibrium for the reference condition. The test report shall conform to section 13 of IESNA LM-66 (see 10 CFR 430.22).

4.5 Determination of Color Rendering Index

4.5.1 The CRI shall be determined in accordance with the method specified in CIE Publication 13.2 for general service fluorescent lamps. The required spectroradiometric measurement and characterization shall be conducted in accordance with the methods given in IESNA LM-98 and IESNA LM-16 (see 10 CFR 430.22).

4.5.2 The test report shall include a description of the test conditions, equipment, measured lamps, spectroradiometric measurement results and CRI determination.

Subpart C—Energy Conservation Standards

§ 430.31 Purpose and scope.

This subpart contains any energy conservation standards for classes of covered products that are required to be administered by the Department of Energy pursuant to the Energy Conservation Program for Consumer Products Other Than Automobiles under the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.). Basic models of covered products manufactured before the date on which an amended energy conservation standard becomes effective (or revisions of such models manufactured after such date and have the same energy efficiency or energy use characteristics) that comply with the energy conservation standard applicable to such covered products on the day before such date shall be deemed to comply with the amended energy conservation standard.

§ 430.32 Energy conservation standards and effective dates.

The energy conservation standards for the covered product classes are:

(a) Refrigerators/refrigerator-freezers/freezers. These standards do not apply to refrigerators and refrigerator-freezers with total refrigerated volume exceeding 39 cubic feet or freezers with total refrigerated volume exceeding 30 cubic feet.

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy standards equations (Kwh/yr)</th>
<th>Effective dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>January 1, 1990</td>
</tr>
<tr>
<td>1. Refrigerators and Refrigerator-Freezers with manual defrost</td>
<td>(16.3AV+316)</td>
<td>(13.5AV+299)</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer—partial automatic defrost</td>
<td>(21.8AV+429)</td>
<td>(10.4AV+398)</td>
</tr>
</tbody>
</table>

254
Department of Energy

§ 430.32

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy standards equations (Kwh/yr) Effective dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1, 1990</td>
</tr>
<tr>
<td></td>
<td>January 1, 1993</td>
</tr>
<tr>
<td>3. Refrigerator-Freezers—automatic defrost with: Top-mounted freezer without through-the-door ice service</td>
<td>(23.5AV+471)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Refrigerator-Freezers—automatic defrost with: Side-mounted freezer without through-the-door ice service</td>
<td>(27.7AV+486)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Refrigerator-Freezers—automatic defrost with: Bottom-mounted freezer without through-the-door ice service</td>
<td>(27.7AV+486)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Refrigerator-Freezers—automatic defrost with: Top-mounted freezer with through-the-door ice service</td>
<td>(26.4AV+535)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Refrigerator-Freezers—automatic defrost with: Side-mounted freezer with through-the-door ice service</td>
<td>(30.9AV+547)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Upright Freezers with: Manual defrost</td>
<td>(10.9AV+422)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Upright Freezers with: Automatic defrost</td>
<td>(16.0AV+623)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Chest Freezers and all other Freezers</td>
<td>(14.8AV+223)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Including all refrigerators with automatic defrost

AV=Total adjusted volume, expressed in Ft.³, as determined in Appendices A1 and B1 of Subpart B of this Part.

b) Room air conditioners.

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy factor, as of Jan. 1, 1990</th>
<th>Energy factor, as of April 15, 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gas Water Heater</td>
<td>0.62 – (0.0019 × Rated Storage Volume in gallons)</td>
<td>0.62 – (0.0019 × Rated Storage Volume in gallons)</td>
</tr>
<tr>
<td>2. Oil Water Heater</td>
<td>0.59 – (0.0019 × Rated Storage Volume in gallons)</td>
<td>0.59 – (0.0019 × Rated Storage Volume in gallons)</td>
</tr>
<tr>
<td>3. Electric Water Heater</td>
<td>0.95 – (0.0132 × Rated Storage Volume in gallons)</td>
<td>0.93 – (0.0132 × Rated Storage Volume in gallons)</td>
</tr>
</tbody>
</table>

Note: Rated Storage Volume—the water storage capacity of a water heater, in gallons, as specified by the manufacturer.

e) Furnaces

<table>
<thead>
<tr>
<th>Product class</th>
<th>AFUE (percent)</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Furnaces (excluding classes noted below) (percent)</td>
<td>78</td>
<td>01/01/92</td>
</tr>
<tr>
<td>2. Mobile Home Furnaces (percent)</td>
<td>75</td>
<td>09/01/90</td>
</tr>
<tr>
<td>3. Small furnaces (other than furnaces designed solely for installation in mobile homes) having an input rate of less than 45,000 Btu/hr (A) Weatherized (outdoor)</td>
<td>78</td>
<td>01/01/92</td>
</tr>
<tr>
<td>(B) Non-weatherized (indoor)</td>
<td>78</td>
<td>01/01/92</td>
</tr>
<tr>
<td>4. Boilers (excluding gas steam) (percent)</td>
<td>80</td>
<td>01/01/92</td>
</tr>
<tr>
<td>5. Gas steam boilers (percent)</td>
<td>75</td>
<td>01/01/92</td>
</tr>
</tbody>
</table>

1 Annual Fuel Utilization Efficiency, as determined in §430.25(i)(2) of this part.

c) Central air conditioners and central air conditioning heat pumps.

<table>
<thead>
<tr>
<th>Product class</th>
<th>Seasonal energy efficiency ratio</th>
<th>Heating seasonal performance factor</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Split systems</td>
<td>10.0</td>
<td>6.8</td>
<td>01/01/92</td>
</tr>
<tr>
<td>2. Single package systems</td>
<td>8.7</td>
<td>6.6</td>
<td>01/01/93</td>
</tr>
</tbody>
</table>

d) Water heaters.

The energy factor of water heaters shall not be less than the following products manufactured on or after the indicated dates:

f) Dishwashers.

1 Dishwashers manufactured between January 1, 1988, and May 14, 1994 shall be equipped with an option to dry without heat.

2 Dishwashers manufactured on or after May 14, 1994, shall have an energy factor no less than:

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy factor (cycles/KWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compact Dishwasher (less than 22 inches in exterior width)</td>
<td>0.62</td>
</tr>
</tbody>
</table>
§ 430.32

Product class	Energy factor (cycles/Kwh)
ii. Standard Dishwasher (equal to or greater than 22 inches in exterior width) | 0.46

(g) Clothes washers. (1) Clothes washers manufactured between January 1, 1988, and May 14, 1994, shall include an unheated rinse water option.

(2) Clothes washers manufactured on or after May 14, 1994, shall have an energy factor no less than:

Product class	Energy factor (cu. ft./Kwh)
i. Top Loading, Compact (less than 4.4 ft³ capacity) | 0.90.
ii. Top Loading, Standard (1.6 ft³ or greater capacity) | 1.18.
iii. Top Loading, Semi-Automatic | Not Applicable.
iv. Front Loading | Not Applicable.
v. Suds saving | Not Applicable.

* These classes shall have an unheated rinse water option.

(h) Clothes dryers. (1) Gas clothes dryers manufactured between January 1, 1990; and May 14, 1994, shall not be equipped with a constant burning pilot.

(2) Clothes dryers manufactured on or after May 14, 1994, shall have an energy factor no less than:

Product class	Energy factor (lbs/Kwh)
i. Electric, Standard (4.4 ft³ or greater capacity) | 3.01.
ii. Electric, Compact (120v) (less than 4.4 ft³ capacity) | 3.13.
iii. Electric, Compact (240v) (less than 4.4 ft³ capacity) | 2.90.
iv. Gas | 2.67.

(i) Direct heating equipment.

(j) Kitchen ranges and ovens. Gas kitchen ranges and ovens with an electrical supply cord shall not be equipped with a constant burning pilot. The standard is effective on January 1, 1990.

(k) Pool heaters. The thermal efficiency of pool heaters must be no less than 78%. The standard is effective on January 1, 1990.

(l) Television sets. [Reserved]

(m) Fluorescent lamp ballasts. (1) Except as provided in paragraph (m)(2) of this section, each fluorescent lamp ballast—

(i) Manufactured on or after January 1, 1990;

(B) Sold by the manufacturer on or after April 1, 1990; or

(C) Incorporated into a luminarie by a luminarie manufacturer on or after April 1, 1991; and

(ii) Designed—

(A) To operate at nominal input voltages of 120 or 277 volts;

(B) To operate with an input current frequency of 60 Hertz; and

(C) For use in connection with F40T12, F96T12, or F96T12HO lamps; shall have a power factor of 0.90 or greater and shall have a ballast efficacy factor no less than the following:

<table>
<thead>
<tr>
<th>Application for operation of</th>
<th>Ballast input voltage</th>
<th>Total nominal lamp watts</th>
<th>Ballast efficacy factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>One F40T12 lamp</td>
<td>120</td>
<td>40</td>
<td>1.805</td>
</tr>
<tr>
<td>Two F40T12 lamps</td>
<td>120</td>
<td>80</td>
<td>1.060</td>
</tr>
<tr>
<td>Two F9T12 lamps</td>
<td>120</td>
<td>150</td>
<td>0.570</td>
</tr>
<tr>
<td>Two F96T12HO lamps</td>
<td>120</td>
<td>220</td>
<td>0.390</td>
</tr>
</tbody>
</table>

(2) The standards described in paragraph (m)(1) of this section do not apply to (i) a ballast which is designed for dimming or for use in ambient temperatures of 0°F or less, or (ii) a ballast which has a power factor of less than
(n) General service fluorescent lamps and incandescent reflector lamps. (1) Each of the following general service fluorescent lamps manufactured after the effective dates specified in the table shall meet or exceed the lamp efficacy and CRI standards shown in the table below:

FLUORESCENT LAMPS

<table>
<thead>
<tr>
<th>Lamp type</th>
<th>Nominal lamp watt-age</th>
<th>Minimum CRI</th>
<th>Minimum average lamp efficacy (LPW)</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-foot medium bi-pin</td>
<td>gt;35W</td>
<td>69</td>
<td>75.0</td>
<td>Nov. 1, 1995.</td>
</tr>
<tr>
<td></td>
<td>≤35W</td>
<td>45</td>
<td>75.0</td>
<td>Nov. 1, 1995.</td>
</tr>
<tr>
<td>2-foot U-shaped</td>
<td>gt;35W</td>
<td>69</td>
<td>68.0</td>
<td>Nov. 1, 1995.</td>
</tr>
<tr>
<td></td>
<td>≤35W</td>
<td>45</td>
<td>64.0</td>
<td>Nov. 1, 1995.</td>
</tr>
<tr>
<td>8-foot slimline</td>
<td>gt;65W</td>
<td>69</td>
<td>80.0</td>
<td>May 1, 1994.</td>
</tr>
<tr>
<td></td>
<td>≤65W</td>
<td>45</td>
<td>80.0</td>
<td>May 1, 1994.</td>
</tr>
<tr>
<td>8-foot high output</td>
<td>gt;100W</td>
<td>69</td>
<td>80.0</td>
<td>May 1, 1994.</td>
</tr>
<tr>
<td></td>
<td>≤100W</td>
<td>45</td>
<td>80.0</td>
<td>May 1, 1994.</td>
</tr>
</tbody>
</table>

(2) Each of the following incandescent reflector lamps manufactured after November 1, 1995, shall meet or exceed the lamp efficacy standards shown in the table in this paragraph:

INCANDESCENT REFLECTOR LAMPS

<table>
<thead>
<tr>
<th>Nominal lamp wattage</th>
<th>Minimum average lamp efficacy (LPW)</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–50</td>
<td>10.5</td>
<td>*</td>
</tr>
<tr>
<td>51–66</td>
<td>11.0</td>
<td>*</td>
</tr>
<tr>
<td>67–85</td>
<td>12.5</td>
<td>*</td>
</tr>
<tr>
<td>86–115</td>
<td>14.0</td>
<td>*</td>
</tr>
<tr>
<td>116–155</td>
<td>14.5</td>
<td>*</td>
</tr>
<tr>
<td>156–205</td>
<td>15.0</td>
<td>*</td>
</tr>
</tbody>
</table>

Effect of Date Note 1: At 62 FR 23116, Apr. 28, 1997, §430.32 was amended by revising paragraph (a), effective July 1, 2001. For the convenience of the user, the revised text follows.

§430.32 Energy conservation standards and effective dates.

(a) Refrigerators/refrigerator-freezers/freezers. These standards do not apply to refrigerators and refrigerator-freezers with total refrigerated volume exceeding 39 cubic feet (1104 liters) or freezers with total refrigerated volume exceeding 30 cubic feet (850 liters).

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy standards equations for maximum energy use (kWh/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerators and Refrigerator-freezers with manual defrost</td>
<td>13.5AV+299 8.82AV+248.4</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer—partial automatic defrost</td>
<td>0.48av+299 0.31av+248.4</td>
</tr>
<tr>
<td>3. Refrigerator-Freezers—automatic defrost with through-the-door ice service and all-refrigerators—automatic defrost</td>
<td>10.4AV+398 8.82AV+248.4</td>
</tr>
<tr>
<td>4. Refrigerator-Freezers—automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>0.37av+398 0.31av+248.4</td>
</tr>
<tr>
<td>5. Refrigerator-Freezers—automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>16.0AV+355 9.80AV+276.0</td>
</tr>
<tr>
<td>6. Refrigerator-Freezers—automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>0.57av+355 0.35av+276.0</td>
</tr>
</tbody>
</table>

257
§ 430.32 Energy conservation standards and effective dates.

(a) Refrigerator-Freezers—automatic defrost with side-mounted freezer with through-the-door ice service.

(b) Room air conditioners.

<table>
<thead>
<tr>
<th>Product class</th>
<th>Energy efficiency ratio, effective as of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Without reverse cycle, with louvered sides, and less than 6,000 Btu/h</td>
<td>8.0</td>
</tr>
<tr>
<td>2. Without reverse cycle, with louvered sides, and 6,000 to 7,999 Btu/h</td>
<td>8.5</td>
</tr>
<tr>
<td>3. Without reverse cycle, with louvered sides, and 8,000 to 13,999 Btu/h</td>
<td>9.0</td>
</tr>
<tr>
<td>4. Without reverse cycle, with louvered sides, and 14,000 to 19,999 Btu/h</td>
<td>8.8</td>
</tr>
<tr>
<td>5. Without reverse cycle, with louvered sides, and 20,000 Btu/h or more</td>
<td>8.5</td>
</tr>
<tr>
<td>6. Without reverse cycle, without louvered sides, and less than 6,000 Btu/h</td>
<td>8.0</td>
</tr>
<tr>
<td>7. Without reverse cycle, without louvered sides, and 6,000 to 7,999 Btu/h</td>
<td>8.5</td>
</tr>
<tr>
<td>8. Without reverse cycle, without louvered sides, and 8,000 to 13,999 Btu/h</td>
<td>8.5</td>
</tr>
<tr>
<td>9. Without reverse cycle, without louvered sides, and 14,000 to 19,999 Btu/h</td>
<td>8.5</td>
</tr>
<tr>
<td>10. Without reverse cycle, without louvered sides, and 20,000 Btu/h or more</td>
<td>8.2</td>
</tr>
<tr>
<td>11. With reverse cycle, with louvered sides, and less than 20,000 Btu/h</td>
<td>8.5</td>
</tr>
<tr>
<td>12. With reverse cycle, without louvered sides, and less than 14,000 Btu/h</td>
<td>8.0</td>
</tr>
<tr>
<td>13. With reverse cycle, with louvered sides, and 20,000 Btu/h or more</td>
<td>8.5</td>
</tr>
<tr>
<td>14. With reverse cycle, without louvered sides, and 14,000 Btu/h or more</td>
<td>8.0</td>
</tr>
<tr>
<td>15. Casement-Only</td>
<td>*</td>
</tr>
<tr>
<td>16. Casement-Slider</td>
<td>*</td>
</tr>
</tbody>
</table>

*Casement-only and casement-slider room air conditioners are not separate product classes under standards effective January 1, 1990. These units are subject to the applicable standards in classes 1 through 14 based on unit capacity and the presence or absence of louvered sides and a reverse cycle.
§ 430.33 Preemption of state regulations.

Any state regulation providing for any energy conservation standard, or other requirement with respect to the energy efficiency or energy use, of a covered product that is not identical to a Federal standard in effect under this subpart is preempted by that standard, except as provided for in section 327 (b) and (c) of the Act.

[54 FR 6077, Feb. 7, 1989]

APPENDIX A TO SUBPART C OF PART 430—PROCEDURES, INTERPRETATIONS AND POLICIES FOR CONSIDERATION OF NEW OR REVISED ENERGY CONSERVATION STANDARDS FOR CONSUMER PRODUCTS

1. Objectives
2. Scope
3. Setting Priorities for Rulemaking Activity
4. Process for Developing Efficiency Standards and Factors to be Considered
5. Policies on Selection of Standards
6. Effective Date of a Standard
7. Test Procedures
8. Joint Stakeholder Recommendations
9. Principles for the Conduct of Engineering Analysis
10. Principles for the Analysis of Impacts on Manufacturers
11. Principles for the Analysis of Impacts on Consumers
12. Consideration of Non-Regulatory Approaches
13. Crosscutting Analytical Assumptions
14. Deviations, Revisions, and Judicial Review

1. Objectives

This Appendix establishes procedures, interpretations and policies to guide the DOE in the consideration and promulgation of new or revised appliance efficiency standards under the Energy Policy and Conservation Act (EPCA). The Department's objectives in establishing these guidelines include:

(a) Provide for early input from stakeholders. The Department seeks to provide opportunities for public input early in the rulemaking process so that the initiation and direction of rulemakings is informed by comment from interested parties. Under the guidelines established by this Appendix, DOE will seek early input from interested parties in setting rulemaking priorities and structuring the analyses for particular products. Interested parties will be invited to provide input for the selection of design options and will help DOE identify analysis, data, and modeling needs. DOE will gather input from interested parties through a variety of mechanisms, including public workshops.

(b) Increase predictability of the rulemaking timetable. The Department seeks to make informed, strategic decisions about how to deploy its resources on the range of possible standards development activities, and to announce these prioritization decisions so that all interested parties have a common expectation about the timing of different rulemaking activities. The guidelines in this Appendix provide for setting priorities and timetables for standards development and test procedure modification and reflect these priorities in the Regulatory Agenda.

(c) Increase use of outside technical expertise. The Department seeks to expand its use of outside technical experts in evaluating product-specific engineering issues to ensure that decisions on technical issues are fully informed. The guidelines in this Appendix provide for increased use of outside technical experts in developing, performing and reviewing the analyses. Draft analytical results will be distributed for peer and stakeholder review.

(d) Eliminate problematic design options early in the process. The Department seeks to eliminate from consideration, early in the process, any design options that present unacceptable problems with respect to manufacturability, consumer utility, or safety, so that the detailed analysis can focus only on viable design options. Under the guidelines in this Appendix, DOE will eliminate from consideration design options if it concludes that manufacture, installation or service of the design will be impractical, or that the design option will adversely affect the utility of the product, or if the design has adverse safety or health impacts. This screening will be done at the outset of a rulemaking.

(e) Fully consider non-regulatory approaches. The Department seeks to understand the effects of market forces and voluntary programs on encouraging the purchase of energy efficient products so that the incremental impacts of a new or revised standard can be accurately assessed and the Department can make informed decisions about where standards and voluntary “market pull” programs can be used most effectively. Under the guidelines in this Appendix, DOE will solicit information on the effectiveness of market forces and non-regulatory approaches for encouraging the purchase of energy efficient products, and will carefully consider this information in assessing the benefits of standards. In addition, DOE will continue to support voluntary efforts by manufacturers, retailers, utilities and others to increase product efficiency.

(f) Conduct thorough analysis of impacts. In addition to understanding the aggregate
costs and benefits of standards, the Department seeks to understand the distribution of those costs and benefits among consumers, manufacturers and others, and the uncertainty associated with these analyses of costs and benefits, so that any adverse impacts on significant subgroups and uncertainty concerning any adverse impacts can be considered in selecting a standard. Under the guidelines in this Appendix, the analyses will consider the variability of impacts on significant groups of manufacturers and consumers in addition to aggregate costs and benefits, report the range of uncertainty associated with these impacts, and take into account cumulative impacts of regulation on manufacturers.

(g) Use transparent and robust analytical methods. The Department seeks to use qualitative and quantitative analytical methods that are fully documented for the public and that produce results that can be explained and reproduced, so that the analytical underpinnings for policy decisions on standards are as sound and well-accepted as possible. Under the guidelines in this Appendix, DOE will solicit input from interested parties in identifying analysis, data, and modeling needs with respect to measurement of impacts on manufacturers and consumers.

(h) Articulate policies to guide selection of standards. The Department seeks to adopt policies elaborating on the statutory criteria for selecting standards, so that interested parties are aware of the policies that will guide these decisions. Under the guidelines in this Appendix, policies for screening design options, selecting candidate standard levels, selecting a proposed standard level, and establishing the final standard are established.

(i) Support efforts to build consensus on standards. The Department seeks to encourage development of consensus proposals for new or revised standards because standards with such broad-based support are likely to balance effectively the economic, energy, and environmental interests affected by standards. Under the guidelines in this Appendix, DOE will support the development and submission of consensus recommendations for standards by representative groups of interested parties to the fullest extent possible.

(j) Reduce time and cost of developing standards. The Department seeks to establish a clear protocol for initiating and conducting standards rulemakings in order to eliminate time-consuming and costly missteps. Under the guidelines in this Appendix, increased and earlier involvement by interested parties and increased use of technical experts should minimize the need for re-analysis. This process should reduce the period between the publication of an Advance Notice of Proposed Rulemaking (ANOPR) and the publication of a final rule to not more than 18 months, and should decrease the government and private sector resources required to complete the standard development process.

2. Scope

(a) The procedures, interpretations and policies described in this Appendix will be fully applicable to:

(1) Rulemakings concerning new or revised Federal energy conservation standards for consumer products initiated after August 14, 1996, and

(2) Rulemakings concerning new or revised Federal energy conservation standards for consumer products that have been initiated but for which a Notice of Proposed Rulemaking (NOPR) has not been published as of August 14, 1996.

(b) For rulemakings described in paragraph (a)(2) of this section, to the extent analytical work has already been done or public comment on an ANOPR has already been provided, such analyses and comment will be considered, as appropriate, in proceeding under the new process.

(c) With respect to incomplete rulemakings concerning new or revised Federal energy conservation standards for consumer products for which a NOPR was published prior to August 14, 1996, the Department will conduct a case-by-case review to decide whether any of the analytical or procedural steps already completed should be repeated. In any case, the approach described in this Appendix will be used to the extent possible to conduct any analytical or procedural steps that have not been completed.

3. Setting Priorities for Rulemaking Activity

(a) Priority-setting analysis and development of list of priorities. At least once a year, the Department will prepare an analysis of each of the factors identified in paragraph (d) of this section based on existing literature, direct communications with interested parties and other experts, and other available information. The results of this analysis will be used to develop rulemaking priorities and proposed schedules for the development and issuance of all rulemakings. The DOE analysis, priorities and proposed rulemaking schedules will be documented and distributed for review and comment.

(b) Public review and comment. Each year, DOE will invite public input to review and comment on the priority analysis.

(c) Issuance of final listing of rulemaking priorities. Each fall, the Department will issue, simultaneously with the issuance of the Administration’s Regulatory Agenda, a final set of rulemaking priorities, the accompanying analysis, and the schedules for all priority rulemakings that it anticipates within the next two years.
4. Process for Developing Efficiency Standards and Factors to be Considered

This section describes the process to be used in developing efficiency standards and the factors to be considered in the process. The policies of the Department to guide the selection of standards and the decisions preliminary thereto are described in section 5.

(a) Identifying and screening design options. Once the Department has initiated a rulemaking for a specific product but before publishing an ANOPR, DOE will identify the product categories and design options to be analyzed in detail, and identify those design options eliminated from further consideration. Interested parties will be consulted to identify key issues, develop a list of design options, and to help the Department identify the expertise necessary to conduct the analysis.

(1) Identification of issues for analysis. The Department, in consultation with interested parties, will identify issues that will be examined in the standards development process.

(2) Identification of experts and other interested parties for peer review. DOE, in consultation with interested parties, will identify a group of independent experts and other interested parties who can provide expert review of the results of the engineering analysis, and the subsequent impact analysis.

(3) Identification and screening of design options. In consultation with interested parties, the Department will develop a list of design options for consideration. Initially, the candidate design options will encompass all those technologies considered to be technically feasible. Following the development of this initial list of design options, DOE will review each design option based on the factors described in paragraph (a)(4) of this section and the policies stated in section 5(b). The reasons for eliminating any design option at this stage of the process will be fully documented and published as part of the ANOPR. The technically feasible design options that are not eliminated in this screening will be considered further in the Engineering Analysis described in paragraph (b) of this section.

(b) Engineering analysis of design options. The factors for screening design options include:

(i) Technological feasibility. Technologies incorporated in commercial products or in working prototypes will be considered technologically feasible.

(ii) Practicability to manufacture, install and service. If mass production of a technology in commercial products and reliable installation and servicing of the technology could be achieved on the scale necessary to serve the relevant market at the time of the effective date of the standard, then that technology will be considered practicable to manufacture, install and service.

(iii) Adverse Impacts on Product Utility or Product Availability.

(iv) Adverse Impacts on Health or Safety.

Selection of contractors. Using the specifications of necessary contractor expertise developed in consultation with interested parties, DOE will select appropriate contractors, subcontractors, and as necessary, expert consultants to perform the engineering analysis and the impact analysis. The results of the analyses will be published in a Technical Support Document (TSD) to accompany the ANOPR.

(1) Identification of engineering analytical methods and tools. DOE, in consultation with outside experts, will select the specific engineering analysis tools (or multiple tools, if necessary to address uncertainty) to be used in the analysis of the design options identified as a result of the screening analysis.

(2) Engineering and life-cycle cost analysis of design options. The DOE and its contractor will perform engineering and life-cycle cost analyses of the design options. The DOE and its contractor will perform engineering and life-cycle cost analyses of the design options. After design options are identified and screened, DOE will perform the engineering analysis and the benefit/cost analysis and select the candidate standard levels based on these analyses. The results of the analyses will be published in a Technical Support Document (TSD) to accompany the ANOPR.

(3) Review by expert group and stakeholders. The results of the engineering and life-cycle cost analyses will be distributed for review by experts and interested parties. If appropriate, a public workshop will be conducted to review these results. The analyses will be revised as appropriate on the basis of this input.

(4) New information relating to the factors used for screening design options. If further information or analysis leads to a determination that a design option, or a combination of design options, has unacceptable impacts based on the policies stated in section 5(b), that design option or combination of design options will not be included in a candidate standard level.
(5) Selection of candidate standard levels. Based on the results of the engineering and life-cycle cost analysis of design options and the policies stated in section 5(c), DOE will select the candidate standard levels for further analysis.

(c) Advance Notice of Proposed Rulemaking.

(1) Documentation of decisions on candidate standard selection. (i) If the screening analysis indicates that continued development of a standard is appropriate, the Department will publish an ANOPR in the Federal Register and will distribute a draft TSD containing the analyses performed to this point. The ANOPR will specify candidate standard levels but will not propose a particular standard. The ANOPR will also include the preliminary analysis of consumer life-cycle costs, national net present value, and energy impacts for the candidate standard levels based on the engineering analysis.

(ii) If the preliminary analysis indicates that no candidate standard level is likely to meet the criteria specified in law, that conclusion will be announced. In such cases, the Department may decide to proceed with a rulemaking that proposes not to adopt new or amended standards, or it may suspend the rulemaking and conclude that further action on such standards should be assigned a low priority under section 3.

(2) Public comment and hearing. There will be 75 days for public comment on the ANOPR with at least one public hearing or workshop.

(3) Revisions based on comments. Based on consideration of the comments received, any necessary changes to the engineering analysis or the candidate standard levels will be made.

If major changes are required at this stage, interested parties and experts will be given an opportunity to review the revised analysis.

(d) Analysis of impacts and selection of proposed standard level. After the ANOPR, economic analyses of the impacts of the candidate standard levels will be conducted. The Department will propose updated standards based on the results of the impact analysis.

(1) Identification of issues for analysis. The Department, in consultation with interested parties, will identify issues that will be examined in the impacts analysis.

(2) Identification of analytical methods and tools. DOE, in consultation with outside experts, will select the specific economic analysis tools (or multiple tools if necessary to address uncertainty) to be used in the analysis of the candidate standard levels.

(3) Analysis of impacts. DOE will conduct the analysis of the impacts of candidate standard levels including analysis of the factors described in paragraphs (d)(7)(ii)-(viii) of this section.

(4) Review by expert group and stakeholders. The results of the analysis of impacts will be distributed for review by experts and interested parties. If appropriate, a public workshop will be conducted to review these results. The analysis will be revised as appropriate on the basis of this input.

(5) Efforts to develop consensus among stakeholders. If a representative group of interested parties undertakes to develop joint recommendations to the Department on standards, DOE will consider deferring its impact analysis until these discussions are completed or until participants in the efforts indicate that they are unable to reach a timely agreement.

(6) Selection of proposed standard level based on analysis of impacts. On the basis of the analysis of the factors described in paragraph (d)(7) of this section and the policies stated in section 5(e), DOE will select a proposed standard level.

(7) Factors to be considered in selecting a proposed standard. The factors to be considered in selection of a proposed standard include:

(i) Consensus stakeholder recommendations.

(ii) Impacts on manufacturers. The analysis of manufacturer impacts will include: Estimated impacts on cash flow; assessment of impacts on manufacturers of specific categories of products and small manufacturers; assessment of impacts on manufacturers of multiple product-specific federal regulatory requirements, including efficiency standards for other products and regulations of other agencies; and impact on manufacturing capacity, plant closures, and loss of capital investment.

(iii) Impacts on consumers. The analysis of consumer impacts will include: Estimated impacts on consumers based on national average energy prices and energy usage; assessments of impacts on subgroups of consumers based on major regional differences in usage or energy prices and significant variations in installation costs or performance; sensitivity analyses using high and low discount rates and high and low energy price forecasts; consideration of changes to product utility and other impacts of likely concern to all or some consumers, based to the extent practicable on direct input from consumers; estimated life-cycle cost with sensitivity analysis; and consideration of the increased first cost to consumers and the time required for energy cost savings to pay back these first costs.

(iv) Impacts on competition.

(v) Impacts on utilities. The analysis of utility impacts will include estimated marginal impacts on electric and gas utility costs and revenues.

(vi) National energy, economic and employment impacts. The analysis of national energy, economic and employment impacts will include: Estimated energy savings by fuel type; estimated net present value of benefits to all consumers, and estimates of the
direct and indirect impacts on employment by appliance manufacturers, relevant service industries, energy suppliers and the economy in general.

(vii) Impacts on the environment and energy security. The analysis of environmental and energy security impacts will include estimated impacts on emissions of carbon and relevant criteria pollutants, impacts on pollution control costs, and impacts on oil use.

(viii) Impacts of non-regulatory approaches. The analysis of energy savings and consumer impacts will incorporate an assessment of the impacts of market forces and existing voluntary programs in promoting product efficiency, usage and related characteristics in the absence of updated efficiency standards.

(ix) New information relating to the factors used for screening design options.

(e) Notice of Proposed Rulemaking.

(1) Documentation of decisions on proposed standard selection. The Department will publish a NOPR in the Federal Register that proposes standard levels and explains the basis for the selection of those proposed levels, and will distribute a draft TSD documenting the analysis of impacts. As required by §325(p)(2) of EPCA, the NOPR also will describe the maximum improvement in energy efficiency or maximum reduction in energy use that is technologically feasible and, if the proposed standards would not achieve these levels, the reasons for proposing different standards.

(2) Public comment and hearing. There will be 75 days for public comment on the NOPR, with at least one public hearing or workshop.

(3) Revisions to impact analyses and selection of final standard. Based on the public comments received and the policies stated in section 5(f), DOE will review the proposed standard and impact analyses, and make modifications as necessary. If major changes to the analyses are required at this stage, interested parties and experts will be given an opportunity to review the revised analyses.

(f) Notice of Final Rulemaking. The Department will publish a Notice of Final Rulemaking in the Federal Register that promulgates standard levels and explains the basis for the selection of those standards, accompanied by a final TSD.

5. Policies on Selection of Standards.

(a) Purpose. (1) Section 4 describes the process that will be used to consider new or revised energy efficiency standards and lists a number of factors and analyses that will be considered at specified points in the process. Department policies concerning the selection of new or revised standards, and decisions preliminary thereto, are described in this section.

These policies are intended to elaborate on the statutory criteria provided in section 325 of the EPCA, 42 U.S.C. 6295.

(2) The policies described below are intended to provide guidance for making the determinations required by EPCA. This statement of policy is not intended to preclude consideration of any information pertinent to the statutory criteria. The Department will consider all pertinent information in determining whether a new or revised standard is consistent with the statutory criteria. Moreover, the Department will not be guided by a policy in this section if, in the particular circumstances presented, such a policy would lead to a result inconsistent with the criteria in section 325 of EPCA.

(b) Screening design options. Section 4(a)(4) lists factors to be considered in screening design options. These factors will be considered as follows in determining whether a design option will receive any further consideration:

(1) Technological feasibility. Technologies that are not incorporated in commercial products or in working prototypes will not be considered further.

(2) Practicability to manufacture, install and service. If it is determined that mass production of a technology in commercial products and reliable installation and servicing of the technology could not be achieved on the scale necessary to serve the relevant market at the time of the effective date of the standard, then that technology will not be considered further.

(3) Impacts on product utility to consumers. If a technology is determined to have significant adverse impact on the utility of the product to significant subgroups of consumers, or result in the unavailability of any covered product type with performance characteristics (including reliability), features, sizes, capacities, and volumes that are substantially the same as products generally available in the U.S. at the time, it will not be considered further.

(4) Safety of technologies. If it is determined that a technology will have significant adverse impacts on health or safety, it will not be considered further.

(c) Identification of candidate standard levels. Based on the results of the engineering and cost and benefit analyses of design options, DOE will identify the candidate standard levels for further analysis. Candidate standard levels will be selected as follows:

(1) Costs and savings of design options. Design options which have payback periods that exceed the average life of the product or which cause life-cycle cost increases relative to the base case, using typical fuel costs, usage and discount rates, will not be used as the basis for candidate standard levels.

(2) Further information on factors used for screening design options. If further information or analysis leads to a determination
Pt. 430, Subpt. C, App. A

10 CFR Ch. II (1-1-98 Edition)

that a design option, or a combination of design options, has unacceptable impacts under the policies stated in paragraph (b) of this section, that design option or combination of design options will not be included in a candidate standard level.

(3) Selection of candidate standard levels. Candidate standard levels, which will be identified in the ANOPR and on which impact analyses will be conducted, will be based on the remaining design options.

(i) The range of candidate standard levels will typically include:

(A) The most energy efficient combination of design options;

(B) The combination of design options with the lowest life-cycle cost; and

(C) A combination of design options with a payback period of not more than three years.

(ii) Candidate standard levels that incorporate noteworthy technologies or fill in large gaps between efficiency levels of other candidate standard levels also may be selected.

(d) Advance notice of proposed rulemaking. New information provided in public comments on the ANOPR will be considered to determine whether any changes to the candidate standard levels are needed before proceeding to the analysis of impacts. This review, and any appropriate adjustments, will be based on the policies in paragraph (c) of this section.

(e) Selection of proposed standard. Based on the results of the analysis of impacts, DOE will select a standard level to be proposed for public comment in the NOPR. Section 4(d)(7) lists the factors to be considered in selecting a proposed standard level. Section 325(o)(2)(A) of EPCA provides that any new or revised standard must be designed to achieve the maximum improvement in energy efficiency that is determined to be technologically feasible and economically justified.

(1) Statutory policies. The fundamental policies concerning selection of standards are established in the EPCA, including the following:

(A) A candidate standard level will not be proposed or promulgated if the Department determines that it is not technologically feasible and economically justified. See EPCA section 325(o)(3)(B). A standard level is economically justified if the benefits exceed the burdens. See EPCA section 325(o)(2)(B)(i). A standard level is rebuttably presumed to be economically justified if the payback period is three years or less. See EPCA section 325(o)(2)(B)(ii).

(B) If the Department determines that a standard level is likely to result in the unavailability of any covered product type with performance characteristics (including reliability), features, sizes, capacities, and volumes that are substantially the same as products generally available in the U.S. at the time, that standard level will not be proposed. See EPCA section 325(o)(4).

(C) If the Department determines that a standard level would not result in significant conservation of energy, that standard level will not be proposed. See EPCA section 325(o)(3)(B).

(2) Selection of proposed standard on the basis of consensus stakeholder recommendations. Development of consensus proposals for new or revised standards is an effective mechanism for balancing the economic, energy, and environmental interests affected by standards. Thus, notwithstanding any other policy on selection of proposed standards, a consensus recommendation on an updated efficiency level submitted by a group that represents all interested parties will be proposed by the Department if it is determined to meet the statutory criteria.

(3) Considerations in assessing economic justification.

(i) The following policies will guide the application of the economic justification criterion in selecting a proposed standard:

(A) If the Department determines that a candidate standard level would result in a negative return on investment for the industry, would significantly reduce the value of the industry, or would cause significant adverse impacts to a significant subgroup of manufacturers (including small manufacturing businesses), that standard level will be presumed not to be economically justified.

(B) If the Department determines that a standard level would not result in significant adverse impacts to the environment or other significant losses of capital investment by domestic manufacturers, that standard level will be presumed not to be economically justified.

(C) If the Department determines that a candidate standard level would have a significant adverse impact on the environment or energy security, that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected benefits of the standard would outweigh this and any other expected adverse effects.

(D) If the Department determines that a candidate standard level would not result in significant energy conservation relative to non-regulatory approaches, that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected benefits of the standard would outweigh the expected adverse effects.
(E) If the Department determines that a candidate standard level is not consistent with the policies relating to practicability to manufacture, consumer utility, or safety in paragraphs (b) (2), (3) and (4) of this section, that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected benefits of the standard would outweigh this and any other expected adverse effects.

(F) If the Department determines that a candidate standard level is not consistent with the policies relating to consumer costs as specified in paragraph (c)(1) of this section, that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected benefits of the standard would outweigh this and any other expected adverse effects.

(G) If the Department determines that a candidate standard level will have significant adverse impacts on a significant subgroup of consumers (including low-income consumers), that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected adverse impacts of the standard would outweigh this and any other expected adverse effects.

(H) If the Department or the Department of Justice determines that a candidate standard level would have significant anti-competitive effects, that standard level will be presumed not to be economically justified unless the Department determines that specifically identified expected benefits of the standard would outweigh this and any other expected adverse effects.

(i) The basis for a determination that triggers any presumption or analysis provided by the group addresses all the pertinent information in the record.

(ii) The basis for a determination that an applicable presumption has been rebutted will be supported by substantial evidence in the record and the evidence and rationale for making these determinations will be explained in the NOPR.

(iii) If none of the policies in paragraph (e)(3)(i) of this section is found to be dispositive, the Department will determine whether the benefits of a candidate standard level exceed the burdens considering all the pertinent information in the record.

(5) Selection of a final standard. New information provided in the public comments on the NOPR and any analysis by the Department of Justice concerning impacts on competition of the proposed standard will be considered to determine whether any change to the proposed standard level is needed before proceeding to the final rule. The same policies used to select the proposed standard level, as described in section 5(e) above, will be used to guide the selection of the final standard level.

6. Effective Date of a Standard

The effective date for new or revised standards will be established so that the period between the publication of the final rule and the effective date is not less than any period between the dates for publication and effective date provided for in EPCA. The effective date of any revised standard will be established so that the period between the effective date of the prior standard and the effective date of such revised standard is not less than period between the two effective dates provided for in EPCA.

7. Test Procedures

(a) Identifying the need to modify test procedures. DOE, in consultation with interested parties, experts, and the National Institute of Standards and Technology, will attempt to identify any necessary modifications to test procedures when initiating the standards development process.

(b) Developing and proposing revised test procedures. Needed modifications to test procedures will be identified in consultation with experts and interested parties early in the screening stage of the standards development process. Any necessary modifications will be proposed before issuance of an ANOPR in the standards development process.

(c) Issuing final test procedure modification. Final, modified test procedures will be issued prior to the NOPR on proposed standards.

(d) Effective date of modified test procedures. If required only for the evaluation and issuance of updated efficiency standards, modified test procedures typically will not go into effect until the effective date of updated standards.

8. Joint Stakeholder Recommendations

(a) Joint recommendations. Consensus recommendations, and supporting analyses, submitted by a representative group of interested parties will be given substantial weight by DOE in the development of a proposed rule. See section 5(e)(2). If the supporting analyses provided by the group addresses all of the statutory criteria and uses valid economic assumptions and analytical methods, DOE expects to use this supporting analyses as the basis of a proposed rule. The proposed rule will explain any deviations from the consensus recommendations from interested parties.

(b) Breadth of participation. Joint recommendations will be of most value to the Department if the participants are reasonably representative of those interested in the outcome of the standards development process, including manufacturers, consumers, utilities, states and representatives of environmental or energy efficiency interest groups.
such participation. The Federal Advisory Committee Act may apply to participation in such discussions, recognizing that the procedural requirements of the Federal Advisory Committee Act may apply to such participation.

9. Principles for the Conduct of Engineering Analysis

(a) The purpose of the engineering analysis is to develop the relationship between efficiency and cost of the subject product. The Department will use the most appropriate means available to determine the efficiency/cost relationship, including an overall system approach or engineering modeling to predict the improvement in efficiency that can be expected from individual design options as discussed in the paragraphs below. From this efficiency/cost relationship, measures such as payback, life cycle cost, and energy savings can be developed. The Department, in consultation with interested parties, will select appropriate contractors, subcontractors, and expert consultants, as necessary, to perform the engineering analysis and the impact analysis. Also, the Department will consider data, information and analyses received from interested parties for use in the analysis wherever feasible.

(b) The engineering analysis begins with the list of design options developed in consultation with the interested parties as a result of the screening process. In consultation with the technology/industry expert peer review group, the Department will establish the likely cost and performance improvement of each design option. Ranges and uncertainties of cost and performance will be established, although efforts will be made to minimize uncertainties by using measures such as test data or component or material supplier information where available. Estimated uncertainties will be carried forward in subsequent analyses. The use of quantitative models will be supplemented by qualitative assessments as appropriate.

(c) The next step includes identifying, modifying or developing any engineering models necessary to predict the efficiency impact of any one or combination of design options on the product. A base case configuration or starting point will be established as well as the order and combination/blending of the design options to be evaluated. The DOE, utilizing expert consultants, will then perform the engineering analysis and develop the cost efficiency curve for the product. The cost efficiency curve and any necessary models will be subject to peer review before being issued with the ANOPR.

10. Principles for the Analysis of Impacts on Manufacturers

(a) Purpose. The purpose of the manufacturer analysis is to identify the likely impacts of efficiency standards on manufacturers. The Department will analyze the impact of standards on manufacturers with substantial input from manufacturers and other interested parties. The use of quantitative models will be supplemented by qualitative assessments by industry experts. This section describes the principles that will be used in conducting future manufacturing impact analysis.

(b) Issue identification. In the impact analysis stage (section 4(d)), the Department, in consultation with interested parties, will identify issues that will require greater consideration in the detailed manufacturer impact analysis. Possible issues may include identification of specific types or groups of manufacturers and concerns over access to technology. Specialized contractor expertise, empirical data requirements, and analytical tools required to perform the manufacturer impact analysis also would be identified at this stage.

(c) Industry characterization. Prior to initiating detailed impact studies, the Department will seek input on the present and past industry structure and market characteristics. Input on the following issues will be sought:

1. Manufacturers and their relative market shares;
2. Manufacturer characteristics, such as whether manufacturers make a full line of models or serve a niche market;
3. Trends in the number of manufacturers;
4. Financial situation of manufacturers;
5. Trends in product characteristics and retail markets; and
6. Identification of other relevant regulatory actions and a description of the nature and timing of any likely impacts.

(d) Cost impacts on manufacturers. The costs of labor, material, engineering, tooling, and capital are difficult to estimate, manufacturer-specific, and usually proprietary. The Department will seek input from interested parties on the treatment of cost issues. Manufacturers will be encouraged to offer suggestions as to possible sources of data and appropriate data collection methodologies. Costing issues to be addressed include:

1. Estimates of total cost impacts, including product-specific costs (based on cost impacts estimated for the engineering analysis) and front-end investment/conversion costs for the full range of product models.
Department of Energy

Pt. 430, Subpt. C, App. A

(2) Range of uncertainties in estimates of average cost, considering alternative designs and technologies which may vary cost impacts and changes in costs of material, labor and other inputs which may vary costs.

(3) Variable cost impacts on particular types of manufacturers, considering factors such as atypical sunk costs or characteristics of specific models which may increase or decrease costs.

(e) Impacts on product sales, features, prices and cost recovery. In order to make manufacturer cash flow calculations, it is necessary to predict the number of products sold and their sale price. This requires an assessment of the likely impacts of price changes on the number of products sold and on typical features of models sold. Past analyses have relied on price and shipment data generated by economic models. The Department will develop additional estimates of prices and shipments by drawing on multiple sources of data and experience including: actual shipment and pricing experience, data from manufacturers, retailers and other market experts, financial models, and sensitivity analyses. The possible impacts of candidate standard levels on consumer choices among competing fuels will be explicitly considered where relevant.

(f) Measures of impact. The manufacturer impact analysis will estimate the impacts of candidate standard levels on the net cash flow of manufacturers. Computations will be performed for the industry as a whole and for typical and atypical manufacturers. The exact nature and the process by which the analysis will be conducted will be determined by DOE, in conjunction with interested parties. Impacts to be analyzed include:

(1) Industry net present value, with sensitivity analyses based on uncertainty of costs, sales prices and sales volumes;

(2) Cash flows, by year;

(3) Other measures of impact, such as revenue, net income and return on equity, as appropriate;

The characteristics of atypical manufacturers worthy of special consideration will be determined in consultation with manufacturers and other interested parties and may include: manufacturers incurring higher or lower than average costs; and manufacturers experiencing greater or fewer adverse impacts on sales. Alternative scenarios based on other methods of estimating cost or sales impacts also will be performed, as needed.

(g) Cumulative impacts of other Federal regulatory actions. (1) The Department will recognize and seek to mitigate the overlapping effects on manufacturers of new or revised DOE standards and other regulatory actions affecting the same products. DOE will analyze and consider the impact on manufacturers of multiple product-specific regulatory actions. These factors will be considered in setting rulemaking priorities, assessing manufacturer impacts of a particular standard, and establishing the effective date for a new or revised standard. In particular, DOE will seek to propose effective dates for new or revised standards that are appropriately coordinated with other regulatory actions to mitigate any cumulative burden.

(2) If the Department determines that a proposed standard would impose a significant impact on product manufacturers within three years of the effective date of another DOE standard that imposes significant impacts on the same manufacturers (or divisions thereof, as appropriate), the Department will, in addition to evaluating the impact on manufacturers of the proposed standard, assess the joint impacts of both standards on manufacturers.

(3) If the Department is directed to establish or revise standards for products that are components of other products subject to standards, the Department will consider the interaction between such standards in setting rulemaking priorities and assessing manufacturer impacts of a particular standard. The Department will assess, as part of the engineering and impact analyses, the cost of components subject to efficiency standards.

(h) Summary of quantitative and qualitative assessments. The summary of quantitative and qualitative assessments will contain a description and discussion of uncertainties. Alternative estimates of impacts, resulting from the different potential scenarios developed throughout the analysis, will be explicitly presented in the final analysis results.

(i) Key modeling and analytical tools. In its assessment of the likely impacts of standards on manufacturers, the Department will use models which are clear and understandable, feature accessible calculations, and have assumptions that are clearly explained. As a starting point, the Department will use the Government Regulatory Impact Model (GRIM). The Department will consider any enhancements to the GRIM that are suggested by interested parties. If changes are made to the GRIM methodology, DOE will provide notice and seek public input. The Department will also support the development of economic models for price and volume forecasting. Research required to update key economic data will be considered.

11. Principles for the Analysis of Impacts on Consumers

(a) Early consideration of impacts on consumer utility. The Department will consider at the earliest stages of the development of a standard whether particular design options will lessen the utility of the covered products to the consumer. See section 4(a).

(b) Impacts on product availability. The Department will determine, based on consideration of information submitted during the
standard development process, whether a proposed standard is likely to result in the unavailability of any covered product type with performance characteristics (including reliability, sizes, capacities, and volumes that are substantially the same as products generally available in the U.S. at the time. DOE will not promulgate a standard if it concludes that it would result in such unavailability.

(c) Department of justice review. As required by law, DOE will consult with the Department of Justice at earlier stages in the standards development process to seek to obtain preliminary views on competitive impacts.

(d) Variation in consumer impacts. The Department will consider regional analysis tools, as appropriate, to evaluate the potential distribution of impacts of candidate standards levels among different subgroups of consumers. The Department will consider impacts on significant segments of consumers in determining standards levels. Where there are significant negative impacts on identifiable subgroups, the Department will consider the efficacy of voluntary approaches as a means to achieve potential energy savings.

(e) Payback period and first cost. (1) In the assessment of consumer impacts of standards, the Department will consider Life-Cycle Cost, Payback Period and Cost of Conserved Energy to evaluate the savings in operating expenses relative to increases in purchase price. The Department intends to increase the level of sensitivity analysis and scenario analysis for future rulemakings. The results of these analyses will be carried throughout the analysis and the ensuing uncertainty described.

(2) If, in the analysis of consumer impacts, the Department determines that a candidate standard level would result in a substantial increase in the product first costs to consumers or would not pay back such additional first costs through energy cost savings in less than three years, the Department will specifically assess the likely impacts of such a standard on low-income households, product sales and fuel switching.

12. Consideration of Non-Regulatory Approaches

(a) The Department recognizes that voluntary or other non-regulatory efforts by manufacturers, utilities and other interested parties can result in substantial efficiency improvements. The Department intends to consider fully the likely effects of non-regulatory initiatives on product energy use, consumer utility and life cycle costs, manufacturers, competition, utilities and the environment, as well as the distribution of these impacts among different regions, consumers, manufacturers and utilities. DOE will attempt to base its assessment on the actual impacts of such initiatives to date, but also will consider information presented regarding the impacts that any existing initiative might have in the future. Such information is likely to include a demonstration of the strong commitment of manufacturers, distribution channels, utilities or others to such voluntary efficiency improvements. This information will be used in assessing the likely incremental impacts of establishing or revising standards, in assessing appropriate effective dates for new or revised standards and in considering DOE support of non-regulatory initiatives.

(b) DOE believes that non-regulatory approaches are valuable complements to the standards program. In particular, DOE will consider pursuing voluntary programs where it appears that highly efficient products can obtain a significant market share but less efficient products cannot be eliminated altogether because, for instance, of unacceptable adverse impacts on a significant subgroup of consumers. In making this assessment, the Department will consider the success more efficient designs have had in the market, their acceptance to date, and their potential market penetration.

13. Crosscutting Analytical Assumptions

In selecting values for certain crosscutting analytical assumptions, DOE expects to continue relying upon the following sources and general principles:

(a) Underlying economic assumptions. The appliance standards analyses will generally use the same economic growth and development assumptions that underlie the most recent Annual Energy Outlook (AEO) published by the Energy Information Administration (EIA).

(b) Energy price and demand trends. Analyses of the likely impact of appliance standards on typical users will generally adopt the mid-range energy price and demand scenario of the EIA’s most current AEO. The sensitivity of such estimated impacts to possible variations in future energy prices is likely to be examined using the EIA’s high and low energy price scenarios.

(c) Product-specific energy-efficiency trends, without updated standards. Product specific energy-efficiency trends will be based on a combination of the efficiency trends forecast by the EIA’s residential and commercial demand model of the National Energy Modeling System (NEMS) and product-specific assessments by DOE and its contractors with input from interested parties.

(d) Discount rates. For residential and commercial consumers, ranges of three different
real discount rates will be used. For residential consumers, the mid-range discount rate will represent DOE’s approximation of the average financing cost (or opportunity costs of reduced savings) experienced by typical consumers. Sensitivity analyses will be performed using discount rates reflecting the costs more likely to be experienced by residential consumers with little or no savings and credit card financing and consumers with substantial savings. For commercial users, a mid-range discount rate reflecting the DOE’s approximation of the average real rate of return on commercial investment will be used, with sensitivity analyses being performed using values indicative of the range of real rates of return likely to be experienced by typical commercial businesses. For national net present value calculations, DOE would use the Administration’s approximation of the average real rate of return on private investment in the U.S. economy. For manufacturer impacts, DOE plans to use a range of real discount rates which are representative of the real rates of return experienced by typical U.S. manufacturers affected by the program.

(e) Environmental impacts. The emission rates of carbon, sulfur oxides and nitrogen oxides used by DOE to calculate the physical quantities of emissions likely to be avoided by candidate standard levels will be based on the current average carbon emissions of the U.S. electric utilities and on the projected rates of emissions of sulfur and nitrogen oxides. Projected rates of emissions, if available, will be used for the estimation of any other environmental impacts. The Department will consider the effects of the proposed standards on these emissions in reaching a decision about whether the benefits of the proposed standards exceed their burdens but will not determine the monetary value of these environmental externalities.

14. Deviations, Revisions, and Judicial Review

(a) Deviations. This Appendix specifies procedures, interpretations and policies for the development of new or revised energy efficiency standards in considerable detail. As the approach described in this Appendix is applied to the development of particular standards, the Department may find it necessary or appropriate to deviate from these procedures, interpretations or policies. If the Department concludes that such deviations are necessary or appropriate in a particular situation, DOE will provide interested parties with notice of the deviation and an explanation.

(b) Revisions. If the Department concludes that changes to the procedures, interpretations or policies in this Appendix are necessary or appropriate, DOE will provide notice in the Federal Register of modifications to this Appendix with an accompanying explanation. DOE expects to consult with interested parties prior to any such modification.

(c) Judicial review. The procedures, interpretations, and policies stated in this Appendix are not intended to establish any new cause of action or right to judicial review.

Subpart D—Petitions To Exempt State Regulation From Preemption, Petitions to Withdraw Exemption of State Regulation

§ 430.40 Purpose and scope.

(a) The regulations in this subpart prescribe the procedures to be followed in connection with petitions requesting a rule that a State regulation prescribing an energy conservation standard or other requirement respecting energy use or energy efficiency of a type (or class) of covered product not be preempted.

(b) The regulations in this subpart also prescribe the procedures to be followed in connection with petitions to withdraw a rule exempting a State regulation prescribing an energy conservation standard or other requirement respecting energy use or energy efficiency of a type (or class) of covered product.

§ 430.41 Prescriptions of a rule.

(a) Criteria for exemption from preemption. Upon petition by a State which has prescribed an energy conservation standard or other requirement for a type or class of a covered product for which a Federal energy conservation standard is applicable, the Secretary shall prescribe a rule that such standard not be preempted if he determines that the State has established by a preponderance of the evidence that such requirement is needed to meet unusual and compelling State or local energy interests. For the purposes of this regulation, the term “unusual and compelling State or local energy interests” means interests which are substantially different in nature or magnitude than those prevailing in the U.S. generally; and are such that when evaluated within the context of the State's...
energy plan and forecast, the costs, benefits, burdens, and reliability of energy savings resulting from the State regulation make such regulation preferable or necessary when measured against the costs, benefits, burdens, and reliability of alternative approaches to energy savings or production, including reliance on reasonably predictable market-induced improvements in efficiency of all products subject to the State regulation. The Secretary may not prescribe such a rule if he finds that interested persons have established, by a preponderance of the evidence, that the State's regulation will significantly burden manufacturing, marketing, distribution, sale or servicing of the covered product on a national basis. In determining whether to make such a finding, the Secretary shall evaluate all relevant factors including: The extent to which the State regulation will increase manufacturing or distribution costs of manufacturers, distributors, and others; the extent to which the State regulation will disadvantage smaller manufacturers, distributors, or dealers or lessen competition in the sale of the covered product in the State; the extent to which the State regulation would cause a burden to manufacturers to redesign and produce the covered product type (or class), taking into consideration the extent to which the regulation would result in a reduction in the current models, or in the projected availability of models, that could be shipped on the effective date of the regulation to the State and within the U.S., or in the current or projected sales volume of the covered product type (or class) in the State and the U.S.; and the extent to which the State regulation is likely to contribute significantly to a proliferation of State appliance efficiency requirements and the cumulative impact such requirements would have.

The Secretary may not prescribe such a rule if he finds that such a rule will result in the unavailability in the State of any covered product (or class) of performance characteristics (including reliability), features, sizes, capacities, and volumes that are substantially the same as those generally available in the State at the time of the Secretary's finding. The failure of some classes (or types) to meet this criterion shall not affect the Secretary's determination of whether to prescribe a rule for other classes (or types).

(1) Requirements of petition for exemption from preemption. A petition from a State for a rule for exemption from preemption shall include the information listed in paragraphs (a)(1)(i) through (a)(1)(viii) of this section. A petition for a rule and correspondence relating to such petition shall be available for public review except for confidential or proprietary information submitted in accordance with the Department of Energy's Freedom of Information Regulations set forth in 10 CFR part 1004:

(i) The name, address and telephone number of the petitioner;

(ii) A copy of the State standard for which a rule exempting such standard is sought;

(iii) A copy of the State's energy plan and forecast;

(iv) Specification of each type or class of covered product for which a rule exempting a standard is sought;

(v) Other information, if any, believed to be pertinent by the petitioner; and

(vi) Such other information as the Secretary may require.

(b) Criteria for exemption from preemption when energy emergency conditions exist within State. Upon petition by a State which has prescribed an energy conservation standard or other requirement for a type or class of a covered product for which a Federal energy conservation standard is applicable, the Secretary may prescribe a rule, effective upon publication in the Federal Register, that such regulation not be preempted if he determines that in addition to meeting the requirements of paragraph (a) of this section the State has established that: an energy emergency condition exists within the State that imperils the health, safety and welfare of its residents because of the inability of the State or utilities within the State to provide adequate quantities of gas or electric energy to its residents at less than prohibitive costs; and cannot be substantially alleviated by the importation of energy or the use of interconnection.
agreements; and the State regulation is necessary to alleviate substantially such condition.

(1) Requirements of petition for exemption from preemption when energy emergency conditions exist within a State. A petition from a State for a rule for exemption from preemption when energy emergency conditions exist within a State shall include the information listed in paragraphs (a)(1)(i) through (a)(1)(vi) of this section. A petition shall also include the information prescribed in paragraphs (b)(1)(i) through (b)(1)(iv) of this section, and shall be available for public review except for confidential or proprietary information submitted in accordance with the Department of Energy’s Freedom of Information Regulations set forth in 10 CFR part 1004:

(i) A description of the energy emergency condition which exists within the State, including causes and impacts.

(ii) A description of emergency response actions taken by the State and utilities within the State to alleviate the emergency condition;

(iii) An analysis of why the emergency condition cannot be alleviated substantially by importation of energy or the use of interconnection agreements;

(iv) An analysis of how the State standard can alleviate substantially such emergency condition.

(c) Criteria for withdrawal of a rule exempting a State standard. Any person subject to a State standard which, by rule, has been exempted from Federal preemption and which prescribes an energy conservation standard or other requirement for a type or class of a covered product, when the Federal energy conservation standard for such product subsequently is amended, may petition the Secretary requesting that the exemption rule be withdrawn. The Secretary shall consider such petition in accordance with the requirements of paragraph (a) of this section, except that the burden shall be on the petitioner to demonstrate that the exemption rule received by the State should be withdrawn as a result of the amendment to the Federal standard. The Secretary shall withdraw such rule if he determines that the petitioner has shown the rule should be withdrawn.

(1) Requirements of petition to withdraw a rule exempting a State standard. A petition for a rule to withdraw a rule exempting a State standard shall include the information prescribed in paragraphs (c)(1)(i) through (c)(1)(vii) of this section, and shall be available for public review, except for confidential or proprietary information submitted in accordance with the Department of Energy’s Freedom of Information Regulations set forth in 10 CFR part 1004:

(i) The name, address and telephone number of the petitioner;

(ii) A statement of the interest of the petitioner for which a rule withdrawing an exemption is sought;

(iii) A copy of the State standard for which a rule withdrawing an exemption is sought;

(iv) Specification of each type or class of covered product for which a rule withdrawing an exemption is sought;

(v) A discussion of the factors contained in paragraph (a) of this section;

(vi) Such other information, if any, believed to be pertinent by the petitioner; and

(vii) Such other information as the Secretary may require.

§ 430.42 Filing requirements.

(a) Service. All documents required to be served under this subpart shall, if mailed, be served by first class mail. Service upon a person’s duly authorized representative shall constitute service upon that person.

(b) Obligation to supply information. A person or State submitting a petition is under a continuing obligation to provide any new or newly discovered information relevant to that petition. Such information includes, but is not limited to, information regarding any other petition or request for action subsequently submitted by that person or State.

(c) The same or related matters. A person or State submitting a petition or other request for action shall state whether to the best knowledge of that petitioner the same or related issue,
§ 430.43 Notice of petition.

(a) Promptly after receipt of a petition and its acceptance for filing, notice of such petition shall be published in the Federal Register. The notice shall set forth the availability for public review of all data and information available, and shall solicit comments, data and information with respect to the determination on the petition. Except as may otherwise be specified, the period for public comment shall be 60 days after the notice appears in the Federal Register.

(b) In addition to the material required under paragraph (a) of this section, each notice shall contain a summary of the State regulation at issue and the petitioner’s reasons for the rule sought.

§ 430.44 Consolidation.

DOE may consolidate any or all matters at issue in two or more proceedings docketed where there exist common parties, common questions of fact and law, and where such consolidation...
§ 430.49 Finality of decision.

(a) A decision to prescribe a rule that a State energy conservation standard or other requirement not be preempted is final on the date the rule is issued, i.e., signed by the Secretary. A decision to prescribe such a rule has no effect on other regulations of a covered product of any other State.

(b) A decision to prescribe a rule withdrawing a rule exempting a State standard or other requirement is final on the date the rule is issued, i.e., signed by the Secretary. A decision to deny such a petition is final on the day a denial of a request for reconsideration is issued, i.e., signed by the Secretary.

Subpart E—Small Business Exemptions

SOURCE: 54 FR 6080, Feb. 7, 1989, unless otherwise noted.

Department of Energy

would expedite or simplify consider-

§ 430.45 Hearing.

The Secretary may hold a public

§ 430.44 Hearing.

§ 430.46 Disposition of petitions.

(a) After the submission of public

(b) The final rule issued by the Sec-

§ 430.47 Effective dates of final rules.

(a) A final rule exempting a State

(b) Three years after such rule is pub-

(c) If the Secretary finds that he can-

(c) If the Secretary finds that he can-

(d) A petitioner has not exhausted

§ 430.48 Request for reconsideration.

(a) Any petitioner whose petition for

(b) The denial of a petition will be re-

(a) A decision to prescribe a rule that

§ 430.49 Finality of decision.

(a) A decision to prescribe a rule that

Subpart E—Small Business

Exemptions

SOURCE: 54 FR 6080, Feb. 7, 1989, unless oth-

273
§ 430.50 Purpose and scope.

(a) This subpart establishes procedures for the submission and disposition of applications filed by manufacturers of covered consumer products with annual gross revenues that do not exceed $8 million to exempt them temporarily from all or part of energy conservation standards established by this part.

(b) The purpose of this subpart is to provide content and format requirements for manufacturers of covered consumer products with low annual gross revenues who desire to apply for temporary exemptions from applicable energy conservation standards.

§ 430.51 Eligibility.

Any manufacturer of a covered product with annual gross revenues that do not exceed $8,000,000 from all its operations (including the manufacture and sale of covered products) for the 12-month period preceding the date of application may apply for an exemption. In determining the annual gross revenues of any manufacturer under this subpart, the annual gross revenue of any other person who controls, is controlled by, or is under common control with, such manufacturer shall be taken into account.

§ 430.52 Requirements for applications.

(b) An application shall be in writing and shall include the following:

(1) Name and mailing address of applicant;

(2) Whether the applicant controls, is controlled by, or is under common control with another manufacturer, and if so, the nature of that control relationship;

(3) The text or substance of the standard or portion thereof for which the exemption is sought and the length of time desired for the exemption;

(4) Information showing the annual gross revenue of the applicant for the preceding 12-month period from all of its operations (including the manufacture and sale of covered products);

(5) Information to show that failure to grant an exemption is likely to result in a lessening of competition;

(6) Such other information, if any, believed to be pertinent by the petitioner; and

(7) Such other information as the Secretary may require.

§ 430.53 Processing of applications.

(a) The applicant shall serve a copy of the application, all supporting documents and all subsequent submissions, or a copy from which confidential information has been deleted pursuant to 10 CFR 1004.11, to the Secretary, which may be made available for public review.

(b) Within fifteen (15) days of the receipt of an application, the Secretary will either accept it for filing or reject it, and the applicant will be so notified in writing. Only such applications which conform to the requirements of this subpart and which contain sufficient information for the purposes of a substantive decision will be accepted for filing. Applications which do not so conform will be rejected and an explanation provided to the applicant in writing.

(c) For the purpose of this subpart, an application is deemed to be filed on the date it is accepted for filing.

(d) Promptly after receipt of an application and its acceptance for filing, notice of such application shall be published in the Federal Register. The notice shall set forth the availability for public review of data and information available, and shall solicit comments, data and information with respect to the determination on the application. Except as may otherwise be specified, the period for public comment shall be 60 days after the notice appears in the Federal Register.

(e) The Secretary on his own initiative may convene a hearing if, in his discretion, he considers such hearing will advance his evaluation of the application.
§ 430.54 Referral to the Attorney General.

Notice of the application for exemption under this subpart shall be transmitted to the Attorney General by the Secretary and shall contain (a) a statement of the facts and of the reasons for the exemption, and (b) copies of all documents submitted.

§ 430.55 Evaluation of application.

The Secretary shall grant an application for exemption submitted under this subpart if the Secretary finds, after obtaining the written views of the Attorney General, that a failure to allow an exemption would likely result in a lessening of competition.

§ 430.56 Decision and order.

(a) Upon consideration of the application and other relevant information received or obtained, the Secretary shall issue an order granting or denying the application.

(b) The order shall include a written statement setting forth the relevant facts and the legal basis of the order.

(c) The Secretary shall serve a copy of the order upon the applicant and upon any other person readily identifiable by the Secretary as one who is interested in or aggrieved by such order. The Secretary also shall publish in the Federal Register a notice of the grant or denial of the order and the reason therefor.

§ 430.57 Duration of temporary exemption.

A temporary exemption terminates according to its terms but not later than twenty-four months after the effective date of the rule for which the exemption is allowed.

Subpart F—Certification and Enforcement

SOURCE: 54 FR 6081, Feb. 7, 1989, unless otherwise noted.

§ 430.60 Purpose and scope.

The regulations in this subpart set forth the procedures to be followed for certification and enforcement testing to determine whether a basic model of a covered product complies with the applicable energy conservation standard set forth in subpart C of this part. Energy conservation standards include minimum levels of efficiency and maximum levels of consumption (also referred to as performance standards) and prescriptive energy design requirements (also referred to as design standards).

§ 430.61 Prohibited acts.

(a) Each of the following is a prohibited act pursuant to section 332 of the Act:

(1) Failure to permit access to, or copying of records required to be supplied under the Act and this rule or failure to make reports or provide other information required to be supplied under this Act and this rule;

(2) Failure of a manufacturer to supply at his expense a reasonable number of covered products to a test laboratory designated by the Secretary;

(3) Failure of a manufacturer to permit a representative designated by the Secretary to observe any testing required by the Act and this rule and inspect the results of such testing; and

(4) Distribution in commerce by a manufacturer or private labeler of any new covered product which is not in compliance with an applicable energy efficiency standard prescribed under the Act and this rule.

(b) In accordance with section 333 of the Act, any person who knowingly violates any provision of paragraph (a) of this section may be subject to assessment of a civil penalty of no more than $110 for each violation. Each violation of paragraph (a) of this section shall constitute a separate violation with respect to each covered product, and each day of noncompliance with paragraphs (a) (1) through (3) of this section shall constitute a separate violation.

§ 430.62 Submission of data.

(a) Compliance statement and certification report. Each manufacturer or private labeler before distributing in commerce any basic model of a covered product subject to the applicable energy conservation standard set forth in subpart C of this part shall certify by
means of a statement of compliance and certification report, that each basic model meets the requirements of that standard.

(1) The compliance statement shall certify that:
 (i) The basic model(s) comply with the applicable energy conservation standards;
 (ii) All required testing on which the compliance statement is based was conducted in conformance with the applicable test requirements prescribed in 10 CFR Part 430 Subpart B and this subpart and all test data are reported in accordance with this subpart;
 (iii) All information reported in the compliance statement is true, accurate, and complete; and
 (iv) The manufacturer (private labeler) is aware of the penalties associated with violations of the Act and the regulations thereunder, and 18 U.S.C. 1001 which prohibits knowingly making false statements to the Federal Government. The format for a compliance statement is set forth in appendix A of this subpart.

(2) For each basic model the certification report shall include the annual energy use and adjusted volume (for refrigerators, refrigerator-freezers and freezers), the national average annual energy use and adjusted volume (for externally vented refrigerators and refrigerators), energy factor and rated storage volume (for water heaters), the energy efficiency ratio (for room air conditioners), seasonal energy efficiency ratio and heating seasonal performance factor (for central air conditioners and central air conditioning heat pumps), thermal efficiency (for pool heaters), energy factor (for clothes washers, clothes dryers, and dishwashers), and annual fuel utilization efficiency (for furnaces and direct heating equipment) the model numbers for each basic model; and its capacity. For each basic model of general service fluorescent and incandescent reflector lamps, the certification report shall include the laboratory’s NVLAP identification number or other NVLAP-approved accreditation identification, basic model tested, production date codes (and accompanying decoding scheme), the 12-month average lamp efficiency and lamp wattage, brand names and model designation. The certification report shall also include the 12-month average Color Rendering Index for general service fluorescent lamps.

(3) Copies of reports to the Federal Trade Commission which include the information in paragraph (a)(2) of this section meet the requirements of this paragraph.

(b) Initial reporting requirements. (1) Except as provided in paragraph (b)(2) of this section, all data required by paragraph (a) of this section shall be submitted on or before the effective date of the applicable energy conservation standard as prescribed in section 325 of the Act. For each basic model of a covered product to be distributed in commerce, each manufacturer and private labeler, or a representative of each manufacturer and private labeler, shall file a compliance statement and certification report, by certified mail, to Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Codes and Standards, Forestal Building, 1000 Independence Avenue, SW, Washington, DC 20585-0121.

(2) Manufacturers of a basic model of a covered general service fluorescent lamp or incandescent reflector lamp shall file a compliance and certification report to DOE within 6 months from May 29, 1997.

(c) New models. (1) Except as provided in paragraph (c)(2) of this section, all information required by paragraph (a)(2) of this section shall be submitted for each new model prior to or concurrent with any distribution of such model. Any change to a basic model that affects energy consumption may constitute the addition of a new basic model subject to the requirements of §430.61 of this part. If such change does not alter compliance with the applicable energy conservation standard for the basic model, the new model shall be considered certified without additional testing. In all cases, the information on the new model required by paragraph (a)(2) of this section shall be submitted, by certified mail, to: Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Codes and Standards, Forestal Building, 1000 Independence Avenue, SW, Washington, DC 20585-0121. If a manufacturer discontinues a model, the
manufacturer shall report such discontinuation by certified mail to the Department of Energy.

(2) Prior to or concurrent with the distribution of a new model of general service fluorescent lamp or an incandescent reflector lamp, a manufacturer shall submit a statement signed by a company official stating how the manufacturer determined that the lamp meets or exceeds the energy conservation standards, including a description of any testing or analysis the manufacturer performed. This statement shall also list the model number or descriptor, lamp wattage and date of commencement of manufacture. Manufacturers of general service fluorescent lamps and incandescent reflector lamps shall submit the information required by paragraph (a)(2) of this section within one year after the date manufacture of that new model commences.

(d) Maintenance of records. (1) The manufacturer of any covered product subject to any of the energy performance standards or procedures prescribed in this part, shall establish, maintain, and retain the records of the underlying test data for all certification testing. Such records shall be organized and indexed in a fashion which makes them readily accessible for review. The records should include the supporting test data associated with tests performed on any test units to satisfy the requirements of this subpart (except tests performed by DOE directly).

(2) All such records shall be retained by the manufacturer for a period of two years from the date that production of the applicable model has ceased. Records shall be retained in a form allowing ready access to DOE upon request.

(e) Third party representation. If a manufacturer or private labeler elects to use a third party, e.g., trade association or other authorized representative, to submit the certification report, the certification report shall include all the information identified in paragraph (a) of this section, including the compliance statement.

§ 430.64 Imported products.

(a) Pursuant to section 331 of the Act, any person importing any covered product into the United States shall comply with the provisions of the Act and of this part, and is subject to the remedies of this part.

(b) Any covered product offered for importation in violation of the Act and of this part shall be refused admission into the customs territory of the United States under rules issued by the Secretary of the Treasury, except that the Secretary of the Treasury may, by such rules, authorize the importation of such covered product upon such
§ 430.65 Exported products.

Pursuant to section 330 of the Act, this part shall not apply to any covered product if (a) such covered product is manufactured, sold, or held for sale for export from the United States (or such product was imported for export), unless such product is, in fact, distributed in commerce for use in the United States, and (b) such covered product, when distributed in commerce, or any container in which it is enclosed when so distributed, bears a stamp or label stating that such covered product is intended for export.

§ 430.70 Enforcement.

(a) Performance standard—(1) Test notice. Upon receiving information in writing, concerning the energy performance of a particular covered product sold by a particular manufacturer or private labeler which indicates that the covered product may not be in compliance with the applicable energy performance standard, the Secretary may conduct testing of that covered product under this subpart by means of a test notice addressed to the manufacturer in accordance with the following requirements:

(i) Such a procedure will only be followed after the Secretary or his designated representative has examined the underlying test data provided by the manufacturer and after the manufacturer has been offered the opportunity to meet with DOE to verify compliance with the applicable performance standard. A representative designated by the Secretary shall be permitted to observe any reverification procedures by this subpart, and to inspect the results of such reverification.

(ii) The test notice will be signed by the Secretary or his designee. The test notice will specify the model or basic model to be selected for testing, the method of selecting the test sample, the time at which testing shall be initiated, the date by which testing is scheduled to be completed and the facility at which testing will be conducted. The test notice may also provide for situations in which the selected basic model is unavailable for testing, and may include alternative basic models.

(iv) The Secretary may require in the test notice that the manufacturer of a covered product shall ship at his expense a reasonable number of units of a basic model specified in such test notice to a testing laboratory designated by the Secretary. The number of units of a basic model specified in a test notice shall not exceed twenty (20).

(v) Within 5 working days of the time units are selected, the manufacturer shall ship the specified test units of a basic model to the testing laboratory.

(2) Testing Laboratory. Whenever DOE conducts enforcement testing at a designated laboratory in accordance with a test notice under this section, the resulting test data shall constitute official test data for that basic model. Such test data will be used by DOE to make a determination of compliance or noncompliance if a sufficient number of tests have been conducted to satisfy the requirements of appendix B of this subpart.

(3) Sampling. The determination that a manufacturer's basic model complies with the applicable energy performance standard shall be based on the testing conducted in accordance with the statistical sampling procedures set forth in appendix B of this subpart and the test procedures set forth in subpart B of this part.

(4) Test unit selection. A DOE inspector shall select a batch, a batch sample, and test units from the batch sample in accordance with the provisions of this paragraph and the conditions specified in the test notice.

(i) The batch may be subdivided by DOE utilizing criteria specified in the test notice, e.g., date of manufacture, component-supplier, location of manufacturing facility, or other criteria which may differentiate one unit from another within a basic model.
(ii) A batch sample of up to 20 units will then be randomly selected from one or more subdivided groups within the batch. The manufacturer shall keep on hand all units in the batch sample until such time as the basic model is determined to be in compliance or non-compliance.

(iii) Individual test units comprising the test sample shall be randomly selected from the batch sample.

(iv) All random selection shall be achieved by sequentially numbering all of the units in a batch sample and then using a table of random numbers to select the units to be tested.

(5) Test unit preparation. (i) Prior to and during testing, a test unit selected in accordance with paragraph (a)(4) of this section shall not be prepared, modified, or adjusted in any manner unless such preparation, modification, or adjustment is allowed by the applicable DOE test procedure. One test shall be conducted for each test unit in accordance with the applicable test procedures prescribed in subpart B.

(ii) No quality control, testing or assembly procedures shall be performed on a test unit, or any parts and sub-assemblies thereof, that is not performed during the production and assembly of all other units included in the basic model.

(iii) A test unit shall be considered defective if such unit is inoperative or is found to be in noncompliance due to failure of the unit to operate according to the manufacturer's design and operating instructions. Defective units, including those damaged due to shipping or handling, shall be reported immediately to DOE. DOE shall authorize testing of an additional unit on a case-by-case basis.

(iv) Testing at manufacturer's option. (i) If a manufacturer's basic model is determined to be in noncompliance with the applicable energy performance standard at the conclusion of DOE testing in accordance with the double sampling plan specified in appendix B of this subpart, the manufacturer may request that DOE conduct additional testing of the model according to procedures set forth in appendix B of this subpart.

(ii) All units tested under paragraph (a)(6) of this section shall be selected and tested in accordance with the provisions given in paragraphs (a)(1) through (5) of this section.

(iii) The manufacturer shall bear the cost of all testing conducted under paragraph (a)(6) of this section.

(iv) The manufacturer shall cease distribution of the basic model being tested under the provisions of paragraph (a)(6) of this section from the time the manufacturer elects to exercise the option provided in this paragraph until the basic model is determined to be in compliance. DOE may seek civil penalties for all units distributed during such period.

(v) If the additional testing results in a determination of compliance, a notice of allowance to resume distribution shall be issued by the Department.

§ 430.71 Cessation of distribution of a basic model.

(a) In the event that a model is determined noncompliant by DOE in accordance with §430.70 of this part or if a manufacturer or private labeler determines a model to be in noncompliance, then the manufacturer or private labeler shall:

(1) Immediately cease distribution in commerce of the basic model;

(2) Give immediate written notification of the determination of noncompliance, to all persons to whom the manufacturer has distributed units of the basic model manufactured since the date of the last determination of compliance.

(3) Pursuant to a request made by the Secretary, provide DOE within 30 days of the request, records, reports and other documentation pertaining to the acquisition, ordering, storage, shipment, or sale of a basic model determined to be in noncompliance.

(4) The manufacturer may modify the noncompliant basic model in such manner as to make it comply with the
applicable performance standard. Such modified basic model shall then be treated as a new basic model and must be certified in accordance with the provisions of this subpart; except that in addition satisfying all requirements of this subpart, the manufacturer shall also maintain records that demonstrate that modifications have been made to all units of the new basic model prior to distribution in commerce.

(b) If a basic model is not properly certified in accordance with the requirements of this subpart, the Secretary may seek, among other remedies, injunctive action to prohibit distribution in commerce of such basic model.

§ 430.72 Subpoena.

Pursuant to section 329(a) of the Act, for purposes of carrying out this part, the Secretary or the Secretary's designee, may sign and issue subpoenas for the attendance and testimony of witnesses and the production of relevant books, records, papers, and other documents, and administer the oaths. Witnesses summoned under the provisions of this section shall be paid the same fees and mileage as are paid to witnesses in the courts of the United States. In case of contumacy by, or refusal to obey a subpoena served, upon any persons subject to this part, the Secretary may seek an order from the District Court of the United States for any District in which such person is found or resides or transacts business requiring such person to appear and give testimony, or to appear and produce documents. Failure to obey such order is punishable by such court as a contempt thereof.

§ 430.73 Remedies.

If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard:

(a) DOE will notify the manufacturer, private labeler or any other person as required, of this finding and of the Secretary's intent to seek a judicial order restraining further distribution in commerce of such basic model unless the manufacturer, private labeler or any other person as required, delivers to DOE within 15 calendar days a statement, satisfactory to DOE, of the steps he will take to insure that the noncompliant model will no longer be distributed in commerce. DOE will monitor the implementation of such statement.

(b) If the manufacturer, private labeler or any other person as required, fails to stop distribution of the noncompliant model, the Secretary may seek to restrain such violation in accordance with section 334 of the Act.

(c) The Secretary shall determine whether the facts of the case warrant the assessment of civil penalties for knowing violations in accordance with section 333 of the Act.

§ 430.74 Hearings and appeals.

(a) Pursuant to section 333(d) of the Act, before issuing an order assessing a civil penalty against any person under this section, the Secretary shall provide to such person notice of the proposed penalty. Such notice shall inform such person of that person's opportunity to elect in writing within 30 days after the date of receipt of such notice to have the procedures of paragraph (c) of this section (in lieu of those in paragraph (b) of this section) apply with respect to such assessment.

(b)(1) Unless an election is made within 30 calendar days after receipt of notice under paragraph (a) of this section to have paragraph (c) of this section apply with respect to such penalty, the Secretary shall assess the penalty, by order, after a determination of violation has been made on the record after an opportunity for an agency hearing pursuant to section 554 of title 5, United States Code, before an administrative law judge appointed under section 3105 of such title 5. Such assessment order shall include the administrative law judge's findings and the basis for such assessment.

(2) Any person against whom a penalty is assessed under this section may, within 60 calendar days after the date of the order of the Secretary assessing such penalty, institute an action in the United States Court of Appeals for the appropriate judicial circuit for judicial review of such order in accordance with chapter 7 of title 5, United States Code. The court shall have jurisdiction to...
enter a judgment affirming, modifying, or setting aside in whole or in part, the order of the Secretary, or the court may remand the proceeding to the Secretary for such further action as the court may direct.

(c)(1) In the case of any civil penalty with respect to which the procedures of this section have been elected, the Secretary shall promptly assess such penalty, by order, after the date of the receipt of the notice under paragraph (a) of this section of the proposed penalty.

(2) If the civil penalty has not been paid within 60 calendar days after the assessment has been made under paragraph (c)(1) of this section, the Secretary shall institute an action in the appropriate District Court of the United States for an order affirming the assessment of the civil penalty. The court shall have authority to review de novo the law and the facts involved and shall have jurisdiction to enter a judgment enforcing, modifying, and enforcing as so modified, or setting aside in whole or in part, such assessment.

(3) Any election to have this paragraph apply may not be revoked except with the consent of the Secretary.

(d) If any person fails to pay an assessment of a civil penalty after it has become a final and unappealable order under paragraph (b) of this section, or after the appropriate District Court has entered final judgment in favor of the Secretary under paragraph (c) of this section, the Secretary shall institute an action to recover the amount of such penalty in any appropriate District Court of the United States. In such action, the validity and appropriateness of such final assessment order or judgment shall not be subject to review.

(e)(1) In accordance with the provisions of section 333(d)(5)(A) of the Act and notwithstanding the provisions of title 28, United States Code, or section 502(c) of the Department of Energy Organization Act, the Secretary shall be represented by the General Counsel of the Department of Energy (or any attorney or attorneys within DOE designated by the Secretary) who shall supervise, conduct, and argue any civil litigation to which paragraph (c) of this section applies including any related collection action under paragraph (d) of this section in a court of the United States or in any other court, except the Supreme Court of the United States. However, the Secretary or the General Counsel shall consult with the Attorney General concerning such litigation and the Attorney General shall provide, on request, such assistance in the conduct of such litigation as may be appropriate.

(2) In accordance with the provisions of section 333(d)(5)(B) of the Act, and subject to the provisions of section 502(c) of the Department of Energy Organization Act, the Secretary shall be represented by the Attorney General, or the Solicitor General, as appropriate, in actions under this section, except to the extent provided in paragraph (e)(1) of this section.

(3) In accordance with the provisions of section 333(d)(5)(C) of the Act, section 402(d) of the Department of Energy Organization Act shall not apply with respect to the function of the Secretary under this section.

§ 430.75 Confidentiality.

Pursuant to the provisions of 10 CFR 1004.11, any person submitting information or data which the person believes to be confidential and exempt from public disclosure should submit one complete copy, and fifteen copies from which the information believed to be confidential has been deleted. In accordance with the procedures established at 10 CFR 1004.11, DOE shall make its own determination with regard to any claim that information submitted be exempt from public disclosure.

OMB Control No. 1910-1400

APPENDIX A TO SUBPART F OF PART 430—COMPLIANCE STATEMENT

Statement of Compliance With Energy Conservation Standards for Appliances

Product: __
Manufacturer’s Name and Address ____________________________
__

Date: ____________________________

Submit by Certified Mail to: Department of Energy, Appliance Efficiency Standards, Assistant Secretary for Conservation and Renewable Energy, Forrestal Building, 1000 ____________________________
APPENDIX B TO SUBPART F OF PART 430—SAMPLING PLAN FOR ENFORCEMENT TESTING

Double Sampling

Step 1. The first sample size (n₁) must be four or more units.

Step 2. Compute the mean (\(\bar{x}_1 \)) of the measured energy performance of the \(n_1 \) units in the first sample as follows:

\[
\bar{x}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i
\]

where \(x_i \) is the measured energy efficiency or energy consumption of unit \(i \).

Step 3. Compute the standard deviation (s₁) of the measured energy performance of the \(n_1 \) units in the first sample as follows:

\[
s_1 = \sqrt{\frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2}
\]

Step 4. Compute the standard error (s₁)* of the measured energy performance of the \(n_1 \) units in the first sample as follows:

\[
s_{\bar{x}_1} = \frac{s_1}{\sqrt{n_1}} \quad (3)
\]

Step 5. Compute the upper control limit (UCL₁) and lower control limit (LCL₁) for the mean of the first sample using the applicable DOE energy performance standard (EPS) as the desired mean and a probability level of 95 percent (two-tailed test) as follows:

\[
LCL₁ = EPS - t s_{\bar{x}_1} \quad (4)
\]

\[
UCL₁ = EPS + t s_{\bar{x}_1} \quad (5)
\]

where \(t \) is a statistic based on a 95 percent two-tailed probability level and a sample size of \(n_1 \).

Step 6a. For an Energy Efficiency Standard, compare the mean of the first sample (\(\bar{x}_1 \)) with the upper and lower control limits (UCL₁ and LCL₁) to determine one of the following:

(i) If the mean of the first sample is below the lower control limit, then the basic model is in noncompliance and testing is at an end. (Do not go on to any of the steps below.)

(ii) If the mean of the first sample is equal to or greater than the upper control limit, then the basic model is in compliance and testing is at an end. (Do not go on to any of the steps below.)

(iii) If the sample mean is equal to or greater than the lower control limit but less than the upper control limit, then no determination of compliance or noncompliance can be made and a second sample size is determined by Step 7a.

Step 6b. For an Energy Consumption Standard, compare the mean of the first sample (\(\bar{x}_1 \)) with the upper and lower control limits (UCL₁ and LCL₁) to determine one of the following:

(i) If the mean of the first sample is above the upper control limit, then the basic model is in noncompliance and testing is at an end. (Do not go on to any of the steps below.)

(ii) If the mean of the first sample is equal to or less than the lower control limit, then the basic model is in compliance and testing is at an end. (Do not go on to any of the steps below.)

(iii) If the sample mean is equal to or less than the upper control limit but greater than the lower control limit, then no determination of compliance or noncompliance can be made and a second sample size is determined by Step 7a.

Step 7a. For an Energy Efficiency Standard, determine the second sample size (n₂) as follows:
\[n_2 = \left(\frac{t s_1}{0.05 \text{ EPS}} \right)^2 - n_1 \quad (6a) \]

where \(s_1 \) and \(t \) have the values used in Steps 4 and 5, respectively. The term “0.05 EPS” is the difference between the applicable energy efficiency standard and 95 percent of the standard, where 95 percent of the standard is taken as the lower control limit. This procedure yields a sufficient combined sample size \((n_1 + n_2) \) to give an estimated 97.5 percent probability of obtaining a determination of compliance when the true mean efficiency is equal to the applicable standard.

Given the solution value of \(n_2 \), determine one of the following:

1. If the value of \(n_2 \) is less than or equal to zero and if the mean energy efficiency of the first sample \((x_i) \) is either equal to or greater than the lower control limit (LCL) or equal to or greater than 95 percent of the applicable energy efficiency standard (EES), whichever is greater, i.e., if
 \[n_2 \leq 0 \text{ and } x_i \geq \max(LCL, 0.95 \text{ EES}), \]
 the basic model is in compliance and testing is at an end.

2. If the value of \(n_2 \) is less than or equal to zero and if the mean energy efficiency of the first sample \((x_i) \) is less than the lower control limit (LCL) or less than 95 percent of the applicable energy efficiency standard (EES), whichever is greater, i.e., if
 \[n_2 \leq 0 \text{ and } x_i < \max(LCL, 0.95 \text{ EES}), \]
 the basic model is in compliance and testing is at an end.

3. If the value of \(n_2 \) is greater than zero, then value of the second sample size is determined to be the smallest integer equal to or greater than the solution value of \(n_2 \) for equation \((6a)\). If the value of \(n_2 \) so calculated is greater than 20, set \(n_2 \) equal to 20.

Step 7b. For an Energy Consumption Standard, determine the second sample size \((n_2) \) as follows:

\[n_2 = \left(\frac{t s_1}{0.05 \text{ EPS}} \right)^2 - n_1 \quad (6b) \]

where \(s_1 \) and \(t \) have the values used in Steps 4 and 5, respectively. The term “0.05 EPS” is the difference between the applicable energy consumption standard and 105 percent of the standard, where 105 percent of the standard is taken as the upper control limit. This procedure yields a sufficient combined sample size \((n_1 + n_2) \) to give an estimated 97.5 percent probability of obtaining a determination of compliance when the true mean consumption is equal to the applicable standard.

Given the solution value of \(n_2 \), determine one of the following:

1. If the value of \(n_2 \) is less than or equal to zero and if the mean energy consumption of the first sample \((x_i) \) is either equal to or less than the upper control limit (UCL) or equal to or less than 105 percent of the applicable energy performance standard (EPS), whichever is less, i.e., if
 \[n_2 \leq 0 \text{ and } x_i \geq \min(UCL, 1.05 \text{ EPS}), \]
 the basic model is in compliance and testing is at an end.

2. If the value of \(n_2 \) is less than or equal to zero and if the mean energy consumption of the first sample \((x_i) \) is greater than the upper control limit (UCL) or more than 105 percent of the applicable energy performance standard (EPS), whichever is less, i.e., if
 \[n_2 \leq 0 \text{ and } x_i \geq \min(UCL, 1.05 \text{ EPS}), \]
 the basic model is in noncompliance and testing is at an end.

3. If the value of \(n_2 \) is greater than zero, then the value of the second sample size is determined to be the smallest integer equal to or greater than the solution value of \(n_2 \) for equation \((6b)\). If the value of \(n_2 \) so calculated is greater than 20, set \(n_2 \) equal to 20.

Step 8. Compute the combined mean \((\bar{x}_2) \) of the measured energy consumption of the \(n_1 \) and \(n_2 \) units of the combined first and second samples as follows:

\[\bar{x}_2 = \frac{1}{n_1 + n_2} \left(\sum_{i=1}^{n_1+n_2} x_i \right) \quad (7) \]

Step 9. Compute the standard error \((s_2) \) of the measured energy consumption of the \(n_1 \) and \(n_2 \) units in the combined first and second samples as follows:

\[s_2 = \frac{s_1}{\sqrt{n_1 + n_2}} \quad (8) \]

\text{NOTE.} \quad s_1 \text{ is the value obtained in Step 3.}

Step 10a. For an Energy Efficiency Standard, compute the lower control limit (LCL) for the mean of the combined first and second samples using the DOE energy efficiency standard (EES) as the desired mean and a one-tailed probability level of 97.5 percent (equivalent to the two-tailed probability level of 95 percent used in Step 5, above) as follows:

\[\text{LCL}_2 = \text{EES} - t s_{\bar{x}_2} \quad (9a) \]

where the t-statistic has the value obtained in Step 5 above.

Step 10b. For an Energy Consumption Standard, compute the upper control limit (UCL) for the mean of the combined first and second samples using the DOE energy performance standard (EPS) as the desired mean and a one-tailed probability level of 102.5 percent (equivalent to the two-tailed probability level of 95 percent used in Step 5, above) as follows:
where the t-statistic has the value obtained in Step 5 above.

Step 11a. For an Energy Efficiency Standard, compare the combined sample mean (\bar{x}_2) to the lower control limit (LCL_2) to find one of the following:

(i) If the mean of the combined sample (\bar{x}_2) is less than the lower control limit (LCL_2) or 95 percent of the applicable energy efficiency standard (EES), whichever is greater, i.e., if $\bar{x}_2 \geq \max(LCL_2, 0.95 \times \text{EES})$, the basic model is in noncompliance and testing is at an end.

(ii) If the mean of the combined sample (\bar{x}_2) is equal to or greater than the lower control limit (LCL_2) or 95 percent of the applicable energy efficiency standard (EES), whichever is greater, i.e., if $\bar{x}_2 \geq \max(LCL_2, 0.95 \times \text{EES})$, the basic model is in compliance and testing is at an end.

Step 11b. For an Energy Consumption Standard, compare the combined sample mean (\bar{x}_2) to the upper control limit (UCL_2) to find one of the following:

(i) If the mean of the combined sample (\bar{x}_2) is greater than the upper control limit (UCL_2) or 105 percent of the applicable energy performance standard (EPS), whichever is less, i.e., if $\bar{x}_2 \geq \min(UCL_2, 1.05 \times \text{EPS})$, the basic model is in noncompliance and testing is at an end.

(ii) If the mean of the combined sample (\bar{x}_2) is equal to or less than the upper control limit (UCL_2) or 105 percent of the applicable energy performance standard (EPS), whichever is less, i.e., if $\bar{x}_2 \leq \min(UCL_2, 1.05 \times \text{EPS})$, the basic model is in compliance and testing is at an end.

Manufacturer-Option Testing

If a determination of non-compliance is made in Steps 6, 7 or 11, above, the manufacturer may request that additional testing be conducted, in accordance with the following procedures.

Step A. The manufacturer requests that an additional number, n_3, of units be tested, with n_3 chosen such that $n_1 + n_2 + n_3$ does not exceed 20.

Step B. Compute the mean energy performance, standard error, and lower or upper control limit of the new combined sample in accordance with the procedures prescribed in Steps 8, 9, and 10, above.

Step C. Compare the mean performance of the new combined sample to the revised lower or upper control limit to determine one of the following:

a.1. For an Energy Efficiency Standard, if the new combined sample mean is equal to or greater than the lower control limit or 95 percent of the applicable energy efficiency standard, whichever is greater, the basic model is in compliance and testing is at an end.

a.2. For an Energy Consumption Standard, if the new combined sample mean is equal to or less than the upper control limit or 105 percent of the applicable energy consumption standard, whichever is less, the basic model is in compliance and testing is at an end.

b.1. For an Energy Efficiency Standard, if the new combined sample mean is less than the lower control limit or 95 percent of the applicable energy efficiency standard, whichever is greater, and the value of $n_1 + n_2 + n_3$ is less than 20, the manufacturer may request that additional units be tested. The total of all units tested may not exceed 20. Steps A, B, and C are then repeated.

b.2. For an Energy Consumption Standard, if the new combined sample mean is greater than the upper control limit or 105 percent of the applicable energy consumption standard, whichever is less, and the value of $n_1 + n_2 + n_3$ is less than 20, the manufacturer may request that additional units be tested. The total of all units tested may not exceed 20. Steps A, B, and C are then repeated.

c. Otherwise, the basic model is determined to be in noncompliance.

PART 435—ENERGY CONSERVATION

Voluntary Performance Standards for New Buildings; Mandatory for Federal Buildings

Subpart A—Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for Federal Buildings

§ 435.97 Purpose.
(a) This subpart establishes energy conservation voluntary performance standards for the design of new commercial and multi-family high rise residential buildings. The voluntary performance standards are designed to achieve the maximum practicable improvements in energy efficiency and increases in the use of non-depletable sources of energy.
(b) The voluntary performance standards will be used by Federal agencies for the design of new Federal commercial and multi-family high rise residential buildings.
(c) Except in the case of new commercial and multi-family high rise residential buildings, which are Federal buildings, voluntary performance standards prescribed under this subpart are developed solely as guidelines for the purpose of providing technical assistance for the design of energy efficient buildings.

§ 435.98 Scope.
(a) The voluntary performance standards for new commercial and multi-family high rise residential buildings apply to the design of a new commercial or multi-family high rise residential building, except for the following:
(1) A building constructed and developed for residential occupancy, unless the building is a multi-family high rise residential building with 3 or more stories;
(2) Heating, cooling, ventilating, or service hot water requirements for those spaces where processes occur for purposes other than occupant comfort and sanitation, and which impose thermal loads in excess of 5% of the loads that would otherwise be required for

SOURCE: 53 FR 32545, Aug. 25, 1988, unless otherwise noted.
§ 435.99 General definitions and acronyms.

(a) For the purpose of this subpart:

Accessible (as applied to equipment) means admitting close approach; not guarded by locked doors, elevation, or other effective means. (See also Readily Accessible.)

Adjusted Lighting Power means lighting power, ascribed to a luminaire(s), that has been reduced by deducting a lighting power control credit based on use of an automatic control device.

Annual Fuel Utilization Efficiency means the ratio of annual output energy to annual input energy that includes any non-heating season pilot input loss.

Air Conditioning, Comfort means treating air to control its temperature, relative humidity, cleanliness, and distribution to meet the comfort requirements of the occupants of the conditioned space. Some air conditioners may not accomplish all of these controls.

Ambient Lighting means lighting that produces general illumination throughout an area.

Area Factor means a multiplying factor that adjusts the base unit power density (BUPD) for spaces of various sizes to account for the impact of room configuration on lighting power utilization.

Automatic means a self-acting, operating by its own mechanism, when actuated by some impersonal influence, such as, a change in current strength, pressure, temperature or mechanical configuration. (See also Manual.)

Ballast means a device used with an electric-discharge lamp to obtain the necessary circuit conditions (voltage, current, and wave form) for starting and operating.

Ballast Efficacy Factor—Fluorescent means the ratio of the relative light output to the power input in watts, at specified test conditions, expressed as a percent.

Ballast Factor means the ratio of a commercial ballast lamp lumens to a reference ballast lamp lumens, used to correct the lamp lumen output from rated to actual.

Boiler Capacity means the rated heat output in Btu/h of the boiler, at the design inlet and outlet conditions and rated fuel/energy input.

British Thermal Unit means approximately the amount of heat required to raise the temperature of one pound of water from 59 °F to 60 °F.

Building means any new structure to be constructed that includes provision for a heating or cooling system, or both, or for a hot water system.

Building Code means a legal instrument which is in effect in a state or unit of general purpose local government, the provisions of which must be adhered to if a building is to be considered to be in conformance with law and suitable for occupancy and use.

Building Design means the architectural and engineering drawings and specifications used for the construction of a new building.

Building Energy Cost means the computed annual energy cost of all purchased energy for the building, calculated using the methods of section 435.111 of these standards.

Building Envelope means the elements of a building that enclose conditioned spaces through which thermal energy may be transferred to or from the exterior or to or from unconditioned spaces.

Building Type means the classification of a building by usage. In this regulation the following classifications of buildings are defined by these uses:

(1) Assembly means a building or structure for the gathering together of persons, such as auditoriums, churches, dance halls, gymnasiums, theaters, museums, passenger depots, sports facilities, and public assembly halls.

(2) Health and Institutional means a building or structure for the purpose of providing medical treatment, confinement or care, and sleeping facilities such as hospitals, sanitariums, clinics,
orphanages, nursing homes, mental institutions, reformatories, jails, and prisons.

(3) Hotel/Motel means a building or structure for transient occupancy, such as resorts, hotels, motels, barracks, and dormitories.

(4) Multi-Family means a building or structure containing three or more dwelling units. (See Dwelling Units, and Multi-Family Dwelling.)

(5) Office (Business) means a building or structure for office, professional, or service type transactions, such as medical offices, banks, libraries, and business offices, including governmental office buildings.

(6) Restaurant means a building or a structure for the consumption of food or drink, including fast food, coffee shops, cafeterias, bars, and restaurants.

(7) Retail (Mercantile) means a building or a structure for the display and sale (wholesale or retail) of merchandise, such as shopping malls, food markets, auto dealerships, department stores, and specialty shops. (See also Retail Establishments.)

(8) School (Educational) means a building or structure for the purpose of instruction, such as schools, colleges, universities, and academies.

(9) Warehouse (Storage) means a building or structure for storage, such as aircraft hangers, garages, warehouses, storage buildings, and freight depots.

Check Metering means measurement instrumentation for the supplementary monitoring of energy (electric, gas, oil, etc.) consumption, in addition to the revenue metering furnished by the utility, to isolate the various categories of energy use to permit conservation and control.

Coefficient of Performance—Cooling means the ratio of the rate of heat removal to the rate of energy input in consistent units, for a complete cooling system or factory assembled equipment, as tested under a nationally recognized standard or designated operating conditions.

Coefficient of Performance, Heat Pump—Heating means the ratio of the rate of heat delivered to the rate of energy input, in consistent units, for a complete heat pump system under designated operating conditions. When checking compliance with the heat pump equipment COP's listed in the tables in section 435.108.

Combined Thermal Transmittance Values (See Thermal Transmittance, Overall.)

Commercial Building means a building other than a residential building, including any building developed for industrial or public purposes.

Conditioned Floor Area means the area of the conditioned space measured at floor level from the interior surfaces of the walls.

Conditioned Space means a volume within a building that is designed to be heated and/or cooled, directly or indirectly.

Connected Lighting Power means the power required to energize luminaires and lamps installed and connected to the building electrical service, in watts.

Control Loop, Local means a control system consisting of a sensor, a controller, and a controlled device.

Cooled Space means an enclosed area within a building that has a refrigeration system whose sensible capacity exceeds 5 Btu/°F•ft² or is capable of maintaining space dry bulb temperatures of 90 °F or less at design cooling conditions.

Daylight Sensing Control means a device that automatically regulates the power input to electric lighting near the fenestration to maintain the desired workplace illumination, thus taking advantage of direct or indirect sunlight.

Dead Band (Dead Zone) means the range of values within which an input variable can be varied without initiating any noticeable change in the output variable.

Default Assumption means the value of an input used in a calculation procedure when a value is not entered by the designer.

Degree-Day means a unit, based upon temperature difference and time, used in estimating fuel consumption and specifying nominal heating load of building in winter. For any day, when the mean temperature is less than a reference temperature, typically 65 °F, there are as many Degree-Days as
Fahrenheit degrees difference in temperature between the mean temperature for the day and the reference temperature.

Degree Day, Cooling means a unit, based upon temperature difference and time, used in estimating cooling energy consumption. For any one day, when the mean temperature is more than a reference temperature, typically 65 °F, there are as many Degree Days as degrees Fahrenheit temperature difference between the mean temperature for the day and the reference temperature. Annual Cooling Degree Days (CDD) are the sum of the degree days over a calendar year.

Degree Day, Heating means a unit, based upon temperature difference and time, used in estimating heating energy consumption. For any one day, when the mean temperature is less than a reference temperature, typically 65 °F, there are as many Degree Days as degrees Fahrenheit temperature difference between the mean temperature for the day and the reference temperature. Annual Heating Degree Days (HDD) are the sum of the degree days over a calendar year.

Demand (Electric) means the rate at which electric energy is delivered to or by a system, part of a system, or a piece of equipment; expressed in kilowatts, kilovoltamperes; or other suitable units at a given instant or averaged over any designated period.

Design Conditions means the exterior and interior environmental parameters specified for air conditioning and electrical design for a facility.

Design Energy Consumption means the computed annual energy usage of a proposed building design.

Design Energy Costs means the computed annual energy expenditures of a proposed building design.

Dwelling Unit means a single housekeeping unit comprised of one or more rooms providing complete, independent living facilities for one or more persons including permanent provisions for living, sleeping, eating, cooking, and sanitation.

Economizer, Air means a ducting arrangement and automatic control system that allows a cooling supply fan system to supply outside air to reduce or eliminate the need for mechanical refrigeration during mild or cold weather.

Economizer, Water means a system by which the supply air of a cooling system is cooled directly and/or indirectly by evaporation of water, or by other appropriate fluid, in order to reduce or eliminate the need for mechanical refrigeration.

Efficiency, HVAC System means the ratio of the useful energy output (at the point of use) to the energy input in consistent units for a designated time period, expressed in percent.

Emergency System (Back Up System) means a system which exists for the purpose of operating in the event of failure of a primary system.

Energy means the capability for doing work; having several forms that may be transformed from one to another, such as thermal (heat), mechanical (work), electrical, and chemical.

Energy Cost means the annual cost of energy by unit and type of energy.

Energy Cost Budget means the maximum allowable computed annual energy expenditure for a proposed building.

Energy Efficiency Ratio means the ratio of net equipment cooling capacity in Btu/h to total rate of electric input in watts under designated operating conditions. When consistent units are used, this ratio becomes equal to COP. (See also Coefficient of Performance.)

Energy Management System means a control system designed to monitor the environment and the use of energy in a facility and to adjust the parameters of local control loops to conserve energy while maintaining a suitable environment.

Energy, Recovered (See Recovered Energy.)

Enthalpy means a thermodynamic property of a substance defined as the sum of its internal energy plus the quantity PVT, where P=pressure of the substance, V=its volume, and J=the mechanical equivalent of heat; formerly called total heat and heat content.

Exterior Envelope (See Building Envelope.)

Fenestration means any light-transmitting section in a building wall or roof. The fenestration includes glazing.
material, which may be glass or plastic; framing, mullions, muntins, and dividers; external shading devices; internal shading devices, and integral (between-glass) shading devices.

Federal Building means any building to be constructed by, or for the use of, any Federal Agency which is not legally subject to State or local building codes or similar requirements.

Footcandle means the unit of illuminance on a surface one square foot in area on which there is a uniformly distributed flux of one lumen, or the illuminance produced on a surface all points of which are at a distance of one foot from a directionally uniform point source of one candela.

General Lighting means lighting designed to provide illumination throughout an area, exclusive of any provision for special local requirements.

Gross Floor Area means the sum of the areas of the several floors of the building, including basements, mezzanine and intermediate-floored tiers and penthouses of headroom height, measured from the exterior faces of exterior walls or from the centerline of walls separating buildings, but excluding covered walkways, open roofed-over areas, porches and similar spaces, pipe trenches, exterior terraces or steps, chimneys, roof overhangs, and similar features.

Gross Lighted Area means the sum of the total lighted areas of a building measured from the inside of the perimeter walls, for each floor of the building.

Gross Roof Area means the total surface of the roof assembly exposed to the outside air, including all roof/ceiling and skylight components through which heat may flow between indoor and outdoor environments, excluding service openings.

Gross Exterior Wall Area means the total surface of the wall assembly exposed to the outside air and enclosing a heated or cooled space consisting of opaque surfaces, including between floor spandrels, peripheral edges of flooring and window areas including sash and door areas but excluding vents, grilles, and pipes.

HVAC System means the equipment distribution network and terminals that provide either collectively or individually the processes of heating, ventilating, and/or air conditioning to a building.

HVAC System Efficiency (See Efficiency, HVAC System.)

Heat means the form of energy that is transferred by virtue of a temperature difference or a change in state of a material.

Heat Capacity means the amount of heat necessary to raise the temperature of a given mass one degree. Numerically the mass multiplied by the specific heat.

Heated Space means a volume within a building which is provided with a positive supply of thermal energy by a system whose output capacity either exceeds 10 Btu/h ft² or is capable of maintaining a space dry-bulb temperature of 50 °F or more at design building conditions.

Heating System Performance Factor means the total heating output of a heat pump during its normal annual usage period for heating, in Btu, divided by the total electric energy input during the same period, in watt-hours.

Heat Trap means a device coupled to the inlet and outlet of a water heater that effectively restricts the natural tendency of hot water to rise in the vertical pipe during periods of standby.

Humidistat means an automatic control device responsive to changes in humidity.

Illuminance means the density of the luminous flux incident on a surface. It is the quotient of the luminous flux multiplied by the area of the surface when the latter is uniformly illuminated. (See also Footcandle.)

Industrial Process means any manufacturing or other process whose energy requirements are not primarily intended to contribute to the heating, cooling, lighting, ventilation, or service hot water energy load requirements of the building.
Infiltration means the uncontrolled inward air leakage through cracks and crevices in any building element and around windows and doors of a building.

Insolation means the rate of solar energy incident on a unit area with a given orientation.

Integrated Part-Load Value means a single number figure of merit for airconditioning and heat pump equipment based on weighted operation at a set of less than full capacities for the equipment.

Lighting Power Budget means the lighting power, in watts, allowed for an interior or exterior area or activity.

Lighting Power Control Credit means the amount of interior connected lighting power which may be added to the Interior Lighting Power Allowance for lights in a space which is turned off or dimmed by automatic control devices.

Lumen means SI unit of luminous flux. Radiometrically, it is determined from the radiant power. Photometrically, it is the luminous flux emitted within a unit solid angle (one steradian) by a point source having a uniform luminous intensity of one candela.

Lumen Maintenance Control means a device that senses the illumination level and causes an increase/decrease of illuminance to maintain a preset illumination level.

Luminaire means a complete lighting unit consisting of a lamp or lamps together with the parts designed to distribute the light, to position and protect the lamps, and to connect the lamps to the power supply.

Luminaire Efficiency means the ratio of luminous flux (lumens) emitted by a luminaire to that emitted by the lamp or lamps used therein.

Manual (Non-Automatic) means action requiring personal intervention for its control. As applied to an electric controller, non-automatic control does not necessarily imply a manual controller, but only that personal intervention is necessary. (See Automatic.)

Marked Rating means the design load operating conditions of a device as shown by the manufacturer on the nameplate or otherwise marked on the device.

Motor Efficiency, Nominal means the median efficiency occurring in a population of motors of the same manufacturer and rating.

Multi-Family High Rise Residential Building means a residential building containing three or more dwelling units and is designed to be 3 or more stories above grade.

Multi-Family Low Rise Residential Building means a residential building containing three or more dwelling units and is designed not to exceed two stories above grade.

Non-Depletable Energy Sources means sources of energy, excluding minerals, derived from incoming solar radiation; thermal chemical or electrical energy derived directly from conversion of incident solar radiation; wind, waves and tides, lake, or pond thermal differences; and energy derived from the internal heat of the earth.

Occupancy Sensor means a device that detects the presence or absence of people within an area and causes lighting, equipment, and/or appliances to be adjusted accordingly.

Opaque Areas means all exposed areas of a building envelope which enclose conditioned space, except fenestration areas and building service openings, such as vents, grilles, and pipes.

Orientation means the directional placement of a building on a building site with reference to the building's longest horizontal axis, or, if none, with reference to the designated main entrance.

Outdoor (Outside) Air means air taken from the exterior of the building that has not been previously circulated through the building. (See also Ventilating Air.)

Ozone Depletion Factor means a relative measure of the potency of chemicals in depleting stratospheric ozone. The ozone depletion factor potential depends upon the chlorine and the bromine content and atmospheric lifetime of the chemical. The depletion factor potentials are normalized such that the factor for CFC-11 is set equal to unity and the factors for the other chemicals indicate their potential relative to CFC-11.
Packaged Terminal Air-Conditioner means a factory-selected wall sleeve and separate unencased combination of heating and cooling components, assemblies or sections, intended for mounting through the wall to serve a single room or zone. It includes heating capability by hot water, steam, or electricity.

Packaged Terminal Heat Pump means a PTAC capable of using the refrigeration system in a reverse cycle or heat pump mode to provide heat.

Piping means a system for conveying fluids, including pipes, valves, strain- ers, and fittings.

Plenum means an enclosure that is part of the air handling system and is distinguished by having a very low air velocity. A plenum often is formed in part or in total by portions of the building.

Power means, in connection with machines, the time rate of doing work; in connection with the transmission of energy of all types, the rate at which energy is transmitted; in inch-pound units, is measured in watts (W) or British thermal units per hour (Btu/h).

Power Adjustment Factor means a modifying factor that adjusts the effective connected lighting power of a space to account for the use of energy conserving lighting control devices.

Power Factor means the ratio of total watts to the root-mean-square (RMS) volt amperes.

Prescribed Assumption means a fixed value of an input to the standard calculation procedure.

Process Energy means energy consumed in support of a manufacturing, industrial, or commercial process, other than the maintenance of comfort and amenities for the occupants of a building.

Process Load means the calculated or measured time-integrated load on a building resulting from the consumption or release of process energy.

Proposed Design means a prospective design for a building that is to be evaluated for compliance.

Prototype Building means a generic building design of the same size and occupancy type as the proposed design, which complies with the prescriptive requirements of the standards and has prescribed assumptions used to generate the energy budget concerning shape, orientation, HVAC, and other system designs.

Public Facility Restroom means a restroom used by the transient public.

Radiant Comfort Heating means a system in which temperatures of room surfaces are adjusted to control the rate of heat loss by radiation from occupants.

Readily Accessible means capable of being reached quickly for operation, renewal, or inspections, without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, chairs, and so on. (See also Accessible.)

Recooling means lowering the temperature of air that has been previously heated by a heating system.

Recovered Energy means energy utilized which would otherwise be wasted (not contributing to a desired end use) from an energy utilization system.

Reference Building means a specific building design that has the same form, orientation and basic systems as the proposed design and meets all the criteria of the prescriptive compliance method.

Reflectance means the ratio of the light reflected by a surface to the light incident upon it.

Reheating means raising the temperature of air that has been previously cooled either by a refrigeration or an economizer system.

Reset means adjustment of the controller set point to a higher or lower value automatically or manually.

Residential means any structure which is constructed and developed for residential occupancy.

Retail Establishments means, for the purpose of determining lighting power limit, buildings, the primary functions of which are designed to be:

(1) Type A—Jewelry Merchandising, where the minute display and examination of merchandise is critical.

(2) Type B—Fine Merchandising: Fine apparel and accessories, china, crystal and silver, art galleries, etc., where the detailed display and examination of merchandise is important.

(3) Type C—Mass Merchandising, where focused display and detailed examination of merchandise is important.
§ 435.99

(4) Type D—General Merchandising: General apparel, variety, stationery, books, sporting goods, hobby, cameras, gift, luggage, etc., where general display and examination of merchandise are adequate.

(5) Type E—Food & Miscellaneous: Bakeries, hardware and housewares, grocery, appliances and furniture, etc., where appetizing appearance is important.

(6) Type F—Service Establishments, where functional performance is important.

Roof means those portions of the building envelope including all opaque surfaces, fenestration, doors, and hatches which are above conditioned space and which are horizontal or tilted at least 15° from horizontal. (See also Walls.)

Room Air Conditioner means an enclosed assembly designed as a unit to be mounted in a window or through a wall, or as a console. It is designed primarily to provide free delivery of conditioned air to an enclosed space, room, or zone. It includes a prime source of refrigeration for cooling and dehumidification and means for circulating and cleaning air, and may also include means for ventilating and heating.

Seasonal Energy Efficiency Ratio means the total cooling output of an air conditioner during its annual usage period for cooling, in Btu/h, divided by the total electric energy input during the same period, in watt-hours, as determined by 10 CFR, part 430.

Service Systems means all energy-using or distributing components in a building that are operated to support the occupant or process functions housed therein, including HVAC, service water heating, illumination, transportation, cooking or food preparation, laundering or similar functions.

Service Water Heating means the supply of hot water for purposes other than comfort heating and process requirements.

Service Water Heating Demand means the maximum design rate of water withdrawal from a service water heating system in a designated period of time (usually an hour or a day).

Shading Coefficient means the ratio of solar heat gain through fenestration, with or without integral shading devices, to that occurring through unshaded 1/8 inch thick clear, double strength glass.

Shell Building means a building for which the envelope is designed and/or constructed prior to knowing the occupancy type. (See also Speculative Building.)

Speculative Building means a building for which the envelope is designed and/or constructed prior to the design of the lighting and/or HVAC systems. A speculative building differs from a shell building in that the intended occupancy is known for the speculative building. (See also Shell Building.)

Standard Calculation Procedure means an energy simulation model, and a set of input assumptions, that produce estimates of annual energy consumption for heating, cooling, ventilation, lighting, and other uses and that account for the dynamic thermal performance of the building.

System means a combination of equipment and/or controls, accessories, interconnecting means, and terminal elements by which energy is transformed so as to perform a specific function, such as HVAC, service water heating, or illumination.

Tandem Wiring means pairs of luminaires operating with one lamp in each luminaire powered from a single two-lamp ballast contained in the other luminaire.

Task Lighting means lighting that provides illumination for specific visual functions and is directed to a specific surface or area.

Task Location means an area of the space where significant visual functions are performed and where lighting is required above and beyond that required for general ambient use.

Terminal Element means a device by which the transformed energy from a system is finally delivered; i.e., registers, diffusers, lighting fixtures, faucets, etc.

Thermal Conductance means the constant time rate of heat flow through unit area of a body induced by a unit temperature difference between the surfaces, Btu/ft²•h•°F or Btu/h•°F. It is
reciprocal of thermal resistance. (See Thermal Resistance.)

Thermal Mass means materials with mass heat capacity and surface area capable of affecting building loads by storing and releasing heat as the interior and/or exterior temperature and radiant conditions fluctuate. (See also Wall Heat Capacity.) Thermal Mass Wall Insulation Position:

(1) Exterior Insulation Position means a wall having all or nearly all of its mass exposed to the room air with the insulation on the exterior of that mass.

(2) Integral Insulation Position means a wall having mass exposed to both room and outside air, with substantially equal amounts of mass on the inside and outside of the insulation layer.

(3) Interior Insulation Position means a wall not meeting either of the above definitions, particularly a wall having most of its mass external to an insulation layer.

Thermal Resistance means the reciprocal thermal conductance; \(1/C\) as well as \(1/h\), \(1/U\), \(h\cdot ft^2\cdot°F/Btu\).

Thermal Transmittance means the overall coefficient of heat transfer from air to air. It is the time rate of heat flow per unit area under steady conditions from the fluid on the warm side of the barrier to the fluid on the cold side, per unit temperature difference between the two fluids, \(Btu/\ h\cdot ft^2\cdot°F\).

Thermal Transmittance, Overall means the gross overall (area weighted average) coefficient of heat transfer from air to air for a gross area of the building envelope, \(Btu/\ h\cdot ft^2\cdot°F\). The thermal transmittance \((U)\) value applies to the combined effect of the time rate of heat flows through the various parallel paths, such as windows, doors, and opaque construction areas, comprising the gross area of one or more building envelope components, such as walls, floors, or roof/ceiling.

Thermostat means an automatic control device responsive to temperature.

Unconditioned Space means a volume within a building that is not designed to be directly or indirectly heated and/or cooled. (See Conditioned Space.)

Unit Power Density means the floor area designated for a specific occupancy, function, or activity expressed in W/ft².

Unitary Cooling Equipment means one or more factory-made assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.

Unitary Heat Pump means one or more factory-made assemblies which normally include an indoor conditioning coil, compressor(s) and outdoor coil or refrigerant-to-water heat exchanger, including means to provide both heating and cooling functions.

Unlisted Space means the difference in area between the gross lighted area and the sum of all listed spaces.

Variable Air Volume (VAV) HVAC System means HVAC systems that control the dry-bulb temperature within a space by varying the volume of supply air to the space.

Ventilation means the process of supplying or removing air by natural or mechanical means to or from any space. Such air may or may not have been conditioned.

Ventilation Air means that portion of supply air which comes from outside (outdoors) plus any recirculated air that has been treated to maintain the desired quality of air within a designated space. (See also Outdoor Air.)

Visual Task means those details and objects that must be seen for the performance of a given activity, and includes the immediate background of the details or objects.

Voluntary Performance Standards means an energy consumption goal or goals to be met without specification of the method, materials, and processes to be employed in achieving that goal or goals, but including statements of the requirements, criteria and evaluation methods to be used, and any necessary commentary.

Walls means those portions of the building envelope enclosing conditioned space including all opaque surfaces, fenestration and doors, which are vertical or tilted at an angle of 45° from horizontal or greater. (See also Roof.)

Wall Heat Capacity means the sum of the products of the mass of each individual material in the wall per unit
§ 435.99

area of wall surface times its individual specific heat, Btu/F. (See Thermal Mass.)

Watt means a unit of power. One watt is produced when one ampere, flows at an amp of one volt (unity power factor). (See also Power.)

Zone means a space or group of spaces within a building with heating, cooling, and/or lighting requirements sufficiently similar so that desired conditions can be maintained throughout by a single controlling device.

(b) For definitions not found in paragraph (a) of this section, the 1986 edition of "Terminology of Heating and Ventilation, Air-Conditioning, and Refrigeration" as published by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc. (ASHRAE) shall apply to these standards.

(c) For purposes of this subpart, the acronyms and abbreviations shall have the following meanings:

- **A₀**—Total Building Floor Area.
- **A_{wall,roof,etc.}**—Area of a Specific Building component.
- **AAMA**—American Aluminum Manufacturers Association.
- **ACP**—Alternative Component Package.
- **AF**—Area Factor.
- **AFUE**—Annual Fuel Utilization Efficiency.
- **AHAM**—Association of Home Appliance Manufacturers.
- **ALP**—Adjusted Lighting Power.
- **ANSI**—American National Standards Institute.
- **ARI**—Air-Conditioning and Refrigeration Institute.
- **ASHRAE**—American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.
- **ASME**—American Society of Mechanical Engineers.
- **ASTM**—American Society for Testing and Materials.
- **Btu**—British Thermal Unit.
- **Btu/h**—British Thermal Units Per Hour.
- **C**—Thermal Conductance.
- **C_c**—Cooling Criteria.
- **CDD**—Cooling Degree-Days.
- **CDD50**—Cooling Degree-Days Base 50 °F.
- **CDD65**—Cooling Degree-Days Base 65 °F.
- **CDH**—Cooling Degree-Hours.
- **CDH80**—Cooling Degree-Hours Base 80 °F.
- **CEEU**—Cost Equivalent Energy Units.
- **cfm**—Cubic Feet Per Minute.
- **CLP**—Connected Lighting Power.
- **COP**—Coefficient of Performance.
- **CU**—Coefficient of Utilization.
- **DOE**—U.S. Department of Energy.
- **DR**—Average Daily Temperature Range for Warmest Month.
- **EER**—Energy Efficiency Ratio.
- **ELPA**—Exterior Lighting Power Allowance.
- **EPD**—Equipment Power Density.
- **°F**—Degrees-Fahrenheit.
- **GLA**—Gross Lighted Building Area.
- **HC**—Heat Capacity.
- **HDD**—Heating Degree-Days.
- **HDD50**—Heating Degree-Days Base 50 °F.
- **HDD65**—Heating Degree-Days Base 65 °F.
- **HI**—Hydronics Institute.
- **HID**—High Intensity Discharge.
- **hp**—Horsepower (force).
- **HPS**—High Pressure Sodium.
- **HSPF**—Heating System Performance Factor.
- **HVAC**—Heating, Ventilating and Air Conditioning.
- **IEEE**—Institute of Electrical and Electronics Engineers, Inc.
- **IES**—Illuminating Engineering Society of North America.
- **ILPA**—Interior Lighting Power Allowance.
- **IPLV**—Integrated Part Load Value.
- **ILD**—Internal Load Density.
- **IRF**—Internal Reflecting Film.
- **ISSC**—Internal Shading System Coefficient.
- **K_h**—Daylighting Factor.
- **kVA**—Kilo-Volts Amperes.
- **kW**—Kilo-Watts.
- **LPB**—Lighting Power Budget.
- **LPCC**—Lighting Power Control Credits.
- **LS**—Listed Space.
- **NWMA**—National Woodwork Manufacturers Association.
- **o.c.**—On Center.
- **OLA**—Occupant Load Adjustment.
- **OMB**—U.S. Office of Management and Budget.
- **P_b**—Base Unit Lighting Power Allowance.
- **PAF**—Power Adjustment Factor.
- **PF**—Projection Factor.
§ 435.101 Implementation and compliance procedures for Federal agencies.

Alternative methods of achieving compliance are illustrated in Figure 1.1-1.
1.1 Compliance

1.1.1 The head of each Federal agency responsible for the construction of Federal buildings shall adopt such procedures as may be necessary to assure that the design of the building shall:

1.1.1.1 be undertaken in a manner that provides for appropriate consideration of the Principles of Effective Energy Building Design prescribed in §§2.0, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2 and 10.2;

1.1.1.2 comply with the minimum requirements of §§3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 9.3 and 10.3; and

1.1.1.3 meet or exceed, based upon the analysis of life-cycle cost-effectiveness required by §1.1.2 below, the following additional requirements:

1.1.1.3.1 the lighting design shall meet either the prescriptive requirements of §3.4 or the system performance requirements of §3.5,

1.1.1.3.2 the building envelope design shall meet either the prescriptive requirements of section 5.4 or the system performance requirements of section 5.5, and

1.1.1.3.3 the heating, ventilating and air conditioning systems design shall meet the prescriptive requirements of section 7.4, and

1.1.1.3.4 the service water heating systems design shall meet the prescriptive requirements of section 9.4.

1.1.2 In lieu of meeting the provisions of section 1.1.1 above, the building design shall meet the criteria of the building energy method of section 11.0 or 12.0, Building Energy Compliance Alternatives I and II.

1.2 General Approach to Compliance

1.2.1 The standards, in addition to minimum requirements, establish three alternate methods to determine whether the design has achieved compliance.

1.2.2 There are several alternative methods of achieving compliance provided for in the standards:

1.2.2.1 Prescriptive (Sections 3.4, 5.4, 7.4 and 9.4),

1.2.2.2 System Performance (Sections 3.5 and 5.5), or

1.2.2.3 Building Energy (Section 11.0 or 12.0).

1.2.2.4 The criteria established for each of the methods allow for designs that are roughly equivalent in terms of energy conservation. The equivalency of the methods can be demonstrated by designing a building using the Prescriptive approach, then modeling the building using either the System Performance or Building Energy criteria calculation procedures and comparing results.

1.2.3 Compliance with these standards shall be demonstrated by meeting the set of minimum requirements defined in Sections 3.2, 3.3, 4.2, 4.3, 5.2, 5.3, 6.2, 6.3, 7.2, 7.3, 8.2, 8.3, 9.2, 9.3, 10.2, and 10.3 and one of the alternative methods.

1.3 How To Select a Compliance Method

1.3.1 Use the Prescriptive method when the minimum amount of calculation and effort to achieve compliance is of primary concern. Its requirements can be readily specified in construction documents and are easily reviewed by building code enforcement authorities. The Prescriptive method permits few trade-offs or optimization procedures, but does permit several energy-effective and cost-effective alternate construction options to be used. See Figure 1.1-2.

1.3.2 Use the System Performance method when more innovative design is required, or when the Prescriptive method does not provide the necessary design flexibility. It requires more manual calculations than the Prescriptive method. See Figure 1.1-2.

1.3.3 Use either of the Building Energy methods (Sections 11.0 or 12.0) when the most innovative design concepts are being considered. The Building Energy methods allow the trade-off of energy among the building systems as long as the total calculated design annual energy consumption does not exceed the limit prescribed. It will, in general, require the use of a computer.
program to simulate the operation of the various systems and to model building design energy use in accordance with the building loads and the proposed schedules of operation. See Figures 11-1 and 12-1.
§435.102 Principles of effective energy building design.

2.1 General

2.1.1 This section complements the other sections of the standards by providing general principles of effective building design. The intention of this section is to provide ideas on how to improve the integration of the building's major energy using subsystems in a cost-effective manner without compromising the building's intended functional use or internal environmental conditions. In addition, more narrowly focused principles are included in sections 3.0 through 10.0.

2.1.2 To comply with the principles of effective design, designers shall use their professional judgment to identify the building's most significant energy requirements and select appropriate solutions from the general strategies found in this section and the more specific strategies found in sections 3.0 through 10.0.

2.2 Identification of Significant Energy Requirements

2.2.1 Before energy design strategies can be developed for a commercial or multi-family high rise residential building, a clear picture of its most significant energy requirements must be developed. The basic approach to achieving an energy conscious design is to improve the energy efficiency of the building by shifting or reducing loads, improving transport systems, and providing efficient environmental systems and controls. This is accomplished by first determining which aspects of the building's energy requirements are the most significant, those that would result in the largest annual energy costs to the building owner if energy conserving strategies were otherwise not applied. For example, for a given building, the largest annual energy cost component may be lighting, followed by cooling, heating, and ventilation, respectively. In this example electricity would be the major energy source. Therefore, peak time-rates of energy use (i.e., peak power demands), as well as direct energy use, would have to be included in any energy analysis. Consideration of peak demands will reduce the requirement for over-sizing of energy systems in the building and will also have the added impact of helping to reduce the need for additional, low utilization peak capacity on utility grids.

2.2.2 Once the most significant cost components of the building's energy requirements have been determined, apply the strategies and design solutions listed below and those that appear in each of the following sections of the standards. In the example noted above, lighting solutions would be addressed first, followed by cooling, heating, and then ventilation.

2.2.3 Research results indicate that the most significant energy uses for any given commercial or multi-family high rise residential building are generally not accurately identifiable by professional intuition. Therefore, use shall be made of one of the several available analysis tools, some of which are microcomputer-based.

2.3 General Solution Strategies

2.3.1 Consider energy efficiency from the initiation of the building design process, since design improvements are most easily and effectively made at that time. Seek the active participation of members of the design team early in the design process, including the owner, architect, engineer, and builder, if possible. Consider building attributes such as building function, form, orientation, window/wall ratio, and HVAC system types early in the design process. Each has major energy implications. These considerations most likely will result in solutions that minimize both construction and operation costs, including energy demand charges.

2.3.2 Address the building's energy requirements in the following sequence: minimize impact of the building functional requirements; minimize loads; improve the efficiency of distribution and conversion systems; and integrate building subsystems into an efficient whole. Each of these is discussed below.

2.3.2.1 Minimize impact of functional requirements by identifying major areas that offer energy efficiency opportunities based on the
building's functional use, human occupancy requirements, and site characteristics. These areas will vary considerably from building to building depending upon function and service requirements, and shall be considered when applying the criteria of these standards.

2.3.2.2 Minimize loads by analyzing the external and internal loads to be imposed on building energy-using sub-systems, both for peak-load and part-load conditions. Include a determination of how the building relates to its external environment in the analysis, either adaptively or defensively. Consider changes in building form, aspect ratio, and other attributes that reduce, redistribute, or delay (shift) loads.

2.3.2.3 Improve sub-systems by analyzing the diversified energy and demand (power) requirements of each energy-using subsystem serving the functional requirements of the building. Consider static and dynamic efficiency of energy conversion and energy transport sub-systems and include consideration of opportunities to reclaim, redistribute and store energy for later use.

2.3.2.4 Alternative ways to integrate systems into the building will be accomplished by considering both power and time components of energy use. Identify, evaluate, and design each of these components to control the overall design energy consumption. The following shall be considered when integrating major building sub-systems:

2.3.2.4.1 Address more than one problem when developing design solutions, and make maximum use of building components already present for non-energy reasons (e.g., windows, structural mass).

2.3.2.4.2 Examine design solutions that consider time since sufficient energy may already be present from the environment (e.g., solar heat, night cooling) or from internal equipment (e.g., lights, computers) but available at different times than needed. Thus, active (heat pumps with water tanks) and passive (building mass) storage techniques may be considered.

2.3.2.4.3 Examine design solutions that consider anticipated space utilization. For example, in large but relatively unoccupied spaces, task or zone heating may be considered. Transporting energy (light and heat) from locations of production and availability to locations of need shall be considered instead of the purchase of additional energy;

2.3.2.4.4 Never reject waste energy at temperatures usable for space conditioning or other practical purposes, without calculating the economic benefit of energy recovery.

2.3.2.4.5 Consider design solutions that provide more comfortable surface temperatures or increase availability of controlled daylight in buildings in which human occupancy is a primary function.

2.3.2.4.6 Use design solutions that are easily understood as they have a greater probability of use by building occupants; and

2.3.2.4.7 Where the functional requirements of the building may change, the installed environmental system should be designed to be adaptable to meet functional changes that can be anticipated as well as providing flexibility to meet indeterminate future changes in use, occupancy or other functions.

§ 435.103 Lighting.

3.1 General

3.1.1 This section contains principles of design, a set of minimum requirements, and two alternative compliance procedures, prescriptive and systems performance, for the design of building lighting and lighting control systems, and includes provisions for daylighting credit. The procedures in this section are solely for use in establishing lighting design budgets and are not intended for use as lighting design procedures.

3.1.2 Scope. The following are covered by this section:

3.1.2.1 Interior spaces of buildings;

3.1.2.2 Building exteriors and exterior areas, such as entrances, exits, and loading docks; and

3.1.2.3 Roads, grounds, parking, and other exterior areas where lighting is energized through the building electrical service.

3.1.3 Exemptions. The following are exempt from these standards:
3.1.3.1 Outdoor manufacturing, commercial greenhouses, and processing facilities;
3.1.3.2 Lighting power for theatrical production studios and stages, television broadcasting studios, audio-visual presentation, and entertainment facilities in spaces such as stages, hotel ballrooms, nightclubs, discos, and casinos, and where lighting is an essential technical element for the function performed;
3.1.3.3 Specialized luminaires for medical and dental purposes;
3.1.3.4 Outdoor athletic facilities;
3.1.3.5 Lighting power for display lighting required for art exhibits or displays in galleries, museums and monuments;
3.1.3.6 Exterior lighting for public monuments;
3.1.3.7 Special lighting needs for research;
3.1.3.8 Lighting power for lighting used solely for indoor plant growth during the hours of 10:00 p.m. to 6:00 a.m.;
3.1.3.9 Emergency lighting that is automatically "off" during normal operation;
3.1.3.10 High risk security areas or any area identified by local ordinances or regulations or by security or safety personnel as requiring additional lighting;
3.1.3.11 Lighting power densities for spaces with enhanced lighting specifically designed for primary use by the visually impaired, hard of hearing, or for senior citizens;
3.1.3.12 Lighting for signs;
3.1.3.13 Store-front exterior-enclosed display windows in retail facilities; and
3.1.3.14 Lighting for dwelling units.

3.1.4 Building Lighting Power Allowance. The lighting power allowance for a building consists of the Exterior Lighting Power Allowance (ELPA), in accordance with section 3.3, plus the Interior Lighting Power Allowance (ILPA), based on either the Prescriptive Criteria in section 3.4 or the Systems Performance Criteria in section 3.5. This lighting power allowance is the upper limit to which the building can be designed, based on the criteria of the compliance alternative chosen.

3.1.5 Credit for Daylighting. Daylighting credit, for reduced use of electric lighting energy resulting from the use of automatic lighting control devices in conjunction with fenestration (e.g., windows and skylights), may be taken if the systems performance alternative in section 3.5 is chosen. However, if such daylighting credit is to be applied to other building subsystems, such as use of additional fenestration area, section 11.0 or 12.0 must be used. Thermal credit provisions for daylighting are found in Section 5.0.

3.1.6 Compliance. A building shall be considered in compliance with this section if the following conditions are met:

3.1.6.1 The minimum requirements of section 3.3 are met;
3.1.6.2 The exterior lighting power to be installed is not greater than the Exterior Lighting Power Allowance (ELPA), calculated using Equation 3.3-1;
3.1.6.3 The interior lighting power to be installed is not greater than the Interior Lighting Power Allowance (ILPA), based on either the Prescriptive Criteria in section 3.4 or the Systems Performance Criteria in section 3.5.

3.1.6.4 Tradeoffs between ILPA and ELPA are not allowed. Tradeoffs of the Interior Lighting Power Budgets (LPB) among interior spaces are allowed as long as the total Connected Lighting Power (CLP) within the building does not exceed the Interior Lighting Power Allowance (ILPA) and Lighting Power Control Credits (LPCC) are used only for connected lighting power in those spaces for which credit is claimed.
Tradeoffs of exterior lighting power budgets among exterior areas are allowed as long as the total Connected Lighting Power (CLP) of exterior lighting does not exceed the Exterior Lighting Power Allowance (ELPA) and the allowance for the building exterior surfaces is not exceeded.

3.1.7 Multi-Building Facilities. The total lighting power allowances for each building in a multi-building facility shall be calculated separately.

3.2 Principles of Design

3.2.1 The lighting system is designed to provide a productive, safe, and pleasing visual environment for the intended use of the space. However, lighting is both a major energy end use in commercial buildings (especially in office buildings) and a major contributor to internal loads by increasing cooling loads and decreasing heating loads. Therefore, it is important to produce a design that meets the lighting functional criteria of the space as well as one that minimizes energy use. Recommended maintained illuminance levels for visual tasks and surrounding lighted areas are included in the IES Lighting Handbook, Applications (1983) or Reference (1985). Principles of energy conserving design within that context are described below.

3.2.2 The following Design Concepts shall be considered in the design of lighting that is both energy efficient and visually effective.

3.2.2.1 Energy use is determined by the lighting load (demand power) and its duration of use (time). Minimize the actual demand load rather than just the apparent connected load, and control the load rather than just switching, if switching may adversely affect the quality of the luminous environment.

3.2.2.2 Consider daylighting along with the proper use of controls so that the savings from electric lighting can be realized. Design should be sensitive to window glare, sudden changes in illuminance, and general use acceptance of controls. Window treatment (blinds, drapes and shades) and glazing should be carefully selected to control direct solar penetration and luminance extremes while still maintaining view and daylight penetration.

3.2.2.3 Design lighting systems so that illumination required for tasks is primarily limited to the location of the task and from a direction that will minimize direct glare and veiling reflections on the task. For example, the ideal positioning of work stations is between the rows of ceiling-mounted luminaires with the direction of view parallel to the primary task. In densely-occupied work spaces, uniform distribution of general lighting may be most appropriate. Where supplementary task illumination is necessary, general or ambient illumination should not be lower than a third of the luminance required for the task. This will help maintain luminance rates that are visually comfortable.

3.2.2.4 Use task lighting, whenever possible, to accommodate the need for higher lighting levels due to task visual difficulty, glare, intermittently changing requirements, or individual visual differences (poor and aging eyesight).

3.2.2.5 Group similar activities so high illuminance or special lighting for particular tasks are localized in certain rooms or areas, and so that less efficient fixtures required for critical glare control do not have to be installed uniformly when they are only required sparsely.

3.2.2.6 When indirect lighting is appropriate, use schemes that create reasonably uniform ceiling illuminances. If this is achieved, work spaces may be located anywhere and occupants may face in any direction without being subject to excessive veiling reflection on the tasks. The indirect system may allow more effective use of the space than other types of lighting systems. However, indirect lighting systems generally have lower utilization factors, and may require increased ceiling height to provide uniform ceiling luminance.

3.2.2.7 Use lighting controls throughout that maintain proper lighting levels when and where it is needed but also allow reductions in lighting when tasks are less critical, or spaces are not fully occupied. The designer must consider user acceptance of control strategies to maximize energy efficiency.
§ 435.103

3.2.2.8 Use lower levels of ambient lighting in situations such as merchandising, where the contrast between accent lighting and ambient lighting is critical. Accent lighting shall not exceed five (5) times the ambient level. Consider fewer, more effectively-accented displays, rather than more ineffectively-accented ones.

3.2.3 The following guidelines identify Fixture and Lamp selection strategies to be considered in the selection of luminaires and lamps for inclusion in an energy efficient, visually-effective design:

3.2.3.1 Consider the use of more efficient equipment with appropriate distribution, glare control and visual characteristics. Utilize fixture designs that will provide high lighting efficiency while meeting the other lighting objectives of the installation.

3.2.3.2 Review visual comfort probability (VCP) data, available from manufacturers, for specific luminaires when minimizing discomfort glare is a criterion.

3.2.3.3 Consider luminaire construction that minimizes light loss due to dirt collection.

3.2.3.4 Investigate the use of dimmers to reduce energy consumption when the system is new and capable of providing more light than the average depreciated design value.

3.2.3.5 Use more efficient lamps with appropriate luminous efficacy, life expectancy and spectrum distribution and color rendering characteristics.

3.2.3.6 Use more efficient ballasts for fluorescent and HID lamps with appropriate ballast factors, power factor, noise rating, starting and restarting characteristics.

3.2.3.7 Use luminaires with heat removal and heat recovery capabilities, thereby allowing the lighting equipment to operate more efficiently at a lower ambient temperature.

3.2.3.8 Limit the use of lower efficiency lamps, such as incandescent, to only those applications where their color, lumens or distribution characteristics cannot be duplicated by other sources. Due to their lower efficiency, the use of ‘extended service’ incandescent lamps should be limited to those applications where fixtures are difficult to reach and/or maintenance costs for revamping will be excessive.

3.2.4 Space Design

3.2.4.1 It is important to carry through on the lighting design when completing the interior design. Reduce light absorption by encouraging the use of lighter finishes, particularly on ceilings, walls and partitions. Select colors and surface materials so that their reflectance values are within the ranges recommended by the IES. This will aid the efficient use of light and help to provide comfortable luminance ratios.

3.2.4.2 In offices with visual display terminals (VDT) that are susceptible to reflections, it may be necessary to use reflectances for some room surfaces at the low end of the recommended ranges to reduce unwanted reflections on the screens. Where practical, treat the screens of VDTs with anti-glare materials to avoid veiling reflection.

3.3 Minimum Requirements

3.3.1 Lighting Controls.

3.3.1.1 All lighting shall be provided with manual, automatic, or programmable controls.

3.3.1.1.1 Exception to Section 3.3.1.1:
(a) controls for emergency or exit lighting.

3.3.1.2 Minimum Number of Lighting Controls. Each space enclosed by walls or ceiling-height partitions shall be provided with control(s) that, together or alone are capable of controlling all lights within that space, excluding those requiring continuous operation for security purposes.

3.3.1.2.1 The minimum number of controls shall not be less than:
(a) One lighting control for each space; and
(b) One lighting control for each task or group of task locations within an area of 450 ft² or less.

3.3.1.2.2 Equivalent Number of Controls. The minimum number of controls may be reduced, by using an equivalent number of controls from Table 3.3-1, where control types listed in Table 3.3-1 are used. However, the minimum number of controls may not be reduced to less than one control for each 1500 W of connected lighting power.

304
3.3.1.2 Exceptions to Section 3.3.1.2:

(a) Lighting control requirements for spaces that must be used as a whole, such as public lobbies of office buildings, hotels, and hospitals; retail and department stores and warehouses, storerooms, and service corridors under centralized supervision, shall be controlled by a lesser number of controls, but not less than one control for each 1500 W of connected lighting power, or a total of three (3) controls, whichever is greater. Lighting in such spaces shall be controlled in accordance with the work activities.

(b) Hotel and motel guest rooms shall have one or more master controls at the main entry door that turn off all permanently wired lighting fixtures and lighting and television receptacles. For multiple room suites, controls at the entry of each room, in lieu of a master switch, will meet these requirements.

3.3.1.3 Controls provided for task areas, if readily accessible, may be mounted as part of the task lighting luminaire.

3.3.1.4 Control of the same load from more than one location shall not be credited as additional control points.

3.3.1.5 All lighting controls shall be readily accessible to personnel occupying or using the space. Exceptions are automatic controls, programmable controls, lighting for safety hazards and security, controls requiring trained operators, and those controls for spaces that must be used as a whole.

3.3.1.6 Exterior lighting shall be automatically controlled by timer, photocell, or combination of timer and photocell. Timers shall be of the automatic type or otherwise capable of adjustment for seven days and for seasonal daylight schedule variations. All time-controllers shall be equipped with back-up mechanisms to keep time during a four hour power outage.

3.3.1.7 When the building is served by an energy management system, programmable controls, shared tenant services that affect interior environments, or "intelligent building" systems, provisions shall be made to incorporate lighting controls into the system if a separate automatically-controlled lighting system is not provided.

3.3.2 Fluorescent Lamp Ballasts.

3.3.2.1 Fluorescent lamp ballasts shall have a ballast efficacy factor not less than that shown in Table 3.3-2.

3.3.2.1.1 Exception to 3.3.2.1: Ballasts not included in Table 3.3-2 and ballasts designed for use with dimming controls are excluded from these criteria.
3.3.2.2 The Ballast Efficacy Factor shall be calculated in accordance with Equation 3.3-1:

\[
BEF = \frac{BF}{\text{Power Input}}
\]

Equation 3.3-1

Where:
- \(BEF\) = Ballast Efficacy Factor.
- \(BF\) = Ballast Factor, expressed as a percent.
- Power Input = Total Wattage of combined lamps and ballasts

3.3.2.2.1 Tests for ballast factor and power input shall be in accordance with ANSI Standard C-82.2-1984 “Method of Measurement for Fluorescent Lamp Ballasts”, using “Standard” F 40T 1240A, F 96T 12 75 watt, or F 96T 12H 0 110 watt lamps.

3.3.2.3 One-lamp or three-lamp fluorescent luminaires shall be tandem-wired to eliminate unnecessary use of single lamp ballasts if they are used for general lighting; recess mounted within ten feet center-to-center of each other; or pendant or surface mounted within 1 ft of each other, and within the same room. Tandem wiring consists of pairs of luminaires operating with one lamp in a luminaire powered from a single two-lamp ballast contained in a second luminaire.

3.3.2.3.1 Exception to Section 3.3.2.3:
(a) Three-lamp ballasts may be used.

3.3.2.4 Fluorescent lamp ballasts shall have a power factor equal to or greater than 80%.

3.3.2.4.1 Exception to 3.3.2.4: Ballasts for circline and compact fluorescent lamps and low wattage, high intensity discharge lamps of less than 100 watts.

3.4 Lighting—Prescriptive Compliance Alternative

3.4.1 Purpose

3.4.1.1 This subsection provides a prescriptive procedure for determining an exterior lighting power allowance and the Interior Lighting Power Allowances for illumination systems installed in six types of new buildings. It is intended for use with buildings having simple lighting requirements and where the minimum amount of calculation and effort to achieve compliance is of primary concern. For other building types, to receive credit for switching, daylighting, or other trade-offs, or to receive credit for lighting optimization, use section 3.3, section 11.0, or section 12.0.
3.4.2 General

3.4.2.1 This method for compliance prescribes a total allowable Unit Lighting Power Allowance (ULPA) for interior lighting for the building type/area as listed in Table 3.4-1. There is no recognition of specific makeup of spaces and activities within the building.
§ 435.103

10 CFR Ch. II (1–1–98 Edition)

Table 3.6-1

Prescriptive Unit Lighting Power Allowance (ULPA), W/ft²

<table>
<thead>
<tr>
<th>BUILDING TYPE/AREA FUNCTION</th>
<th>Gross Lighted Area Ranges</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 2,000 ft<sup>2</sup></td>
<td>2,001 to 10,000 ft<sup>2</sup></td>
</tr>
<tr>
<td>Food Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Food/Cafeteria</td>
<td>1.50</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>0.85</td>
</tr>
<tr>
<td>Leisure Dining/Bar</td>
<td>2.20</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>1.56</td>
</tr>
<tr>
<td>Offices</td>
<td>1.90</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>Retail<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail General</td>
<td>3.30</td>
<td>3.06</td>
</tr>
<tr>
<td></td>
<td>2.70</td>
<td>2.52</td>
</tr>
<tr>
<td>Mail Concourse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Store Service</td>
<td>1.60</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>Service Establishment</td>
<td>2.70</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>2.81</td>
<td>2.03</td>
</tr>
<tr>
<td>Garages</td>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-elementary</td>
<td>1.83</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>Jr. High/High School</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>Technical/Vocational</td>
<td>2.40</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>1.77</td>
<td>1.72</td>
</tr>
<tr>
<td>Warehouse/Storage</td>
<td>0.80</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Notes:

1. Includes general, merchandising and display lighting.
3.4.3 Exterior Lighting Power Allowance

3.4.3.1 Building exteriors and exterior areas, as defined in section 3.1.2.2, and roads, grounds, parking, and other exterior areas, defined in section 3.1.2.3, shall have a lighting power density not to exceed the Exterior Lighting Power Allowance (ELPA), which is the sum of the allowances for each of the areas listed above, as calculated by Equation 3.4-1 using unit power densities from Table 3.4-2.

Table 3.4-2 Exterior Lighting Unit Power Density

<table>
<thead>
<tr>
<th>AREA DESCRIPTION</th>
<th>UNIT POWER DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit (with or without canopy)</td>
<td>25 W/lin. ft</td>
</tr>
<tr>
<td>of door opening</td>
<td></td>
</tr>
<tr>
<td>Entrance (without canopy)</td>
<td>30 W/lin. ft</td>
</tr>
<tr>
<td>of door opening</td>
<td></td>
</tr>
<tr>
<td>Entrance (with canopy)</td>
<td></td>
</tr>
<tr>
<td>High traffic (store, hotel, airport,</td>
<td>10 W/ft² of</td>
</tr>
<tr>
<td>theater, etc.)</td>
<td>canopled area</td>
</tr>
<tr>
<td>Light traffic (hospital, office, school,</td>
<td>4 W/ft² canopled</td>
</tr>
<tr>
<td>etc.)</td>
<td>area</td>
</tr>
<tr>
<td>Loading area</td>
<td>0.40 W/ft²</td>
</tr>
<tr>
<td>Loading door</td>
<td>0.20 W/ft²</td>
</tr>
<tr>
<td>of door opening</td>
<td></td>
</tr>
<tr>
<td>Building Exterior Surfaces/Facades</td>
<td>0.25 W/ft² of</td>
</tr>
<tr>
<td></td>
<td>surface area to</td>
</tr>
<tr>
<td></td>
<td>be illuminated</td>
</tr>
<tr>
<td>Storage and non-manufacturing</td>
<td>0.20 W/ft²</td>
</tr>
<tr>
<td>work areas</td>
<td></td>
</tr>
<tr>
<td>Other activity areas for casual use</td>
<td>0.10 W/ft²</td>
</tr>
<tr>
<td>such as picnic grounds, gardens,</td>
<td></td>
</tr>
<tr>
<td>parks, and other</td>
<td></td>
</tr>
<tr>
<td>landscaped areas</td>
<td>0.10 W/ft²</td>
</tr>
<tr>
<td>Private driveways/walkways</td>
<td>0.10 W/ft²</td>
</tr>
<tr>
<td>Public driveways/walkways</td>
<td>0.15 W/ft²</td>
</tr>
<tr>
<td>Private parking lots</td>
<td>0.12 W/ft²</td>
</tr>
<tr>
<td>Public parking lots</td>
<td>0.18 W/ft²</td>
</tr>
</tbody>
</table>

ELPA = Σ \(D_i \times UPD_D + \Sigma A_i \times UPD_A \) = \(\Sigma [(D_i \times UPD_D) + \Sigma A_i \times UPD_A] \) = \(A \times UPD_A \)

Equation 3.4-1

Where:

ELPA = Exterior lighting power allowance, in Watts.
3.4.4 Interior Lighting Power Allowance

3.4.4.1 The Interior Lighting Power Allowance (ILPA) shall be calculated using the prescriptive Unit Lighting Power Allowances (ULPA) in Table 3.4-1. First, determine if the predominant function of the proposed building is one of the six building types listed in Table 3.4-1. If not, section 3.5, 11.0, or 12.0 must be used. Next, determine whether the proposed design has secondary functions that are 10% or more of the gross lighted area of the building and are listed in Table 3.4-1. If so, the designer has the option of using the predominant building function to calculate the ILPA or using the calculation method for multiple-use buildings in section 3.4.4.1.2 below.

3.4.4.1.1 If the proposed building has only one function, has no secondary functions with 10% or more of the gross lighted area, or the designer chooses to determine the ILPA based on only one function, Equation 3.4-2 shall be used to determine the building ILPA. First, select the appropriate building type in Table 3.4-1, and the appropriate column for the Gross Lighted Area (GLA) of the proposed building. This value is the Unit Lighting Power Allowance (ULPA). Determine the ILPA by multiplying the ULPA by the GLA as shown in Equation 3.4-2.

\[
ILPA = ULPA \times GLA
\]

Equation 3.4-2

Where:
- \(i\) = numerical subscript (1, 2, . . . n) for each occurrence of exterior openings or exterior areas of the building.
- \(n\) = total number of occurrences of exterior openings or areas of the building.
- \(DO\) = Door opening, linear feet.
- \(UPD\) = Unit power density for the door, W/lin. ft, from Table 3.4-2.
- \(UPD\) = Unit power density for the area in W/ft\(^2\), from Table 3.4-2.
- \(A\) = Exterior area in ft\(^2\).

ILPA = Interior Lighting Power Allowance, in Watts.
ULPA = Unit Lighting Power Allowance, in W/ft\(^2\).
GLA = Gross Lighted Area of the Proposed Building, in ft\(^2\).

3.4.4.1.2 If a building design has more than one function listed in Table 3.4-1, such as an office building with parking and retail stores, with more than 10% of the gross lighted area, Equation 3.4-3 may be used to calculate the building ILPA. First, determine the gross lighted area of the building (GLA) and the gross lighted area for each qualifying secondary function (GLA\(_i\)) in the building. Select the ULPA from Table 3.4-1 under the column corresponding to the gross lighted area of the entire proposed building and multiply it by the gross lighted area of that function. Sum the products to determine the building ILPA, as shown in Equation 3.4-3 below.

\[
ILPA = ULPA_p \times GLA_p + \sum (ULPA_i \times GLA_i) = [ULPA_p \times GLA_p + (ULPA_{f1} \times GLA_{f1}) + (ULPA_{f2} \times GLA_{f2}) + \ldots + (ULPA_{fn} \times GLA_{fn})]
\]

Equation 3.4-3

Where:
- \(i\) = numerical subscript (1, 2, . . . n) for each occurrence of exterior openings or exterior areas of the building.
- \(n\) = total number of occurrences of exterior openings or areas of the building.
- \(ILPA\) = Interior Lighting Power Allowance, in Watts.
- \(ULPA_p\) = Unit Lighting Power Allowance of the predominant function based on the gross lighted area of the entire building, from Table 3.4-1, in W/ft\(^2\).
- \(ULPA_{f1}\) = Unit Lighting Power Allowance of qualifying secondary functions based on the gross lighted area of the entire building, from Table 3.4-1, in W/ft\(^2\).
- \(GLA_p\) = Gross lighted area of the predominant function of the proposed building.
- \(GLA_{f1}\) = Gross lighted area of each qualifying secondary function.

3.4.4.3 Lighting compliance in partially defined speculative buildings. For defined functions in partially defined speculative buildings, the total connected lighting power shall not exceed the interior lighting power allowance for that portion of the building. When determining the ILPA for those cases, the gross lighted area of the entire building must be used.

3.5 Lighting—System Performance Compliance Alternative

3.5.1 Purpose

3.5.1.1 This subsection provides a procedure for determining the maximum lighting power allowance for buildings, roads and grounds. It allows the designer to take credit for the use
of daylighting and other lighting controls. It also serves as a basis for estimating the lighting heat gain and lighting energy use for Section 5.0.

3.5.2 General

3.5.2.1 The total Connected Lighting Power (CLP) in a building, including permanently installed lighting plus supplemental or task related lighting provided by movable fixtures or plug-in luminaires, shall not exceed the Interior Lighting Power Allowance (ILPA). A Lighting Power Control Credit (LPCC), taken for individual spaces, may only be utilized for credit to connected lighting power in those spaces for which credit is claimed.

3.5.2.2 Compliance for lighting in partially defined speculative buildings. The total connected lighting power of lighting designs of defined areas of partially defined speculative buildings shall not exceed the interior lighting power allowance for those areas of the building for which lighting has been designed.

3.5.3 The Lighting Power Budget (LPB) of each interior space shall be determined in accordance with Equation 3.5-1.

\[
LPB = (A \times UPD_b \times AF) + LPCC
\]

Equation 3.5-1

Where:

- LPB = Lighting power budget of the space, in watts
- \(A\) = Area of the room at the horizontal lighted working place, ft\(^2\)
- \(UPD_b\) = Base Unit Power Density, W/ft\(^2\), (Table 3.5-1)
- \(AF\) = Area factor of the room, (Figure 3.5-1)
- LPCC = Lighting Power Control Credit, as determined by §3.5.6

3.5.3.1 The room area (A) shall be calculated from the inside dimensions of the room.

3.5.3.2 The Base Unit Power Density (UPD) shall be selected from Table 3.5-1. For applications to areas or activities other than those given, select values for similar areas or activities.
§ 435.103

TABLE 3.5-1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorium</td>
<td>1.0</td>
<td>1.4</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>Corridor</td>
<td>0.8</td>
<td>0.8</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Classroom/Lecture Hall</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Equipment Room</td>
<td>0.7</td>
<td>0.7</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Control Rooms</td>
<td>1.5</td>
<td>1.5</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Food Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Food/Cafeteria</td>
<td>1.3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leisure Dining</td>
<td>2.5</td>
<td>1.4</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>Bar/Lounge</td>
<td>2.5</td>
<td>1.3</td>
<td>(c)</td>
<td>(c)</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreation/Leisure</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toilet & Washroom</td>
<td>0.8</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto/Pedestrian Circulation</td>
<td>0.3</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Area</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>2.3</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Visual</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card File & Cataloging</td>
<td>1.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading Area</td>
<td>1.9</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobby (General)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception/Waiting</td>
<td>1.0</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator Lobbies</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrium (Multi-Story)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First 3 Floors</td>
<td>0.7</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each Additional Floor</td>
<td>0.2</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locker Room & Shower</td>
<td>0.8</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **(a)** Enclosed offices of less than 900 ft² and all open plan offices
- **(b)** Wood partitions or w/partitions
- **(c)** Lower than 4.5 ft below ceiling.
- **(d)** Reading, Typing and Filing
- **(e)** Drafting
- **(f)** Accounting
- **(g)** 3.5 to 4.5 ft below ceiling.
- **(h)** Open plan offices, 900 ft² or 2.5 ft below ceiling.
TABLE 3.5-1 (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NOTE</td>
<td>NOTE</td>
<td>NOTE</td>
<td>NOTE</td>
</tr>
<tr>
<td>Airport, Bus and Rail Station</td>
<td>Hotel/Conference Center</td>
<td>0.8</td>
<td>0.75</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Baggage Area</td>
<td>Banquet Room/Multipurpose</td>
<td>0.9</td>
<td>0.45</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Concourse/Main Thruway</td>
<td>Bathroom/Powder Room</td>
<td>2.3</td>
<td>1.3</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Ticket Counter</td>
<td>Guest Room</td>
<td>1.0</td>
<td>0.6</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Waiting & Lounge Area</td>
<td>Public Area</td>
<td>2.6</td>
<td>1.3</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Bank</td>
<td>Conference/Meeting</td>
<td>1.0</td>
<td>0.8</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Customer Area</td>
<td>Lobby</td>
<td>2.8</td>
<td>2.2</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Banking Activity Area</td>
<td>Reception Desk</td>
<td>1.6</td>
<td>0.9</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Barber & Beauty Parlor</td>
<td>Laundry</td>
<td>2.0</td>
<td>1.3</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Church, Synagogue, Chapel</td>
<td>Washing</td>
<td>2.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Worship/Congregational</td>
<td>Ironing & Sorting</td>
<td>2.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Preaching & Sermon/Choir</td>
<td>Museum & Gallery</td>
<td>1.0</td>
<td>0.6</td>
<td>3.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Dormitory</td>
<td>General Exhibition</td>
<td>1.3</td>
<td>1.3</td>
<td>0.6</td>
<td>0.25</td>
</tr>
<tr>
<td>Bedroom with Study</td>
<td>Inactive</td>
<td>1.8</td>
<td>0.9</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Study Hall</td>
<td>Active</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Fire & Police Department</td>
<td>Post Office</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Fire Engine Room</td>
<td>Lobby</td>
<td>0.5</td>
<td>0.4</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Jail Cell</td>
<td>Sorting & Mail</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital/Nursing Home</td>
<td>Service Station/Auto Repair</td>
<td>1.5</td>
<td>0.9</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Corridor</td>
<td>Theater</td>
<td>1.6</td>
<td>1.4</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Dental Suite/EM/Treat</td>
<td>Performance Arts</td>
<td>2.3</td>
<td>2.0</td>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>Emergency</td>
<td>Motion Picture</td>
<td>1.9</td>
<td>1.7</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Lobby</td>
<td>0.9</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Lounge/Waiting Room</td>
<td></td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Medical Supplies</td>
<td>Retail Establishments</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Nursery</td>
<td>Merchandising & Circulation Area</td>
<td>2.1</td>
<td>1.8</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Nurse Station</td>
<td></td>
<td>1.6</td>
<td>1.4</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Ocu./Physical Therapy</td>
<td>Applicable to all lighting, including</td>
<td>1.4</td>
<td>0.9</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Patient Room</td>
<td></td>
<td>1.7</td>
<td>1.5</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>in merchandising and circulation areas</td>
<td>2.1</td>
<td>1.8</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Radiology</td>
<td>Type A</td>
<td>5.6</td>
<td>6.0</td>
<td>5.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Surgical & O.R. Suites</td>
<td>Type B</td>
<td>3.2</td>
<td>2.9</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>General Area</td>
<td>Type C</td>
<td>3.3</td>
<td>2.7</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Operating Room</td>
<td>Type D</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Recovery</td>
<td>Type E</td>
<td>2.8</td>
<td>2.4</td>
<td>2.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Mall Concours</td>
<td>Type F</td>
<td>2.7</td>
<td>2.6</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Retail Support Area</td>
<td>Mall Concours</td>
<td>1.4</td>
<td>0.6</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Tailoring</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Dressing/Fitting Rooms</td>
<td>1.4</td>
<td>1.1</td>
<td>1.4</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>
§ 435.103 10 CFR Ch. II (1-1-98 Edition)

TABLE 3.5-1 (Continued)
BASE UPD (P_{b}) FOR AREA/ACTIVITY

<table>
<thead>
<tr>
<th>ARE/ACTIVITY</th>
<th>1989</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Athletic Areas</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>Batting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Club</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Tournament</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Basketball/Volleyball</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intramural</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>College</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Professional</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Bowling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Area</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Lanes</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Boxing or Wrestling (platform)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Professional</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Gymnasium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Exercising & Recreation Only</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Handball/Racquetball/Squash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Club</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Tournament</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Hockey, Ice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>College or Professional</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Skating Rink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Exhibition/Professional</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Swimming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Exhibition</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Underwater</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Tennis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational Class III</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Club/College Class II</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Professional Class I</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Tennis, Table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Club</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Tournament</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

NOTES:

(a) Area factor of 1.0 shall be used for these spaces.

(b) Area factor of 1.0 shall be used for all indoor athletic spaces.

(c) Base UPD includes lighting power required for clean-up purpose.

(d) A 1.3 adjustment factor is applicable for multi-functional spaces.

(e) See Section 11.0 - Definitions for Classification of Retail Facilities.

(f) These standards do not prescribe UPD for dwelling units.

(g) Area factor shall not exceed 1.55.

(h) Minimum of 90% of all work stations shall be enclosed with partitions of the height prescribed.
3.5.3.3 The Area Factor (AF) shall be determined from Figure 3.5-1 based on the floor area and ceiling height of the room. Rooms with identical ceiling height and activities, and with similar size may be treated as a group. The AF of such a group of rooms shall be determined from the average area of the rooms.

Equation 3.5-2 gives the formula used in developing Figure 3.5-1.

\[
AF = 0.2 + 0.8 \exp\left(- \left[\frac{10.21 \times (CH - 2.5)}{\sqrt{A_r}} - 1 \right] \times \ln(0.9) \right)
\]

Equation 3.5-2

Where:
- \(CH\) = Ceiling Height
- \(A_r\) = Floor Area of Room, \(\text{ft}^2\)
- If \(AF < 1.0\) then \(AF = 1.0\)
- If \(AF > 1.8\) then \(AF = 1.8\)
Figure 3.5-1 Base Unit Power Density Area Factor

Area Factor (AF)

Floor Area of Room (ft²)

Ceiling Height

Area Factor (AF)

Floor Area of Room (ft²)

See Graph Above
3.5.4 Special Spaces and Activities.

3.5.4.1 Multi-Function Rooms.

3.5.4.1.1 For rooms serving multi-functions, such as hotel banquet/meeting rooms and office conference/presentation rooms, an adjustment factor of 1.5 times the base UPD may be used if a supplementary lighting system is actually installed to serve the secondary function of the room and the design meets the following conditions:

(a) The installed power for the supplementary system shall not be greater than 33% of the adjusted LPB calculated for that room; and

(b) Independent controls shall be installed for the supplementary lighting system.

3.5.4.2 Simultaneous Activities.

3.5.4.2.1 In rooms containing multiple simultaneous activities, such as a large general office having separate accounting and drafting areas within the same room, the LPB for the rooms shall be the weighted average of the activities in proportion to the areas being served.

3.5.4.3 Indoor Sports.

3.5.4.3.1 The floor area of indoor sports activities areas shall be considered as the area within the playing boundaries of the sport, plus the floor area 10 ft beyond the playing boundaries, not to exceed the total floor area of the indoor room less the spectator seating area.

3.5.5 Calculation of Interior Lighting Power Allowance. The system performance Interior Lighting Power Allowance (ILPA) shall be calculated in accordance with Equation 3.5-3. The ILPA shall include a 0.20 W/ft² allowance for unlisted spaces.

$$\text{ILPA} = \text{LPB}_{1} \times \text{LS}_{1} + \text{LPB}_{2} \times \text{LS}_{2} + \ldots + 0.20 \text{ W/ft}^2 \times (\text{Unlisted Space})$$

Equation 3.5-3

Where:

- ILPA = Interior Lighting Power Allowance, W/ft²
- LPB_{i} = Lighting Power Budget, Watts
- LS_{i} = Listed Space Area, ft²
- $\text{Unlisted space} = \frac{i - 1}{(\text{GLA} - n \sum \text{LS}_{i-1})} \times \text{ft}^2$
- GLA = Gross Lighted Area, ft²
- LPB = Lighting Power Budget, Watts
- LS = Listed Space Area, ft²

3.5.6 Lighting Power Controls Credit and Power Adjustment Factor

3.5.6.1 When calculating the ULPA in this section, the connected power for lights automatically controlled by daylighting sensors, occupancy sensor, programmable timing controls, or lumen maintenance controls may be reduced by factoring control credits on a specific area by a basis. This credit is termed the Lighting Power Controls Credit (LPCC) and shall be determined in accordance with Equation 3.5-4:

$$\text{LPCC} = \text{CLP} \times \text{PAF}$$

Equation 3.5-4

Where:

- LPCC = Lighting Power Controls Credit, Watts
- CLP = Connected Lighting Power for the luminaires controlled by the automatic control device, Watts
- PAF = Power Adjustment Factor, from Table 3.5-2

The adjusted lighting power (ALP) is then equal to CLP minus the LPCC.

3.5.6.2 The Lighting Power Controls Credit is limited to the specific luminaires controlled by the automatic control device.

3.5.6.2.1 Only one adjustment factor may be used for each building space or luminaire, and 50% or more of the controlled luminaire shall be within the applicable space to qualify for the power adjustment factor.

3.5.6.2.2 Controls shall be installed in series with the lights and in series with all manual switching devices in order to qualify for an adjustment factor.

3.5.6.2.3 When sufficient daylight is available, daylight sensing controls shall control all luminaires to which the power adjustment factor is applied and that direct a minimum of 50% of their light output into the daylight zone.

3.5.6.2.4 Daylight sensing controls shall control all luminaires to which the power adjustment factor is applied that direct a minimum of 50% of their light output into the daylight zone.

3.5.6.2.5 Occupancy sensors located in daylighted spaces should be installed in conjunction with a manual ON switch, or photocell override for ON.

3.5.6.2.6 Programmable timing controls used for credit in conjunction with Table 3.5-2 shall be
§ 435.104 Auxiliary systems and equipment.

4.1 General

This section contains a few minimum requirements for auxiliary systems and equipment. Because auxiliary systems and equipment vary greatly among buildings, the section is not more comprehensive.

4.2 Principles of Design

4.2.1 Energy recovery should be used when coincident thermal and refrigeration loads of similar magnitude are expected.

4.2.2 Consideration shall be given to the use of waste heat, energy recovery or heat tape systems to conserve energy.

4.3 Minimum Requirements

4.3.1 Transportation Systems.

4.3.1.1 Automatic elevator and/or conveyor systems shall incorporate schedule controls and efficient motor controls, such as solid state control devices.

4.3.2 Freezer Protection System.

4.3.2.1 Boilers or water heaters used for purposes such as freeze protection in fire protection storage vessels and defrosting sidewalks and driveways shall meet the efficiency requirements of sections 8.3 or 9.3 when they operate in excess of 750 hours per year.

4.3.3 Retail Food and Food Service Refrigeration.

4.3.3.1 Refrigeration systems containing multiple compressors shall have compressors sized to optimally match capacity with loads.

4.3.3.2 Variable speed shall be considered.

§ 435.105 Building Envelope.

5.1 General

5.1.1 This section contains requirements for the energy conscious design of building envelopes. It sets principles of good envelope design, and provides a set of minimum requirements and two alternative compliance paths—prescriptive and system performance.

5.1.2 Compliance. A building shall be considered in Compliance with this section if the following conditions are met:

5.1.2.1 The minimum requirements of Section 5.3 are met;

5.1.2.2 The design of the building envelope complies with either the prescriptive criteria of section 5.4 or the system performance criteria of section 5.5. For the design of buildings with high internal heat gains, unusual operating schedules, or that incorporate innovative design strategies, consideration shall be given to using the compliance paths set forth in sections 11.0 or 12.0.

5.1.3 The prescriptive compliance alternative of section 5.4 provides requirements for buildings designed to take advantage of perimeter daylighting, thermal mass, high performance glazings, and fenestration shading. The designer is allowed to make trade-offs between thermal mass, wall insulation, amount of fenestration, shading coefficients, shading projections, thermal transmittance of the glazing, daylighting for several different climate locations.

5.1.4 The systems performance compliance alternative of section 5.5 provides calculation procedures that give credit for the benefits of more complex energy conserving envelope designs.

5.1.6 Daylighting Credit. In this section, daylighting credit for reduced energy use resulting from the use of automatic lighting control devices in conjunction with fenestration, is given only for space heating and cooling loads. Credit for the reduced use of electric lighting energy use is calculated in section 3.5.6. If daylighting credit for reduced electric lighting energy use is desired to be applied to other building systems, such as more fenestration area, section 11.0 or 12.0 should be used.

5.1.7 The requirements of this section are not intended to replace building loads calculation procedures.

5.2 Principles of Design

5.2.1 Building Loads

5.2.1.1 Building loads result from sources external and internal to the building. (1) External loads, from outdoor temperature, humidity, wind, and insolation, fluctuate daily and seasonally. (2) Internal loads from the activities conducted within the building, including heating and moisture produced by the occupants, lights, and process equipment (e.g., appliances, computers) vary with internal activities. Improving energy efficiency in a building depends on achieving a balance between and among the internal and external loads. The building design should, therefore, offset gains and losses of heat, light, and moisture between the interior and exterior of the building, among interior spaces, and over-time, (daily, seasonally, and annually).

5.2.1.2 This balance of loads can be most efficiently achieved if the building envelope is viewed as, and designed to be, a controlled membrane rather than an immutable barrier. The typical design of a modern building has considered the building envelope to be a fixed barrier that restricts heat and air flow to the maximum extent possible. This will not usually yield the most energy efficient building.

5.2.1.3 The desired goal of the energy design of the building envelope shall be to produce a controlled membrane that allows or prevents heat, light, and moisture flow to achieve a balance between internal and external loads. Thus the envelope becomes an integral part of the building’s environmental conditioning systems.

5.2.1.4 To achieve control of the building envelope as a membrane, and to simultaneously achieve occupant comfort in the perimeter zones, many of the traditional building skin components must be used (insulation, mass, caulking and weather stripping). However, other concepts shall also be considered to temper supply air or utilize waste heat in exhaust air to temper envelope conditions, such as operable solar shading devices, and the integration of glazing systems with the HVAC distribution system.

5.2.1.5 Control of External Loads

5.2.1.5.1 Control of Conduction

(a) Controlled conductivity may be considered through the careful use of insulation, sensible (mass) or phase-change storage and movable insulation at levels which minimizes net heating and cooling loads on a time integrated (annual) basis.

(b) Unintentional or uncontrolled thermal bridges shall be minimized and considered in energy related calculations since they can radically alter the conductivity of a building envelope. Examples include wall studs, balconies, ledges, and extensions of building slabs.
5.2.1.5.2 Control of Infiltration (Heat Loss or Gain)

(a) Infiltration shall be minimized and all efforts to achieve a zero level shall be taken. This will minimize fan energy consumption in pressurized buildings during occupied periods and heat loss (or unwanted heat gain in warm climates) during unoccupied periods. Infiltration reduction shall be accomplished through design details that enhance the fit and integrity of building envelope joints in a way that may be readily achieved during building construction. This includes infiltration control by caulking, weather stripping, vestibule doors and/or revolving doors with construction meeting or exceeding accepted specifications.

(b) The quantity of mechanical ventilation must vary with the need, with recommended values at any given time equal to that required by ASHRAE Standard 62-1981. Higher levels of ventilation (e.g., economizers) shall be considered to substitute for mechanical cooling.

(c) Operable windows may be considered to allow for occupant controlled ventilation. When using operable windows, the design of the building's mechanical system must be carefully executed to minimize unnecessary HVAC energy consumption, and building operators must be cautioned about the improper use of the operable windows.

(d) Non-mechanical ventilation can be enhanced in the shape of the building as well as the physical elements of the building envelope, such as cupolas.

(e) For hotels and high rise dwelling units and other systems having exhaust totaling 3000 cfm or more, with annual operation in excess of 3000 hours and within 200 linear ft of simultaneous make-up air equipment, they shall incorporate energy recovery or treatment to ASHRAE 62-1981 quality levels and reuse exhaust air when allowed by code.

5.2.1.5.3 Control of Radiated Heat Losses and Gains

(a) Capability for occupant radiant comfort shall be maintained regardless of whether the building envelope is designed to be a static or dynamic membrane. Opaque surfaces shall be designed so that the average inside surface temperatures will remain within 5 °F of room temperature in the coldest anticipated weather (i.e., winter design conditions), and the coldest inside surface will remain within 25 °F of the room temperature.

(b) In a building with time-varying internal heat generation, thermal mass may be considered for controlling radiant comfort. In the perimeter zone, thermal mass is more effective when it is positioned internal to the envelope insulation.

(c) The effective control of solar radiation is critical to the design of energy-efficient buildings due to the high level of internal heat production already present in most commercial building types. In some climates, the lighting energy consumption savings due to daylighting techniques can be greater than the heating and cooling energy penalties from additional glazed surface area, provided that the building envelope is properly designed for daylighting and lighting controls are installed and used. In other climates they may not. Daylighting designs are most effective if direct solar beam radiation is not allowed to cause glare in building spaces.

(d) The transparent portions of the building envelope shall be designed to prevent solar radiant gain above that necessary for effective daylighting and solar heating. On south-facing facades, the use of low shading coefficients is generally not as effective as external physical shading devices in achieving this balance. Light shelves offer a very effective means of admitting daylight while shading the view glazing and simultaneously allowing occupants to manipulate interior shading devices (draperies, blinds) without eliminating daylight.

(e) The solar spectrum contains a range of wavelengths including visible and infrared (heat). Designers shall consider which portion of the spectrum to admit into the building. For example, low emissivity, high-visible-transmittance glazings may be considered for the effective control of radiant heat gains and losses. For shading control designers may consider the careful use of vegetation that can block excess
5.3 Minimum Requirements

5.3.1 Overall Thermal Transmittance (Uᵩ)

The overall thermal transmittance of the building envelope above grade assembly shall be calculated as follows:

\[Uᵩ = \sum UᵩAᵩ = (Uᵩ₁Aᵩ₁ + Uᵩ₂Aᵩ₂ + \ldots + UᵩₙAᵩₙ) / Aᵩ \]

Equation 5.3±1

Where:
- \(Uᵩ \) is the area weighted average thermal transmittance of the gross area of the building envelope assembly, e.g., the exterior wall assembly including fenestration and doors; roofs and ceiling assembly; or the floor assembly, Btu/h • ft² • °F.
- \(Aᵩ \) is the gross area of the envelope assembly, ft².
- \(Uᵩᵢ \) is the thermal transmittance of each individual path of the envelope assembly (see Section 5.3.2), Uᵩᵢ = \(1/Rᵩᵢ \) (where \(Rᵩᵢ \) is the total resistance to heat flow of an individual path through an envelope assembly).
- \(Aᵩᵢ \) is the area of each individual element of the envelope assembly, ft².

5.3.2 Thermal Resistance of Below Grade Components (R)

5.3.2.1 In calculating the thermal resistance of all below grade components, the thermal performance of the adjacent ground shall be excluded.

5.3.2.2 Slabs

5.3.2.2.1 The R-value required for slabs refers only to the insulation materials. Insulative continuity shall be maintained in the design of slab edge insulation systems. Continuity shall be maintained from the wall insulation through the slab/wall/footing intersection to the body of the slab edge insulation.

5.3.2.2.2 Slab-on-grade floors shall have insulation around the perimeter of the floor with the thermal resistance \(Rᵩᵢ \) of the insulation specified in accordance with Figure 5.5±2. The slab insulation specified shall extend either in a vertical plane downward from the top of the slab for the minimum distance shown or downward to the bottom of the slab then in a horizontal plane beneath the slab or outward from the building for the minimum distance shown. The horizontal length, or vertical depth, of insulation required varies from 24 in. to 48 in. depending upon the R-value selected. For heated slabs, an R of 2 shall be added to the thermal resistance required.

5.3.2.3 Vertical insulation shall not be required to extend below the foundation footing. There are no insulation requirements for slabs in locations having less than 3,000 HDD65 or for footings extending less than 18 in. below grade.

5.3.2.4 The dimensional requirements for horizontal insulation refers to the insulation materials only. Horizontal applications shall have a thermal break in the slab edge that provides continuity between the wall insulation on the slab and the horizontal insulation.

Below Grade Walls

5.3.2.3.1 The R-value required for Below Grade Walls refers to the overall R-value of the wall assembly excluding air film coefficients and the thermal performance of the adjacent ground.

5.3.3 Thermal Transmittance (Uᵩ) of an Envelope Assembly

5.3.3.1 The thermal transmittance of each envelope assembly shall be determined with due consideration of all major series and parallel heat flow paths through the elements of the assembly. Compression of insulation shall be considered in determining the thermal resistance.

5.3.3.2 The thermal transmittance of opaque assemblies \(Uᵩ \) shall be determined using a series path procedure that corrects parallel paths, such as insulation and studs in a wall cavity or the roof assembly shown in Figure 5.3±1. Table 5.3±1 prescribes the procedure to be used for Subsections 5.3.3.2.1 and 5.3.3.2.2.
Figure 6.3-1
Example of Total Resistance of an Envelope Assembly Including Series Resistance and Parallel Path Equivalent Resistance Elements.
Table 5.3-1
Calculation Procedures for Thermal Transmittance
Through Opaque Envelope Assemblies

<table>
<thead>
<tr>
<th>Material Attached To Thermal Bridge Material</th>
<th>Thermal Bridge Material</th>
<th>Calculation Procedure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>Metal</td>
<td>Thermal Bridges Sheet Metal Construction, 5.3.3.2.1 (d)</td>
</tr>
<tr>
<td>Metal</td>
<td>Non-Metal</td>
<td>Parallel/Series 5.3.3.2.2</td>
</tr>
<tr>
<td>Non-Metal</td>
<td>Metal</td>
<td>Case Specific Correction 5.3.3.2.1 (b), or 5.3.3.2.1 (c)</td>
</tr>
<tr>
<td>Non-Metal</td>
<td>Non-Metal</td>
<td>Parallel/Series 5.3.3.2.2</td>
</tr>
</tbody>
</table>
§ 435.105

5.3.3.2.1 For envelope assemblies containing metal framing, the U_i shall be determined by using one of the following methods:

(a) Results from laboratory or field test measurements, using one of the procedures specified in section 5.1.5.

(b) For non-metal surfaces attached to metal framing, where data from tests conducted using procedures specified in section 5.1.5, such as those provided in Tables 5.3-2 and 5.3-3, is available, the total resistance of the series path may be calculated using Equations 5.3-2a and 5.3-2b, and illustrated in Figure 5.3-1.
Table 5.3-2

Parallel Path Correction Factors

<table>
<thead>
<tr>
<th>Bridged R-Value</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction Factor</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.88</td>
<td>0.85</td>
<td>0.81</td>
<td>0.79</td>
<td>0.76</td>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
<td>0.67</td>
</tr>
</tbody>
</table>

1. Table 5.3-2 values are based upon metal trusses with 4 ft spacing that penetrate the insulation, and 0.66 in. diameter crossmembers every 1 ft.

Table 5.3-3

Wall Sections With Metal Stops
Parallel Path Correction Factors

<table>
<thead>
<tr>
<th>Size of Members</th>
<th>Gauge of Stud</th>
<th>Spacing of Framing, In.</th>
<th>Cavity Insulation R-Value</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 X 4</td>
<td>18-16</td>
<td>16 o.c.</td>
<td>R-11</td>
<td>0.50</td>
</tr>
<tr>
<td>2 X 4</td>
<td>18-16</td>
<td>24 o.c.</td>
<td>R-11</td>
<td>0.60</td>
</tr>
<tr>
<td>2 X 6</td>
<td>18-16</td>
<td>16 o.c.</td>
<td>R-19</td>
<td>0.40</td>
</tr>
<tr>
<td>2 X 6</td>
<td>18-16</td>
<td>24 o.c.</td>
<td>R-19</td>
<td>0.45</td>
</tr>
</tbody>
</table>
\[U_i = \frac{1}{R_i} \]

Equation 5.3-2a

\[R_i = R_i + R_e \]

Equation 5.3-2b

Where:
- \(R_t \) = the total resistance of the envelope assembly
- \(R_i \) = the resistance of the series elements (for \(i = 1 \) to \(n \)), excluding the parallel path element(s)
- \(R_e \) = the equivalent resistance of the element containing the parallel path, the value of \(R_e \) is:
 \[R_e = (R\text{-value of insulation}) \times F_c \]

Equation 5.3-2c

Where:
- \(F_c \) = the correction factor from Table 5.3-2 or Table 5.3-3.

(c) For elements other than those covered in item (b) above, the zone method described in Chapter 23 of the ASHRAE Handbook, 1985 Fundamentals Volume shall be used. The equations on pages 23.13 and 23.14 shall be used.

(d) For sheet metal construction, internally insulated with an internal metal structure bonded on one or both sides to a metal skin or covering (see Figure 5.3-2), the following steps shall be used to calculate the U-value of the envelope construction.
First, calculate the resistance of the thermal bridge R_{TB} as follows:

$$R_{TB} = R_1 + R_2 + R_3 + R_4 + R_5$$

(i) Where R_1, the effective mean flow path along the outer metal surface, is calculated by:

$$R_1 = \frac{1}{2L \sqrt{h_1 k_1 T_1}} - \frac{1}{B \times L \times h_1}$$

(ii) And if it occurs, the resistance of insulation (R_2) between the outer metal surface and the metal structural member is calculated by:

$$R_2 = \frac{1}{k \times L \left[\frac{b_2}{H_2} + \frac{2}{\pi} \right]}$$

(iii) And, the resistance of the structural member (R_3) is calculated by:

$$R_3 = \frac{h_3}{L \times t_3 \times k_3}$$

$$\text{Equation 5.3-6}$$

(iv) And if it occurs, the resistance of insulation (R_4) between the inner metal surface and the purlin flange is calculated by:

$$R_4 = \frac{1}{k \times L \left[\frac{b_4}{H_4} + \frac{2}{\pi} \right]}$$

(v) And finally, the effective mean flow path along the inner metal surface (R_5) is calculated by:

$$R_5 = \frac{1}{2L \sqrt{h_5 k_5 T_5}} - \frac{1}{B \times L \times h_5}$$

Where:

t = thickness of sheet metal

L = total length

h = coefficient of heat transfer

k = thermal conductivity

T = temperature

B = total width

H = partial height

Then calculate the parallel path resistance of the homogeneous insulation R_H as follows:

$$R_H = \sum \frac{H}{K}$$

Then obtain the overall construction resistance R_C by combining R_H and R_{TB} as two parallel resistances:

$$R_C = \frac{R_{TB} \times R_H}{R_{TB} + R_H}$$

$$\text{Equation 5.3-10}$$

Then add the inside and outside surface resistances R_i and R_u to get the total resistance R_{TOT}:

$$R_{TOT} = R_C + R_i + R_u$$

$$\text{Equation 5.3-11}$$

The total area resistance m_{TOT} is then calculated by:

$$m_{TOT} = R_{TOT} \times B \times L$$

$$\text{Equation 5.3-12}$$

And finally, obtain the U-value by:

$$U = \frac{1}{m_{TOT}}$$

$$\text{Equation 5.3-13}$$

Where additional resistances are introduced in the construction, introduce them in lieu of the above (R_2 and R_4) resistances. An example of this would be the calculation of both a metallic fastener and a block of higher thermal conductivity material between the outer sheet metal and the internal structural member as shown in Figure 5.3-3. In this case the original R_2 is recalculated by first calculating the thermal bridge R_{2TB} as follows:
Figure 5.3-3
Detail of Heat Transfer From a Metal Surface to a Structure Through a Metal Fastener and Insulating Block With Corresponding Resistance Network

EQUIVALENT CIRCUIT

OR
\(R_{2TB} = R_7 + R_8 + R_9 \)

Equation 5.3-14

(i) Where the resistance of the heads of number \(N \) of fasteners per length

\[
R_7 = \frac{1}{N \times 2 \times \pi \times \lambda_1 \times t_1 \times f(\beta r_1, \infty)} - \frac{1}{a_1 \times B \times L}
\]

Equation 5.3-15

Where:

- \(N \) = the number of fasteners in length \(L \)
- \(f \) = the function of \(\frac{B}{\lambda t} \times \frac{r}{r_1} \) for different values of the ratio \(r_2/r_1 \) given in Figure 5.3-4.

\[
\# = \sqrt{\frac{h}{\lambda t}}
\]

\(r_1 \) = the radius of the fastener shank.
\(r_2 \) = the outer radius of the fastener head.
(ii) And, the resistance of the shank of the fastener is calculated by:

\[R_H = \frac{H_8}{N \times \lambda \times \pi \times r_1^2} \]

Equation 5.3-16

(iii) And, finally, the resistance of the connection to the internal structural member is calculated by:

\[R_b = \frac{l_n \times b_2}{r_1} \]

(iv) Then calculate the resistance of the block of higher thermal conductivity material as follows:
§ 435.105

\[R_6 = \frac{1}{L_1 \left[\frac{\lambda_1}{H_8} + \frac{\lambda_2}{2\pi} \right]} \]

Where:

λ₁ = thermal conductivity of the outermost layer in Btu/hr•ft•°F
λ₂ = thermal conductivity of the central layer in Btu/hr•ft•°F
H₈ = thickness of the outermost layer in ft
π = mathematical constant

1.2.2 (v) Then obtain the resistance to be used in lieu of the original \(R_2 \) by:

\[R_2 = \frac{R_{TB} \times R_6}{R_{TB} + R_6} \]

Equation 5.3-19

5.3.3.2 For envelope assemblies containing Non-Metal Framing, the \(U_i \) shall be determined from one of the laboratory or field test measurements specified in Section 5.1.5 or from the ASHRAE series-parallel method. Formulas in Chapter 23, page 23.2 of the ASHRAE Handbook, 1985 Fundamentals Volume, shall be used for these calculations.

5.3.3.3 The thermal transmittance of fenestration assemblies shall be corrected to account for the presence of sash, frames, edge effects and spacers in multiple-glazed units.

If thermal transmittances of sash and frames are known, Equation 5.3-1 shall be used, otherwise the thermal transmittance of fenestration assemblies shall be calculated as follows:

\[U_{of} = \sum U_{gi} \times F_{f,i} \times A_i / A_{of} \]

Equation 5.3-20

Where:

\(A_i \) = area of the \(i \)th fenestration assembly
\(i \) = numerical subscript (1, 2, ... n) refers to each of the various fenestration assemblies present in the wall
\(n \) = the number of fenestration assemblies in the wall assembly.
\(U_{gi} \) = the overall thermal transmittance of the fenestration assembly, including sash and frames, Btu/hr•ft²•°F.
\(U_c \) = the thermal transmittance of the central area of the fenestration excluding edge effects, spacers in multiple-glazed units, and the sash and frame, Btu/hr•ft²•°F.
\(F_{f,i} \) = framing adjustment factor for sash, frames, etc.
\(A_{of} \) = the area of all fenestration including glazed portions, sash, frames, etc.

5.3.3.3.1 Values for \(U_{gi} \) shall be the winter value obtained from the glazing manufacturer's test data or from Table 13 or Figure 14 of Chapter 27 of the ASHRAE Handbook, 1985 Fundamentals Volume. Values for \(F_{f,i} \) shall be obtained from the frame manufacturer's test data or from the average adjustment factor for a particular product in Table 13, Part C, in Chapter 27 of the ASHRAE Handbook, 1985 Fundamentals Volume. For glass products with a \(U \) value of 0.45 or less, use the \(F_{f,i} \) for triple insulated glazing. Alternatively, values of the \(U \)°F product may be used from manufacturer's test data for open window and frame assemblies tested as a unit provided that the tests referenced edge-effects and windspeed are accounted for winter tested \(U \)-values are used.

5.3.4 Gross Area of Envelope Components

5.3.4.1 The gross area of a roof assembly consists of the total surface of the roof assembly exposed to outside air or unconditioned spaces. The roof assembly shall include all roof/ceiling components through which heat may flow between indoor and outdoor environments including skylight surfaces, but excluding service openings.

5.3.4.1.1 For thermal transmittance purposes, when return air ceiling plenums are employed, the roof/ceiling assembly shall not include the thermal resistance of the ceiling, or the plenum space, as part of the total thermal resistance of the assembly.

5.3.4.2 The gross area of a floor assembly over outside or unconditioned space consists of the total surface of the floor assembly exposed to the outside air or an unconditioned space. The floor assembly shall include all floor components through which heat may flow between indoor and outdoor or unconditioned space environments.

5.3.4.3 The gross area of exterior walls enclosing a heated or cooled space consists of the total surface of the floor assembly exposed to the outside air or an unconditioned space. The floor assembly shall include all floor components through which heat may flow between indoor and outdoor or unconditioned space environments.

5.3.5 Shading Coefficients

5.3.5.1 The Shading Coefficient (SC) for fenestration shall be obtained from Chapter 27 of the ASHRAE Handbook,
§ 435.105

1985 Fundamentals Volume or from manufacturers' test data. For the prescriptive or system performance envelope compliance calculations in sections 5.4 and 5.5, a factor, SC, is used. SC is the Shading Coefficient of the fenestration, including internal and external shading devices, but excluding the effect of external shading projections, which is calculated separately. The shading coefficient used for louvered shade screens shall be determined using a profile angle of 30°, as found in Table 41, Chapter 27 of the ASHRAE Handbook, 1985 Fundamentals Volume.

5.3.6 Wall Heat Capacity

5.3.6.1 Heat capacity in Btu/°F ft², shall be determined as the product of the average wall weight in lb/ft² and the weighted average specific heat of the wall component in Btu/lb°F.

5.3.6.2 If the wall system is defined as having exterior insulation only the properties of the wall elements inside of the insulation layer shall be used in determining the wall heat capacity.

5.3.6.3 For walls with integral insulation, all of the elements of the entire wall system may be used in the calculation of the wall heat capacity.

5.3.7 Air Leakage and Moisture Migration

5.3.7.1 The requirements of this subsection apply only to those locations separating the outdoors from interior building conditioned space. Compliance with the criteria for air leakage through building components shall be determined by ASTM E 283-1984, "Standard Method of Test Rate of Air Leakage Through Exterior Windows, Curtain Walls and Doors."

5.3.7.2 Air Leakage Requirements for Fenestration and Doors

5.3.7.2.1 Fenestration meeting the following standards for air leakage is acceptable:

(a) ANSI/AAMA 101-85, "Aluminum Prime Windows."

(b) ASTM D-4099-83, " Specifications for Poly(VinylChloride) (PVC) Prime Windows."

(c) ANSI/NWMA I.S. 2-80, "Wood Window Units (Improved Performance Rating Only)."

5.3.7.2.2 Sliding Doors shall meet one of the following standards for air leakage:

(a) ANSI/AAMA 101-85, "Aluminum Sliding Glass Doors."

(b) NWMA I.S. 3-83, "Wood Sliding Patio Doors."

5.3.7.2.3 Commercial entrance swinging or revolving doors shall limit air leakage to a rate not to exceed 1.25 cfm/ft² of door area, at standard test conditions.

5.3.7.2.4 Residential swinging doors shall limit air leakage to a rate not to exceed 0.5 cfm/ft² of door area, at standard test conditions.

5.3.7.2.5 Where spaces have regular high volume traffic through the building envelope, such as retail store entrances and loading bays, estimates of air leakage for HVAC system design shall be based on air exchange by traffic flow.

5.3.7.2.6 To reduce infiltration due to stack-effect draft in multi-story buildings, the use of vestibules or revolving doors on all primary entries and exits shall be considered.

5.3.7.3 Air Leakage Requirements for Exterior Envelope Joints and Penetrations.

5.3.7.3.1 Exterior joints, cracks, and holes in the building envelope, such as those around window or door frames, between wall and foundation, between wall and roof, through wall panels at penetrations of utility services or other service entry through walls, floors, and roofs, between wall panels, particularly at corners and changes in orientation, between wall and floor, where floor penetrates wall, around penetrations of chimney, flue vents, or attic hatches, shall be caulked, gasketed, weather stripped, or otherwise sealed.

5.3.7.4 Moisture Migration Requirements for Exterior Envelopes

5.3.7.4.1 The building envelope shall be designed to prevent moisture migration that leads to deterioration in insulation performance of the building.

5.3.7.4.2 Vapor retarders shall be considered to prevent moisture from collecting within the envelope. Designs should incorporate the principles of ASHRAE Handbook, 1985 Fundamentals Volume, Chapter 21, "Moisture in Building Construction."

5.3.8 Shell Buildings

5.3.8.1 The following conditions shall be assumed if determination of
building envelope compliance occurs prior to the determination of lighting power density, equipment power density, or fenestration shading device characteristics:

5.3.8.1.1 Lighting Power Density and Equipment Power Density. For section 5.4, the total power density shall be assumed to be those listed in Table 5.3-4. For section 5.5, the values in Table 5.3-4 shall be assumed to be apportioned as ⅔ lighting and ⅓ for other equipment. Note that these are not recommended design values, but are for compliance purposes only.

5.3.8.1.2 Fenestration shading devices. Only those shading devices that are part of the design when it is being evaluated for compliance shall be considered when determining compliance.

5.3.8.1.3 Daylighting controls for electric lighting. Only those controls that are part of the design when it is being evaluated for compliance shall be considered when determining compliance.

5.3.9 Buildings Located in Climates With Greater Than 15,000 HDD Base 65 °F.

5.3.9.1 For locations with a heating degree-day base (HDD) 65 °F greater than 15,000, the envelope criteria listed in Table 5.3-5 shall apply, and the window wall ratio (WWR) shall be less than or equal to 0.20.

<table>
<thead>
<tr>
<th>Table 5.3-4</th>
<th>Assumed Internal Loads for Shell and Speculative Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>Building</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3-5
Requirements For Locations With Heating Degree-Days Base 65 °F Greater Than 15,000

<table>
<thead>
<tr>
<th>Envelope Statement</th>
<th>Maximum U-Value</th>
<th>Minimum U-Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_o) opaque wall for buildings with (\leq 12,000 \text{ ft}^2) of gross floor area</td>
<td>0.053</td>
<td></td>
<td>See 5.3.3.2</td>
</tr>
<tr>
<td>(U_o) opaque wall for buildings with (< 12,000 \text{ ft}^2) of gross floor area</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U) fenestration</td>
<td>0.450</td>
<td></td>
<td>Use Eq 5.3.20</td>
</tr>
<tr>
<td>(U) roof</td>
<td>0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor over unconditioned spaces</td>
<td>0.023</td>
<td></td>
<td>See 5.3.3.2</td>
</tr>
<tr>
<td>Wall below grade</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Slab-on-grade:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Insulation</td>
<td>Minimum R Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>Distance, in.</td>
<td>Slab</td>
<td>Slab</td>
</tr>
<tr>
<td>Horizontal</td>
<td>48</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Vertical</td>
<td>48</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Skylights: Not allowed for locations with HDD65 greater than 15,000.

Footnotes for Table 5.3-5:

1. For window to wall ratio, WAR \(\leq 0.20 \). Shall include corrections for parallel paths within the envelope assembly. For WAR \(> 0.20 \), see Footnote (3).
2. For window to wall ratio, WAR \(\leq 0.15 \). Shall include corrections for parallel paths within the envelope assembly. For WAR \(> 0.15 \), see Footnote (3).
3. The window to wall ratio and the stated U-values for opaque wall and fenestration may be increased or decreased provided that the combined thermal wall transmittance shall not exceed 0.125 for buildings \(\geq 12,000 \text{ ft}^2 \), and 0.091 for buildings \(< 12,000 \text{ ft}^2 \).
4. Including pile-supported floors and elevated floors.
5. Installed on the exterior of perimeter foundation walls for heated foundations.
5.3.10 Daylight Credits for Skylights.

5.3.10.1 Skylights used in conjunction with automatic lighting controls for daylighting can significantly reduce the lighting energy consumption, thereby more than offsetting the increase in envelope heat transfer.

5.3.10.2 When determining building roof compliance, daylight credits for skylights may be used if the criteria of this subsection are met.

5.3.10.3 Skylights for which daylight credit is taken may be excluded from the calculation of the overall thermal transmittance value (U_o) of the roof assembly, if all of the following conditions are met:

5.3.10.3.1 The opaque roof thermal transmittance U_o value does not exceed the value determined within the selected Alternate Component Package (ACP) table for the prescriptive method or by Equation 5.5-1 for the systems performance method.

5.3.10.3.2 Skylight areas, including framing, as a percentage of the roof area do not exceed the values specified in Tables 5.3-6A and 5.3-6B for building sites located within the climate ranges listed in the two Tables, where Visible Light Transmittance (VLT) is the transmittance of a particular glazing material over the visible portion of the solar spectrum. Skylight areas shall be interpolated between visible light transmittance values of 0.75 and 0.50, only.
Table 5.3-6a

(VLT = 0.75)

<table>
<thead>
<tr>
<th>BUILDING LOCATION</th>
<th>LIGHT LEVEL IN (fc)</th>
<th>Range of Lighting Power Density (W/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD65</td>
<td>0-3000</td>
<td>30 2.3 3.1 3.9 4.7 4.7</td>
</tr>
<tr>
<td></td>
<td>0-10000</td>
<td>50 3.1 4.3 5.5 6.7 6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 4.3 5.5 6.7 7.9 7.9</td>
</tr>
<tr>
<td>CDH80</td>
<td>0-3000</td>
<td>30 2.2 2.8 3.4 4.0 4.0</td>
</tr>
<tr>
<td></td>
<td>>10000</td>
<td>50 2.3 3.1 3.9 4.7 4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 2.9 4.1 5.3 6.5 6.5</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>30 2.3 3.4 4.5 5.6 5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 2.5 4.0 5.5 7.0 7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 2.8 4.6 6.4 8.2 8.2</td>
</tr>
</tbody>
</table>
5.3.10.3.3 The skylight area associated with daylight credit can be taken is the area under each skylight whose dimension in each direction (centered on the skylight) is equal to the skylight dimension in that direction plus a distance equal to the floor to ceiling height.

5.3.10.3.4 Skylight areas that overlap areas that have already taken daylight credit (perimeter window areas or other skylight areas) do not again take daylight credit.

5.3.10.3.5 All electric lighting fixtures within skylight areas are controlled by daylight-activated automatic lighting controls.

5.3.10.3.6 For buildings located in climates that have less than 8000 HDD65, the overall thermal transmittance of the skylight assembly, including framing, is less than or equal to 0.7 Btu/h•ft•°F. For locations greater

Table 5.3-6b

Maximum Percent Skylight Area for Given Conditions of Lighting Power Density, Light Level (fc), HDD65 and CDH80

<table>
<thead>
<tr>
<th>BUILDING LOCATION</th>
<th>LIGHT LEVEL IN FC</th>
<th>Range of Lighting Power Density (W/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD65 CDH80</td>
<td><1.00</td>
<td>1.0-1.50</td>
</tr>
<tr>
<td></td>
<td>1.51-2.00</td>
<td>2.01-2.50</td>
</tr>
<tr>
<td></td>
<td>>2.50</td>
<td></td>
</tr>
<tr>
<td>0-3000 0-10000</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>0-3000 >10000</td>
<td>50</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>>3000 ALL</td>
<td>30</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>

5.3.10.3.3 The skylight area associated with daylight credit can be taken is the area under each skylight whose dimension in each direction (centered on the skylight) is equal to the skylight dimension in that direction plus a distance equal to the floor to ceiling height.

5.3.10.3.4 Skylight areas that overlap areas that have already taken daylight credit (perimeter window areas or other skylight areas) do not again take daylight credit.

5.3.10.3.5 All electric lighting fixtures within skylight areas are controlled by daylight-activated automatic lighting controls.

5.3.10.3.6 For buildings located in climates that have less than 8000 HDD65, the overall thermal transmittance of the skylight assembly, including framing, is less than or equal to 0.7 Btu/h•ft•°F. For locations greater
than 8000 HDD, the overall thermal transmittance of the skylight assembly, including framing, is less than or equal to 0.45 Btu/h·ft²·°F.

5.3.10.3.7 Skylight curbs have thermal transmittance (U) values no greater than 0.21 Btu/h·ft²·°F.

5.3.10.3.8 The infiltration coefficient of the skylights does not exceed 0.05 cfm/ft².

5.3.10.4 Skylight areas in Tables 5.3-6A and 5.3-6B may be increased by 50% if a shading device is used that blocks over 50% of the solar gain during the peak cooling design condition.

5.3.10.5 Areas for vertical glazing in clerestories and roof monitors shall be included in the wall fenestration calculation.

5.3.10.6 For shell buildings, the permitted skylight area from Tables 5.3-6A and 5.3-6B shall be based on a light level of 30 fc and a lighting power density (LPD) of less than 1 W/ft².

5.3.10.7 For speculative buildings, the permitted skylight area from Tables 5.3-6A and 5.3-6B shall be based on the unit lighting power allowance from Table 3.4-1 and an illuminance level as follows:

5.3.10.7.1 For LPD less than or equal to 1.0 W/ft², use 30 fc;
5.3.10.7.2 For LPD greater than 1.0 W/ft² and less than 2.5 W/ft², use 50 fc; and
5.3.10.7.3 For LPD greater than 2.5 W/ft², use 70 fc.

5.3.10.8 Buildings with roof assembly devices that cannot be evaluated under this subsection shall be evaluated using the Building Energy Compliance Methods of Section 11.0 or 12.0.

5.4 Building Envelope—Prescriptive Compliance Alternative

5.4.1 General.

5.4.1.1 This section provides a simple compliance path using precalculated prescriptive requirements for selected exterior envelope configurations of new buildings.

5.4.1.2 The Alternate Component Packages (ACP), found in this subsection, provide design criteria for use with the following options:

5.4.1.2.1 “Base Case”—buildings with envelopes designed without perimeter daylighting.

5.4.1.2.2 “Perimeter Daylighting”—buildings with envelopes that use additional fenestration area by incorporating automatic lighting controls in the perimeter zone to permit the use of daylighting in lieu of electric lighting. This ACP is not available for those climates that do not usually require space cooling by means of mechanical refrigeration.

(a) This daylighting credit is in addition to the increased lighting power allowance provided in section 3.5. Some perimeter daylighting options allow a greater proportion of fenestration area due to the increased visible and decreased thermal transmittances of high performance glazings in combination with automatic lighting controls.

5.4.1.3 Each ACP provides a limited number of complying combinations of building variables for a set of climate ranges. The criteria, such as maximum percent fenestration, were calculated using the system performance criteria of section 5.5. Values were chosen from within climate and other variable ranges for the most restrictive results, to ensure compliance of any combination of values within those ranges. Thus, for most climate locations and envelope parameters, the prescriptive criteria may be slightly more stringent than the system performance criteria of section 5.5.

5.4.1.4 Both the base and perimeter daylight cases have two or three fenestration U-value ranges depending on the climate.

5.4.2 Compliance.

5.4.2.1 The envelope design of the building being evaluated is in compliance with the prescriptive criteria of this section provided that:

5.4.2.1.1 The minimum requirements of section 5.3 are met.
5.4.2.1.2 All envelope thermal transmittance (U) values are less than or equal to those chosen from the ACP Table selected for roofs, opaque walls, walls next to unconditioned spaces, and floors over unconditioned spaces.
5.4.2.1.3 The percentage of fenestration of the combined gross wall area is less than or equal to the value permitted for internal load range and glazing in the selected ACP Table.
5.4.2.1.4 Slab-on-grade floors have insulation around the perimeter of the
§ 435.105

floor with the thermal resistance \(R_u \) of the insulation as listed in the ACP table. The slab insulation specified shall extend either in a vertical plane downward from the top of the slab for the minimum distance shown or downward to the bottom of the slab then in a horizontal plane beneath the slab or outward from the building for the minimum distance shown. The horizontal length, or vertical depth, of insulation required varies from 24 in. to 48 in. depending upon the \(R \)-value selected. For heated slabs, an \(R \) of 2 shall be added to the thermal resistance required.

(a) Vertical insulation shall not be required to extend below the foundation footing.

(b) There are no insulation requirements for slabs in locations having less than 3,000 HDD65 or for footings extending less than 18 in. below grade.

5.4.2.1.5 The thermal resistance of the below-grade wall assembly must be greater than or equal to that listed in the ACP table, or the heat loss calculated in accordance with Chapter 25 of the ASHRAE Handbook, 1985 Fundamentals shall be less than or equal to that of a wall below grade having a thermal resistance equal to that specified in Figure 5.5-3. No insulation is required for climates with less than 3,000 HDD65 or for those portions of walls more than one story below grade.

5.4.3 Procedure for Using the Alternate Component Packages (ACP).

5.4.3.1 The prescriptive envelope criteria for each of 30 climate ranges are contained in Tables 5.4-2 through 5.4-31.

5.4.3.2 The following steps shall be used to determine compliance with these prescriptive envelope criteria.

5.4.3.2.1 Determine appropriate climate range using either (a) or (b) below.

(a) From Table 5.4-1, select the appropriate ACP Table based on the climate for the building site. The main climate variables that are needed for the proper selection of an ACP Table are cooling degree-days base 65 °F (CDD65), heating degree-days base 50 °F (HDD50), and annual average daily incident of solar radiation on the east or west vertical surface of the facade, Btu/ft²/day (VSEW). For certain climate ranges this must be augmented by cooling degree-hours base 80 °F (CDH80).

(1) This data, for a specific building location, may be acquired from the U.S. Weather Service of the National Oceanic and Atmospheric Administration or the local weather bureau. The column designated “ACP Table No.” in Table 5.4-1 contains the table number of the appropriate ACP Table.
Table 54.1
Climate Data Grouped by ACP Tables

<table>
<thead>
<tr>
<th>ACP Table Number</th>
<th>HDD50 Range</th>
<th>CDD50 Range</th>
<th>VSW Range</th>
<th>GDD50 Range</th>
<th>Example Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4-2</td>
<td>0</td>
<td>300-14500</td>
<td>>800</td>
<td></td>
<td>Barbers Point, Milo, Honolulu, Lithue</td>
</tr>
<tr>
<td>5.4-3</td>
<td>0</td>
<td>>4500</td>
<td>>850</td>
<td></td>
<td>Guantanamo Bay, Guantánamo, San Juan, Wake Island</td>
</tr>
<tr>
<td>5.4-4</td>
<td>1-1000</td>
<td>0-1150</td>
<td>560-850</td>
<td></td>
<td>Arcata, North Bend</td>
</tr>
<tr>
<td>5.4-5</td>
<td>1-1000</td>
<td>0-300</td>
<td>>850</td>
<td></td>
<td>Oakland, San Francisco, Santa Maria, Sunnyvale</td>
</tr>
<tr>
<td>5.4-6</td>
<td>1-1000</td>
<td>301-1150</td>
<td>>850</td>
<td></td>
<td>El Toro, Long Beach, Los Angeles, San Diego</td>
</tr>
<tr>
<td>5.4-7</td>
<td>1-1000</td>
<td>1151-2000</td>
<td>560-850</td>
<td></td>
<td>Atlanta, Augusta, Birmingham, Cherry Point, Greenville</td>
</tr>
<tr>
<td>5.4-8</td>
<td>1-1000</td>
<td>1151-2000</td>
<td>>850</td>
<td></td>
<td>Fresno, Red Bluff, Sacramento</td>
</tr>
<tr>
<td>5.4-9</td>
<td>1-1000</td>
<td>2001-3250</td>
<td>560-850</td>
<td></td>
<td>Charleston, Houston, Jackson, Montgomery, New Orleans</td>
</tr>
<tr>
<td>5.4-10</td>
<td>1-1000</td>
<td>2001-3250</td>
<td>>850</td>
<td>0-1800</td>
<td>Austin, Bakersfield, El Paso, Fort Worth, Tallahassee, Tampa</td>
</tr>
<tr>
<td>5.4-11</td>
<td>1-1000</td>
<td>2001-3250</td>
<td>>850</td>
<td>0-1800</td>
<td>Chinle, Lake, Las Vegas, Tucson</td>
</tr>
<tr>
<td>5.4-12</td>
<td>1-1000</td>
<td>3251-4500</td>
<td>>850</td>
<td>0-1800</td>
<td>Brownsville, Corpus Christi, Miami, Orlando, West Palm Beach</td>
</tr>
<tr>
<td>5.4-13</td>
<td>1-1000</td>
<td>3251-4500</td>
<td>>850</td>
<td>0-1800</td>
<td>Laredo, Phoenix, Yuma</td>
</tr>
<tr>
<td>5.4-14</td>
<td>1001-1750</td>
<td>0-500</td>
<td>560-850</td>
<td></td>
<td>Olympic, Portland, Salem, Seattle, Tacoma, Whidbey Island</td>
</tr>
<tr>
<td>5.4-15</td>
<td>1001-1750</td>
<td>501-1150</td>
<td>560-850</td>
<td></td>
<td>Asheville, Memphis</td>
</tr>
<tr>
<td>5.4-16</td>
<td>1001-1750</td>
<td>1-1150</td>
<td>>850</td>
<td></td>
<td>Prescott, Winnemucca, Yucca Valley</td>
</tr>
<tr>
<td>5.4-17</td>
<td>1001-1750</td>
<td>1151-2000</td>
<td>560-850</td>
<td></td>
<td>Charlotte, Chattanoga, Knoxville, Norfolk, Raleigh, Richmond</td>
</tr>
<tr>
<td>5.4-18</td>
<td>1001-1750</td>
<td>1151-2000</td>
<td>>850</td>
<td></td>
<td>Albuquerque, Lubbock, Oklahoma City, Roswell, Turlock, Visalia</td>
</tr>
<tr>
<td>5.4-19</td>
<td>1001-1750</td>
<td>2001-3250</td>
<td>560-850</td>
<td></td>
<td>Fort Smith, Memphis, Tulsa</td>
</tr>
<tr>
<td>5.4-20</td>
<td>1751-2650</td>
<td>0-1150</td>
<td>560-850</td>
<td></td>
<td>Baltimore, Boston, Columbus, Harrisburg, New York, Washington</td>
</tr>
<tr>
<td>5.4-21</td>
<td>1751-2650</td>
<td>0-1150</td>
<td>>850</td>
<td></td>
<td>Akron, Chicago, Detroit, Hartford, Indianapolis, Pittsburgh</td>
</tr>
<tr>
<td>5.4-22</td>
<td>1751-3200</td>
<td>0-1150</td>
<td>>850</td>
<td></td>
<td>Boise, Colorado Springs, Denver, Reno, Salt Lake City</td>
</tr>
<tr>
<td>5.4-23</td>
<td>1751-3200</td>
<td>1151-2000</td>
<td>560-850</td>
<td></td>
<td>Evansville, Exeter, Lexington, Louisville, Saint Louis, Springfield</td>
</tr>
<tr>
<td>5.4-24</td>
<td>1751-3200</td>
<td>1151-2000</td>
<td>>850</td>
<td></td>
<td>Dodge City, Grand Junction</td>
</tr>
<tr>
<td>5.4-25</td>
<td>3201-4000</td>
<td>0-1150</td>
<td>560-850</td>
<td></td>
<td>Albany, Buffalo, Concord, Des Moines, Milwaukee, Rapid City</td>
</tr>
<tr>
<td>5.4-26</td>
<td>4001-5000</td>
<td>0-1150</td>
<td>560-850</td>
<td></td>
<td>Bangor, Carmi, Huron, Minneapolis, Rochester, Sioux Falls</td>
</tr>
<tr>
<td>5.4-27</td>
<td>3201-4000</td>
<td>0-1150</td>
<td>>850</td>
<td></td>
<td>Casper, Cheyenne, Ely, North Platte, Scottsbluff</td>
</tr>
<tr>
<td>5.4-28</td>
<td>4001-5000</td>
<td>0-1150</td>
<td>>850</td>
<td></td>
<td>Bryce, Eagle, Rock Springs</td>
</tr>
<tr>
<td>5.4-29</td>
<td>5001-6500</td>
<td>0-1150</td>
<td>560-850</td>
<td></td>
<td>Bismarck, Duluth, Fargo, Glasgow, International Falls</td>
</tr>
<tr>
<td>5.4-30</td>
<td>1-6500</td>
<td><100</td>
<td><500</td>
<td></td>
<td>Adak, Anchorage, Juneau, Kodiak, Yakutat</td>
</tr>
<tr>
<td>5.4-31</td>
<td>>5500</td>
<td><100</td>
<td><500</td>
<td></td>
<td>Bethel, Fairbanks, King Salmon, Nome, Summit</td>
</tr>
</tbody>
</table>
Table S-4.2

Opaque Wall Usage

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>Ext</th>
<th>Range</th>
<th>FEN</th>
<th>INS</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>17</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>17</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>17</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>77</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>77</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>77</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Light Wall Usage

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>Ext</th>
<th>Range</th>
<th>FEN</th>
<th>INS</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>14</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>14</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>14</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>85</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>85</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>85</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perimeter Daylighting Usage

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>Ext</th>
<th>Range</th>
<th>FEN</th>
<th>INS</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>19</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>19</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>19</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>36</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>36</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>36</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Case Usage

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>Ext</th>
<th>Range</th>
<th>FEN</th>
<th>INS</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>15</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>15</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>15</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>31</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10</td>
<td>31</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 15</td>
<td>31</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Load Density (ILD) and Projection Factor (PF) Range

<table>
<thead>
<tr>
<th>Load Density</th>
<th>Factor (PF)</th>
<th>Range (SCs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000 - 0.71</td>
<td>0.000 - 0.71</td>
<td>1.0 - 1.50</td>
</tr>
<tr>
<td>0.780 - 0.60</td>
<td>0.780 - 0.60</td>
<td>0.50 - 0.60</td>
</tr>
<tr>
<td>0.500 - 0.50</td>
<td>0.500 - 0.50</td>
<td>0.50 - 0.50</td>
</tr>
<tr>
<td>0.400 - 0.80</td>
<td>0.400 - 0.80</td>
<td>0.50 - 0.80</td>
</tr>
</tbody>
</table>

Diagram

- Internal Load Density (ILD) and Projection Factor (PF) Range
- Shading Coeff. Range (SCs)
- VLT x SC

342
Table 5.15

<table>
<thead>
<tr>
<th>Internal Load Density (ILD)</th>
<th>Projection Factor (PF)</th>
<th>Shading Coefficient (SC)</th>
<th>BASE CASE</th>
<th>PERIMETER DAYLIGHTING</th>
<th>OPAQUE WALL Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 - 0.249</td>
<td>1.000 - 0.71</td>
<td>0.700 - 0.60</td>
<td>24</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>0.250 - 0.499</td>
<td>0.700 - 0.60</td>
<td>0.600 - 0.50</td>
<td>29</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>0.500 - 0.800</td>
<td>0.600 - 0.50</td>
<td>0.400 - 0.30</td>
<td>34</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>1.000 - 1.50</td>
<td>0.400 - 0.30</td>
<td>0.300 - 0.20</td>
<td>39</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>1.500 - 2.00</td>
<td>0.300 - 0.20</td>
<td>0.190 - 0.10</td>
<td>44</td>
<td>46</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 5.16

<table>
<thead>
<tr>
<th>Use (HC/CIS)</th>
<th>HC Range</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC ≥ 6</td>
<td>24</td>
<td>0.21</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 12</td>
<td>24</td>
<td>0.38</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>24</td>
<td>0.47</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- For the BASE CASE, use 1.000 for the IDF factor and 0.700 for the SC coefficient.
- Adjust values as per the project requirements.
349

Department of Energy § 435.105

VerDate 27<FEB>98 11:40 Mar 11, 1998 Jkt 179034 PO 00000 Frm 00345 Fmt 8010 Sfmt 8006 Y:\SGML\179034.TXT 179034-3
Table 6.1

<table>
<thead>
<tr>
<th>Internal Load</th>
<th>Projection Factor (PM)</th>
<th>Shading Coefficient (S)</th>
<th>Base Case</th>
<th>Perimeter Daylighting</th>
<th>Opaque Wall Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>< 0.5</td>
<td>0.5 - 1.5</td>
<td>1.51 - 3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Load Density (ILD) **Range**
- 0 - 0.5
- 0.5 - 1.5
- 1.51 - 3.00

Projection Factor (PM)
- 0.000 - 0.240
- 0.250 - 0.490
- 0.500 - 0.990

Shading Coefficient (S)
- 0.000 - 0.71
- 0.709 - 0.79
- 0.799 - 0.80

Base Case
| PM | S | 1.51 | 1.52 | 1.53 | 1.54 | 1.55 | 1.56 | 1.57 | 1.58 | 1.59 | 1.60 | 1.61 | 1.62 | 1.63 | 1.64 | 1.65 | 1.66 | 1.67 | 1.68 | 1.69 | 1.70 |
|----|-----|------|
| 0 | 0.0 | 18 | 23 | 27 | 33 | 43 | 64 | 76 | 82 | 91 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 0 | 0.1 | 18 | 23 | 27 | 33 | 43 | 64 | 76 | 82 | 91 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 0 | 0.2 | 18 | 23 | 27 | 33 | 43 | 64 | 76 | 82 | 91 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 0 | 0.3 | 18 | 23 | 27 | 33 | 43 | 64 | 76 | 82 | 91 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |

Perimeter Daylighting

Opaque Wall Use

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 - 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.51 - 3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC ≥ 5</td>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HC ≥ 10</td>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes

- PM stands for Projection Method
- S stands for Shading Coefficient
Table 1

<table>
<thead>
<tr>
<th>Use (HCGER)</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
<th>RANGE</th>
<th>FEN</th>
<th>INS</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Min R-Value</th>
<th>Max U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL BELOW GRADE: 0</td>
<td>0.10</td>
</tr>
<tr>
<td>UNHEATED SLAB ON GRADE: 24° 38° 48° Horizontal 0 0 0</td>
<td>0.30</td>
</tr>
<tr>
<td>Vertical 0 0 0</td>
<td>0.10</td>
</tr>
<tr>
<td>ROOF: 0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>WALL ADJACENT TO UNCOND SPACE: 0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>FLOOR OVER UNCOND SPACE: 0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Diagram Description

1. **Daylight Sensing Controls**: A diagram showing the relationship between daylight sensors and control mechanisms.
2. **1,000 - 0.25**: Indicates a range from 1,000 to 0.25, possibly representing a measurement or classification.
3. **301 - 3.50**: Indicates a range from 301 to 3.50, possibly representing a measurement or classification.
4. **351**: A specific value highlighted, possibly indicating an important measurement or threshold.
Table 1: Insulation Values

| User
<table>
<thead>
<tr>
<th>HCS</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>INS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Below Grade</td>
</tr>
<tr>
<td>WALL BELOW GRADE</td>
</tr>
<tr>
<td>UNHEATED SLAB ON GRADE:</td>
</tr>
<tr>
<td>Horizontal</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>Vertical</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Diagram 2: Daylight Sensing Controls

- Daylight Sensing Controls

Diagram 3: Insulation Values

<table>
<thead>
<tr>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS</td>
</tr>
<tr>
<td>0.10</td>
</tr>
</tbody>
</table>

Diagram 4: Insulation Values

<table>
<thead>
<tr>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS</td>
</tr>
<tr>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Range</th>
<th>1.000 - 0.71</th>
<th>0.700 - 0.68</th>
<th>0.599 - 0.58</th>
<th>0.499 - 0.38</th>
<th>0.370 - 0.35</th>
<th>0.249 - 0.20</th>
<th>0.150 - 0.11</th>
<th>0.050 - 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>43</td>
<td>46</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>42</td>
<td>45</td>
<td>51</td>
<td>58</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Weather Conditions

<table>
<thead>
<tr>
<th>Heat</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC ≥ 5</td>
<td>12</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 10</td>
<td>12</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 15</td>
<td>12</td>
<td>49</td>
<td>53</td>
</tr>
</tbody>
</table>

Min R-Values

<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Below Grade</td>
<td>7</td>
</tr>
<tr>
<td>Unheated Slab on Grade</td>
<td>24, 38, 48</td>
</tr>
<tr>
<td>Horizontal</td>
<td>10, 9, 7</td>
</tr>
<tr>
<td>Vertical</td>
<td>5, 5, 4</td>
</tr>
</tbody>
</table>

Wax Up

<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>0.004</td>
</tr>
<tr>
<td>Wall Adjacent to Uncond Space</td>
<td>0.22</td>
</tr>
<tr>
<td>Floor Over Uncond Space</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Low U-value</th>
<th>HC Range</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>5-8</td>
<td>0.10</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>10-16</td>
<td>0.24</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>17-20</td>
<td>0.24</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

Daylight Sensing Controls

- Daylight Sensing
- Controls

Min R-Value

<table>
<thead>
<tr>
<th>Wall Below Grade</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unheated Slab on Grade Vertical</td>
<td>0.71</td>
</tr>
<tr>
<td>Unheated Slab on Grade Horizontal</td>
<td>0.68</td>
</tr>
<tr>
<td>Unheated Slab on Grade Vertical</td>
<td>0.58</td>
</tr>
<tr>
<td>Unheated Slab on Grade Horizontal</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Max U-value

- ROOF: 0.049
- Wall Adjacent to Unconditioned Space: 0.25
- Floor Over Unconditioned Space: 0.12
§ 435.105

Table 5-13

<table>
<thead>
<tr>
<th></th>
<th>H0750 =</th>
<th>C0750 = 3260</th>
<th>V0750 =</th>
<th>C0750 =</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>1-1000</td>
<td>4500</td>
<td>> 960</td>
<td>> 10000</td>
</tr>
</tbody>
</table>

Alternate Component Packages for Laredo TX, Phoenix AZ, Yuma AZ

<table>
<thead>
<tr>
<th>Wall Type</th>
<th>Single Wall K</th>
<th>Double Wall K</th>
<th>Mass Wall K</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Details

- **K** values for various models and configurations.
- **N** values indicating specific characteristics or conditions.

Note: The image contains a complex diagram and table with intricate details that require careful examination for full understanding.
3.01 - 3.50

Daylight Sensing Controls

<table>
<thead>
<tr>
<th>Use (HC)</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>FEN</td>
<td>INS</td>
<td>INS</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>HC ≥ 6</td>
<td>18</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>HC ≥ 10</td>
<td>18</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>18</td>
<td>0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 5</td>
<td>91</td>
<td>0</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 10</td>
<td>91</td>
<td>0</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>91</td>
<td>0</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Min R-Value

| WALL BELOW GRADE: | 0 |

UNHEATED SLAB ON GRADE: 24° 36° 48°
Horizontal: 0 0 0
Vertical: 0 0 0

Max R-Value

| ROOF: | 0 045 |

WALL ADJACENT TO UNCOND. SPACE: 0 42
FLOOR OVER UNCOND. SPACE: 0 20
Table 1

<table>
<thead>
<tr>
<th>Usage</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>HC ≥ 5</td>
<td>18</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 10</td>
<td>18</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 15</td>
<td>18</td>
<td>0.18</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Daylight Sensing Controls

<table>
<thead>
<tr>
<th>Wall Below Grade</th>
<th>Min R-Value</th>
<th>Max U0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>0.003</td>
</tr>
<tr>
<td>Unheated Slab On Grade</td>
<td>24° 36° 48°</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

The diagram illustrates energy efficiency calculations related to daylight sensing controls, with various shading and value annotations.
Table: Min R-Value

<table>
<thead>
<tr>
<th>Condition</th>
<th>Min R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Below Grade</td>
<td>8</td>
</tr>
<tr>
<td>Unheated Slab on Grade</td>
<td>24^ 36^ 48^</td>
</tr>
<tr>
<td>Horizontal</td>
<td>13 11 9</td>
</tr>
<tr>
<td>Vertical</td>
<td>8 8 4</td>
</tr>
</tbody>
</table>

Table: Max Insulation

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC ≥ 6</td>
<td>11</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 10</td>
<td>11</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>HC ≥ 16</td>
<td>11</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

Daylight Sensing Controls

- Use: Use the chart above to determine the appropriate R-value for each condition.

R-Values

- **WALL BELOW GRADE:** 8
- **UNHEATED SLAB ON GRADE:** 24°, 36°, 48°
- **Horizontal:** 13, 11, 9
- **Vertical:** 8, 8, 4

- **WALL ADJACENT TO UNHEATED SPACE:** 0.17
- **FLOOR OVER UNHEATED SPACE:** 0.074
Table 375

Daylight Sensing Controls

<table>
<thead>
<tr>
<th>Min. R-Value</th>
<th>Max. Uf</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL BELOW GRADE</td>
<td>0</td>
</tr>
<tr>
<td>UNHEATED SLAB ON GRADE</td>
<td>24 36 46</td>
</tr>
<tr>
<td>Horizontal</td>
<td>14 11 9</td>
</tr>
<tr>
<td>Vertical</td>
<td>7 5 4</td>
</tr>
</tbody>
</table>

Table 376

<table>
<thead>
<tr>
<th>Low (HC(5))</th>
<th>HC RANGE</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC ≥ 5</td>
<td>10</td>
<td>0.12</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 10</td>
<td>10</td>
<td>0.16</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>10</td>
<td>0.20</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

Table 377

<table>
<thead>
<tr>
<th>3.01 - 3.50</th>
</tr>
</thead>
</table>

Table 378

<table>
<thead>
<tr>
<th>3.00 - 3.49</th>
</tr>
</thead>
</table>

Table 379

<table>
<thead>
<tr>
<th>2.50 - 2.69</th>
</tr>
</thead>
</table>

Table 380

<table>
<thead>
<tr>
<th>1.80 - 1.99</th>
</tr>
</thead>
</table>

Table 381

<table>
<thead>
<tr>
<th>0.80 - 0.99</th>
</tr>
</thead>
</table>

Table 382

<table>
<thead>
<tr>
<th>0.40 - 0.59</th>
</tr>
</thead>
</table>

Table 383

<table>
<thead>
<tr>
<th>0.20 - 0.39</th>
</tr>
</thead>
</table>

Table 384

<table>
<thead>
<tr>
<th>0.10 - 0.19</th>
</tr>
</thead>
</table>

Table 385

<table>
<thead>
<tr>
<th>0.00 - 0.09</th>
</tr>
</thead>
</table>
§ 435.105

Daylight Sensing Controls

Min R-Value

WALL BELOW GRADE: 7
UNHEATED SLAB ON GRADE: 24° 36° 48°
Horizontal 12 18 8
Vertical 6 6 4

Max Uc

RDF: 0.58
WALL ADJACENT TO UNCOND SPACE: 0.19
FLOOR OVER UNCOND SPACE: 0.063

Use (HCs)	HC	PCT	INT	EXT
HC ≥ 6 | 9 | 10 | 22
HC ≥ 10 | 9 | 10 | 28
HC ≥ 15 | 9 | 24 | 31
HC ≥ 5 | 81 | 16 | 21
HC ≥ 10 | 81 | 18 | 26
HC ≥ 16 | 61 | 23 | 29

3.01 - 3.60
Table 1

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.088</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.096</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.13</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Min R-Value</th>
<th>Max Uf</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL BELOW GRADE: 9</td>
<td>0.055</td>
</tr>
<tr>
<td>UNHEATED SLAB ON GRADE: 24° 36° 48°</td>
<td>0.13</td>
</tr>
<tr>
<td>Horizontal</td>
<td>17 14 11</td>
</tr>
<tr>
<td>Vertical</td>
<td>8 6 4</td>
</tr>
<tr>
<td>FLOOR OVER UNCOND SPACE:</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Diagram

- 3.01 - 3.50
- Daylight Sensing Controls
- User (HC65) RANGE FEM INS INS
- Use 0.000 0.250 0.500 0.750
- Department of Energy
Table 1

<table>
<thead>
<tr>
<th>Low (HC<5)</th>
<th>HC 5</th>
<th>HC 10</th>
<th>HC 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range FEN</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>INS INS</td>
<td>0 11</td>
<td>0 11</td>
<td>0 11</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Material</th>
<th>R-Value</th>
<th>Max U0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL BELOW GRADE</td>
<td>0</td>
<td>0.056</td>
</tr>
<tr>
<td>UNHEATED SLAB ON GRADE</td>
<td>24°</td>
<td>0.056</td>
</tr>
<tr>
<td>Vertical</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>ROOF</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>WALL ADJACENT</td>
<td>24°</td>
<td>0.15</td>
</tr>
<tr>
<td>TO UNCOND SPACE</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.14

<table>
<thead>
<tr>
<th>Internal Load Density (ILD)</th>
<th>Projection Factor (PF)</th>
<th>Shading Coefficient (SC)</th>
<th>VLT ≥ 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000 - 0.71</td>
<td>0.000 - 0.240</td>
<td>0.000 - 0.000</td>
<td>0.000 - 0.000</td>
</tr>
<tr>
<td>0.750 - 0.499</td>
<td>0.500 - 0.000</td>
<td>0.000 - 0.000</td>
<td>0.000 - 0.000</td>
</tr>
<tr>
<td>0.500 - 0.000</td>
<td>0.000 - 0.000</td>
<td>0.000 - 0.000</td>
<td>0.000 - 0.000</td>
</tr>
</tbody>
</table>

Perimeter Daylighting

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>Int. Ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Weight Wall</td>
<td>15</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Mass Wall</td>
<td>15</td>
<td>0.13</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Opaque Wall Use

<table>
<thead>
<tr>
<th>Use</th>
<th>HC</th>
<th>PCT</th>
<th>Int. Ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Weight Wall</td>
<td>15</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>Mass Wall</td>
<td>15</td>
<td>0.13</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Note: The table and diagram are not fully transcribed due to the complexity and visual nature of the content. Further clarification or translation would require detailed analysis and interpretation of the visual data.
Table 1

<table>
<thead>
<tr>
<th>Room Type</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC ≥ 6</td>
<td>16</td>
<td>0.87</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 10</td>
<td>16</td>
<td>0.89</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>HC ≥ 15</td>
<td>16</td>
<td>0.10</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Min R-Value</th>
<th>Max Uf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Diagram

- Daylight Sensing Controls
- 3.01 - 3.10
- 0.000 - 0.499
- 0.500 - 0.999
- 1.000 - 1.499

R-values

- Wall Below Grade: 10
- Unheated Slab on Grade: 24" 36" 48"
- Horizontal: 18 16 11
- Vertical: 0 0 4
- Floor Over Uncond Space: 0.042
TABLE 5.4.10

Internal Load Density (ILD) vs. Shading Coeff (SCX)

<table>
<thead>
<tr>
<th>Internal Load Density</th>
<th>Shading Coeff</th>
<th>Opacity</th>
<th>Miss</th>
<th>UV T</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000 - 0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.790 - 0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.620 - 0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.420 - 0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.370 - 0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.240 - 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.150 - 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.040 - 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Light Weight

<table>
<thead>
<tr>
<th>User (HCs(C))</th>
<th>HC</th>
<th>PCT</th>
<th>INT</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC ≥ 5</td>
<td>0.861</td>
<td>0.871</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC ≥ 10</td>
<td>0.861</td>
<td>0.871</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC ≥ 15</td>
<td>0.861</td>
<td>0.871</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- HC: Heat Capacity
- PCT: Percentage
- INT: Indoor
- EXT: Outdoor

Table 5.4.10 (L-1-98 Edition)

Table 5.4.10 (L-1-98 Edition)

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Wind Speed</th>
<th>UV T</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.71</td>
<td>0.66</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.790</td>
<td>0.66</td>
<td>0.58</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.620</td>
<td>0.58</td>
<td>0.42</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.420</td>
<td>0.38</td>
<td>0.37</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.370</td>
<td>0.28</td>
<td>0.24</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.240</td>
<td>0.18</td>
<td>0.15</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- HC: Humidity Capacity
- PCT: Percentage
- INT: Indoor
- EXT: Outdoor
(b) From the list of cities in Appendix A, "List of Cities and Climate Data," which contains data for 234 cities, select the closest city climatologically to the building site. If the site is not one of the cities listed or if the climate at the site differs significantly from the weather bureau information from the city or other reliable source and use (a) above. The column designated "ACP Table No." contains the table number of the appropriate ACP Table.

(c) For information purposes only, the climate data used to develop the ACP Tables for the above-grade wall allowable percent fenestration is the maximum level for the cities listed in the ACP Table. The climate data contained in the ACP Tables is based on the most stringent level of weather conditions for the cities listed in the ACP Table. The maximum allowable percent fenestration is the maximum level for the above-grade wall as determined using the appropriate ACP Table.
total area of fenestration assemblies divided by the total gross exterior wall area, considering all elevations of the building. Determining the maximum allowable percent fenestration requires the following five steps:

1. Based on the Internal Load Density (ILD) for the proposed design, select one of the three Internal Load Ranges as the point of entry to the tables. Note for ILD's greater than 3.5 W/ft² use the 3.5 W/ft² range. For shell buildings, see procedures in Section 5.3.8. Determine the ILD of the proposed design, based on the sum of the Internal Lighting Power Allowance (ILPA), the Equipment Power Density (EPD) and Occupant Load Adjustment (OLA), as shown in Equation 5.4-1.

\[
ILD = ILPA + EPD + OLA
\]

Equation 5.4-1

Where:

The Internal Lighting Power Allowance (ILPA) shall be:

1. The building average Internal Lighting Power Allowance (ILPA) of the design building in W/ft² as determined in Section 3.4 or 3.5;
2. The average of the Lighting Power Budgets (LPB) for all activity areas within 15 ft of each exterior wall based on the procedures specified by the Systems Performance Criteria of Section 3.5.3;
3. The actual lighting power density of the proposed design in W/ft², either the building average or the average of the lighting power within 15 ft of each exterior wall.

NOTE.—The lighting prescriptive path, Section 3.4, does not provide lighting values for health, assembly, multi-family high rise, and hotel/motel buildings type occupancies. Use the 1.5 to 3.0 range of Internal Load Density for health and assembly buildings; and the 0 to 1.5 range for multi-family high rise and hotel/motel buildings.

The Equipment Power Density (EPD) shall be either:

1. The building average receptacle power density selected from Table 5.4-33 in W/ft²; or
2. The actual average receptacle power density for all activity areas within 15 ft of each exterior wall in W/ft², considering diversity. For determining compliance in Tables 5.4-2 through 5.4-31, the actual average receptacle power densities calculated by this method that exceed 1.0 W/ft² shall be limited to 1.0 W/ft² in Equation 5.4-1.

The Occupant Load Adjustment (OLA) shall be either:
1. 0.0 W/ft². This recognizes the assumed occupant sensible load of 0.6 W/ft² that is built into the ACP tables; or
2. A positive or negative difference between the actual occupant load and 0.6 W/ft² if the design building has a larger or smaller occupant load.

(2) Select external shading projection factor (PF). If no external shading projections are used in the proposed design, select the column designated Projection Factor=0.000–0.249. If external shading projections are used, determine the average area weighted projection factor on the window in accordance with Equation 5.4-2. Then select the appropriate column in the ACP Table.

\[PF = \frac{P_d}{H} \]

Equation 5.4-2

Where:
- \(PF \) = Average area weighted projection factor
- \(P_d \) = External horizontal shading projection depth, in. or ft
- \(H \) = Sum of height of the fenestration and the distance from the top of the fenestration to the bottom of external shading projection in units consistent with \(P_d \).

<table>
<thead>
<tr>
<th>BUILDING TYPE</th>
<th>W/ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assembly</td>
<td>0.25</td>
</tr>
<tr>
<td>2. Office</td>
<td>0.75</td>
</tr>
<tr>
<td>3. Retail</td>
<td>0.25</td>
</tr>
<tr>
<td>4. Warehouse</td>
<td>0.10</td>
</tr>
<tr>
<td>5. School</td>
<td>0.50</td>
</tr>
<tr>
<td>6. Hotel/Motel</td>
<td>0.25</td>
</tr>
<tr>
<td>7. Restaurant</td>
<td>0.10</td>
</tr>
<tr>
<td>8. Health</td>
<td>1.00</td>
</tr>
<tr>
<td>9. Multi-Family</td>
<td>0.75</td>
</tr>
</tbody>
</table>
(3) Select the Shading Coefficient of the fenestration (SC) including internal, integral, and external shading devices, but excluding the effect of external shading projections (PF). This includes curtains, shades, or blinds. Reference ASHRAE Handbook, 1985 Fundamentals Volume, Chapter 27.

(4) Select one of the daylighting options, either:
1. Base Case, no daylighting; or
2. Perimeter Daylighting (automatic daylight controls for lighting system must be used). This option is not available in some locations.

(5) Select appropriate fenestration type. For most options, this is determined by the thermal transmittance value (U) of the fenestration assembly. For some fenestration options, the visible light transmittance (VLT) of the fenestration should not be less than the shading coefficient of the glazed portion of the fenestration assembly, not considering any shading devices. The ranges generally correspond to single glazing, double glazing, triple glazing and high performance glazing incorporating low emissivity coatings/films or more than two glazing layers. Each ACP table includes at most, three ranges of glazing U-value.

5.4.4.2.3 Determine the Maximum U_{nw} for the Opaque Wall Assembly. In the appropriate ACP Table the Maximum U_{nw} for the opaque wall assembly is determined using the following steps:
(a) For a lightweight wall assembly, heat capacity (HC) less than 5 Btu/ft²•°F, use the value indicated. This U_{nw} is constant over all internal load ranges.
(b) To use the mass wall adjustment, the following additional steps are necessary:
(1) Select the same internal load range as that used in determining the maximum allowable percent fenestration.
(2) Select the mass wall heat capacity (HC) and insulation position. If the wall insulation is positioned internal to or integral with the wall mass, use the column headed Interior/Integral Insulation. If the wall insulation is positioned external to the wall mass use the column headed Exterior Insulation. For HC less than 5 Btu/ft²•°F this adjustment table cannot be used. At this step you will have two choices of U_{nw} that are key to a small or large percent fenestration. This represents the full range of U_{nw} values allowed.
(3) Select or interpolate the appropriate maximum U_{nw} for the opaque wall based on the maximum allowable percent fenestration determined in Section 5.4.4.2.2 or the actual building percent fenestration whichever value is lower. The U_{nw} shall be determined by straight line interpolation for fenestration percentages between the smallest and largest values listed. If the design building percentage fenestration is less than the smallest value listed, select the U_{nw} for the largest percentage fenestration listed.

5.4.4.2.4 Determine Other Envelope Criteria. In each ACP table, the criteria for roof, wall adjacent to unconditioned space, wall below grade (first story only), floor over unconditioned space, and slab-on-grade floors, shall be met. For heated slabs on grade, the R-value shall be the R-value for the unheated slab-on-grade plus 2.0. For skylights, the daylight credit procedure presented in Section 5.3.10 shall be used.

5.5 Building Envelope—System Performance Compliance Alternative

5.5.1 Roof Thermal Transmittance Criteria
5.5.1.1 Any building that is heated and/or mechanically cooled shall have an overall thermal transmittance value (U_{o}) for the gross area of the roof assembly not greater than the value determined by Equation 5.5-1. The provisions of Section 5.3 shall be followed in determining acceptable combinations of materials that will meet the required U_{o} values of Equation 5.5-1.

\[
U_{o} = \frac{1}{5.3 + 1.8 \times 10^{-10} \times \text{HDD65} + 1.3 \times 10^{-3} \times \text{CDD65} + 2.8 \times 10^{-4} \times \text{CDH80}}
\]

Equation 5.5-1

5.5.1.2 Equation 5.5-1 applies only for climate locations with HDD65 greater than or equal to 15,000. For climate locations with HDD65 greater than 15,000, see subsection 5.3.9, Table 5.3-5.

5.5.1.2.1 Exceptions to Section 5.5.1.2:
§ 435.105

(a) any building that is only heated shall have an overall thermal transmittance value \((U_w)\) for the gross area of the roof assembly less than or equal to the value determined by Equation 5.5-1 with CDD65 and CDH80 set equal to zero; and

(b) any building that is only mechanically cooled shall have an overall thermal transmittance value \((U_w)\) for the gross area of the roof assembly less than or equal to the value determined by Equation 5.5-1 with HDD65 set equal to zero.

5.5.2 Floor Thermal Transmittance Criteria

5.5.2.1 The floors of any building that is heated and/or mechanically cooled shall meet the following thermal criteria:

5.5.2.1.1 Floors of conditioned spaces over unconditioned spaces shall have a thermal transmittance \((U_w)\) not greater than that specified in Figure 5.5-1.
5.5.2.1.2 Slab-on-grade floors shall have insulation around the perimeter of the floor with the thermal resistance (R_u) of the insulation as specified in Figure 5.5-2. The insulation specified in Figure 5.5-2 shall extend either in a vertical plane downward from the top of the slab for the minimum distance shown or downward to the bottom of the slab for the minimum distance shown then in a horizontal plane beneath the slab. The horizontal length, or vertical depth, of insulation required varies from 24 in. to 48 in. depending upon the R-value selected. For heated slabs, an R of 2 shall be added to the thermal resistance required in Figure 5.5-2.
(a) Vertical insulation is not required to extend below the foundation footing. There are no insulation requirements for slabs in locations having less than 3,000 HDD65 for footings extending less than 18 in. below grade.

5.5.3 Thermal Transmittance Criteria For Opaque Walls Enclosing Conditioned Spaces Exposed to Interior Unconditioned Spaces

5.5.3.1 All opaque walls enclosing conditioned spaces exposed to interior unconditioned spaces shall have an overall thermal transmittance (U) not greater than the value specified in Figure 5.5-3.

![Figure 5.5-2](image)

Figure 5.5-2
Thermal Resistance for Unheated Slab on Grade

Note: for HDD65 ≤ 3000, $R_u = 0$
for 3000 > HDD65 > 15000, see graph above
for HDD65 ≥ 15000, see Table 5.3-5

$$R_n = R_u + 2$$
5.5.4 Thermal Resistance Criteria for Exterior Wall Insulation Below Grade

5.5.4.1 The thermal resistance (R) of the wall assembly shall be greater than, or equal to the insulation level specified in Figure 5.5-4, or the heat loss calculated in accordance with Chapter 25 of the ASHRAE Handbook, 1985 Fundamentals Volume shall be less than, or equal to that of a wall below grade having a thermal resistance equal to that specified in Figure 5.5-4. No insulation is required for climate...
locations with less than 3,000 HDD65 for those portions of walls more than one story below grade.

5.5.5 External Wall Criteria for Heating and Cooling

5.5.5.1 The external wall heating criteria (WC$_h$) and cooling criteria (WC$_c$) represent limits on cumulative annual heating and cooling energy flux attributable to transmission and solar gain. These limits accommodate variation in internal load and wall heat capacity. They shall be determined for a building envelope design using Equations 5.5-2 and 5.5-6 in Attachment 5B, "Equations..."
5.5.6 Wall Heating and Cooling Compliance Values

5.5.6.1 The wall heating compliance value H_i and the wall cooling compliance value C_i, are estimates of the cumulative annual heating and cooling energy flux attributable to heat transmission and solar gains. These estimates consider the effects of variations in internal load and wall heat capacity. They shall be calculated using Equations 5.5-2 and 5.5-6 in Attachment 5B.

5.5.6.3 Applying the Criteria

5.5.6.3.1 The wall criteria shall be applied as follows:

(a) For all buildings that are heated and mechanically cooled, the sum of the calculated wall heating and cooling compliance values, H_i and C_i, for all orientations of the proposed design, as determined in section 5.5.6, shall not exceed the sum of the corresponding wall criteria for all orientations for wall heating (WC_h) and wall cooling (WC_c).

(b) For buildings that are only heated, the sum of the calculated wall heating compliance values, H_i, for all orientations of the proposed design, as determined in section 5.5.6, shall not exceed the sum of the corresponding wall heating criterion WC_h for all orientations.

(c) For buildings that are only mechanically cooled, the sum of the calculated wall cooling compliance values, C_i, for all orientations of the proposed design, as determined in section 5.5.6, shall not exceed the sum of the corresponding wall cooling criterion WC_c for all orientations.

5.5.6.4 Constraints on Thermal Transmittance Values

5.5.6.4.1 The compliance calculation procedure in section 5.5.6.3 allows great flexibility in selecting values for envelope components as long as the overall criteria are met. In calculating compliance, two constraints are imposed on thermal transmittance values for opaque wall assemblies and fenestration assemblies comprising the U_o term, as follows:

(a) Opaque Wall Assemblies: The opaque portion of walls with heat capacity (HC) less than 7 Btu/ft²·°F shall have an overall thermal transmittance (U_o) not greater than the value specified in Figure 5.5-4. Procedures, specified in section 5.3, shall be used to determine acceptable combinations of materials that meet the required value.

(b) Fenestration Assemblies: The overall thermal transmittance (U_o) of fenestration assemblies shall not exceed 0.81 Btu/h·ft²·°F for all locations with more than 3000 HDD65 if the fenestration area exceeds 10% of the total wall area exposed to the outside air. Thermal transmittance for the fenestration shall be determined using the calculation procedures in Section 5.3.1 and shall include the effects of sash, frames, edge effects, and spacers for multiple-glazed units.

5.5.6.5 Constraint on Daylighting Credit

5.5.6.5.1 For a given orientation, daylight credit may be used in Equations 5.5-2 and 5.5-6 only for that portion of the fenestration that is less than or equal to 65% of the gross wall area of the orientation.

5.5.6.6 Lighting Power Density

5.5.6.6.1 The Lighting Power Density used in calculating the compliance value shall be:

(a) The building average unit Interior Lighting Power Allowance of the proposed design in W/ft² as specified in section 3.0;

(b) The average of the Lighting Power Budgets for all activity areas within 15 ft of each exterior wall based on the procedures set forth in section 5.3; or

(c) The actual lighting power density of the proposed design in W/ft², either building average or average of the lighting power within 15 ft of each exterior wall.

5.5.6.7 Equipment Power Density

5.5.6.7.1 The equipment power density used in determining compliance shall be either:
§ 435.105

10 CFR Ch. II (1–1–98 Edition)

(a) The "Average Receptacle Power Densities" from Table 5.4–32, or
(b) The actual average Equipment Unit Power Density, considering diversity, either building average or average in the activity areas within 15 ft of each exterior wall, not to exceed 1 W/ft².

5.5.6.8 Occupancy Loads

5.5.6.8.1 An occupancy load of 0.6 W/ft² is assumed. If the occupancy loads in the building design are different from this value, use the larger value.

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Occupancy Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Birmingham</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Mobile</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Montgomery</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Alaska</td>
<td>Adak</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Anchorage</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Annette Island</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Bethel</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Big Delta</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Fairbanks</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Galena</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Juneau</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>King Salmon</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Koomburra</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>McGrath</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Nome</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Seward</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Arizona</td>
<td>Phoenix</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Prescott</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Tucson</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Fort Smith</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Little Rock</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>California</td>
<td>Ascata</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Bakersfield</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Chico</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Chico Lake</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Daggett</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Fresno</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Fullerton</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Fullerton</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Los Angeles</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Mount Shasta</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Oakland</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Point Reyes</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Red Bluff</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>San Francisco</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Santa Maria</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Sunnyvale</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Colorado</td>
<td>Colorado Springs</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Eagle</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Grand Junction</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td></td>
<td>Pueblo</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Hartford</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Hartford</td>
<td>0.6 W/ft²</td>
</tr>
<tr>
<td>Delaware</td>
<td>Wilmington</td>
<td>0.6 W/ft²</td>
</tr>
</tbody>
</table>

G1
Department of Energy § 435.105

District of Columbia

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Washington</td>
<td>DC</td>
<td>2004</td>
<td>4828</td>
<td>419</td>
<td>174</td>
<td>905</td>
<td>3734</td>
<td>1083</td>
<td>3592</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Apalachicola</td>
<td>FL</td>
<td>32320</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
<tr>
<td>116</td>
<td>Atlantic Beach</td>
<td>FL</td>
<td>32233</td>
<td>476</td>
<td>802</td>
<td>933</td>
<td>5438</td>
<td>1956</td>
<td>859</td>
<td>21.5</td>
<td>690</td>
</tr>
<tr>
<td>117</td>
<td>Miami</td>
<td>FL</td>
<td>33130</td>
<td>476</td>
<td>802</td>
<td>933</td>
<td>5438</td>
<td>1956</td>
<td>859</td>
<td>21.5</td>
<td>690</td>
</tr>
<tr>
<td>118</td>
<td>Miami</td>
<td>FL</td>
<td>33130</td>
<td>476</td>
<td>802</td>
<td>933</td>
<td>5438</td>
<td>1956</td>
<td>859</td>
<td>21.5</td>
<td>690</td>
</tr>
</tbody>
</table>

Georgia

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>Barbour Point</td>
<td>GA</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
<tr>
<td>128</td>
<td>Bain</td>
<td>GA</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
<tr>
<td>129</td>
<td>Bain</td>
<td>GA</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
</tbody>
</table>

Hawaii

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>Barbers Point</td>
<td>HI</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
<tr>
<td>132</td>
<td>Honolulu</td>
<td>HI</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
<tr>
<td>133</td>
<td>Honolulu</td>
<td>HI</td>
<td>3180</td>
<td>467</td>
<td>807</td>
<td>950</td>
<td>4837</td>
<td>1566</td>
<td>3709</td>
<td>17.6</td>
<td>915</td>
</tr>
</tbody>
</table>

Iowa

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>Boone</td>
<td>IA</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>140</td>
<td>Moline</td>
<td>IA</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>141</td>
<td>Springfield</td>
<td>IL</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Kansas

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Blue Springs</td>
<td>MO</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>143</td>
<td>Dodge City</td>
<td>KS</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>144</td>
<td>Goddard</td>
<td>KS</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Kentucky

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>Covington</td>
<td>KY</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>146</td>
<td>Lexington</td>
<td>KY</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Louisiana

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>Baton Rouge</td>
<td>LA</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>148</td>
<td>New Orleans</td>
<td>LA</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>149</td>
<td>Shreveport</td>
<td>LA</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Maine

<table>
<thead>
<tr>
<th>No.</th>
<th>City</th>
<th>State</th>
<th>ZIP Code</th>
<th>State State</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
<th>Other</th>
<th>ID</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Bangor</td>
<td>ME</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>151</td>
<td>Caribou</td>
<td>ME</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>152</td>
<td>Portland</td>
<td>ME</td>
<td>3009</td>
<td>615</td>
<td>402</td>
<td>729</td>
<td>950</td>
<td>3339</td>
<td>1015</td>
<td>3190</td>
<td>16.6</td>
</tr>
<tr>
<td>NO</td>
<td>CITY</td>
<td>STATE</td>
<td>HDS</td>
<td>HGLT</td>
<td>VEH</td>
<td>VGH</td>
<td>VSS</td>
<td>DEP</td>
<td>CONDS</td>
<td>CHRD</td>
<td>OR</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>414</td>
<td>§ 435.105</td>
<td></td>
</tr>
</tbody>
</table>

10 CFR Ch. II (1-1-98 Edition)

<table>
<thead>
<tr>
<th>NO</th>
<th>CITY</th>
<th>STATE</th>
<th>HDS</th>
<th>HGLT</th>
<th>VEH</th>
<th>VGH</th>
<th>VSS</th>
<th>DEP</th>
<th>CONDS</th>
<th>CHRD</th>
<th>OR</th>
<th>7-155</th>
<th>55-1440</th>
</tr>
</thead>
<tbody>
<tr>
<td>414</td>
<td>§ 435.105</td>
<td></td>
</tr>
</tbody>
</table>

C.3

414
Department of Energy

§ 435.105

415


§ 435.105

<table>
<thead>
<tr>
<th>No. City</th>
<th>State</th>
<th>No. U.S.</th>
<th>No. State</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
</table>

South Dakota

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre</td>
<td>SD</td>
<td>14,484</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
<td>16,283</td>
</tr>
<tr>
<td>Rapid City</td>
<td>SD</td>
<td>20,365</td>
</tr>
</tbody>
</table>

Tennessee

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nashville</td>
<td>TN</td>
<td>655,021</td>
</tr>
<tr>
<td>Chattanooga</td>
<td>TN</td>
<td>190,787</td>
</tr>
</tbody>
</table>

Texas

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abilene</td>
<td>TX</td>
<td>118,286</td>
</tr>
<tr>
<td>Austin</td>
<td>TX</td>
<td>663,337</td>
</tr>
<tr>
<td>Bryan</td>
<td>TX</td>
<td>188,301</td>
</tr>
<tr>
<td>Dallas</td>
<td>TX</td>
<td>1,103,612</td>
</tr>
<tr>
<td>San Antonio</td>
<td>TX</td>
<td>1,386,561</td>
</tr>
</tbody>
</table>

Virginia

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richmond</td>
<td>VA</td>
<td>707,000</td>
</tr>
</tbody>
</table>

West Virginia

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charleston</td>
<td>WV</td>
<td>114,000</td>
</tr>
</tbody>
</table>

Wisconsin

<table>
<thead>
<tr>
<th>City</th>
<th>No. U.S.</th>
<th>Pop. 90</th>
<th>Pop. 91</th>
<th>Pop. 92</th>
<th>Pop. 93</th>
<th>Pop. 94</th>
<th>Pop. 95</th>
<th>Pop. 96</th>
<th>Pop. 97</th>
<th>Pop. 98</th>
<th>ACUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau Claire</td>
<td>WI</td>
<td>103,100</td>
</tr>
</tbody>
</table>

416
Department of Energy § 435.105

<table>
<thead>
<tr>
<th>MD CITY</th>
<th>STATE</th>
<th>MD50</th>
<th>MD50</th>
<th>VSN</th>
<th>VSF</th>
<th>VSF</th>
<th>CH50</th>
<th>CH51</th>
<th>CH52</th>
<th>CH53</th>
<th>CH54</th>
<th>CH55</th>
<th>CH56</th>
<th>CH57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyoming</td>
<td></td>
</tr>
<tr>
<td>39 Casper</td>
<td>WY</td>
<td>3824</td>
<td>2517</td>
<td>403</td>
<td>961</td>
<td>1343</td>
<td>2177</td>
<td>495</td>
<td>2699</td>
<td>29.2</td>
<td>1670</td>
<td>555</td>
<td>5.4-27</td>
<td></td>
</tr>
<tr>
<td>66 Cheyenne</td>
<td>WY</td>
<td>3435</td>
<td>7218</td>
<td>416</td>
<td>906</td>
<td>1267</td>
<td>1963</td>
<td>271</td>
<td>1040</td>
<td>26.4</td>
<td>1818</td>
<td>668</td>
<td>5.4-27</td>
<td></td>
</tr>
<tr>
<td>183 Rock Springs</td>
<td>WY</td>
<td>4407</td>
<td>8591</td>
<td>431</td>
<td>1042</td>
<td>1595</td>
<td>2168</td>
<td>467</td>
<td>729</td>
<td>29.1</td>
<td>1528</td>
<td>555</td>
<td>5.4-27</td>
<td></td>
</tr>
<tr>
<td>199 Sheridan</td>
<td>WY</td>
<td>5005</td>
<td>7566</td>
<td>387</td>
<td>806</td>
<td>1155</td>
<td>2374</td>
<td>566</td>
<td>2919</td>
<td>30.3</td>
<td>1650</td>
<td>574</td>
<td>5.4-27</td>
<td></td>
</tr>
</tbody>
</table>

Other Locations Outside U.S.A.

<table>
<thead>
<tr>
<th>Location</th>
<th>State</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Distance_Mile</th>
<th>Distance_Km</th>
<th>Depth_Feet</th>
<th>Longitude_Degree</th>
<th>Temperature_Celsius</th>
<th>Activity_Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guantanamo Bay</td>
<td>CU</td>
<td>0</td>
<td>0</td>
<td>612</td>
<td>1022</td>
<td>1018</td>
<td>11281</td>
<td>5586</td>
<td>16452</td>
</tr>
<tr>
<td>Kearsarge Island</td>
<td>PN</td>
<td>0</td>
<td>0</td>
<td>1122</td>
<td>1843</td>
<td>11225</td>
<td>5586</td>
<td>16452</td>
<td>9.9</td>
</tr>
<tr>
<td>Kiska Island</td>
<td>PN</td>
<td>0</td>
<td>0</td>
<td>678</td>
<td>1096</td>
<td>888</td>
<td>11635</td>
<td>6160</td>
<td>16217</td>
</tr>
<tr>
<td>San Juan</td>
<td>PN</td>
<td>0</td>
<td>0</td>
<td>608</td>
<td>973</td>
<td>911</td>
<td>10664</td>
<td>5173</td>
<td>11563</td>
</tr>
<tr>
<td>Vega Island</td>
<td>PN</td>
<td>0</td>
<td>0</td>
<td>609</td>
<td>1002</td>
<td>977</td>
<td>10369</td>
<td>5394</td>
<td>10167</td>
</tr>
</tbody>
</table>

C.6
§ 435.105 10 C.F.R. Ch. II (1-1-98 Edition)

ATTACHMENT 5B TO SECTION 435.105
EQUATIONS TO DETERMINE EXTERNAL WALL HEATING AND COOLING CRITERIA
AND
TO DETERMINE COMPLIANCE WITH THE CRITERIA

5B.1 Equations and Coefficients

This attachment contains the external wall equations for use in determining external wall heating and cooling criteria (W_C, and W_C_2) and for determining compliance (F_1, and C_1) with the criteria for north, east, south and west orientations. For NE, NW, SW, and SE orientations, W_C, W_C_2, H_1 and C_1 shall be determined by treating half of each wall area as though it faces each of the adjacent cardinal directions, e.g., treat NE as half north and half east.

Equations 5.5-2 and 5.5-6 are statistical regression equations that correlate envelope cooling and heating loads, respectively, from thermal transmission and solar gains, as modified by internal gain and mass, to the physical components of the envelope. Seven individual terms are identified for both cooling and heating that correlate variables with physical meaning such as U-values, internal gains, and weather related variables. They are as follows:

1. C_LU, C_LU_0, C_LUXD: Terms that correlate cumulative annual cooling loads with thermal transmittance of the wall.
2. C_LM: Term that correlates cumulative annual cooling loads with heat capacity of the wall.
3. C_LG: Term that correlates cumulative annual cooling loads with internal gains from occupant light and equipment.
5. C_LC: Term that correlates cumulative annual cooling loads with climate variables for a specific location.
6. H_LU, H_LU_0, H_LUXD: Terms that correlate cumulative annual heating loads with thermal transmittance of the wall.
7. H_LM: Term that correlates cumulative annual heating loads with heat capacity of the wall.
8. H_LS: Term that correlates cumulative annual heating loads with internal gains from occupants, lights, and equipment.
9. H_L5: Term that correlates cumulative annual heating loads with incident solar gains.
10. HLC: Term that correlates cumulative annual heating loads with climate variables for a specific location.

The cooling and heating equations with their coefficients follow.

Cooling Equation

\[\text{Wc}_i \text{ or } C_i = \text{CLU}_i + \text{CLU}_i \text{UO}_i + \text{CLKUO}_i + \text{CLM}_i + \text{CLG}_i + \text{CL}_i + \text{CLCI}_i \]

Equation 5.5.2

Where:

\(i \) = for each orientation

\(j \) = for each wall mass construction type for the orientation

\[\text{CLU}_i = \text{FC} \times U_{\text{in}} \times \left[\text{CLU}_1 \times CD_{\text{HBD}} + \text{CLU}_2 \times CD_{\text{HBD}}^2 + \text{CLU}_3 \times (VS \times CD_{\text{HBD}})^2 \right. \]

\[\left. + \text{CLU}_4 \times DR \right] \]

\[\text{CLUO}_i = \text{FC} \times U_{\text{OUD}} \times \left[\text{CLUO}_1 \times EA \times VS \times CD_{\text{O50}} + \text{CLUO}_2 \times G \right. \]

\[\left. + \text{CLUO}_3 \times G^2 \times EA^2 \times VS \times CD_{\text{O50}} + \text{CLUO}_4 \times G^2 \times EA^2 \times VS \times CD_{\text{O65}} \right] \]

\[\text{CLKUO}_i = \text{FC} \times 1/U_{\text{OUD}} \times \left[\text{CLKUO}_1 \times EA \times VS \times CD_{\text{O50}} + \text{CLKUO}_2 \times EA \times (VS \times CD_{\text{O50}})^2 \right. \]

\[\left. + \text{CLKUO}_3 \times G \times CD_{\text{O50}} + \text{CLKUO}_4 \times G^2 \times EA^2 \times VS \times CD_{\text{O50}} + \text{CLKUO}_5 \times G^2 \times CD_{\text{O65}} \right] \]

\[\text{CLM}_i = \text{FC} \times \text{CM}_i \times \left[\text{CM}_1 \times \text{CM}_2 \times EA \times VS \times CD_{\text{O50}} + \text{CM}_3 \times EA \times VS \times CD_{\text{O65}} \right. \]

\[\left. + \text{CM}_4 \times EA^2 \times VS \times CD_{\text{O50}} + \text{CM}_5 \times G^2 \times CD_{\text{O65}} + \text{CM}_6 \times G \times CD_{\text{O50}} + \text{CM}_7 \times G \times CD_{\text{O65}} + \text{CM}_8 \times G \times EA \times VS \times CD_{\text{O50}} \right] \]

\[\text{CLG}_i = \text{FC} \times (G \times \left[\text{CG}_1 \times \text{CG}_2 \times CD_{\text{O50}} + \text{CG}_3 \times EA \times (VS \times CD_{\text{O50}})^2 + \text{CG}_4 \times EA^2 \times VS \times CD_{\text{O50}} + \text{CG}_5 \times CD_{\text{O65}} + \text{CG}_6 \times CD_{\text{O65}}^3 \right. \]

\[\left. + \text{CG}_7 \times CD_{\text{O65}}^3 \right] + G^2 \times \left[\text{CG}_8 \times EA \times VS \times CD_{\text{O50}} + \text{CG}_9 \times EA^2 \times VS \times CD_{\text{O50}} \right] \]
§ 435.105

\[\text{CLS} = \text{FC} \times (\text{EA} \times \{ \text{CS1} + \text{CS2} \times \text{VS} \times \text{CD50} \\
+ \text{CS3} \times \{ \text{VS} \times \text{CD65} \}^2 \\
+ \text{CS4} \times \text{VS} \times \text{CD65} \\
+ \text{CS5} \times \{ \text{VS} \times \text{CD65} \}^2 \}) \\
+ \text{EA}^2 \times \{ \text{CS6} \times \text{CS7} \times \{ \text{VS} \times \text{CD65} \}^2 \} \}
\]

\[\text{CLC} = \text{FC} \times \{ \text{CC1} \times \text{CD50} \\
+ \text{CC2} \times \text{CD50}^2 \\
+ \text{CC3} \times \text{CD65} \\
+ \text{CC4} \times \text{CD65}^2 \\
+ \text{CC5} \times \text{CD65} \\
+ \text{CC6} \times \{ \text{VS} \times \text{CD65} \}^2 \\
+ \text{CC7} \times \text{VS} \times \text{CD50} \\
+ \text{CC8} \times \{ \text{VS} \times \text{CD50} \}^2 \\
+ \text{CC9} \times \{ \text{VS} \times \text{CD65} \}^2 \\
+ \text{CC10} \times \text{VS} \\
+ \text{CC11} \times \text{DR} \\
+ \text{CC12} \times \text{DR}^2 \\
+ \text{CC13} \}
\]

NOTE: The coefficients for various orientations in the equations listed above are found in Table 58-2. If \(WC_0 \) or \(C_1 \) is less than 0.0, \(WC_2 \) or \(C_2 \) is set equal to 0.0.

Where:

Climate Data

- \(\text{CD50} \) = Cooling degree-days base 50 °F
- \(\text{CD65} \) = Cooling degree-days base 65 °F
- \(\text{CD60} \) = Cooling degree-hours base 60 °F
- \(\text{DR} \) = Average daily temperature range for warmest month.
- \(\text{VS} \) = Annual average daily incident solar energy on facade under consideration, "Btu/ft²/day."

Building Data

- \(\text{FC} \) = Wall area (opaque and glazed) of zone under consideration divided by total wall area (opaque and glazed) of all zones.
- \(\text{FO} \) = Opaque wall area of zone under consideration divided by total wall area (opaque and glazed) of all zones. If multiple mass constructions are present, the \(\text{FO} \) is calculated for each construction \(j \) and used to form the area weighted mass correction.
- \(U_{\text{avg}} \) = Area average U-value of opaque walls (including those of mass construction) in zone under consideration.
UOC = Area average U-value of wall (opaque and glazed, evaluated under cooling conditions) in zone under consideration. UOC is equal to UCM.

WAR = Window wall ratio for zone under consideration; defined as fenestration area divided by total wall area (opaque and glazed).

EA = Effective aperture fraction for zone under consideration, where:

\[EA = WAR \times SC \times S_{EC} \]

Equation 5.5.3

Where:

\[S_{EC} = \text{The cooling adjustment factor for horizontal external shading projections;} \]

For \(0.0 \leq PF \leq 0.5 \) from Equation 5.4-1

For the north orientation:

\[S_{EC} = 1.0 - 0.4 \times PF \]

Equation 5.5.3a

For the east, south and west orientations:

\[S_{EC} = 1.0 - 1.4677 \times PF + 1.0419 \times PF^2 \]

Equation 5.5.3b

G = Effective internal gain (W/ft²) for zone under consideration, where:

\[G = L_p \times (1 - R_e \times K_d) \times 0_1 \]

Equation 5.5.4

Where:

\[L_p = \text{Lighting power, from Section 5.5.7.4} \]

\[E_p = \text{Equipment power, from Section 5.5.7.5} \]

\[R_e = \text{The ratio of the electric lights in the same space served by the orientation that have automatic controls for daylighting.} \]

\[0_1 = \text{Occupant load adjustment, from Section 5.5.7.6} \]

\[K_d = 5.071 \times \text{VAR} \times \text{VLT} \times S_{EC} \]

\[-13.311 \times \text{VAR} \times \text{VLT} \times S_{EC}^3 \]

Equation 5.5.4a

421
§ 435.105

If $(WWR \times VLT \times S_{PC}) > 0.22$, then $K_d = 0.647$

Where:

- $WWR =$ As defined above, but not to exceed a maximum value of 0.65 in Equation 5.5-4a, per Section 5.5.7.3.
- $VLT =$ Visible light transmittance of the glazing material, as defined in Section 5.5.2.1, including any shading devices present that modify the visible transmittance of the glazing material.
- $CNC =$ Mass correction (Cooling Delta Load Factor) from Equation 5.5-5. If multiple mass constructions are present, each CNC is evaluated separately and combined by area weighting. If the U-value of the mass wall is less than 0.05, then $U_\text{mass} = 0.05$ shall be used to calculate the CNC. If the value of NC is greater than 20, then $NC = 20$ shall be used to calculate the CNC.

COOLING DELTA LOAD FACTOR EQUATIONS

Equation 5.5-5 is used to predict the Cooling Delta Load Factor values.

$$
CNC = \frac{CP_1 \cdot [WWR \cdot VLT \cdot S_{PC}] \cdot \left(1 + e^{-\left(\frac{CP_2 \cdot WWR \cdot VLT \cdot S_{PC}}{1 - \frac{CP_3 + CP_4}{1 + (CP_5 + CP_6) \cdot e^\left(\frac{CP_7 \cdot NC - 1}{10}\right)}}\right)}\right)}{1.0}
$$

Equation 5.5-5

Where:

- $NC =$ Wall Heat Capacity (Btu/hr²°F).
- $U =$ Wall U-Value (Btu/hr²°F).
- $A =$ (Cooling degree-hours base 80°F)/10000 + 2 (°Fhr).
- $B =$ (Daily Range near A) / 10 + (°F).
Where:

\[CP_1 = C_5 \]
\[CP_2 = C_{15}/8^3 + C_{16}/(8^3 B^2) + C_{17} \]
\[CP_3 = C_4 + C_5 B^3 + C_6 B^5 + C_7/(8^2 B^2) + C_8 \]
\[CP_4 = C_{12}/(8^3 B^2) + C_{13}/B^3 + C_{14} \]
\[CP_5 = C_{18} \]
\[CP_6 = C_6 \ln(8) \]
\[CP_7 = C_{19}/(8^2 B^2) + C_{20}/(AB) + C_{21} B^2/JB + C_{22} \]
\[CP_8 = C_8/(8^2 B^2) + C_9/(AB) + C_{10} B^2/JB + C_{11} \]

The coefficients C1 through C22 are taken from the following table, Table 5B-1.

HEATING EQUATION

\[w_c \text{ or } H_I = \sum (HLU_i + HLUO_i + HLUO_i + HLM_i + HLS_i + HLC_i) \]

Equation 5.5-6

Where:

\[i = \text{for each orientation} \]
\[j = \text{for each wall mass construction type for the orientation} \]
\[HLU = FO \times U_{DO} \times \left[H1 \times HDO50 + H2 \times (VS \times HDO65)^2 \right] \]
\[HLUO = FC \times UCW \times \left[HUO1 \times HDO50 + HUO2 \times HDO65 + HUO3 \times EA \times VS \times HDO65 \right] \]
\[HLM = FC / (1/UCW) \times \left[HLM1 + HLM2 \times G \times UOH \times HDO65 + HLM3 \times G^2 \times EA^2 \times VS \times HDO50 + HLM4 \times UOH \times EA \times VS \times HDO65 + HLM5 \times UOH \times HDO50 \right. \]
\[+ HLM6 \times EA \times (VS \times HDO65)^2 + HLM7 \times EA^2 \times VS \times HDO65 / UCW \right] \]
\[\begin{align*}
\text{HLC} & = \text{FC} \times \left(\text{HC1} \times \text{HD65}^2 \right. \\
& \quad \left. + \text{HC4} \times \text{VS} \times \text{HD65} \right. \\
& \quad \left. + \text{HC5} \times \text{VS} \times \text{HD50} \right. \\
& \quad \left. + \text{HC6} \times \text{VS} \times \text{HD65} \right. \\
& \quad \left. + \text{HC7} \times (\text{VS} \times \text{HD50})^2 \right) \\
\text{HLS} & = \text{FC} \times (\text{HC1} \times \text{VS} \times \text{HD65} + \text{HC2} \times (\text{VS} \times \text{HD50})^2) \\
\text{HLG} & = \text{FC} \times (\text{HC1} \times \text{HD65} + \text{HC2} \times \text{HD65} + \text{HC3} \times \text{HD65}^2) \\
& \quad \times (\text{HC1} \times \text{HD65} + \text{HC2} \times \text{HD65} + \text{HC3} \times \text{HD65}^2)
\end{align*} \]

NOTE: The coefficients for various orientations in the equations listed above are found in Table 5B-4. If \(UC_a \) or \(UC_b \) is less than 0.0, \(UC_a \) or \(UC_b \) is set equal to 0.0.

Where:

Climate Data

- HD050 = Heating degree-days base 50 \(^{\circ}\)F.
- HD065 = Heating degree-days base 65 \(^{\circ}\)F.
- VS = Annual average daily incident solar energy on facade under consideration, Btu/ft\(^2\)-day.

Building Data

- FC = wall area (opaque and glazed) of zone under consideration divided by total wall area (opaque and glazed) of all zones.
- FO = Opaque wall area of zone under consideration divided by total wall area (opaque and glazed) of all zones. If multiple mass constructions are present, the FO is calculated for each and used to form the area weighted mass correction.
- UD Wa = Area average \(U \)-value of opaque walls (including those of mass construction) in zone under consideration.
- UD W = Area average \(U \)-value of wall (opaque and glazed, evaluated under heating conditions) in zone under consideration. UD is equal to UD W.
WAR = Window wall ratio for zone under consideration; defined as fenestration area divided by total wall area (opaque and glazed).

EA = Effective aperture fraction for zone under consideration.

\[EA = \text{WAR} \times SC \times S_{eh} \]

Equation 5.5.7

Where:

For \(0.0 \leq PF \leq 0.5 \), from Equation 5.4.1:

For the north orientation:

\[S_{eh} = 1 - 0.3 \times PF \]

Equation 5.5.7a

For the east, south and west orientation:

\[S_{eh} = 1 - 0.0986 \times PF - 0.4513 \times PF^2 \]

Equation 5.5.7b

G = Effective internal gain (W/ft^2) for zone under consideration.

\[G = E_p \times I_p \times (1 - R_c \times K_d) \times O_i \]

Equation 5.5.8

Where:

\(I_p \) = Lighting power, from Section 5.5.7.4.

\(E_p \) = Equipment power, from Section 5.5.7.5.

\(O_i \) = Occupant load adjustment, from Section 5.5.7.6

\(R_c \) = The ratio of the electric lights in the space served by the orientation that have automatic controls for daylighting.

\(K_d \) =

\[5.871 \left(\text{WAR} \times VLT \times S_{eh} \right) \]

\[-13.311 \left(\text{WAR} \times VLT \times S_{eh} \right)^2 \]

Equation 5.5.8a
§ 435.105

If \(W \times (V \times \epsilon_{sh}) = 0.22 \), then \(K_d = 0.647 \)

Where:

\(W \) = As defined above, but not to exceed a maximum value of 0.65 in Equation 5.5-8a per Section 5.5.7.3.

\(V \) = Visible light transmittance of the glazing material, as defined in Section 5.5.2.1 including any shading devices present that modify the visible transmittance of the glazing material.

\(HMC \) = Mass correction from Equation 5.5-9. If multiple mass constructions are present, each \(HMC \) is evaluated separately and combined by area weighting. If the U-value of the mass wall is greater than 0.40, then \(U_{ow} = 0.4 \) shall be used to calculate the HMC. If the U-value of the mass wall is less than 0.05, then \(U_{ow} = 0.05 \) shall be used to calculate the HMC. If the value of \(HMC \) is greater than 20, then \(HMC = 20 \) shall be used to calculate the HMC.

HEATING DELTA LOAD FACTOR EQUATIONS

Equation 5.5-9 is used to predict the heating Delta Load Factor values.

\[
HMC = \text{Heating Delta Load Factor} = \frac{-H_P \cdot (H-HC-1)}{1 - e^{(H_P \cdot H + H_P \cdot U \cdot (H + (H_P + H_P \cdot U)))}}
\]

Equation 5.5-9

Where:

\(HC \) = Wall Heat Capacity (Btu/ft\(^2\cdot°F\))

\(U \) = Wall U-Value (Btu/h·ft\(^2\cdot°F\))

\(A \) = (Heating degree-days base 65 °F/100 + 2 (°F·days))
Where:

\[HP_1 = H_6 \]
\[HP_2 = H_{12} \ln(A) + H_{15} \]
\[LN = \text{Natural Logarithm} \]
\[HP_3 = \frac{H_4 H_2^2 + H_5^2}{\sqrt{A} + H_6} + H_7 + H_8 \]
\[HP_4 = \frac{H_1 H_2^2 + H_{12}^2}{A^2 + H_{13}} \]
\[HP_5 = H_{16} \]
\[HP_6 = H_9 H_8 \]
\[HP_7 = H_{17} \frac{A^2}{H_{18}} \]
\[HP_8 = \frac{H_9 A^2}{H_{10}} \]

The coefficients H1 through H18 are taken from the following table, Table 58-3.
§ 435.105

10 CFR Ch. II (1-1-98 Edition)

58.2 Determining Heating and Cooling Criteria

Using Equations in Section 58.1

To determine the wall thermal criteria for a building design, the following inputs to the equations in Section 58.1 shall be used.

(1) Aspect Ratio. An aspect ratio of 2:1 with longer dimensions facing east and west.

(2) Shading. No use of external shading projections or screens.

(3) Daylight Controls. No use of automatic daylight controls for the lighting system.

(4) Internal Gain (G). The sum of the lighting power density (LP), the equipment power density (EP) and the occupant load adjustment (0.5), or 3.0 W/ft², whichever is smaller, shall be used. In determining LP, the value of RE and VLT shall be set equal to 0.0 in Equations 5.3-4 and 5.3-8.

(5) Wall Area Factor, Opaque and Glazed (FC). The combined opaque and glazed area for the orientation for the building design, divided by the total wall area (opaque and glazed) of all orientations, shall be used. Note that if one changes the wall area or floor area in a zone, this changes the geometry of the building. The criteria and compliance values will change for all zones because both values for each zone are weighted by the relative size of that zone.

(6) Window Wall Ratio (WWR). The smaller of the values of WWRc and WWRg, determined from (a) and (b) below shall be used.

(a) Using the value for internal gain (G) determined in (4) above, the WWRc for cooling by interpolation of
the results of (a) and (b) below, shall be determined using Equation 5.5-10:

Where:

\[\text{WAR}_0 \] is the window to wall ratio at 0.0 W/ft² internal load (G = 0.0 W/ft²).

\[\text{WAR}_{30} \] is the window to wall ratio at 3.0 W/ft² internal load (G = 3.0 W/ft²).

\[\text{WAR}_c = \text{WAR}_0 - (G / 3.0) \times (\text{WAR}_0 \times \text{WAR}_{30}) \]
Equation 5.5-10

For G = 0.0:

If CDD50 x VSEX < 8,000,000, then Equation 5.5-11 shall be used.

\[\text{WAR}_0 = 0.48 - (\text{CDD50} \times \text{VSEX} \times 1.625 \times 10^{-8}) \]
Equation 5.5-11

If CDD50 x VSEX ≥ 8,000,000, then Equation 5.5-12 be used:

\[\text{WAR}_0 = 0.34 \]
Equation 5.5-12

For G = 3.0:

If CDD50 x VSEX < 8,000,000, then Equation 5.5-13 shall be used:

\[\text{WAR}_{30} = 0.28 - (\text{CDD50} \times \text{VSEX} \times 5.0 \times 10^{-9}) \]
Equation 5.5-13
If \(CD050 \times VSEW \geq 8,000,000 \), then Equation 5.3-14 shall be used:

\[
WR_{30} = 0.24
\]

Equation 5.3-14

(b) The \(WR_h \) for heating shall be determined using Equation 5.3-15 or Equation 5.3-16.

If \(H065 < 4000 \), then Equation 5.3-15 shall be used:

\[
WR_h = 0.4 - (H065 \times 2.5 \times 10^{-5})
\]

Equation 5.3-15

If \(H065 \geq 4000 \), then Equation 5.3-16 shall be used:

\[
WR_h = 0.3
\]

Equation 5.3-16

(7) Opaque Wall Area Factor (FO). The value of \(FO \) shall be determined from Equation 5.3-17.

\[
FO = FC \times (1 - WR)
\]

Equation 5.3-17

(8) Shading Coefficient (SC_x). The value of \(SC_x \) shall be determined from (a) or (b) below, or as shown in Figure 58-3.

(a) If the heating degree-days base \(65^\circ \)F for the building location is \(z \) to 3000, either Equation 5.3-18 or Equation 5.3-19 shall be used:

If \(CD050 \times VSEW < 4,000,000 \), then Equation 5.3-18 shall be used:

\[
SC_x = 0.85 - (CD050 \times VSEW \times 8.75 \times 10^{-8})
\]

Equation 5.3-18
If \(CD_{50} \times VSEW \geq 4,000,000 \), then Equation 5.5-19 shall be used:

\[
SC_x = 0.5
\]

Equation 5.5-19

(b) If the heating degree days base 65°F for the building location is \(> 5000 \), either Equation 5.5-20 or Equation 5.5-21 shall be used:

If \(CD_{50} \times VSEW < 4,000,000 \), then Equation 5.5-20 shall be used:

\[
SC_x = 0.85 - (CD_{50} \times VSEW \times 1.25 \times 10^{-7})
\]

Equation 5.5-20

If \(CD_{50} \times VSEW \geq 4,000,000 \), then Equation 5.5-21 shall be used:

\[
SC_x = 0.35
\]

Equation 5.5-21

(9) **External Shading Projection (\(S_{eh} \))**. The value of \(S_{eh} \) shall be set equal to 0.0.

(10) **Opaque Wall U-Value (\(U_{ow} \))**. The value of \(U_{ow} \) shall be determined from either Equation 5.5-22 or Equation 5.5-23, as shown in Figure 5A-4.

If \(HDD_{65} < 196 \), then Equation 5.5-22 shall be used:

\[
U_{ow} = 1.0
\]

Equation 5.5-22
If HDD65 ≥ 106, then Equation 5.5-23 shall be used:

\[U_{cw} = 42.787 \times \text{HDD65} \times (0.712) \]

Equation 5.5-23

(11) Heat Capacity of Opaque Wall (HC). The value of HC shall be set equal to 1.0.

(12) Fenestration Assembly U-Value (U_{of}). The value of U_{of} shall be determined from either Equation 5.5-24, 5.5-25, or 5.5-26; or as shown in Figure 5A-5.

If HDD65 < 3000, then Equation 5.5-24 shall be used:

\[U_{of} = 1.15 \]

Equation 5.5-24

If HDD ≥ 3000 and HDD65 < 7500, then Equation 5.5-25 shall be used:

\[U_{of} = 0.81 - \left((\text{HDD65} - 3000) \times 8.0 \times 10^{-5} \right) \]

If HDD ≥ 7500, then Equation 5.5-26 shall be used:

\[U_{of} = 0.45 \]

Equation 5.5-26

(13) For all other inputs to the equations in Section 5A.1, the values for the building envelope design under consideration shall be used.
Table 5B-1

COOLING DELTA LOAD COEFFICIENTS

<table>
<thead>
<tr>
<th>COEFFICIENT LABEL</th>
<th>INSULATION POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>C1</td>
<td>220.724503</td>
</tr>
<tr>
<td>C2</td>
<td>-0.056589</td>
</tr>
<tr>
<td>C3</td>
<td>-118.835388</td>
</tr>
<tr>
<td>C4</td>
<td>-13.674420</td>
</tr>
<tr>
<td>C5</td>
<td>0.236381</td>
</tr>
<tr>
<td>C6</td>
<td>0.959588</td>
</tr>
<tr>
<td>C7</td>
<td>-0.255004</td>
</tr>
<tr>
<td>C8</td>
<td>-905.677979</td>
</tr>
<tr>
<td>C9</td>
<td>425.191895</td>
</tr>
<tr>
<td>C10</td>
<td>-2.510600</td>
</tr>
<tr>
<td>C11</td>
<td>-43.387955</td>
</tr>
<tr>
<td>C12</td>
<td>-259.723389</td>
</tr>
<tr>
<td>C13</td>
<td>-33.975525</td>
</tr>
<tr>
<td>C14</td>
<td>20.488235</td>
</tr>
<tr>
<td>C15</td>
<td>-26.209152</td>
</tr>
<tr>
<td>C16</td>
<td>-241.173386</td>
</tr>
<tr>
<td>C17</td>
<td>18.897781</td>
</tr>
<tr>
<td>C18</td>
<td>-0.353790</td>
</tr>
<tr>
<td>C19</td>
<td>156.305634</td>
</tr>
<tr>
<td>C20</td>
<td>-74.098099</td>
</tr>
<tr>
<td>C21</td>
<td>0.445363</td>
</tr>
<tr>
<td>C22</td>
<td>7.496696</td>
</tr>
</tbody>
</table>
TABLE 58-2

COOLING COEFFICIENTS

<table>
<thead>
<tr>
<th></th>
<th>NORTH</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.001539</td>
<td>0.003315</td>
<td>0.00153</td>
<td>0.00321</td>
</tr>
<tr>
<td>C2</td>
<td>-0.30385-4E-07</td>
<td>-0.696101E-07</td>
<td>-0.712925E-07</td>
<td>-0.810530E-07</td>
</tr>
<tr>
<td>C3</td>
<td>0.799403E-13</td>
<td>0.379280E-13</td>
<td>0.183083E-13</td>
<td>0.359810E-13</td>
</tr>
<tr>
<td>C4</td>
<td>-0.079667</td>
<td>0.163114</td>
<td>0.286458</td>
<td>0.11178</td>
</tr>
<tr>
<td>C5</td>
<td>0.32314</td>
<td>0.515262</td>
<td>0.71477</td>
<td>0.752643</td>
</tr>
<tr>
<td>C6</td>
<td>0.159040E-05</td>
<td>0.138979E-05</td>
<td>0.161630E-05</td>
<td>0.143228E-05</td>
</tr>
<tr>
<td>C7</td>
<td>-0.204322E-05</td>
<td>-0.160240E-05</td>
<td>-0.211065E-05</td>
<td>-0.197938E-05</td>
</tr>
<tr>
<td>C8</td>
<td>-0.753665E-06</td>
<td>-0.767849E-06</td>
<td>-0.664430E-06</td>
<td>-0.766067E-06</td>
</tr>
<tr>
<td>C9</td>
<td>-0.100472E-05</td>
<td>0</td>
<td>0.801057E-05</td>
<td>0.315193E-05</td>
</tr>
<tr>
<td>C10</td>
<td>0.366708E-04</td>
<td>0.356580E-04</td>
<td>0.448166E-04</td>
<td>0.296012E-04</td>
</tr>
<tr>
<td>C11</td>
<td>-0.673043E-04</td>
<td>-0.649038E-04</td>
<td>-0.000119</td>
<td>-0.766719E-04</td>
</tr>
<tr>
<td>C12</td>
<td>-0.238335E-07</td>
<td>-0.472534E-07</td>
<td>-0.497469E-07</td>
<td>0</td>
</tr>
<tr>
<td>C13</td>
<td>-0.651094E-05</td>
<td>-0.836869E-05</td>
<td>-0.888996E-05</td>
<td>-0.756465E-05</td>
</tr>
<tr>
<td>C14</td>
<td>-1.040207</td>
<td>-1.507235</td>
<td>-1.51265</td>
<td>-1.238545</td>
</tr>
<tr>
<td>C15</td>
<td>-0.438254E-05</td>
<td>-0.278828E-05</td>
<td>-0.231352E-05</td>
<td>-0.412567E-05</td>
</tr>
<tr>
<td>C16</td>
<td>0.126580E-04</td>
<td>0.809874E-05</td>
<td>0.756219E-05</td>
<td>0.106712E-04</td>
</tr>
<tr>
<td>C17</td>
<td>0.103744E-05</td>
<td>0.119338E-05</td>
<td>0.118588E-05</td>
<td>0.123251E-05</td>
</tr>
<tr>
<td>C18</td>
<td>-0.132180E-12</td>
<td>-0.134656E-12</td>
<td>-0.116252E-12</td>
<td>-0.130000E-12</td>
</tr>
<tr>
<td>C19</td>
<td>0.275954E-04</td>
<td>0.202621E-04</td>
<td>0.202365E-04</td>
<td>0.236964E-04</td>
</tr>
<tr>
<td>C20</td>
<td>0.976090E-07</td>
<td>0.117154E-06</td>
<td>0.939207E-07</td>
<td>0.136276E-06</td>
</tr>
<tr>
<td>C21</td>
<td>-0.118274E-04</td>
<td>-0.909694E-05</td>
<td>-0.909192E-05</td>
<td>-0.111077E-04</td>
</tr>
<tr>
<td>C22</td>
<td>0.891286</td>
<td>0.582358</td>
<td>0.399756</td>
<td>0.946854</td>
</tr>
<tr>
<td>C23</td>
<td>0.001479</td>
<td>0.001931</td>
<td>0.002081</td>
<td>0.001662</td>
</tr>
<tr>
<td>C24</td>
<td>-0.520402E-12</td>
<td>-0.282139E-12</td>
<td>-0.284766E-12</td>
<td>-0.455720E-12</td>
</tr>
<tr>
<td>C25</td>
<td>0.252311E-05</td>
<td>0.370821E-05</td>
<td>0.430536E-05</td>
<td>0.591511E-05</td>
</tr>
<tr>
<td>C26</td>
<td>-0.001151</td>
<td>-0.001745</td>
<td>-0.001864</td>
<td>-0.00153</td>
</tr>
<tr>
<td>C27</td>
<td>0.195236E-11</td>
<td>0</td>
<td>-0.296055E-11</td>
<td>0.316359E-11</td>
</tr>
<tr>
<td>C28</td>
<td>-0.835005E-11</td>
<td>0.101089E-10</td>
<td>0.330287E-10</td>
<td>0</td>
</tr>
<tr>
<td>C29</td>
<td>0.141022E-05</td>
<td>0.733875E-06</td>
<td>0.713500E-06</td>
<td>0.970752E-06</td>
</tr>
<tr>
<td>C30</td>
<td>-0.238887E-05</td>
<td>-0.154190E-05</td>
<td>-0.163927E-05</td>
<td>-0.197368E-05</td>
</tr>
<tr>
<td>C31</td>
<td>46.9871</td>
<td>33.9483</td>
<td>18.3201E-06</td>
<td>29.3089</td>
</tr>
<tr>
<td>C32</td>
<td>0.348091E-04</td>
<td>0.374110E-04</td>
<td>0.340490E-04</td>
<td>0.502499E-04</td>
</tr>
<tr>
<td>C33</td>
<td>0</td>
<td>0</td>
<td>0.271313E-11</td>
<td>0</td>
</tr>
<tr>
<td>C34</td>
<td>-0.166409E-04</td>
<td>-0.694779E-05</td>
<td>-0.282181E-04</td>
<td>-0.277158E-04</td>
</tr>
<tr>
<td>C35</td>
<td>0</td>
<td>0</td>
<td>-0.304677E-11</td>
<td>-0.291137E-11</td>
</tr>
<tr>
<td>C36</td>
<td>-56.5446</td>
<td>0</td>
<td>26.9954</td>
<td>14.9771</td>
</tr>
<tr>
<td>C37</td>
<td>-0.134766E-10</td>
<td>-0.580097E-11</td>
<td>-0.650089E-11</td>
<td>-0.789278E-11</td>
</tr>
</tbody>
</table>

434
Table 5B-2 (Continued)
Cooling Coefficients

<table>
<thead>
<tr>
<th></th>
<th>NORTH</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>0.002747</td>
<td>0</td>
<td>0.010349</td>
<td>0.001865</td>
</tr>
<tr>
<td>CC2</td>
<td>0</td>
<td>0.318928E-06</td>
<td>-0.304413E-06</td>
<td>0</td>
</tr>
<tr>
<td>CC3</td>
<td>-0.000348</td>
<td>0.000319</td>
<td>0.00024</td>
<td>0.000565</td>
</tr>
<tr>
<td>CC4</td>
<td>0.122123E-07</td>
<td>-0.775318E-07</td>
<td>-0.271443E-07</td>
<td>-0.544380E-07</td>
</tr>
<tr>
<td>CC5</td>
<td>0.012112</td>
<td>0.011894</td>
<td>0.013248</td>
<td>0.009236</td>
</tr>
<tr>
<td>CC6</td>
<td>0.104027E-11</td>
<td>-0.622661E-12</td>
<td>-0.205178E-11</td>
<td>0</td>
</tr>
<tr>
<td>CC7</td>
<td>-0.124013E-04</td>
<td>-0.706280E-05</td>
<td>-0.165377E-04</td>
<td>-0.602685E-05</td>
</tr>
<tr>
<td>CC8</td>
<td>0</td>
<td>0</td>
<td>0.820869E-12</td>
<td>0</td>
</tr>
<tr>
<td>CC9</td>
<td>-0.375797E-13</td>
<td>0.606235E-13</td>
<td>0.197598E-13</td>
<td>0.389425E-13</td>
</tr>
<tr>
<td>CC10</td>
<td>0.030056</td>
<td>0.023121</td>
<td>0.0265</td>
<td>0.01704</td>
</tr>
<tr>
<td>CC11</td>
<td>0</td>
<td>0</td>
<td>-0.271026</td>
<td>-0.244274</td>
</tr>
<tr>
<td>CC12</td>
<td>0.002138</td>
<td>0.001103</td>
<td>0.006368</td>
<td>0.007323</td>
</tr>
</tbody>
</table>
Table 58-3
HEATING DELTA LOAD COEFFICIENTS

<table>
<thead>
<tr>
<th>COEFFICIENT LABEL</th>
<th>INSULATION POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>H1</td>
<td>.000006</td>
</tr>
<tr>
<td>H2</td>
<td>-.001537</td>
</tr>
<tr>
<td>H3</td>
<td>13.388575</td>
</tr>
<tr>
<td>H4</td>
<td>1.933217</td>
</tr>
<tr>
<td>H6</td>
<td>.464317</td>
</tr>
<tr>
<td>H7</td>
<td>.009447</td>
</tr>
<tr>
<td>H8</td>
<td>-.099954</td>
</tr>
<tr>
<td>H9</td>
<td>-1223.396240</td>
</tr>
<tr>
<td>H10</td>
<td>-.945353</td>
</tr>
<tr>
<td>H11</td>
<td>-.000067</td>
</tr>
<tr>
<td>H12</td>
<td>3.858493</td>
</tr>
<tr>
<td>H13</td>
<td>7.582887</td>
</tr>
<tr>
<td>H14</td>
<td>-.777369</td>
</tr>
<tr>
<td>H15</td>
<td>9.014718</td>
</tr>
<tr>
<td>H16</td>
<td>.200680</td>
</tr>
<tr>
<td>H17</td>
<td>206.638214</td>
</tr>
<tr>
<td>H18</td>
<td>.257293</td>
</tr>
</tbody>
</table>
Table 58-4

HEATING COEFFICIENTS

<table>
<thead>
<tr>
<th></th>
<th>NORTH</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU1</td>
<td>0.006203</td>
<td>0.007691</td>
<td>0.006044</td>
<td>0.006672</td>
</tr>
<tr>
<td>MU2</td>
<td>-0.13566E-11</td>
<td>-0.57161E-12</td>
<td>-0.26899E-12</td>
<td>-0.43566E-12</td>
</tr>
<tr>
<td>HM1</td>
<td>0.531005</td>
<td>0.545732</td>
<td>0.837901</td>
<td>0.616956</td>
</tr>
<tr>
<td>HM2</td>
<td>0.000152</td>
<td>0.000107</td>
<td>0.000208</td>
<td>0.00015</td>
</tr>
<tr>
<td>HM3</td>
<td>-0.531826E-06</td>
<td>-0.106191E-06</td>
<td>-0.682531E-06</td>
<td>-0.264566E-06</td>
</tr>
<tr>
<td>HM4</td>
<td>-0.773813E-06</td>
<td>-0.147870E-05</td>
<td>0.211938E-05</td>
<td>-0.457827E-06</td>
</tr>
<tr>
<td>HM5</td>
<td>-0.000712</td>
<td>-0.000484</td>
<td>-0.001042</td>
<td>-0.000625</td>
</tr>
<tr>
<td>HM6</td>
<td>0.334859E-12</td>
<td>0.49576E-13</td>
<td>0.770190E-13</td>
<td>0.737105E-13</td>
</tr>
<tr>
<td>HM7</td>
<td>0.239071E-06</td>
<td>0.275045E-06</td>
<td>-0.389387E-06</td>
<td>0</td>
</tr>
<tr>
<td>HU01</td>
<td>0.000443</td>
<td>0.008683</td>
<td>0.009028</td>
<td>0.008566</td>
</tr>
<tr>
<td>HU02</td>
<td>0.013686</td>
<td>0.011055</td>
<td>0.010156</td>
<td>0.01146</td>
</tr>
<tr>
<td>HU03</td>
<td>-0.110178E-04</td>
<td>-0.868956E-05</td>
<td>-0.732317E-05</td>
<td>-0.89865E-05</td>
</tr>
<tr>
<td>HU04</td>
<td>0.126940E-11</td>
<td>0.785644E-13</td>
<td>-0.282023E-12</td>
<td>0.304904E-13</td>
</tr>
<tr>
<td>HU05</td>
<td>-0.730582E-12</td>
<td>-0.819008E-13</td>
<td>0.745599E-13</td>
<td>-0.747184E-13</td>
</tr>
<tr>
<td>HU06</td>
<td>0.197909E-06</td>
<td>0.194026E-06</td>
<td>0.987587E-07</td>
<td>0.195776E-06</td>
</tr>
<tr>
<td>HG1</td>
<td>-0.001051</td>
<td>-0.000983</td>
<td>-0.000981</td>
<td>-0.000948</td>
</tr>
<tr>
<td>HG2</td>
<td>-0.000183</td>
<td>-0.00093</td>
<td>-0.000815</td>
<td>-0.000975</td>
</tr>
<tr>
<td>HG3</td>
<td>0.299013E-05</td>
<td>0.262269E-05</td>
<td>0.241880E-05</td>
<td>0.249976E-05</td>
</tr>
<tr>
<td>HG4</td>
<td>0.749049E-06</td>
<td>-0.111056E-05</td>
<td>-0.216687E-05</td>
<td>-0.850649E-06</td>
</tr>
<tr>
<td>HG5</td>
<td>0.000109</td>
<td>0.934310E-04</td>
<td>0.975523E-04</td>
<td>0.862389E-04</td>
</tr>
<tr>
<td>HG6</td>
<td>-0.555914E-06</td>
<td>-0.31501E-06</td>
<td>-0.260999E-06</td>
<td>-0.291334E-06</td>
</tr>
<tr>
<td>HG7</td>
<td>-0.218248E-04</td>
<td>-0.209216E-04</td>
<td>-0.210885E-04</td>
<td>-0.202046E-04</td>
</tr>
<tr>
<td>HS2</td>
<td>0.339179E-11</td>
<td>0.190500E-11</td>
<td>0.148388E-11</td>
<td>0.218215E-11</td>
</tr>
<tr>
<td>HS3</td>
<td>-0.653253E-05</td>
<td>-0.234413E-04</td>
<td>-0.184726E-04</td>
<td>-0.240488E-04</td>
</tr>
<tr>
<td>HS4</td>
<td>0.223087E-04</td>
<td>0.241331E-04</td>
<td>0.245412E-04</td>
<td>0.230538E-04</td>
</tr>
<tr>
<td>NC1</td>
<td>-0.10668</td>
<td>-5.19297</td>
<td>-3.66743</td>
<td>5.29681</td>
</tr>
<tr>
<td>NC2</td>
<td>0.00779</td>
<td>0.007684</td>
<td>0.007175</td>
<td>0.007672</td>
</tr>
<tr>
<td>NC3</td>
<td>-0.297600E-06</td>
<td>-0.307837E-06</td>
<td>-0.264192E-06</td>
<td>-0.307127E-06</td>
</tr>
<tr>
<td>NC4</td>
<td>0.201569E-05</td>
<td>0.630350E-05</td>
<td>0.332112E-05</td>
<td>0.643491E-05</td>
</tr>
<tr>
<td>NC5</td>
<td>0.120061E-04</td>
<td>0.477552E-05</td>
<td>0.325098E-05</td>
<td>0.483233E-05</td>
</tr>
<tr>
<td>NC6</td>
<td>-0.128594E-04</td>
<td>-0.618539E-05</td>
<td>-0.463086E-05</td>
<td>-0.625101E-05</td>
</tr>
<tr>
<td>NC7</td>
<td>0.275861E-12</td>
<td>0.820051E-12</td>
<td>0.438148E-12</td>
<td>0.809106E-12</td>
</tr>
</tbody>
</table>
Figure 5B-1

Maximum Window to Wall Ratio

Cooling

Internal Load = 0 W/ft²

Internal Load = 3.0 W/ft²

CDD50 × VSEW × 10⁻⁵

Note: Use linear interpolation for internal loads 0 < W/ft² < 3.0.
Figure 5B-2
Maximum Window to Wall Ratio
Heating

WWR

0.5
0.4
0.3
0.2
0.1
0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15
Thousand HDD65
Figure 5B-4
Overall Thermal Transmittance of Opaque Wall Sections

Note: for HDD65 < 196, \(U_{sw} = 1.0 \)
for 196 \(\leq \) HDD65 \(\leq \) 15000, \(U_{sw} = \frac{42.787}{HDD65^{0.712}} \)

Figure 5B-5
Maximum Overall Thermal Transmittance of Fenestration Assemblies
ATTACHMENT 5C TO 435.105

BIBLIOGRAPHY

1. Pacific Northwest Laboratory. October, 1983. "Energy Conservation Standards and Guidelines for New Commercial Buildings. For Building System Division, Assistant Secretary, Conservation and Renew- able Energy. (Contract No. DE-AC06-76RL01830). The report is issued in 4 volumes consisting of 40 separate publications (PNL=4670-1 through PNL=4670-40). The publications most pertinent to the envelope analysis are cited below:

Volume 4: Documentation of Test Results: (Each in 3 volumes): A: Small Office Building (Branch Bank); B: Medium Office Building; C: Large Office Building; D: Retail Store (Anchor Store); E: Strip Store; F: Apartment House; G: Hotel; H: Warehouse; I: Assembly Building (Church); J: School.

§ 435.106 Electric power and distribution.

6.1 General

6.1.1 This section contains minimum requirements for all building electrical systems, except required emergency systems.

6.1.2 A building shall be considered in compliance with this section if the minimum requirements of section 6.3 are met.

6.2 Principles of Design

6.2.1 Electric Distribution Systems

6.2.1.1 Transformers and generating units shall be sized as close as possible to the actual anticipated load (i.e., oversizing is to be avoided so that fixed thermal losses are minimized).

6.2.1.2 Distribution of electric power at the highest practical voltage and load selection at the maximum power factor consistent with safety shall be considered. The use of distribution system transformers shall be minimized.

6.2.1.3 Tenant submetering can be one of the most cost-effective energy conservation measures available. A large portion of the energy use in tenant facilities occurs simply because there is no economic incentive to conserve.

6.3 Minimum Requirements

6.3.1 Electrical Distribution System

6.3.1.1 All commercial or multi-family high rise residential buildings, having designed connected electric service over 250 kVA, shall have electrical energy consumption check metered on the basis of usage category or tenant occupancy, depending on conditions defined below. For buildings that are occupied by multiple tenants, the metering shall be per tenant, if the tenant has a connected load of 100 kVA or more. HVAC and service hot water systems, shared among tenants, need not meet this requirement but shall be separately metered.

6.3.1.2 The electrical power feeders for each facility for which check-metricing is required shall be by tenant and shall be subdivided in accordance with the following categories:

6.3.1.2.1 Lighting and receptacle outlets;
6.3.1.2.2 HVAC and service water heating systems and equipment; and
6.3.1.2.3 Special occupant equipment or systems of more than 20 kW, such as elevators, computer rooms, kitchens, printing equipment, and bailing presses.

6.3.1.3 The power feeders for each category shall contain portable or permanent submetering prior to or within any primary or secondary distribution panels. Such provisions shall include a separate compartment or panel of adequate size and design to house the necessary voltage and current transformers. An accessible means of attaching clamp-on meters or split-core current transformers shall be provided.

6.3.1.4 The locations of these points of measurement may be central or distributed throughout the building, as
§ 435.106

40 C.F.R. Ch. II (1-1-98 Edition)

appropriate to the layout of the building. A minimum arrangement shall provide a safe method for access to the enclosures through which feeder conductors pass, and have sufficient space to attach clamp-on or split-core current transformers. These enclosures may be separate compartments or combined with electrical cabinets serving another function. Enclosures so furnished shall be identified by available measuring function. A preferred arrangement would include kWh meters and demand registers, or a means to transmit such information to a building energy management control system.

6.3.1.5 In multiple-tenant buildings, where designed connected electrical service is over 250 kVA, each tenant space having a total connected load of more than 100 kVA shall have provision made to permit check-metering of the total tenant load. If the building is served by a common HVAC system, the HVAC loads need not be checked for each tenant.

6.3.2 Transformers

6.3.2.1 All permanently wired transformers, that are part of the building electrical distribution system, except utility-owned transformers, shall be selected to minimize the combination of no-load, part-load, and full-load losses, without compromising the electrical system operating and reliability requirements.

6.3.2.2 If the total capacity of the transformers exceeds 300 kVA, a calculation of total estimated annual operating costs of the transformer losses shall be made. This calculation shall be based on estimated hours of transformer operation at projected part-load and full-load conditions, and the associated transformer core and coil losses. If appropriate data for projecting this calculation is unavailable, use Form 6.3-1 “Transformer Loss Calculation Estimate” as a basis for making the estimate. The calculations made in accordance with this section shall be used to compare among types of transformers and configurations available to the designer to balance energy costs with necessary operating flexibility, reliability (redundancy), and safety. The projected annual energy costs for the losses of the selected arrangement shall be retained as part of the electrical design documentation.
6.3.3 Electric Motors

6.3.3.1 All permanently wired polyphase motors of 1 hp or more serving the building shall meet the requirements of this section. Motors expected to operate more than 500 hours per year shall have a minimum acceptable nominal full-load motor efficiency no less than that shown in Table 6.3.1.

Table 6.3.1 applies to motors having nominal 200, 300, or 3000 RPM, with open, drip-proof, or TEFC enclosures. Other motor types are exempted from the minimum efficiency requirements of these standards.

Motor efficiency ratings shall be based on a statistically valid quality control procedure conforming to E830-96 of the American National Standards Institute (ANSI) Technical Committee C87.1, "IEEE Standard Test Code for Polyphase Induction Motors and Generators, 10 hp and Under."

Motor efficiency ratings shall be based on a statistically valid quality control procedure conforming to E830-96 of the American National Standards Institute (ANSI) Technical Committee C87.1, "IEEE Standard Test Code for Polyphase Induction Motors and Generators, 10 hp and Under."

<table>
<thead>
<tr>
<th>Transformer Number</th>
<th>Rated Temperature Rise</th>
<th>Cooling Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORM 6.3.1
TRANSFORMER LOSS CALCULATION ESTIMATE

<table>
<thead>
<tr>
<th>Transformer Number</th>
<th>Rated Temperature Rise</th>
<th>Cooling Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3.1

<table>
<thead>
<tr>
<th>kVA</th>
<th>kW x 8760h</th>
<th>Annual no load Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 6.3.1

<table>
<thead>
<tr>
<th>h</th>
<th>(Rated full load coil losses)</th>
<th>Annual part load 10% to 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 6.3.1

<table>
<thead>
<tr>
<th>h</th>
<th>(Rated full load coil losses)</th>
<th>Annual part load 50% to 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 6.3.1

<table>
<thead>
<tr>
<th>Annual h of operation 80% to 100% of load</th>
<th>(Rated full load coil losses)</th>
<th>Annual part load 80% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

FORM 6.3.1

Total

<table>
<thead>
<tr>
<th>kwh</th>
<th>Total annual full and part load losses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If transformers are expected to operate regularly (by means of external cooling) at ratings above full-load kVA, a more precise loss calculation procedure is required.
with ANSI/IEEE 112-1984, Test Method B (Dynamometer) using NEMA MG 1-1987 (MG 1-12.54 and MG 1-12.55) for motors below 500 hp. For motors 500 hp and above, ANSI/IEEE 112-1984, Test Method B or Method F (Equivalent Circuit Calculation), shall be used.

6.3.3.1.3 Values listed in Table 6.3-1 are nominal efficiencies. Minimum motor efficiencies shall not be less than the corresponding values provided in NEMA MG 1-12.54.

Table 6.3-1

<table>
<thead>
<tr>
<th>HORSEPOWER</th>
<th>MINIMUM RATES EFFICIENCY PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>78.5</td>
</tr>
<tr>
<td>5-9</td>
<td>84.0</td>
</tr>
<tr>
<td>10-19</td>
<td>85.5</td>
</tr>
<tr>
<td>20-49</td>
<td>88.5</td>
</tr>
<tr>
<td>50-99</td>
<td>90.2</td>
</tr>
<tr>
<td>100-124</td>
<td>91.7</td>
</tr>
<tr>
<td>125 and above</td>
<td>92.4</td>
</tr>
</tbody>
</table>

1 Motors operating more than 750 hours per year are likely to be cost-effective with efficiencies greater than those listed. The more efficient motors are classified by most manufacturers as "high-efficiency," and are presently available for common applications with typical nominal efficiencies of: 5hp, 89.5%; 10hp, 91.0%; 50hp, 94.1%; 100hp, 95.1%; 200hp, 96.2%. Guidance for evaluating the cost effectiveness of high efficiency motor applications is given in NEMA MG 10-83 (NEMA).

6.3.3.1.4 Motor efficiency shall be tested using a statistically valid quality control procedure conforming with the IEEE 112A, Test Method B (1978) (Dynamometer) fan motors E below 500 hp, or Test Method F (1978) (Equivalent Circuit Calculation) based on no-load measurements for motors 500 hp and larger.

6.3.3.2 Motor nameplates shall list the minimum and the nominal full-load motor efficiencies and the full-load power factor.

6.3.3.3 Full-load motor power factor for three-phase motors can be calculated from nameplate data by Equation 6.3-1:

\[
\text{% Power Factor} = \left(\frac{\text{hp} \times 746 \times 100}{(\text{nominal efficiency} \times \text{full-load amps} \times \text{rated voltage} \times 3)^2} \right)
\]

Equation 6.3-1

6.3.3.4 Motor horsepower rating shall not exceed 125% of the calculated maximum load being served, or the next larger standard motor size if a
6.3.4 Operation and Maintenance of Electrical Systems

6.3.4.1 The designer shall specify that building owners be provided with written information that provides basic data relating to the design, operation, and maintenance of the electrical distribution system for the building. This shall include:

- 6.3.4.1.1 a single-line diagram of the “as-built” building electrical system;
- 6.3.4.1.2 schematic diagrams of electrical control systems (other than HVAC, covered elsewhere);
- 6.3.4.1.3 manufacturers’ operating and maintenance manuals on active electrical equipment; and
- 6.3.4.1.4 the Transformer Loss Calculation Estimate if required by Section 6.3.2.2.

§ 435.107 Heating, Ventilation, and Air-Conditioning (HVAC) systems.

7.1 General

7.1.1 This section contains minimum and prescriptive requirements for the design of HVAC systems. It is recommended that the designer evaluate other energy conservation measures that may be applicable to the proposed design.

7.1.2 A building shall be considered in compliance with this section if the following conditions are met:

- 7.1.2.1 The minimum requirements of Section 7.3 are met; and
- 7.1.2.2 The HVAC system design complies with the prescriptive criteria of section 7.4. For the design of HVAC systems that incorporate innovative or alternate design strategies, the compliance paths set forth in Section 11.0 or 12.0 should be used.

7.2 Principles of Design

7.2.1 Control of Equipment Loads

7.2.1.1 The thermal impact of equipment and appliances shall be minimized by use of hoods, radiation shields, or other confining techniques, and by use of controls to assure that such equipment is turned off when not needed. In addition, major heat-generating equipment shall, where practical, be located where it can balance other heat losses. For example, computer centers or kitchen areas could be located in the north or northwest perimeter areas of buildings depending on climate and prevailing wind directions. In addition, heat recovery shall be specifically considered for this equipment.

7.2.2 HVAC System Design

7.2.2.1 Separate HVAC systems shall be considered to serve areas expected to operate on widely differing operating schedules or design conditions. For instance, systems serving office areas should generally be separate from those serving retail areas. When a single system serves a multi-tenant building, provisions shall be made to shut-off or set-back the heating and cooling to each area independently.

7.2.2.2 Spaces with relatively constant and weather-independent loads may be served with systems separate from those serving perimeter spaces. Areas with special temperature or humidity requirements, such as computer rooms, shall be served by systems separate from those serving areas that require comfort heating and cooling only, alternatively, these areas shall be served by supplementary or auxiliary systems.

7.2.2.3 The supply of zone cooling and heating shall be sequenced to prevent the simultaneous operation of heating and cooling systems for same space. Where this is not possible due to ventilation or air circulation requirements, air quantities shall be reduced as much as possible before reheating, recooling, or mixing hot and cold air streams. Finally, supply air temperature shall be reset to extend economizer operations and to reduce reheat, recool, or mixing losses.

7.2.2.4 Systems serving areas with significant internal heat gains (lighting, equipment, and people), especially interior zones with little or no exposure to outside air, shall be designed to take advantage of mild or cool weather conditions to reduce cooling energy if heat recovery systems are not used. These systems, called air or water economizers, shall be designed to provide a partial reduction in cooling loads even when mechanical cooling must be used to provide the remainder of the load. Economizer controls shall
be integrated with the mechanical cooling (leaving air temperature) controls so that mechanical cooling is only operated when necessary and so supply air is not overcooled to a temperature below the desired supply temperature. The systems and controls shall be designed so that economizer operation does not increase heating energy use. For instance, single fan dual duct or multizone systems that use the same mixed air plenum for both heating and cooling supplies shall not be used.

7.2.2.5 Controls shall be provided to allow systems to operate in an occupied mode and an unoccupied mode. In the occupied mode, controls shall provide for a gradually changing control point as system demands change from cooling to heating. In the unoccupied mode, ventilation and exhaust systems shall be shut off if possible, and comfort heating and cooling systems shall be shut off except to maintain “set-back” space conditions. The setback conditions shall be the minimum and maximum levels required to prevent damage to the building or its contents and provide for a reasonable morning pick-up period. Note however that night setback may not conserve energy in buildings with large amounts of thermal mass.

7.2.2.6 In areas where diurnal temperature swings and humidity levels permit, the judicious coupling of air distribution systems and building structural mass may be considered to allow the use of night-time precooling to reduce the use of day-time mechanical cooling.

7.2.2.7 High ventilation, such as in hospital operating rooms, can impose enormous heating and cooling loads on HVAC equipment. In these cases, consideration shall be given to the use of recirculating filtered and cleaned air, rather than 100% outside air, and preheating outside air with solar systems or reclaimed heat from other sources.

7.2.3 Energy Transport Systems

7.2.3.1 Energy shall be transported by the most energy efficient means possible. The following options, are listed in order of efficiency from the (most efficient) lowest energy transport burden to the highest:

7.2.3.1.1 Electric Wire or Fuel Pipe,
7.2.3.1.2 Two-Phase Fluid Transfer (Steam or Refrigerant),
7.2.3.1.3 Single-Phase Liquid Fluid (Water, Glycol, Etc.), and
7.2.3.1.4 Air.

7.2.3.2 The distribution system shall be selected to complement other system parameters such as control strategies, storage capabilities, and conversion and utilization system efficiencies.

7.2.3.3 Steam Systems

7.2.3.3.1 Provisions for seasonal or “non-use time” shutdown shall be incorporated.
7.2.3.3.2 The venting of steam and ingestion of air shall be minimized with the design directed toward full vapor performance.
7.2.3.3.3 Subcooling shall generally be prevented.
7.2.3.3.4 Condensate shall be returned to boilers or source devices at the highest possible temperature.

7.2.3.4 Water Systems

7.2.3.4.1 Design flow quantity shall be minimized by designing for the maximum practical temperature differential.
7.2.3.4.2 Flow quantity shall be varied with load where possible.
7.2.3.4.3 Designs shall be for lowest practical pressure rise (or drop).
7.2.3.4.4 Operating and idle control modes shall be provided.
7.2.3.4.5 When locating equipment, the critical pressure path shall be identified and the runs sized for minimum practical pressure drop.

7.2.3.5 Air Systems

7.2.3.5.1 Air flow quantity shall be minimized by careful load analysis and an effective distribution system. If the psychometric nature of the application allows, the supply air quantity shall vary with the sensible load (i.e., VAV systems). The fan pressure requirement shall be held to the lowest practical value. Fan pressure shall be avoided as a source for control power.
§ 435.107

7.2.3.5.2 Each fan system shall be designed and controlled to reduce mechanical cooling requirements by taking advantage of favorable weather conditions.

7.2.3.5.3 "Normal" and "idle" control modes shall be provided for the fan systems as well as the psychrometric systems.

7.2.3.5.4 Duct run distances shall be as short as possible, and the runs on the critical pressure path sized for minimum practical pressure drop.

7.2.4 Radiant Heating

7.2.4.1 Radiant heating systems shall be considered in lieu of convective or all-air heating systems to heat areas which experience infiltration loads in excess of two (2) air changes per hour at design heating conditions.

7.2.4.2 Radiant heating systems should be considered for areas with high ceilings, for spot heating, and for other applications where radiant heating may be more energy efficient than convective or all-air heating systems.

7.2.5 Energy Recovery

7.2.5.1 Systems that recover energy should be considered when rejected fluid is of adequate temperature and a simultaneous need for energy exists for a significant number of operating hours.

7.3 Minimum Requirements

7.3.1 Calculation Procedures

7.3.1.1 Heating and cooling system design loads for the purpose of sizing systems and equipment shall be determined in accordance with the procedures described in the ASHRAE Handbook, 1985 Fundamentals Volume, or a similar computation procedure. The design parameters specified in sections 7.3.1.2 through 7.3.1.10 shall be used for calculational purposes only and are not requirements or recommendations for operating setpoints.

7.3.1.2 Indoor Design Conditions. Indoor design temperature and humidity conditions for general comfort applications shall be in accordance with the comfort criteria established in ANSI/ASHRAE Standard 55-1981, "Thermal Environmental Conditions for Human Occupancy," and/or Chapter 8 of the ASHRAE Handbook, 1985 Fundamentals Volume, except that winter humidification and summer dehumidification are not required.

7.3.1.2.1 Exceptions to Section 7.3.1.2:
(a) Health care institutions and similar facilities where the indoor conditions may not be appropriate for the health and safety of occupants; and
(b) Where special room temperature and humidity conditions are required by a process or procedure, other than comfort, such as rooms used for surgery or data processing.

7.3.1.3 Outdoor Design Conditions. Outdoor design conditions shall be selected for listed locations from the ASHRAE Handbook, 1985 Fundamentals Volume, from the columns of 99% values for heating design and 2.5% values for cooling design. Local weather data from the National Weather Service of the National Oceanic and Atmospheric Administration based on the same 99% and 2.5% values (or statistically similar annualized values such as 0.2% winter and 0.5% summer) may be used.

7.3.1.3.1 Exception to Section 7.3.1.3:
(a) Where necessary to assure the prevention of damage to the building or to material and equipment within the building, the median of annual extremes for heating and 1% column for cooling may be used.

7.3.1.4 Ventilation. Outdoor air ventilation rates shall be selected from section 6.1 of ASHRAE Standard 62-1981, "Ventilation for Acceptable Indoor Air Quality."

7.3.1.4.1 Exception to Section 7.3.1.4:
(a) Outdoor air quantities, exceeding those shown in ASHRAE Standard 62-1981, required because of special occupancy or process requirements, source control of air contamination, or local codes.

7.3.1.5 Infiltration. Infiltration for heating and cooling design loads shall be calculated by the procedures in the ASHRAE Handbook, 1985 Fundamentals Volume, or a similar computation procedure.

7.3.1.6 Envelope. Building envelope heating and cooling loads shall be based on envelope characteristics, such as thermal conductance, shading coefficient and air leakage, consistent with
the values used in the proposed building design to demonstrate compliance with section 5.0.

7.3.1.7 Lighting. Lighting loads shall be based on proposed design lighting levels or power budgets consistent with section 3.0. Lighting may be ignored for heating load calculations.

7.3.1.8 Other Loads. Other HVAC system loads, such as those due to people and equipment, shall be based on design data compiled from at least one of the following sources:

7.3.1.8.1 Actual information based on the intended use of the building;
7.3.1.8.2 Published data from manufacturers' technical publications and from technical society publications such as the ASHRAE Handbook, 1987 HVAC Systems Applications Volume;
7.3.1.8.3 Alereza, "Estimates of Recommended Heat Gains Due to Commercial Appliances and Equipment," ASHRAE Transactions 90 (Pt. 2A), 25-28 (1984);
7.3.1.8.4 Default values to be used in determining the design energy budget in section 11.0 or 12.0 taken from Tables 11-2, 11-3, 11-4 and 11-6 and
7.3.1.8.5 Other data based on designer's experience of expected loads and occupancy patterns.

7.3.1.8.6 Exception to Section 7.3.1.8:
(a) Equipment capacity may exceed the design load if the equipment selected is the smallest size needed to meet the load within available options of equipment;
(b) Equipment whose capacity exceeds the design load may be specified if calculations demonstrate that oversizing can be shown not to increase annual energy use;
(c) Stand-by equipment may be installed if controls and devices are provided that allow stand-by equipment to operate automatically only when the primary equipment is not operating;
(d) Multiple units of the same equipment type, such as multiple chillers and boilers, with combined capacities exceeding the design load may be specified to operate concurrently only if controls are provided that sequence or otherwise optimally control the operation of each unit based on cooling or heating load;
(e) For unitary equipment with both heating and cooling capability, only one function, either the heating or the cooling, need meet the requirements of this subsection. Capacity for the other function shall be, within available equipment options, the smallest size necessary to meet the load; and
(f) For buildings complying with section 11.0 or 12.0, equipment of higher capacity than the design load may be specified if the oversized equipment is modeled in the building energy analysis of the proposed design and the proposed design complies with the standards.

7.3.2 System and Equipment Sizing

7.3.2.1 HVAC systems and equipment shall be sized to provide no more than the space and system loads require, as calculated in accordance with section 7.3.1.

7.3.2.1.1 Exceptions to Section 7.3.2.1:
(a) Equipment capacity may exceed the design load if the equipment selected is the smallest size needed to meet the load within available options of equipment;
(b) Equipment whose capacity exceeds the design load may be specified if calculations demonstrate that oversizing can be shown not to increase annual energy use;
(c) Stand-by equipment may be installed if controls and devices are provided that allow stand-by equipment to operate automatically only when the primary equipment is not operating;
(d) Multiple units of the same equipment type, such as multiple chillers and boilers, with combined capacities exceeding the design load may be specified to operate concurrently only if controls are provided that sequence or otherwise optimally control the operation of each unit based on cooling or heating load;
(e) For unitary equipment with both heating and cooling capability, only one function, either the heating or the cooling, need meet the requirements of this subsection. Capacity for the other function shall be, within available equipment options, the smallest size necessary to meet the load; and
(f) For buildings complying with section 11.0 or 12.0, equipment of higher capacity than the design load may be specified if the oversized equipment is modeled in the building energy analysis of the proposed design and the proposed design complies with the standards.

7.3.3 Separate Air Distribution Systems

7.3.3.1 Zones in a building that are expected to operate non-concurrently for 750 or more hours per year shall either be served by separate air distribution systems, or off-hour controls shall be provided in accordance with section 7.3.3.3.

7.3.3.2 Zones with special process temperature and/or humidity requirements shall be served by separate air distribution systems from those serving zones requiring only comfort heating and/or cooling, or supplementary provisions shall be included to allow the primary systems to be specifically controlled for comfort purposes only.
(a) Zones, requiring comfort heating and/or cooling, that are served by a system primarily used for process temperature and humidity control, need not be served by a separate system if the total supply air to these zones is no more than 25% of the total system supply air, or the zones total conditioned floor area is less than 1000 ft².

7.3.3 Zones having substantially different heating or cooling load characteristics, such as perimeter zones in contrast to interior zones, shall not be served by a single multiple zone air distribution system.

7.3.4 Temperature Controls

7.3.4.1 System Control. Each HVAC system shall include at least one temperature control device.

7.3.4.2 Zone Controls. The supply of heating and/or cooling energy to each zone shall be controlled by an individual thermostat located within the zone.

7.3.4.2.1 Exceptions to Section 7.3.4.2:
(a) Independent perimeter systems may serve multiple zones of the primary/interior system with the following limitations:
 (1) The perimeter system shall include at least one thermostatic control zone for each major building exposure having exterior walls facing only one orientation for 50 contiguous feet or more; and
 (2) The perimeter system heating and/or cooling supply shall be controlled by thermostat controls located within the zone(s) served by the system; and
(b) A dwelling unit may be considered a single zone.

7.3.4.3 Zone thermostats used to control comfort heating shall be capable of being set, locally or remotely, by adjustment or selection of sensors, down to 55 °F.

7.3.4.4 Zone thermostats used to control comfort cooling shall be capable of being set, locally or remotely, by adjustment or selection of sensors, up to 85 °F.

7.3.4.5 Zone thermostats used to control both heating and cooling shall be capable of providing a temperature range of at least 5 °F within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum.

7.3.4.5.1 Exceptions to Section 7.3.4.5:
(a) For buildings complying with Section 11.0 or 12.0, dead band controls are not required if, in the building energy analysis, heating and cooling thermostat setpoints are set to the same value between 70 °F and 75 °F and assumed to be constant throughout the year;
(b) Special occupancy, special usage or construction code requirements where dead band controls are not appropriate, adjustable single setpoint thermostats may be used; and
(c) Thermostats that require manual changeover between heating and cooling modes.

7.3.5 Off-hour Controls

7.3.5.1 Each HVAC system shall have automatic control setback and/or shutdown of equipment during periods of non-use or alternate use of the spaces served by the system.

7.3.5.1.1 Exceptions to Section 7.3.5.1:
(a) Systems serving areas expected to operate continuously;
(b) Where equipment with a full load demand of 2kW (6826 Btu/h) or less may be controlled by readily accessible manual off-hour controls;
(c) Where setback or shutdown will not result in a decrease in overall building energy use;

7.3.5.2 Outside air supply and/or exhaust systems shall be equipped with motorized or gravity dampers or other means of automatic volume shutoff or reduction during periods of non-use or alternate use of the spaces served by the system.

7.3.5.2.1 Exceptions to Section 7.3.5.2:
(a) Individual ventilation systems when design air flow is 3000 cfm or less;
(b) Systems that operate continuously;
(c) When restricted by code, such as at combustion air intakes; or
(d) When gravity and other non-electrical ventilation systems may be controlled by readily accessible manual damper controls.

7.3.5.2.2 Dampers may be required in some climates to prevent equipment damage due to freezing and/or to provide proper warm-up control.
§ 435.107

7.3.5.3 Systems that serve areas that operate non-concurrently for 750 or more hours per year shall have isolation devices and controls for shut off or set back of heating and cooling to each zone independently. Isolation is not required for zones expected to operate continuously or expected to be inoperative only when all other zones are inoperative.

7.3.5.3.1 For buildings where occupancy patterns are not known at the time of system design, isolation areas may be predesignated.

7.3.5.3.2 Zones may be grouped into a single isolation area providing the total conditioned floor area does not exceed 25,000 ft² per group nor include more than one floor.

7.3.6 Humidity Control

7.3.6.1 If a system maintains specific relative humidities by adding moisture, a humidistat shall be provided.

7.3.6.2 If comfort humidification is provided, the system shall be designed to prevent the use of fossil fuel or electricity to maintain relative humidity in excess of 30%.

7.3.6.3 If comfort dehumidification is provided, the system shall be designed to prevent the use of fossil fuel or electricity to reduce relative humidity below 60%.

7.3.7 Materials and Construction

7.3.7.1 Insulation required by section 7.3.7.2 and 7.3.7.3 shall be suitably protected from damage. Insulation shall be installed in accordance with the Midwest Insulation Contractors Association “Commercial and Industrial Insulation Standards,” 1983.

7.3.7.2 Piping Insulation. All HVAC system piping installed to serve buildings and within buildings shall be thermally insulated in accordance with Table 7.3-1.
§ 435.107

7.3.7.2 Exceptions to Section 7.3.7.2:

(a) For manufacturer installed piping within HVAC equipment tested and rated in accordance with Section 8.3;

(b) For piping conveying fluids at temperatures between 55 °F and 105 °F;

(c) For piping conveying fluids that have not been heated or cooled through the use of fossil fuels or electricity; and

(d) When calculations demonstrate that heat gain and/or heat loss to or from piping without insulation will not increase building energy use.

7.3.7.2.2 Alternative Insulation Types. Insulation thicknesses in Table 7.3-1 are based on insulation with thermal conductivities listed in Table 7.3-1 for each fluid operating temperature range, rated in accordance with ASTM C 335-84, "Test Method for Steady-State Heat Transfer Properties of Horizontal Pipe Insulations," at the mean temperature listed in the table. For insulating materials having conductivities more than those shown in the Table 7.3-1 for the applicable fluid operating temperature range and at the mean rating temperature shown, when rounded to the nearest 1/100th Btu/h·°F·ft², the minimum thickness shall be determined in accordance with Equation 7.3-1:

Table 7.3-1
Minimum Pipe Insulation (in.)

<table>
<thead>
<tr>
<th>Fluid Design Operating Temperature Range, °F</th>
<th>Insulation Conductivity</th>
<th>Mean Rating Temperature, °F</th>
<th>Nominal Pipe Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-155</td>
<td>0.25-0.27</td>
<td>75</td>
<td>0.5</td>
</tr>
<tr>
<td>175-250</td>
<td>0.30-0.34</td>
<td>150</td>
<td>1.0</td>
</tr>
<tr>
<td>275-350</td>
<td>0.35-0.41</td>
<td>225</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1. For minimum thickness of alternative insulation types, see Section 7.3.7.2.2.
2. Runouts to individual terminal units not exceeding 10 ft in length.
3. Applies to recirculating sections of service or domestic hot water systems and first 8 ft from storage tank for non-recirculating systems.
4. The required minimum thickness do not consider water vapor transmission and condensation. Additional insulation and/or vapor retarders may be required to limit water vapor transmission and condensation.
§ 435.107

T = PR × [(1 + t/PR)^K / K - 1]

Equation 7.3-1

Where:

T = minimum insulation thickness for material with conductivity K, in.

PR = pipe actual outside radius, in.

t = insulation thickness from Table 7.3-1, in.

K = conductivity of alternate material at the mean rating temperature indicated in Table 7.3-1 for the applicable fluid temperature range, Btu•in./h•°F•ft^2

k = the lower value of conductivity listed in Table 7.3-1 for the applicable fluid temperature range, Btu•in./h•°F•ft^2

7.3.7.3 Air Handling System Insulation. All air handling ducts, plenums, and other enclosures installed as part of an HVAC air distribution system shall be thermally insulated in accordance with Table 7.3-2 (This table comes from section 1005 of the 1985 Uniform Mechanical Code).
§ 435.107

7.3.7.3 Exception to section 7.3.7.3:
Duct insulation is not required in any of the following cases:
(a) Manufacturer installed plenums, casings or ductwork furnished as a part of HVAC equipment tested and rated in accordance with section 8.3; and
(b) When calculations demonstrate that heat gain and/or heat loss to or
from ducts without insulation will not increase building energy use.

7.3.7.4 Duct Construction. All air handling ductwork and plenums shall be constructed, erected and tested in accordance with the following Sheet Metal and Air Conditioning Contractors National Association (SMACNA) Standards: HVAC Duct System Design Manual, 1986; HVAC Duct Leakage Test Manual, 1985; and Fibrous Glass Construction Standards, 5th edition, 1979.

7.3.7.4.1 Ductwork designed to operate at static pressure differences greater than 3 in. W.C. shall be leak tested and conform with the following requirements of the HVAC Duct Leakage Manual, 1985: Test procedures shall be in accordance with those outlined in section 5.0 of the manual, or equivalent; test reports shall be provided in accordance with section 6.0 of the manual, or equivalent; the tested duct leakage class at a test pressure equal to the design duct pressure class rating shall be equal to or less than leakage class 6 as defined in section 4.1 of the manual. Leakage testing may be limited to representative sections of the duct system but in no case shall such tested sections include less than 25% of the total installed duct area for the designated pressure class.

7.3.7.4.2 Where supply ductwork designed to operate at static pressure differences from ¼ in. to 2 in. W.C. are located outside of the conditioned space, including return plenums, joints shall be sealed in accordance with Seal Class C, as defined in the SMACNA manuals referenced above. Pressure sensitive tape shall not be used as the primary sealant for such ducts designed to operate at 1 in. W.C. pressure difference or greater.

7.3.8 Completion Requirements

7.3.8.1 An operating and maintenance manual shall be provided to the building owner. The manual shall include basic data relating to the operation and maintenance of HVAC systems and equipment. Required routine maintenance actions shall be clearly identified. Where applicable, HVAC controls information such as diagrams, schematics, control sequence descriptions, and maintenance and calibration information shall be included.

7.3.8.2 Air system balancing shall be accomplished in a manner to minimize throttling losses and then fan speed shall be adjusted to meet design flow conditions. Balancing procedures shall be in accordance with those established by the National Environmental Balancing Bureau (NEBB), the Association of Air Balancing Council (AABC), or similar procedures.

7.3.8.2.1 Exception to section 7.3.8.2:
(a) Damper throttling may be used for air system balancing with fan motors of 1 hp or less, or if throttling results in no greater than ½ hp fan horsepower draw above that required if the fan speed were adjusted.

7.3.8.3 Hydronic system balancing shall be accomplished in a manner to minimize throttling losses and then the pump impeller shall be trimmed or pump speed shall be adjusted to meet design flow conditions.

7.3.8.3.1 Exceptions to section 7.3.8.3:
Valve throttling may be used for hydronic systems balancing under any of the following conditions:
(a) Pumps with pump motors of 10 hp and less;
(b) If throttling results in pump horsepower draw no greater than 3 hp above that required if the impeller were trimmed;
(c) To reserve additional pump pressure capability in open circuit piping systems subject to fouling. Valve throttling pressure drop shall not exceed that expected for future fouling; or
(d) Where it can be shown that throttling will not increase overall building energy use.

7.3.8.4 HVAC control systems shall be tested to assure that control elements are calibrated, adjusted, and in proper working condition.

7.4 Heating, Ventilation and Air-Conditioning (HVAC) Systems—Prescriptive Compliance Alternative

7.4.1 Zone Controls

7.4.1.1 Zone thermostatic and humidistatic controls shall be capable of operating in sequence, the supply of heating and cooling energy to the zone. The controls shall prevent:
7.4.1.1.1 Reheating (heating air that is cooler than system mixed air);
7.4.1.2 Recooling (cooling air that is warmer than system mixed air);
7.4.1.3 Mixing or the simultaneous supply of air that has been previously mechanically heated and air that has been previously cooled, either by mechanical refrigeration or by economizer systems; and
7.4.1.4 Other simultaneous operation of heating and cooling systems to one zone.

7.4.1.2 Exceptions to section 7.4.1.1:
7.4.1.2.1 Variable air volume systems that, during periods of occupancy, are designed to reduce the air supply to each zone to a minimum before reheating, recooling, or mixing during periods of occupancy. The minimum volume setting shall be no greater than the larger of the following:
(a) 30% of the peak supply volume;
(b) The minimum volume required to meet the ventilation requirements of section 7.3.1.4; and
(c) 0.4 cfm/ft² of conditioned zone area. In addition, supply air temperatures shall be automatically reset based on representative building loads or outside air temperature by at least 25% of the difference between the design supply air and room air temperature. Zones expected to experience relatively constant loads, such as interior zones, shall be designed for the fully reset supply temperature. Supply air reset control is not required if calculations demonstrate that it increases overall building energy use;
7.4.1.2.2 Zones where special pressurization relationships or cross-contamination requirements are such that variable air volume systems are impractical, such as some areas of hospitals and laboratories. In these cases, systems shall include automatic supply air reset controls in accordance with section 7.4.1.2.1 above;
7.4.1.2.3 At least 75% of the energy for reheating or providing warm air in mixing systems is provided from site-recovered energy that would otherwise be wasted, or from non-depletable energy sources;
7.4.1.2.4 Zones where specific humidity levels are required to satisfy process needs, such as computer rooms and museums (see section 7.3.3.2); and
7.4.1.2.5 Zones with a peak supply air quantity of 300 cfm or less.

7.4.2 Economizer Controls
7.4.2.1 Each fan system shall be designed to take advantage of favorable weather conditions to reduce mechanical cooling requirements. The system shall include either of the following:
7.4.2.1.1 A temperature or enthalpy air economizer system that is capable of automatically modulating outside air and return air dampers to provide up to 85% outside air for cooling; or
7.4.2.1.2 A water economizer system that is capable of providing partial cooling even when additional mechanical cooling is required to meet the remainder of the cooling load.

7.4.2.1.3 Exceptions to section 7.4.2.1:
(a) Individual fan/cooling units with supply capacity of less than 3,000 cfm or a total cooling capacity less than 90,000 Btu/h. The total capacity of such units per building complying by this exception shall not exceed 600,000 Btu/h per building or 10% of the total installed cooling capacity, whichever is larger;
(b) Systems with air or evaporatively cooled condensers and for which one of the following is true:
(1) The system is located where the outdoor summer wet-bulb design condition (2.5% occurrence, ASHRAE Handbook, 1985 Fundamentals Volume) is more than 72 °F and annual HDD65 is less than 2,000.
(e) Systems that serve envelope dominated spaces whose design space sensible cooling load, excluding transmission and infiltration loads, is less than or equal to transmission and infiltration losses at an outdoor temperature of 60 °F;

(f) Systems serving residential spaces including hotel/motel rooms;

(g) Cooling systems for which 75% of its annual energy consumption is provided by site-recovered energy that would otherwise be wasted, or from non-depletable energy sources; and

(h) The zone(s) served by the system each have operable openings (windows, doors, etc.), the openable area of which is greater than 5% of the conditioned floor area. This exception applies only to spaces open to and within 20 ft of the operable openings. Automatic controls shall be provided that lockout system mechanical cooling when outdoor air temperatures are less than 60 °F.

7.4.2.2 Economizer systems shall be capable of providing partial cooling even when additional mechanical cooling is required to meet the remainder of the cooling load.

7.4.2.2.1 Exceptions to section 7.4.2.2:
(a) Direct expansion systems may include controls to reduce the quantity of outside air as required to prevent coil frosting at the lowest step of compressor unloading. Individual direct expansion units that have a cooling capacity of 180,000 Btu/h or less may use economizer controls that preclude economizer operation whenever mechanical cooling is required simultaneously; and

(b) Systems in climates with less than 750 average hours per year between 8 a.m. and 4 p.m. when the ambient dry bulb temperatures are between 55 °F and 69 °F inclusive. See Attachment 5A for climate data for 234 U.S. cities.

7.4.2.3 System design and economizer controls shall be such that economizer operation does not increase the building heating energy use during normal operation.

7.4.2.3.1 Exception to section 7.4.2.3:
(a) At least 75% of the energy for heating is provided from site-recovered energy that would otherwise be wasted, or from non-depletable energy sources.

7.4.3 Fan System Design Requirements.

7.4.3.1 The following design criteria apply to all HVAC fan systems used for comfort heating, ventilating and/or cooling. For the purposes of this subsection, the energy demand of a fan is the sum of the demand of all fans that are required to operate at design conditions to supply air from the heating and/or cooling source to the conditioned space(s) and return it back to the source or exhaust it to the outdoors.

7.4.3.1.1 Exceptions to section 7.4.3.1:
(a) Systems with total fan system motor horsepower of 10 hp or less;
(b) Unitary equipment for which the energy used by the fan is considered in the efficiency ratings of Section 8.0; and
(c) Total fan energy demand need not include the additional power required by air treatment or filtering systems with final pressure drops in excess of 1 in. W.C.

7.4.3.2 Constant Volume Fan Systems.

7.4.3.3 Variable Air Volume (VAV) Fan Systems.

7.4.3.3.1 For supply and return fan systems that vary system air volume automatically as a function of load, the power required by the motors for the combined system at design conditions shall not exceed 1.25 W/cfm.

7.4.3.3.2 Individual VAV fans with motors 75 hp and larger shall include controls and devices necessary for the fan motor to control demand to no more than 50% of design wattage at 50% of design air volume, based on manufacturer’s test data.

7.4.4 Pumping System Design Criteria.

7.4.4.1 The following design criteria apply to all HVAC pumping systems used for comfort heating and/or cooling. For the purposes of this section, the energy demand of a pumping system is the sum of the demand of all
pumps that are required to operate at design conditions to supply fluid from the heating and/or cooling source to the conditioned space(s) or heat transfer device(s) and return it to the source.

7.4.4.1 Exception to section 7.4.4.1:
(a) Systems with total pump system motor horsepower of 10 hp or less.

7.4.4.2 Friction Rate. Piping systems shall be designed at a design friction pressure loss rate of no more than 4.0 ft of water per 100 equivalent ft of pipe. Lower friction rates may be required for proper noise or corrosion control.

7.4.4.3 Variable Flow. Pumping systems that serve control valves designed to modulate or step open and close as a function of load, shall be designed for variable fluid flow. The system shall be capable of reducing flow to 50% of design flow or less. Flow may be varied by one of several methods, including, but not limited to, variable speed driven pumps, staged multiple pumps, or pumps riding their characteristic performance curves.

7.4.4.3.1 Exceptions to section 7.4.4.3:
(a) Systems where a minimum flow greater than 50% of the design flow is required for the proper operation of equipment served by the system, such as chillers;
(b) Systems that serve no more than one control valve;
(c) Where the overall building energy use resulting from an alternative design, such as a constant flow/variable temperature pumping system, is no more than those from a variable flow system; and
(d) Systems that include supply temperature reset controls in accordance with section 7.4.5.2 without exception.

7.4.5 System Temperature Reset Controls.

7.4.5.1 Air Systems. Systems supplying heated or cooled air to multiple zones shall include controls that automatically reset supply air temperatures by representative building loads or by outside air temperature. Temperature shall be reset by at least 25% of the design supply-air-to-room-air temperature difference. Zones that are expected to experience relatively constant loads, such as interior zones, shall be designed for the fully reset supply temperature.

7.4.5.1.1 Exceptions to section 7.4.5.1:
(a) Systems which comply with section 7.4.1 without using exceptions in sections 7.4.1.2.1 or 7.4.1.2.2 and
(b) Where it can be shown that supply air temperature reset increases overall building annual energy costs.

7.4.5.2 Hydronic Systems. Systems supplying heated and/or chilled water to comfort conditioning systems shall include controls that automatically reset supply water temperatures by representative building loads (including return water temperature) or by outside air temperature. Temperature shall be reset by at least 25% of the design supply-to-return water temperature difference.

7.4.5.2.1 Exceptions to section 7.4.5.2:
(a) Systems that comply with section 7.4.4.3 without exception;
(b) Where it can be shown that supply temperature reset increases overall building annual energy use;
(c) Systems for which supply temperature reset controls cannot be implemented without causing improper operation of heating, cooling, humidification, or dehumidification systems; or
(d) Systems with less than 600,000 Btu/h design capacity.

§ 435.108 Heating, ventilation and air-conditioning (HVAC) equipment.

8.1 General

8.1.1 This section contains minimum requirements for fundamental to good practice and/or the minimum acceptable state-of-the-art in energy efficient HVAC equipment.

8.1.2 A building shall be considered in compliance with this section if the minimum requirements of Section 8.3 are met.

8.2 Principles of Design

8.2.1 The rate of energy input(s) and the heating or cooling output(s) of all HVAC products shall be ascertainable. This information shall be based on equipment in new condition, and shall cover full load, partial load, and standby conditions. The information shall also include performance data for modes of equipment operation and at ambient conditions as specified in the
minimum equipment performance requirements below.

8.2.2 Source Systems

8.2.2.1 To allow for HVAC equipment operation at the highest efficiencies, conversion devices shall be matched to load increments, and operation of modules shall be sequenced. Oversized or large scale systems shall never be used to serve small seasonal loads (e.g., a large heating boiler to serve a summer service water heating load). Specific “low load” units shall be incorporated in the design where prolonged use at minimal capacities is expected.

8.2.2.2 Storage techniques should be used to level or distribute loads that vary on a time or spatial basis to allow operation of a device at maximum (full-load) efficiency.

8.2.2.3 All equipment shall be the most efficient (or highest COP) practical, at both design and reduced capacity (part-load) operating conditions.

8.2.2.4 Fluid temperatures for heating equipment shall be as low as practical and for cooling equipment as high as practical, while meeting loads and minimizing flow quantities.

8.3 Minimum Requirements

8.3.1 Equipment Efficiency

8.3.1.1 Minimum Equipment Efficiency. Equipment shall have a minimum efficiency at the specified rating conditions, not less than the values shown in Tables 8.3-1 through 8.3-10. Minimum efficiencies for equipment using chlorofluorocarbons (CFCs) refrigerants reflect the assumption that the use of certain refrigerants may be restricted because of ozone layer depletion concerns.

8.3.1.2 Data furnished by the equipment supplier or certified under a nationally-recognized certification program or rating procedure may be used to satisfy these requirements.

8.3.1.3 Integrated Part-Load Value (IPLV) is the descriptor for part-load efficiency for certain types of equipment. The IPLVs are found in the referenced ARI Standards. Compliance with minimum efficiency requirements specified for certain HVAC equipment shall include compliance with part-load requirements as well as standard or full-load requirements.

8.3.1.4 If nationally-recognized test procedures for combined equipment are not available, efficiencies for service water heating shall be determined using data provided by equipment and component manufacturers, employing reasonable assumptions concerning uncertain parameters.

8.3.1.5 Omission of minimum performance requirements for certain classes of HVAC equipment does not preclude use of such equipment where appropriate.

8.3.2 Field Assembled Equipment and Components

8.3.2.1 Where components, such as indoor or outdoor coils, from more than one manufacturer are used as parts of a cooling or heating unit, it shall be the responsibility of the system designer to specify component efficiencies, which when combined will provide equipment that is in compliance with the requirements of these standards, based on data provided by the component manufacturers.

8.3.2.2 Total on-site energy input to the equipment shall be determined by combining the energy inputs to all components, elements, and accessories including but not limited to compressor(s), internal circulating pump(s), condenser-air fan(s), evaporative-condenser cooling water pump(s), purge devices, viscosity control heaters, and controls.

8.3.2.3 Heat-Operated Water Chilling Package. Double-effect, heat-operated water chilling packages shall be used in lieu of single-effect equipment, due to their higher efficiency, except where the energy input is from low temperature waste-heat or non-depletable energy sources.

8.3.3 Equipment Controls

8.3.3.3 Heat pumps equipped with supplementary resistance heaters for comfort heating shall be installed with a control to prevent heater operation when the heating load can be met by the heat pump. A two-stage room thermostat, that controls the supplementary heat on its second stage, will meet this requirement. Supplementary heater operation is permitted where it
Department of Energy

§ 435.108

can be shown that supplementary heating reduces energy use. Supplementary heater operation is permitted during short transient periods of less than 15 minutes during defrost cycles.

8.3.3.3.1 Controls shall provide a means of activating the supplementary heat source on an emergency basis and a visible indicator shall be provided to indicate the emergency heat status.

8.3.4 Cooling Equipment Auxiliary Controls. Evaporator coil frosting and excessive compressor cycling at part-load conditions shall not be controlled by use of either hot gas by-pass or evaporator pressure regulator control.

8.3.4 Comfort Heating Equipment

8.3.4.1 The designer shall obtain data and information from the manufacturer of electric resistance comfort heating equipment regarding full-load and part-load energy consumption of the heating equipment over the range of voltages at which the equipment is intended to operate. All auxiliaries required for the operation of the heater equipment such as, but not limited to fans, pumps, viscosity control heaters, fuel handling equipment, and blowers shall be included in the energy input data provided by the manufacturer(s).

8.3.5 Maintenance

8.3.5.1 Provisions shall be made to provide necessary preventive maintenance information to maintain efficient operation of all HVAC equipment.
Table 8.3-1

Standard Rating Conditions and Minimum Performance

Unitary Air Conditioners and Heat Pumps - Air-Cooled, Electrically-Operated

<135,000 Btu/h Cooling Capacity - Except Packaged Terminal and Room Air Conditioners

<table>
<thead>
<tr>
<th>Reference Standards</th>
<th>Category</th>
<th>Phases</th>
<th>Subcategory & Rating Condition (Outdoor Temps. °F)</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td><65,000 Btu/h</td>
<td>Seasonal Rating³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 210-B1</td>
<td>Cooling Capacity 1</td>
<td></td>
<td>Split-System</td>
<td>10.0 SEER</td>
</tr>
<tr>
<td>AR 240-B1</td>
<td>Cooling Mode</td>
<td></td>
<td>Single-Package</td>
<td>9.7 SEER</td>
</tr>
<tr>
<td>AR 210/240-B4</td>
<td><65,000 Btu/h</td>
<td>Standard Rating (95 dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity 3</td>
<td></td>
<td>Split-System & Single-Pkg.</td>
<td>9.5 EER</td>
</tr>
<tr>
<td></td>
<td>Cooling Mode</td>
<td></td>
<td>Integrated Part-Load Value (60 dB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Split-System & Single-Pkg.</td>
<td>8.5 IPLV</td>
</tr>
<tr>
<td>≥65,000 <135,000 Btu/h</td>
<td>Standard Rating (95 dB)</td>
<td></td>
<td></td>
<td>8.9 EER</td>
</tr>
<tr>
<td></td>
<td>Cooling Mode</td>
<td>All</td>
<td>Integrated Part-Load Value (60 dB)</td>
<td>8.3 IPLV</td>
</tr>
<tr>
<td><65,000 Btu/h</td>
<td>Seasonal Rating³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity 1</td>
<td></td>
<td>Split-Systems</td>
<td>6.6 HSPF</td>
</tr>
<tr>
<td></td>
<td>Heating Mode (Heat Pumps)</td>
<td>Single-Package</td>
<td></td>
<td>6.6 HSPF</td>
</tr>
<tr>
<td><65,000 Btu/h</td>
<td>Split-System & Single Pkg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity 3</td>
<td></td>
<td>High Temp. Rating (<70°/>45°)</td>
<td>3.0 COP</td>
</tr>
<tr>
<td></td>
<td>Heating Mode</td>
<td></td>
<td>Low Temp. Rating (<15°/>80°)</td>
<td>2.0 COP</td>
</tr>
<tr>
<td>≥65,000 <135,000 Btu/h</td>
<td>Split-System & Single Pkg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity 3</td>
<td></td>
<td>High Temp. Rating (<70°/>45°)</td>
<td>3.0 COP</td>
</tr>
<tr>
<td></td>
<td>Heating Mode</td>
<td></td>
<td>Low Temp. Rating (<15°/>80°)</td>
<td>2.0 COP</td>
</tr>
</tbody>
</table>

1. To be consistent with National Appliance Energy Conservation Act of 1987 (Pub. L. 100-12)

462
Table 8.3-2

Standard Rating Conditions and Minimum Performance

Unity Air Conditioners and Heat Pumps - Evaporatively-Cooled, Electrically-Operated - Cooling Mode

<155,000 Btu/h Cooling Capacity - Except Packaged Terminal and Room Air Conditioners

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AR1 210-81</td>
<td><65,000 Btu/h</td>
<td>Standard Rating</td>
<td>80°/67wb</td>
<td>95°/75wb</td>
<td>9.3 EER</td>
</tr>
<tr>
<td>AR1 210/270-84</td>
<td>≥65,000 <155,000</td>
<td>Standard Rating</td>
<td>80°/67wb</td>
<td>95°/75wb</td>
<td>10.5 EER</td>
</tr>
<tr>
<td>CII 201 (86)</td>
<td>≥65,000 <155,000</td>
<td>Integrated Part-Load Value (80°/67wb)</td>
<td>9.7 IPLV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥65,000 <155,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8.3-3
Standard Rating Conditions & Minimum Performance

Water-Cooled Air Conditioners and Heat Pumps - Cooling Mode

<135,000 Btu/h Cooling Capacity - Electrically-Operated

<table>
<thead>
<tr>
<th>Reference Standard</th>
<th>Category</th>
<th>Rating Condition Q*</th>
<th>Indoor Air</th>
<th>Entering Water</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Source</td>
<td><65,000 Btu/h</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Pumps</td>
<td>Cooling Capacity</td>
<td>80db/67ab</td>
<td>35</td>
<td>9.3 EER</td>
<td></td>
</tr>
<tr>
<td>ARI 320-86</td>
<td>Low Temperature Rating</td>
<td>80db/67ab</td>
<td>75</td>
<td>10.2 EER</td>
<td></td>
</tr>
<tr>
<td>CTI 201 (86)</td>
<td>>65,000 <135,000 Btu/h</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity</td>
<td>80db/67ab</td>
<td>85</td>
<td>10.5 EER</td>
<td></td>
</tr>
<tr>
<td>Groundwater-Cooled</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Pumps</td>
<td><135,000 Btu/h</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Capacity</td>
<td>70 F Entering Water</td>
<td></td>
<td>11.0 EER</td>
<td></td>
</tr>
<tr>
<td>ARI 325-85</td>
<td>Low Temperature Rating</td>
<td>50 F Entering Water</td>
<td></td>
<td>11.5 EER</td>
<td></td>
</tr>
<tr>
<td>Water-Cooled</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitary</td>
<td><65,000 Btu/h</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80db/67ab</td>
<td>85</td>
<td>9.3 EER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Conditioners</td>
<td>Cooling Capacity</td>
<td>Integrated Part-Load Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARI 210-81</td>
<td>75 F Entering Water</td>
<td>8.3 IPLV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARI 210/260-84</td>
<td>>65,000 <135,000 Btu/h</td>
<td>Standard Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTI 201 (86)</td>
<td>Cooling Capacity</td>
<td>80db/67ab</td>
<td>85</td>
<td>10.5 EER</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.3-4a

Standard Rating Conditions and Minimum Performance

Packaged Terminal Air Conditioners and Heat Pumps

Air-Cooled, Electrically-Operated

<table>
<thead>
<tr>
<th>Reference Standards</th>
<th>Category</th>
<th>Subcategory & Rating Condition (Outdoor Temps. °F)</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI 310-87</td>
<td>PTAC's & PTAC H.P.'s (^2) Cooling Mode</td>
<td>Standard Rating (95 db)</td>
<td>10.0 - (0.16 x Cap. (Btu/h)/1000) EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Temp. Rating (82 db) (^1)</td>
<td>12.2 - (0.20 x Cap. (Btu/h)/1000) EER</td>
</tr>
<tr>
<td>ARI 350-87</td>
<td>PTAC H.P.'s - Heating Mode</td>
<td>Standard Rating (47db/45db)</td>
<td>2.7 COP</td>
</tr>
</tbody>
</table>

1. For multi-capacity equipment the minimum performance shall apply to each capacity step provided and allowed by the controls.

2. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15000 Btu/h, use 15000 Btu/h in the calculation.
Table B.3-4b

Standard Rating Conditions & Minimum Performance

<table>
<thead>
<tr>
<th>Reference</th>
<th>Category</th>
<th>Minimum Performance 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/AMCA RAC-1-82</td>
<td>Without Reverse Cycle and With Louvered Sides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 6000 Btuh</td>
<td>8.0 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 6000 < 8000 Btuh</td>
<td>8.5 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 8000 < 14000 Btuh</td>
<td>9.0 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 14000 < 20000 Btuh</td>
<td>8.8 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 20000 Btuh</td>
<td>8.2 EER</td>
</tr>
<tr>
<td></td>
<td>Without Reverse Cycle and Without Louvered Sides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 6000 Btuh</td>
<td>8.0 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 6000 < 20000 Btuh</td>
<td>8.5 EER</td>
</tr>
<tr>
<td></td>
<td>≥ 20000 Btuh</td>
<td>8.6 EER</td>
</tr>
<tr>
<td></td>
<td>With Reverse Cycle and With Louvered Sides</td>
<td>8.5 EER</td>
</tr>
<tr>
<td></td>
<td>With Reverse Cycle, Without Louvered Sides</td>
<td>8.0 EER</td>
</tr>
</tbody>
</table>

Table 8.3-5
Standard Rating Conditions and Minimum Performance
Water-Source and Groundwater-Source Heat Pumps - Electrically-Operated
<135000 Btu/h Cooling Capacity

<table>
<thead>
<tr>
<th>Reference Standards</th>
<th>Rating Condition °F¹</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Source Heat Pumps</td>
<td>Standard Rating</td>
<td>3.8 COP</td>
</tr>
<tr>
<td>ARI 320-86</td>
<td>70°F Entering Water²</td>
<td>3.8 COP</td>
</tr>
<tr>
<td>CTI 201 (86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater-Source Heat Pumps</td>
<td>1. High Temperature Rating</td>
<td>3.4 COP</td>
</tr>
<tr>
<td>ARI 325-85</td>
<td>70°F Entering Water²</td>
<td>3.4 COP</td>
</tr>
<tr>
<td></td>
<td>2. Low Temperature Rating</td>
<td>3.0 COP</td>
</tr>
<tr>
<td></td>
<td>50°F Entering Water²</td>
<td></td>
</tr>
</tbody>
</table>

1. Air entering indoor section 70db/60db (max.).
2. Water flow rate per manufacturer's specifications.
Table 8.3-6
Standard Rating Conditions and Minimum Performance
Large Unitary Air Conditioners and Heat Pumps - Electrically-Operated
≥ 135,000 Btu/h Cooling Capacity

<table>
<thead>
<tr>
<th>Category/Reference Standards</th>
<th>Efficiency Rating</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioners</td>
<td>EER</td>
<td>≤ 760,000 Btu/h</td>
</tr>
<tr>
<td>Air-Cooled ARI 360-65</td>
<td>IPLV</td>
<td>7.5</td>
</tr>
<tr>
<td>Air Conditioners</td>
<td>EER</td>
<td>9.6</td>
</tr>
<tr>
<td>Water/Evap.-Cooled</td>
<td>IPLV</td>
<td>9.0</td>
</tr>
<tr>
<td>ARI 360-85, CTI 201 (86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Air-Cooled - Cooling</td>
<td>EER</td>
<td>≤ 760,000 Btu/h</td>
</tr>
<tr>
<td></td>
<td>IPLV</td>
<td>7.5</td>
</tr>
<tr>
<td>- Air-Cooled - Heating</td>
<td>COP (47 °F)</td>
<td>2.9</td>
</tr>
<tr>
<td>ARI 340-86</td>
<td>COP (17 °F)</td>
<td>2.0</td>
</tr>
<tr>
<td>Condensing Units</td>
<td>EER</td>
<td>9.9</td>
</tr>
<tr>
<td>Air Cooled ARI 365-87</td>
<td>IPLV</td>
<td>11.0</td>
</tr>
<tr>
<td>Condensing Units</td>
<td>EER</td>
<td>12.9</td>
</tr>
<tr>
<td>Water/Evap.-Cooled</td>
<td>IPLV</td>
<td>12.9</td>
</tr>
<tr>
<td>ARI 365-87, CTI 201 (86)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For units that have a heating section, deduct 0.2 from all required EER's and IPLV's.
2. Condensing unit requirements are based on single-number ratings defined in paragraph 5.1.3.2 of ARI Standard 365-87.
Table 8.3-7

Standard Rating Conditions and Minimum Performance

Water-Chilling Packages - Water- and Air-Cooled - Electrically-Operated

<table>
<thead>
<tr>
<th>Reference Standards</th>
<th>Category</th>
<th>Efficiency Rating</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water - Cooled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARI 550-86 & 590-86</td>
<td>\geq 300 tons</td>
<td>COP</td>
<td>5.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>5.31</td>
</tr>
<tr>
<td>CTI 201 (86)</td>
<td>\geq 150 Tons < 300 tons</td>
<td>COP</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>< 150 tons</td>
<td>COP</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Air-Cooled With Condenser</td>
<td>COP</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>\geq 150 tons</td>
<td>COP</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>< 150 tons</td>
<td>COP</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPLV</td>
<td>3.2</td>
</tr>
</tbody>
</table>

1. Where R-22 or CFC refrigerants with equivalent ozone depletion factors are used these requirements are reduced to 4.7 COP and 4.8 IPLV (see Section 8.3.1.1)

NOTE: The levels above are minimum performance levels. Better energy efficiencies may be available, and their use is encouraged.
Table 8.3-8
Standard Rating Conditions and Minimum Performance
Boilers: Gas- and Oil-Fired

<table>
<thead>
<tr>
<th>Reference</th>
<th>Category</th>
<th>Rating Condition</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Test Procedure</td>
<td>Gas-Fired</td>
<td>Seasonal</td>
<td>AFUE</td>
</tr>
<tr>
<td>10 CFR, Part 30</td>
<td><300,000 Btu/h</td>
<td>Rating</td>
<td>80%<sup>1,3</sup></td>
</tr>
<tr>
<td>App M</td>
<td>Oil-Fired</td>
<td>Seasonal</td>
<td>AFUE</td>
</tr>
<tr>
<td></td>
<td><300,000 Btu/h</td>
<td>Rating</td>
<td>80%<sup>1</sup></td>
</tr>
<tr>
<td>AGA 221.13-82</td>
<td>Gas-Fired</td>
<td>1. Max. Rated Cap.</td>
<td>E<sub>c</sub><sup>4</sup></td>
</tr>
<tr>
<td>H.I. Mtg. Boiler Std. 86</td>
<td>≤300,000 Btu/h</td>
<td>Steady-State</td>
<td>80%</td>
</tr>
<tr>
<td>ASME PTC4.1-64</td>
<td></td>
<td>2. Min. Rated Cap.</td>
<td>E<sub>c</sub><sup>4</sup></td>
</tr>
<tr>
<td>U.I. 795-73</td>
<td></td>
<td>Steady-State</td>
<td>80%</td>
</tr>
<tr>
<td>U.I. 726-75</td>
<td>Oil-Fired</td>
<td>1. Max. Rated Cap.</td>
<td>E<sub>c</sub><sup>4</sup></td>
</tr>
<tr>
<td>H.I. Mtg. Boiler Std. 86</td>
<td>≥300,000 Btu/h</td>
<td>Steady-State</td>
<td>83%</td>
</tr>
<tr>
<td>ASME PTC 4.1-64</td>
<td></td>
<td>2. Min. Rated Cap.</td>
<td>E<sub>c</sub><sup>4</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>83%</td>
</tr>
<tr>
<td>H.I. Mtg. Boiler Std. 86</td>
<td>Oil-Fired</td>
<td>1. Max. Rated Cap.</td>
<td>E<sub>c</sub><sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>(Residual)</td>
<td>Steady-State</td>
<td>83%</td>
</tr>
<tr>
<td>ASME PTC 4.1-64</td>
<td>≥300,000 Btu/h</td>
<td>Steady-State</td>
<td>83%</td>
</tr>
</tbody>
</table>

2. Provided and allowed by the controls.
3. Except for gas-fired steam boilers for which minimum AFUE is 75%.
4. E_c = combustion efficiency, 100% - flue losses.
Table 8.3-9

Standard Rating Conditions and Minimum Performance

Warm-Air Furnaces and Combination Warm-Air Furnaces/Air-Conditioning Units

<table>
<thead>
<tr>
<th>Reference</th>
<th>Category</th>
<th>Rating Condition</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Test Procedure</td>
<td>Gas-Fired</td>
<td>Seasonal</td>
<td>AFUE</td>
</tr>
<tr>
<td>10 CFR, Part 30</td>
<td><225,000 Btu/h</td>
<td>Rating</td>
<td>78% 1,3</td>
</tr>
<tr>
<td>App. N</td>
<td>Oil-Fired</td>
<td>Seasonal</td>
<td>AFUE</td>
</tr>
<tr>
<td></td>
<td><225,000 Btu/h</td>
<td>Rating</td>
<td>78% 1</td>
</tr>
<tr>
<td>AGA 221.47-83</td>
<td>Gas-Fired</td>
<td>1. Max. Rated Cap.2</td>
<td>E_t^4</td>
</tr>
<tr>
<td></td>
<td>≥225,000 Btu/h</td>
<td>Steady-State</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>2. Min. Rated Cap.2</td>
<td>Steady-State</td>
<td>E_{t4}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>78%</td>
</tr>
<tr>
<td>U.L. 727-86</td>
<td>Oil-Fired</td>
<td>1. Max. Rated Cap.2</td>
<td>E_t^4</td>
</tr>
<tr>
<td></td>
<td>≥225,000 Btu/h</td>
<td>Steady-State</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td>2. Min. Rated Cap.2</td>
<td>Steady-State</td>
<td>E_t^4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>81%</td>
</tr>
</tbody>
</table>

2. Provided and allowed by the controls.
3. Minimum performance requirements for furnaces <45,000 Btu/h capacity are to be established by DOE under Pub. L. 100-12.
4. E_t = thermal efficiency, 100% - flue losses.
§ 435.109 Service water heating systems.

9.1 General

9.1.1 This section contains minimum and prescriptive requirements for the design of Service Water Heating Systems.

9.1.2 A building shall be considered in compliance with this section if the following conditions are met:

9.1.2.1 The minimum requirements of section 9.3 are met; and

9.1.2.2 The Service Water Heating System design complies with the prescriptive criteria of section 9.4.

Table 8.3-10

<table>
<thead>
<tr>
<th>Reference</th>
<th>Category</th>
<th>Rating Conditions</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA 283.9-86</td>
<td>Duct Furnaces</td>
<td>1. Max. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td>Gas-Fired</td>
<td>Steady-State</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Min. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>75%</td>
</tr>
<tr>
<td>AGA 283.8-85</td>
<td>Unit Heaters</td>
<td>1. Max. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td>Gas-Fired</td>
<td>Steady-State</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Min. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>75%</td>
</tr>
<tr>
<td>U.L 731-75</td>
<td>Unit Heaters</td>
<td>1. Max. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td>Oil-Fired</td>
<td>Steady-State</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Min. Rated Cap.¹</td>
<td>E_t^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steady-State</td>
<td>78%</td>
</tr>
</tbody>
</table>

¹ Provided and allowed by the controls.
² E_t = thermal efficiency, 100% - flue losses.
9.2 Principles of Design

9.2.1 Showerheads shall be designed to provide and maintain user comfort and energy savings. They should not use removable flow restricting inserts to meet flow limitation requirements.

9.2.2 Point of use water heaters shall be considered where their use will reduce energy consumption and is life cycle cost effective.

9.2.3 High temperature condensate, when returned to condensation pump tanks or other vented tanks, will have a certain portion flashed into steam, thus wasting energy. To conserve this energy, a heat exchanger shall be considered for use in the condensate return line to heat or preheat the service water, cool the condensate, and prevent flashing.

9.2.4 Storage may be used to optimize heat recovery when the flow of heat to be recovered is out of phase with the demand for heated water, or when energy use for water heating can be shifted to take advantage of off-peak rates.

9.3 Minimum Requirements

9.3.1 Sizing of Systems

9.3.1.1 Service water heating system design loads for the purpose of sizing and selecting systems shall be determined in accordance with the procedures described in chapter 54 of the ASHRAE Handbook, 1987 HVAC Systems and Applications Volume, or a similar computation procedure.

9.3.2 Equipment Efficiency

9.3.2.1 All water heaters and hot water storage tanks shall meet the criteria of Table 9.3-1. Where multiple criteria are listed, all criteria shall be met. Where no criteria are provided, no requirements need be met.
Table 9.3-1: Standard Rating Conditions and Minimum Performance of Water Heating Equipment

[January 30, 1989]

<table>
<thead>
<tr>
<th>Type</th>
<th>Fuel</th>
<th>Storage capacity (gal)</th>
<th>Input rating</th>
<th>Applicable test procedure</th>
<th>Minimum performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage water heaters</td>
<td>Electric</td>
<td><120</td>
<td><12 kW</td>
<td>DOE Test Procedures, 1985 Code of Federal Regulations Title 10, Part 430.</td>
<td>EF <0.95-0.00132V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td><100</td>
<td><75,000 Btu/h</td>
<td>DOE Test Procedures, 1985 Code of Federal Regulations Title 10, Part 30.</td>
<td>EF <0.62-0.0019V. E, 77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oil</td>
<td><50.</td>
<td><75,000 Btu/h</td>
<td>DOE Test Procedures, 1985 Code of Federal Regulations Title 10, Part 430.</td>
<td>EF <0.59-0.0019V E, 83%</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td></td>
<td><150,000 Btu/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfired Storage</td>
<td>1</td>
<td>All Volume</td>
<td>All Inputs</td>
<td></td>
<td>HL <6.5 Btu/h ft²</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>Gas</td>
<td>All Inputs</td>
<td></td>
<td>ANSI Z21.10.3—1984</td>
<td>E, 89%</td>
</tr>
<tr>
<td></td>
<td>Distill Oil</td>
<td>All Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool Heaters</td>
<td>Gas/Oil</td>
<td>All Inputs</td>
<td></td>
<td>ANSI Z21.56—1986</td>
<td>E, 78%</td>
</tr>
</tbody>
</table>

Notes for Table 9.3-1:

1. EF = Energy factor, overall heater efficiency by DOE Test Procedure E = Thermal efficiency with 70°F. eT E = Combustion efficiency; 100 percent—with smoke = 0 (trace is permitted) HL = Heat loss of tank surface area V = Storage volume in gallons

10 CFR Ch. II (1-1-98 Edition)
9.3.2.1 Exception to section 9.3.2.1
(a) Storage water heaters and hot
water storage tanks having more than
500 gallons of storage capacity need not
meet the heat loss (HL) requirements
of Table 9.3-1 if the tank surface area is
thermally insulated to R-12.5 and if a
standing pilot light is not used.

9.3.2.2 Heat Traps. Storage water
heaters not equipped with integral heat
traps and having vertical pipe risers
shall be installed with heat traps on
both the inlet and outlet. The heat
trap shall be installed directly, or as
close as possible to the outlet fittings.
Circulating systems need not employ
heat traps.

9.3.2.2.1 A heat trap may take the
form of a bent piece of tubing that
forms a loop of 360 degrees; an arrange-
ment of pipe fittings, such as elbows,
connected so that the inlet and outlet
piping make vertically upward runs
just before turning downward to con-
nect to the water heater's inlet and
outlet fittings; a commercially avail-
able heat trap; or any other type that
effectively restricts the natural tend-
ency of hot water to rise in the vertical
pipe during standby periods.

9.3.2.2.2 When the water heater out-
let is directly horizontal out of the
tank, or is piped with an elbow on the
vertical outlet and then downward,
this piping arrangement itself is effec-
tively a heat trap and a separate heat
trap is not then needed.

9.3.3 Piping Insulation
9.3.3.1 For circulating systems, pip-
ing insulation shall conform to the re-
quirements of Table 7.3-1 or an equiva-
 lent level as calculated in accordance
with Equation 7.3-1.

9.3.3.2 For non-circulating systems,
the first 8 ft of piping from a storage
system that is maintained at a con-
tant temperature shall be insulated in
accordance with Table 7.3-1, or an
equivalent level as calculated in accor-
dance with Equation 7.3-1. Systems
without a heat trap to prevent circula-
tion due to natural convection shall be
considered circulating systems.

9.3.4 Controls
9.3.4.1 Temperature. Service water
heating systems shall be equipped with
temperature controls capable of adjust-
ment from 90 °F to a temperature set-
ting compatible with intended use, ex-
cept for systems serving residential
dwelling units may be equipped with
controls capable of adjustment down to
110 °F only. (See ASHRAE Handbook,
1987 Systems and Applications Volume,
Chapter 54, Table 3).

9.3.4.1.1 Where temperatures higher
than 120 °F are required at certain out-
lets for a particular intended use, sepa-
rate remote heaters or booster heaters
shall be installed for those outlets un-
less it can be shown by calculation
that either energy is not saved by the
application of this requirement or that
the total cost over the life of the equip-
ment is not reduced.

9.3.4.1.2 Circulating Hot Water Sys-
tems and Heated Pipes. Systems de-
designed to maintain temperatures in hot
water pipes, including circulating hot
water systems and heat tape on water
pipes, shall be equipped with automatic
controls that can be set to turn off the
system when hot water is not required.

9.3.5 Equipment and Control Require-
ments for the Conservation of Hot Water
9.3.5.1 Showers used for other than
safety reasons shall limit the maxi-
mum hot water discharge to 2.75 gpm
when tested according to ANSI
A112.18.1M-1979, “Finished and Rough
Brass Plumbing Fixtures”. The de-
ger shall evaluate the use of lower
flow showerheads than 2.75 gpm, par-
ticularly for heavily used facilities. Re-
movable flow restricting inserts shall
not be used in showerheads to meet
this criterion. When flow restricting
inserts are used as a component part of
a showerhead, they shall be mechani-
cally retained at the point of manufac-
ture. [Mechanically retained means a
pushing or pulling force to remove the
flow restricting insert at 8 pounds or
more.] This requirement shall not
apply to showerheads that will cause
water to leak significantly from areas
other than the spray face, if the flow
restricting insert were removed.

9.3.5.2 Lavatories in public rest-
rooms, with the exception of lavatories
for physically handicapped persons,
shall be equipped with devices that:

(a) A maximum of 0.5 gpm:
§ 435.109

(b) 0.75 gpm if a device or fitting is used that limits the period of water discharge, such as a foot switch, fixture occupancy sensor; or

(c) 2.5 gpm if equipped with a self-closing valve;

9.3.5.2.2 Either be equipped with a foot switch or occupancy sensor or similar device or limit delivery with a self-closing valve or a foot switch to a maximum of 0.25 gallons of hot water for circulating systems;

9.3.5.2.3 Limits delivery with a self-closing valve or a foot switch to a maximum of 0.50 gallons for non-circulating systems; and

9.3.5.2.4 Limits the outlet temperature to a maximum 110 °F.

9.3.6 Swimming Pools

9.3.6.1 Pool Heaters. All pool heaters shall meet the criteria of Table 9.3-1 and be equipped with a readily accessible “on-off” switch to allow system shut-off without adjusting the thermostat setting and, when applicable, allow restarting without manually relighting the pilot light.

9.3.6.2 Pool Covers. Outdoor heated swimming pools shall be equipped with a pool cover. However, pools deriving over 70% of the energy for heating from non-depletable sources or from recovery of energy that would otherwise be wasted (computed over an operating season) need not be equipped with pool covers.

9.3.6.3 Time Switches. Time switches shall be installed on all swimming pool pumps and all electric swimming pool heaters. These switches shall allow for the shutdown of heaters during hours of peak utility demand except as is necessary in peak period operation to maintain water in a clear and sanitary condition in keeping with applicable public health standards.

9.3.6.3.1 Exceptions to section 9.3.5.3:

(a) Where public health standards require 24 hour operation of pumps; and

(b) Pumps are required to operate solar pool heating systems.

9.4 Service Hot Water Heating Systems—Prescriptive Compliance Alternative

9.4.1 Combination Service Water Heating/Space Heating Equipment

9.4.1.1 Water heaters used for combination service water and space heating shall meet the appropriate minimum efficiency requirements of both section 8.3 and 9.3.

9.4.1.2 Combination space heating and service water heating equipment shall only be used when at least one of the following conditions is met:

9.4.1.2.1 where the annual space heating energy use is less than 50% of the annual service water heating energy use;

9.4.1.2.2 where the energy input or storage volume of the combined boiler or water heater is less than twice the size of the smaller of the separate boilers or water heaters otherwise required;

9.4.1.2.3 where calculations show that the combined system uses no more energy than separate systems that meet the requirements of sections 8.3 and 9.3 or

9.4.1.2.4 where the input to the combined boiler is less than 150,000 Btu/h.

9.4.1.3 Combination function equipment (space heating, service water heating, cooling, etc.) shall comply with minimum efficiency requirements in accordance with nationally recognized test procedures. Where such procedures are not available for particular equipment designs, compliance shall be determined based on the function representing the maximum annual energy consumption, using data provided by equipment and component manufacturers.

9.4.2 Additional Equipment Efficiency Measures

9.4.2.1 Electric Water Heaters. In applications where water temperatures not greater than 145 °F are required, an economic evaluation shall be made on the potential benefit of using an electric heat pump water heater(s) instead
477

Department of Energy

§ 435.110

of electric resistance water heater(s). The analysis shall compare the extra costs of the heat pump unit with the benefits in reduced energy costs, less increased maintenance costs, over the estimated service life of the heat pump water heater.

9.4.2.1 Exception to section 9.4.2.1:
(a) Electric resistance water heaters used in conjunction with site-recovered or non-depletable energy sources or off-peak heating with thermal storage.

9.4.2.2 Gas-Fired Water Heaters. All gas-fired storage water heaters that use indoor air for combustion or draft hood dilution and that are installed in a conditioned room shall be equipped with a vent damper unless the water heater is already so equipped. Unless the water heater has an available electrical supply, the installation of such a vent damper shall not require an electrical connection. The vent damper shall be listed as meeting appropriate ANSI standards and shall be installed in accordance with manufacturer's instructions and local codes.

9.4.2.2.1 Exception to section 9.4.2.2: (a) where the cost of the damper exceeds the value of reduced energy costs over the damper's lifetime.

9.4.3 Use of Waste Heat, Solar Energy, and Thermal Storage

9.4.3.1 An evaluation shall be made of the potential for the use of condenser heat, waste energy, solar energy, or off-peak heating with thermal storage to reduce water heating energy cost.

9.4.3.2 Storage shall be used to optimize heat recovery when the flow of heat to be recovered is out of phase with the demand for heated water, or when energy use for water heating can be shifted to take advantage of off-peak rates.

§ 435.110 Energy management.

10.1 General

10.1.1 This section contains minimum requirements for building energy management systems. It describes the energy measurement, control, testing and documentation that shall be provided to the building owner. The intent is to minimize energy use by providing the building operator with design, construction and equipment data, along with a means of testing the completed facility.

10.1.2 A building shall be considered in compliance with this section if the minimum requirements of Section 10.3 are met.

10.2 Principles of Design

10.2.1 Energy Management Control Systems

10.2.1.1 An energy management control system is critical to the effective management of building energy. Energy management systems require measurements at key points in the building system and must be capable of part-load operation recognition and be equipped with controls to match system capacity to load demands.

10.2.1.2 Controls cannot correct inadequate source equipment, poorly selected components, or mismatched systems. Energy efficiency requires a design that is optimized by realistic loads prediction, careful system selection, and full control provisions.

10.2.2 Building Operating Documentation

10.2.2.1 The building construction drawings and specifications must show system types, sizes, performance criteria, controls, and materials intended for use prior to construction. The system designer shall provide or specify that documentation be provided for the education and guidance of the building operator showing the actual elements that have been installed, how they have been installed, how they were performed during testing, and how they operate as a system in the completed facility. Since minimum energy use is the ultimate goal, operating procedures are one of the major factors in controlling energy use in buildings. The activities of building occupants and operators can result in differences as great as two to one in the energy consumption of essentially similar buildings. While neither the designer nor these standards can control the way the building is actually operated, the designer shall contribute to the
education and guidance of the building operator by including this documentation in the contract specifications.

10.2.2.2 The building operator shall be provided with the following:
10.2.2.2.1 As-built drawings and specifications;
10.2.2.2.2 Operating manuals with a schematic diagram, sequence of operation and system operating criteria for each and all systems installed;
10.2.2.2.3 Where the building systems are complex, a comprehensive balancing and testing program and report to demonstrate the energy performance capabilities of the system; and
10.2.2.2.4 Maintenance manuals with complete information for all major components in the facility.

10.3 Minimum Requirements

10.3.1 Each distinct utility-provided energy service shall be metered. This shall apply to central and individual tenant meters. Such meters shall be located, or arranged, so that the meter can be visually monitored.
10.3.2 Each distinct commercially-provided energy service shall have a system to measure and record the amount of energy being delivered, based on the energy content.
10.3.3 The energy delivery systems shall be arranged to allow individual measurement of occupant lighting and outlet services, production processes, auxiliary systems, service water heating, space heating, space cooling, and HVAC delivery systems.
10.3.4 Provisions shall be made for the measurement of energy inputs and outputs (flow, temperature, pressure, etc.) to determine equipment energy consumption and installed performance capabilities and efficiencies of all heating, cooling, and HVAC delivery systems.
10.3.5 Energy Measurement Instrumentation

10.3.5.1 In buildings or tenant areas with electric service greater than 150 kVA or fuel use greater than 500,000 Btu/h, energy use shall be measured for electrical lighting, miscellaneous power outlets, HVAC systems and equipment, service hot water, and process loads and when the peak use of:

10.3.5.1.1 Production processes, including manufacturing, computers, laundries, kitchens, etc., is greater than 100 kVA or 300,000 Btu/h;
10.3.5.1.2 Auxiliary systems and service water heating is greater than 100 kVA or 300,000 Btu/h;
10.3.5.1.3 Space heating (including reheat) is greater than 100 kVA or 300,000 Btu/h;
10.3.5.1.4 Space cooling is greater than 100 kVA or 300,000 Btu/h; and
10.3.5.1.5 HVAC delivery systems is greater than 100 kVA or 300,000 Btu/h.

10.3.5.1.6 Exception to section 10.3.5.1:
(a) When there is an energy service for only 2 of the 6 categories listed, a single measurement may be made for the larger of the two energy services and the second use determined by subtraction from the primary service measurements.

10.3.6 HVAC System Controls

10.3.6.1 The designer shall designate, specify, or otherwise show in the construction documents the type of controls and control systems needed. This shall include a description or sequence of control of the system's operational procedures.
10.3.6.2 Controls may be electric, pneumatic, electronic, or direct digital. Control action may be "on/off", or proportional that can use manual, automatic, or remote reset and can have rate of action or derivative action compensation as designated by the designer. Control devices may be provided by the manufacturers of equipment or by the field installers, but all shall be compatible with the design sequence of control. The designer shall designate accuracy and long term requirements for controls.
10.3.6.3 All primary energy conversion equipment such as boilers, heat exchangers, refrigeration units, furnaces and heat pumps shall have a load activated local control loop for each piece of equipment. Controls for multiple equipment shall integrate the individual control units or provide system control for all the units.
10.3.6.4 All energy delivery systems shall have a local control loop for each system.
10.3.6.5 Energy consuming systems or components with a peak use greater
than 1 kW or 3,500 Btu/h shall be provided with a means of shut-off when occupancy or weather conditions do not require its operation.

10.3.6.6 The control equipment provided for local control loops except for "on/off" and self-contained sensor devices shall be arranged so that sensing, control action, and control setting variables can be read or tested at the device.

10.3.6.7 Control loops for terminal unit zones with less than 24 hours per day or 7 days per week occupancy shall have separate control points for day and night heating and cooling. The devices shall be capable of local resetting, and have provisions for remote management system selection of the occupied or unoccupied heating or cooling mode of operation.

10.3.7 Central Monitoring and Control Systems

10.3.7.1 A central monitoring and control system shall be provided in any building or submetered tenant space exceeding 40,000 ft² in gross floor area.

10.3.7.2 The minimum energy management requirements for such a system shall be to:

- 10.3.7.2.1 Read and retain daily totals for all energy measurement instruments;
- 10.3.7.2.2 Total all energy values weekly and record and retain values placed on a summary report;
- 10.3.7.2.3 Record and plot hourly outdoor and indoor temperatures against real time and summarize and report for each year in a format compatible with degree-days or bin temperature;
- 10.3.7.2.4 Based on time schedules, turn on or off any HVAC or service water heating system or equipment;
- 10.3.7.2.5 Based on time schedules, turn on or off major building lighting and occupancy power circuits;
- 10.3.7.2.6 Reset local loop control systems for HVAC equipment;
- 10.3.7.2.7 Monitor and verify operation of heating, cooling and energy delivery systems;
- 10.3.7.2.8 Monitor and verify operation of lighting and occupant power, auxiliary and service hot water systems;
- 10.3.7.2.9 Provide readily accessible override controls so that time-based HVAC and lighting controls may be temporarily overridden during off hours; and
- 10.3.7.2.10 Provide optimum start/stop for HVAC systems.

10.3.8 Completion Requirements

10.3.8.1 The building construction documents shall describe the requirements for placing all energy management systems in operation. This includes check-out procedures and all controls and metering equipment operational information.

10.3.8.2 The building construction documents shall describe the requirements for balancing and check-out procedures for all HVAC systems and equipment. All HVAC system balancing shall be required to be accomplished in a manner to minimize throttling losses. In air systems, fan speeds shall be required to be adjusted to meet design conditions. Water systems shall be required to be proportionally adjusted to minimize throttling losses and then corrected to design flow conditions by trimming the pump impeller or changing pump speed. The design specifications shall state that a pump shall not be brought to final flow conditions by valving.

10.3.8.3 The building construction documents shall describe the requirements for control system testing to assure that control elements are calibrated, ranges adjusted, set points ascertained, and full travel of moveable elements assured. All elements in the control system shall be tested with the system in operation.

10.3.9 Energy Performance Testing

10.3.9.1 The building construction documents shall describe the requirements for determining building energy performance in the completed, operational building.

10.3.9.2 The building energy performance testing shall be performed in winter for heating and in summer for cooling. These tests shall ascertain the in-site capabilities of all HVAC systems and equipment. Internal building loads shall be accounted for in assessing cooling performance. Heating performance shall be determined during
§ 435.111 Building energy cost compliance alternative.

11.1 General

11.1.1 This section provides an alternative compliance path that allows greater flexibility in the design of energy efficient buildings using an annual energy cost method. Energy cost is used as the common denominator in determining compliance. Using unit costs rather than units of energy or power such as Btu, kWh or kW allows the energy use contribution of different fuel sources at different times to be added and compared. This path allows for innovation in designs, materials, and equipment, such as daylighting, passive solar heating, heat recovery, better zonal temperature control, thermal storage, and other applications of off-peak electrical energy, that cannot be adequately evaluated by the prescriptive or system performance alternatives found in sections 3.4, 3.5, 5.4, 5.5, and 7.4. This compliance path is intended for design comparisons only and is not intended to be used to either predict, document, or verify annual energy consumption or annual energy costs.

11.1.2 The Building Energy Cost Compliance Alternative is to be used in lieu of the prescriptive or system performance methods and in conjunction with the minimum requirements found in sections 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 9.3 and 10.3.
11.1.3 Compliance. Compliance under this method requires detailed energy analyses of the entire Proposed Design, referred to as the Design Energy Consumption; an estimate of annual energy cost for the proposed design, referred to as the Design Energy Cost; and comparison against an Energy Cost Budget. Compliance is achieved when the estimated Design Energy Cost is less than or equal to the Energy Cost Budget (see Figure 11-1). This section provides instructions for determining the Energy Cost Budget and for calculating the Design Energy Consumption and Design Energy Cost. The Energy Cost Budget shall be determined through the calculation of monthly energy consumption and energy cost of a Prototype or Reference Building design configured to meet the requirements of sections 3.0 through 10.0.
11.14 Designers are encouraged to employ the Building Energy Cost Budget compliance method set forth in this section for evaluating proposed design alternatives in preference to using the prescriptive/system methods. The Building Energy Cost Budget establishes the relative effectiveness of each design alternative in energy cost savings, providing an energy cost basis upon which the building owner and designer may select one design over another. This Energy Cost Budget is the highest allowable calculated Energy Cost Budget for a specific building design. Other alternative designs are likely to have lower annual energy costs and life cycle costs than those that minimally meet the Energy Cost Budget.
11.1.5 The Energy Cost Budget is a numerical target for annual energy cost. It is intended to assure neutrality with respect to choices of HVAC system type, architectural design, fuel choice, etc., by providing a fixed, repeatable budget target that is independent of any of these choices wherever possible (i.e., for the prototype buildings). The Energy Cost Budget for a given building size and type will vary only with climate, the number of stories, and the choice of simulation tool. The specifications of the prototypes are necessary to assure repeatability, but have no other significance. They are not recommended energy conserving practice, or even physically reasonable practice for some climates or buildings, but represent a reasonable worst case of energy cost resulting from compliance with the spirit and the letter of sections 3.0 through 10.0.

11.2 Determination of the Annual Energy Cost Budget

11.2.1 The annual Energy Cost Budgets shall be determined in accordance with the Prototype Building Method in section 11.2.5, or the Reference Building Method in section 11.2.5. Both methods calculate an annual Energy Cost by summing the 12 monthly Energy Cost Budgets. Each monthly Energy Cost Budget is the product of the monthly Building Energy Consumption of each type of energy used multiplied by the monthly Energy Cost, per unit of the i type of energy.

11.2.2 The Energy Cost Budget shall be determined using current rate schedules or contract prices available at the building site for all non-depletable types of energy purchased. These costs shall include demand charges, rate blocks, time of use rates, interruptable service rates, delivery charges, taxes, and all other applicable rates for the type, location, operation, and size of the proposed design. The monthly Budget Energy Consumption shall be calculated from the first day through the last day of each month, inclusive.

11.2.4 The Energy Cost Budget, Design Energy Consumption and Design Energy Cost calculations are applicable only for determining compliance with these standards. They are not predictions of actual energy consumption or costs of the proposed building after construction. Actual experience will differ from these calculations due to variations such as occupancy, building operation and maintenance, weather, energy use not covered by these standards, changes in energy rates between design of the building and occupancy, and precision of the calculation tool.

11.2.5 Prototype Building Procedure

11.2.5.1 The Prototype Building procedure shall be used for all building types listed below. For mixed-use buildings the Energy Cost Budget is derived by allocating the floor space of each building type within the floor space of the prototype building. For buildings not listed below, the Reference Building procedure of section 11.2.5 shall be used.

11.2.5.1.1 Prototype buildings include:
 (a) Assembly;
 (b) Office (Business);
 (c) Retail (Mercantile);
 (d) Warehouse (Storage);
 (e) School (Educational);
 (f) Hotel/Motel;
 (g) Restaurant;
 (h) Health/Institutional; and
 (i) Multi-Family.

11.2.5.2 Use of the Prototype Building to Determine the Energy Cost Budget

11.2.5.2.1 Determine the building type of the Proposed Design using the categories in section 11.2.5.1. Using the appropriate Prototype Building characteristics from Tables 11-1 through 11-8.
11.2.5.2.3 The form, orientation, occupancy and use profiles for the Prototype Building shall be fixed as described in section 11.5.3. Envelope, lighting, other internal loads and HVAC systems and equipment shall meet the prescriptive or system requirements of section 3.0 through 10.0 and are standardized inputs.

11.2.6 Reference Building Method

11.2.6.1 The Reference Building procedure shall be used only when the Proposed Design cannot be represented by one or a combination of the Prototype Building listed in section 11.2.5.1 or the assumptions for the Prototype Building in section 11.5, such as occupancy and use-profiles, do not reasonably represent the Proposed Design.

11.2.6.2 Use of the Reference Building to Determine the Energy Cost Budget

11.2.6.2.1 Each floor shall be oriented in the same manner for the Reference Building as in the Proposed Design. The form, gross and conditioned floor areas of each floor and the number of floors shall be the same as in the Proposed Design. All other characteristics, such as lighting, envelope and HVAC systems and equipment, shall meet the prescriptive system requirements of section 3.0 through 10.0.

11.2.7 Calculation Procedure and Simulation Tool

11.2.7.1 The Prototype or Reference Buildings shall be modeled using the criteria of section 11.5 and section 11.6. The modeling shall use a climate data set appropriate for both the site and the complexity of the energy conserving features of the design. ASHRAE Weather Year for Energy Calculations (WYEC) data or bin weather data shall be a default choice.

11.3 Determination of the Design Energy Consumption and Design Energy Cost

11.3.1 The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods, assumptions, climate data, and simulation tool as were used to establish the Energy Cost Budget, except as explicitly stated in 11.5. The Design Energy Cost shall be calculated per Equation 11-3. If the Proposed Design includes cogeneration or non-depletable energy sources designed for the sale of energy off-site, then energy cost and income resulting from outside sales shall not be used to reduce the Design Energy Costs. Such systems shall be modeled as operating to supply energy needs of the Proposed Design only.

\[
\text{DECOS} = \text{DECOS}_m + \ldots + \text{DECOS}_m + \ldots + \text{DECOS}\text{dec}
\]

Equation 11-3

Based on:

\[
\text{DECOS}_m = \text{DECON}_{m}\times\text{ECOS}_{m1} + \ldots + \text{DECON}_{m}\times\text{ECOS}_{mi}
\]

Equation 11-4

Where:

DECOS = The annual Design Energy Cost
DECOS$_{m}$ = The monthly Design Energy Cost
ICON$_{m}$ = The monthly Design Energy Consumption of the ith type of energy
ECOS$_{m}$ = The monthly Energy Cost per unit of the ith type of energy

The DECON$_{m}$ shall be calculated from the first day through the last day of the month, inclusive.

11.4 Compliance

11.4.1 If the Design Energy Cost is less than or equal to the Energy Cost Budget, and all of the minimum requirements of sections 3.0 through 10.0 are met, the Proposed Design complies with the standards.

11.5 Standard Calculation Procedure

11.5.1 The Standard Calculation Procedure consists of methods and assumptions for calculating the Energy Cost Budget for the Prototype or Reference Building and the Design Energy Consumption and Design Energy Cost of the Proposed Design. In order to maintain consistency between the Energy Cost Budget and the Design Energy Cost, the input assumptions to be used are stated below. These inputs shall be used to determine the Energy Cost Budget and the Design Energy Consumption.
11.5.2 Prescribed assumptions shall be used without variation. Default assumptions shall be used unless the designer can demonstrate that a different assumption better characterizes the building's energy use over its expected life. No modified default assumptions shall be used in modeling both the Prototype or Reference Building and the Proposed Design unless the designer demonstrates clear cause to do otherwise. Special procedures for speculative buildings are discussed in section 11.5.9. Shell buildings may not use section 11.0.

11.5.3 Orientation and Shape

11.5.3.1 The Prototype Building shall consist of the same number of stories, and gross and conditioned floor area as the Proposed Design, with equal area per story. The building shape shall be rectangular, with a 2.5:1 aspect ratio. The long dimensions of the building shall face East and West. This is intended to provide an energy budget that can be met even if there are unfavorable site constraints. The fenestration shall be uniformly distributed in proportion to exterior wall area.

11.5.3.2 Floor-to-floor height for the Prototype Building shall be 13 ft except for dwelling units in hotels/motels and multi-family high rise residential buildings where floor-to-floor height shall be 9.5 ft.

11.5.3.3 The Reference Building shall consist of the same number of stories, and gross floor area for each story as the Proposed Design. Each floor shall be oriented in the same manner as the Proposed Design. The geometric form shall be the same as the Proposed Design.

11.5.4 Internal Loads

11.5.4.1 The systems and types of energy specified in this section are intended only as constraints in calculating the Energy Cost Budget. They are not intended as either requirements or recommendations for either systems or the type of energy to be used in the Proposed Design or for calculation of Design Energy Cost.

11.5.4.2 Internal loads for multi-family high rise residential buildings are presented in Table 11-1. These assumptions shall be prescribed assumptions. Internal loads for other building types shall be modeled as noted in this subsection.

11.5.4.2.1 Occupancy

(a) Occupancy schedules shall be Default Assumptions. The same assumptions shall be made in computing Design Energy Consumption as were used in calculating the Energy Cost Budget.

(b) Table 11-2, Occupancy Density, establishes the density, in ft?person of conditioned floor area, to be used for each building type. Table 11-3, Building Schedule Percentage Multipliers, establishes the percentage of total occupants in the building by hour of the day for each building type.

11.5.4.2.2 Lighting

(a) Interior Lighting Power Allowance (ILPA), for calculating the Energy Cost Budget shall be determined from section 3.0. The lighting power used to calculate the Design Energy Consumption shall be the actual adjusted power for lighting in the Proposed Design. If the lighting controls in the Proposed Design are more effective at saving energy than those required by section 3.3, the actual installed lighting power shall be used along with the schedules reflecting the action of the controls to calculate the Design Energy Consumption. This actual installed lighting power shall not be adjusted by the Power Adjustment Factors listed in Table 3.5-2.

(b) Lighting energy profiles are shown in Table 11-3 that establish the percentage of the lighting load switched-on in each Prototype or Reference Building by hour of the day. These profiles are default assumptions and can be changed when calculating the Energy Cost Budget to provide, for example, a 12 hour rather than an 8 hour work day.

11.5.4.2.3 Receptacles

(a) Receptacle loads and profiles are default assumptions. The same assumptions shall be made in calculating Design Energy Consumption as were used in calculating the Energy Cost Budget.

(b) Receptacle loads include all general service loads that are typical in a...
building. These loads exclude any process electrical usage and HVAC primary or auxiliary electrical usage. Table 11-4, Receptacle Power Densities, establishes the density, in W/ft², to be used for each building type. The receptacle energy profiles shall be the same as the lighting energy profiles in Table 11-3. This profile establishes the percentage of the receptacle load that is switched on by hour of the day and by building type.

11.5.5 Building Exterior Envelope

11.5.5.1 Insulation and Glazing

11.5.5.1.1 The insulation and glazing characteristics of the Prototype and Reference Building envelope shall be determined by using the first column under “Base Case”, with no assumed overhangs for the appropriate Alternate Component Tables (ACP) in section 5.0, as defined by climate range. The insulation and glazing characteristics from this ACP are Prescribed Assumptions for Prototype and Reference Buildings for calculating the Energy Cost Budget. In calculating the Design Energy Consumption of the Proposed Design, the envelope characteristics of the Proposed Design shall be used.

11.5.5.2 Infiltration

11.5.5.2.1 For Prototype and Reference Buildings, infiltration assumptions shall be prescribed assumptions for calculating the Energy Cost Budget and default assumptions for the Design Energy Consumption. Infiltration shall impact perimeter zones only.

11.5.5.2.2 When the HVAC system is switched “on”, no infiltration shall be assumed. When the HVAC system is switched “off”, the infiltration rate for buildings with or without operable windows shall be assumed to be 0.038 cfm/ft² of gross exterior wall. Hotels/motels and multi-family high rise residential buildings shall have infiltration rates of 0.038 cfm/ft² of gross exterior wall area at all times.

11.5.5.3 Envelope and Ground Absorptivities

11.5.5.3.1 For Prototype and Reference Buildings, absorptivity assumptions shall be prescribed assumptions for computing the Energy Cost Budget and default assumptions for computing the Design Energy Consumption. The solar absorptivity of opaque elements of the building envelope is assumed to be 70%. The solar absorptivity of ground surfaces is assumed to be 80% (20% reflectivity).

11.5.5.4 Window Management

11.5.5.4.1 For the Prototype and Reference Building, window management drapery assumptions shall be prescribed assumptions for setting the Energy Cost Budget. No draperies shall be the default assumption for computing the Design Energy Consumption. Glazing is assumed to be internally shaded by medium-weight draperies, closed one-half time. The draperies shall be modeled by assuming that one-half the area in each zone is draped and one-half is not. If manually-operated draperies, shades, or blinds are to be used in the Proposed Design, the Design Energy Consumption shall be calculated by assuming they are effective over one-half the glazing area in each zone.

11.5.5.5 Shading

11.5.5.5.1 For Prototype and Reference buildings and the Proposed Design, shading by permanent structures, terrain, and vegetation shall be taken into account for computing energy consumption, whether or not these features are located on the building site. A permanent fixture is one that is likely to remain for the life of the Proposed Design.

11.5.6 HVAC Systems and Equipment

11.5.6.1 The specifications and requirements for the HVAC systems of the Prototype and Reference Buildings shall be those in Table 11-5, HVAC Systems for Prototype and Reference Buildings. For the calculation of the Design Energy Consumption, the HVAC systems and equipment of the Proposed Design shall be used.

11.5.6.2 The systems and types of energy presented in Table 11-5 are intended only as constraints in calculating the Energy Cost Budget. They are not intended as either requirements or recommendations for either systems or the type of energy to be used in the...
Department of Energy

Proposed Building or for the calculation of the Design Energy Cost.

11.5.6.3 HVAC Zones

11.5.6.3.1 HVAC zones for calculating the Energy Cost Budget of the Prototype or Reference Building shall consist of at least four perimeter and one interior zone per floor. Prototype Buildings shall have one perimeter zone facing each cardinal direction. The perimeter zones of Prototype and Reference Buildings shall be 15 ft in width, or one-third the narrow dimension of the building, when this dimension is between 30 ft and 45 ft inclusive, or one-half the narrow dimension of the building when this dimension is less than 30 ft. Zoning requirements shall be a default assumption for calculating the Energy Cost Budget. For multi-family high rise residential buildings, the prototype building shall have one zone per dwelling unit. The proposed design shall have one zone per unit unless zonal thermostatic controls are provided within units; in this case, two zones per unit shall be modeled. Building types such as assembly or warehouse may be modeled as a single zone if there is only one space.

11.5.6.3.2 For calculating the Design Energy Consumption, no fewer zones shall be used than were in the Prototype and Reference Buildings. The zones in the simulation shall correspond to the zones provided by the controls in the Proposed Design. Thermally similar zones, such as those facing one orientation on different floors, may be grouped together for the purposes of either the Design Energy Consumption or Energy Cost Budget simulation.

11.5.6.4 Equipment Sizing and Redundant Equipment

11.5.6.4.1 For calculating the Energy Cost Budget of Prototype or Reference Buildings, HVAC equipment shall be sized to meet the requirements of section 7.3.2, without using any of the exceptions. The size of equipment shall be that required for the building without process loads considered. The designer shall determine the final equipment sizing including the process loads by separate calculations. Redundant and/or emergency equipment need not be simulated if it is controlled so that it will not be operated during normal operations of the building. The designer shall document the installation of process equipment and the size of process loads.

11.5.6.4.2 For calculating the Design Energy Consumption, actual air flow rates and installed equipment size shall be used in the simulation, except that excess capacity provided to meet process loads need not be modeled if the process load was not modeled in setting Energy Cost Budget. Equipment sizing in the simulation of the Proposed Design shall correspond to the equipment actually selected for the design and the designer shall not use equipment sized automatically by the simulation tool.

11.5.6.4.3 Redundant and/or emergency equipment need not be simulated if it is controlled to not be operated during normal operations of the building.

11.5.7 Service Water Heating

11.5.7.1 The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in Table 11-6. The service water heating loads from Table 11-6 are prescribed assumptions for multi-family high rise residential buildings and default assumptions for all other buildings. The same service water heating load assumptions shall be made in calculating Design Energy Consumption as were used in calculating the Energy Cost Budget.

11.5.7.2 The service water heating system, including piping losses for the Prototype Building, shall be modeled using the methods of the ASHRAE Handbook, 1987 HVAC Systems and Applications Volume using a system that meets all requirements of section 9.0. The service water heating equipment for the Prototype or Reference Building shall be either natural gas or #2 fuel oil, if natural gas is not available at the site, or an electric heat pump.

11.5.7.3 Exception to section 11.5.7:

11.5.7.3.1 If electric resistance service water heating is preferable to an electric heat pump when analyzed according to the criteria of section 9.3.7.1

§ 435.111
or when service water temperatures exceeding 145°F are required for a particular application, electric resistance water heating may be used.

11.5.8 Controls

11.5.8.1 All occupied conditioned spaces in the Prototype, Reference and Proposed Design Buildings in all climates shall be simulated as being both heated and cooled. The assumptions in this subsection are prescribed assumptions. If the Proposed Design does not include equipment for cooling or heating, the Design Energy Consumption shall be determined by the specifications for calculating the Energy Cost Budget as described in Table 11-7.

11.5.8.2 Exceptions to section 11.5.8:

11.5.8.2.1 If a building is to be provided with only heating or cooling, both the Prototype or Reference Building and the Proposed Design shall be simulated, using the same assumptions. If such an assumption is made, the analysis shall show that the building interior temperature meets the comfort criteria of ANSI/ASHRAE 55-1981 "Thermal Environmental Conditions for Human Occupancy," at least 98% of the occupied hours during the year.

11.5.8.2.2 If warehouses are not intended to be mechanically cooled, both the Energy Cost Budget and Design Energy Consumption shall be modeled assuming no mechanical cooling; and

11.5.8.2.3 In climates where winter design temperature (97.5% occurrence) is greater than 59°F, space heating need not be modeled.

11.5.8.3 Space temperature controls for the Prototype or Reference Building, except multi-family high rise residential buildings shall be set at 70°F for space heating and 75°F for space cooling with a deadband per section 7.3.4.5. The system shut off during off-hours shall be according to the schedule in Table 11-3, except that the heating system shall cycle on if any space should drop below the night setback setting of 55°F. There shall be no similar setpoint during the cooling season. Lesser deadband ranges may be used in calculating the Design Energy Consumption.

11.5.8.3.1 Exceptions to section 11.5.8.3:

(a) Setback shall not be modeled in determining either the Energy Cost Budget or Design Energy Cost if setback is not realistic for the Proposed Design, such as 24 hour/day operations. Health facilities need not have night setback during the heating season;

(b) Hotel/motels and multi-family high rise residential buildings shall have a night setback temperature of 60°F from 11:00 p.m. to 6:00 a.m. during the heating season; and

(c) If deadband controls are not to be installed, the Design Energy Cost shall be calculated with both heating and cooling thermostat setpoints set to the same value between 70°F and 75°F inclusive, assumed to be constant for the year.

11.5.8.3.2 For multi-family buildings, the thermostat schedule for the dwelling units shall be as in Table 11-8.

(a) The Prototype Building shall use the single zone schedule. The Proposed Design shall use the two-zone schedule only if zonal thermostatic controls are provided. For Proposed Designs that use heat pumps employing supplementary heat, the controls used to switch on the auxiliary heat source during morning warm-up periods shall be simulated accurately. The thermostat assumptions for multi-family high-rise buildings are prescribed assumptions.

11.5.8.4 When providing for outdoor air ventilation in calculating the Energy Cost Budget, controls shall be assumed to close the outside air intake to reduce the flow of outside air to 0 cfm during setback and unoccupied periods. Ventilation using inside air may still be required to maintain scheduled setback temperature. Outside air ventilation, during occupied periods, shall be as required by ASHRAE Standard 62-1981, "Ventilation for Acceptable Indoor Air," or the Proposed Design, whichever is greater.

11.5.8.5 If humidification is to be used in the Proposed Design, the same level of humidification and system type shall be used in the Prototype or Reference Building. If dehumidification requires subcooling of supply air, then reheat for the Prototype or Reference Building shall be from recovered waste heat such as condenser waste heat.
11.5.9 Speculative Buildings

11.5.9.1 Lighting

11.5.9.1.1 The interior lighting power allowance (ILPA) for calculating the Energy Cost Budget shall be determined from Table 3.4-1. The Design Energy Consumption may be based on an assumed adjusted lighting power for future lighting improvements.

(a) The assumption about future lighting power used to calculate the Design Energy Consumption must be documented so that the future installed lighting systems may be in compliance with these standards. Documentation must be provided to enable future lighting systems to use either the Prescriptive method of section 3.4 or the Systems Performance method of section 3.5.

(b) Documentation for future lighting systems that use the Prescriptive method of section 3.4 shall be stated as a maximum adjusted lighting power for the tenant spaces. The adjusted lighting power allowance for tenant spaces shall account for the lighting power provided for the common areas of the building.

(c) Documentation for future lighting systems that use the Systems Performance method of section 3.5 shall be stated as a required lighting adjustment. The required lighting adjustment is the whole building lighting power assumed in order to calculate the Design Energy Consumption minus the ILPA value from Table 3.4-1 that was used to calculate the Energy Cost Budget. When the required lighting adjustment is less than zero, a complete lighting design must be developed for one or more representative tenant spaces, demonstrating acceptable lighting within the limits of the assumed lighting power allowance.

11.5.9.2 HVAC Systems and Equipment

11.5.9.2.1 If the HVAC system is not completely specified in the plans, the Design Energy Consumption shall be based on reasonable assumptions about the construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC systems and equipment may be in compliance with these standards.

11.6 The Simulation Tool

11.6.1 Annual energy consumption shall be simulated with a multi-zone, 8760 hours per year building energy model. The model shall account for:

11.6.1.1 The dynamic heat transfer of the building envelope such as solar and internal gains;

11.6.1.2 Equipment efficiencies as a function of load and climate;

11.6.1.3 Lighting and HVAC system controls and distribution systems by simulating the whole building;

11.6.1.4 The operating schedule of the building including night setback during various times of the year; and

11.6.1.5 Energy consumption information at a level necessary to determine the Energy Cost Budget and Design Energy Cost through the appropriate utility rate schedules.

11.6.2 While the simulation tool should simulate an entire year on an hour by hour basis (8760 hours), programs that approximate this dynamic analysis procedure and provide equivalent results are acceptable.

11.6.3 Simulation tools shall be selected for their ability to simulate accurately the relevant features of the building in question, as shown in the tool’s documentation. For example, a single zone model shall not be used to simulate a large, multi-zone building, and a steady-state model such as the degree-day method shall not be used to simulate buildings when equipment efficiency or performance is significantly affected by the dynamic patterns of weather, solar radiation, and occupancy. Relevant energy-related features shall be addressed by a model such as daylighting, atriums or sunspaces, night ventilation or thermal storage, chilled water storage or heat recovery, active or passive solar systems, zoning and controls of heating and cooling systems, and ground-coupled buildings. In addition, models shall be capable of translating the Design Energy Consumption into energy cost using actual utility rate schedules with the coincidental electrical demand of a building. Examples of public domain models capable of handling such complex building systems and energy cost translations available in the United States are DOE-2.1C and
§ 435.111

10 CFR Ch. II (1-1-98 Edition)

BLAST 3.0 and in Canada, Energy Systems Analysis Series.

11.6.4 All simulation tools shall use scientifically justifiable documented techniques and procedures for modeling building loads, systems, and equipment. The algorithms used in the program shall have been verified by comparison with experimental measurements, loads, systems, and equipment.

<table>
<thead>
<tr>
<th>HOUR</th>
<th>OCCUPANTS</th>
<th>LIGHTS</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SENSIBLE</td>
<td>LATENT</td>
<td>SENSIBLE</td>
</tr>
<tr>
<td></td>
<td>SENSIBLE</td>
<td>LATENT</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>260</td>
<td>980</td>
</tr>
<tr>
<td>8</td>
<td>210</td>
<td>200</td>
<td>840</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>300</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
<td>260</td>
<td>960</td>
</tr>
<tr>
<td>21</td>
<td>300</td>
<td>260</td>
<td>960</td>
</tr>
<tr>
<td>22</td>
<td>300</td>
<td>260</td>
<td>960</td>
</tr>
<tr>
<td>23</td>
<td>300</td>
<td>260</td>
<td>960</td>
</tr>
<tr>
<td>24</td>
<td>300</td>
<td>260</td>
<td>960</td>
</tr>
</tbody>
</table>
TABLE 11-1 (CONT.)

| MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDING SCHEDULES |
| (INTERNAL LOADS PER DWELLING UNIT Btu/h) |

<table>
<thead>
<tr>
<th>Two-Zone Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>
Table 11-2
Occupancy Density

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Conditioned Floor Area</th>
<th>$\text{Ft}^2/\text{Person}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Warehouse</td>
<td></td>
<td>15000</td>
</tr>
<tr>
<td>School</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Health/Institutional</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Multi-family High Rise</td>
<td></td>
<td>2 per unit<sup>1</sup></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat generation: Btu/h per person: 230 Btu/h per person sensible, and 190 Btu/h per person latent.

1. See Table 11-1
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLY WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>OCCUPANCY SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLY WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>75</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>LING & RECEP SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSEMBLY WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HVAC SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OFFICE WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>95</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>OCCUPANCY SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OFFICE WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>90</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>LING & RECEP SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OFFICE WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HVAC SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Table 11-3 (Continued)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Building Schedule Percentage Multipliers</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retail</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retail</td>
<td>HVAC</td>
<td>Weekday:</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>Retail</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>60</td>
<td>55</td>
<td>60</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>70</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>50</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Occupancy</td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>70</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
</tr>
<tr>
<td>Warehouse</td>
<td>HVAC</td>
<td>Weekday:</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>off</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Weekday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saturday:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sunday:</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 11-3 (Continued)

BUILDING SCHEDULE PERCENTAGE MULTIPLIERS

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHOOL WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>75</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>45</td>
<td>15</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>SCHOOL SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>SCHOOL SUNDAY:</td>
<td>0</td>
</tr>
</tbody>
</table>

LIGHT & RECEPT WEEKDAY:	0	0	0	0	0	0	0	0	0	30	85	95	95	80	80	80	70	50	50	35	35	35	35	30	0	0
LIGHT & RECEPT SATURDAY:	0	0	0	0	0	0	0	0	0	15	15	15	15	15	0	0	0	0	0	0	0	0	0	0	0	
LIGHT & RECEPT SUNDAY:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

SCHOOL WEEKDAY:	OFF
SCHOOL SATURDAY:	OFF
SCHOOL SUNDAY:	OFF

SCHOOL WEEKDAY:	0	0	0	0	0	0	0	5	30	55	60	70	75	80	80	70	70	50	50	30	30	20	20	20	0	0
SCHOOL SATURDAY:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SCHOOL SUNDAY:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

HOTEL/Motel WEEKDAY:	90	90	90	90	90	90	70	40	40	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
HOTEL/Motel SATURDAY:	90	90	90	90	90	90	70	50	50	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
HOTEL/Motel SUNDAY:	70	70	70	70	70	70	70	50	50	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30

HOTEL/Motel WEEKDAY:	20	15	15	15	15	15	15	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
HOTEL/Motel SATURDAY:	20	20	20	20	20	20	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
HOTEL/Motel SUNDAY:	30	30	20	20	20	20	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

HOTEL/Motel WEEKDAY:	ON
HOTEL/Motel SATURDAY:	ON
HOTEL/Motel SUNDAY:	ON

<p>| HOTEL/Motel WEEKDAY: | 20 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| HOTEL/Motel SATURDAY: | 20 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| HOTEL/Motel SUNDAY: | 25 | 20 |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESTAURANT WEEKDAY:</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>80</td>
<td>70</td>
<td>40</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>RESTAURANT OCCUPANCY SATURDAY:</td>
<td>30</td>
<td>25</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>RESTAURANT SUNDAY:</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION WEEKDAY:</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION OCCUPANCY SATURDAY:</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION SUNDAY:</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>RESTAURANT WEEKDAY:</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>55</td>
<td>45</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>55</td>
<td>60</td>
<td>50</td>
<td>55</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>RESTAURANT SATURDAY:</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>65</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>RESTAURANT SUNDAY:</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>HEALTH WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>HEALTH SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>HEALTH SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>LIGHTING & RECEPTION SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>HEALTH WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>40</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>HEALTH SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>HEALTH SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>HEALTH WEEKDAY:</td>
<td>ON</td>
</tr>
<tr>
<td>HEALTH SATURDAY:</td>
<td>ON</td>
</tr>
<tr>
<td>HEALTH SUNDAY:</td>
<td>ON</td>
</tr>
<tr>
<td>MULTI-FAMILY WEEKDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>35</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>MULTI-FAMILY SATURDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>45</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>65</td>
<td>55</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>MULTI-FAMILY SUNDAY:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>35</td>
<td>55</td>
<td>65</td>
<td>70</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLE 11-3 (Continued)
BUILDING SCHEDULE PERCENTAGE MULTIPLIERS
NOTES FOR TABLE 11-3

2 Table 11-3 contains multipliers for converting the nominal values for building occupancy (Table 11-2), receptacle power density (Table 11-4), service hot water (Table 11-6), and lighting energy (Section 3.4 or 3.5) into time series data for estimating building loads under the Standard Calculation Procedure.

For each standard building profile there are three series - one each for weekdays, Saturday and Sunday. There are 24 elements per series. These represent the multiplier that should be used to estimate building loads from 12 a.m. to 1 a.m. (series element #1) through 11 p.m. to 12 a.m. (series element #24). The estimated load for any hour is simply the multiplier from the appropriate standard profile multiplied by the appropriate value from the tables cited above.

3 The Building HVAC System Schedule listed in Table 11-3 lists the hours when the HVAC system shall be considered "on" or "off" in accordance with Section 11.5.5.2.
TABLE 11-4
RECEPTACLE POWER DENSITIES

<table>
<thead>
<tr>
<th>BUILDING TYPE</th>
<th>W/ft² of conditioned floor area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>0.25</td>
</tr>
<tr>
<td>Office</td>
<td>0.75</td>
</tr>
<tr>
<td>Retail</td>
<td>0.25</td>
</tr>
<tr>
<td>Warehouse</td>
<td>0.1</td>
</tr>
<tr>
<td>School</td>
<td>0.5</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>0.25</td>
</tr>
<tr>
<td>Restaurant</td>
<td>0.1</td>
</tr>
<tr>
<td>Health</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-Family High Rise Residential</td>
<td>Included in lights and equipment portions of Table 11-1</td>
</tr>
</tbody>
</table>
Table 11-5

HVAC Systems of Prototype and Reference Buildings

<table>
<thead>
<tr>
<th>BUILDING/SPACE OCCUPANCY</th>
<th>SYSTEM NO.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Churches (any size)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. ≤50,000 ft² or ≤5 floors</td>
<td>1 or 3</td>
<td>Note 1</td>
</tr>
<tr>
<td>c. >50,000 ft² or >3 floors</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ≤20,000 ft²</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. >20,000 ft² and either ≤3 floors or ≤75,000 ft²</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c. >75,000 ft² or >3 floors</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ≤50,000 ft²</td>
<td>1 or 3</td>
<td>Note 1</td>
</tr>
<tr>
<td>b. >50,000 ft²</td>
<td>4 or 5</td>
<td>Note 1</td>
</tr>
<tr>
<td>Warehouse</td>
<td>1</td>
<td>Note 1</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ≤75,000 ft² or ≤3 floors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. >75,000 ft² or >3 floors</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ≤3 stories</td>
<td>2 or 7</td>
<td>Note 5, 7</td>
</tr>
<tr>
<td>b. >3 stories</td>
<td>6</td>
<td>Note 6</td>
</tr>
<tr>
<td>Restaurant</td>
<td>1 or 3</td>
<td>Note 1</td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Nursing Home (any size)</td>
<td>2 or 7</td>
<td>Note 7</td>
</tr>
<tr>
<td>b. ≤15,000 ft²</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. >15,000 ft² and ≤50,000 ft²</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>d. >50,000 ft²</td>
<td>5</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>Multi-Family High Rise Residential >3 stories</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

1. Space and Service Water Heating budget calculations shall be made using both electricity and natural gas. The Energy Cost Budget shall be the lower of these two calculations. If natural gas is not available at the rate, electricity and #2 fuel oil shall be used for the budget calculations.

2. The space types and energy types presented in this table are not intended as requirements or recommendations for the proposed design. Floor areas below are the total conditioned floor areas for the listed occupancy type in the building. The number of floors indicated below is the total number of occupied floors for the listed occupancy type.
TABLE 11-6
SERVICE HOT WATER QUANTITIES

| Building Type | Btu/Person-hour
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assembly</td>
<td>215</td>
</tr>
<tr>
<td>2. Office</td>
<td>175</td>
</tr>
<tr>
<td>3. Retail</td>
<td>135</td>
</tr>
<tr>
<td>4. Warehouse</td>
<td>225</td>
</tr>
<tr>
<td>5. School</td>
<td>215</td>
</tr>
<tr>
<td>6. Hotel/Motel</td>
<td>1110</td>
</tr>
<tr>
<td>7. Restaurant</td>
<td>300</td>
</tr>
<tr>
<td>8. Health</td>
<td>135</td>
</tr>
<tr>
<td>9. Multi-family</td>
<td></td>
</tr>
<tr>
<td>High Rise</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>1700²</td>
</tr>
</tbody>
</table>

1. This value is the number to be multiplied by the percentage multipliers of the building profile schedules in Table 11-4. See Table 11-2 for occupancy levels.

2. Total hot water use per dwelling unit for each hour shall be 3600 Btu/h times the multi-family high rise residential building SWH system multiplier from Table 11-3.
Table 11-7

<table>
<thead>
<tr>
<th>HVAC COMPONENT</th>
<th>SYSTEM #1</th>
<th>SYSTEM #2</th>
<th>SYSTEM #3</th>
<th>SYSTEM #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Description</td>
<td>Packaged rooftop single zone, one unit per zone</td>
<td>Packaged terminal air conditioner with space heater or heatpump, one heating/cooling unit per zone</td>
<td>Air handler per zone with central plant</td>
<td>Packaged rooftop HVAC w/ perimeter reheat</td>
</tr>
<tr>
<td>Fan System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design supply circulation rate</td>
<td>Note 9</td>
<td>Note 10</td>
<td>Note 9</td>
<td>Note 9</td>
</tr>
<tr>
<td>Supply fan total static pressure</td>
<td>1.3 in. W.C.</td>
<td>N/A</td>
<td>2.0 in. W.C.</td>
<td>3.0 in. W.C.</td>
</tr>
<tr>
<td>Combined supply fan, motor, and drive efficiency</td>
<td>40%</td>
<td>N/A</td>
<td>50%</td>
<td>45%</td>
</tr>
<tr>
<td>Supply fan control</td>
<td>Constant volume</td>
<td>Fan cycles with call for heating or cooling</td>
<td>Constant volume</td>
<td>VAV w/ forward curved centrifugal fan and variable inlet vanes</td>
</tr>
<tr>
<td>Return fan total static pressure</td>
<td>N/A</td>
<td>N/A</td>
<td>0.6 in. W.C.</td>
<td>0.6 in. W.C.</td>
</tr>
<tr>
<td>Combined return fan, motor, and drive efficiency</td>
<td>N/A</td>
<td>N/A</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Return fan control</td>
<td>N/A</td>
<td>N/A</td>
<td>Constant volume</td>
<td>VAV w/ forward curved centrifugal fan and discharge dampers</td>
</tr>
<tr>
<td>Cooling System</td>
<td>Direct expansion air cooled</td>
<td>Direct expansion air cooled</td>
<td>Chilled water (Note 11)</td>
<td>Direct expansion air cooled</td>
</tr>
<tr>
<td>Heating System</td>
<td>Furnace, heatpump, or electric resistance (Note 8)</td>
<td>Heatpump w/ electric resistance auxiliary or air conditioner</td>
<td>Hot water (Note 8, 12)</td>
<td>Hot water (Note 12) or electric resistance (Note 8)</td>
</tr>
<tr>
<td>Remarks</td>
<td>Drybulb economizer per Section 7.4.3 (diasometric relief)</td>
<td>No economizer</td>
<td>Drybulb economizer per Section 7.4.3</td>
<td>Drybulb economizer per Section 7.4.3 Minimum HVAC setting per 7.4.3 exception 1. Supply air reset by zone of greatest cooling demand.</td>
</tr>
</tbody>
</table>
Table 11-7, (Continued)

HVAC System Description for Prototype and Reference Buildings

<table>
<thead>
<tr>
<th>HVAC COMPONENT</th>
<th>SYSTEM #5</th>
<th>SYSTEM #6</th>
<th>SYSTEM #7</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Description</td>
<td>Built-up central VAV with perimeter reheat</td>
<td>Four-pipe fan coil per zone with central plant</td>
<td>Water source heat pump</td>
</tr>
<tr>
<td>Fan System</td>
<td>Note 9</td>
<td>Note 9</td>
<td>Note 10</td>
</tr>
<tr>
<td>Supply fan total static pressure</td>
<td>4.0 in. w.c.</td>
<td>6.5 in. w.c.</td>
<td>6.5 in. w.c.</td>
</tr>
<tr>
<td>Combined supply fan, motor, and drive efficiency</td>
<td>55%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Supply fan control</td>
<td>VAV w/air-coil centrifugal fan and AC frequency variable speed drive</td>
<td>Fan cycles w/cooling for heating or cooling</td>
<td>Fan cycles w/cooling for heating or cooling</td>
</tr>
<tr>
<td>Return fan total static pressure</td>
<td>1.0 in. w.c.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined return fan, motor, and drive efficiency</td>
<td>30%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Return fan control</td>
<td>VAV with air-coil centrifugal fan and AC frequency variable speed drive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cooling System</td>
<td>Chilled water (Note 11)</td>
<td>Chilled water (Note 11)</td>
<td>Closed circuit, centrifugal centrifugal blower type cooling system sized per Note 11; circulating pump sized for 2,700 GPM per ton.</td>
</tr>
<tr>
<td>Heating System</td>
<td>Hot water (Note 12) or electric resistance (Note 8)</td>
<td>Hot water (Note 12) or electric resistance (Note 8)</td>
<td>Electric or natural draft fossil fuel boiler (Note 8)</td>
</tr>
<tr>
<td>Remarks</td>
<td>Drybulb economizer per Section 7.4.3, Minimum VAV setting per Section 7.4.4.3, Supply air reset by zone of greatest cooling demand.</td>
<td>No economizer</td>
<td>Tower fans and boiler cycled to maintain circulating water temperature between 60 and 80°F, design tower leaving water temperature 60°F.</td>
</tr>
</tbody>
</table>
TABLE 11-7

NUMBERED NOTES FOR TABLE 11-7

HVAC SYSTEM DESCRIPTIONS FOR PROTOTYPE AND REFERENCE BUILDINGS

NOTES:

1. For occupancies such as restaurants, assembly and retail which are part of a mixed use building which, according to Table 11-7, includes a central chilled water plant (systems 3, 5, or 6), chilled water system type 3 or 5, as indicated in the Table, shall be used.

2. Constant volume may be used in zones where pressurization relationships must be maintained by code. VAV shall be used in all other areas, in accordance with Section 7.4.4.3.

3. Provide run-around heat recovery systems for all fan systems with minimum outside air intake greater than 75%. Recovery effectiveness shall be 0.60.

4. If a warehouse is not intended to be mechanically cooled, both the Energy Cost Budgets and Design Energy Costs, may be calculated assuming no mechanical cooling.

5. The system listed is for guest rooms only. Areas such as public areas and back-of-house areas shall be served by system 4. Other areas such as offices and retail shall be served by the systems listed in Table 11-7 for these occupancy types.

6. The system listed is for guest rooms only. Areas such as public areas and back-of-house areas shall be served by system 5. Other areas such as offices and retail shall be served by systems listed in Table 11-7 for these occupancy types.

7. System 2 shall be used for the Energy Cost Budget calculation except in areas with design heating outside air temperatures less than 10 °F.

8. Prototype energy budget cost calculations shall be made using both electricity and natural gas. If natural gas is not available at the site, electricity and #2 fuel oil shall be used. The Energy Cost Budget shall be the lower of these results. Alternately, the Energy Cost Budget may be based on the fuel source that minimizes total operating, maintenance, equipment,
and installation costs for the prototype over the building lifetime. Equipment and installation cost estimates shall be prepared using professionally recognized cost estimating tools, guides, and techniques. The methods of analysis shall conform to those of Subpart A of 10 CFR 435. Energy costs shall be based on actual costs to the building as defined in this Section.

9. Design supply air circulation rate shall be based on a supply air to room air temperature difference of 20 °F. A higher supply air temperature may be used if required to maintain a minimum circulation rate of 4.5 air changes per hour or 15 cfm per person at design conditions to each zone served by the system. If return fans are specified, they shall be sized from the supply fan capacity less the required minimum ventilation with outside air, or 75% of the supply air capacity, whichever is larger. Except where noted, supply and return fans shall be operated continuously during occupied hours.

10. Fan energy when included in the efficiency rating of the unit as defined in Section 7.4.4.3 need not be modeled explicitly for this system. The fan shall cycle with calls for heating or cooling.

11. Chilled water systems shall be modeled using a reciprocating chiller for systems with total cooling capacities less than 175 tons, and centrifugal chillers for systems with cooling capacities of 175 tons or greater. For systems with cooling of 600 tons or more, the Energy Cost Budget shall be calculated using two centrifugal chillers lead/lag controlled. Chilled water pumps shall be sized using a 12 °F temperature rise, from 44 °F to 56 °F, operating at 75 feet of head and and 65% combined impeller and motor efficiency. Condenser water pumps shall be sized using a 10 °F temperature rise, operating at 60 feet of head and 60% combined impeller and motor efficiency. The cooling tower shall be an open circuit, centrifugal blower type sized for the larger of 85 °F leaving water temperature or 10 °F approach to design wetbulb temperature. The tower shall be controlled to provide a 65 °F leaving water temperature whenever weather conditions permit, floating up to design leaving water temperature at design conditions. Chilled water supply temperature shall be reset in accordance with Section 7.4.6.2.

12. Hot water system shall include a natural draft fossil fuel or electric boiler per Note 8. The hot water pump shall be sized based on a 30 °F temperature drop, for 180 °F to 150 °F, operating at 60 feet of head and a combined impeller and motor efficiency of 60%. Hot water supply temperature shall be reset in accordance with Section 7.4.6.2.
§ 435.112 Building energy compliance alternative.

12.1 General

12.1.2 The Building Energy Use Budget Target alternative may be used as an option to the Building Energy Cost Budget method in section 11.0 and is to be used in lieu of the prescriptive and system performance methods and in conjunction with sections 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 9.3 and 10.3.

12.1.3 Compliance under this section is demonstrated by showing that the calculated annual energy usage for the Proposed Design is less than or equal to a calculated Energy Use Budget. (See Figure 12-1). A life-cycle cost economic analysis is required to evaluate alternative fuel sources and energy reduction strategies. The procedures in this chapter are intended only for establishing design compliance, and are not intended to be used either to predict, document or verify annual energy consumption or annual energy costs.
12.14 Compliance under the Building Energy Use Budget method requires a detailed energy analysis, using a conventional simulation tool, of the Proposed Design. A life-cycle cost analysis shall be used to select the fuel source for the HVAC systems, service hot water, and process loads from available alternatives. The Annual Energy Consumption of the Proposed Design with the life-cycle cost-effective fuel selection is calculated to determine the modeled energy consumption, called the Design Energy Use.

12.15 The Design Energy Use is defined as the energy that is consumed within the five foot line of a proposed building per ft² over a 24 hour day, 365-day year period and specified operating hours. The calculated Design Energy
Use is then compared to a calculated Energy Use Budget.

12.1.6 Compliance. The Energy Use Budget is determined by calculating the annual energy usage for a Reference or Prototype Building that is configured to comply with the provisions of section 11.0 for such buildings, except that the fuel source(s) of the Prototype or Reference Building shall be the same life-cycle cost-effective source(s) selected for the Proposed Design. If the Design Energy Use is less than or equal to the Energy Use Budget then the proposed design complies with these standards.

12.1.7 This section provides instructions for determining the Design Energy Use and for calculating the Energy Use Budget. The Energy Use Budget is the highest allowable calculated annual energy consumption for a specified building design. Designers are encouraged to design buildings whose Design Energy Use is lower than the Energy Use Budget. Incorporated in this section is an optional life-cycle cost economic analysis procedure that may be used by the designer to examine the economic feasibility of all energy design alternatives and to produce a more optimum design.

12.2 Determination of the Annual Energy Budget

12.2.1 The Energy Use Budget shall be calculated for the appropriate Prototype or Reference Building in accordance with the procedures prescribed in section 11.2 with the following exceptions: The Energy Use Budget shall be stated in units of Btu/ft²·yr and the simulation tool shall segregate the calculated energy consumption by fuel type producing an Energy Use Budget for each fuel (the fuel selections having been made by a life cycle cost analysis in determining the proposed design).

12.2.2 The Energy Use Budget (EUB) is calculated similarly for the Reference or Prototype Building using the following equation:

\[EUB = EUB_1 f_1 + EUB_2 f_2 + \ldots + EUB_i f_i \]

Equation 12-1

Where EUB₁, EUB₂, ..., EUBᵢ are the calculated annual energy targets for each fuel used in the Reference or Prototype building and f₁, f₂, ..., fᵢ are the energy conversion factors given in Table 12-1. In lieu of case by case calculation of the Energy Use Budget, the designer may construct Energy Use Budget tables for the combinations of energy source(s) that may be considered in a set of project designs, such as electric heating, electric service water, and gas cooling or oil heating, gas service water and electric cooling. The values in such optional Energy Use Budget tables shall be equal to or less than the corresponding Energy Use Budgets calculated on a case by case basis according to this section. Energy Use Budget tables shall be constructed to correspond to the climatic regions and building types in accordance with provisions for Prototype or Reference Building models in section 11.0 of these standards.
12.3 Determination of the Design Energy Use

12.3.1 The Design Energy Use shall be calculated by modeling the Proposed Design using the same methods, assumptions, climate data, and simulation tool as were used to establish the Energy Use Budget, but with the design features that will be used in the final building design. The simulation tool
used shall segregate the calculated energy consumption by fuel type giving an annual Design Energy Use for each fuel. The sum of the Design Energy Uses multiplied by the fuel conversion factors in Table 12-1 yields the Design Energy Use for the proposed design:

\[\text{DEU} = \text{DEU}_1 \cdot f_1 + \text{DEU}_2 \cdot f_2 + \ldots + \text{DEU}_i \cdot f_i \]

Equation 12-2

Where \(f_1, f_2, \ldots, f_i \) are the fuel conversion factors in Table 12-1.

12.3.2 Required Life Cycle Cost Analysis for Fuel Selection

12.3.2.1 Fuel sources selected for the Proposed Design and Prototype or Reference buildings shall be determined by considering the energy cost and other costs and benefits that occur during the expected economic life of the alternative.

12.3.2.2 The designer shall use the procedures set forth in subpart A of 10 CFR part 436 to make this determination. The fuel selection life cycle cost analysis shall include the following steps:

12.3.2.2.1 Determine the feasible alternatives for energy sources of the Proposed Design’s HVAC systems, service hot water, and process loads.

12.3.2.2.2 Model the Proposed Design including the alternative HVAC and service water systems and conduct an annual energy analysis for each fuel source alternative using the simulation tool specified in this section. The annual energy analysis shall be computed on a monthly basis in conformance with section 11.0 of these standards with the exception that all process loads shall be included in the calculation. Separate the output of the analysis by fuel type.

12.3.2.2.3 Determine the unit price of each fuel using information from the utility or other reliable local source. During rapid changes in fuel prices it is recommended that an average fuel price for the previous twelve months be used in lieu of the current price. Calculate the annual energy cost of each energy source alternative in accordance with procedures in section 11.0 for the Design Energy Cost. Estimate the initial cost of the HVAC and service water systems and other initial costs such as energy distribution lines and service connection fees associated with each fuel source alternative. Estimate other costs and benefits for each alternative including, but not necessarily limited to, annual maintenance and repair, periodic and one time major repairs and replacements and salvage of the energy and service water systems. Cost estimates shall be prepared using professionally recognized cost estimating tools, guides and techniques.

12.3.2.2.4 Perform a life cycle cost analysis using the procedure specified in section 12.3.2.

12.3.2.2.5 Compare the total life cycle cost of each energy source alternative. The alternative with the lowest total life-cycle cost shall be chosen as the energy source for the proposed design.

12.4 Compliance

12.4.1 Compliance with this section is demonstrated if the Design Energy Use is equal to or less than the Energy Use Budget.

\[\text{DEU} \leq \text{EUB} \]

Equation 12-3

12.4.2 The energy consumption shall be measured at the building five foot line for all fuels. Energy consumed from non-depletable energy sources and heat recovery systems shall not be included in the Design Energy Use calculations. The thermal efficiency of fixtures, equipment, systems or plants in the proposed design shall be simulated by the selected calculation tool.

12.5 Standard Calculation Procedure

12.5.1 The Standard Calculation Procedure consists of methods and assumptions for calculating the Energy Use Budgets for Prototype and Reference Buildings and the Design Energy Use for the Proposed Design. In order to maintain consistency between the Energy Use Budgets and the Design Energy Use, the input assumptions stated in section 11.5 are to be used.

12.5.2 The terms Energy Cost Budget and Design Energy Cost or Consumption used in section 11.0 correlate to Energy Use Budget and Design Energy Use, respectively, in section 12.0.
12.6 The Simulation Tool

12.6.1 The criteria established in section 11.0 for the selection of a simulation tool shall be followed when using the compliance path prescribed in section 12.0.

12.7 Life Cycle Cost Analysis Criteria

12.7.1 The following life cycle cost criteria applies to the fuel selection requirements of this chapter and to option life cycle cost analyses performed to evaluate energy conservation design alternatives. The fuel source(s) selection shall be made in accordance with the requirements of subpart A of 10 CFR part 436. The implementation calculations for the methodology of subpart A of 10 CFR part 436 is provided in National Bureau of Standards Handbook 135 entitled “Life Cycle Cost Manual for the Federal Energy Management Program.” When performing life cycle cost analyses of optional energy conservation opportunities the designer may use the life cycle cost procedures of subpart A of 10 CFR part 436 or OMB Circular A-94 or an equivalent procedure that meets the assumptions listed below:

12.7.1.1 The economic life of the Prototype Building and Proposed Design shall be 25 years. Anticipated replacements or renovations of energy related features and systems in the Prototype or Reference Building and Proposed Design during this period shall be included in their respective life cycle cost calculations.

12.7.1.2 The designer shall follow established professional cost estimating practices when determining the costs and benefits associated with the energy related features of the Prototype or Reference Building and Proposed Design.

12.7.1.3 All costs shall be expressed in current dollars. General inflation shall be disregarded. Differential escalation of prices (prices estimated to rise faster or slower than general inflation) for energy used in the life cycle cost calculations shall be those in effect at the time of the life cycle cost calculations as published by the Department of Energy’s Energy Information Administration.

12.7.1.4 The economic effects of taxes, depreciation and other factors not consistent with the practices of subpart A of 10 CFR part 436 shall not be included in the life cycle cost calculation.

Subpart B—Voluntary Performance Standards for New Non-Federal Residential Buildings

[Reserved]

Subpart C—Mandatory Performance Standards for New Federal Residential Buildings

§ 435.300 Purpose.

(a) This subpart establishes voluntary energy conservation performance standards for new residential buildings. The voluntary energy conservation performance standards are designed to achieve the maximum practicable improvements in energy efficiency and increases in the use of non-depletable sources of energy.

(b) Voluntary energy conservation performance standards prescribed under this subpart shall be developed solely as guidelines for the purpose of providing technical assistance for the design of energy conserving buildings, and shall be mandatory only for the design of Federal buildings.

(c) The energy conservation performance standards will direct Federal policies and practices to ensure that cost-effective energy conservation features will be incorporated into the designs of all new residential buildings designed and constructed by and for Federal agencies.

§ 435.301 Scope.

(a) The energy conservation performance standards for new Federal residential buildings will apply to the design of all new residential buildings except multifamily buildings more than three stories above grade.

(b) The primary types of buildings built by or for the Federal agencies, to which the energy conservation performance standards will apply, are:

1. Single-story single-family residences;

2. Split-level single-family residences;
§ 435.302 Definitions.

(a) ANSI means American National Standards Institute.

(c) ASTM means American Society of Testing and Measurement.

(d) British thermal unit (Btu) means approximately the amount of heat required to raise the temperature of one pound of water from 59°F to 60°F.

(e) Building means any new residential structure:

(1) That includes or will include a heating or cooling system, or both, or a domestic hot water system, and

(2) For which a building design is created after the effective date of this rule.

(f) Building design means the development of plans and specifications for human living space.

(g) Conservation Optimization Standard for Savings in Federal Residences means the computerized calculation procedure that is used to establish an energy consumption goal for the design of Federal residential buildings.

(h) COSTSAFR means the Conservation Optimization Standard for Savings in Federal Residences.

(i) DOE means U.S. Department of Energy.

(j) Domestic hot water (DHW) means the supply of hot water for purposes other than space conditioning.

(k) Energy conservation measure (ECM) means a building material or component whose use will affect the energy consumed for space heating, space cooling, domestic hot water or refrigeration.

(l) Energy performance standard means an energy consumption goal or goals to be met without specification of the method, materials, and processes to be employed in achieving that goal or goals, but including statements of the requirements, criteria evaluation methods to be used, and any necessary commentary.

(m) Federal agency means any department, agency, corporation, or other entity or instrumentality of the executive branch of the Federal Government, including the United States Postal Service, the Federal National Mortgage Association, and the Federal Home Loan Mortgage Corporation.

(n) Federal residential building means any residential building to be constructed by or for the use of any Federal agency in the Continental U.S., Alaska, or Hawaii that is not legally subject to state or local building codes or similar requirements.

(o) Life cycle cost means the minimum life cycle cost calculated by using a methodology specified in subpart A of 10 CFR part 436.

(p) Point system means the tables that display the effect of the set of energy conservation measures on the design energy consumption and energy costs of a residential building for a particular location, building type and fuel type.

(q) Practicable optimum life cycle energy cost means the energy costs of the set of conservation measures that has the minimum life cycle cost to the Federal government incurred during a 25 year period and including the costs of construction, maintenance, operation, and replacement.

(r) Project means the group of one or more Federal residential buildings to be built at a specific geographic location that are included in Federal regulations or specifications issued or used by a Federal agency for design or construction of the buildings.

(s) Prototype means a fundamental house design based on typical construction assumptions. The nine prototypes in COSTSAFR are: single-section manufactured house, double-section manufactured house, ranch-style house, two-story house, split-level house, mid-unit apartment, end-unit apartment, mid-unit townhouse, end-unit townhouse.
§ 435.303 Requirements for the design of a Federal residential building.

(a) The head of each Federal agency responsible for the construction of Federal residential buildings shall establish an energy consumption goal for each building to be designed or constructed by or for the agency.

(b) The energy consumption goal for a Federal residential building shall be a total point score derived by using the micro-computer program and user manual entitled “Conservation Optimization Standard for Savings in Federal Residences (COSTSAFR),” unless the head of the Federal agency shall establish more stringent requirements for that agency.

(c) The head of each Federal agency shall adopt such procedures as may be necessary to ensure that the design of a Federal residential building is not less energy conserving than the energy consumption goal established for the building.

§ 435.304 The COSTSAFR Program.

(a) The COSTSAFR Program (Version 3.0) provides a computerized calculation procedure to determine the most effective set of energy conservation measures, selected from among the measures included within the Program that will produce the practicable optimum life cycle cost for a type of residential building in a specific geographic location. The most effective set of energy conservation measures is expressed as a total point score that serves as the energy consumption goal.

(b) The COSTSAFR Program (Version 3.0) also prints out a point system that identifies a wide array of different energy conservation measures indicating how many points various levels of each measure would contribute to reaching the total point score of the energy consumption goal. This enables a Federal agency to use the energy consumption goal and the point system in the design and procurement procedures so that designers and builders can pick and choose among different combinations of energy conservation measures to meet or exceed the total point score required to meet the energy consumption goal.

(c) The COSTSAFR Program (Version 3.0) operates on a micro-computer system that uses the MS-DOS operating system and is equipped with an 8087 co-processor.

(d) The COSTSAFR Program (Version 3.0) may be obtained from:
National Technical Information Service; Department of Commerce; Springfield, Virginia 22161; (202) 487-4600

§ 435.305
The basis of selecting the optimum levels on the compliance forms or otherwise in the User's Manual for each energy conservation measure; and
(3) Multiplying the estimated unit energy cost by 100.
(c) The Federal agency shall determine the estimated discounted energy cost for the proposed building design by—
(1) Estimating the heating and cooling total annual coil loads of the proposed building design with the DOE 2.1C computer program on the basis of input assumptions including—
(i) Shading coefficients of 0.6 for summer and 0.8 for winter;
(ii) Thermostat setpoints of 78 degrees Fahrenheit for cooling, 70 degrees Fahrenheit for heating (6 am to 12 midnight), and 60 degrees Fahrenheit for Night Setback (12 midnight to 6 am, except for houses with heat pumps);
(iii) The infiltration rate measured in air changes per hour as calculated using appendix B of the COSTSAFR User’s Manual;
(iv) Natural venting with a constant air change rate of 10 air changes per hour—
(A) When the outdoor temperature is lower than the indoor temperature, but not above 78 degrees Fahrenheit; and
(B) When the enthalpy of the outdoor air is lower than the indoor air.
(v) Internal gains in accordance with the following table for a house with 1540 square feet of floor area, adjusted by 0.35 Btu/ft²/hr to account for changes in lighting as the floor area varies from 1540 square feet—

<table>
<thead>
<tr>
<th>Hour of day</th>
<th>Sensible</th>
<th>Latent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1139</td>
<td>247</td>
</tr>
<tr>
<td>2</td>
<td>1139</td>
<td>247</td>
</tr>
</tbody>
</table>

(vi) Thermal transmittances for building envelope materials measured in accordance with applicable ASTM procedures or from the ASHRAE Handbook;
(vii) Proposed heating and cooling equipment types included in COSTSAFR or having a certified seasonal efficiency rating;
(viii) Weather Year for Energy Calculations (WYEC) weather year data (WYEC data are on tapes available from ASHRAE, 1791 Tullie Circle, N.E., Atlanta, Georgia 30329), or if unavailable, Test Reference Year (TRY) weather data (obtainable from National Climatic Data Center, 1983 Test Reference Year, Tape Reference Manual, TD-9706, Asheville, North Carolina) relevant to project location.
(2) Estimating the discounted energy cost for the heating and cooling energy loads, respectively, according to the following equation—

\[
\text{Discounted Energy Cost} = \frac{\text{Total Annual Coil Load} \times \text{Fuel Cost} \times \text{UPW}^*}{\text{Equipment Efficiency}}
\]

Where:
- Total Annual Coil Load = the total heating or cooling annual coil load calculated under paragraph (c)(1);
- Fuel Cost = the heating or cooling fuel cost calculated in accordance with sections 3.3D and 3.3E of the User's Manual;
- UPW* = the uniform present worth discount factor; selected from the last page of the compliance forms.
§ 435.306 Selecting a life cycle effective proposed building design.

In selecting between or among proposed building designs which comply with the applicable energy consumption goal under this part, each Federal agency shall select the design which, in comparison to the applicable COSTSAFR prototype, has the highest Net Savings or lowest total life cycle costs calculated in compliance with subpart A of 10 CFR part 436.

[56 FR 3773, Jan. 31, 1991]
§ 436.1 Scope.
This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and to promote life cycle cost effective investments in building energy systems, building water systems and energy and water conservation measures for Federal buildings.

§ 436.2 General objectives.
The objectives of Federal energy management and planning programs are:

(a) To apply energy conservation measures to, and improve the design for construction of Federal buildings such that the energy consumption per gross square foot of Federal buildings in use during the fiscal year 1995 is at least 10 percent less than the energy consumption per gross square foot in 1985;

(b) To promote the methodology and procedures for conducting life cycle cost analyses of proposed investments in building energy systems, building water systems and energy and water conservation measures for Federal buildings in use during the fiscal year 1995 is at least 10 percent less than the energy consumption per gross square foot in 1985;

(c) To promote the use of energy savings performance contracts by Federal agencies for implementation of privately financed investment in building and facility energy conservation measures for existing Federally owned buildings; and

(d) To promote efficient use of energy in all agency operations through general operations plans.

Subpart A—Methodology and Procedures for Life Cycle Cost Analyses

§ 436.10 Purpose.

§ 436.11 Definitions.

§ 436.12 Life cycle cost methodology.

§ 436.13 Presuming cost-effectiveness results.

§ 436.14 Methodological assumptions.

§ 436.15 Formatting cost data.

§ 436.16 Establishing non-fuel and non-water cost categories.

§ 436.17 Establishing energy or water cost data.

§ 436.18 Measuring cost-effectiveness.

§ 436.19 Life cycle costs.

§ 436.20 Net savings.

§ 436.21 Savings-to-investment ratio.

§ 436.22 Adjusted internal rate of return.

§ 436.23 Estimated simple payback time.

§ 436.24 Uncertainty analysis.

Subpart B—Methods and Procedures for Energy Savings Performance Contracting

§ 436.30 Purpose and scope.

§ 436.31 Definitions.

§ 436.32 Qualified contractors lists.

§ 436.33 Procedures and methods for contractor selection.

§ 436.34 Multiyear contracts.

§ 436.35 Standard terms and conditions.

§ 436.36 Conditions of payment.

§ 436.37 Annual energy audits.

§ 436.38 Terminating contracts.

Subpart C—E [Reserved]

Subpart F—Guidelines for General Operations Plans

§ 436.100 Purpose and scope.

§ 436.101 Definitions.

§ 436.102 General operations plan format and content.

§ 436.103 Program goal setting.

§ 436.104 Energy conservation measures and standards.

§ 436.105 Emergency conservation plan.

§ 436.106 Reporting requirements.

§ 436.107 Review of plan.

§ 436.108 Waivers.

Appendix A to Part 436—Energy Conservation Standards for General Operations [Reserved]

Appendix B to Part 436—Goal Setting Methodology

Appendix C to Part 436—General Operations Plan Format and Content [Reserved]
§ 436.10 Purpose.

This subpart establishes a methodology and procedures for estimating and comparing the life cycle costs of Federal buildings, for determining the life cycle cost effectiveness of energy conservation measures and water conservation measures, and for rank ordering life cycle cost effective measures in order to design a new Federal building or to retrofit an existing Federal building. It also establishes the method by which efficiency shall be considered when entering into or renewing leases of Federal building space.

[61 FR 32649, June 25, 1996]

§ 436.11 Definitions.

As used in this subpart—

Base Year means the fiscal year in which a life cycle cost analysis is conducted.

Building energy system means an energy conservation measure or any portion of the structure of a building or any mechanical, electrical, or other functional system supporting the building, the nature or selection of which for a new building influences significantly the cost of energy consumed.

Building water system means a water conservation measure or any portion of the structure of a building or any mechanical, electrical, or other functional system supporting the building, the nature or selection of which for a new building influences significantly the cost of water consumed.

Component price means any variable sub-element of the total charge for a fuel or energy or water, including but not limited to such charges as “demand charges,” “off-peak charges” and “seasonal charges.”

Demand charge means that portion of the charge for electric service based upon the plant and equipment costs associated with supplying the electricity consumed.

DOE means Department of Energy.

Energy conservation measures means measures that are applied to an existing Federal building that improve energy efficiency and are life cycle cost effective and that involve energy conservation, cogeneration facilities, renewable energy sources, improvements in operation and maintenance efficiencies, or retrofit activities.

Federal agency means “agency” as defined by 5 U.S.C. 551(1).

Federal building means an energy or water conservation measure or any building, structure, or facility, or part thereof, including the associated energy and water consuming support systems, which is constructed, renovated, leased, or purchased in whole or in part for use by the Federal government. This term also means a collection of such buildings, structures, or facilities and the energy and water consuming support systems for such collection.

Investment costs means the initial costs of design, engineering, purchase, construction, and installation exclusive of sunk costs.

Life cycle cost means the total cost of owning, operating and maintaining a building over its useful life (including its fuel and water, energy, labor, and replacement components), determined on the basis of a systematic evaluation and comparison of alternative building systems, except that in the case of leased buildings, the life cycle cost shall be calculated over the effective remaining term of the lease.

Non-fuel operation and maintenance costs means material and labor cost for routine upkeep, repair and operation exclusive of energy cost.

Non-recurring costs means costs that are not uniformly incurred annually over the study period.

Non-water operation and maintenance costs mean material and labor cost for routine upkeep, repair and operation exclusive of water cost.

Recurring costs means future costs that are incurred uniformly and annually over the study period.

Replacement costs mean future cost to replace a building energy system or building water system, an energy or water conservation measure, or any component thereof.

Retrofit means installation of a building energy system or building water system alternative in an existing Federal building.

Salvage value means the value of any building energy system or building water system removed or replaced during the study period, or recovered...
§ 436.14 Methodological assumptions.
(a) Each Federal Agency shall discount to present values the future cash flows established in either current or constant dollars consistent with the nominal or real discount rate, and related tables, published in the annual supplement to the Life Cycle Costing Manual for the Federal Energy Management Program (NIST 85-3273) and determined annually by DOE as follows—

(1) The nominal discount rate shall be a 12 month average of the composite yields of all outstanding U.S. Treasury bonds neither due nor callable in less than ten years, as most recently reported by the Federal Reserve Board; and

(2) Subject to a ceiling of 10 percent and a floor of three percent the real discount rate shall be a 12 month average of the composite yields of all outstanding U.S. Treasury bonds neither due nor callable in less than ten years, as most recently reported by the Federal Reserve Board, adjusted to exclude estimated increases in the general level of prices consistent with projections of inflation in the most recent Economic Report of the President's Council of Economic Advisors.

(b) Each Federal agency may assume that energy prices will change at rates projected by DOE’s Energy Information Administration and published by NIST annually no later than the beginning of the fiscal year in the Annual Supplement to the Life Cycle Costing Manual for the Federal Energy Management Program, in tables consistent with the discount rate determined by DOE under paragraph (a) of this section, except that—

(1) If the Federal agency is using component prices under § 436.14(c), that agency may use corresponding component escalation rates provided by the energy or water supplier.

§ 436.13 Presuming cost-effectiveness results.
(a) If the investment and other costs for an energy or water conservation measure considered for retrofit to an existing Federal building or a building energy system or building water system considered for incorporation into a new building design are insignificant, a Federal agency may presume that such a system is life cycle cost-effective without further analysis.

(b) A Federal agency may presume that an investment in an energy or water conservation measure retrofit to an existing Federal building is not life cycle cost-effective for Federal investment if the Federal building is—

(1) Occupied under a short-term lease with a remaining term of one year or less, and without a renewal option or with a renewal option which is not likely to be exercised; or

(3) Scheduled to be demolished or retired from service within one year or less.

§ 436.12 Life cycle cost methodology.
The life cycle cost methodology for this part is a systematic analysis of relevant costs, excluding sunk costs, over a study period, relating initial costs to future costs by the technique of discounting future costs to present values.
§ 436.15 Formatting cost data.

In establishing cost data under §§436.16 and 436.17 and measuring cost effectiveness by the modes of analysis described by §436.19 through §436.22, a format for accomplishing the analysis which includes all required input data and assumptions shall be used. Subject to §436.18(b), Federal agencies are encouraged to use worksheets or computer software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program.

§ 436.16 Establishing non-fuel and non-water cost categories.

(a) The relevant non-fuel cost categories are—

(1) Investment costs;
(2) Non-fuel operation and maintenance cost;
(3) Replacement cost; and
(4) Salvage value.

(b) The relevant non-water cost categories are—

(1) Investment costs;
(2) Non-water operation and maintenance cost;
(3) Replacement cost; and
(4) Salvage value.

(c) The present value of recurring costs is the product of the base year value of recurring costs as multiplied by the appropriate uniform present...
§ 436.17 Establishing energy or water cost data.

(a) Each Federal agency shall establish energy costs in the base year by multiplying the total units of energy used in the base year by the price per unit of energy in the base year as determined in accordance with § 436.14.

(b) When energy costs begin to accrue in the base year, the present value of energy costs over the study period is the product of energy costs in the base year as established under § 436.17(a), or as calculated by computer software provided or approved by DOE and used with the official discount rate and escalation rate assumptions under § 436.14. When energy costs begin to accrue at a later time, subtract the present value of energy costs over the delay, calculated using the appropriate uniform present worth factor for the period of the delay, from the present value of recurring costs over the study period or, if using computer software, indicate a delayed beneficial occupancy date.

(c) Each Federal agency shall establish water costs in the base year by multiplying the total units of water used in the base year by the price per unit of water in the base year as determined in accordance with § 436.14.

(d) When water costs begin to accrue in the base year, the present value of water costs over the study period is the product of water costs in the base year as established under § 436.17(a), or as calculated by computer software provided or approved by DOE and used with the official discount rate and escalation rate assumptions under § 436.14. When water costs begin to accrue at a later time, subtract the present value of water costs over the delay, calculated using the uniform present worth factor for the period of delay, from the present value of water costs over the study period or, if using computer software, indicate a delayed beneficial occupancy date.

§ 436.18 Measuring cost-effectiveness.

(a) In accordance with this section, each Federal agency shall measure cost-effectiveness by combining cost data established under §§ 436.16 and 436.17 in the appropriate mode of analysis as described in §§ 436.19 through 436.22.

(b) Federal agencies performing LCC analysis on computers shall use either the Federal Buildings Life Cycle Costing (FBLCC) software provided by DOE or software consistent with this subpart.

(c) Replacement of a building energy or water system with an energy or water conservation measure by retrofit to an existing Federal building or by substitution in the design for a new Federal building shall be deemed cost-effective if—

(1) Life cycle costs, as described by § 436.19, are estimated to be lower; or

(2) Net savings, as described by § 436.20, are estimated to be positive; or

(3) The savings-to-investment ratio, as described by § 436.21, is estimated to be greater than one; or
§ 436.19 Life cycle costs.
Life cycle costs are the sum of the present values of—
(a) Investment costs, less salvage values at the end of the study period;
(b) Non-fuel operation and maintenance costs;
(c) Replacement costs less salvage costs of replaced building systems; and
(d) Energy and/or water costs.

§ 436.20 Net savings.
For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative design and the life cycle costs of the basic design.

§ 436.21 Savings-to-investment ratio.
The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and non-fuel or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure.

§ 436.22 Adjusted internal rate of return.
The adjusted internal rate of return is the overall rate of return on an energy or water conservation measure. It is calculated by subtracting 1 from the nth root of the ratio of the terminal value of savings to the present value of costs, where n is the number of years in the study period. The numerator of the ratio is calculated by using the discount rate to compound forward to the end of the study period the yearly net savings in energy or water and non-fuel...
or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure.

[61 FR 32651, June 25, 1996]

§ 436.31 Definitions.

As used in this subpart—

Act means Title VIII of the National Energy Conservation Policy Act.

Annual energy audit means a procedure including, but not limited to, verification of the achievement of energy savings and energy unit savings guaranteed resulting from implementation of energy conservation measures

Subpart B—Methods and Procedures for Energy Savings Performance Contracting

§ 436.30 Purpose and scope.

(a) General. This subpart provides procedures and methods which apply to Federal agencies with regard to the award and administration of energy savings performance contracts awarded within five years of April 10, 1995. This subpart applies in addition to the Federal Acquisition Regulation at Title 48 of the CFR and related Federal agency regulations. The provisions of this subpart are controlling with regard to energy savings performance contracts notwithstanding any conflicting provisions of the Federal Acquisition Regulation and related Federal agency regulations.

(b) Utility incentive programs. Nothing in this subpart shall preclude a Federal agency from—

(1) Participating in programs to increase energy efficiency, conserve water, or manage electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities;

(2) Accepting financial incentives, goods, or services generally available from any such utility to increase energy efficiency or to conserve water or manage electricity demand; or

(3) Entering into negotiations with electric, water, and gas utilities to design cost-effective demand management and conservation incentive programs to address the unique needs of each Federal agency.

(c) Promoting competition. To the extent allowed by law, Federal agencies should encourage utilities to select contractors for the conduct of utility incentive programs in a competitive manner to the maximum extent practicable.

(d) Interpretations. The permissive provisions of this subpart shall be liberally construed to effectuate the objectives of Title VIII of the National Energy Conservation Policy Act, 42 U.S.C. 8287-8287c.

[60 FR 18334, Apr. 10, 1995, as amended at 60 FR 19343, Apr. 18, 1995]
§ 436.32 Qualified contractors lists.

(a) DOE shall prepare a list, to be updated annually, or more often as necessary, of firms qualified to provide energy savings performance contract services on questionnaires obtained from DOE. Such statements shall, at a minimum, include prior experience and capabilities of firms to perform the proposed energy cost savings services by technology and financial and performance information. DOE shall issue a notice

Energy savings performance contract means a contract which provides for the performance of services for the design, acquisition, installation, testing, operation, and, where appropriate, maintenance and repair of an identified energy conservation measure or series of measures at one or more locations.

Facility means any structure not primarily intended for human occupancy, or any contiguous group of structures and related systems, either of which produces, distributes, or consumes energy.

Federal agency has the meaning given such term in section 551(1) of Title 5, United States Code.

Preliminary energy survey means a procedure which may include, but is not limited to, an evaluation of energy cost savings and energy unit savings potential, building conditions, energy consuming equipment, and hours of use or occupancy, for the purpose of developing technical and price proposals prior to selection.

Secretary means the Secretary of Energy.

Energy baseline means the amount of energy that would be consumed annually without implementation of energy conservation measures based on historical metered data, engineering calculations, submetering of buildings or energy consuming systems, building load simulation models, statistical regression analysis, or some combination of these methods.

Energy conservation measures means measures that are applied to an existing Federally owned building or facility that improves energy efficiency, are life-cycle cost-effective under subpart A of this part, and involve energy conservation, cogeneration facilities, renewable energy sources, improvements in operation and maintenance efficiencies, or retrofit activities.

Energy cost savings means a reduction in the cost of energy and related operation and maintenance expenses, from a base cost established through a methodology set forth in an energy savings performance contract, utilized in an existing federally owned building or buildings or other federally owned facilities as a result of—

1. The lease or purchase of operating equipment, improvements, altered operation and maintenance, or technical services; or

2. The increased efficient use of existing energy sources by cogeneration or heat recovery, excluding any cogeneration process for other than a federally owned building or buildings or other federally owned facilities.

Building means any closed structure primarily intended for human occupancy in which energy is consumed, produced, or distributed.

Detailed energy survey means a procedure which may include, but is not limited to, a detailed analysis of energy cost savings and energy unit savings potential, building conditions, energy consuming equipment, and hours of use or occupancy for the purpose of confirming or revising technical and price proposals based on the preliminary energy survey.

DOE means Department of Energy.

Energy baseline means the amount of energy that would be consumed annually without implementation of energy conservation measures based on historical metered data, engineering calculations, submetering of buildings or energy consuming systems, building load simulation models, statistical regression analysis, or some combination of these methods.

Energy conservation measures means measures that are applied to an existing Federally owned building or facility that improves energy efficiency, are life-cycle cost-effective under subpart A of this part, and involve energy conservation, cogeneration facilities, renewable energy sources, improvements in operation and maintenance efficiencies, or retrofit activities.

Energy cost savings means a reduction in the cost of energy and related operation and maintenance expenses, from a base cost established through a methodology set forth in an energy savings performance contract, utilized in an existing federally owned building or buildings or other federally owned facilities as a result of—

1. The lease or purchase of operating equipment, improvements, altered operation and maintenance, or technical services; or

2. The increased efficient use of existing energy sources by cogeneration or heat recovery, excluding any cogeneration process for other than a federally owned building or buildings or other federally owned facilities.

and determination of whether an adjustment to the energy baseline is justified by conditions beyond the contractor's control.
§ 436.33 Procedures and methods for contractor selection.

(a) Competitive selection. Competitive selections based on solicitation of firms are subject to the following procedures—

(1) With respect to a particular proposed energy cost savings performance project, Federal agencies shall publish a Commerce Business Daily notice which synopsizes the proposed contract action.

(2) Each competitive solicitation—

(i) Shall request technical and price proposals and the text of any third-party financing agreement from interested firms;

(ii) Shall consider DOE model solicitations and should use them to the maximum extent practicable;

(iii) May provide for a two-step selection process which allows Federal agencies to make an initial selection based, in part, on proposals containing estimated energy cost savings and energy unit savings, with contract award conditioned on confirmation through a detailed energy survey that the guaranteed energy cost savings are within a certain percentage (specified in the solicitation) of the estimated amount; and

(iv) May state that if the Federal agency requires a detailed energy survey which identifies life cycle cost effective energy conservation measures not in the initial proposal, the contract may include such measures.

(b) On the basis of statements of qualifications received under paragraph (a) of this section and any other relevant information, DOE shall select a firm for inclusion on the qualified list if—

(1) It has provided energy savings performance contract services or services that save energy or reduce utility costs for not less than two clients, and the firm possesses the appropriate project experience to successfully implement the technologies which it proposes to provide;

(2) Previous project clients provide ratings which are “fair” or better;

(3) The firm or any principal of the firm has neither been insolvent nor declared bankruptcy within the last five years;

(4) The firm or any principal of the firm is not on the list of parties excluded from procurement programs under 48 CFR part 9, subpart 9.4; and

(5) There is no other adverse information which warrants the conclusion that the firm is not qualified to perform energy savings performance contracts.

(c) DOE may remove a firm from DOE’s list of qualified contractors after notice and an opportunity for comment if—

(1) There is a failure to update its statement of qualifications;

(2) There is credible information warranting disqualification; or

(3) There is other good cause.

(d) A Federal agency shall use DOE’s list unless it elects to develop its own list of qualified firms consistent with the procedures in paragraphs (a) and (b) of this section.

(e) A firm not designated by DOE or a Federal agency pursuant to the procedures in paragraphs (a) and (b) of this section as qualified to provide energy cost savings performance services shall receive a written decision and may request a debriefing.

(f) Any firm receiving an adverse final decision under this section shall apply to the Board of Contract Appeals of the General Services Administration in order to exhaust administrative remedies.
§ 436.34 Multiyear contracts.

(a) Subject to paragraph (b) of this section, Federal agencies may enter into a multiyear energy savings performance contract for a period not to exceed 25 years, as authorized by 42 U.S.C. 8287, without funding of cancellation charges, if:

(i) An award may not be made to the firm submitting the unsolicited proposal unless the Federal agency first publishes a notice in the Commerce Business Daily acknowledging receipt of the proposal and inviting other firms on the qualified list to submit competing proposals.

(ii) Except for unsolicited proposals submitted in response to a published general statement of agency needs, no award based on such an unsolicited proposal may be made in instances in which the Federal agency is planning the acquisition of an energy conservation measure through an energy savings performance contract.

(b) Unolicited proposals. Federal agencies may—

(1) Consider unsolicited energy savings performance contract proposals from firms on a qualified contractor list under this subpart which include technical and price proposals and the text of any financing agreement (including a lease-acquisition) without regard to the requirements of 48 CFR 15.503(a) and (c); 48 CFR 15.506-2(a)(1); and 48 CFR 15.507(a), (b)(2), (b)(3), (b)(4) and (b)(5).

(2) Reject an unsolicited proposal that is too narrow because it does not address the potential for significant energy conservation measures from other than those measures in the proposal.

(3) After requiring a detailed energy survey, if appropriate, and determining that technical and price proposals are adequate, award a contract to a firm on a qualified contractor list under this subpart on the basis of an unsolicited proposal, provided that the Federal agency complies with the following procedures—
and the proposed cancellation ceiling for the contract to the appropriate authorizing and appropriating committees of the Congress; and

(4) Except as otherwise provided in this section, the multiyear energy savings performance contract is subject to 48 CFR part 17, subpart 17.1, including the requirement that the contracting officer establish a cancellation ceiling.

(b) Neither this subpart nor any provision of the Act requires, prior to contract award or as a condition of a contract award, that a Federal agency have appropriated funds available and adequate to pay for the total costs of an energy savings performance contract for the term of such contract.

§ 436.35 Standard terms and conditions.

(a) Mandatory requirements. In addition to contractual provisions otherwise required by the Act or this subpart, any energy savings performance contract shall contain clauses—

(1) Authorizing modification, replacement, or changes of equipment, at no cost to the Federal agency, with the prior approval of the contracting officer who shall consider the expected level of performance after such modification, replacement or change;

(2) Providing for the disposition of title to systems and equipment;

(3) Requiring prior approval by the contracting officer of any financing agreements (including lease-acquisitions) and amendments to such an agreement entered into after contract award for the purpose of financing the acquisition of energy conservation measures;

(4) Providing for an annual energy audit and identifying who shall conduct such an audit, consistent with § 436.37 of this subpart; and

(5) Providing for a guarantee of energy cost savings to the Federal agency, and establishing payment schedules reflecting such guarantee.

(b) Third party financing. If there is third party financing, then an energy savings performance contract may contain a clause:

(1) Permitting the financing source to perfect a security interest in the installed energy conservation measures, subject to and subordinate to the rights of the Federal agency; and

(2) Protecting the interests of a Federal agency and a financing source, by authorizing a contracting officer in appropriate circumstances to require a contractor who defaults on an energy savings performance contract or who does not cure the failure to make timely payments, to assign to the financing source, if willing and able, the contractor's rights and responsibilities under an energy savings performance contract;

§ 436.36 Conditions of payment.

(a) Any amount paid by a Federal agency pursuant to any energy savings performance contract entered into under this subpart may be paid only from funds appropriated or otherwise made available to the agency for the payment of energy expenses and related operation and maintenance expenses which would have been incurred without an energy savings performance contract. The amount the agency would have paid is equal to:

(1) The energy baseline under the energy savings performance contract (adjusted if appropriate under § 436.37), multiplied by the unit energy cost; and

(2) Any related operations and maintenance cost prior to implementation of energy conservation measures, adjusted for increases in labor and material price indices.

(b) Federal agencies may incur obligations pursuant to energy savings performance contracts to finance energy conservation measures provided guaranteed energy cost savings exceed the contractor's debt service requirements.

§ 436.37 Annual energy audits.

(a) After contractor implementation of energy conservation measures and annually thereafter during the contract term, an annual energy audit shall be conducted by the Federal agency or the contractor as determined by the contract. The annual energy audit shall verify the achievement of annual energy cost savings performance guarantees provided by the contractor.

(b) The energy baseline is subject to adjustment due to changes beyond the contractor's control, such as—

(1) Physical changes to building:
§ 436.38 Terminating contracts.

(a) Except as otherwise provided by this subpart, termination of energy savings performance contracts shall be subject to the termination procedures of the Federal Acquisition Regulation in 48 CFR part 49.

(b) In the event an energy savings performance contract is terminated for the convenience of a Federal agency, the termination liability of the Federal agency shall not exceed the cancellation ceiling set forth in the contract, for the year in which the contract is terminated.

Subparts C—E [Reserved]

Subpart F—Guidelines for General Operations Plans

Source: 45 FR 44561, July 1, 1980, unless otherwise noted.

§ 436.100 Purpose and scope.

(a) Purpose. The purpose of this subpart is to provide guidelines for use by Federal agencies in their development of overall 10-year energy management plans to establish energy conservation goals, to reduce the rate of energy consumption, to promote the efficient use of energy, to promote switching for petroleum-based fuels and natural gas to coal and other energy sources, to provide a methodology for reporting their progress in meeting the goals of those plans, and to promote emergency energy conservation planning to assure the impact of a sudden disruption in the supply of oil-based fuels, natural gas or electricity. The plan is intended to provide the cornerstone for a program to conserve energy in the general operations of an agency.

(b) Scope. This subpart applies to all general operations of Federal agencies and is applicable to management of all energy used by Federal agencies that is excluded from coverage pursuant to section 543a(2) of title V of the National Energy Conservation Policy Act, as amended (42 U.S.C. 8251-8261).
Energy efficiency goal means the ratio of production achieved to energy used.

Energy use avoidance means the amount of energy resources, e.g., gasoline, not used because of initiatives related to conservation. It is the difference between the baseline without a plan and actual consumption.

Facility means any structure or group of closely located structures, comprising a manufacturing plant, laboratory, office or service center, plus equipment.

Federal agency means any Executive agency under 5 U.S.C. 105 and the United States Postal Service, each entity specified in 5 U.S.C. 5721(1) (B) through (H) and, except that for purposes of this subpart, the Department of Defense shall be separated into four reporting organizations: the Departments of the Army, Navy and Air Force and the collective DOD agencies, with each responsible for complying with the requirements of this subpart.

Fiscal year or FY means, for a given year, October 1 of the prior year through September 30 of the given year.

Fuel types means purchased electricity, fuel oil, natural gas, liquefied petroleum gas, coal, purchased steam, automotive gasoline, diesel and petroleum distillate fuels, aviation gasoline, jet fuel, Navy special, and other identified fuels.

General operations means world-wide Federal agency operations, other than building operations, and includes services; production and industrial activities; operation of aircraft, ships, and land vehicles; and operation of Government-owned, contractor-operated plants.

General transportation means the use of vehicles for over-the-road driving as opposed to vehicles designed for off-road conditions, and the use of aircraft and vessels. This category does not include special purpose vehicles such as combat aircraft, construction equipment or mail delivery vehicles.

Goal means a specific statement of an intended energy conservation result which will occur within a prescribed time period. The intended result must be time-phased and must reflect expected energy use assuming planned conservation programs are implemented.

Guidelines means a set of instructions designed to prescribe, direct and regulate a course of action.

Industrial or production means the operation of facilities including buildings and plants which normally use large amounts of capital equipment, e.g., GOCO plants, to produce goods (hardware).

Jet fuel means fuels for use, generally in aircraft turbine engines.

Life cycle cost means the total cost of acquiring, operating and maintaining equipment over its economic life, including its fuel costs, determined on the basis of a systematic evaluation and comparison of alternative investments in programs, as defined in subpart A of this part.

Liquefied petroleum gas means propane, propylene-butanes, butylene, propane-butane mixtures, and isobutane that are produced at a refinery, a natural gas processing plant, or a field facility.

Maintenance means activities undertaken to assure that equipment and energy-using systems operate effectively and efficiently.

Measures means actions, procedures, devices or other means for effecting energy efficient changes in general operations which can be applied by Federal agencies.

Measure of performance means a scale against which the fulfillment of a requirement can be measured.

Navy special means a heavy fuel oil that is similar to ASTM grade No. 6 oil or Bunker C oil. It is used to power U.S. Navy ships.

Non-renewable energy source means fuel oil, natural gas, liquefied petroleum gas, synthetic fuels, and purchased steam or electricity, or other such energy sources.

Operational training and readiness means those activities which are necessary to establish or maintain an agency's capability to perform its primary mission. Included are major activities to provide essential personnel strengths, skills, equipment/supply inventory and equipment condition. General administrative and housekeeping activities are not included.
Overall plan means the comprehensive agency plan for conserving fuel and energy in all operations, to include both the Buildings Plan developed pursuant to subpart C of this part and the General Operations Plan.

Plan means those actions which an agency envisions it must undertake to assure attainment of energy consumption and efficiency goals without an unacceptably adverse impact on primary missions.

Program means the organized set of activities and allocation of resources directed toward a common purpose, objective, or goal undertaken or proposed by an agency in order to carry out the responsibilities assigned to it.

Renewable energy sources means sunlight, wind, geothermal, biomass, solid wastes, or other such sources of energy.

Secretary means the Secretary of the Department of Energy.

Services means the provision of administrative assistance or something of benefit to the public.

Specific Functional Category means those Federal agency activities which consume energy, or which are directly linked to energy consuming activities and which fall into one of the following groups: Services, General Transportation, Industrial or Production, Operational Training and Readiness, and Others.

Standard means an energy conservation measure determined by DOE to be applicable to a particular agency or agencies. Once established as a standard, any variance or decision not to adopt the measure requires a waiver.

Under Secretary means the Under Secretary of the Department of Energy.

Variance means the difference between actual consumption and goal.

656 Committee means the Interagency Federal Energy Policy Committee, the group designated in section 656 of the DOE Organization Act to provide general oversight for interdepartmental FEMP matters. It is chaired by the Under Secretary of DOE and includes the designated Assistant Secretaries or Assistant Administrator of the Department of Defense, Commerce, Housing and Urban Development, Transportation, Agriculture, Interior and the U.S. Postal Service and General Services Administration, along with similar level representatives of the National Aeronautics and Space Administration and the Veterans Administration.

§ 436.102 General operations plan format and content.

(a) Each Federal agency shall prepare and submit to the Under Secretary, DOE, within six months from the effective date of these guidelines, a general operations 10-year plan which shall consist of two parts, an executive summary and a text. Subsequent agency revisions to plans shall be included in each agency’s annual report on progress which shall be forwarded to DOE by July 1 annually.

(b) The following information shall be included in each Federal agency general operations 10-year plan for the period of fiscal years 1980-1990:

(1) An Executive Summary which includes—

(i) A brief description of agency missions, and applicable functional categories pursuant to § 436.106(a)(2);

(ii) A Goals and Objectives Section which summarizes what energy savings or avoidance will be achieved during the plan period, and what actions will be taken to achieve those savings, and the costs and benefits of measures planned for reducing energy consumption, increasing energy efficiencies, and shifting to a more favorable fuel mix. Assumptions of environmental, safety and health effects of the goals should be included;

(iii) A chart depicting the agency organizational structure for energy management, showing energy management program organization for headquarters and for major subordinate elements of the agency;

(iv) A schedule for completion of requirements directed in this subpart, including phase-out of any procedures made obsolete by these guidelines; and

(v) Identification of any significant problem which may impede the agency from meeting its energy management goals.

(2) A Text which includes—

(i) A Goals and Objectives Section developed pursuant to § 436.103 describing agency conservation goals; these goals will be related to primary mission goals;
(ii) An Investment Section describing the agency planned investment program by fiscal year, pursuant to appendix B of this subpart, all measures selected pursuant to §436.104, and the estimated costs and benefits of the measures planned for reducing energy consumption and increasing energy efficiencies;

(iii) An Organization Section which includes: (A) Designation of the principal energy conservation officer, such as an Assistant Secretary or Assistant Administrator, who is responsible for supervising the preparation, updating and execution of the Plan, for planning and implementation of agency energy conservation programs, and for coordination with DOE with respect to energy matters; (B) designation of a middle-level staff member as a point of contact to interface with the DOE Federal Programs Office at the staff level; and (C) designation of key staff members within the agency who are responsible for technical inputs to the plan or monitoring progress toward meeting the goals of the plan;

(iv) An Issues Section addressing problems, alternative courses of action for resolution, and agency recommendations that justify any decisions not to plan for or implement measures contained in appendix C of this subpart, and identifying any special projects, programs, or administrative procedures which may be beneficial to other Federal agency energy management programs;

(v) An implementing Instructions Section which includes a summary of implementing instructions issued by agency headquarters, and attachments of appropriate documents such as:
 (A) Specific tasking resulting from development of the Plan;
 (B) Guidance for the development of emergency conservation plans;
 (C) Task milestones;
 (D) Listing of responsible sub-agencies and individuals at both agency headquarters and subordinate units;
 (E) Reporting and administrative procedures for headquarters and subordinate organizations;
 (F) Report schedules pursuant to §436.106(c);
 (G) Schedules for feedback in order to facilitate plan updating, to include reviews of emergency conservation plans developed pursuant to §436.105;
 (H) Schedules for preparing and submitting the annual report on energy management pursuant to §436.106(a);
 (I) Schedules of plan preparation and publication;
 (J) Communication, implementation, and control measures such as inspections, audits, and others; and

(vi) An Emergency Conservation Plan Summary Section pursuant to the requirements of §436.105(d).

3) Appendices which are needed to discuss and evaluate any innovative energy conserving technologies or methods, not included in this part, which the agency has identified for inclusion in its plan.

(c) Each plan must be approved and signed by the principal energy conservation officer designated pursuant to paragraph (b)(2) of this section.

§ 436.103 Program goal setting.

(a) In developing and revising plans for a projected 10-year plan each agency shall establish and maintain energy conservation goals in accordance with the requirements of this section.

(b) Agencies shall establish three types of conservation goals:

1) Energy consumption goals, by fuel type by functional category (see appendix B).

2) Energy efficiency goals by fuel type by functional category (see appendix B).

3) Fuel switching goals for shifting energy use from oil and natural gas to other fuels in more plentiful supply from domestic sources (see appendix B).

(c) General operations energy conservation goals shall be established by each Federal agency with the broad purpose of achieving reductions in total energy consumption and increased efficiency without serious mission degradation or unmitigated negative environmental impacts. Within the broad framework, each agency should seek first to reduce energy consumption per unit of output in each applicable functional category. In evaluating energy efficiency, each agency should select and use standards of measurement which are consistent
§ 436.104 Energy conservation measures and standards.

(a) Each agency shall consider for inclusion in its plan the measures identified in appendix C of this subpart.

(b) The following questions should be considered in the evaluation of each measure:

1. Does this measure provide an incentive or disincentive?
2. What is the estimate of savings by fuel type?
3. What are the direct and indirect impacts of this measure?
4. Is this measure to be mandatory throughout the agency?
5. If not mandatory, under what circumstances will it be implemented, and who will be responsible for determining specific applicability?
6. Who will be the direct participants in the implementation of this measure?
7. What incentives (if any) are to be provided for the participants?
8. When will this measure be implemented?
9. Will this measure be implemented in a single step or will it be phased in? If it will be phased in, over what period of time?
10. Will performance of the measure be evaluated and reported?
11. By what criterion will performance be determined?
12. Who will prepare performance reports?
13. What is the reporting chain?
14. What is the reporting period?

(c) Each agency will take all necessary steps to implement the energy conservation standards for general operations listed in appendix A (reserved).

§ 436.105 Emergency conservation plan.

(a) Each agency shall establish an emergency conservation plan, a summary of which shall be included in the general operations plan, for assuring the impact of a sudden disruption in the supply of oil-based fuels, natural gas or electricity. Priorities for temporarily reducing missions, production, services, and other programmatic or functional activities shall be developed in accordance with paragraph (b) of this section. Planning for emergencies is to address both buildings and general operations. Provisions shall be made for testing emergency actions to ascertain that they are effective.

(b) Federal agencies shall prepare emergency conservation plans for 10 percent, fifteen percent, and 20 percent reduction compared to the previous fiscal year in gasoline, other oil-based fuels, natural gas, or electricity for periods of up to 12 months. In developing these plans, agencies shall consider the potential for emergency reductions in energy use in buildings and facilities which the agency owns, leases, or has under contract and by employees through increased use of car and van pooling, preferential parking for multi-passenger vehicles, and greater use of mass transit. Agencies may formulate whatever additional scenarios they consider necessary to plan for various energy emergencies.

(c) In general, Federal agencies' priorities shall go to those activities which directly support the agencies' primary missions. Secondary mission activities which must be curtailed or deferred will be reported to DOE as mission impacts. The description of mission impacts shall include estimates of the associated resources and time required to mitigate the effects of the reduction in energy. Other factors or assumptions to be used in energy conservation emergency planning are as follows:

1. Agencies will be given 15–30 days notice to implement any given plan.
2. Substitution of fuels in plentiful supply for fuels in short supply is authorized, if the substitution can be completed within a 3-month period and the cost is within the approval authority of the executive branch.
3. All costs and increases in manpower or other resources associated with activities or projects to assure mission impacts will be clearly defined.
in respective agency plans. One-time costs will be identified separately.

(4) Confronting the emergency situation will be considered a priority effort and all projects and increases in operating budgets within the approval authority of the executive branch will be expeditiously considered and approved if justified.

(d) Summary plans for agency-wide emergency conservation management shall be provided to DOE pursuant to §436.102(b)(2)(vi). Such summaries shall include:

(1) Agency-wide impacts of energy reductions as determined in accordance with paragraph (b) of this section.

(2) Actions to be taken agency-wide to alleviate the energy shortfalls as they occur.

(3) An assessment of agency services or production that may need to be curtailed or limited after corrective actions have been taken.

(4) A summation of control and feedback mechanisms for managing an energy emergency situation.

§ 436.106 Reporting requirements.

(a) By July 1 of each year each Federal agency shall submit an “Annual Report on Energy Management” based on fiscal year data to the Secretary of DOE. The general operations portion of this report will encompass all agency energy use not reported in the buildings portion and shall include:

(1) A summary evaluation of progress toward the achievement of energy consumption, energy efficiency, and fuel switching goals established by the agency in its plans;

(2) Energy consumption reported by functional categories. Reports must include General Transportation and one or more of the following functional categories: industrial or production, services, operational training and readiness, and other. Agencies may report in subcategories of their own choosing. The following information is to be reported for the usage of each fuel type in physical units for each selected functional category:
 (i) Total energy consumption goal;
 (ii) Total energy consumed;
 (iii) Total energy use avoidance;
 (iv) Variance between actual consumption and consumption goal;
 (v) Cost saved;
 (vi) Status of planned investments, and if different from the investment program upon which existing goals are based, the expected impact on meeting goals; and
 (vii) Summary of any other benefits realized.

(3) The energy efficiencies as calculated in accordance with appendix B of this subpart, or by an equivalent method, for the appropriate functional categories identified in paragraph (a)(2) of this section. The following information is to be reported for the energy efficiency for each fuel type by functional category:
 (i) Energy efficiency goal;
 (ii) Efficiency for the reporting period;
 (iii) Summary of any other benefits realized.

(4) A summary of fuel switching progress including:
 (i) Description and cost of investments in fuel switching;
 (ii) Avoidance in use of oil-based fuels and natural gas;
 (iii) Increased use of solar, wood, gasohol and other renewable energy sources;
 (iv) Increased use of coal and coal derivatives, and
 (v) Use of all other alternative fuels.

(b) Each agency’s annual report shall be developed in accordance with a format to be provided by DOE and will include agency revisions to 10-year plans.

(c) Agencies whose annual total energy consumption exceeds one hundred billion Btu’s, shall, in addition to the annual report required under paragraph (a) of this section, submit quarterly reports of the energy usage information specified in paragraph (a)(2) of this section.

(d) Agencies who consume energy in operations in foreign countries will include data on foreign operations if foreign consumption is greater than 10% of that consumed by the agency in the United States, its territories and possessions. If an agency’s estimated foreign consumption is less than 10% of its total domestic energy use, reporting of foreign consumption is optional.
§ 436.107 Reports should be annotated if foreign consumption is not included.

[45 FR 4561, July 1, 1980, as amended at 51 FR 4598, Feb. 6, 1986]

§ 436.107 Review of plan.

(a) Each plan or revision of a plan shall be submitted to DOE and DOE will evaluate the sufficiency of the plan in accordance with the requirements of this subpart. Written notification of the adequacy of the plan including a critique, will be made by DOE and sent to the agency submitting the plan or revision within 60 days of submission. Agencies shall be afforded an opportunity to modify and return the plan within an appropriate period of time for review by DOE.

(b) A general operations plan under the guidelines will be evaluated with respect to:

(1) Adequacy of information or plan content required to be included by § 436.102;

(2) Adequacy of goal setting methodology or baseline justification as stated in § 436.103;

(3) Adequacy of a well-justified investment program which considers all measures included in appendix C of this subpart; and

(4) Other factors as appropriate.

(c) After reviewing agency plans or revisions of plans, the Under Secretary of DOE, may submit to the “656” Committee for its recommendation, major problem areas or common deficiencies.

(d) Status of the plan review, the Under Secretary’s decisions, and “656” Committee recommendations, will be published as appropriate, in the DOE annual report to the President, entitled “Energy Management in the Federal Government.”

APPENDIX A TO PART 436—ENERGY CONSERVATION STANDARDS FOR GENERAL OPERATIONS [RESERVED]

APPENDIX B TO PART 436—GOAL SETTING METHODOLOGY

In establishing and updating agency goals for energy conservation, the following methodology or an equivalent method should be utilized:

(a) For overall energy consumption—

(1) An analysis shall be made to determine what factors have the most significant impact upon the amount of each fuel type used by the agency in performing functions in support of its overall mission. Consideration is to be given, but not limited to, the following factors: Number of people using energy; number of vehicles using gasoline; amounts of other equipment using energy; tempo of operations (one, two, or three shifts); the type of operations (degree of equipment or
labor intensity); equipment fuel limitations; environmental conditions (tropical versus arctic, etc.); budget levels for fuel, operations, maintenance, and equipment acquisition; and phase-out schedule (of older equipment or plants which may be inefficient). After identifying these factors, a further analysis shall be made to identify any projected workload changes in the quality or quantity of these factors on a yearly basis up to 1990.

(2) Based upon the analysis in (a)(1) and an evaluation of available information on past energy usage, a baseline of energy use by fuel type by functional category shall be established beginning with FY 1975. In addition to “General Transportation,” other functional categories should be selected to enhance energy management. Total fuel use for a particular activity may be allocated to the functional category for which the preponderance of fuel is used. Figure B-1 is an example of one such baseline.

This example shows an increase in energy use, for a specific fuel type, during the period 1975-1981, with a further increase from 1981 to 1984 and a leveling off and no growth from 1984-1990. A justification, based on factors as discussed above, shall accompany each baseline.

(3) Thereafter, analyses should be made of the measures available for reducing the energy consumption profiles without adverse impact on mission accomplishment. Finding viable opportunities for reducing energy use, increasing energy efficiency and switching energy sources, will require consultation with specialists in the fields of operations, maintenance, engineering, design, and economics, and consideration of the measures identified in Appendix C. The DOE Federal Energy Management Programs Office can, upon request, provide information on where such resources can be located. Once these measures are identified, they are to be incorporated into a time-phased investment program, (using where appropriate, the life cycle costing factors and methodology in subpart A of this part). If investment and other costs for implementing a measure are insignificant, a Federal agency may presume that a measure is cost-effective without further analysis. An estimate must then be made as to the lead time required to implement the program and realize energy reductions.

Figure B-2 shows a summarized investment program, which should be accompanied by a detailed description of the measures, projects, and programs making up the total planned investments for each year. This summary need not be by function or fuel type.
These analyses should enable the agency to project an energy consumption goal, with the assumption that funds for executing the planned projects will be approved. Figure B-3 shows a new energy use profile, with planned initiatives and related investments taken into consideration, and the resulting goal entitled “Energy Use With A Plan” superimposed on Figure B-1. Included are the anticipated effects on consumption caused by improvements in energy efficiency and fuel switching.

A comparison of these projections will show the energy use avoidance resulting from the investment program as depicted in Figure B-2. Using the prices of fuel contained in Appendix C to Subpart A, the dollars saved can be projected against the dollars invested. Life cycle costing methodology pursuant to subpart A, will be used to determine priorities for submitting individual initiatives into the appropriate budget year.

(b) For energy efficiencies—Energy efficiency baselines and goals for each fuel type shall be calculated using the same consumption factors and similar methodology to that outlined in paragraph (a). Energy consumption by fuel type shall be linked to mission through the functional categories listed in §436.106(a)(2). This will identify a rate which will indicate energy efficiency trends. This linkage may be accomplished through the following algorithm:
Step 1: Determine functional categories from section 436.106(a)(2) which best describe the Agency overall mission.

Step 2: Determine types of fuels used to support the functions selected in Step 1.

Step 3: Determine quantities of fuel consumed or planned for consumption over a specific period of time.

Step 4: Determine quantity of output of function for same period of time used in Step 3. Quantify output in a standard measure which best describes functional category.

Step 5: Determine the energy efficiency ratio by dividing quantity from Step 4 by quantity from Step 3.

This ratio of fuel consumed to a unit measure of output will be used to develop a projection of a baseline and goals through 1990, and used in reporting variance. Examples of ratios that should be considered are:

- Production or industrial process type operations
 Ton of product

- Services, such as postal delivery
 Customers served or pounds delivered
 Gallons of automotive gasoline

- General transportation
 Passenger miles
 Gallons of automotive gasoline

- Training
 Persons trained or in training
 Gallons of navy special agents

Agencies shall select one or more of these ratios, which shall be used throughout the planning period, or use more appropriate energy efficiency ratios, to describe their overall functions. Figure B-4 illustrates the planning baseline and goal resulting from this type of analysis.
(c) For fuel switching—Fuel switching goals for gasoline other oil-based fuel and natural gas may be calculated as follows:

Step 1: For each fiscal year, identify investments, where appropriate, in fuel switching.
Department of Energy

Pt. 436, App. C

from gasoline, other oil-based fuel and natural gas to alternate renewable or nonrenewable fuel sources.

Step 2: Project for each fiscal year, the avoidance in the use of gasoline, other oil-based fuel and natural gas resulting from previous fuel switching investments.

Completion of these steps will permit the formulation of charts such as that shown in Figure B-5.

OTHER OIL-BASED FUELS
(Thousands of barrels)

<table>
<thead>
<tr>
<th>FY</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86-90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3</td>
<td>3.0</td>
<td>4.3</td>
<td>4.2</td>
<td>4.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

FIGURE B-5
FUEL SWITCHING GOALS

APPENDIX C TO PART 436—GENERAL OPERATIONS ENERGY CONSERVATION MEASURES

(a) The following individual measures or set of measures must be considered for inclusion in each agency 10-year energy management plan:

(1) Federal Employee Ridesharing Programs—Includes the use of vanpooling and carpooling and complies with existing orders and regulations governing parking for vanpools and carpools.

(2) Fleet Profile Change—Includes energy considerations in equipment selection and assignment.

(3) Fleet Mileage Efficiency—Includes agency plans to implement existing orders, goals, and laws related to vehicle fuel economy.

(4) Driver Training—Includes development of appropriate programs for training operators of U.S. Government vehicles in energy conservation.

(5) Maintenance Procedures Improvement—Includes activities to insure proper vehicle maintenance to optimize energy conservation.

(6) Operating Procedures Improvement—Includes use of cooperative passenger shuttle and courier services on an interagency or other basis within each metropolitan area.

(7) Mass Transit—Includes employee use of existing services for business-related activities and commuting.

(8) Public Education to Promote Vanpooling and Carpooling—Includes activities to support the EPCA requirement to establish "responsible public education programs to promote vanpooling and carpooling arrangements" through their employee awareness programs.

(9) Elimination of Free or Subsidized Employee Parking—Includes elimination of free or subsidized employee parking on Federal installations in accordance with OMB Cir. A-118, August 13, 1979.

(10) Two-Wheeled Vehicle Programs—Includes activities to encourage the substitution of bicycles, mopeds, etc. for automobiles for commuting and operational purposes. These may include the establishment of weather-protected secure storage facilities, shower and locker facilities, and restricted routes for these vehicles on Federal property. Cooperative programs with local civil authorities may also be included.
(11) Consolidation of Facilities and Process Activities—Includes such measures as physical consolidation of operations to minimize intra-operational travel and may include facility closure or conversion. Alternative work patterns, availability of transportation, energy source availability, and technical and financial feasibility are among the considerations that should be evaluated.

(12) Agency Procurement Programs—Includes activities to ensure that energy conservation opportunities are fully exploited with respect to the agency’s procurement programs including procurements relating to operations and maintenance activities; e.g., (a) giving preference to fuel-efficient products whenever practicable, and (b) ensuring that agency’s contractors having a preponderance of cost-type contracts pursue a comprehensive energy conservation program.

(13) Energy Conservation Awareness Programs—Includes programs aimed toward gaining and perpetuating employee awareness and participation in energy conservation measures on the job and in their personal activities.

(14) Communication—Includes substitution of communications for physical travel.

(15) Dress Code—Includes measures to allow employees greater freedom in their choice of wearing apparel to promote greater participation in conservation.

(16) Land Use—Includes energy considerations to be employed in new site selection, such as colocating.

(17) Automatic Data Processing (ADP)—Includes all energy aspects of ADP operation and equipment selection.

(18) Aircraft Operations—Includes energy-conserving measures developed for both military and Federal administrative and research and development aircraft operations.

(19) GOCO Facilities and Industrial Plants Operated by Federal Employees—Includes development of energy conservation plans at these facilities and plants which contain measures such as energy efficient periodic maintenance.

(20) Energy Conserving Capital Plant and Equipment Modification—Includes development of energy conservation and life cycle cost parameter measures for replacement of capital plant and equipment.

(21) Process Improvements—Includes measures to improve energy conservation in industrial process operations. These may include consideration of equipment replacement or modification, as well as scheduling and other operational changes.

(22) Improved Steam Maintenance and Management—Includes measures to improve energy efficiencies of steam systems. These may include improved maintenance, installation of energy-conserving devices, and the operational use of substitutes for live steam where feasible.

(23) Improvements in Waste Heat Recovery—Includes measures utilizing waste heat for other purposes.

(24) Improvement in Boiler Operations—Includes energy-conserving retrofit measures for boiler operations.

(25) Improved Insulation—Includes measures addressing the addition or replacement of insulation on pipes, storage tanks, and in other appropriate areas.

(26) Scheduling by Major Electric Power Users—Includes measures to shift major electrical power demands to non-peak hours, to the maximum extent possible.

(27) Alternative Fuels—Includes measures to alter equipment such as generators to use lower quality fuels and to fill new requirements with those that use alternative fuels. The use of gasohol in stationary gasoline-powered equipment should be considered, in particular.

(28) Cogeneration—Includes measures to make full use of cogeneration in preference to single-power generation.

(29) Mobility Training and Operational Readiness—Includes measures which can reduce energy demands through the use of simulators, communications, computers for planning, etc.

(30) Energy Conservation Inspection or Instruction Teams—Includes measures which formulate and perpetuate the review of energy conservation through inspections to determine where specific improvements can be made and then followed by an instruction and training program.

(31) Intra-agency and Interagency Information Exchange Program—Includes measures providing a free exchange of energy conservation ideas and experiences between elements of an agency and between other agencies in the same geographic area.

(32) Recycled Waste—Includes measures to recycle waste materials such as paper products, glass, aluminum, concrete and brick, garbage, asphalt road materials or any material which requires a petroleum base.

(33) Fuel Conversion—Includes measures to accomplish conversion from petroleum based fuels and natural gas to coal and other alternative fuels for appropriate equipment.

(34) Operational Lighting—Includes measures to reduce energy consumption for lighting in operational areas and GOCO plants by: switching off by means of automatic controls; maximizing the use of daylight by floor planning; keeping window and light fixtures clean and replacing fixtures when they begin to deteriorate, rather than when they fail altogether; providing automatic dimmer controls to reduce lighting when daylight increases; and cleaning the work area during daylight, if possible, rather than at night.

(35) Lighting Fixtures—Includes measures to increase energy efficiency of lighting. The following reveals the relative efficiencies of common lamp types.
(36) Industrial Buildings Heating—Includes measures to improve the energy conservation of industrial buildings such as: fixing holes in roofs, walls and windows; fitting flexible doors, fitting controls to heating systems; use of “economizer units” which circulate hot air back down from roof level to ground level; use of controlled ventilation; insulation of walls and roof; use of “optimisers” or optimum start controls in heating systems that the heating switch-on is dictated by actual temperature conditions rather than simply by time.

(37) Hull Cleaning and Antifouling Coating—Includes measures to reduce energy consumption through periodic cleaning of hulls and propellers or through the use of antifouling coatings.

(38) [Reserved]

(39) Building Temperature Restrictions on Thermostat Setting for Heating, Cooling and Hot Water—Includes enforcement of suggested restriction levels: 65 degrees for heating, 78 degrees for cooling, and 105 degrees or ban for hot water.

(40) Such other measures as DOE may from time-to-time add to this appendix, or as the Federal agency concerned may find to be energy-saving or efficient.

APPENDIX D TO PART 436—ENERGY PROGRAM CONSERVATION ELEMENTS

(a) In all successful energy conservation programs, certain key elements need to be present. The elements listed below must be incorporated into each agency conservation program and must be reflected in the 10-year plan prescribed in §436.102. Those organizations that have already developed programs should review them to determine whether the present management systems incorporate these elements.

(1) Top Management Control. Top management must have a personal and sustained commitment to the program, provide active direction and motivation, and require regular review of overall energy usage at senior staff meetings.

(2) Line Management Accountability. Line managers must be accountable for the energy conservation performance of their organizations and should participate in establishing realistic goals and developing strategies and budgets to meet these goals.

(3) Formal Planning. An overall 10-year plan for the period 1980-1990 must be developed and formalized which sets forth performance-oriented conservation goals, including the categorized reduction in rates of energy consumption that the program is expected to realize. The plan will be supplemented by guidelines enumerating specific conservation procedures that will be followed. These procedures and initiatives must be life cycle cost-effective as well as energy efficient.

(4) Goals. Goals must be established in a measurable manner to answer questions such as: “Where are we?” “Where do we want to go?” “Are we getting there?” and “Are our initiatives for getting there life cycle cost-effective?”

(5) Monitoring. Progress must be reviewed periodically both at the agency headquarters and at local facility levels to identify program weakness or additional areas for conservation actions. Progress toward achievement of goals should be assessed, and explanations should be required for non-achievement or unusual variations in energy use. Monitoring should include personal inspections and staff visits, management information reporting and audits.

(6) Using Technical Expertise. Personnel with adequate technical background and knowledge of programmatic objectives should be used to help management set technical goals and parameters for efficient planning and implementation of energy conservation programs. These technicians should work in conjunction with the line managers who are accountable for both mission accomplishment and energy conservation.

(7) Employee Awareness. Employees must gain an awareness of energy conservation through formal training and employee information programs. They should be invited to participate in the process of developing an energy conservation program, and to submit definitive suggestions for conservation of energy.

(8) Energy Emergency Planning. Every energy management plan must provide for programs to respond to contingencies that may occur at the local, state or National level. Programs must be developed for potential emergency situations calling for reductions of 10 percent, 15 percent and 20 percent for up to 12 months. Emergency plans must be tested to ascertain their effectiveness.

(9) Budgetary and Fiscal Support. Resources necessary for the energy conservation program must be planned and provided for, and the fiscal systems adjusted to support energy management investments and information reporting.

(10) Environmental Considerations. Each agency shall fulfill its obligations under the National Environmental Policy Act in developing its plan.
PART 440—WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS

§ 440.1 Purpose and scope.

This part contains the regulations adopted by the Department of Energy to carry out a program of weatherization assistance for low-income persons established by the Energy Conservation in Existing Buildings Act of 1976, 42 U.S.C. 6851 et seq., enacted as Title IV, Part A, of the Energy Conservation and Production Act, Pub.L. 94-385, 90 Stat. 1150 et seq., and amended by Title II, Part 2, of the National Energy Conservation Policy Act, Pub.L. 95-619, 92 Stat. 3206 et seq., by the Energy Security Act, Pub. L. 96-294, 94 Stat. 611 et seq., and the State Energy Efficiency Programs Improvement Act, Pub. L. 101-440, 104 Stat. 1006 et seq. It is the purpose of this part to implement a weatherization assistance program to increase the energy efficiency of dwellings owned or occupied by low-income persons, reduce their total residential energy expenditures, and improve their health and safety, especially low-income persons who are particularly vulnerable such as the elderly, the handicapped, and children.

[58 FR 12525, Mar. 4, 1993]

§ 440.2 Administration of grants.

Grant awards under this part shall comply with applicable law including, without limitation, the requirements of:

(a) Executive Order 12372 entitled “Intergovernmental Review of Federal Programs”, 48 FR 3130, and the DOE Regulation implementing this Executive Order entitled “Intergovernmental Review of Department of Energy Programs and Activities” (10 CFR part 1005);

(b) Office of Management and Budget Circular A-97, entitled “Rules and Regulations Permitting Federal Agencies to Provide Specialized or Technical Services to State and Local Units of Government under Title III of the Inter-Governmental Coordination Act of 1968”;

(c) Unless in conflict with provisions of this part, the DOE Financial Assistance Rule (10 CFR part 600); and

(d) Such other procedures applicable to this part as DOE may from time to time prescribe for the administration of financial assistance.

§ 440.3 Definitions.

As used in this part:

Assistant Secretary means the Assistant Secretary for Conservation and Renewable Energy or official to whom the Assistant Secretary's functions may be redelegated by the Secretary.

Base Allocation means the fixed amount of funds for each State as set forth in §440.10(b)(1).

CAA means a Community Action Agency.

Capital-Intensive furnace or cooling efficiency modifications means those major heating and cooling modifications which require a substantial amount of funds, including replacement and major repairs, but excluding such items as tune-ups, minor repairs, and filters.
Children means dependents not exceeding 19 years or a lesser age set forth in the State plan.

Community Action Agency means a private corporation or public agency established pursuant to the Economic Opportunity Act of 1964, Pub. L. 88-452, which is authorized to administer funds received from Federal, State, local, or private funding entities to assess, design, operate, finance, and oversee antipoverty programs.

Cooling Degree Days means a population-weighted annual average of the climatological cooling degree days for each weather station within a State, as determined by DOE.

Deputy Assistant Secretary means the Deputy Assistant Secretary for Technical and Financial Assistance or any official to whom the Deputy Assistant Secretary's functions may be redelegated by the Assistant Secretary.

DOE means the Department of Energy.

Dwelling Unit means a house, including a stationary mobile home, an apartment, a group of rooms, or a single room occupied as separate living quarters.

Elderly Person means a person who is 60 years of age or older.

Family Unit means all persons living together in a dwelling unit.

Governor means the chief executive officer of a State, including the Mayor of the District of Columbia.

Grantee means the State or other entity named in the Notification of Grant Award as the recipient.

Handicapped Person means any individual (1) who is a handicapped individual as defined in section 7(6) of the Rehabilitation Act of 1973, (2) who is under a disability as defined in section 1614(a)(3)(A) or 223(d)(1) of the Social Security Act or in section 102(7) of the Developmental Disabilities Services and Facilities Construction Act, or (3) who is receiving benefits under chapter 11 or 15 of title 38, U.S.C.

Heating Degree Days means a population-weighted seasonal average of the climatological heating degree days for each weather station within a State, as determined by DOE.

Incidental Repairs means those repairs necessary for the effective performance or preservation of weatherization materials. Such repairs include, but are not limited to, framing or repairing windows and doors which could not otherwise be caulked or weather-stripped and providing protective materials, such as paint, used to seal materials installed under this program.

Indian Tribe means any tribe, band, nation, or other organized group or community of Native Americans, including any Alaskan native village, or regional or village corporation as defined in or established pursuant to the Alaska Native Claims Settlement Act, Pub. L. 92-203, 85 Stat. 688, which (1) is recognized as eligible for the special programs and services provided by the United States to Native Americans because of their status as Native Americans, or (2) is located on, or in proximity to, a Federal or State reservation or rancheria.

JTPA means the Job Training Partnership Act, 29 U.S.C. 1501 et seq.

Local Applicant means a CAA or other public or non profit entity unit of general purpose local government.

Low Income means that income in relation to family size which:

(1) Is at or below 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget, except that the Secretary may establish a higher level if the Secretary, after consulting with the Secretary of Agriculture and the Secretary of Health and Human Services, determines that such a higher level is necessary to carry out the purposes of this part and is consistent with the eligibility criteria established for the weatherization program under section 222(a)(12) of the Economic Opportunity Act of 1964;

(2) Is the basis on which cash assistance payments have been paid during the preceding twelve month-period under titles IV and XVI of the Social Security Act or applicable State or local law; or
(3) If a State elects, is the basis for eligibility for assistance under the Low Income Home Energy Assistance Act of 1981, provided that such basis is at least 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget.

Native American means a person who is a member of an Indian tribe.

Program Allocation means the base allocation plus formula allocation for each State.

Relevant Reporting Period means the Federal fiscal year beginning on October 1 and running through September 30 of the following calendar year.

Rental Dwelling Unit means a dwelling unit occupied by a person who pays rent for the use of the dwelling unit.

Residential Energy Expenditures means the average annual cost of purchased residential energy, including the cost of renewable energy resources.

Secretary means the Secretary of the Department of Energy.

Separate Living Quarters means living quarters in which the occupants do not live and eat with any other persons in the structure and which have either direct access from the outside of the building or through a common hall or complete kitchen facilities for the exclusive use of the occupants. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated persons who share living arrangements, and includes shelters for homeless persons.

Shelter means a dwelling unit or units whose principal purpose is to house on a temporary basis individuals who may or may not be related to one another and who are not living in nursing homes, prisons, or similar institutional care facilities.

Single-Family Dwelling Unit means a structure containing no more than one dwelling unit.

Skirting means material used to border the bottom of a dwelling unit to prevent infiltration.

State means each of the States and the District of Columbia.

Subgrantee means an entity managing a weatherization project which receives a grant of funds awarded under this part from a grantee.

Support Office Director means the Director of the DOE Field Support Office with the responsibility for grant administration or any official to whom that function may be redelegated by the Assistant Secretary.

Total Program Allocations means the annual appropriation less funds reserved for training and technical assistance.

Tribal Organization means the recognized governing body of any Indian tribe or any legally established organization of Native Americans which is controlled, sanctioned, or chartered by such governing body.

Unit of General Purpose Local Government means any city, county, town, parish, village, or other general purpose political subdivision of a State.

Vestibule means an enclosure built around a primary entry to a dwelling unit.

Weatherization Materials mean:

(1) Caulking and weatherstripping of doors and windows;

(2) Furnace efficiency modifications including, but not limited to—

(i) Replacement burners, furnaces, or boilers or any combination thereof;

(ii) Devices for minimizing energy loss through heating system, chimney, or venting devices; and

(iii) Electrical or mechanical furnace ignition systems which replace standing gas pilot lights;

(3) Cooling efficiency modifications including, but not limited to—

(i) Replacement air conditioners;

(ii) Ventilation equipment;

(iii) Screening and window films; and

(iv) Shading devices.

Weatherization Project means a project conducted in a single geographical area which undertakes to weatherize dwelling units that are energy inefficient.

§ 440.10 Allocation of funds.

(a) DOE shall allocate financial assistance for each State from sums appropriated for any fiscal year, upon annual application.

(b) Based on total program allocations at or above the amount of total
program allocations under Pub. L. 103-332, DOE shall determine the program allocation for each State from available funds as follows:

(1) Allocate to each State a "Base Allocation" as listed in Table 1.

<table>
<thead>
<tr>
<th>State</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1,636,000</td>
</tr>
<tr>
<td>Alaska</td>
<td>1,425,000</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1,417,000</td>
</tr>
<tr>
<td>Arizona</td>
<td>760,000</td>
</tr>
<tr>
<td>California</td>
<td>4,404,000</td>
</tr>
<tr>
<td>Colorado</td>
<td>4,574,000</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,887,000</td>
</tr>
<tr>
<td>Delaware</td>
<td>409,000</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>487,000</td>
</tr>
<tr>
<td>Florida</td>
<td>761,000</td>
</tr>
<tr>
<td>Georgia</td>
<td>1,844,000</td>
</tr>
<tr>
<td>Hawaii</td>
<td>120,000</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,618,000</td>
</tr>
<tr>
<td>Illinois</td>
<td>10,717,000</td>
</tr>
<tr>
<td>Indiana</td>
<td>5,156,000</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,032,000</td>
</tr>
<tr>
<td>Kansas</td>
<td>1,825,000</td>
</tr>
<tr>
<td>Kentucky</td>
<td>3,615,000</td>
</tr>
<tr>
<td>Louisiana</td>
<td>912,000</td>
</tr>
<tr>
<td>Maine</td>
<td>2,493,000</td>
</tr>
<tr>
<td>Maryland</td>
<td>1,983,000</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>5,111,000</td>
</tr>
<tr>
<td>Michigan</td>
<td>12,346,000</td>
</tr>
<tr>
<td>Minnesota</td>
<td>8,342,000</td>
</tr>
<tr>
<td>Mississippi</td>
<td>1,094,000</td>
</tr>
<tr>
<td>Missouri</td>
<td>4,615,000</td>
</tr>
<tr>
<td>Montana</td>
<td>2,123,000</td>
</tr>
<tr>
<td>Nebraska</td>
<td>2,013,000</td>
</tr>
<tr>
<td>Nevada</td>
<td>586,000</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,193,000</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,775,000</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,519,000</td>
</tr>
<tr>
<td>New York</td>
<td>15,302,000</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2,853,000</td>
</tr>
<tr>
<td>North Dakota</td>
<td>2,105,000</td>
</tr>
<tr>
<td>Ohio</td>
<td>10,665,000</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,846,000</td>
</tr>
<tr>
<td>Oregon</td>
<td>2,320,000</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>11,457,000</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>878,000</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,130,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1,561,000</td>
</tr>
<tr>
<td>Tennessee</td>
<td>3,218,000</td>
</tr>
<tr>
<td>Texas</td>
<td>2,999,000</td>
</tr>
<tr>
<td>Utah</td>
<td>1,692,000</td>
</tr>
<tr>
<td>Vermont</td>
<td>1,014,000</td>
</tr>
<tr>
<td>Virginia</td>
<td>2,970,000</td>
</tr>
<tr>
<td>Washington</td>
<td>3,775,000</td>
</tr>
<tr>
<td>West Virginia</td>
<td>2,573,000</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>7,061,000</td>
</tr>
<tr>
<td>Wyoming</td>
<td>967,000</td>
</tr>
<tr>
<td>Total</td>
<td>171,258,000</td>
</tr>
</tbody>
</table>

(2) Subtract 171,258,000 from total program allocations.

(3) Calculate each State's formula share as follows:

(i) Divide the number of "Low Income" households in each State by the number of "Low Income" households in the United States and multiply by 100.

(ii) Divide the number of "Heating Degree Days" for each State by the median "Heating Degree Days" for all States.

(iii) Divide the number of "Cooling Degree Days" for each State by the median "Cooling Degree Days" for all States, then multiply by 0.1.

(iv) Calculate the sum of the two numbers from paragraph (b)(3)(i) and (iii) of this section.

(v) Divide the residential energy expenditures for each State by the number of households in the State.

(vi) Divide the sum of the residential energy expenditures for the States in each Census division by the sum of the households for the States in that division.

(vii) Divide the quotient from paragraph (b)(3)(iv) of this section by the quotient from paragraph (b)(3)(v) of this section.

(viii) Multiply the quotient from paragraph (b)(3)(vii) of this section for each State by the residential energy expenditures per low-income household for its respective Census division.

(ix) Divide the product from paragraph (b)(3)(viii) of this section for each State by the median of the products of all States.

(x) Multiply the results for paragraph (b)(3)(i), (iv) and (ix) of this section for each State.

(xi) Divide the product in paragraph (b)(3)(x) of this section for each State by the sum of the products in paragraph (b)(3)(x) of this section for all States.

(4) Calculate each State's program allocation as follows:

(i) Multiply the remaining funds calculated in paragraph (b)(2) of this section by the formula share calculated in paragraph (b)(3)(xi) of this section.

(ii) Add the base allocation from paragraph (b)(1) of this section to the product of paragraph (b)(4)(i) of this section.

(c) Should total program allocations for any fiscal year fall below the total program allocations under Pub. L. 103-
§ 440.11

332, then each State's program allocation shall be reduced from its allocated amount under Pub. L. 103-332 by the same percentage as total program allocations for the fiscal year fall below the total program allocations under Pub. L. 103-332.

(d) All data sources used in the development of the formula are publicly available. The relevant data is available from the Bureau of the Census, the Department of Energy's Energy Information Administration and the National Oceanic and Atmospheric Administration.

(e) Should updates to the data used in the formula become available in any fiscal year, these changes would be implemented in the formula in the following program year.

(f) DOE may reduce the program allocation for a State by the amount DOE determines cannot be reasonably expended by a grantee to weatherize dwelling units during the budget period for which financial assistance is to be awarded. In reaching this determination, DOE will consider the amount of unexpended financial assistance currently available to a grantee under this part and the number of dwelling units which remains to be weatherized with the unexpended financial assistance.

(g) DOE may increase the program allocation of a State by the amount DOE determines the grantee can expend to weatherize additional dwelling units during the budget period for which financial assistance is to be awarded.

(h) The Support Office Director shall notify each State of the program allocation for which that State is eligible to apply.

[60 FR 29480, June 5, 1995]

§ 440.11 Native Americans.

(a) Notwithstanding any other provision of this part, the Support Office Director may determine, after taking into account the amount of funds made available to a State to carry out the purposes of this part, that:

(1) The low-income members of an Indian tribe are not receiving benefits under this part equivalent to the assistance provided to other low-income persons in the State under this part and

(2) The low-income members of such tribe would be better served by means of a grant made directly to provide such assistance.

(b) In any State for which the Support Office Director shall have made the determination referred to in paragraph (a) of this section, the Support Office Director shall reserve from the sums that would otherwise be allocated to the State under this part not less than 100 percent, or more than 150 percent, of an amount which bears the same ratio to the State's allocation for the fiscal year involved as the population of all low-income Native Americans for whom a determination under paragraph (a) of this section has been made bears to the population of all low-income persons in the State.

(c) The Support Office Director shall make the determination prescribed in paragraph (a) of this section in the event a State:

(1) Does not apply within the sixty-day time period prescribed in §440.12(a);

(2) Recommends that direct grants be made for low-income members of an Indian tribe as provided in §440.12(b)(5);

(3) Files an application which DOE determines, in accordance with the procedures in § 440.30, not to make adequate provision for the low-income members of an Indian tribe residing in the State; or

(4) Has received grant funds and DOE determines, in accordance with the procedures in § 440.30, that the State has failed to implement the procedures required by § 440.16(6).

(d) Any sums reserved by the Support Office Director pursuant to paragraph (b) of this section shall be granted to the tribal organization serving the individuals for whom the determination has been made, or where there is no tribal organization, to such other entity as the Support Office Director determines is able to provide adequate weatherization assistance pursuant to this part. Where the Support Office Director intends to make a grant to an organization to perform services benefiting more than one Indian tribe, the approval of each Indian tribe shall be a prerequisite for the issuance of a notice of grant award.
(e) Within 30 days after the Support Office Director has reserved funds pursuant to paragraph (b) of this section, the Support Office Director shall give written notice to the tribal organization or other qualified entity of the amount of funds reserved and its eligibility to apply therefor.

(f) Such tribal organization or other qualified entity shall thereafter be treated as a unit of general purpose local government eligible to apply for funds hereunder, pursuant to the provisions of §440.13.

§ 440.12 State application.

(a) To be eligible for financial assistance under this part, a State shall submit an application to DOE in conformity with the requirements of this part not later than 60 days after the date of notice to apply is received from the Support Office Director. After receipt of an application for financial assistance or for approval of an amendment to a State plan, the Support Office Director may request the State to submit within a reasonable period of time any revisions necessary to make the application complete or to bring the application into compliance with the requirements of this part. The Support Office Director shall attempt to resolve any dispute over the application informally and to seek voluntary compliance. If a State fails to submit timely appropriate revisions to complete the application, the Support Office Director may reject the application as incomplete in a written decision, including a statement of reasons, which shall be subject to administrative review under §440.30 of this part.

(b) Each application shall include:

(1) The name and address of the State agency or office responsible for administering the program;

(2) A copy of the final State plan prepared after notice and a public hearing in accordance with §440.14(a), except that an application by a local applicant need not include a copy of the final State plan;

(3) The budget for total funds applied for under the Act, which shall include a justification and explanation of any amounts requested for expenditure pursuant to §440.18(d) for State administration;

(4) The total number of dwelling units proposed to be weatherized with grant funds during the budget period for which assistance is to be awarded—

(i) With financial assistance previously obligated under this part, and

(ii) With the program allocation to the State;

(5) A recommendation that a tribal organization be treated as a local applicant eligible to submit an application pursuant to §440.13(b), if such a recommendation is to be made;

(6) A monitoring plan which shall indicate the method used by the State to insure the quality of work and adequate financial management control at the subgrantee level;

(7) A training and technical assistance plan which shall indicate how funds for training and technical assistance will be used; and

(8) Any further information which the Secretary finds necessary to determine whether an application meets the requirements of this part.

(c) On or before 60 days from the date that a timely filed application is complete, the Support Office Director shall decide whether DOE shall approve the application. The Support Office Director may—

(1) Approve the application in whole or in part to the extent that the application conforms to the requirements of this part;

(2) Approve the application in whole or in part subject to special conditions designed to ensure compliance with the requirements of this part; or

(3) Disapprove the application if it does not conform to the requirements of this part.

(Approved by the Office of Management and Budget under control number 1904±0047)

§ 440.13 Local applications.

(a) The Support Office Director shall give written notice to all local applicants throughout a State of their eligibility to apply for financial assistance under this part in the event:
(1) A State, within which a local applicant is situated, fails to submit an application within 60 days after notice in accordance with §440.12(a) or

(2) The Support Office Director finally disapproves the application of a State, and, under §440.30, either no appeal is filed or the Support Office Director’s decision is affirmed.

(b) To be eligible for financial assistance, a local applicant shall submit an application pursuant to §440.12(b) to the Support Office Director within 30 days after receiving the notice referred to in paragraph (a) of this section.

(c) In the event one or more local applicants submits an application for financial assistance to carry out projects in the same geographical area, the Support Office Director shall hold a public hearing with the same procedures that apply under section §440.14(a).

(d) Based on the information provided by a local applicant and developed in any hearing held under paragraph (c) of this section, the Support Office Director shall determine in writing whether to award a grant to carry out one or more weatherization projects.

(e) If there is an adverse decision in whole or in part under paragraph (d) of this section, that decision is subject to administrative review under §440.30 of this part.

(f) If, after a State application has been finally disapproved by DOE and the Support Office Director approves local applications under this section, the Support Office Director may reject a new State application in whole or in part as disruptive and untimely without prejudice to submission of an application for the next program year.

(Approved by the Office of Management and Budget under control number 1904-0047)

§440.14 State plans.

(a) Before submitting an application, a State shall give not less than 10 days notice of hearing, reasonably calculated to inform prospective subgrantees, and shall conduct one or more public hearing for the purpose of receiving comments on a proposed State plan. The proposed State plan shall identify and describe proposed weatherization projects, including a statement of proposed subgrantees and the amount each will receive; shall address the other items contained in paragraph (b) of this section; and shall be made available throughout the State prior to the hearing. The notice for the hearing shall specify that copies of the plan are available and how they may be obtained. A transcript of the hearings shall be prepared and written submission of views and data shall be accepted for the record.

(b) Subsequent to the hearing, the State shall prepare a final State plan which shall identify and describe:

(1) The production schedule for the State, which shall indicate projected expenditures and the number of dwelling units which are expected to be weatherized each quarter during the program year;

(2) An estimate of the number of dwelling units expected to be weatherized during the program year by category to include:
 (i) Single-family and multi-family residences;
 (ii) Elderly persons’ residences;
 (iii) Handicapped persons’ residences;
 (iv) Renters’ residences;
 (v) If Native Americans do not receive direct grants under §440.11, Native American residences; and
 (vi) Children’s residences, if the State selects this category as a priority with paragraphs (b)(2)(ii) and (b)(2)(iii) of this section.

(3) The climatic conditions within the State;

(4) The type of weatherization work to be done;

(5) An estimate of the amount of energy to be conserved;

(6) An estimate of the number of eligible dwelling units in which the elderly reside;

(7) An estimate of the number of eligible dwelling units in which the handicapped reside;

(8) Each area to be served by a weatherization project within the State, and shall include for each area:
 (i) The tentative allocation;
 (ii) The number of dwelling units expected to be weatherized during the
program year, and the number of previously weatherized units expected to be weatherized;

(iii) The estimated number of rental dwelling units to be weatherized; and

(iv) Sources of labor.

(9) The manner in which the State plan is to be implemented, and shall include:

(i) An analysis of the existence and effectiveness of any weatherization project being carried out by a subgrantee;

(ii) An explanation of the method used to select each area to be served by a weatherization project;

(iii) The extent to which priority will be given to the weatherization of single-family or other high energy consuming dwelling units;

(iv) The amount of non-Federal resources to be applied to the program;

(v) The amount of Federal resources, other than DOE weatherization grant funds, to be applied to the program;

(vi) The amount of weatherization grant funds allocated to the State under this part;

(vii) The expected average cost per dwelling to be weatherized, taking into account the total number of dwellings to be weatherized and the total amount of funds, Federal and non-Federal, expected to be applied to the program;

(viii) The average amount of the DOE funds specified in §440.18(c)(1) through (11) to be applied to any dwelling unit;

(ix) The average amount of DOE funds to be applied to any dwelling unit for weatherization materials as specified in §440.18(c)(1);

(x) The procedures used by the State for providing additional administrative funds to qualified subgrantees as specified in §440.18(d);

(xi) Procedures for determining the most cost-effective measures in a dwelling unit or a statement that Project Retro-Tech or another DOE-approved audit will be used;

(xii) The definition of “low income” which the State has chosen for use statewide for determining eligibility under §440.22(a).

(xiii) The definition of “children” which the State has chosen consistent with §440.3.

(xiv) The amount of Federal funds to be used, and an explanation of how they will be used, to increase the amount of weatherization assistance that the State obtains from non-Federal sources, including private sources, and the expected leveraging effect to be accomplished.

(Approved by the Office of Management and Budget under control number 1904-0047)

§ 440.15 Subgrantees.

(a) The grantee shall ensure that:

(1) Each subgrantee is a CAA or other public or nonprofit entity;

(2) Each subgrantee is selected on the basis of public comment received during a public hearing conducted pursuant to §440.14(a) and other appropriate findings regarding:

(i) The subgrantee’s experience and performance in weatherization or housing renovation activities;

(ii) The subgrantee’s experience in assisting low-income persons in the area to be served; and

(iii) The subgrantee’s capacity to undertake a timely and effective weatherization program.

(3) In selecting a subgrantee, preference is given to any CAA or other public or nonprofit entity which has, or is currently administering, an effective program under this part or under title II of the Economic Opportunity Act of 1964, with program effectiveness evaluated by consideration of factors including, but not necessarily limited to, the following:

(i) The extent to which the past or current program achieved or is achieving weatherization goals in a timely fashion;

(ii) The quality of work performed by the subgrantee;

(iii) The number, qualifications, and experience of the staff members of the subgrantee; and

(iv) The ability of the subgrantee to secure volunteers, training participants, and public service employment workers pursuant to JTPA.

(b) The grantee shall ensure that the funds received under this part will be allocated to the entities selected in accordance with paragraph (a) of this section, such that funds will be allocated
§ 440.16 Minimum program requirements.

Prior to the expenditure of any grant funds each grantee shall develop, publish, and implement procedures to ensure that:

(a) No dwelling unit may be weatherized without documentation that the dwelling unit is an eligible dwelling unit as provided in § 440.22;

(b) Priority is given to identifying and providing weatherization assistance to elderly and handicapped low-income persons and such priority as the applicant determines is appropriate is given to dwelling units containing children and to single-family or other high-energy-consuming dwelling units;

(c) Financial assistance provided under this part will be used to supplement, and not supplant, State or local funds, and, to the maximum extent practicable, as determined by DOE, to increase the amounts of these funds that would be made available in the absence of Federal funds provided under this part;

(d) To the maximum extent practicable, the grantee will secure the services of volunteers when such personnel are generally available, training participants and public service employment workers, pursuant to JTPA, to work under the supervision of qualified supervisors and foremen;

(e) To the maximum extent practicable, the use of weatherization assistance shall be coordinated with other Federal, State, local, or privately funded programs in order to improve energy efficiency and to conserve energy;

(f) The low-income members of an Indian tribe shall receive benefits equivalent to the assistance provided to other low-income persons within a State unless the grantee has made the recommendation provided in § 440.12(b)(5);

(g) No dwelling unit may be reported to DOE as completed until all weatherization materials have been installed and the subgrantee, or its authorized representative, has performed a final inspection(s) including any mechanical work performed and certified that the work has been completed in a workmanlike manner and in accordance with the priority determined by the audit procedures required by § 440.21; and

(h) Subgrantees limit expenditure of funds under this part for installation of materials (other than weatherization materials) to abate energy-related health and safety hazards, to a list of types of such hazards, permissible abatement materials and their costs which is submitted, and updated as necessary at the same time as an annual application under § 440.12 of this part and which DOE shall approve if—

(1) Elimination of such hazards are necessary before, or as a result of, installation of weatherization materials; and

(2) The grantee sets forth a limitation on the percent of average dwelling unit costs which may be used to abate such hazards which is reasonable in light of the primary energy conservation purpose of this part;

(i) The benefits of weatherization to occupants of rental units are protected in accordance with § 440.22(b)(3) of this part.

(Approved by the Office of Management and Budget under control number 1904-0047)

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12526, Mar. 4, 1993]

(a) Prior to the expenditure of any grant funds, a State policy advisory council shall be established by a State or by the Support Office Director if a State does not participate in the program which:

1. Has special qualifications and sensitivity with respect to solving the problems of low-income persons, including the weatherization and energy conservation problems of these persons;

2. Is broadly representative of organizations and agencies, including consumer groups that represent low-income persons, particularly elderly and handicapped low-income persons and low-income Native Americans, in the State or geographical area in question; and

3. Has responsibility for advising the appropriate official or agency administering the allocation of financial assistance in the State or area with respect to the development and implementation of a weatherization assistance program.

[49 FR 3629, Jan. 27, 1984, as amended at 58 FR 12529, Mar. 4, 1993]

§ 440.18 Allowable expenditures.

(a) An average of at least 40 percent of the funds provided in a State under this part for weatherization materials, labor, and related matters included in paragraphs (c)(1) through (9) of this section shall be spent for weatherization materials, except if DOE approves a State’s application to waive the 40 percent requirement under §440.21(h).

(b) The expenditure of financial assistance provided under this part for labor, weatherization materials, and related matters included in paragraphs (c)(1) through (9) and (c)(15) of this section shall not exceed an average of $1,600 per dwelling unit weatherized in the State, except as adjusted as follows:

1. The $1,600 average will be adjusted annually by DOE beginning in calendar year 1991 by increasing the limitation by an amount equal to:

 (i) The limitation amount for the previous year, multiplied by

 (ii) The lesser of:

 (A) The percentage increase in the Consumer Price Index (all items, United States city average) for the most recent calendar year completed before the beginning of the year for which the determination is being made, or

 (B) Three percent.

2. In addition to the average per-dwelling-unit limitation applicable in a State under this section, DOE shall, upon application by a State, establish a separate average per-dwelling-unit limitation for dwelling units in such States which conform to program requirements and, in addition to any other weatherization modifications, have capital-intensive furnace or cooling efficiency modifications as defined in §440.3 made under this part. The average per-dwelling-unit limitation applicable in a State which meets these requirements shall not exceed an amount equal to:

 (i) The amount permitted for the expenditure of financial assistance for labor, weatherization materials, and related matters for dwelling units in such State in paragraphs (c)(1) through (9) and (c)(15) of this section plus

 (ii) An amount determined by the State to be the average amount that is appropriate for capital-intensive furnace or cooling efficiency modifications of dwelling units of the type assisted under this part in such State and approved by DOE.

(c) Allowable expenditures under this part include only:

1. The cost of purchase and delivery of weatherization materials;

2. Labor costs, in accordance with §440.19;

3. Transportation of weatherization materials, tools, equipment, and work crews to a storage site and to the site of weatherization work;

4. Maintenance, operation, and insurance of vehicles used to transport weatherization materials;

5. Maintenance of tools and equipment;

6. Purchase or annual lease of tools, equipment, and vehicles, except that any purchase of vehicles shall be referred to DOE for prior approval in every instance;
§ 440.19 Labor.

(a) Payments for labor costs under § 440.18(c)(2) shall consist of:

(1) Payments permitted by the Department of Labor to supplement wages paid to training participants and public service employment workers pursuant to JTPA; and

(2) Payments to employ labor (particularly persons eligible for training under JTPA) or to engage a contractor (particularly a nonprofit organization or a business owned by disadvantaged individuals which performs weatherization services), provided a grantee has determined an adequate number of volunteers, training participants, and public service employment workers, assisted pursuant to JTPA, are not available to weatherize dwelling units for a subgrantee under the supervision of qualified supervisors.

§ 440.20 Low-cost/no-cost weatherization activities.

(a) An eligible dwelling unit may be weatherized without regard to the limitations contained in § 440.18(e)(2) or § 440.21(b) from funds designated by the grantee for carrying out low-cost/no-
cost weatherization activities provided:

(1) Inexpensive weatherization materials are used, such as water flow controllers, furnace or cooling filters, or items which are primarily directed toward reducing infiltration, including weatherstripping, caulking, glass patching, and insulation for plugging and

(2) No labor paid with funds provided under this part is used to install weatherization materials referred to in paragraph (a)(1) of this section.

(b) A maximum of 10 percent of the amount allocated to a subgrantee, not to exceed $50 in materials costs per dwelling unit, may be expended to carry out low-cost/no-cost weatherization activities, unless the Support Office Director approves a higher expenditure per dwelling unit.

[40 FR 3629, Jan. 27, 1984, as amended at 50 FR 713, Jan. 4, 1985; 58 FR 12529, Mar. 4, 1993]

§ 440.21 Standards and techniques for weatherization.

(a) Paragraphs (b) through (g) of this section set forth the energy audit procedures which apply to the grantee and subgrantees who are subject to the 40 percent material cost requirement in §440.18(a) of this part. Paragraphs (b), (d), (e), and (h) through (k) of this section set forth the requirements for the energy audit procedures which, if satisfied in the State plan, warrant approval of a State’s application to waive the 40 percent material cost requirement in §440.18(a) of this part.

(b) Only weatherization materials which are listed in appendix A and which meet or exceed standards prescribed in appendix A to this part shall be purchased with funds provided under this part, except that DOE may approve an unlisted material upon application from any State.

(c) The most cost-effective weatherization materials for each dwelling unit shall be determined by audit procedures using the following formula:

(1) The cost of fuel saved per year by installing a weatherization material in a dwelling unit;

(2) Multiplied by the appropriate lifetime of the weatherization material; and

(3) Divided by the cost of the weatherization material and the cost of the installation of the weatherization material.

(d) The computation of the cost of fuel saved per year must take into account the number of heating or cooling degree days in the area in which the computation is being made and must otherwise use reasonable methods and assumptions.

(e) The figures used for the lifetime of the materials and for the costs of materials and cost of the installation of the materials must be generally accepted in the relevant trade.

(f) The weatherization materials which shall be installed first are those which are determined to be the most cost effective using the formula in paragraph (c) of this section.

(g) The audit procedures used in Project Retro-Tech to determine the most cost-effective weatherization materials comply with this section. The grantee or subgrantee may use other audit procedures to determine the most cost-effective weatherization materials, provided that these procedures comply with this section and are approved by the Support Office Director prior to their use. A grantee or subgrantee may use results obtained from audits conducted under the Residential Conservation Service Program as part of the audit procedures which have been approved by the Support Office Director.

(h) The energy audit procedures must—

(1) Consider the rate of energy use;

(2) Address significant heating and cooling needs;

(3) Make provision for use of advanced diagnostic and assessment techniques which DOE has determined are consistent with sound engineering practices;

(4) Determine energy use from actual energy bills or by generally accepted engineering calculations;

(5) Consistent with paragraphs (d) and (e) of this section, determine that each weatherization material is cost effective by ensuring that the net fuel cost savings over the lifetime of such weatherization material, discounted to present value in accordance with paragraph (i) of this section, to the costs to
§ 440.22 Eligible dwelling units.

(a) A dwelling unit shall be eligible for weatherization assistance under this part if it is occupied by a family unit:

(1) Whose income is at or below 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget;

(2) Which contains a member who has received cash assistance payments under Title IV or XVI of the Social Security Act or applicable State or local

(b) The energy audit must provide for use of the annually adjusted discount rate provided by DOE except that a State may keep that rate constant up to 5 years or may use a reasonable higher real discount rate. Subject to a ceiling of 10 percent and floor of 3 percent and subject to adjustment by DOE region for a rate of fuel cost escalation predicted by the DOE Energy Information Administration, DOE shall calculate annually the adjusted discount rate, for use under paragraph (h) of this section as a 12-month average of the composite yields of all outstanding U.S. Treasury bonds neither due nor callable in less than 10 years, as most recently reported by the Federal Reserve, adjusted to exclude estimated increases in the general level of prices consistent with projections of inflation in the most recent Economic Report of the President’s Council of Economic Advisers.

(c) For typical dwelling units without unusual energy consuming characteristics which significantly alter typical energy usage, energy audits may be accomplished by using a priority list developed by conducting, in compliance with paragraph (h) of this section, site-specific energy audits of a representative sample of typical dwelling units for each major dwelling unit type covered by the State’s weatherization program. Priority lists developed in accordance with this paragraph must be revalidated by conducting a representative sample of site-specific energy audits every 5 years.

(d) Subject to DOE approval, a State may use as a part of an energy audit, a list of presumptively cost effective general heat waste reduction weatherization materials and the circumstances under which such materials may be presumed cost effective without need for further audit justification if those materials are shown to be cost effective in typical dwelling units for major dwelling unit types in the State based on documentation of a representative number of site-specific energy audits.

§ 440.22 Eligible dwelling units.

(a) A dwelling unit shall be eligible for weatherization assistance under this part if it is occupied by a family unit:

(1) Whose income is at or below 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget;

(2) Which contains a member who has received cash assistance payments under Title IV or XVI of the Social Security Act or applicable State or local

(b) The energy audit must provide for use of the annually adjusted discount rate provided by DOE except that a State may keep that rate constant up to 5 years or may use a reasonable higher real discount rate. Subject to a ceiling of 10 percent and floor of 3 percent and subject to adjustment by DOE region for a rate of fuel cost escalation predicted by the DOE Energy Information Administration, DOE shall calculate annually the adjusted discount rate, for use under paragraph (h) of this section as a 12-month average of the composite yields of all outstanding U.S. Treasury bonds neither due nor callable in less than 10 years, as most recently reported by the Federal Reserve, adjusted to exclude estimated increases in the general level of prices consistent with projections of inflation in the most recent Economic Report of the President’s Council of Economic Advisers.

(c) For typical dwelling units without unusual energy consuming characteristics which significantly alter typical energy usage, energy audits may be accomplished by using a priority list developed by conducting, in compliance with paragraph (h) of this section, site-specific energy audits of a representative sample of typical dwelling units for each major dwelling unit type covered by the State’s weatherization program. Priority lists developed in accordance with this paragraph must be revalidated by conducting a representative sample of site-specific energy audits every 5 years.

(d) Subject to DOE approval, a State may use as a part of an energy audit, a list of presumptively cost effective general heat waste reduction weatherization materials and the circumstances under which such materials may be presumed cost effective without need for further audit justification if those materials are shown to be cost effective in typical dwelling units for major dwelling unit types in the State based on documentation of a representative number of site-specific energy audits.

58 FR 12527, Mar. 4, 1993

§ 440.22 Eligible dwelling units.

(a) A dwelling unit shall be eligible for weatherization assistance under this part if it is occupied by a family unit:

(1) Whose income is at or below 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget;

(2) Which contains a member who has received cash assistance payments under Title IV or XVI of the Social Security Act or applicable State or local

§ 440.22 Eligible dwelling units.

(a) A dwelling unit shall be eligible for weatherization assistance under this part if it is occupied by a family unit:

(1) Whose income is at or below 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget;

(2) Which contains a member who has received cash assistance payments under Title IV or XVI of the Social Security Act or applicable State or local
law at any time during the 12-month period preceding the determination of eligibility for weatherization assistance; or

(3) If the State elects, is eligible for assistance under the Low-Income Home Energy Assistance Act of 1981, provided that such basis is at least 125 percent of the poverty level determined in accordance with criteria established by the Director of the Office of Management and Budget.

(b) A subgrantee may weatherize a building containing rental dwelling units using financial assistance for dwelling units eligible for weatherization assistance under paragraph (a) of this section, where:

(1) The subgrantee has obtained the written permission of the owner or his agent;

(2) Not less than 66 percent (50 percent for duplexes and four-unit buildings) of the dwelling units in the building:

(i) Are eligible dwelling units, or

(ii) Will become eligible dwelling units within 180 days under a Federal, State, or local government program for rehabilitating the building or making similar improvements to the building; and

(3) The grantee has established procedures for dwellings which consist of a rental unit or rental units to ensure that:

(i) The benefits of weatherization assistance in connection with such rental units, including units where the tenants pay for their energy through their rent, will accrue primarily to the low-income tenants residing in such units;

(ii) For a reasonable period of time after weatherization work has been completed on a dwelling containing a unit occupied by an eligible household, the tenants in that unit (including households paying for their energy through their rent) will not be subjected to rent increases unless those increases are demonstrably related to matters other than the weatherization work performed;

(iii) The enforcement of paragraph (b)(3)(ii) of this section is provided through procedures established by the State by which tenants may file complaints, and owners, in response to such complaints, shall demonstrate that the rent increase concerned is related to matters other than the weatherization work performed; and

(iv) No undue or excessive enhancement shall occur to the value of the dwelling units.

(c) In order to secure the Federal investment made under this part and address the issues of eviction from and sale of property receiving weatherization materials under this part, States may seek landlord agreement to placement of a lien or to other contractual restrictions;

(d) As a condition of having assistance provided under this part with respect to multifamily buildings, a State may require financial participation, when feasible, from the owners of such buildings. Such financial participation shall not be reported as program income, nor will it be treated as if it were appropriated funds. The funds contributed by the landlord shall be expended in accordance with the agreement between the landlord and the weatherization agency.

(e) In devising procedures under paragraph (b)(3)(i) of this section, States should consider requiring use of alternative dispute resolution procedures including arbitration.

(f) A State may weatherize shelters. For the purpose of determining how many dwelling units exist in a shelter, a grantee may count each 800 square feet of the shelter as a dwelling unit or it may count each floor of the shelter as a dwelling unit.

§440.23 Oversight, training, and technical assistance.

(a) The Secretary and the appropriate Support Office Director, in coordination with the Secretary of Health and Human Services, shall monitor and evaluate the operation of projects carried out by CAA’s receiving financial assistance under this part through on-site inspections, or through other means, in order to ensure the effective provision of weatherization assistance for the dwelling units of low-income persons.

(b) DOE shall also carry out periodic evaluations of a program and weatherization projects that are not carried
§ 440.24 Recordkeeping.

Each grantee or subgrantee receiving Federal financial assistance under this part shall keep such records as DOE shall require, including records which fully disclose the amount and disposition by each grantee or subgrantee of the funds received, the total cost of a weatherization project or the total expenditure to implement the State plan for which assistance was given or used, the source and amount of funds for such project or program not supplied by DOE, the average size of the dwelling being weatherized, the average income of households receiving assistance under this part, and such other records as DOE deems necessary for an effective audit and performance evaluation. Such recordkeeping shall be in accordance with the DOE Financial Assistance Rule, 10 CFR part 600, and any further requirements of this part.

[58 FR 12529, Mar. 4, 1993]

§ 440.25 Reports.

DOE may require any recipient of financial assistance under this part to provide, in such form as may be prescribed, such reports or answers in writing to specific questions, surveys, or questionnaires as DOE determines to be necessary to carry out its responsibilities or the responsibilities of the Secretary of Health and Human Services under this part.

(Approved by the Office of Management and Budget under control number 1901-0127)

§§ 440.26-440.29 [Reserved]

§ 440.30 Administrative review.

(a) An applicant shall have 20 days from the date of receipt of a decision under §440.12 or §440.13 to file a notice requesting administrative review. If an applicant does not timely file such a notice, the decision under §440.12 or §440.13 shall become final for DOE.

(b) A notice requesting administrative review shall be filed with the Support Office Director and shall be accompanied by a written statement containing supporting arguments and requesting, if desired, the opportunity for a public hearing.

(c) A notice or any other document shall be deemed filed under this section upon receipt.

(d) On or before 15 days from receipt of a notice requesting administrative review which is timely filed, the Support Office Director shall forward to the Deputy Assistant Secretary, the notice requesting administrative review, the decision under §440.12 or §440.13 as to which administrative review is sought, a draft recommended final decision for the concurrence of the Deputy Assistant Secretary, and any other relevant material.

(e) If the applicant requests a public hearing, the Deputy Assistant Secretary, within 15 days, shall give actual notice to the State and Federal Register notice of the date, place, time, and procedures which shall apply to the public hearing. Any public hearing
under this section shall be informal and legislative in nature.

(f) On or before 45 days from receipt of documents under paragraph (d) of this section or the conclusion of the public hearing, whichever is later, the Deputy Assistant Secretary shall concur in, concur in as modified, or issue a substitute for the recommended decision of the Support Office Director.

(g) On or before 15 days from the date of receipt of the determination under paragraph (f) of this section, the Governor may file an application, with a supporting statement of reasons, for discretionary review by the Assistant Secretary. On or before 15 days from filing, the Assistant Secretary shall send a notice to the Governor stating whether the Deputy Assistant Secretary's determination will be reviewed. If the Assistant Secretary grants review, a decision shall be issued no later than 60 days from the date review is granted. The Assistant Secretary may not issue a notice or decision under this paragraph without the concurrence of the DOE Office of General Counsel.

(h) A decision under paragraph (f) of this section shall be final for DOE if there is no review under paragraph (g) of this section. If there is review under paragraph (g) of this section, the decision thereunder shall be final for DOE, and no appeal shall lie elsewhere in DOE.

(i) Prior to the effective date of the termination of eligibility for further participation in the program because of failure to comply substantially with the requirements of the Act or of this part, a grantee shall have the right to written notice of the basis for the enforcement action and the opportunity for a public hearing notwithstanding any provisions to contrary of 10 CFR 600.26, 600.28(b), 600.29, 600.121(c), and 600.443. A notice under this paragraph shall be mailed by the Support Office Director by registered mail, return receipt requested, to the State, local grantee, and other interested parties. To obtain a public hearing, the grantee must request an evidentiary hearing, with prior Federal Register notice, in the election letter submitted under Rule 2 of 10 CFR 1024.4 and the request shall be granted notwithstanding any provisions of Rule 2 to the contrary.

APPENDIX A—STANDARDS FOR WEATHERIZATION MATERIALS

The following Government standards are produced by the Consumer Product Safety Commission and are published in title 16, Code of Federal Regulations:

Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor—insulation materials intended for exposed use in attic floors shall be capable of meeting the same flammability requirements given for cellulose insulation in 16 CFR part 1209;

Enclosed spaces—insulation materials intended for use within enclosed stud or joist spaces shall be capable of meeting the smoldering combustion requirements in 16 CFR part 1209.

The following standards which are not otherwise set forth in part 440 are incorporated by reference and made a part of part 440. The following standards have been approved for incorporation by reference by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. These materials are incorporated as they exist on April 5, 1993 and a notice of any change in these materials will be published in the Federal Register. The standards incorporated by reference are available for inspection at the Office of the Federal Register Information Center, 800 North Capitol Street, suite 700, Washington, DC.

The standards incorporated by reference in part 440 can be obtained from the following sources:

Air Conditioning and Refrigeration Institute, 1501 Wilson Blvd., Arlington, VA 22209; (703) 524-8800.

American Gas Association, 1515 Wilson Blvd., Arlington, VA 22209; (703) 841-8400.

American National Standards Institute, Inc., 1430 Broadway, New York, NY 10018; (212) 642-4900.

American Society of Mechanical Engineers, United Engineering Center, 345 East 4th Street, New York, NY 10017; (212) 705-7800.

American Architectural Manufacturers Association, 1540 East Dundee Road, Palatine, IL 60067; (708) 202-1350.

Federal Specifications, General Services Administration, Specifications Section.
THERMAL INSULATING MATERIALS FOR BUILDING ELEMENTS INCLUDING WALLS, FLOORS, CEILINGS, ATTICS, AND ROOFS—Continued

Insulation—mineral fiber:
- Blanket insulation
- Loose-fill insulation

Insulation—mineral cellular:
- Vermiculite loose-fill insulation.
- Perlite loose-fill insulation ...

Cellular glass insulation block.

Perlite insulation board

Insulation—organic fiber:
- Cellulosic fiber insulating board.

Insulation—organic cellular:
- Preformed block-type polyurethane insulation.
- Preformed pipe insulation ...
- Blanket and felt insulation (industrial type).
- Blanket insulation and blanket type pipe insulation (metal-mesh covered) (industrial type).
- Block and board insulation
- Spray applied fibrous insulation for elevated temperature.
- High-temperature fiber blanket insulation.
- Duct work insulation

Insulation—mineral cellular:
- Diatomaceous earth block and pipe insulation.

THERMAL INSULATING MATERIALS FOR PIPES, DUCTS, AND EQUIPMENT SUCH AS BOILERS AND FURNACES

Insulation—mineral fiber:
- Preformed pipe insulation ...
- Blanket and felt insulation (industrial type).
- Blanket insulation and blanket type pipe insulation (metal-mesh covered) (industrial type).
- Block and board insulation
- Spray applied fibrous insulation for elevated temperature.
- High-temperature fiber blanket insulation.
- Duct work insulation

Insulation—organic cellular:
- Preformed block-type polyurethane insulation.
- Preformed pipe insulation ...
- Blanket and felt insulation (industrial type).
- Blanket insulation and blanket type pipe insulation (metal-mesh covered) (industrial type).
- Block and board insulation
- Spray applied fibrous insulation for elevated temperature.
- High-temperature fiber blanket insulation.
- Duct work insulation

Insulation—mineral cellular:
- Diatomaceous earth block and pipe insulation.
Department of Energy

THERMAL INSULATING MATERIALS FOR PIPES, DUCTS, AND EQUIPMENT SUCH AS BOILERS AND FURNACES—Continued

<table>
<thead>
<tr>
<th>Material</th>
<th>Standards</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular glass insulation</td>
<td>ASTM C552–88.</td>
<td></td>
</tr>
<tr>
<td>Expanded perlite block and pipe insulation.</td>
<td>ASTM C610–85.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ASTM indicates American Society for Testing and Materials.</td>
</tr>
</tbody>
</table>

FIRE SAFETY REQUIREMENTS FOR INSULATING MATERIALS ACCORDING TO INSULATION USE

<table>
<thead>
<tr>
<th>Area</th>
<th>Required Standards</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attic floor Insulation materials intended for exposed use in attic floors shall be capable of meeting the same smoldering combustion requirements given for cellulose insulation in ASTM C739–88.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed space Insulation materials intended for use within enclosed stud or joist spaces shall be capable of meeting the smoldering combustion requirements in ASTM C739–88.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed interior walls and ceilings. Insulation materials, including those with combustible facings, which remain exposed and serve as wall or ceiling interior finish, shall have a flame spread classification not to exceed 150 (per ASTM E84–89a).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior envelope walls and roofs. Exterior envelope walls and roofs containing thermal insulations shall meet applicable local government building code requirements for the complete wall or roof assembly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipes, ducts, and equipment. Insulation materials intended for use on pipes, ducts and equipment shall be capable of meeting a flame spread classification not to exceed 150 (per ASTM E84–89a).</td>
<td></td>
<td>1 ASTM indicates American Society for Testing and Materials.</td>
</tr>
</tbody>
</table>

STORM WINDOWS—Continued

<table>
<thead>
<tr>
<th>Material</th>
<th>Standards</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood frame storm windows.</td>
<td>ANSI/NWWDA 1 I.S. 2–87. (Section 3)</td>
<td>ASTM D4099–89.</td>
</tr>
<tr>
<td>Rigid vinyl frame storm windows.</td>
<td></td>
<td>Required minimum thickness windows is 6 mil (.006 inches). Commercially available.</td>
</tr>
<tr>
<td>Frameless plastic glazing storm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movable insulation systems for windows.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STORM WINDOWS

<table>
<thead>
<tr>
<th>Material</th>
<th>Standards</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm doors—Aluminum: Storm Doors</td>
<td>ANSI/AAMA 1 1102.7–89.</td>
<td></td>
</tr>
<tr>
<td>Sliding glass storm doors</td>
<td>ANSI/AAMA 1002.10–83.</td>
<td></td>
</tr>
<tr>
<td>Wood storm doors</td>
<td>ANSI/NWWDA 1 I.S. 6–86.</td>
<td></td>
</tr>
<tr>
<td>Vestibules: Materials to construct vestibules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel frame windows</td>
<td>Steel Window Institute</td>
<td></td>
</tr>
<tr>
<td>Rigid vinyl frame windows.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STORM DOORS

<table>
<thead>
<tr>
<th>Material</th>
<th>Standards</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood doors: Flush doors</td>
<td>ANSI/NWWDA 1 I.S. 1–67. (exterior door provisions)</td>
<td></td>
</tr>
</tbody>
</table>
Replacement Doors—Continued

[Standards for conformance]

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood doors</td>
<td>NWDDA I.S. 3–83</td>
</tr>
</tbody>
</table>

1. ANSI/SDI indicates American National Standards Institute/Steel Door Institute.

Caulks and Sealants:

[Standards for conformance]

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and resin base caulks</td>
<td>ASTM C570–72 (1989).</td>
</tr>
<tr>
<td>Butyl rubber sealants</td>
<td>FS TT–S–001657, October 8, 1970.</td>
</tr>
<tr>
<td>Preformed gaskets and sealing materials</td>
<td>ASTM C509–84.</td>
</tr>
</tbody>
</table>

1. FS indicates Federal Specifications.

Weatherstripping

[Standards for conformance]

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weatherstripping</td>
<td>Commercially available.</td>
</tr>
<tr>
<td>Vapor retarders</td>
<td>Selected according to the provisions cited in ASTM C755–85 (1990). Permeance not greater than 1 perm when determined according to the desiccant method described in ASTM E96–90. Commercially available.</td>
</tr>
</tbody>
</table>

Water Heater Modifications

[Standards for conformance]

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulate tank and distribution piping</td>
<td>(See insulation section of this appendix). Applicable local plumbing code. Listed by UL.</td>
</tr>
<tr>
<td>Install heat traps on inlet and outlet piping</td>
<td>Listed by UL.</td>
</tr>
<tr>
<td>Install/replace water heater heating elements</td>
<td>Listed by UL.</td>
</tr>
</tbody>
</table>

1. UL indicates Underwriters Laboratories.
2. NEMA indicates National Electrical Manufacturers Association.
Department of Energy

WATER HEATER MODIFICATIONS—Continued

Standards for conformance

<table>
<thead>
<tr>
<th>Electric, freeze-prevention tape for pipes.</th>
<th>Listed by UL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce thermostat settings.</td>
<td>State or local recommendations.</td>
</tr>
<tr>
<td>Install water flow modifiers.</td>
<td>Commerically available.</td>
</tr>
</tbody>
</table>

BOILER REPAIR AND MODIFICATIONS/EFFICIENCY IMPROVEMENTS—Continued

Standards for conformance

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace/modify boilers</td>
<td>ASME Boiler and Pressure Vessel Code, 1992. Sections II, IV, V, VI, VIII, IX, and X. Boilers must be Institute of Boilers and Radiation Manufacturers (IBR) equipment.</td>
</tr>
</tbody>
</table>

WASTE HEAT RECOVERY DEVICES

Standards for conformance

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing heat exchangers.</td>
<td>Commercially available components and in new heating furnace systems to manufacturers’ specifications.</td>
</tr>
<tr>
<td>Condensing heat exchangers.</td>
<td>Commercially available (Commercial, multi-story building, with teflon-lined tubes institutional) to manufacturers’ specifications.</td>
</tr>
</tbody>
</table>

BOILER REPAIR AND MODIFICATIONS/EFFICIENCY IMPROVEMENTS

Standards for conformance

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean heat exchanger, adjust burner air shutter(s), check smoke no. on oil-fueled equipment. Check operation of pump(s) and replacement filters.</td>
<td>Repair combustion chambers.</td>
</tr>
<tr>
<td>Replace heat exchangers, tubes.</td>
<td>Install/replace thermostatic radiator valves.</td>
</tr>
<tr>
<td>Install boiler duty cycle control system.</td>
<td></td>
</tr>
</tbody>
</table>

HEATING AND COOLING SYSTEM REPAIRS AND TUNE-UPS/EFFICIENCY IMPROVEMENTS

Standards for conformance

| Install duct insulation | FS HH–I–558C, January 7, 1992 (see insulation sections of this appendix). |
HEATING AND COOLING SYSTEM REPAIRS AND TUNE-UPS/EFFICIENCY IMPROVEMENTS

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce input of burner;</td>
<td>derate gas-fueled equipment.</td>
</tr>
<tr>
<td>Repair/replacement</td>
<td>oil-fired equipment.</td>
</tr>
<tr>
<td>Replace combustion chamber in oil-fired furnaces or boilers.</td>
<td></td>
</tr>
<tr>
<td>Clean heat exchanger and adjust burner: adjust air shutter and check CO₂ and stack temperature.</td>
<td></td>
</tr>
<tr>
<td>Replace air diffusers, in-takes, registers, and grilles.</td>
<td></td>
</tr>
<tr>
<td>Replace burners.</td>
<td></td>
</tr>
<tr>
<td>Install vent dampers for gas-fired heating systems.</td>
<td></td>
</tr>
<tr>
<td>Install vent dampers for oil-fired heating systems.</td>
<td></td>
</tr>
<tr>
<td>Reduce excess combustion air:</td>
<td>A: Reduce vent connector size of gas-fueled appliances.</td>
</tr>
<tr>
<td></td>
<td>B: Adjust barometric draft regulator for oil fuels.</td>
</tr>
<tr>
<td>Replace constant burning pilot with electric ignition device on gas-fueled furnaces or boilers.</td>
<td></td>
</tr>
<tr>
<td>Readjust fan switch on forced air gas or oil-fueled furnaces.</td>
<td></td>
</tr>
<tr>
<td>Replace burners.</td>
<td></td>
</tr>
<tr>
<td>Install/replace duct furnaces (gas).</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Z223.1–1988 (NFPA 54–1988) including Appendix H.</td>
<td></td>
</tr>
<tr>
<td>ANSI Z223.1–1988 (NFPA 54–1988) including Appendix H.</td>
<td></td>
</tr>
<tr>
<td>NFPA 31–1987 and per manufacturers’ (furnace or boiler) instructions.</td>
<td></td>
</tr>
<tr>
<td>See power burners (oil/gas).</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 507, August 23, 1990 Revision.</td>
<td></td>
</tr>
<tr>
<td>ANSI indicates American National Standards Institute.</td>
<td></td>
</tr>
<tr>
<td>UL indicates Underwriters Laboratories.</td>
<td></td>
</tr>
</tbody>
</table>

REPLACEMENT FURNACES, BOILERS, AND WOOD STOVES

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimneys, fireplaces, vents and solid fuel burning appliances.</td>
<td></td>
</tr>
<tr>
<td>Gas-fired furnaces.</td>
<td></td>
</tr>
<tr>
<td>Oil-fired furnaces.</td>
<td></td>
</tr>
<tr>
<td>Liquified petroleum gas storage.</td>
<td></td>
</tr>
<tr>
<td>Ventilation fans:</td>
<td></td>
</tr>
<tr>
<td>Including electric attic, ceiling, and whole house fans.</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 507, August 23, 1990 Revision.</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air conditioners:</td>
<td></td>
</tr>
<tr>
<td>Central air conditioners.</td>
<td></td>
</tr>
<tr>
<td>Room size units.</td>
<td></td>
</tr>
<tr>
<td>Other cooling equipment:</td>
<td></td>
</tr>
<tr>
<td>Including evaporative coolers, heat pumps and other equipment.</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect screens.</td>
<td></td>
</tr>
<tr>
<td>Window films.</td>
<td></td>
</tr>
</tbody>
</table>

Standards for conformance

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercially available.</td>
<td></td>
</tr>
<tr>
<td>Commercially available.</td>
<td></td>
</tr>
</tbody>
</table>
ScreeNS, WiNDow FiLMS, anD REFiLeCtiVe MaTERiaLS—Continued

[Standards for conformance]

Shade screens:
Fiberglass shade screens ... Commercially available.
Polyester shade screens ... Commercially available.

Rigid awnings:
Wood rigid awnings Commercially available.
Metal rigid awnings Commercially available.

Louver systems:
Wood louver systems Commercially available.
Metal louver systems Commercially available.

Industrial-grade white paint used as a heat-reflective measure on awnings, window louvers, doors, and exterior duct work (exposed). Commercially available.

[58 FR 12529, Mar. 4, 1993]

PART 445—[RESERVED]

PART 451—RENEWABLE ENERGY PRODUCTION INCENTIVES

Sec.
451.1 Purpose and scope.
451.2 Definitions.
451.3 Who may apply.
451.4 What is a qualified renewable energy facility.
451.5 Where and when to apply.
451.6 Duration of incentive payments.
451.7 Metering requirements.
451.8 Application content requirements.
451.9 Procedures for processing applications.
451.10 Administrative appeals.

SOURCE: 60 FR 36964, July 19, 1995, unless otherwise noted.

§ 451.1 Purpose and scope.

(a) The provisions of this part cover the policies and procedures applicable to the determinations by the Department of Energy (DOE) to make incentive payments for electric energy generated and sold by a qualified renewable energy facility owned by a State or nonprofit electric cooperative under the authority of 42 U.S.C. 13317.

(b) Determinations to make incentive payments under this part are not subject to the provisions of 10 CFR part 600 and such payments shall not be construed to be financial assistance.

§ 451.2 Definitions.

As used in this part—
Closed-loop biomass means any organic material from a plant which is planted exclusively for purposes of being used at a qualified renewable energy facility to generate electricity or from a second harvesting of such a plant if planted before October 1, 1993.

Deciding Official means the Assistant Secretary for Energy Efficiency and Renewable Energy (or any DOE official to whom the authority of the Assistant Secretary may be redelegated by the Secretary of Energy).

DOE means the Department of Energy.

Finance Office means the DOE Office of the Chief Financial Officer (or any office to which that Office's authority may be redelegated by the Secretary of Energy).

Fiscal year means the Federal fiscal year beginning October 1 and ending on September 30 of the following calendar year.

Net electric energy means the metered kilowatt-hours (kWh) generated and sold, and excludes electric energy used within the renewable energy facility to power equipment such as pumps, motors, controls, lighting, heating, cooling, and other systems needed to operate the facility.

Nonprofit electrical cooperative means a cooperative association that is legally obligated to operate on a non-profit basis and is organized under the laws of any State for the purpose of providing electric service to its members.

Renewable energy facility means a single module or unit, or an aggregation of such units, that generates electric energy which is independently metered and which results from the utilization of a renewable energy source.

Renewable energy source means solar heat, solar light, wind, geothermal energy, and biomass, except for—
(1) Heat from the burning of municipal solid waste; or
(2) Heat from a dry steam geothermal reservoir which—
§ 451.3

(i) Has no mobile liquid in its natural state;
(ii) Is a fluid composed of at least 95 percent water vapor; and
(iii) Has an enthalpy for the total produced fluid greater than or equal to 2.791 megajoules per kilogram (1200 British thermal units per pound).

State means the District of Columbia, Puerto Rico, and any of the States, territories, and possessions of the United States.

§ 451.3 Who may apply.

Any owner, or operator with the written consent of the owner, but not both, of a qualified renewable energy facility, may apply for incentive payments for net electric energy generated from a renewable energy source and sold.

§ 451.4 What is a qualified renewable energy facility.

In order to qualify for an incentive payment under this part, a renewable energy facility must meet the following qualifications—
(a) Owner qualifications. The owner must be—
(1) A State or a political subdivision of a State (or agency, authority, or instrumentality thereof);
(2) A corporation or association wholly owned, directly or indirectly, by a State or a political subdivision of a State; or
(3) A nonprofit electrical cooperative.
(b) What constitutes ownership. The owner must have all rights to the beneficial use of the renewable energy facility, and legal title must be held by, or for the benefit of, the owner.
(c) Sales affecting interstate commerce. The net electric energy generated by the renewable energy facility must be sold to another entity for consideration.
(d) Type of renewable energy sources. The source of the electric energy for which an incentive payment is sought must be a renewable energy source, as defined in §451.2.
(e) Time of first use. The date of the first use of a newly constructed renewable energy facility, or a facility covered by paragraph (f) of this section, must occur during the inclusive period beginning October 1, 1993, and ending on September 30, 2003.
(f) Conversion of non-qualified facilities. Existing non-qualified facilities that are converted must meet either of the following criteria—
(1) A facility employing solar, wind, geothermal or biomass sources must be refurbished during the allowed time of first use such that the fair market value of any previously used property does not exceed 20% of the facility’s total value.
(2) A facility not employing solar, wind, geothermal or biomass sources must be converted in part or in whole to a qualified facility during the allowed time of first use.
(g) Location. The qualified renewable energy facility must be located in a State.

§ 451.5 Where and when to apply.

(a) Pre-application and notification. (1) An applicant may submit at any time a pre-application, containing the information described in §451.8 (a) through (e), to obtain a preliminary and conditional determination of eligibility.
(2) To assist DOE in its budget planning, the owner or operator of a qualified renewable energy facility is requested to provide notification at least 6 months in advance of when a facility is expected to be first used, providing projected information specified in §451.8 (a) through (e).
(b) Application. (1) Except as provided by paragraph (b)(2) of this section, an application for an incentive payment for electric energy generated and sold in a fiscal year must be filed during the first quarter (October 1 through December 31) of the next fiscal year.
(2) For energy generated and sold in fiscal year 1994, an application for incentive payment must be filed on or before September 5, 1995.
(3) Failure to file an application in any fiscal year for payment for energy generated in the preceding fiscal year shall disqualify the owner or operator from eligibility for any incentive payment for energy generated in that preceding fiscal year.

§ 451.6 Duration of incentive payments.

Subject to the availability of appropriated funds, DOE shall make incentive payments under this part with respect to a qualified renewable energy facility for 10 fiscal years. Such period shall begin with the fiscal year in which application for payment for electricity generated by the facility is first made and the facility is determined by DOE to be eligible for receipt of an incentive payment. The period for payment under this program ends with fiscal year 2013.

§ 451.7 Metering requirements.

The net electric energy generated and sold (kilowatt-hours) by the owner or operator of a qualified renewable energy facility must be measured by a standard metering device that—

(a) Meets generally accepted industry standards;

(b) Is maintained in proper working order according to the instructions of its manufacturer; and

(c) Is calibrated according to generally accepted industry standards.

§ 451.8 Application content requirements.

An application for an incentive payment under this part must be signed by an authorized executive official and shall provide the following information—

(a) A statement indicating that the applicant is the owner, of the facility or the operator of the facility and has the written consent of an authorized executive official of the owner to file an application;

(b) The name of the facility or other official designation;

(c) The location and address of the facility and type of renewable energy source;

(d) The name, address, and telephone number of a point of contact to respond to questions or requests for additional information;

(e) A clear statement of how the application satisfies each and every part of the eligibility criteria under §451.4;

(f) A statement of the annual and monthly metered net electric energy generated and sold during the prior fiscal year by the qualified renewable energy facility, measured in kilowatt-hours, for which an incentive payment is requested;

(g) In the case of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear energy, or other non-qualified energy source in addition to using a renewable energy source, a statement of the net electric energy generated, measured in kilowatt-hours, attributable to the renewable energy source, including a calculation showing the total monthly and annual kilowatt-hours generated and sold during the fiscal year multiplied by a fraction consisting of the heat input, as measured in the same energy units, received by the working fluid from the renewable energy sources divided by the heat input, as measured in the same energy units, received by the working fluid from all energy sources;

(h) The amounts of accrued electric energy, by sources and by year, in kilowatt-hours, for which the applicant previously applied and DOE did not make an incentive payment because of insufficient appropriations;

(i) The total amount of electric energy for which payment is requested, including the net electric energy generated in the prior fiscal year, as determined according to paragraph (f) or (g) of this section, and the accrued energy as determined according to paragraph (h) of this section;

(j) Preferred method of payment (check or wire transfer) and instructions;

(k) A statement agreeing to retain records for a period of three (3) years which substantiate the annual and monthly metered number of kilowatt-hours generated and sold, and to provide access to, or copies of, such records within 30 days of a written request by DOE; and

(l) A statement signed by an authorized executive official certifying that
§ 451.9 Procedures for processing applications.

(a) Supplemental information. DOE may request supplementary information relating to the application.

(b) Audits. DOE may require the applicant to conduct at its own expense and submit an independent audit, or DOE may conduct an audit, to verify the number of kilowatt-hours claimed to have been generated and sold by the qualified renewable energy facility and for which an incentive payment has been requested or made.

(c) DOE determinations. Upon evaluating the application and any other relevant information, DOE shall determine:

(1) Eligibility of the applicant for receipt of an incentive payment, based on the criteria for eligibility specified in this part; and

(2) The number of kilowatt-hours to be used in calculating the incentive payment, based on the sum of net electric energy generated from a qualified renewable energy source at the qualified renewable energy facility and sold during the prior fiscal year, and any accrued energy.

(d) Calculating payments. Subject to the provisions of paragraph (e) of this section, incentive payments under this part shall be determined by multiplying the number of kilowatt-hours determined under §451.9(c)(2) by 1.5 cents per kilowatt-hour, and adjusting that product for inflation for each fiscal year following calendar year 1993 in the same manner as provided in section 29(d)(2)(B) of the Internal Revenue Code of 1986, except that in applying such provisions calendar year 1993 shall be substituted for calendar year 1979.

(e) Insufficient Funds. The Assistant Secretary for Energy Efficiency and Renewable Energy shall determine the extent to which appropriated funds are available to be obligated under this program for each fiscal year. If funds determined to be available under the preceding sentence are not sufficient to make full incentive payments for all approved applications, DOE shall—

(1) Make incentive payments first, and if necessary on a pro rata basis, to owners or operators of qualified renewable energy facilities using solar, wind, geothermal, and closed-loop biomass technologies;

(2) Make incentive payments second, and if necessary on a pro rata basis, to owners or operators of all other qualified renewable energy facilities.

(f) Notice to applicant. After calculating the amount of the incentive payment under paragraphs (e) through (g) of this section, the DOE Deciding Official shall then issue a written notice of the determination to the applicant—

(1) Approving the application as eligible for payment and forwarding a copy to the DOE Finance Office with a request to pay;

(2) Setting forth the calculation of the approved amount of the incentive payment; and

(3) Stating the amount of accrued energy, measured in kilowatt-hours, for each qualified renewable energy facility, if any, and the energy source for same.

(g) Disqualification. If the application does not meet the requirements of this part or some of the kilowatt-hours claimed in the application are disallowed as unqualified, the Deciding Official shall issue a written notice denying the application in whole or in part with an explanation of the basis for denial.

§ 451.10 Administrative appeals.

(a) In order to exhaust administrative remedies, an applicant who receives a notice denying an application in whole or in part shall appeal, on or before 45 days from date of the notice issued by the DOE Deciding Official, to the Office of Hearings and Appeals, 1000 Independence Avenue, S.W., Washington, D.C. 20585, in accordance with the procedures set forth in subpart C of 10 CFR part 1003.
If an applicant does not appeal under paragraph (a) of this section, the determination of the DOE Deciding Official shall become final for DOE and judicially unreviewable.

(c) If an applicant appeals on a timely basis under paragraph (a) of this section, the decision and order of the Office of Hearings and Appeals shall be final for DOE.

(d) If the Office of Hearings and Appeals orders an incentive payment, the DOE Deciding Official shall send a copy of such order to the DOE Finance Office with a request to pay.
455.132 State evaluation of requests for severe hardship assistance.
455.133 Forwarding of applications from institutions and coordinating agencies for technical assistance and energy conservation measure grants.
455.134 Forwarding of applications for State grants for technical assistance, program assistance, and marketing.
455.135 State liaison, monitoring, and reporting.

Subpart M—Grant Awards
455.140 Approval of applications from institutions and coordinating agencies for technical assistance and energy conservation measures.
455.141 Grant awards for units of local government, public care institutions, and coordinating agencies.
455.142 Grant awards for schools, hospitals, and coordinating agencies.
455.143 Grant awards for State administrative expenses.
455.144 Grant awards for State programs to provide technical assistance, program assistance, and marketing.

Subpart N—Administrative Review
455.150 Right to administrative review.
455.151 Notice requesting administrative review.
455.152 Transmittal of record on review.
455.153 Review by the Deputy Assistant Secretary.
455.154 Discretionary review by the Assistant Secretary.
455.155 Finality of decision.

Source: 58 FR 9438, Feb. 19, 1993, unless otherwise noted.

Subpart A—General Provisions

§455.1 Purpose and scope.
(a) This part establishes programs of financial assistance pursuant to Title III of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6371 et seq.
(b) This part authorizes grants to States or to public or non-profit schools and hospitals to assist them in conducting preliminary energy audits and energy audits, in identifying and implementing energy conservation maintenance and operating procedures, and in evaluating, acquiring, and installing energy conservation measures, including renewable resource measures, to reduce the energy use and anticipated energy costs of buildings owned by schools and hospitals.
(c) This part also authorizes grants to States or units of local government and public care institutions to assist them in conducting preliminary energy audits and energy audits, in identifying and implementing energy conservation maintenance and operating procedures, and in evaluating energy conservation measures, including renewable resource measures, to reduce the energy use and anticipated energy costs of buildings owned by units of local government and public care institutions.

§455.2 Definitions.

Assistant Secretary means the Assistant Secretary for Conservation and Renewable Energy or any official to whom the Assistant Secretary's functions may be redelegated by the Secretary.

Auditor means any person who is qualified in accordance with 10 CFR 450.44 and with State requirements pursuant to §455.20(k), to conduct an energy audit.

Building means any structure, including a group of closely situated structural units that are centrally metered or served by a central utility plant, or an eligible portion thereof, the construction of which was completed on or before May 1, 1989, which includes a heating or cooling system, or both.

Civil rights requirements means civil rights responsibilities of applicants and grantees pursuant to the nondiscrimination in Federally Assisted Programs regulation of the Department of Energy (10 CFR part 1040). Complex means a closely situated group of buildings on a contiguous site such as a school or college campus or multibuilding hospital.
Construction completion means the date of issuance of an occupancy permit for a building or the date the building is ready for occupancy as determined by DOE.

Cooling degree days means the annual sum of the number of Fahrenheit degrees of each day's mean temperature above 65° for a given locality.

Coordinating agency means a State or any public or nonprofit organization legally constituted within a State which provides either administrative control or services for a group of institutions within a State and which acts on behalf of such institutions with respect to their participation in the program.

Deputy Assistant Secretary means the Deputy Assistant Secretary for Technical and Financial Assistance or any official to whom the Deputy Assistant Secretary's functions may be redelegated by the Assistant Secretary.

DOE means the Department of Energy.

Energy audit means a determination of the energy consumption characteristics of a building which:
(1) Identifies the type, size, and rate of energy consumption of such building and the major energy-using systems of such building;
(2) Determines appropriate energy conservation maintenance and operating procedures;
(3) Indicates the need, if any, for the acquisition and installation of energy conservation measures; and
(4) If paid for with financial assistance under this part, complies with 10 CFR 450.43.

Energy conservation maintenance and operating procedures means modifications in the maintenance and operations of a building and any installation therein which are designed to reduce the energy consumption in such building and which require no significant expenditure of funds, including, but not limited to:
(1) Effective operation and maintenance of ventilation systems and control of infiltration conditions, including:
 (i) Repair of caulking or weatherstripping around windows and doors;
 (ii) Reduction of outside air intake, shutting down ventilation systems in unoccupied areas, and shutting down ventilation systems when the building is not occupied; and
 (iii) Assuring central or unitary ventilation controls, or both, are operating properly;
(2) Changes in the operation and maintenance of heating or cooling systems through:
 (i) Lowering or raising indoor temperatures;
 (ii) Locking thermostats;
 (iii) Adjusting supply or heat transfer medium temperatures; and
 (iv) Reducing or eliminating heating or cooling at night or at times when a building or complex is unoccupied;
(3) Changes in the operation and maintenance of lighting systems through:
 (i) Reducing illumination levels;
 (ii) Maximizing use of daylight;
 (iii) Using higher efficiency lamps; and
 (iv) Reducing or eliminating evening cleaning of buildings;
(4) Changes in the operation and maintenance of water systems through:
 (i) Repairing leaks;
 (ii) Reducing the quantity of water used, e.g., using flow restrictors;
 (iii) Lowering settings for hot water temperatures; and
 (iv) Raising settings for chilled water temperatures;
(5) Changes in the maintenance and operating procedures of the building's mechanical systems through:
 (i) Cleaning equipment;
 (ii) Adjusting air/fuel ratio;
 (iii) Monitoring combustion;
 (iv) Adjusting fan, motor, or belt drive systems;
 (v) Maintaining steam traps; and
 (vi) Repairing distribution pipe insulation; and
(6) Such other actions relating to operations and maintenance procedures as the State may determine useful or necessary. In general, energy conservation maintenance and operating procedures involve cleaning, repairing or adjusting existing equipment rather than acquiring new equipment.

Energy conservation measure means an installation or modification of an installation in a building which is primarily intended to maintain (in the case of load management systems) or reduce energy consumption and reduce
§ 455.2 10 C.F.R. Ch. II (1-1-98 Edition)

energy costs, or allow the use of an alternative energy source, including, but not limited to:

1. Insulation of the building structure and systems within the building;
2. Storm windows and doors, multi-glazed windows and doors, heat-absorbing or heat-reflective glazed and coated windows and door systems, additional glazing, reductions in glass area, and other window and door system modifications;
3. Automatic energy control systems which would reduce energy consumption;
4. Load management systems which would shift demand for energy from peak hours to hours of low demand and lower cost;
5. Equipment required to operate variable steam, hydraulic, and ventilating systems adjusted by automatic energy control systems;
6. Active or passive solar space heating or cooling systems, solar electric generating systems, or any combination thereof;
7. Active or passive solar water heating systems;
8. Furnace or utility plant and distribution system modifications including:
 i. Replacement burners, furnaces, boilers, or any combination thereof which substantially increase the energy efficiency of the heating system;
 ii. Devices for modifying flue openings which will increase the energy efficiency of the heating system;
 iii. Electrical or mechanical furnace ignition systems which replace standing gas pilot lights; and
 iv. Utility plant system conversion measures including conversion of existing oil- and gas-fired boiler installations to alternative energy sources;
9. Addition of caulking and weather-stripping;
10. Replacement or modification of lighting fixtures (including exterior light fixtures which are physically attached to, or connected to, the building) to increase the energy efficiency of the lighting system without increasing the overall illumination of a facility, unless such increase in illumination is necessary to conform to any applicable State or local building code or, if no such code applies, the increase is considered appropriate by DOE;
11. Energy recovery systems;
12. Cogeneration systems which produce steam or forms of energy such as heat as well as electricity for use primarily within a building or a complex of buildings owned by an eligible institution and which meet such fuel efficiency requirements as DOE may by rule prescribe;
13. Such other measures as DOE identifies by rule for purposes of this part as set forth in subpart D of 10 C.F.R. part 450; and
14. Such other measures as a grant applicant shows will save a substantial amount of energy and as are identified in an energy audit or energy use evaluation in accordance with §455.20(k) or a technical assistance report in accordance with §455.62.

Energy use evaluation means a determination of:

1. Whether the building is a school facility, hospital facility, or a building owned and primarily occupied and used throughout the year by a unit of local government or by a public care institution.
2. The name and address of the owner of record, indicating whether owned by a public institution, private nonprofit institution, or an Indian tribe;
3. The building's potential suitability for renewable resource applications;
4. Major changes in functional use or mode of operation planned in the next 15 years, such as demolition, disposal, rehabilitation, or conversion from office to warehouse;
5. Appropriate energy conservation maintenance and operating procedures which have been implemented for the building;
6. The need, if any, for the acquisition and installation of energy conservation measures including an assessment of the estimated costs and energy and cost savings likely to result from the purchase and installation of one or more energy conservation measures and an evaluation of the need and potential for retrofit based on consideration of one or more of the following:

568
(i) An energy use index or indices, for example, Btu's per gross square foot per year;
(ii) An energy cost index or indices, for example, annual energy costs per gross square foot; or
(iii) The physical characteristics of the building envelope and major energy-using systems; and
(7) Such other information as the State has determined useful or necessary, in accordance with §455.20(k).

Fuel means any commercial source of energy used within the building or complex being surveyed such as natural gas, fuel oil, electricity, or coal.

Governor means the chief executive officer of a State including the Mayor of the District of Columbia or a person duly designated in writing by the Governor to act on her or his behalf.

Grant program cycle means the period of time specified by DOE which relates to the fiscal year or years for which monies are appropriated for grants under this part, during which one complete cycle of DOE grant activity occurs including fund allocations to the States; applications receipt, review, approval, or disapproval; and award of grants by DOE but which does not include the grantee’s performance period.

Grantee means the entity or organization named in the Notice of Financial Assistance Award as the recipient of the grant.

Gross square feet means the sum of all heated or cooled floor areas enclosed in a building, calculated from the outside dimensions or from the centerline of common walls.

Heating or cooling system means any mechanical system for heating, cooling, or ventilating areas of a building including a system of through-the-wall air conditioning units.

Heating degree days means the annual sum of the number of Fahrenheit degrees for each day’s mean temperature below 65° for a given locality.

Hospital means a public or nonprofit institution which is a general hospital, tuberculosis hospital, or any other type of hospital other than a hospital furnishing primarily domiciliary care and which is duly authorized to provide hospital services under the laws of the State in which it is situated.

Hospital facilities means buildings housing a hospital and related facilities including laboratories, laundries, outpatient departments, nurses’ residence and training facilities, and central service facilities operated in connection with a hospital; it also includes buildings containing education or training facilities for health profession personnel operated as an integral part of a hospital.

Indian tribe means any tribe, band, nation, or other organized group or community of Indians including any Alaska native village or regional or village corporation, as defined in or established pursuant to, the Alaska Native Claims Settlement Act, Public Law 92-203, 85 Stat. 688, which (a) is recognized as eligible for the special programs and services provided by the United States to Indians because of their status as Indians; or (b) is located on, or in proximity to, a Federal or State reservation or rancheria.

Load management system means a device or devices which are designed to shift energy use to hours of low demand in order to reduce energy costs and which do not cause more energy to be used than was used before their installation.

Local educational agency means a public board of education or other public authority or a nonprofit institution legally constituted within, or otherwise recognized by, a State either for administrative control or direction of, or to perform administrative services for, a group of schools within a State.

Maintenance means activities undertaken in a building to assure that equipment and energy-using systems operate effectively and efficiently.

Marketing means a program or activity managed or performed by the State including but not limited to:
(1) Obtaining non-Federal funds to finance energy conservation measures consistent with this part;
(2) Making site visits to school and hospital officials to review program opportunities;
(3) Giving presentations to groups such as school or hospital board officials and personnel; and
(4) Preparing and disseminating articles in publications directed to school and hospital personnel.
Native American means a person who is a member of an Indian tribe.

Non-Federal funds means financing sources obtained or arranged for by a State as a result of the State program(s) pursuant to §455.20(j), to be used to pay for energy conservation measures for institutions eligible under this part, and includes petroleum violation escrow funds except for those funds required to be treated as if they were Federal funds by statute, court order, or settlement agreement.

Operating means the operation of equipment and energy-using systems in a building to achieve or maintain specified levels of environmental conditions of service.

Owned or owns means property interest including without limitation a leasehold interest which is or shall become a fee simple title in a building or complex.

Preliminary energy audit means a determination of the energy consumption characteristics of a building including the size, type, rate of energy consumption, and major energy-using systems of such building which if paid for with financial assistance under this part, complies with 10 CFR 450.42.

Primarily occupied means that in excess of 50 percent of a building's square footage or time of occupancy is occupied by a public care institution or an office or agency of a unit of local government.

Program assistance means a program or activity managed or performed by the State and designed to provide support to eligible institutions to help ensure the effectiveness of energy conservation programs carried out consistent with this part including such relevant activities as:

1. Evaluating the services and reports of consulting engineers;
2. Training school or hospital personnel to perform energy accounting and to identify and implement energy conservation maintenance and operating procedures;
3. Monitoring the implementation and operation of energy conservation measures; and
4. Aiding in the procurement of energy-efficient equipment.

Public care institution means a public or nonprofit institution which owns:

1. A facility for long-term care, rehabilitation facility, or public health center, as described in section 1624 of the Public Health Service Act (42 U.S.C. 300s–3; 88 Stat. 2270); or
2. A residential child care center which is an institution, other than a foster home, operated by a public or nonprofit institution. It is primarily intended to provide full-time residential care, with an average length of stay of at least 30 days, for at least 10 minor persons who are in the care of such institution as a result of a finding of abandonment or neglect or of being persons in need of treatment or supervision.

Public or nonprofit institution means an institution owned and operated by:

1. A State, a political subdivision of a State, or an agency or instrumentality of either; or
2. A school or hospital which is, or would be in the case of such entities situated in American Samoa, Guam, the Commonwealth of Puerto Rico, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands, exempt from income tax under section 501(c)(3) of the Internal Revenue Code of 1954; or
3. A unit of local government or public care institution which is, or would be in the case of such entities situated in American Samoa, Guam, the Commonwealth of Puerto Rico, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands, exempt from income tax under section 501(c)(3) or 501(c)(4) of the Internal Revenue Code of 1954.

Renewable resource energy conservation measure means an energy conservation measure which produces at least 50 percent of its Btu's from a non-depletable energy source.

School means a public or nonprofit institution which:

1. Provides, and is legally authorized to provide, elementary education or secondary education, or both, on a day or residential basis;
2. Provides, and is legally authorized to provide, a program of education beyond secondary education, on a day or residential basis and:
 i. Admits as students only persons having a certificate of graduation from
a school providing secondary education, or the recognized equivalent of such certificate;

(ii) Is accredited by a nationally recognized accrediting agency or association; and

(iii) Provides an educational program for which it awards a bachelor's degree or higher degree or provides not less than a 2-year program which is acceptable for full credit toward such a degree at any institution which meets the preceding requirements and which provides such a program;

(3) Provides not less than a 1-year program of training to prepare students for gainful employment in a recognized occupation and which meets the provisions cited in paragraph (2), and subparagraphs (2)(i), and (2)(ii) of this definition; or

(4) Is a local educational agency.

School facilities means buildings housing classrooms, laboratories, dormitories, administrative facilities, athletic facilities, or related facilities operated in connection with a school.

Secretary means the Secretary of the Department of Energy or his/her designee.

State means, in addition to the several States of the Union, the District of Columbia, the Commonwealth of Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Marianas Islands, and the U.S. Virgin Islands.

State energy agency means the State agency responsible for developing State energy conservation plans pursuant to section 362 of the Energy Policy and Conservation Act (42 U.S.C. 6322) or, if no such agency exists, a State agency designated by the Governor of such State to prepare and submit the State Plan required under section 394 of the Energy Policy and Conservation Act.

State hospital facilities agency means an existing agency which is broadly representative of the public hospitals and the nonprofit hospitals or, if no such agency exists, an agency designated by the Governor of such State which conforms to the requirements of this definition.

State school facilities agency means an existing agency which is broadly representative of public institutions of higher education, nonprofit institutions of higher education, public elementary and secondary schools, nonprofit elementary and secondary schools, public vocational education institutions, nonprofit vocational education institutions, and the interests of handicapped persons in a State or, if no such agency exists, an agency which is designated by the Governor of such State which conforms to the requirements of this definition.

Support office director means the Director of the DOE field support office with the responsibility for grant administration or any official to whom that function may be redelegated.

Technical assistance means: (1) The conduct of specialized studies to identify and specify energy savings or energy cost savings that are likely to be realized as a result of the modification of maintenance and operating procedures in a building, the acquisition and installation of one or more specified energy conservation measures in a building, or both; and

(2) The planning or administration of such specialized studies. For schools and hospitals which are eligible to receive grants to carry out energy conservation measures, the term also means the planning or administration of specific remodeling, renovation, repair, replacement, or insulation projects related to the installation of energy conservation or renewable resource measures in a building.

Technical assistance program update means a brief revision to an existing technical assistance program report designed to provide current information such as that relating to energy use, equipment costs, and other data needed to substantiate an application for an energy conservation measure grant. Such an update shall be limited to the particular measures included in the related grant application together with any relevant data regarding interactions or relationships to previously installed energy conservation measures.

Unit of local government means the government of a county, municipality, parish, borough, or township which is a unit of general purpose government below the State (determined on the basis of the same principles as are used
by the Bureau of the Census for general statistical purposes) and the District of Columbia. Such term also means the recognized governing body of an Indian tribe which governing body performs substantial governmental functions and includes libraries which serve all residents of a political subdivision below the State level (such as a community, district, or region) free of charge and which derive at least 40 percent of their operating funds from tax revenues of a taxing authority below the State level.

§ 455.3 Administration of grants.

Grants provided under this part shall comply with applicable law, regulation, or procedure including, without limitation, the requirements of:

(a) The DOE Financial Assistance Rules (10 CFR part 600 as amended) except as otherwise provided in this rule;
(b) Executive Order 12372 entitled "Intergovernmental Review of Federal Programs" (48 FR 3130, January 24, 1983; 3 CFR, 1982 Comp., p. 197) and the DOE regulation implementing this Executive Order entitled "Intergovernmental Review of Department of Energy Programs and Activities" (10 CFR part 1005);
(c) Office of Management and Budget Circular A-97 entitled "Rules and Regulations Permitting Federal Agencies to Provide Specified or Technical Services to State and Local Units of Government under title III of the Intergovernmental Coordination Act of 1968" available from the Office of Management and Budget, Office of Publication Services, 725 17th Street, NW., Washington, DC 20503;
(d) DOE regulation entitled "Non-discrimination in Federally Assisted Programs" (10 CFR part 1040) which implements the following public laws: Title VI of the Civil Rights Act of 1964; section 16 of the Federal Energy Administration Act of 1974; section 401 of the Energy Reorganization Act of 1974; title IX of the Education Amendments of 1972; The Age Discrimination Act of 1975; and section 504 of the Rehabilitation Act of 1973; and
(e) Such other procedures applicable to this part as DOE may from time to time prescribe for the administration of financial assistance.

§ 455.4 Recordkeeping.

Each State or other entity within a State receiving financial assistance under this part shall make and retain records required and specified by the DOE Financial Assistance Rules, 10 CFR part 600, and this part.

§ 455.5 Suspension and termination of grants.

Suspension and termination procedures shall be as set forth in the DOE Financial Assistance Rules, 10 CFR part 600.

Subpart B—State Plan Development and Approval

§ 455.20 Contents of State Plan.

Each State shall develop and submit to DOE a State Plan for technical assistance programs and energy conservation measures, including renewable resource measures and, to the extent appropriate, program assistance, and/or marketing. The State Plan shall include:

(a) A statement setting forth the procedures by which the views of eligible institutions or coordinating agencies representing such institutions, or both, were solicited and considered during development of the State Plan and any amendment to a State Plan;
(b) The procedures the State will follow to notify eligible institutions and coordinating agencies of the content of the approved State Plan or any approved amendment to a State Plan;
(c) The procedures the State will follow to notify eligible institutions and coordinating agencies of the availability (each funding cycle) of funding under this program and related funding available from non-Federal sources to fund technical assistance programs and energy conservation measures consistent with this part;
(d) The procedures for submittal of grant applications to the State;
(e) The procedures to be used by the State for evaluating and ranking technical assistance and energy conservation measure grant applications pursuant to §455.130 and §455.131, including the weights assigned to each criterion set forth in §§455.131(c)(1), (c)(2), (c)(3), (c)(4) and (c)(5). In addition, the State
shall determine the order of priority given to fuel types that include oil, natural gas, and electricity, under §455.131(c)(2);

(f) The procedures that the State will follow to insure that funds will be allocated equitably among eligible applicants within the State including procedures to insure that funds will not be allocated on the basis of size or type of institution, but rather on the basis of relative need, taking into account such factors as cost, energy consumption, and energy savings, in accordance with §455.131;

(g) The procedures that the States will follow for identifying schools and hospitals experiencing severe hardship and for apportioning the funds that are available for schools and hospitals in a case of severe hardship. Such policies and procedures shall be in accordance with §455.132;

(h) A statement setting forth the extent to which, and by which methods, the State will encourage utilization of solar space heating, cooling and electric systems, and solar water heating systems;

(i) The procedures to assure that all financial assistance under this part will be expended in compliance with the requirements of the State Plan, in compliance with the requirements of this part, and in coordination with other State and Federal energy conservation programs;

(j) If a State is eligible and elects to use up to 100 percent of the funds provided by DOE under this part for any fiscal year for program and technical assistance and/or up to 50 percent of such funds for marketing:

(1) A description of each activity the State proposes, including the procedures for program operation, monitoring, and evaluation;

(2) The level of funding to be used for each program and the source of those funds;

(3) The amount of the State's allocated funds that the State proposes to use for each;

(4) A description of the non-Federal financing mechanisms to be used to fund energy conservation measures in the State during the fiscal year;

(5) A description of the evaluation/selection criteria to be used by the State in determining which institutions receive funding for energy conservation measures;

(6) The procedures for assuring that all segments of the State's eligible institutions, including religiously affiliated institutions receive an equitable share of the assistance provided both for program and technical assistance, marketing, and energy conservation measures;

(7) A description of how the State will track: the amount of total available funds by source; the amount of funds obligated against those funds; and any limits on types of institutions eligible for particular funding sources; and

(8) The procedures for assisting institutions which initially receive program, technical, or marketing assistance (as part of the State's special program(s)) in later participating in the State's program(s) to provide energy conservation measure funding;

(k) The requirements for an energy audit or an energy use evaluation, and the requirements for qualifications for auditors or persons who will conduct energy use evaluations in the State;

(l) With regard to energy conservation maintenance and operating procedures:

(1) The procedures to insure implementation of energy conservation maintenance and operating procedures in those buildings for which financial assistance is requested under this part;

(2) A provision that all maintenance and operating procedure changes recommended in an energy audit pursuant to §455.20(k), or in a technical assistance report under §455.62, or a combination of these are implemented as provided under this part; or

(3) An assurance that the maintenance and operating procedures will be implemented in the future, or a reasonable justification for not implementing such procedures, as appropriate;

(m) The procedures to assure that financial assistance under this part will be used to supplement, and not to supplant, State, local or other funds, including at least:

(1) The screening of applicants for eligibility for available State funds;
(2) The identification of applicants which are seeking or have obtained private sector funds; and,

(3) Limiting or excluding (at the option of the State) the availability of financial assistance under this part for funding particular measures for which funding is being provided by other sources in the State (such as utility rebates) together with any requirements for potential applicants to first seek other sources of funding and document the results of that attempt before seeking financial assistance under this part and a description of the State's plan to assist potential applicants in identifying and obtaining other sources of funding;

(n) The procedures for determining that technical assistance programs performed without the use of Federal funds and used as the basis for energy conservation measure grant applications have been performed in compliance with the requirements of § 455.62, for the purposes of satisfying the eligibility requirements contained in § 455.71(a)(3);

(o) The State's policy regarding reasonable selection of energy conservation measures for study in a technical assistance program including any restrictions based on category of building or on groups of structures where measures may, or may not, be appropriate for all the structures and any additional State requirements for the conduct of such a program;

(p) The procedures for State management, monitoring, and evaluation of technical assistance programs and energy conservation measures receiving financial assistance under this part. This includes any State requirements for hospital certifications from a State agency with descriptions of the review procedures and coordination process applicable in such cases. If there is no school facilities agency in the State, or if the existing agency does not certify all types of schools, it also includes any State requirements for an alternative review and certification process for schools;

(q) The circumstances under which the State requires an updated technical assistance program report to accompany an application for an energy conservation measure grant and the scope and contents of such an update;

(r) A description of the State's policies for establishing and insuring compliance with qualifications for technical assistance analysts. Such policies shall require that technical assistance analysts be free from financial interests which may conflict with the proper performance of their duties and have experience in energy conservation and:

(1) Be a registered professional engineer licensed under the regulatory authority of the State;

(2) Be an architect-engineer team, the principal members of which are licensed under the regulatory authority of the State; or

(3) Be otherwise qualified in accordance with such criteria as the State may prescribe in its State Plan to insure that individuals conducting technical assistance programs possess the appropriate training and experience in building energy systems;

(s) The circumstances under which the State will or will not consider accepting applications for technical assistance programs or energy conservation measures which were included in earlier approved grant awards but which were not implemented and for which no funds were expended after the original grant award;

(t) A statement setting forth:

(1) An estimate of energy savings which may result from the modification of maintenance and operating procedures and installation of energy conservation measures;

(2) A recommendation as to the types of energy conservation measures considered appropriate within the State; and

(3) An estimate of the costs of carrying out technical assistance and energy conservation measure programs;

(u) For purposes of the technical assistance program pursuant to § 455.62;

(1) A statement setting forth uniform conversion factors to be used by all grant applicants in the technical assistance analysis for conversion of fuels to Btu equivalents. For the conversion of kilowatt hours to Btus, the State may use 3,413, representing consumption at the consumer's end, or 11,600, representing consumption at the producer's end, or may assign 3,413 to
some types of energy conservation measures and 11,600 to other types of measures in which case the State shall specify the conversion factor to be used for each type of measure, providing a rationale and citing the sources used in making this decision, and the State shall always apply the specified factor consistently to all ECMs of a particular type;

(2) A statement setting forth the cost-effectiveness testing approach to be used to evaluate energy conservation measures pursuant to §455.63. States may select either the simple payback approach or the life-cycle costing approach. Only one approach may be used for all technical assistance programs in the State. If the State elects to use the life-cycle costing approach, it must specify, consistent with §455.64(g), whether it will use DOE-provided or its own energy cost escalation rate or annual discount rate, together with any other procedures required to be used (in addition to those specified in §455.64); and

(3) A statement setting forth that 50 percent (or a higher percent) of total cost savings (used in calculating cost effectiveness pursuant to §455.63(a)(1) for simple payback, or §455.64(c) for life-cycle costing) must be from the cost of the energy to be saved.

(v) For any coordinating agency, a description of how it will operate including but not limited to:

(1) Name and address;

(2) Type of institutions covered;

(3) Application processing procedures;

(4) Whether TA applications, ECM applications, or both are covered;

(5) Intended schedule for soliciting and processing applications;

(6) Any special provisions for religiously affiliated institutions;

(7) Nature of subagreement to be used with institutions;

(8) Whether TA or ECM contractors selected by the coordinating agency will be offered incident to, or as a condition in, subagreements; and

(9) Other significant policies and procedures;

(w) If a State elects to allow credit toward the cost share for an energy conservation measure for the costs of technical assistance programs, technical assistance program updates, or energy conservation measures previously incurred and wholly paid for with non-Federal funds, the policies regarding such credit, including any time limits for the age of the earlier-funded work being proposed for credit; and

(x) The limit to the Federal share to be provided to applicants in the State if a State elects to provide less than a 50 percent Federal share to its applicants that do not qualify for severe hardship.

§455.21 Submission and approval of State Plans and State Plan amendments.

(a) Proposed State Plans or Plan amendments necessitated by a change in regulations shall be submitted to DOE within 90 days of the effective date of this subpart or any amended regulations. Upon request by a State, and for good cause shown, DOE may grant an extension of time.

(b) The Support Office Director shall, within 60 days of receipt of a proposed State Plan, review each plan and, if it is reasonable and found to conform to the requirements of this part, approve the State Plan. If the Support Office Director does not disapprove a State Plan within the 60-day period, the State Plan will be deemed to have been approved.

(c) If the Support Office Director determines that a proposed State Plan fails to comply with the requirements of this part or is not reasonable, DOE shall return the plan to the State with a statement setting forth the reasons for disapproval.

(d) Except for State Plan amendments covered by paragraph (a) of this section, if a State wishes to deviate from its approved State Plan, the State must submit and obtain DOE approval of the State Plan amendment.

(e) The Support Office Director shall, within 60 days or less of receipt of a proposed State Plan amendment review each amendment and, if it is found to conform to the requirements of this part, or is not reasonable, DOE shall return the amendment to the
§ 455.30 Allocation of funds.

(a) DOE will allocate available funds among the States for two purposes: to award grants to schools, hospitals, units of local government, and public care institutions and coordinating agencies representing them to implement technical assistance and energy conservation measures grant programs and to award grants to eligible States for administrative expenses, technical assistance programs, program assistance, and marketing expenses in accordance with this part.

(b) DOE shall notify each Governor of the total amount allocated for grants within the State for any grant program cycle:

(1) For schools and hospitals, the allocation amount shall be for technical assistance programs, subject to any limitation placed on technical assistance, and energy conservation measures;

(2) For States that are eligible pursuant to §455.91, up to 100 percent of the funds allocated to the State by DOE may be used for technical assistance programs and/or for program assistance and up to 50 percent of the funds allocated to the State by DOE may be used for marketing as defined in §455.2;

(3) For States eligible under §455.81, a portion of the allocation may be used for a grant to the State for administrative expenses as described in §455.120;

(4) For unit of local government and public care institutions, the allocation amount shall be solely for technical assistance programs; and

(5) For coordinating agencies, the allocation amount shall be for either technical assistance programs subject to any limitation placed on technical assistance, or energy conservation measures, or both depending on how the coordinating agency elects to operate.

(c) DOE shall notify each Governor of the period for which funds allocated for a grant program cycle will be made available for grants within the State.

(d) Each State shall make available up to 10 percent of its allocation for schools and hospitals in each grant program cycle to provide financial assistance, not to exceed a 90 percent Federal share, for technical assistance programs and energy conservation measures for schools and hospitals determined to be in a class of severe hardship. Such determinations shall be made in accordance with §455.132.

§ 455.31 Allocation formulas.

(a) Financial assistance for conducting technical assistance programs for units of local government and public care institutions shall be allocated among the States by multiplying the sum available by the allocation factor set forth in paragraph (c) of this section.

(b) Financial assistance for conducting technical assistance programs and acquiring and installing energy conservation measures, including renewable resource measures, for schools and hospitals, shall be allocated among the States by multiplying the sum available by the allocation factor set forth in paragraph (c) of this section.

(c) The allocation factor (K) shall be determined by the formula:

\[
K = \frac{0.07 + 0.1(Sfc) + 0.83(\text{SP})(\text{SC})}{N} \quad \frac{\text{NPC}}{Nfc}
\]

where, as determined by DOE:

(1) Sfc is the projected average retail cost per million Btu’s of energy consumed within the region in which the State is located as contained in current regional energy cost projections obtained from DOE.

(2) Nfc is the summation of the Sfc numerators for all States;

(3) N is the total number of eligible States;

(4) SP is the population of the State;

(5) SC is the sum of the State’s heating and cooling degree days; and

(6) NPC is the summation of the (SP)(SC) numerators for all States.

(d) Except for the District of Columbia, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Marianas Islands, and the U.S. Virgin Islands, no allocation available to any State may be less than 0.5 percent of all amounts allocated in any
§ 455.61 Eligibility.

To be eligible to receive financial assistance for a technical assistance program, an applicant must:

(a) Be a school, hospital, unit of local government, public care institution, or coordinating agency representing them except that financial assistance for units of local government and public care institutions will be provided only for buildings which are owned and primarily occupied by offices or agencies of a unit of local government or public care institution and which are not intended for seasonal use and not utilized primarily as a school or hospital eligible for assistance under this program;

(b) Be located in a State which has an approved State Plan as described in subpart B of this part;

(c) Have conducted an energy audit or an energy use evaluation required pursuant to §455.20(k) and adequate to estimate energy conservation potential for the building for which financial assistance is to be requested, subsequent
§ 455.62 Contents of a technical assistance program.

(a) The purpose of a technical assistance program is to provide a report based on an on-site analysis of the building which meets the requirements of this section and the State's procedures for implementing this section.

(b) A technical assistance program shall be designed to identify and document energy conservation maintenance and operating procedure changes and energy conservation measures in sufficient detail to support possible application for an energy conservation measure grant and to provide reviewers and decision makers handling such applications sufficient information upon which to base a judgment as to their reasonableness and a decision whether to pursue any or all of the recommended improvements.

(c) A technical assistance program shall be conducted by a technical assistance analyst who has the qualifications established in the State Plan in accordance with § 455.20(r).

(d) At the conclusion of a technical assistance program, the technical assistance analyst shall prepare a report which shall include:

(1) A description of building characteristics and energy data including:

(i) The results of the energy audit or energy use evaluation of the building together with a statement as to the accuracy and completeness of the energy audit or energy use evaluation data and recommendations;

(ii) The operation characteristics of energy-using systems; and

(iii) The estimated remaining useful life of the building;

(2) An analysis of the estimated energy consumption of the building, by fuel type in total Btus and Btu/sq.ft./yr., using conversion factors prescribed by the State in the State Plan, at optimum efficiency (assuming implementation of all energy conservation maintenance and operating procedures);

(3) A description and analysis of all identified energy conservation maintenance and operating procedure changes, if any, and energy conservation measures selected in accordance with the State Plan, including renewable resource measures, setting forth:

(i) A description of each energy conservation maintenance and operating procedure change and an estimate of the costs of adopting such energy conservation maintenance and operating procedure changes;

(ii) An estimate of the cost of design, acquisition and installation of each energy conservation measure, discussing pertinent assumptions as necessary;

(iii) Estimated useful life of each energy conservation measure;

(iv) An estimate of any increases or decreases in maintenance and operating costs that would result from each conservation measure, if relevant to the cost effectiveness test applicable under this part;

(v) An estimate of any significant salvage value or disposal cost of each energy conservation measure at the end of its useful life if relevant to the cost effectiveness test applicable under this part;

(vi) An estimate, supported by all data and assumptions used in arriving at the estimate, of the annual energy savings, the annual cost of energy to be saved, and total annual cost savings using current energy prices including demand charges expected from each energy conservation maintenance and operating procedure change and the acquisition and installation of each energy conservation measure, in calculating the potential annual energy savings, annual cost of energy to be saved, or total annual cost savings of each energy conservation measure, including renewable resource measures, the technical assistance analyst shall:

(A) Assume that all energy savings obtained from energy conservation
Department of Energy

§ 455.63 Cost-effectiveness testing.

(a) This paragraph applies to calculation of the simple payback period of energy conservation measures.

(1) The simple payback period of each energy conservation measure (except measures to shift demand, or renewable resource measures) shall be calculated, taking into account the interactions among the various measures, by dividing the estimated total cost of the measure, as determined pursuant to §455.62(d)(3)(ii), by the estimated annual cost savings accruing from the measure (adjusted for demand charges), as determined pursuant to §455.62(d)(3)(vi), provided that:

(i) At least 50 percent of the annual cost savings used in this calculation shall be from the cost of the energy to be saved or a higher percent if required by a State in its State Plan pursuant to §455.20(u)(3); and

(ii) No more than 50 percent of the annual cost savings used in this calculation shall be from other cost savings, such as those resulting from energy conservation maintenance and operating procedures related to particular energy conservation measures, or from changes in type of fuel used, or a lower percent if required by a State in its State Plan pursuant to §455.20(u)(3).

(2) The simple payback period of each renewable resource energy conservation measure shall be calculated, taking into account the interactions among the various measures, by dividing the estimated total cost of the measure, as determined pursuant to §455.62(d)(3)(ii), by the estimated annual cost savings accruing from the measure taking into account at least the annual cost of the non-renewable fuels displaced less the annual cost of the renewable fuel, if any, and the annual cost of any backup non-renewable fuel needed to operate the system, adjusted for demand charges, as determined pursuant to §455.62(d)(3)(vi).

(3) The simple payback period of each energy conservation measure designed to shift demand to a period of lower demand and lower cost shall be calculated, taking into account the interactions among the various measures, by dividing the estimated total cost of the measure, as determined pursuant
to § 455.62(d)(3)(ii), by the estimated annual cost savings accruing from the measure taking into account at least the annual cost of the energy used before the measure is installed less the estimated annual cost of the energy to be used after the measure is installed, adjusted for demand charges, as determined pursuant to § 455.62(d)(3)(vi).

(b) This paragraph applies, in addition to paragraph (a) of this section, if the State plan requires the cost effectiveness of an energy conservation measure to be determined by life-cycle cost analysis or if the applicant requests such an analysis.

(1) A life-cycle cost analysis, showing a savings-to-investment ratio greater than or equal to one over the useful life of the energy conservation measure or 15 years, whichever is less, shall be conducted in accordance with the requirements set forth in the State Plan pursuant to §§ 455.20(u)(2), 455.20(u)(3) and § 455.64.

(2) The resulting savings-to-investment ratio shall be used for the purpose of ranking applications.

§ 455.64 Life-cycle cost methodology.

(a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the relevant significant cost savings and costs associated with an energy conservation measure over its expected useful life, or other appropriate study period with future cost savings and costs discounted to present value. The format for displaying life-cycle costs shall be a savings-to-investment ratio.

(b) An energy conservation measure must be cost effective, and its savings-to-investment ratio must be greater than or equal to one no earlier than the end of the second year of the study period.

(c) A savings-to-investment ratio is the ratio of the present value of net cost savings attributable to an energy conservation measure to the present value of the net increase in investment, maintenance and operating, and replacement costs less salvage value or disposal cost attributable to that measure over a study period.

(d) Except for energy conservation measures to shift demand or to use renewable energy resources, the numerator of the savings-to-investment ratio shall include net cost savings, appropriately discounted and adjusted for energy cost escalation consistent with paragraph (g) of this section. The energy cost escalation rates must not exceed those annually provided by DOE under 10 CFR part 436.

(e) With respect to energy conservation measures to shift demand or to use renewable energy resources, the numerator of the savings-to-investment ratio shall be net cost savings appropriately discounted and adjusted for energy cost escalation consistent with paragraph (g) of this section.

(f) The study period for a life-cycle cost analysis, which may not exceed 15 years, shall be the useful life of the energy conservation measure or of the energy conservation measure with the longest life (for purposes of ranking buildings with multiple energy conservation measures).

(g) The discount rate must equal or exceed the discount rate annually provided by DOE under 10 CFR part 436.

(h) Investment costs may be assumed to be a lump sum occurring at the beginning of the base year, or to the extent that there are future investment costs, discounted to present value.

(i) The cost of energy and maintenance and operating costs may be assumed to begin to accrue at the beginning of the base year or when they are actually projected to occur.

(j) It may be assumed that costs occur in a lump sum at any time within the year in which they are incurred.

§ 455.70 Purpose.

This subpart sets forth the eligibility criteria for schools and hospitals to receive grants for energy conservation measures, including renewable resource measures, and the elements of an energy conservation measure program.
§ 455.71 Eligibility.

(a) To be eligible to receive financial assistance for an energy conservation measure, including renewable resource measures, an applicant must:

(1) Be a school, hospital, or coordinating agency representing them as defined in §455.2;

(2) Be located in a State which has an approved State Plan as described in subpart B of this part;

(3) Have completed a technical assistance program consistent with §455.62, as determined by the State in accordance with the State Plan, for the building for which financial assistance is to be requested subsequent to the most recent construction, reconfiguration, or utilization change to the building which significantly modified energy use within the building;

(4) Have completed an updated technical assistance program if required in the State Plan as specified in §455.20(q);

(5) Have implemented all energy conservation maintenance and operating procedures which are identified as the result of a technical assistance program or have provided pursuant to the State plan a satisfactory written justification for not implementing any specific maintenance and operating procedures so identified;

(6) Have met any requirements set forth in the State Plan pursuant to §455.20(m) regarding the avoidance of supplanting other funds in the financing of energy conservation measures under this part;

(7) Have no plan or intention at the time of application to close or otherwise dispose of the building for which financial assistance is to be requested within the simple payback period or useful life (depending on the State's requirement for determining cost effectiveness) of any energy conservation measure recommended for that building; and

(8) Submit an application in accordance with the provisions of this part and the approved State Plan;

(b) To be eligible for financial assistance:

(1) In States where simple payback has been selected as the cost-effectiveness test pursuant to §455.20(u)(2), the simple payback period of each energy conservation measure for which financial assistance is requested shall not be less than 2 years nor greater than 10 years, and the estimated useful life of the measure shall be greater than its simple payback period; or

(2) In States where life-cycle costing has been selected as the cost-effectiveness test pursuant to §455.20(u)(2), the savings-to-investment ratio of each energy conservation measure must be greater than or equal to one under §455.63(b)(1), over a period for analysis which does not exceed 15 years, and the useful life of the energy conservation measure must be at least 2 years.

(c) Leased equipment is not eligible for financial assistance under this part. Equipment which becomes the property of the grantee at the conclusion of a long-term purchase agreement without any additional payment is eligible.

§ 455.72 Scope of the grant.

Financial assistance awarded under this subpart may be expended for the design (excluding design costs funded under the technical assistance program), acquisition, and installation of energy conservation measures to reduce energy consumption or measures to allow the use of renewable resources in schools and hospitals or to shift energy usage to periods of low demand and cost. Such measures include, but are not necessarily limited to, those included in the definition of “energy conservation measure” in §455.2.

Subpart G—State Administrative Expenses

§ 455.80 Purpose.

This subpart describes what constitutes a State administrative expense that may receive financial assistance under this part and sets forth the eligibility criteria for States to receive grants for administrative expenses.

§ 455.81 Eligibility.

To be eligible to receive financial assistance for administrative expenses, a State must:

(a) Have in place a State Plan approved by DOE pursuant to §455.21 and

(b) Be operating a program to provide technical assistance and energy conservation measure grants, or technical
§ 455.82 Scope of the grant.

A State’s administrative expenses shall be limited to those directly related to administration of technical assistance programs, program assistance and marketing programs, and energy conservation measures including costs associated with:

(a) Personnel whose time is expended directly in support of such administration;

(b) Supplies and services expended directly in support of such administration;

(c) Equipment purchased or acquired solely for and utilized directly in support of such administration, subject to 10 CFR 600.436;

(d) Printing, directly in support of such administration; and

(e) Travel, directly related to such administration.

Subpart H—State Grants for Technical Assistance, Program Assistance, and Marketing

§ 455.90 Purpose.

This subpart describes what constitutes a State program for technical assistance, program assistance, and marketing that may receive financial assistance under this part and sets forth the eligibility criteria for States to receive grants for technical assistance, program assistance, and marketing.

§ 455.91 Eligibility.

To be eligible to receive financial assistance for technical assistance, program assistance, and marketing, a State must:

(a) Have in place a State Plan approved by DOE which includes a description of the State’s program or programs to provide technical assistance, program assistance, and marketing, pursuant to §455.20(j)(1);

(b) Have established a program consistent with this part to fund, from non-Federal sources, energy conservation measures for eligible institutions; and

(c) Provide to DOE a certification pursuant to §455.122.

§ 455.92 State technical assistance awards.

Technical assistance awards by States under this subpart are subject to all requirements of this part which apply to DOE-awarded technical assistance program grants except that States:

(a) Are not required to award the funds in grant instruments;

(b) May award the funds throughout the fiscal year subject to §455.144(a)(3); and

(c) Are not required to rank applications under §455.131(b) of this part.

Subpart I—Cost Sharing

§ 455.100 Limits to Federal share.

Amounts made available under this part, together with any other amounts made available from other Federal sources, may not be used to pay more than 50 percent of the costs of technical assistance programs and energy conservation measures unless the grantee qualifies for the exceptions specified in §§455.141(a), 455.142(a), 455.142(b), or for severe hardship assistance specified in §455.142(c). In cases of severe hardship, the Federal share of the cost cannot exceed 90 percent.

§ 455.101 Borrowing the non-Federal share/title to equipment.

The non-Federal share of the costs of acquiring and installing energy conservation measures may be provided by using financing or other forms of borrowed funds, such as those provided by loans and performance contracts, even if such financing does not provide for the grantee to receive clear title to the equipment being financed until after the grant is closed out. However, grantees in such cases must otherwise meet all the requirements of this part, and financing and loan agreements and performance contracts under this section are subject to the requirements of 10 CFR Part 600 and the certification requirements under §455.111(e). Grantees must receive clear title to the equipment when the loan is paid off.
§ 455.110 Grant application submittals for technical assistance and energy conservation measures.

(a) Each eligible applicant desiring to receive financial assistance (either from DOE directly, through a State serving as a coordinating agency, or through another organization serving as a coordinating agency) shall file an application in accordance with the provisions of this subpart and the approved State Plan of the State in which such building is located. The application, which may be amended in accordance with applicable State procedures at any time prior to the State's final determination thereon, shall be filed with the State energy agency designated in the State Plan. Coordinating agencies shall file a single application with DOE which includes all of the information required below for each building for which assistance has been requested and to which is attached a copy of each application from each building owner.

(b) Applications from schools, hospitals, units of local government, public care institutions, and coordinating agencies for financial assistance for technical assistance programs shall include the certifications contained in §455.111 and:

1. The applicant’s name and mailing address;
§ 455.111 Applicant certifications for technical assistance and energy conservation measure grants to institutions and coordinating agencies.

Applications for financial assistance for technical assistance programs and energy conservation measures, including renewable resource measures, shall include certification that the applicant:

(2) The energy audit or energy use evaluation required by the State pursuant to §455.20(k) for each building for which financial assistance is requested;

(3) A project budget, by building, which stipulates the intended use of all Federal and non-Federal funds, including in-kind contributions (valued in accordance with the guidelines in 10 CFR part 600), to be used to meet the cost-sharing requirements described in subpart I of this part;

(4) A brief description, by building, of the proposed technical assistance program, including a schedule, with appropriate milestone dates, for completing the technical assistance program;

(5) Additional information required by the applicable State Plan and any other information which the applicant desires to have considered, such as information to support an application for financial assistance in excess of the 50 percent Federal share on the basis of severe hardship or an application which proposes the use of Federal funds paid under and authorized by another Federal agreement to meet cost sharing requirements.

(c) Applications from schools and hospitals and coordinating agencies for financial assistance for energy conservation measures, including renewable resource measures, shall include the certifications contained in §455.111 and:

(1) The applicant’s name and mailing address;

(2) A description of each building for which financial assistance is requested sufficient to determine the building’s eligibility, ownership, use, and size in gross square feet;

(3) A project budget, by measure or building, as provided in the State Plan which stipulates the intended use of all Federal and non-Federal funds and identifies the sources and amounts of non-Federal funds, including in-kind contributions (valued in accordance with the guidelines in 10 CFR part 600) to be used to meet the cost-sharing requirements described in subpart I of this part;

(4) A schedule, including appropriate milestone dates, for the completion of the design, acquisition, and installation of the proposed energy conservation measures for each building;

(5) For each energy conservation measure proposed for funding, the projected cost, the projected simple payback period, and if appropriate, the life-cycle cost savings-to-investment ratio calculated under §455.64. Applications with more than one energy conservation measure per building shall include projected costs and paybacks, and if appropriate, the savings-to-investment ratios for each measure and the average simple payback period or overall savings-to-investment ratio for all measures proposed for the building;

(6) The report of the technical assistance analyst (unless waived by DOE because the report is already in its possession). This report must have been completed since the most recent construction, reconfiguration, or utilization change to the building which significantly modified energy use, for each building;

(7) An update of the technical assistance program report if required by the State in its State Plan and as specified in §455.20(q);

(8) If the applicant is aware of any adverse environmental impact which may arise from adoption of any energy conservation measure, an analysis of that impact and the applicant’s plan to minimize or avoid such impact; and

(9) Additional information required by the applicable State Plan, and any additional information which the applicant desires to have considered, such as information to support an application for financial assistance in excess of the non-Federal share set forth in the State plan on the basis of severe hardship, or an application which proposes the use of Federal funds paid under and authorized by another Federal agreement to meet cost sharing requirements.
(a) Is eligible under § 455.61 for technical assistance or § 455.71 for energy conservation measures;
(b) Has satisfied the requirements set forth in § 455.110;
(c) For applications for technical assistance, has implemented all energy conservation maintenance and operating procedures recommended in the energy audit pursuant to § 455.20(k), if done, and for applications for energy conservation measures, those recommended in the report obtained under a technical assistance program pursuant to § 455.62. If any such procedure has not been implemented, the application shall contain a satisfactory written justification consistent with the State plan for not implementing that procedure;
(d) Will obtain from the technical assistance analyst, before the analyst performs any work in connection with a technical assistance program or energy conservation measure, a signed statement certifying that the technical assistance analyst has no conflicting financial interest and is otherwise qualified to perform the duties of technical assistance analyst in accordance with the standards and criteria established in the approved State Plan;
(e) When using borrowed funds for the non-Federal share of an energy conservation project where a lien is placed by the lender on equipment funded under the grant, will obtain clauses in the financing contract:
(1) Stating the percent of DOE interest in the equipment (i.e., the percent of the total cost provided by the grant); and
(2) Requiring lender notification, with certified return receipt requested, to the applicable Support Office Director of the filing of a lawsuit seeking a remedy for a default; and
(f) Will comply with all reporting requirements contained in § 455.113.

§ 455.112 Davis-Bacon wage rate requirement.

When an energy conservation measure or group of measures in a building, funded under this part, has a total estimated cost for acquisition and installation of more than $5,000, any construction contract or subcontract in excess of $2,000, using any grant funds awarded under this part must include:
(a) Those contract labor standards provisions set forth in 29 CFR 5.5 and
(b) A provision for payment of laborers and mechanics at the minimum wage rates determined by the Secretary of Labor in accordance with the Davis-Bacon Act (40 U.S.C. 276a) as set forth in 29 CFR part 1.

§ 455.113 Grantee records and reports for technical assistance and energy conservation measure grants to institutions and coordinating agencies.

(a) Each unit of local government or public care institution which receives a grant for a technical assistance program and each school, hospital, and coordinating agency which receives a grant for a technical assistance program or an energy conservation measure, including renewable resource measures, shall keep all the records required by this part and the DOE Financial Assistance Rules.
(b) Each grantee shall submit reports as follows:
(1) For technical assistance programs, two copies of a final report of the analysis completed on each building for which financial assistance was provided shall be submitted, either both to the State energy agency, or one to the State energy agency and one to DOE, as agreed upon between the State and the DOE Support Office, no later than 90 days following completion of the analysis. These reports shall contain:
(i) The report submitted to the institution by the technical assistance analyst, and
(ii) The institution’s plan to implement energy conservation maintenance and operating procedures;
(2) For energy conservation measure projects:
(i) Semi-annual progress reports. Two copies shall be submitted, either both to the State energy agency or one to the State energy agency and one to DOE, as agreed upon between the State and the DOE Support Office, no later than the end of July (for the period January 1 through June 30), and January (for the period July 1 through December 31) and shall detail and discuss...
§ 455.120 Grant applications for State administrative expenses.

Each State desiring to receive grants to help defray State administrative expenses shall file an application in accordance with the provisions of this section.

(a) Where a State is operating a program solely to provide grants to schools and hospitals, the maximum amount of administrative expenses the State may apply for is $50,000 or 5 percent of the Federal share of its schools and hospitals grant awards, whichever is greater.

(1) At any time after notice by DOE of the amounts allocated to each State for a grant program cycle, each State may apply to DOE for an amount for administrative expenses not exceeding $50,000.

(2) After making a submittal to DOE as required under §455.133, each State may apply for a further grant not exceeding 5 percent of the total Federal share of all grant awards for technical assistance and energy conservation measures within the State, less the $50,000 provided for in paragraph (a)(1) of this section if that was previously awarded to the State for administrative expenses in the same grant program cycle.

(b) Where a State is eligible and elects to apply to use its appropriated allocation for grants for technical assistance, program assistance, and/or marketing pursuant to §455.121, the maximum amount of administrative expenses the State may apply for is $50,000 or 5 percent of the total amount
§ 455.121 Grant applications for State technical assistance, program assistance, and marketing programs.

(a) A State may apply for up to 100 percent of the amount allocated to it for a grant program cycle to fund administrative expenses under § 455.120 and technical assistance and program assistance programs, or for up to 50 percent of the amount allocated to it for a grant program cycle to fund marketing programs provided that:

(1) The State has established a program to fund technical assistance, program assistance, or marketing programs, and has described its program or programs in its State Plan, as specified in § 455.20(j);

(2) The State has a program or programs established consistent with this part of that fund, from non-Federal sources, energy conservation measures eligible under this part;

(3) Not more than 15 percent of the aggregate amount of Federal and non-Federal funds legally committed or obligated to eligible recipients in the State to provide program assistance, marketing and technical assistance programs, implement energy conservation measures consistent with this part, and otherwise carry out a program pursuant to this part for the fiscal year concerned are expended for program assistance, technical assistance and marketing costs for such program;

(4) The energy conservation measures funded from non-Federal sources under this section would be eligible for funding under § 455.71; and

(5) The institutions undertaking the non-Federally funded energy conservation measures do so in accordance with all applicable Federal, State, and local laws and regulations with particular attention paid to applicable Federal and State non-discrimination laws and regulations.

(b) Applications for financial assistance to defray State technical assistance, program assistance, or marketing expenses shall include:

(1) The name and address of the person designated by the State to be responsible for the State's functions under this part;

(2) An identification of intended use of all Federal and non-Federal funds to be used for the State administrative expenses listed in § 455.82; and

(3) Any other information required by DOE.
§ 455.122 Applicant certifications for State grants for technical assistance, program assistance, and marketing.

Applications from States for financial assistance for technical assistance programs, program assistance, and marketing shall include certifications that the State:

(a) Has established a program or programs to fund, from non-Federal sources, energy conservation measures for eligible buildings consistent with this part;

(b) Will not expend, for technical assistance, program assistance, and marketing, more than 15 percent of the aggregate amount of Federal and non-Federal funds legally obligated or committed to eligible recipients in the State to provide technical assistance, program assistance, marketing programs, implement energy conservation measures consistent with this part, and otherwise carry out a program pursuant to this part for the fiscal year concerned; and

(c) Has provided for regular DOE-funded grants to eligible religiously affiliated institutions if the State has a State constitutional or other legal prohibition on providing State assistance to such institutions and if such institutions would be ineligible to apply for the non-Federally funded energy conservation measures or State-funded technical assistance.

§ 455.123 Grantee records and reports for State grants for administrative expenses, technical assistance, program assistance, and marketing.

(a) Each State which receives a grant for administrative expenses, or a grant for technical assistance programs, program assistance, or marketing shall keep all the records required by §455.4 in accordance with this part and the DOE Financial Assistance Rules.

(b) Each State shall submit a semi-annual program performance report to DOE by the close of each February and August, including, but not limited to:

(1) A discussion of administrative activities pursuant to §455.82, if a State has received a grant to fund such activities, and a discussion of milestones accomplished, those not accomplished, status of in-progress activities, problems encountered, and remedial actions, if any, planned pursuant to §455.135(f);

(2) A discussion of technical assistance, program assistance, and/or marketing programs pursuant to §455.121, if the State has received grants to fund such activities, including a discussion of the results of the State's program to non-Federally fund energy conservation measures consistent with this part pursuant to §455.121, with a list of buildings receiving assistance for technical assistance programs and a list of buildings which obtained energy conservation measures using non-Federal funds, including the name and address of each building, the amount and type of funding provided to each, and for energy conservation measures, the types of measures funded in each building together with each measure's total estimated cost and estimated annual cost savings, annual energy savings, and the annual cost of the energy to be saved (determined pursuant to §455.62(d)) consistent with the data currently provided to DOE on all ICP grants;

(3) A summary of grantee reports received by the State during the report period pursuant to §§455.113(b)(1) and (b)(2);

(4) For the report due to be submitted to DOE by the close of each August, an estimate of annual energy use reductions in the State, by energy...
source, attributable to implementation of energy conservation maintenance and operating procedures and installation of energy conservation measures under this part. Such estimates shall be based upon a sampling of institutions participating in the technical assistance phase of this program and upon the energy use reports submitted to the State pursuant to §455.113(b)(2)(iii); and

(5) Such other information as DOE may from time to time request.

(c) Each copy of any report covering grants for State administrative, technical assistance, program assistance, or marketing expenses shall be accompanied by a financial status report completed in accordance with the documents listed in §455.3. In addition, States shall file quarterly financial status reports for the quarters which occur between the semi-annual report periods covered in their program performance reports. These quarterly reports are due within 30 days following the end of the applicable quarters.

Subpart L—State Responsibilities

§ 455.130 State evaluation of grant applications.

(a) If an application received by a State is reviewed and evaluated by that State and determined to be in compliance with subparts E, F, and J of this part, §455.130(b), any additional requirements of the approved State Plan, State environmental laws, and other applicable laws and regulations, then such application will be eligible for financial assistance.

(b) Concurrent with its evaluation and ranking of grant applications pursuant to §455.131, the State will forward applications for technical assistance or for energy conservation measures for schools to the State school facilities agency for review and certification that each school application is consistent with related State programs for educational facilities. For hospitals the certification requirement applies only if there is a State requirement for it in which case the procedure should be described in the State Plan.

§ 455.131 State ranking of grant applications.

(a) Except as provided by §455.92 of this part, all eligible applications received by the State will be ranked by the State in accordance with its approved State Plan.

(b) For technical assistance programs, buildings shall be ranked in descending priority based upon the energy conservation potential, on a savings percentage basis, of the building as determined in the energy audit or energy use evaluation pursuant to §455.20(k). Each State shall develop separate rankings for all buildings covered by eligible applications for:

(1) Technical assistance programs for units of local government and public care institutions and

(2) Technical assistance programs for schools and hospitals.

(c) All eligible applications for energy conservation measures received will be ranked by the State on building-by-building or a measure-by-measure basis. If a State ranks on a building-by-building basis, several buildings may be ranked as a single building if the application proposes a single energy conservation measure which is physically connected to all of the buildings. If a State ranks on a measure-by-measure basis, a measure that is physically connected to a number of buildings may be ranked as a single measure. Buildings or measures shall be ranked in accordance with the procedures established by the State Plan (or its equivalent) for the building and the criteria for ranking applications. The criteria set forth in paragraph (1) of this subsection shall receive at least 50 percent of the weight given to the criteria used to rank applications. Each State may assign weights to the other criteria as set forth in the State Plan pursuant to §455.20(e). The criteria for ranking applications are:

(1) Simple payback or a life-cycle cost analysis, calculated in accordance with §455.63 and §455.64, as applicable;

(2) The types and quantities of energy to be saved, including oil, natural gas, or electricity, in a priority as established in the approved State Plan;
§ 455.132 State evaluation of requests for severe hardship assistance.

(a) To the extent provided in §455.30(d), financial assistance will be initially available for schools and hospitals experiencing severe hardship based upon an applicant’s inability to provide the non-Federal share as specified in the State plan pursuant to §455.20(g). This financial assistance will be available only to the extent necessary to enable such institutions to participate in the program.

(b) The State shall recommend funds for severe hardship applications wholly or partially from the funds reserved in accordance with §455.30(d) and as stated in an approved State Plan.

(c) Applications for Federal funding in excess of the non-Federal share in the State plan pursuant to §455.20(x) based on claims of severe hardship shall be given an additional evaluation by the State to assess on a quantifiable basis to the maximum extent practicable the relative need among eligible institutions. The minimum amount of additional Federal funding necessary for the applicant to participate in the program will be determined by the State in accordance with the procedures established in the State Plan. The primary consideration shall be the institution’s inability to provide the non-Federal share of the project cost as specified in the State plan pursuant to §455.20(x). Secondary criteria such as climate, fuel cost and fuel availability, borrowing capacity, median family income in the area, and other relevant factors as determined by the State may be addressed in the State Plan as specified in §455.20(g).

(d) A State shall indicate, for those schools and hospitals with the highest rankings, determined pursuant to §455.131(b) and (c):

(1) The amount of additional hardship funding requested by each eligible applicant for each building determined to be in a class of severe hardship and the respective 30 percent requirements specified in paragraph (f) of this section, then the State may recommend use of the remaining funds in those allocations for other qualified applicants.

§ 455.132 State evaluation of requests for severe hardship assistance.

(a) To the extent provided in §455.30(d), financial assistance will be initially available for schools and hospitals experiencing severe hardship based upon an applicant’s inability to provide the non-Federal share as specified in the State plan pursuant to §455.20(g). This financial assistance will be available only to the extent necessary to enable such institutions to participate in the program.

(b) The State shall recommend funds for severe hardship applications wholly or partially from the funds reserved in accordance with §455.30(d) and as stated in an approved State Plan.

(c) Applications for Federal funding in excess of the non-Federal share in the State plan pursuant to §455.20(x) based on claims of severe hardship shall be given an additional evaluation by the State to assess on a quantifiable basis to the maximum extent practicable the relative need among eligible institutions. The minimum amount of additional Federal funding necessary for the applicant to participate in the program will be determined by the State in accordance with the procedures established in the State Plan. The primary consideration shall be the institution’s inability to provide the non-Federal share of the project cost as specified in the State plan pursuant to §455.20(x). Secondary criteria such as climate, fuel cost and fuel availability, borrowing capacity, median family income in the area, and other relevant factors as determined by the State may be addressed in the State Plan as specified in §455.20(g).

(d) A State shall indicate, for those schools and hospitals with the highest rankings, determined pursuant to §455.131(b) and (c):

(1) The amount of additional hardship funding requested by each eligible
their respective 30 percent requirements specified in paragraph (f) of this section, then the State may recommend
use of the remaining funds in those allocations for other qualified applicants.
(2) The amount of hardship funding recommended by the State based upon relative need, as determined in accordance with the State Plan, to the limit of the hardship funds available. The State must decide on a case-by-case basis whether, and to what extent, it will recommend hardship funding.

(e) If there are insufficient applications from hardship applicants to cover the 10 percent allocation provided for in §455.30(d), then the State may recommend use of the remaining funds for other qualified applicants. The total amount recommended for hardship grants cannot exceed the 10 percent limit.

§ 455.133 Forwarding of applications from institutions and coordinating agencies for technical assistance and energy conservation measure grants.

(a) Except as provided by §455.92 of this part, each State shall forward all applications recommended for funding within its allocation to DOE once each program cycle along with a listing of buildings or measures covered by eligible applications for schools, hospitals, units of local government, and public care institutions ranked by the State if necessary pursuant to the provisions of §455.131. If ranking has been employed, the list shall include the standings of buildings or measures.

(1) Measure-by-measure rankings will be recombined for the respective buildings with more than one recommended measure

(2) Buildings will be consolidated under one grantee application.

(b) The State shall indicate the amount of financial assistance requested by the applicant for each eligible building and, for those buildings recommended for funding within the limits of the State's allocation, the amount recommended for funding. If the amount recommended is less than the amount requested by the applicant, the list shall also indicate the reason for that recommendation.

(c) The State shall indicate that it has reviewed and evaluated all of the submitted applications and that those applications meet the relevant requirements of the program, and shall certify that applications submitted are eligible pursuant to §455.130(a).

§ 455.134 Forwarding of applications for State grants for technical assistance, program assistance, and marketing.

A State eligible to apply for grants for technical assistance, program assistance, or marketing, as described in §455.121, may submit such an application to DOE any time after the allocations have been announced as part of, or in lieu of, an application for a grant for State administrative expenses. Such applications shall provide separate narrative descriptions, budgets and appropriate milestone dates, covering each activity or program, that are sufficiently detailed to enable DOE to reasonably evaluate the application.

§ 455.135 State liaison, monitoring, and reporting.

Each State shall be responsible for:

(a) Consulting with eligible institutions and coordinating agencies representing such institutions in the development of its State Plan;

(b) Notifying eligible institutions and coordinating agencies of the content of the approved State Plan and any amendment to a State Plan;

(c) Notifying each applicant how the applicant's building or measure ranked among other applications, and whether and to what extent its application will be recommended for funding or if not to be recommended for funding, the specific reasons therefor;

(d) Certifying that each institution has given its assurance that it is willing and able to participate on the basis of any changes in amounts recommended for that institution in the State ranking pursuant to §455.131;

(e) Reporting requirements pursuant to §455.113; and

(f) Direct program oversight and monitoring of the activities for which grants are awarded as defined in the State Plan. States shall immediately notify DOE of any noncompliance or indication thereof.
§ 455.140 Approval of applications from institutions and coordinating agencies for technical assistance and energy conservation measures.

Subpart M—Grant Awards

§ 455.140 Approval of applications from institutions and coordinating agencies for technical assistance and energy conservation measures.

(a) DOE shall review and approve applications submitted by a State in accordance with § 455.133 if DOE determines that the applications meet the objectives of the Act, and comply with the applicable State Plan and the requirements of this part. DOE may disapprove all or any portion of an application to the extent funds are not available to carry out a program or measure (or portion thereof) contained in the application, or for such other reason as DOE may deem appropriate.

(b) DOE shall notify a State and the applicant of the final approval or disapproval of an application at the earliest practicable date after the DOE receipt of the application, and, in the event of disapproval, shall include a statement of the reasons therefor.

(c) An application which has been disapproved for reasons other than lack of funds may be amended to correct the cause of its disapproval and resubmitted in the same manner as the original application at any time within the same grant program cycle. Such an application will be considered to the extent funds have not already been designated for applicants by the ranking process at the time of resubmittal. However, nothing in this provision shall obligate either the State or DOE to take final action regarding a resubmitted application within the grant program cycle. An application not acted upon may be resubmitted in a subsequent grant program cycle.

(d) DOE shall not provide supplemental funds to cover cost overruns or other additional costs beyond those provided for in the original grant award for technical assistance projects after the date of the grant application, so long as that date is no earlier than the close of the preceding grant program cycle. Such costs may be funded when, in the judgment of DOE, the applicant has complied with program requirements and the costs incurred are allowable under applicable cost principles and the approved project budget. The applicant bears the responsibility for the entire project cost unless the application is approved by DOE in accordance with this part.

(e) DOE may fund costs incurred by an applicant for technical assistance and energy conservation measure projects after the date of the grant application as specified in the DOE Financial Assistance Rules (10 CFR part 600), a grantee shall request prior written approval from DOE before:

(1) Transferring DOE or matching amounts between buildings included in an approved application when the State ranks applications on a building-by-building basis or

(2) Transferring DOE or matching amounts between energy conservation
measures included in an approved application when the State ranks on a measure-by-measure basis.

§ 455.141 Grant awards for units of local government, public care institutions, and coordinating agencies.

(a) DOE may make grants to units of local government, public care institutions, and coordinating agencies representing them for up to 50 percent of the costs of performing technical assistance programs for buildings covered by an application approved in accordance with § 455.140, except that in the case of schools and hospitals a majority of whose operating and capital funds are provided by the Government of the U.S. Virgin Islands, Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands, a grant may be made for up to 100 percent of such costs.

(b) Total grant awards within any State to units of local government and public care institutions are limited to funds allocated to each State in accordance with § 455.30.

(c) Units of local government and public care institutions are not eligible for financial assistance for severe hardship.

§ 455.142 Grant awards for schools, hospitals, and coordinating agencies.

(a) DOE may make grants to schools, hospitals, and coordinating agencies for up to 50 percent of the costs of performing technical assistance programs for buildings covered by an application approved in accordance with § 455.140, except that in the case of schools and hospitals a majority of whose operating and capital funds are provided by the Government of the U.S. Virgin Islands, Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands, a grant may be made for up to 100 percent of such costs.

(b) DOE may make grants to schools, hospitals, and coordinating agencies for up to 50 percent of the costs of acquiring and installing energy conservation measures, including renewable resource measures, for buildings covered by an application approved in accordance with § 455.140, except that in the case of schools and hospitals a majority of whose operating and capital funds are provided by the Government of the U.S. Virgin Islands, Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands, a grant may be made for up to 100 percent of such costs.

(c) DOE may award up to 10 percent of the total amount allocated to a State for schools and hospitals in cases of severe hardship, ascertained by the State in accordance with the State Plan, for buildings recommended and in amounts determined by the State pursuant to § 455.132(d)(2).

§ 455.143 Grant awards for State administrative expenses.

(a) For the purpose of defraying State expenses in the administration of technical assistance programs in accordance with subpart E and energy conservation measures in accordance with subpart F or energy conservation measures non-Federally funded pursuant to § 455.121, DOE may make grant awards to a State:

(1) Immediately following public notice of the amounts allocated to a State for the grant program cycle, and upon approval of the application for administrative costs, in an amount not exceeding $50,000;

(2) Concurrent with grant awards for approved applications for technical assistance or energy conservation measures for institutions in that State and upon approval of an application for administrative costs, in an amount not exceeding the difference between the amount granted pursuant to paragraph (a)(1) of this section and 5 percent of the Federal share of the total amount of grants awarded within the State for technical assistance programs and energy conservation measures in the applicable grant program cycle; or

(3) Upon receipt by DOE of documentation from the State demonstrating that sufficient non-Federal funding has been obligated or legally committed to schools and hospitals for energy conservation measures pursuant to
§ 455.144 Grant awards for State programs to provide technical assistance, program assistance, and marketing.

(a) For the purpose of defraying State expenses in the administration of special programs to provide technical assistance and program assistance pursuant to §455.121, DOE may make a grant award to a State for up to 100 percent of the funds allocated to the State for the grant program cycle, provided that the State meets the requirements described in §455.121(b). In addition:

1. Funds for individual technical assistance programs provided by the State pursuant to this section shall not exceed 50 percent of the cost of the technical assistance program;
2. Grants for program assistance may be made for up to 100 percent of a State's projected program assistance expenses; and
3. Grants for State technical assistance, and program assistance programs may be awarded by DOE upon approval of an application from the State.

(b) For the purpose of defraying State expenses in the administration of a marketing program pursuant to §455.121, DOE may make a grant award to a State for up to 50 percent of the funds allocated to the State for the grant program cycle, provided that the State meets the requirements described in §455.121(b). In addition:

1. Grants for marketing may be made for up to 100 percent of a State's projected marketing expenses; and
2. Such grants may be awarded by DOE upon approval of an application from the State.

(c) If a State provides a certification under section 455.121(b) and is unable to document that the required non-Federal funding levels for energy conservation measures were achieved substantially for the previous fiscal year for which a similar certification was submitted, DOE may deny the application, accept it after the percentage of allocated funds is reduced in light of past performance, or take other appropriate action.

(d) In the event that a State, after receiving a grant under this section, cannot or decides not to use all or part of the amount available to it for administrative grants under this section for administrative purposes, these funds may, at the discretion of the State, be used for technical assistance and energy conservation grants to eligible institutions within that State in accordance with this part.

§ 455.150 Right to administrative review.

(a) A State shall have a right to file a notice requesting administrative review of a decision under §455.143 by a Support Office Director to disapprove...
an application for a grant award for State administrative expenses subject to special conditions or a decision under §455.21 of this part by a Support Office Director to disapprove a State Plan or an amendment to a State Plan.

(b) A State shall have a right to file a notice requesting administrative review of a decision under §455.144 by a Support Office Director to disapprove an application for a grant award for State technical assistance, program assistance, or marketing programs.

(c) A school, hospital, coordinating agency, or State acting as an institution’s duly authorized agent shall have a right to file a notice requesting administrative review of a decision under §455.140 by a Support Office Director to disapprove an application for a grant award to perform technical assistance programs or to acquire and install an energy conservation measure if the disapproval is based on a determination that:

1. The applicant is ineligible, under §455.61 or §455.71 or for any other reason; or
2. An energy use evaluation submitted in lieu of an energy audit is unacceptable under the State Plan; or
3. A technical assistance program equivalent performed without the use of Federal funds does not comply with the requirements of §455.62 for purposes of satisfying the eligibility requirements of §455.71(a)(3).

§ 455.151 Notice requesting administrative review.

(a) Any applicant shall have 20 days from the date of receipt of a decision subject to administrative review under §455.150 to disapprove its application for a grant award to file a notice requesting administrative review. If an applicant does not timely file such a notice, the decision to disapprove shall become final for DOE.

(b) A notice requesting administrative review shall be filed with the Support Office Director and shall be accompanied by a written statement containing supporting arguments.

(c) If the applicant is a State appealing pursuant to paragraph (a) of §455.150, the State shall have the right to a public hearing. To exercise that right, the State must request such a hearing in the notice filed under paragraph (b) of this section. A public hearing under this section shall be informal and legislative in nature.

(d) A notice or any other document shall be deemed filed under this subpart upon receipt.

§ 455.152 Transmittal of record on review.

On or before 15 days from receipt of a notice requesting administrative review which is timely filed, the Support Office Director shall forward to the Deputy Assistant Secretary the notice requesting administrative review, the decision to disapprove as to which administrative review is sought, a draft recommended final decision for concurrence, and any other relevant material.

§ 455.153 Review by the Deputy Assistant Secretary.

(a) If a State requests a public hearing pursuant to paragraph (a) of §455.150, the Deputy Assistant Secretary, within 15 days, shall give actual notice to the State and FEDERAL REGISTER notice of the date, place, time, and procedures which shall apply to the public hearing. Any public hearing under this section shall be informal and legislative in nature.

(b) The Deputy Assistant Secretary shall concur in, concur in as modified, or issue a substitute for the recommended decision of the Support Office Director:

1. With respect to a notice filed pursuant to paragraph (a) of §455.150, on or before 60 days from receipt of documents under §455.152 or the conclusion of a public hearing, whichever is later; or
2. With respect to a notice filed pursuant to paragraph (b) of §455.150, on or before 30 days from receipt of documents under §455.152.

§ 455.154 Discretionary review by the Assistant Secretary.

On or before 15 days from the date of the determination under §455.153(b), the applicant for a grant award may file an application, with a supporting statement of reasons, for discretionary review by the Assistant Secretary. If
§ 455.155 Finality of decision.

A decision under §455.153 shall be final for DOE if there is no review sought under §455.154. If there is review under §455.154, the decision thereunder shall be final for DOE, and no appeal shall lie elsewhere in DOE.

PART 470—APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM

Sec.
470.1 Purpose and scope.
470.2 Definitions.
470.10 Establishment of program.
470.11 Eligibility requirements.
470.12 Management.
470.13 Program solicitation.
470.14 Evaluation and selection.
470.15 Allocation of funds.
470.16 Cost sharing and funds from other sources.
470.17 General requirements.
470.18 Debriefing.
470.20 Dissemination of information.

SOURCE: 45 FR 8928, Feb. 8, 1980, unless otherwise noted.

EDITORIAL NOTE: The recordkeeping requirements contained in this part have been approved by the Office of Management and Budget under control number 1904-0036.

§ 470.1 Purpose and scope.

This part contains guidelines for the implementation of the appropriate technology small grants program required to be prescribed by section 112 of the Act.

§ 470.2 Definitions.

As used in this part—

Affiliate means a concern which, either directly or indirectly, controls or has the power to control another concern, is controlled by or is within the power to control of another concern or, together with another concern, is controlled by or is within the power to control of a third party, taking into consideration all appropriate factors, including common ownership, common management and contractual relationships.

Concern means any business entity organized for profit (even if its ownership is in the hands of a nonprofit entity) with its principal place of business located in the United States. “Concern” includes, but is not limited to, an individual, partnership, corporation, joint venture, association or cooperative. For the purpose of making affiliation findings, any business entity, whether organized for profit or not, and any foreign business entity (i.e., any entity located outside the United States), shall be included.

DOE means the Department of Energy.

DOE-AR means the Department of Energy Assistance Regulations (10 CFR part 600).

DOE-PR means the Department of Energy Procurement Regulations (41 CFR part 9).

Indian tribe means any tribe, nation, or other organized group or community of Indians (including any Alaska native village or regional or village corporation as defined in or established pursuant to the Alaska Native Claims Settlement Act, Pub. L. 92-203, 85 Stat. 688), which (1) is recognized as eligible for the special programs and services
§ 470.10 Establishment of program.

There is established, under direction of the Assistant Secretary for Conservation and Solar Energy of DOE, an appropriate technology small grants program for the purpose of encouraging development and demonstration of, and the dissemination of information with respect to, energy-related systems and supporting technologies appropriate to—

(a) The needs of local communities and the enhancement of community self-reliance through the use of available resources;

(b) The use of renewable resources and the conservation of non-renewable resources;

(c) The use of existing technologies applied to novel situations and uses;

(d) Applications which are energy conserving, environmentally sound, small scale and low cost; and

(e) Applications which demonstrate simplicity of installation, operation and maintenance.

§ 470.11 Eligibility requirements.

(a) Support under this part may be made to individuals, local non-profit organizations and institutions, State and local agencies, Indian tribes and small businesses.

(b) The aggregate amount of support made available to any participant in the program, including affiliates, shall not exceed $50,000 during any 2-year period. This limitation applies only to support for projects and not to funds received by participants from DOE for other purposes, such as performance of services.

(c) Projects which shall be considered for support are those which carry out the purposes of the program as expressed in §470.10 and which are within the following categories—

1. Idea development, i.e., the development of an idea or concept or an investigative finding in areas ranging from development of new concepts of energy sources to the utilization of old procedures or systems for a new application;

2. Device development, i.e., the systematic use and practical application of investigative findings and theories...
of a scientific or technical nature toward the production of, or improvements in, useful products to meet specific performance requirements but exclusive of manufacturing and production engineering. The dominant characteristic is that the effort be pointed toward specific energy problem areas to develop and evaluate the feasibility and practicability of proposed solutions and determine their parameters. Device development includes studies, investigations, initial hardware development and ultimately development of hardware, systems, or other means for experimental or operational test; or (3) Demonstration, i.e., the testing of a system or technique under operation conditions to show that commercial application is technically, economically and environmentally feasible.

(d) Support for each category in paragraph (c) of this section shall not, for a single participant in the program, including affiliates, exceed the following limits for any project—

(1) For idea development, $10,000;
(2) For device development, $50,000; and
(3) For demonstration, $50,000.

(4) A participant may receive under a subsequent program solicitation—

(i) Additional support for a funded project; or;
(ii) Initial support for a new project, subject to the support limits set forth in paragraphs (b) and (d) of this section.

§470.13 Program solicitation.

(a) The Regional Program Managers shall be responsible for the preparation of program solicitations which solicit proposals for support under the program pursuant to simplified application procedures. Projects may be supported under the program only if they have successfully completed under a program solicitation.

(b) Each program solicitation shall include—

(1) A description of the program;
(2) The eligibility requirements;
(3) A time schedule for submission of, and action on, proposals;
(4) A simple application form for submitting a proposal for support under the program, together with instructions for completing the application form;
(5) Evaluation criteria, along with a narrative description of their relative importance;
(6) An explanation of the evaluation and selection procedures, including a notice to proposers that if the proposer expressly indicates that only Government evaluation is authorized, DOE may be unable to give full consideration to the proposal;
(7) Other applicable information, terms and conditions, including the desired budget format;
(8) Place for, and manner of, submission;
(9) A unique number for identification purposes;
(10) A statement notifying potential proposers that an announcement does not commit DOE to pay any proposal preparation costs and that DOE reserves the right to select for support any, all, or none of the proposals received in response to a solicitation;
(11) A late proposal provision;
(12) A statement notifying proposers how to identify information in the proposal which the proposer does not want disclosed for purposes other than the evaluation of the proposal.

(c) A statement notifying proposers that all information contained in the proposal will be handled in accordance...
with the policies and procedures set forth in DOE-AR and DOE-PR, as applicable, and disclosed, if appropriate, in accordance with 10 CFR part 1004 entitled "Freedom of Information."

(14) A statement notifying proposers of their right to request a debriefing pursuant to the procedures set forth in §470.18; and

(15) A statement notifying proposers of their right to request a waiver of DOE’s title to inventions made under the program.

(c) Each program solicitation shall be synopsized in the Commerce Business Daily prior to or concurrent with release. The program solicitation also shall be announced to appropriate newspapers, trade and technical publications, and State and local governments, and shall be circulated directly to interested individuals, entities, and associations thereof, to the maximum extent feasible.

§470.14 Evaluation and selection.

(a) Prior to making a comprehensive evaluation of a proposal, the receiving office shall determine that it contains sufficient technical, cost, and other information to enable comprehensive evaluation and that it has been properly signed. If the proposal does not meet these requirements, a prompt reply shall be sent to the proposer, indicating the reason(s) for the proposal not being selected for support under the program solicitation. A proposer may correct any minor informality or irregularity or apparent clerical mistake prior to the entering into of grants, contracts, or cooperative agreements. A minor informality or irregularity is one which is merely a matter of form and not of substance or pertains to some immaterial or inconsequential defect or variation from the exact requirements of the program announcement.

(b)(1) The Regional Program Manager shall select a number of technical evaluation reviewers representing several disciplines to ensure adequate technical review of proposals.

(2) After receiving nominations from each State or combinations of States within the Region, the Program Manager shall select a number of State reviewers for each State or combinations of States, respectively. The nominations and selections of State reviewers shall take into consideration representation by persons from a variety of backgrounds, in order that the reviewers are able to evaluate proposals of potential merit in various fields and from various types of proposers.

(3) The Regional Program Manager or designee shall provide proposals to the technical evaluation and State reviewers and shall provide their findings and comments to the selection panel established pursuant to paragraph (3) of this section.

(4) In carrying out the responsibilities set forth in paragraphs (b) (1), (2) and (3) of this section, the Regional Program Manager (i) shall determine the number of technical evaluation and State reviewers who shall review each proposal; (ii) shall determine the sequence of the technical and State review; (iii) may designate a person to serve as both a technical and State reviewer, if appropriate to the needs of the program in the Region. A description of the Program Manager’s determinations under this paragraph shall be included in the Program Solicitation pursuant to §470.13(b)(6).

(c) Each technical evaluation reviewer shall evaluate those proposals which he or she receives from the Regional Program Manager or designee and shall provide his or her findings to the Regional Program Manager or designee. In addition to the general criteria underlying the establishment of the program as set forth in §470.10, the major criteria to be considered by each technical evaluation reviewer shall include—

(1) Whether the proposal is technically feasible, including a determination as to whether the proposed energy savings or energy production can be technically achieved;

(2) Whether the results being proposed are capable of being measured;

(3) Whether the proposal has any potential environmental, health and safety impacts; and

(4) From a technical standpoint, whether the proposal can be carried out within the funds being requested.

(d) Each State reviewer shall evaluate those proposals which he or she receives from the Program Manager or
designee and shall provide his or her findings and comments to the Program Manager or designee. In addition to the general criteria underlying establishment of the program as set forth in §470.10, the criteria to be considered by each State reviewer shall include—

(1) The potential impact of the proposal on the energy needs and requirements of the community or region;

(2) The energy resource involved and its importance or availability to the community or region;

(3) The expected energy savings or production that will result from the proposal and the significance of those savings or production to the energy requirements of the community or region;

(4) The institutional barriers that may substantially affect the proposal and the potential of the proposal to deal with those barriers;

(5) The likelihood of commercialization or utilization of the technology, process, or items within the proposal and extent of such commercialization/utilization;

(6) The innovative nature of the proposal;

(7) Any potential environmental, health and safety impacts of the proposal upon the community or region;

(8) The extent to which work beyond the funded project period might be required;

(9) The extent to which local resources, material, and manpower will be utilized; and

(10) The adequacy of the business aspects of the proposal, including the reasonableness of the proposer’s budget for carrying out the proposal.

(c) A selection panel composed of DOE personnel appointed by the Regional Program Manager shall, taking into account the findings and comments of the technical evaluation and State reviewers, evaluate and rank the proposals in accordance with the criteria stated in the program solicitation.

(f) For each Region, a DOE selection official shall select proposals for support from the ranking established by the selection panel, taking into account the following program policy factors in order to determine the mix of proposed projects which will best further specific program goals—

(1) Regional distribution, including geography, population, and climate;

(2) Project type distribution, including a diversity of methods, approaches, and technologies;

(3) Diversity of participants; and

(4) The best overall use of the funds available.

§470.15 Allocation of funds.

(a) DOE shall annually allocate fiscal year funds available for support among the 10 standard Federal Regions, according to the following formula;

(1) Two-thirds to be allocated according to population; and

(2) One-third to be allocated according to the number of proposals received, per hundred thousand population of the Region, which meet the requirements set forth in §470.14(a).

(b) The minimum annual level of support for projects for each State within a Region shall be 10 percent of the fiscal year funds allocated to the Region, divided by the number of States in the Region.

(c) For the purposes of this section, population shall be determined by the most current complete national series, as published by the United States Bureau of the Census in Current Population Reports, P-25, P-26, or related series, except where data from the decennial census conducted by the Bureau of the Census is more current.

§470.16 Cost sharing and funds from other sources.

Proposers are encouraged to offer to share in the costs of their proposed projects or to arrange that other entities provide cost sharing on their behalf. Regional Program Managers, with the consent of the proposer, may work with States, local governments or other entities to obtain supplemental funding.

§470.17 General requirements.

(a) Except where this part provides otherwise, the submission, evaluation and selection for support of proposals under the program and the entering into and administration of grants, cooperative agreements, and contracts under the program, shall be governed
by the provisions of DOE-AR and DOE-PR are applicable, such other procedures applicable to grants, cooperative agreements, and contracts under the program as DOE may from time to time prescribe, and any Federal requirements applicable to grants, cooperative agreements, and contracts under the program.

(b) Each grant, cooperative agreement or contract under this part shall require that a recipient of support under the program shall submit a full written report of activities supported in whole or in part by Federal funds made available under the program and shall contain any additional report provisions and other provisions dealing with records, allowable expenses, accounting practices, publication and publicity, copyrights, patents, discrimination, conflict of interest, insurance, safety, changes, resolution of disputes and other standard and/or relevant support agreements requirements required by, or appropriate to, the needs of the program.

§ 470.18 Debriefing.

Upon written request, unsuccessful proposers will be accorded debriefings. Such debriefings must be requested within 30 working days of notification of elimination from consideration. Debriefings will be provided at the earliest feasible time as determined by the Regional Program Manager.

§ 470.20 Dissemination of information.

DOE shall disseminate to the public, in an appropriate manner, information of the nature, usage and availability of the energy-related systems and supporting technologies developed or demonstrated under the program. In addition, DOE shall maintain and make available to recipients of support under the program current information on public and private sources of possible assistance for the further development and commercialization of their projects.
§ 473.2 Definitions.

For purpose of these regulations—

Advanced automobile propulsion system means an energy conversion system, including engine and drivetrain, which utilizes advanced technology and is suitable for use in an advanced automobile.

Agency project means research and development under the Act by employees of a Federal agency furnishing assistance at the request of the DOE.

Annual funding period means the Federal fiscal year during which a grant, cooperative agreement, or contract is funded by an appropriation under the Act.

Applicant means any private laboratory, university, nonprofit organization, industrial organization, private agency, institution, organization, corporation, partnership, individual, or public agency other than a Federal agency.

DOE project means research and development under the Act by employees of the DOE.

Manager means the Federal program official who requests grant agreements, cooperative agreements, or contracts to be negotiated or who authorizes a DOE or agency project to begin.

Notice of availability means a notice published in the Commerce Business Daily advertising the availability of a formal solicitation document to be issued for the purpose of inviting and setting guidelines for submission of proposals for research and development grants, cooperative agreements, or contracts.

Research and development means activities constituting a project to create an advanced automobile propulsion system and does not mean activities involving technology transfer to mass production, evaluative testing, preliminary planning for a DOE or an agency project, or program administration and management.

Solicitation means a formal, written request for proposals to perform research and development under a grant, cooperative agreement, or contract, typically including evaluation criteria and a statement of the work to be done.

§ 473.10 Required information from applicant.

In accordance with applicable procedures of § 473.11 any applicant for a grant, cooperative agreement, or contract under the Act to support research and development activities of an advanced automobile propulsion system shall—

(a) State whether the activities will initiate or continue research and development of an advanced automobile propulsion system;

(b) State, insofar as the applicant has information, whether and to what extent the activities to be supported are technically the same as activities conducted previously or to be conducted during the annual funding period by any person for research and development of a substantially similar advanced automobile propulsion system;

(c) Justify research and development activities on an advanced automobile propulsion system abandoned by any person because of a lack of mass production potential by presenting information showing a significant intervening technological advance, promising conceptual innovation, or other special consideration;

(d) Provide—

(1) An assurance that the amount of funds to be expended for research and development of advanced automobile propulsion systems during the initial annual funding period will exceed the amount of funds expended, if any, during the previous year for the same purpose by at least the amount of the grant, cooperative agreement, or contract being sought; and

(2) An assurance that the level of research and development effort on advanced automobile propulsion systems in the initial annual funding period will not be decreased in future annual funding periods.

(e) Provide to the extent possible—
(1) An assurance that the time period for completing research and development of the advanced automobile propulsion is likely to be shorter as a result of a grant, cooperative agreement, or contract; and
(2) The estimated delay, if any, which is likely to occur if the application for a grant, cooperative agreement, or contract is denied.

§ 473.11 Submission of applicant’s information.

(a) An applicant submitting an unsolicited proposal to conduct research and development to be funded by a grant, cooperative agreement, or contract under the Act shall include the information required under §473.10 in the unsolicited proposal document filed under the assistance or procurement regulations of the DOE or other Federal agency which funds the proposed research and development under the Act.

(b) In responding to a solicitation for a proposal to conduct research and development funded by a grant, cooperative agreement, or contract under the Act, the applicant shall include the information required under §473.10 in the proposal.

(c) Information submitted under §473.10 of these regulations shall be certified in writing as complete and accurate by the applicant, and if the applicant is not an individual, the chief executive officer of the applicant or his authorized designee shall sign the certification.

§ 473.20 Public notice and opportunity to object.

(a) In compliance with paragraph (b) of this section and unless provisions of paragraph (c) of this section apply, the manager shall cause to be published in the Commerce Business Daily a statement describing the unsolicited proposal, solicitation, DOE project, or agency project, as appropriate, inviting any interested person to submit a written objection, with supporting information at an appropriate address on or before 30 days from the date of publication, if the person believes that the research and development to be performed does not comply with standards and criteria of §473.30.

(b) Except as paragraph (c) of this section applies, the manager shall comply with the requirements of paragraph (a) of this section—
(1) Upon receipt of an unsolicited proposal from an applicant;
(2) In any notice of availability of a solicitation;
(3) Prior to beginning a DOE project; or
(4) Prior to beginning an agency project.

(c) Without publishing a notice under paragraph (a) of this section, the manager may reject an unsolicited proposal that does not comply with these regulations or any other generally applicable requirements.

§ 473.21 Supplemental information and rebuttal.

The manager may request additional information from an applicant or any interested person who files an objection under §473.20.

§ 473.22 Initial review by manager.

(a) Upon expiration of the time for filing information under these regulations, the manager shall—
(1) Review the proposed research and development to be performed under grant, under cooperative agreement, under contract, as a DOE project, or as an agency project and any other pertinent information received under these regulations or otherwise available; and
(2) Initially determine whether the research and development reviewed under paragraph (a)(1) of this section complies with the standards and criteria of §473.30.

(b) A manager who makes a negative determination under paragraph (a)(2) of this section shall inform the applicant and any interested person who objected of the decision in writing with a brief statement of supporting reasons.

(c) A manager who initially determines that research and development reviewed under this section complies with the standards and criteria of §473.30 shall cause an interagency review panel to be convened under §473.23.

§ 473.23 Interagency review panel.

(a) The interagency review panel shall consist of—
§ 473.24 Final action and certification by manager.

(a) Upon consideration of the recommendation of the interagency review panel and other pertinent information, the manager—

(1) Shall determine whether the research and development to be performed complies with the standards and criteria of § 473.30;

(2) Shall obtain the concurrence of the DOE if the manager is not an employee of the DOE;

(3) Shall, in the event of a negative determination under this section, advise the applicant, in the case of a grant, cooperative agreement, or contract, and any interested person who filed a statement of objection; and

(4) Shall, in the event of an affirmative determination under this section, prepare a certification—

(i) Explaining the determination;

(ii) Discussing any allegedly related or comparable industrial research and development considered and deemed to be an inadequate basis for not certifying the grant or contract;

(iii) Discussing issues regarding cost sharing and patent rights related to the standards and criteria of § 473.30 of these regulations; and

(iv) Discussing any other relevant issue.

(b) After complying with paragraph (a) of this section, the manager shall sign the certification and distribute copies to the applicant, if any, and any interested person who filed a statement of objections—

(1) Immediately in the case of a DOE or agency project; and

(2) After the agreement has been negotiated in the case of a grant, cooperative agreement, or contract.

§ 473.25 Reviewability of certification.

Any certification issued under these rules is—

(a) Subject to disclosure under 5 U.S.C. 552 (1970) and section 17 of the Federal Nonnuclear Energy Research and Development Act of 1974, as amended, 42 U.S.C. 5918 (1970);

(b) Subject neither to judicial review nor to the provisions of 5 U.S.C. 551–559 (1970), except as provided under paragraph (a) of this section; and

(c) Available to the Committee on Science and Technology of the House of Representatives and the Committee on Energy and Natural Resources of the Senate.

§ 473.30 Standards and criteria.

Research and development to be performed under a grant, under a cooperative agreement, under a contract, as a DOE project, or as an agency project under the Act may be certified under these regulations only if the research and development to be conducted—

(a) Supplements the automotive propulsion system research and development efforts of industry or any other private researcher;

(b) Is not duplicative of efforts previously abandoned by private researchers unless there has been an intervening technological advance, promising conceptual innovation, or justified by other special consideration;

(c) Would not be performed during the annual funding period but for the availability of the Federal funding being sought;

(d) Is likely to produce an advanced automobile propulsion system suitable for steps toward technology transfer to
Department of Energy

§ 474.2

mass production in a shorter time period than would otherwise occur;
(e) is not technologically the same as efforts by any person conducted previously or to be conducted during the annual funding period regarding a substantially similar advanced automobile propulsion system; and
(f) is not likely to result in a decrease in the level of private resources expended on advanced automotive research and development by substituting Federal funds without justification.

PART 474—ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT AND DEMONSTRATION PROGRAM; EQUIVALENT PETROLEUM-BASED FUEL ECONOMY CALCULATION

Sec.
474.1 Purpose and scope.
474.2 Definitions.
474.3 Test procedures.
474.4 Equivalent petroleum-based fuel economy calculation.

SOURCE: 46 FR 22753, Apr. 21, 1981, unless otherwise noted.

§ 474.1 Purpose and scope.

This part contains procedures for calculating the equivalent petroleum-based fuel economy value of electric vehicles, as required to be prescribed by the Secretary of Energy under section 503(a)(3) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2003(a)(3)), as added by section 18 of the Chrysler Corporation Loan Guarantee Act of 1979. The equivalent petroleum-based fuel economy value is intended to be used in calculating corporate average fuel economy pursuant to regulations promulgated by the Environmental Protection Agency at 40 CFR Part 600—Fuel Economy of Motor Vehicles.

§ 474.2 Definitions.

For purposes of this part, the term—
Electric vehicle means a vehicle that is powered by an electric motor drawing current from rechargeable storage batteries or other portable energy storage devices. Recharge energy shall be drawn primarily from a source off the vehicle, such as residential electric service.
Electrical efficiency value means the weighted average of the stop-and-go and steady-speed electrical efficiency values, as determined in accordance with §474.4(b).
Equivalent petroleum-based fuel economy value means the electrical efficiency value converted into units of miles per gallon, as determined in accordance with §474.4(c).
Petroleum equivalency factor means a number which represents the parameters listed in section 503(a)(3)(i) through (iv) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2003(a)(3)) for purposes of calculating equivalent petroleum-based fuel economy in accordance with §474.4.
Petroleum-powered accessory means a heater/defroster system or an air conditioner system which uses fuel, as defined in section 501(5) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2001) as its primary energy source.
Production volume means the term defined by the Environmental Protection Agency in its regulations at 40 CFR 600.002-81(32).
Steady-speed electrical efficiency value means the average number of kilowatt-hours of electrical energy required for an electric vehicle to travel 1 mile, as determined in accordance with §474.3(c).
Stop-and-go electrical efficiency value means the average number of kilowatt-hours of electrical energy required for an electric vehicle to travel 1 mile, as determined in accordance with §474.3(b).
§ 474.3
Test procedures.
(a) The conditions and equipment in the Electric Vehicle Test Procedure—SAE J227a of the Society of Automotive Engineers shall be used for conducting the test procedures set forth in this section.
(b) The test procedures prescribed in SAE procedure J227a, Vehicle Energy Economy, using Vehicle Test Cycle C for the driving cycle, shall be used for generation of the stop-and-go electrical efficiency value.
(c) The test procedures prescribed in SAE procedure J227a, Vehicle Energy Economy, using a driving cycle consisting of a maximum cruise speed of 54 mph, as prescribed in the SAE procedure for Range at Steady Speed, shall be used for generation of the steady-speed electrical efficiency value.

§ 474.4 Equivalent petroleum-based fuel economy calculation.
(a) Calculate the equivalent petroleum-based fuel economy of an electric vehicle as follows:
1. Determine the stop-and-go electrical efficiency value, according to §474.3(b).
2. Determine the steady-speed electrical efficiency value, according to §474.3(c).
(b) Calculate the electrical efficiency value by:
1. Multiplying the stop-and-go electrical efficiency value by 0.91;
2. Multiplying the steady-speed electrical efficiency value by 0.09; and
3. Adding the resulting two figures, rounding to the nearest 0.01 kWh/mile.
(c) Calculate the energy equivalent fuel economy value by dividing the electrical efficiency value into 36.66.
(d) For purposes of paragraph (e) of this section, use the appropriate Petroleum Equivalency Factor as follows:
1. If no more than 33 percent of the production volume of the electric vehicle model type is to be equipped with any petroleum-powered accessories, use the first number listed under paragraph (e) of this section for the applicable model year.
2. If more than 33 percent of the production volume of the electric vehicle model type is to be equipped with only one petroleum-powered accessory, use the second number under paragraph (e) of this section for the applicable model year.
3. If more than 33 percent of the production volume of the electric vehicle model type is to be equipped with two petroleum-powered accessories, use the third number under §474.4(e) for the applicable model year.
(e) Calculate the equivalent petroleum-based fuel economy value in miles per gallon by multiplying the energy equivalent fuel economy value by the appropriate petroleum equivalency factor for the model year in which the electric vehicle is manufactured.
1. For model year 1981, the petroleum equivalency factor is:
 (i) 1.9,
 (ii) 1.7, or
 (iii) 1.6.
2. For model year 1982, the petroleum equivalency factor is:
 (i) 2.0,
 (ii) 1.8, or
 (iii) 1.6.
3. For model year 1983, the petroleum equivalency factor is:
 (i) 2.0,
 (ii) 1.8, or
 (iii) 1.6.
4. For model year 1984, the petroleum equivalency factor is:
 (i) 2.1,
 (ii) 2.0, or
 (iii) 1.8.
5. For model year 1985, the petroleum equivalency factor is:
 (i) 2.5,
 (ii) 2.0, or
 (iii) 1.8.
6. For model year 1986, the petroleum equivalency factor is:
 (i) 2.2,
 (ii) 2.0, or
 (iii) 1.8; and
7. For model year 1987, the petroleum equivalency factor is:
PART 490—ALTERNATIVE FUEL TRANSPORTATION PROGRAM

Subpart A—General Provisions

§ 490.1 Purpose and scope.
(b) The provisions of this subpart cover the definitions applicable throughout this part and procedures to obtain an interpretive ruling and to petition for a generally applicable rule to amend this part.

§ 490.2 Definitions.
The following definitions apply to this part—
Acquire means to take into possession or control.
After-Market Converted Vehicle means an Original Equipment Manufacturer vehicle that is reconfigured by a conversion company, which is not under contract to the Original Equipment Manufacturer, to operate on an alternative fuel and whose conversion kit components are under warranty of the conversion company.
Alternative Fuel means methanol, denatured ethanol, and other alcohols; mixtures containing 85 percent or more by volume of methanol, denatured ethanol, and other alcohols with gasoline

Subpart B [Reserved]

Subpart C—Mandatory State Fleet Program

§ 490.200 Purpose and scope.
§ 490.201 Alternative fueled vehicle acquisition mandate schedule.
§ 490.202 Acquisitions satisfying the mandate.
§ 490.204 Process for granting exemptions.
§ 490.205 Reporting requirements.
§ 490.206 Violations.

Subpart D—Alternative Fuel Provider Vehicle Acquisition Mandate

§ 490.300 Purpose and scope.
§ 490.301 Definitions.
§ 490.302 Vehicle acquisition mandate schedule.
§ 490.303 Who must comply.
§ 490.304 Which new light duty motor vehicles are covered.
§ 490.305 Acquisitions satisfying the mandate.
§ 490.306 Vehicle operation requirements.
§ 490.307 Option for electric utilities.
§ 490.308 Process for granting exemptions.
§ 490.309 Annual reporting requirements.
§ 490.310 Violations.

Subpart E [Reserved]

Subpart F—Alternative Fueled Vehicle Credit Program

§ 490.500 Purpose and scope.
§ 490.501 Applicability.
§ 490.502 Creditable actions.
§ 490.503 Credit allocation.
§ 490.504 Use of alternative fueled vehicle credits.

§ 490.505 Credit accounts.
§ 490.506 Alternative fueled vehicle credit transfers.
§ 490.507 Credit activity reporting requirements.

Subpart G—Investigations and Enforcement

§ 490.600 Purpose and scope.
§ 490.601 Powers of the Secretary.
§ 490.602 Special orders.
§ 490.603 Prohibited acts.
§ 490.604 Penalties and fines.
§ 490.605 Statement of enforcement policy.
§ 490.606 Proposed assessments and orders.
§ 490.607 Appeals.

Source: 61 FR 10653, Mar. 14, 1996, unless otherwise noted.
or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials (including neat biodiesel); and electricity (including electricity from solar energy).

Alternative Fueled Vehicle means a dedicated vehicle or a dual fueled vehicle (including a flexible fuel vehicle as defined by this section).

Assistant Secretary means the Assistant Secretary for Energy Efficiency and Renewable Energy or any other DOE official to whom the Assistant Secretary’s duties under this part may be redelegated by the Secretary.

Automobile means a 4-wheeled vehicle propelled by conventional fuel, or by alternative fuel, manufactured primarily for use on public streets, roads, and highways (except a vehicle operated only on a rail line), and rated at

(1) Not more than 6,000 pounds gross vehicle weight; or
(2) More than 6,000, but less than 10,000 pounds gross vehicle weight, if the Secretary of Transportation has decided, by rule, that the vehicle meets the criteria in section 501(1) of the Motor Vehicle Information and Cost Savings Act, as amended, 49 U.S.C. 32901(a)(3).

Capable of Being Centrally Fueled means a vehicle can be refueled at least 75 percent of its time at the location that is owned, operated, or controlled by the fleet or covered person, or is under contract with the fleet or covered person for refueling purposes.

Centrally Fueled means that a vehicle is fueled at least 75 percent of the time at a location that is owned, operated, or controlled by the fleet or covered person, or is under contract with the fleet or covered person for refueling purposes.

Control—

(1) When it is used to determine whether one person controls another or whether two persons are under common control, means any one or a combination of the following:
 (i) A third person or firm has equity ownership of 51 percent or more in each of two firms; or
 (ii) Two or more firms have common corporate officers, in whole or in substantial part, who are responsible for the day-to-day operation of the companies; or
 (iii) One person or firm leases, operates, or supervises 51 percent or more of the equipment and/or facilities of another person or firm; owns 51 percent or more of the equipment and/or facilities of another person or firm; or has equity ownership of 51 percent or more of another person or firm.

(2) When it is used to refer to the management of vehicles, means a person has the authority to decide who can operate a particular vehicle, and the purposes for which the vehicle can be operated.

Covered Person means a person that owns, operates, leases, or otherwise controls—

(1) A fleet, as defined by this section, that contains at least 20 light duty motor vehicles that are centrally fueled or capable of being centrally fueled, and are used primarily within a metropolitan statistical area or a consolidated metropolitan statistical area, as established by the Bureau of the Census, with a 1980 population of 250,000 or more (as set forth in Appendix A to this subpart) or in a Federal Register notice; and
(2) At least 50 light duty motor vehicles within the United States.

Dealer Demonstration Vehicle means any vehicle that is operated by a motor vehicle dealer solely for the purpose of promoting motor vehicle sales, either on the sales lot or through other marketing or sales promotions, or for permitting potential purchasers to drive the vehicle for pre-purchase or pre-lease evaluation.

Dedicated Vehicle means—

(1) An automobile that operates solely on alternative fuel; or
(2) A motor vehicle, other than an automobile, that operates solely on alternative fuel.

DOE means the Department of Energy.

Dual Fueled Vehicle means—

(1) An automobile that meets the criteria for a dual fueled automobile as that term is defined in section 513(h)(1)(C) of the Motor Vehicle Information and Cost Savings Act, 49 U.S.C. 32901(a)(8); or
(2) A motor vehicle, other than an automobile, that is capable of operating on alternative fuel and on gasoline or diesel fuel; or
(3) A flexible fuel vehicle.

Electric-hybrid Vehicle means a vehicle primarily powered by an electric motor that draws current from rechargeable storage batteries, fuel cells or other sources of electric current and also relies on a non-electric source of power.

Electric Motor Vehicle means a motor vehicle primarily powered by an electric motor that draws current from rechargeable storage batteries, fuel cells, photovoltaic arrays, or other sources of electric current and may include an electric-hybrid vehicle.

Emergency Motor Vehicle means any vehicle that is legally authorized by a government authority to exceed the speed limit to transport people and equipment to and from situations in which speed is required to save lives or property, such as a rescue vehicle, fire truck or ambulance.

Fleet means a group of 20 or more light duty motor vehicles, excluding certain categories of vehicles as provided by section 490.3, used primarily in a metropolitan statistical area or consolidated metropolitan statistical area, as established by the Bureau of the Census as of December 31, 1992, with a 1990 Census population of more than 250,000 (listed in Appendix A to this Subpart), that are centrally fueled or capable of being centrally fueled, and are owned, operated, leased, or otherwise controlled—
(1) By a person who owns, operates, leases, or otherwise controls 50 or more light duty motor vehicles within the United States and its possessions and territories;
(2) By any person who controls such person;
(3) By any person controlled by such person; and
(4) By any person under common control with such person.

Flexible Fuel Vehicle means any motor vehicle engineered and designed to be operated on any mixture of two or more different fuels.

Law Enforcement Motor Vehicle means any vehicle which is primarily operated by a civilian or military police officer or sheriff, or by personnel of the Federal Bureau of Investigation, the Drug Enforcement Administration, or other enforcement agencies of the Federal government, or by State highway patrols, municipal law enforcement, or other similar enforcement agencies, and which is used for the purpose of law enforcement activities including, but not limited to, chase, apprehension, and surveillance of people engaged in or potentially engaged in unlawful activities.

Lease means the use and control of a motor vehicle for transportation purposes pursuant to a rental contract or similar arrangement with a term of 120 days or more.

Light Duty Motor Vehicle means a light duty truck or light duty vehicle, as such terms are defined under section 216(7) of the Clean Air Act (42 U.S.C. §7550(7)), having a gross vehicle weight rating of 8,500 pounds or less, before any after-market conversion to alternative fuel operation.

Model Year means the period from September 1 of the previous calendar year through August 31.

Motor Vehicle means a self-propelled vehicle, other than a non-road vehicle, designed for transporting persons or property on a street or highway.

Non-road Vehicle means a vehicle not licensed for on-road use, including such vehicles used principally for industrial, farming or commercial use, for rail transportation, at an airport, or for marine purposes.

Original Equipment Manufacturer means a manufacturer that provides the original design and materials for assembly and manufacture of its product.

Original Equipment Manufacturer Vehicle means a vehicle engineered, designed, produced and warranted by an Original Equipment Manufacturer.

Person means any individual, partnership, corporation, voluntary association, joint stock company, business trust, Governmental entity, or other legal entity in the United States except United States Government entities.

State means any of the 50 States, the District of Columbia, the Commonwealth of Puerto Rico, and any other...
§ 490.3 Excluded vehicles.

When counting light duty motor vehicles to determine under this part whether a person has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following vehicles are excluded—

(a) Motor vehicles held for lease or rental to the general public, including vehicles that are owned or controlled primarily for the purpose of short-term rental or extended-term leasing, without a driver, pursuant to a contract;

(b) Motor vehicles held for sale by motor vehicle dealers, including demonstration motor vehicles;

(c) Motor vehicles used for motor vehicle manufacturer product evaluations or tests, including but not limited to, light duty motor vehicles owned or held by a university research department, independent testing laboratory, or other such evaluation facility, solely for the purpose of evaluating the performance of such vehicle for engineering, research and development or quality control reasons;

(d) Law enforcement vehicles;

(e) Emergency motor vehicles;

(f) Motor vehicles acquired and used for purposes that the Secretary of Defense has certified to DOE must be exempt for national security reasons;

(g) Nonroad vehicles; and

(h) Motor vehicles which, when not in use, are normally parked at the personal residences of the individuals that usually operate them, rather than at a central refueling, maintenance, or business location.

§ 490.4 General information inquiries.

DOE responses to inquiries with regard to the provisions of this part that are not filed in compliance with §490.5 or 490.6 of this part constitute general information and the responses provided shall not be binding on DOE.

§ 490.5 Requests for an interpretive ruling.

(a) Right to file. Any person who is or may be subject to this part shall have the right to file a request for an interpretive ruling on a question with regard to how the regulations apply to particular facts and circumstances.

(b) How to file. A request for an interpretive ruling shall be filed—

(1) With the Assistant Secretary;

(2) In an envelope labeled “Request for Interpretive Ruling under 10 CFR Part 490;” and

(3) By messenger or mail at the Office of Energy Efficiency and Renewable Energy, EE-33, U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C. 20585 or at such other address as DOE may provide by notice in the Federal Register.

(c) Content of request for interpretive ruling. At a minimum, a request under this section shall—

(1) Be in writing;

(2) Be labeled “Request for Interpretive Ruling Under 10 CFR Part 490;” and

(3) Identify the name, address, telephone number, and any designated representative of the person requesting the interpretive ruling;

(4) State the facts and circumstances relevant to the request;

(5) Be accompanied by copies of relevant supporting documents, if any;

(6) Specifically identify the pertinent regulations and the related question on which an interpretive ruling is sought with regard to the relevant facts and circumstances; and

(7) Contain any arguments in support of the terms of an interpretation the requester is seeking.

(d) Public comment. DOE may give public notice of any request for an interpretive ruling and invite public comment.

(e) Opportunity to respond to public comment. DOE may provide an opportunity for any person who requested an interpretive ruling to respond to public comments.

(f) Other sources of information. DOE may—

(1) Conduct an investigation of any statement in a request;

(2) Consider any other source of information in evaluating a request for an interpretive ruling; and

(3) Conduct an investigation of any statement in an interpretive ruling.
(3) Rely on previously issued interpretive rulings dealing with the same or a related issue.

(g) Informal conference. DOE, on its own initiative, may convene an informal conference with the person requesting an interpretive ruling.

(h) Effect of an interpretive ruling. The authority of an interpretive ruling shall be limited to the person requesting such ruling and shall depend on the accuracy and completeness of the facts and circumstances on which the interpretive ruling is based. An interpretive ruling by the Assistant Secretary shall be final for DOE.

(i) Reliance on an interpretive ruling. No person who obtains an interpretive ruling under this section shall be subject to an enforcement action for civil penalties or criminal fines for actions reasonably taken in reliance thereon, but a person may not act in reliance on an interpretive ruling that is administratively rescinded or modified, judicially invalidated, or its prospective effect is overruled by statute or regulation.

(j) Denials of requests for an interpretive ruling. DOE shall deny a request for an interpretive ruling if DOE determines that—

1. There is insufficient information upon which to base an interpretive ruling;
2. The questions posed should be treated in a general notice of proposed rulemaking under 42 U.S.C. 7191 and 5 U.S.C. 553;
3. There is an adequate procedure elsewhere in this part for addressing the question posed such as a petition for exemption; or
4. For other good cause.

(k) Public file. DOE may file a copy of an interpretive ruling in a public file labeled “Interpretive Rulings Under 10 CFR Part 490,” which shall be available during normal business hours for public inspection at the DOE Freedom of Information Reading Room at 1000 Independence Avenue, SW, Washington, DC 20585, or at such other addresses as DOE may announce in a Federal Register notice.

§ 490.6 Petitions for generally applicable rulemaking.

(a) Right to file. Pursuant to 42 U.S.C. 7191 and 5 U.S.C. 553(e), any person may file a petition for generally applicable rulemaking under titles III, IV, and V of the Act with the DOE General Counsel.

(b) How to file. A petition for generally applicable rulemaking under this section shall be filed by mail or messenger in an envelope addressed to the Office of General Counsel, GC-1, U.S. Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585.

(c) Content of rulemaking petitions. A petition under this section must—

1. Be labeled “Petition for Rulemaking Under 10 CFR Part 490”;
2. Describe with particularity the terms of the rule being sought;
3. Identify the provisions of law that direct, authorize, or affect the issuance of the rules being sought; and
4. Explain why DOE should not choose to make policy by precedent through interpretive rulings, petitions for exemption, or other adjudications.

(d) Determination upon rulemaking petitions. After considering the petition and other information deemed to be appropriate, DOE may grant the petition and issue an appropriate rulemaking notice, or deny the petition because the rule being sought—

1. Would be inconsistent with statutory law;
2. Would establish a generally applicable policy in an area that should be left to case-by-case determinations;
3. Would establish a policy inconsistent with the underlying statutory purposes; or
4. For other good cause.

§ 490.7 Relationship to other law.

(a) Nothing in this part shall be construed to require or authorize sale of, or conversion to, light duty alternative fueled motor vehicles in violation of applicable regulations of any Federal, State or local government agency.

(b) Nothing in this part shall be construed to require or authorize the use of a motor fuel in violation of applicable regulations of any Federal, State, or local government agency.
APPENDIX A TO SUBPART A OF PART 490

Metropolitan Statistical Areas/Consolidated Metropolitan Statistical Areas With 1980 Populations of 250,000 or more

Albany-Schenectady-Troy MSA NY
Albuquerque MSA NM
Allentown-Bethlehem-Easton MSA PA
Appleton-Oshkosh-Neenah MSA WI
Atlanta MSA GA
Augusta-Aiken MSA GA-SC
Austin-San Marcos MSA TX
Bakersfield MSA CA
Baton Rouge MSA LA
Beaumont-Port Arthur MSA TX
Binghamton MSA NY
Birmingham MSA AL
Boise City MSA ID
Boston-Worcester-Lawrence CMSA MA-NH-CT
Buffalo-Niagara Falls MSA NY
Canton-Massillon MSA OH
Charleston MSA SC
Charleston MSA WV
Charlotte-Gastonia-Rock Hill MSA NC-SC
Chattanooga MSA TN-GA
Chicago-Gary-Kenosha CMSA IL-IN-WI
Cincinnati-Hamilton CMSA OH-KY-IN
Cleveland-Akron CMSA OH
Colorado Springs MSA CO
Columbus MSA SC
Columbus MSA OH
Columbus MSA GA-AL
Corpus Christi MSA TX
Dallas-Fort Worth CMSA TX
Davenport-Moline-Rock Island MSA IA-IL
Dayton-Springfield MSA OH
Daytona Beach MSA FL
Denver-Boulder-Greeley CMSA CO
Des Moines MSA IA
Detroit-Ann Arbor-Flint CMSA MI
Duluth MSA MN-WI
El Paso MSA TX
Erie MSA PA
Eugene-Springfield MSA OR
Evansville-Henderson MSA IN-KY
Fort Wayne MSA IN
Fresno MSA CA
Grand Rapids-Muskegon-Holland MSA MI
Greensboro-Winston Salem-High Point MSA NC
Greenville-Spartanburg-Anderson MSA SC
Harrisburg-Lebanon-Carlisle MSA PA
Hartford MSA CT
Hickory-Morganton MSA NC
Honolulu MSA HI
Houston-Galveston-Brazoria CMSA TX
Huntington-Ashland MSA WV-KY-OH
Indianapolis MSA IN
Jackson MSA MS
Jacksonville MSA FL
Johnson City-Kingsport-Bristol MSA TN-VA
Johnstown MSA PA
Kalamazoo-Battle Creek MSA MI
Kansas City MSA MO-KS
Knoxville MSA TN
Lakeland-Winter Haven MSA FL
Lancaster MSA PA
Lansing-East Lansing MSA MI
Las Vegas MSA NV-AZ
Lexington MSA KY
Little Rock-N. Little Rock MSA AR
Los Angeles-Riverside-Orange County CMSA CA
Louisville MSA KY-IN
Macon MSA GA
Madison MSA WI
McAllen-Edinburg-Mission MSA TX
Melbourne-Titusville-Palm Bay MSA FL
Memphis MSA TN-AR-MS
Miami-Fort Lauderdale CMSA FL
Milwaukee-Racine CMSA WI
Minneapolis-St. Paul MSA MN-WI
Mobile MSA AL
Modesto MSA CA
Montgomery MSA AL
Nashville MSA TN
New London-Norwich MSA CT-RI
New Orleans MSA LA
New York-N. New Jersey-Long Island CMSA NY-NJ-CT-PA
Norfolk-Virginia Beach-Newport News MSA VA-NC
Oklahoma City MSA OK
Omaha MSA NE-IA
Orlando MSA FL
Pensacola MSA FL
Peria-Pekin MSA IL
Philadelphia-Wilmington-Atlantic City CMSA PA-NJ DE-MD
Phoenix-Mesa MSA AZ
Pittsburgh MSA PA
Portland-Salem CMSA OR-WA
Providence-Fall River-Warwick MSA RI-MA
Raleigh-Durham-Chapel Hill MSA NC
Reading MSA PA
Richmond-Petersburg MSA VA
Roanoke MSA VA
Rockford MSA IL
Sacramento-Yolo CMSA CA
Saginaw Bay MSA MI
St. Louis MSA MO-IL
Salinas MSA CA
Salt Lake City-Ogden MSA UT
San Antonio MSA TX
San Diego MSA CA
San Francisco-Oakland-San Jose CMSA CA
San Juan MSA PR
Santa Barbara-Santa Maria-Lompoc MSA CA
Scranton-Wilkes Barre-Hazleton MSA PA
Seattle-Tacoma-Bremerton CMSA WA
Shreveport-Bossier City MSA LA
Spokane MSA WA
Springfield MSA MA
Stockton-Lodi MSA CA
Syracuse MSA NY
Tampa-St. Petersburg-Clearwater MSA FL
Toledo MSA OH
Tucson MSA AZ
Tulsa MSA OK
Utica-Rome MSA NY
Washington-Baltimore CMSA MD-VA-WV

612
Subpart C—Mandatory State Fleet Program

§ 490.200 Purpose and scope.

This subpart sets forth rules implementing the provisions of Section 507(o) of the Act which requires, subject to some exemptions, that certain percentages of new light duty motor vehicles acquired for State fleets be alternative fueled vehicles.

§ 490.201 Alternative fueled vehicle acquisition mandate schedule.

(a) Except as otherwise provided in this part, of the new light duty motor vehicles acquired annually for State government fleets, including agencies thereof but excluding municipal fleets, the following percentages shall be alternative fueled vehicles for the following model years;

(1) 10 percent for model year 1997;
(2) 15 percent for model year 1998;
(3) 25 percent for model year 1999;
(4) 50 percent for model year 2000; and
(5) 75 percent for model year 2001 and thereafter.

(b) Each State shall calculate its alternative fueled vehicle acquisition requirements for the State government fleets, including agencies thereof, by applying the alternative fueled vehicle acquisition percentages for each model year to the total number of new light duty motor vehicles to be acquired during that model year for those fleets.

(c) If the calculation performed under paragraph (b) of this section produces a number that requires the acquisition of a partial vehicle, an adjustment to the acquisition number will be made by rounding the number of vehicles down the next whole number if the fraction is less than one half and by rounding the number of vehicles up to the next whole number if the fraction is equal to or greater than one half.

(d) A State fleet that first becomes subject to this part after model year 1997 shall acquire alternative fueled vehicles in the next model year at the percentage applicable to that model year according to the schedule in paragraph (a) of this section, unless the State is granted an exemption or reduction of the acquisition percentage pursuant to the procedures and criteria in section 490.204.

§ 490.202 Acquisitions satisfying the mandate.

The following actions within a model year qualify as acquisitions for the purpose of compliance with the requirements of section 490.201 of this part:

(a) The purchase or lease of an Original Equipment Manufacturer light duty vehicle (regardless of the model year of manufacture), capable of operating on alternative fuels that was not previously under control of the State or State agency;

(b) The purchase or lease of an aftermarket converted light duty vehicle (regardless of model year of manufacture), that was not previously under control of the State or State agency;

(c) The conversion of a newly purchased or leased light duty vehicle to operate on alternative fuels within four months after the vehicle is acquired for a State fleet; and

(d) The application of alternative fueled vehicle credits allocated under subpart F of this part.

(a) General Provisions. (1) In lieu of meeting its requirements under section 490.201 exclusively with acquisitions for State fleets, a State may follow a Light Duty Alternative Fueled Vehicle Plan that has been approved by DOE under this section.

(2) Any Light Duty Alternative Fueled Vehicle Plan must provide for voluntary acquisitions or conversions, or combinations thereof, by State, local, and private fleets that equal or exceed the State's alternative fuel vehicle acquisition requirement under section 490.201.

(3) Any acquisitions of light duty alternative fueled vehicles by participants in the State plan may be included for purposes of compliance, irrespective of whether the vehicles are in
§ 490.204 Process for granting exemptions.

(a) To obtain an exemption, in whole or in part, from the vehicle acquisition mandate in section 490.201 of this part, a State shall submit to DOE a written request for exemption, along with supporting documentation which must demonstrate that—

(1) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet are not available from fueling sites that would permit central fueling of fleet vehicles in the area in which the vehicles are to be operated; or

(4) Disapproval of plans. If DOE disapproves or requests a State to submit additional information, the State may revise and resubmit the plan to DOE within a reasonable time.

(f) How a State may modify an approved plan. If a State determines that it cannot successfully implement its plan, it may submit to DOE for approval, at any time, the proposed modifications with adequate justifications.

(g) Where to submit plans. (1) A State shall submit to DOE an original and two copies of the plan and shall be addressed to the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such other address as DOE may announce in a Federal Register notice.

(2) Any requests for modifications shall also be sent to the address in paragraph (g)(1) of this section.

(h) MY 1997 Exemption. (1) On or after September 1, 1996, a State shall be deemed automatically exempt from section 490.201(a)(1) until DOE makes a final determination on a timely application to approve a plan for model year 1997 under this section if the State:

(i) Has submitted the application; or

(ii) Has sent a written notice to the Assistant Secretary, at the address under paragraph (g)(1) of this section, that it will file such an application on or before March 14, 1997.

(2) During the period of an automatic exemption under this paragraph, a State may procure light duty motor vehicles in accordance with its normal procurement policies.
(2) Alternative fueled vehicles that meet the normal requirements and practices of the principal business of the State fleet are not available for purchase or lease commercially on reasonable terms and conditions in the State; or
(3) The application of such requirements would pose an unreasonable financial hardship.
(b) Requests for exemption may be submitted at any time and must be accompanied with supporting documentation.
(c) Exemptions are granted for one model year only, and they may be renewed annually, if supporting documentation is provided.
(d) Exemptions may be granted in whole or in part. When granting an exemption in part, DOE may, depending upon the circumstances, completely relieve a State from complying with a portion of the vehicle acquisition requirements for a model year, or it may require a State to acquire all or some of the exempted vehicles in future model years.
(e) If a State is seeking an exemption under—
 (1) Paragraph (a)(1) of this section, the types of documentation that are to accompany the request must include, but are not limited to, maps of vehicle operation zones and maps of locations providing alternative fuel; or
 (2) Paragraph (a)(2) of this section, the types of documentation that are to accompany the request must include, but are not limited to, alternative fueled vehicle purchase or lease requests, a listing of vehicles that meet the normal practices and requirements of the State fleet, and any other documentation that exhibits good faith efforts to acquire alternative fueled vehicles; or
 (3) Paragraph (a)(3) of this section, it must submit a statement identifying what portion of the alternative fueled vehicle acquisition requirement should be subject to the exemption and describing the specific nature of the financial hardship that precludes compliance.
(f) Requests for exemption shall be addressed to the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such other address as DOE may announce in a Federal Register notice.
(g) The Assistant Secretary shall provide to the State, within 45 days of receipt of a request that complies with this section, a written determination as to whether the State’s request has been granted or denied.
(h) If the Assistant Secretary denies an exemption, in whole or in part, and the State wishes to exhaust administrative remedies, the State must appeal within 30 days of the date of the determination, pursuant to 10 CFR part 1003, subpart C, to the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Ave., SW., Washington, DC 20585. The Assistant Secretary’s determination shall be stayed during the pendency of an appeal under this paragraph.
§ 490.205 Reporting requirements.
(a) Any State subject to the requirements of this subpart must file an annual report for each State fleet on or before the December 31 after the close of the model year, beginning with model year 1997. The State annual report may consist of a single State report or separately prepared State agency reports.
(b) The report shall include the following information:
 (1) Number of new light duty motor vehicles acquired for the fleet by a State during the model year;
 (2) Number of new light duty alternative fueled vehicles that are required to be acquired during the model year;
 (3) Number of new light duty alternative fueled vehicle acquisitions by the State during the model year;
 (4) Number of alternative fueled vehicle credits applied against acquisition requirements;
 (5) For each new light duty alternative fueled vehicle acquisition—
 (i) Vehicle make and model;
 (ii) Model year;
 (iii) Vehicle identification number;
 (iv) Dedicated or dual-fueled (including flexible fuel); and
 (v) Type of alternative fuel the vehicle is capable of operating on; and
 (6) Number of light duty alternative fueled vehicles acquired by municipal
§ 490.206 Violations.

Violations of this subpart are subject to investigation and enforcement under subpart G of this part.

Subpart D—Alternative Fuel Provider Vehicle Acquisition Mandate

§ 490.300 Purpose and Scope.

This subpart implements section 501 of the Act, which requires, subject to some exemptions, that certain annual percentages of new light duty motor vehicles acquired by alternative fuel providers must be alternative fueled vehicles.

§ 490.301 Definitions.

In addition to the definitions found in section 490.2, the following definitions apply to this subpart—

Affiliate means a person that, directly or indirectly, controls, is controlled by, or is under common ownership or control of a person subject to vehicle acquisition requirements in this part.

Alternative Fuels Business means activities undertaken to derive revenue from—

(1) Producing, storing, refining, processing, transporting, distributing, importing, or selling at wholesale or retail any alternative fuel other than electricity; or

(2) Generating, transmitting, importing, or selling at wholesale or retail electricity.

Business Unit means a semi-autonomous major grouping of activities for administrative purposes and organizational structure within a business entity and that is controlled by or under control of a person subject to vehicle acquisition requirements in this part.

Division means a major administrative unit of an enterprise comprising at least several enterprise units or constituting a complete integrated unit for a specific purpose and that is controlled by or under control of a person subject to vehicle acquisition requirements in this part.

Normal Requirements and Practices means the operating business practices and required conditions under which the principal business of a person subject to vehicle acquisition requirements in this part operates.

Principal Business means the sales-related activity that produces the greatest gross revenue.

Substantial Portion means that at least 30 percent of the annual gross revenue of a covered person is derived from the sale of alternative fuels.

Substantially Engaged means that a covered person, or affiliate, division, or other business unit thereof, regularly derives more than a negligible amount of sales-related gross revenue from an alternative fuels business.

§ 490.302 Vehicle acquisition mandate schedule.

(a) Except as provided in section 490.304 of this part, of the light duty motor vehicles newly acquired by a covered person described in section 490.303 of this part, the following percentages shall be alternative fueled vehicles for the following model years:

(1) 30 percent for model year 1997.

(2) 50 percent for model year 1998.

(3) 70 percent for model year 1999.

(4) 90 percent for model year 2000 and thereafter.

(b) Except as provided in section 490.304 of this part, this acquisition schedule applies to all light duty motor vehicles that a covered person newly acquires for use within the United States.
(c) If, when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of new light duty motor vehicles to be acquired by a covered person subject to this subpart, a number results that requires the acquisition of a partial vehicle, an adjustment will be made to the required acquisition number by rounding down to the next whole number if the fraction is less than one half and by rounding up the number of vehicles to the next whole number if the fraction is equal to or greater than one half.

(d) Only acquisitions satisfying the mandate, as defined by section 490.305, count toward compliance with the acquisition schedule in paragraph (a) of this section.

(e) A covered person that is first subject to the acquisition requirements of this part after model year 1997 shall acquire alternative fueled vehicles in the next model year at the percentage applicable to that model year, according to the schedule in paragraph (a) of this section, unless the covered person is granted an exemption or reduction of the acquisition percentage pursuant to the procedures and criteria in section 490.308.

§ 490.303 Who must comply.

(a) Except as provided by paragraph (b) of this section, a covered person must comply with the requirements of this subpart if that person is—

1. A covered person whose principal business is producing, storing, refining, processing, transporting, distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or

2. A covered person whose principal business is generating, transmitting, importing, or selling, at wholesale or retail, electricity; or

3. A covered person—

(i) Who produces, imports, or produces and imports in combination, an average of 50,000 barrels per day or more of petroleum; and

(ii) A substantial portion of whose business is producing alternative fuels.

(b) This subpart does not apply to a covered person or affiliate, division, or other business unit of such person whose principal business is—

1. Transforming alternative fuels into a product that is not an alternative fuel; or

2. Consuming alternative fuels as a feedstock or fuel in the manufacture of a product that is not an alternative fuel.

§ 490.304 Which new light duty motor vehicles are covered.

(a) General rule. Except as provided in paragraph (b) of this section, the vehicle acquisition mandate schedule in section 490.302 of this part applies to all light duty motor vehicles newly acquired for use within the United States by a covered person described in section 490.303 of this part.

(b) Exception. If a covered person has more than one affiliate, division, or other business unit, then section 490.302 of this part only applies to light duty motor vehicles newly acquired by an affiliate, division, or other such business unit which is substantially engaged in the alternative fuels business.

§ 490.305 Acquisitions satisfying the mandate.

The following actions within the model year qualify as acquisitions for the purpose of compliance with the requirements of section 490.302 of this part—

(a) The purchase or lease of an Original Equipment Manufacturer light duty vehicle (regardless of the model year of manufacture), capable of operating on alternative fuels that was not previously under the control of the covered person;

(b) The purchase or lease of an aftermarket converted light duty vehicle (regardless of the model year of manufacture), that was not previously under the control of the covered person; and

(c) The conversion of a newly purchased or leased light duty vehicle to operate on alternative fuels within four months after the vehicle is acquired by a covered person; and

(d) The application of alternative fueled vehicle credits allocated under subpart F of this part.

§ 490.306 Vehicle operation requirements.

The alternative fueled vehicles acquired pursuant to section 490.302 of
§ 490.307 Option for Electric Utilities.

(a) A covered person or its affiliate, division, or business unit, whose principal business is generating, transmitting, importing, or selling, at wholesale or retail, electricity has the option of delaying the vehicle acquisition mandate schedule in section 490.302 until January 1, 1998, if the covered person intends to comply with this regulation by acquiring electric motor vehicles.

(b) If a covered person or its affiliate, division, or business unit, whose principal business is generating, transmitting, importing, or selling at wholesale or retail electricity has notified the Department as required by the Act, of its intent to acquire electric motor vehicles, the following percentages of new light duty motor vehicles acquired shall be alternative fueled vehicles for the following time periods:

1. 30 percent from January 1, 1998 to August 31, 1998.
2. 50 percent for model year 1999.
3. 70 percent for model year 2000.
4. 90 percent for model year 2001 and thereafter.

(c) Any covered person or its affiliate, division, or business unit, that chooses the option provided by this section may apply for an exemption from the vehicle acquisition mandate in accordance with section 490.308 of this regulation.

(d) A covered person or its affiliate, division, or business unit, that chooses to rescind its election of the option provided in this section shall be required, unless otherwise exempt, to acquire alternative fueled vehicles in accordance with the vehicle acquisition schedule in section 490.302.

§ 490.308 Process for granting exemptions.

(a) To obtain an exemption from the vehicle acquisition mandate in this subpart, a covered person, or its affiliate, division, or business unit which is subject to section 490.302 of this part, shall submit a written request for exemption to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or such other address as DOE may publish in the Federal Register, along with the supporting documentation required by this section.

(b) A covered person requesting an exemption must demonstrate that—

1. Alternative fuels that meet the normal requirements and practices of the principal business of the covered person are not available from fueling sites that would permit central fueling of that person’s vehicles in the area in which the vehicles are to be operated; or

2. Alternative fueled vehicles that meet the normal requirements and practices of the principal business of the covered person are not available for purchase or lease commercially on reasonable terms and conditions in any State included in a MSA/CMSA that the vehicles are operated in.

(c) Documentation.

1. Except as provided in paragraph (c) (2) of this section, if a covered person is seeking an exemption under paragraph (b)(1) of this section, the types of documentation that are to accompany the request include, but are not limited to, maps of vehicle operation zones and maps of locations providing alternative fuel.

2. If a covered person seeking an exemption under paragraph (b)(1) of this section operates light duty vehicles outside of the areas listed in Appendix A of subpart A, and central fueling of those vehicles does not meet the normal requirements and practices of that person’s business, then that covered person shall only be required to justify in a written request why central fueling is incompatible with its business.

3. If a covered person is seeking an exemption under paragraph (b)(2) of this section, the types of documentation that are to accompany the request include, but are not limited to, alternative fueled vehicle purchase or lease requests, a listing of vehicles that meet the normal practices and requirements of the covered person and any other documentation that exhibits good faith efforts to acquire alternative fueled vehicles.
(d) Exemptions are granted for one model year only and may be renewed annually, if supporting documentation is provided.

(e) Exemptions may be granted in whole or in part. When granting an exemption in part, DOE may, depending upon the circumstances, completely relieve a covered person from complying with a portion of the vehicle acquisition requirements for a model year, or it may require a covered person to acquire all or some of the exempted vehicles in future model years.

(f) The Assistant Secretary shall provide to the covered person within 45 days after receipt of a request that complies with this section, a written determination as to whether the State's request has been granted or denied.

(g) If a covered person is denied an exemption, that covered person may file an appeal within 30 days of the date of determination, pursuant to 10 CFR part 1003, subpart C, with the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Ave., SW, Washington, DC 20585. The Assistant Secretary's determination shall be stayed during the pendency of an appeal under this paragraph.

§ 490.309 Annual reporting requirements.

(a) If a person is required to comply with the vehicle acquisition schedule in section 490.302 or section 490.307, that person shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or such other address as DOE may publish in the Federal Register, on or before the December 31 after the close of the applicable model year.

(b) This report shall include the following information—

(1) Number of new light duty motor vehicles acquired by the covered person in the United States during the model year;

(2) Number of new light duty alternative fueled vehicles that are required to be acquired during the model year;

(3) Number of new light duty alternative fueled vehicle acquisitions in the United States during the model year;

(4) Number of alternative fueled vehicle credits applied against acquisition requirements;

(5) For each new light duty alternative fueled vehicle acquisition—

(i) Vehicle make and model;

(ii) Model year;

(iii) Vehicle Identification Number;

(iv) Dedicated or dual-fueled (including flexible fuel); and

(v) Type of alternative fuel the vehicle is capable of operating on.

(c) If credits are applied against alternative fueled vehicle acquisition requirements, then a credit activity report, as described in subpart F, must be submitted with the report under this section to DOE.

(d) Records shall be maintained and retained for a period of three years.

§ 490.310 Violations.

Violations of this subpart are subject to investigation and enforcement under subpart G of this part.

Subpart E [Reserved]

Subpart F—Alternative Fueled Vehicle Credit Program

§ 490.500 Purpose and Scope.

This subpart implements the statutory requirements of section 508 of the Act, which provides for the allocation of credits to fleets or covered persons who acquire alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles before the model year when they are first required to do so under this part.

§ 490.501 Applicability.

This subpart applies to all fleets and covered persons who are required to acquire alternative fueled vehicles by this part.

§ 490.502 Creditable actions.

A fleet or covered person becomes entitled to alternative fueled vehicle credits by—

(a) Acquiring alternative fueled vehicles, including those in excluded categories under section 490.3 of this part.
§ 490.503 Credit allocation.

(a) Based on annual credit activity report information, as described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle a fleet or covered person acquires that exceeds the number of alternative fueled vehicles that fleet or covered person is required to acquire in a model year when acquisition requirements apply.

(b) If an alternative fueled vehicle is acquired by a fleet or covered person in a model year before the first model year that fleet or person is required to acquire alternative fueled vehicles by this part, as reported in the annual credit activity report, DOE shall allocate one credit per alternative fueled vehicle for each year the alternative fueled vehicle is acquired before the model year when acquisition requirements apply.

(c) DOE shall allocate credits to fleets and covered persons under paragraph (b) of this section only for alternative fueled vehicles acquired on or after October 24, 1992.

§ 490.504 Use of alternative fueled vehicle credits.

At the request of a fleet or covered person in an annual report under this part, DOE shall treat each credit as the acquisition of an alternative fueled vehicle that the fleet or covered person is required to acquire under this part. Each credit shall count as the acquisition of one alternative fueled vehicle in the model year for which the fleet or covered person requests the credit to be applied.

§ 490.505 Credit accounts.

(a) DOE shall establish a credit account for each fleet or covered person who obtains an alternative fueled vehicle credit.

(b) DOE shall send to each fleet and covered person an annual credit account balance statement after the receipt of its credit activity report under section 490.507.

§ 490.506 Alternative fueled vehicle credit transfers.

(a) Any fleet or covered person that is required to acquire alternative fueled vehicles may transfer an alternative fueled vehicle credit to—

(1) A fleet that is required to acquire alternative fueled vehicles; or

(2) A covered person subject to the requirements of this part, if the transferor provides certification to the covered person that the credit represents a vehicle that operates solely on alternative fuel.

(b) Proof of credit transfer may be on a form provided by DOE, or otherwise in writing, and must include dated signatures of the transferor and transferee. The proof should be received by DOE within 30 days of the transfer date to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585 or such other address as DOE publishes in the FEDERAL REGISTER.

§ 490.507 Credit activity reporting requirements.

(a) A covered person or fleet applying for allocation of alternative fueled vehicle credits must submit a credit activity report by the December 31 after the close of a model year to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000 Independence Ave, SW.,
Department of Energy

Washington, DC 20585 or other such address as DOE may publish in the Federal Register.

(b) This report must include the following information:
 (1) Number of alternative fueled vehicle credits requested for:
 (i) alternative fueled vehicles acquired in excess of required acquisition number; and
 (ii) alternative fueled vehicles acquired in model years before the first model year the fleet or covered person is required to acquire vehicles by this part.
 (2) Purchase of alternative fueled vehicle credits:
 (i) Credit source; and
 (ii) Date of purchase;
 (3) Sale of alternative fueled vehicle credits:
 (i) Credit purchaser; and
 (ii) Date of sale.

Subpart G—Investigations and Enforcement

§ 490.600 Purpose and scope.

This subpart sets forth the rules applicable to investigations under titles III, IV, V, and VI of the Act and to enforcement of section 501, 503(b), 507 or 508 of the Act, or any regulation issued under such sections.

§ 490.601 Powers of the Secretary.

For the purpose of carrying out titles III, IV, V, and VI of the Act, DOE may hold such hearings, take such testimony, sit and act at such times and places, administer such oaths, and require by subpoena the attendance and testimony of such witnesses and the production of such books, papers, correspondence, memoranda, contracts, agreements, or other records as the Secretary of Transportation is authorized to do under section 505(b)(1) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2005(b)(1)).

§ 490.602 Special orders.

(a) DOE may require by general or special orders that any person—

 (1) File, in such form as DOE may prescribe, reports or answers in writing to specific questions relating to any function of DOE under this part; and
 (2) Provide DOE access to (and for the purpose of examination, the right to copy) any documentary evidence of such person which is relevant to any function of DOE under this part.

(b) File under oath any reports and answers provided under this section or as otherwise prescribed by DOE, and file such reports and answers with DOE within such reasonable time and at such place as DOE may prescribe.

§ 490.603 Prohibited acts.

It is unlawful for any person to violate any provision of section 501, 503(b), or 507 of the Act, or any regulations issued under such sections.

§ 490.604 Penalties and Fines.

(a) Civil Penalties. Whoever violates §490.603 of this part shall be subject to a civil penalty of not more than $5,500 for each violation.

(b) Willful violations. Whoever willfully violates section 490.603 of this part shall pay a criminal fine of not more than $10,000 for each violation.

(c) Repeated violations. Any person who knowingly and willfully violates section 490.603 of this part, after having been subjected to a civil penalty for a prior violation of section 490.603 shall pay a criminal fine of not more than $50,000 for each violation.

§ 490.605 Statement of enforcement policy.

DOE may agree not to commence an enforcement proceeding, or may agree to settle an enforcement proceeding, if the person agrees to come into compliance in a manner satisfactory to DOE. DOE normally will not commence an enforcement action against a person subject to the acquisition requirements of this part without giving that person notice of its intent to enforce 90 days before the beginning of an enforcement proceeding.

§ 490.606 Proposed assessments and orders.

DOE may issue a proposed assessment of, and order to pay, a civil penalty in a written statement setting forth supporting findings of violation of the Act or a relevant regulation of
§ 490.607 Appeals.

(a) In order to exhaust administrative remedies, on or before 30 days from the date of issuance of a proposed assessment and order to pay, a person must appeal a proposed assessment and order to the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585.

(b) Proceedings in the Office of Hearings and Appeals shall be subject to subpart F of 10 CFR part 1003 except that—

(1) Appellant shall have the ultimate burden of persuasion;

(2) Appellant shall have right to a trial-type hearing on contested issues of fact only if the hearing officer concludes that cross examination will materially assist in determining facts in addition to evidence available in documentary form; and

(3) The Office of Hearings and Appeals may issue such orders as it may deem appropriate on all other procedural matters.

(c) The determination of the Office of Hearings and Appeals shall be final for DOE.
A list of CFR titles, subtitles, chapters, subchapters and parts and an alphabetical list of agencies publishing in the CFR are included in the CFR Index and Finding Aids volume to the Code of Federal Regulations which is published separately and revised annually.

Material Approved for Incorporation by Reference
Table of CFR Titles and Chapters
Alphabetical List of Agencies Appearing in the CFR
List of CFR Sections Affected
Material Approved for Incorporation by Reference

(Revised as of January 1, 1998)

The Director of the Federal Register has approved under 5 U.S.C. 552(a) and 1 CFR Part 51 the incorporation by reference of the following publications. This list contains only those incorporations by reference effective as of the revision date of this volume. Incorporations by reference found within a regulation are effective upon the effective date of that regulation. For more information on incorporation by reference, see the preliminary pages of this volume.

10 CFR (PARTS 200±499)
DEPARTMENT OF ENERGY

American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
345 E. 47th St., New York, NY 10017

Air-Conditioning and Refrigeration Institute
1815 N. Fort Myer Drive, Arlington, VA 22209
ARI 210–79 Standard for Unitary Air Conditioning Equipment Part 430, Subpart B, Appendix M
ARI 240–77 Standard for Air-Source Unitary Heat Pump Equipment Part 430, Subpart B, Appendix M
ARI 320–76 Standard for Water Source Heat Pumps Part 430, Subpart B, Appendix M
ARI 610–74 Standard for Central System Humidifiers Part 430, Subpart B, Appendix K1

American National Standards Institute
11 West 42nd Street, New York, NY 10036 Telephone: (212) 642–4900
ANSI B38.1–1970 Method of testing for Household Refrigerators, Combination Refrigerator Freezers and Household Freezers. Part 430, Subpart B, Appendix A and B
ANSI B149.1–1972 Dehumidifiers .. Part 430, Subpart B, Appendix L
ANSI C78.1–1991, For Fluorescent Lamps—Rapid-Start Types—Dimensional and Electrical Characteristics. 430.22; 430.2
ANSI C78.2–1991, For Fluorescent Lamps—Preheat-Start Types—Dimensional and Electrical Characteristics. 430.22; 430.2
ANSI C78.3–1991, For Fluorescent Lamps—Instant-Start and Cold Cathode Types—Dimensional and Electrical Characteristics. 430.22; 430.2
ANSI C78.21–1989, Incandescent Lamps - PAR and R Shapes 430.22
10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

10 CFR

ANSI C82.1983, For Reference Ballasts for Fluorescent Lamps 430.22

ANSI Z21.10.1–1975 Gas Water Heaters .. Part 430, Appendix O

ANSI Z9.1–1972 ANSI Performance Requirements for Oil-Powered Central Furnaces.

ANSI Z234.1–1972 Room Air Conditioners ... Part 430, Subpart B, Appendix F

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
345 E. 47th St., New York, NY 10017

American Society for Testing and Materials
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, Telephone (610) 832-9585, FAX (610) 832-9555

Association of Home Appliance Manufacturers
20 N. Wacker Dr., Chicago, IL 60606
AHAM HLD-1, June 1974 Performance Evaluation Procedure for Household Tumble Type Clothes Dryers.

VerDate 27<FEB>98 07:54 Mar 12, 1998 Jkt 179034 PO 00000 Frm 00004 Fmt 8187 Sfmt 8187 Y:\SGML\179034.BCK 179034-4

626
Material Approved for Incorporation by Reference

10 CFR (PARTS 200-499)—Continued

DEPARTMENT OF ENERGY—Continued

Council of American Building Officials
5203 Leesburg Pike, Falls Church, VA 22041
Model Energy Code, 1993, including Errata .. 420.2; 420.06; 420.15

Hydronics Institute
35 Russo Pl., Berkeley Heights, NJ 07922

Illuminating Engineering Society of North America, Publications Department
345 E. 47th Street, New York, NY 10017, (212) 705–7925

IES, LM–16, –84, IES Pratical Guide to Colorimetry of Light Sources

IESNA LM–16–1993m IESNA Practical Guide to Colorimetry of Light Sources

International Commission on Illumination
Bureau Central De La CIE, 4 AV. Du Recteur-Poincare, 75 782 Paris, Cedex 16, France

International Electrotechnical Commission
Available from: American National Standards Institute, 11 West 42nd St., New York, NY 10036
Title 10—Energy

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

Underwriters Laboratories, Inc.
Available from: Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, Telephone (800) 854-7179 or Global Engineering Documents, 7730 Carondelet Ave., Suite 470, Clayton, MO 63105, Telephone (800) 854-7179

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
345 E. 47th St., New York, NY 10017
Standard 93–77 Methods of Testing to Determine the Thermal Performance of Solar Collectors.
ASHRAE 103–1993, Methods of Testing for Annual Fuel Utilization Efficiency of Residential Central Furnaces and Boilers (with Errata of October 24, 1996) except for Sections 3.0, second paragraph of section 7.2.2.2, 7.2.2.5, 9.1.2.2, 9.5.1.1, 9.5.1.2.1, 9.5.1.2.2, 9.5.2.1, 9.7.1, 10.0, 11.2.12, 11.3.12, 11.4.12, 11.5.12, and Appendices B and C.
More information regarding the standards in this reference can be obtained from the following sources:
Environmental Protection Agency, 401 M Street, NW, Washington, DC 20006; (202) 554-1080
National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD 20899, (301) 975-2000
Weatherization Assistance Programs Division, Conservation and Renewable Energy, Mail Stop 5G-023, Forrestal Bldg., 1000 Independence Ave, SW, Washington, DC 20585; (202) 586-2207

Air Conditioning and Refrigeration Institute
1501 Wilson Blvd., Arlington, VA 22209; (703) 524-8800
ARI 470–1997 ... Part 440, Appendix A
ARI 210/240–1989 .. Part 440, Appendix A

American National Standards Institute/American Architectural Manufacturers Association
1540 East Dundee Road, Palatine, IL 60067; (708) 202-1350
ANSI/AAMA 1102.7–89 ... Part 440, Appendix A
ANSI/AAMA 101–88 ... Part 440, Appendix A
ANSI/AAMA 1002.10–83 .. Part 440, Appendix A

American Gas Association
1515 Wilson Blvd., Arlington, VA 22209; (703) 841-8400
Material Approved for Incorporation by Reference

10 CFR (PARTS 200-499)—Continued

DEPARTMENT OF ENERGY—Continued

AGA No. 1–80, Requirements for Heat Reclaimer Devices for Use with Gas-Fired Appliances, June 1, 1980.

American National Standards Institute, Inc.
11 West 42nd Street, New York, NY 10036 Telephone: (212) 642-4900

ANSI Z21.8–1984 ... Part 440, Appendix A
ANSI Z21.66–1988, including Exhibits A & B Part 440, Appendix A
ANSI Z223.1–1988 .. Part 440, Appendix A
ANSI Z223.1–1988, including Appendix H Part 440, Appendix A
ANSI Z223.1–1988, including Part 9 and Appendices G & H Part 440, Appendix A
ANSI Z223.1–1988, including Appendices H, I, J and K Part 440, Appendix A
ANSI/American Home Appliance Manufacturers ANSI/AHAM RAC–1–1982

American National Standards Institute/National Wood Window and Door Association
1400 East Touhy Avenue, Suite 470, Des Plaines, IL 60018; (847) 299–5200

ANSI/NWWDA I.S. 1–87 Exterior door provisions) Part 440, Appendix A
ANSI/NWWDA I.S. 2–87 .. Part 440, Appendix A
ANSI/NWWDA I.S. 2–87 (Section 3) Part 440, Appendix A
ANSI/NWWDA I.S. 3–83 .. Part 440, Appendix A
ANSI/NWWDA I.S. 6–86 .. Part 440, Appendix A

American National Standards Institute/Steel Door Institute
712 Lakewood Center North, 14600 Detroit Avenue, Cleveland, OH 44107; (216) 899–0100

ANSI/SDI 100–1985 .. Part 440, Appendix A

American Society for Testing and Materials
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, Telephone (610) 832-9585, FAX (610) 832-9555

National Standards Association
1200 Quince Orchard Blvd., Gaithersburg, MD 20878; (301) 590-2300. (NSA is a local contact for materials from ASTM)

ASTM C208–72 (1982) .. Part 440, Appendix A
<table>
<thead>
<tr>
<th>ASTM Standard</th>
<th>Citation Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C509-84</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C516-80 (1990)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C517-71 (1979)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C533-85 (1990)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C534-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C547-77</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C549-81 (1986)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C552-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C553-70 (1977)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C570-72 (1989)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C578-87a</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C591-85</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C592-80</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C610-85</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C612-83</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C665-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C669-75 (1989)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C720-89</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C726-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C728-89a</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C739-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C764-88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C834-76 (1986)</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C892-89</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C920-87</td>
<td>Part 440, Appendix A</td>
</tr>
</tbody>
</table>
Material Approved for Incorporation by Reference

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

<table>
<thead>
<tr>
<th>Material/Standard</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C971–82</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C984–83</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM D3678–88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM D4099–89</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM E84–89a</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM E96–90</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM C984–83</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM D3678–88</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM D4099–89</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM E84–89a</td>
<td>Part 440, Appendix A</td>
</tr>
<tr>
<td>ASTM E96–90</td>
<td>Part 440, Appendix A</td>
</tr>
</tbody>
</table>

American Society of Mechanical Engineers
Service Center, 22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007, Telephone: (800) 843-2763
ASME Boiler and Pressure Vessel Code, 1992, Sections II, V, VIII, IX, and X.
ASME CSD–1–1988 Part 440, Appendix A

Federal Specifications, General Services Administration
Specification Section, Room 6654, 7th and D Streets, SW, Washington, DC 20407; (202) 708-5082
FS HH–I–1972/1, August 12, 1981 Part 440, Appendix A
FS HH–I–1972/2, August 12, 1981 and Amendment 1, October 3, 1985. Part 440, Appendix A
FS HH–I–1972/4, August 12, 1981 Part 440, Appendix A
FS HH–I–558C, January 7, 1992 Part 440, Appendix A
FS TT–S–001657, October 8, 1970 Part 440, Appendix A
FS TT–S–00230C, February 2, 1970 and Amendment 2, October 9, 1970. Part 440, Appendix A

National Electrical Manufacturers Association
2101 L Street, NW, Suite 300, Washington, DC 20037; (202) 457-8400
NEMA DC3–1989 Part 440, Appendix A

National Fire Protection Association
1Battery March Park, Quincy, MA 02269–9101; Telephone: (617) 770–3000 FAX: (617) 770–3500
NFPA 70–1993, National Electrical Code Part 440, Appendix A
NFPA 31–1987 Part 440, Appendix A
NFPA 58–1989 Part 440, Appendix A
NFPA 211–1988 Part 440, Appendix A
Title 10—Energy

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

Sheet Metal and Air Conditioning Contractors Association
P.O. Box 221230, Chantilly, VA 22022–1230; (703) 803–2980
SMACNA Energy Recovery Equipment and Systems, Air-to-Air (1978) Part 440, Appendix A

Tubular Exchange Manufacturers Association
25 North Broadway, Tarrytown, NY 10591; (914) 332–0040
Standards of the Tubular Exchanger Manufacturers Association, Seventh Ed., 1988. Part 440, Appendix A

Underwriters Laboratories, Inc.
UL 17, November 28, 1988 ... Part 440, Appendix A
UL 296, February 28, 1989 ... Part 440, Appendix A
UL 507, August 23, 1990 ... Part 440, Appendix A
UL 727, August 27, 1991 ... Part 440, Appendix A
UL 995, November 30, 1990 ... Part 440, Appendix A

American National Standards Institute
11 West 42nd Street, New York, NY 10036 Telephone: (212) 642–4900
ANSI Z91.2–1976 Performance Requirements for Automatic Pressure Oil Burners of the Mechanical Draft Type. 456.814; 456.913
ANSI Z96.1–1978/UL 727 Oil-fired Central Furnaces 456.814
ANSI Z96.2–1974/UL 296 Oil Burners 456.814
ANSI Z96.3–1975/UL 726 Oil-fired Boiler Assemblies 456.814
ANSI/AAMA 1102.7–1977 Voluntary Specifications for Aluminum Storm Doors. 456.813
ANSI/ASTM B 152–79 Standard Specification for Copper Sheet, Strip, Plate, and Rolled Bar. 456.810
Material Approved for Incorporation by Reference

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/NWMA I.S. 5-73</td>
<td>Ponderosa Pine Doors</td>
<td>456.813</td>
</tr>
</tbody>
</table>

American Society for Testing and Materials

300 Barr Harbor Drive, West Conshohocken, PA 19428-2959, Telephone (610) 832-9585, FAX (610) 832-9555

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C 272-53</td>
<td>Test for Water Absorption of Core Materials for Structural Sandwich Constructions</td>
<td>456.907</td>
</tr>
<tr>
<td>ASTM C 355-64</td>
<td>Tests for Water Vapor Transmission of Thick Materials</td>
<td>456.907</td>
</tr>
<tr>
<td>ASTM C 516-75</td>
<td>Standard Specification for Vermiculite Loose Fill</td>
<td>456.806</td>
</tr>
<tr>
<td>ASTM C 570-72</td>
<td>Specification for Oil and Resin Based Caulking Compound for Building Construction</td>
<td>456.812</td>
</tr>
<tr>
<td>ASTM C 578-69</td>
<td>Standard Specification for Preformed, Block-Type Cellular Polystyrene Thermal Insulation</td>
<td>456.808</td>
</tr>
<tr>
<td>ASTM C 755-73</td>
<td>Standard Recommended Practice for Selection for Vapor Barriers for Thermal Insulation</td>
<td>456.903</td>
</tr>
<tr>
<td>ASTM C 790-74</td>
<td>Standard Recommended Practices for Use of Latex Sealing Compounds</td>
<td>456.916</td>
</tr>
<tr>
<td>ASTM C 797-75</td>
<td>Standard Recommended Practices and Terminology for Use of Oil- and Resin-Based Putty and Glazing Compounds</td>
<td>456.916</td>
</tr>
<tr>
<td>ASTM C 804-75</td>
<td>Standard Recommended Practices for Use of Solvent Release Type Sealants</td>
<td>456.916</td>
</tr>
<tr>
<td>ASTM C 834-76</td>
<td>Specification for Latex Sealing Compounds</td>
<td>456.812</td>
</tr>
<tr>
<td>ASTM D 257-78</td>
<td>Test for DC resistance or Conductance of Insulating Materials</td>
<td>456.810</td>
</tr>
<tr>
<td>ASTM E 136-79</td>
<td>Behavior of Materials in a Vertical Tube Furnace at 750° C</td>
<td>456.906; 456.907</td>
</tr>
<tr>
<td>ASTM E 136-79</td>
<td>Behavior of Materials in a Vertical Tube Furnace at 750° C</td>
<td>456.804; 456.805; 456.905; 456.906</td>
</tr>
<tr>
<td>ASTM E 238-73</td>
<td>Standard Test Method for Rate of Air Leakage Through Exterior Windows, Curtain Walls and Doors</td>
<td>456.813</td>
</tr>
<tr>
<td>ASTM E 576-76</td>
<td>Standard Test Method for Dew/Frost Point of Sealed Insulating Glass Units in Vertical Position</td>
<td>456.802; 456.813</td>
</tr>
<tr>
<td>ASTM E 737-80</td>
<td>Standard Practice for the Installation of Storm Windows, Replacement Windows, Multi-Glazing Storm Doors and Replacement Doors</td>
<td>456.911</td>
</tr>
<tr>
<td>ASTM G 1-72 (1979)</td>
<td>Standard Recommended Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens</td>
<td>456.810</td>
</tr>
</tbody>
</table>
Title 10—Energy

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

Building Officials and Code Administrators, International Inc.
17926 S. Halsted St., Homewood, IL 60430
BOCA Research Report No. 72-23 ... 456.813

Commerce Department, National Bureau of Standards
Washington, DC 20234
NBS/PS 26-70 Rigid Polyvinyl-chloride Profile Extrusions 456.813

Environmental Protection Agency
Cincinnati, OH 45268
EPA Report No. 600/2-75-069a Guidelines for Residential Oil Burner
Adjustments. 456.913

Department of Defense
DODSSP Standardization Document Order Desk, 700 Robbins Ave.,
Bldg. 4D, Philadelphia, PA 19111-5098
Federal specifications:
- HH–I–515D (6/78) Insulation, Thermal (loose-fill for Pneumatic or
 Poured Application): Cellulosic or Wood Fiber. 456.803; 456.804;
 456.805
- HH–I–524B (11/72—Interim Amendment, 1/76) Insulation, Board,
 Thermal (Polystyrene). 456.808
- HH–I–530A (1971 and Interim Amendment 3, 5/76) Insulation,
 Board, Thermal (Polyurethane and Polyisocynurate).
- HH–I–558B (1971 and Interim Amendment 3, 5/76) Insulation
 Blocks, Boards, Blankets, Felts, Sleeving, and Pipe Fitting Coverings,
 HH–I–573B (1968 and Interim Amendment, 1976) Insulation Thermal,
 (Flexible Unicellular Sheet and Pipe Covering).
- HH–I–574B (1974 and Interim Amendment 1, 9/76) Insulation,
 Thermal (Perlite). 456.807
- TT–S–00227E (1969 and Amendment 3, 10/70) Sealing Compound,
 Elastomeric Type, Multi-Component (for Caulking, Sealing, and
 Glazing in Buildings and Other Structures).
 ponent Butyl Rubber Base, Solvent Release Type (for Buildings
 and Other Types of Construction).
 Compound, Elastomeric Type, Single-Component, (for Caulking,
 Sealing, and Glazing in Buildings and Other Structures).

Housing and Urban Development Department
Office of Technical and Credit Standards, Room 6156, 451 Seventh
St., SW., Washington, DC 20410
HUD Intermediate MPS Supplement 4930.2–1977 Solar Heating and
Domestic Hot Water Systems. 456.702; 456.703; 456.704
Use of Materials Bulletin No. 39 (Sept. 15, 1964) Labels of Independ-
ent Programs for Certifying Aluminum Windows and Sliding Glass
Doors. 456.813
Use of Material Bulletin No. 59a (July 16, 1974) Labels Identifying
Independent Certification of Wood Windows.

National Fire Protection Administration
1 Batterymarch Park, Quincy, MA 02269-9101; Telephone: (617)
770-3000, FAX (617) 770-3500
of Oil and Burning Equipment. 456.905; 456.906; 456.907; 456.909;
456.913
Material Approved for Incorporation by Reference

10 CFR (PARTS 200-499)—Continued
DEPARTMENT OF ENERGY—Continued

Sandia Laboratory
Environmental Research Division–5333, Albuquerque, NM 87185

Underwriters Laboratories, Inc.
Available from: Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, Telephone (800) 854-7179 or Global Engineering Documents, 7730 Carondelet Ave., Suite 470, Clayton, MO 63105, Telephone (800) 854-7179

Society of Automotive Engineers
400 Commonwealth Dr., Warrendale, PA 15096, Telephone: (412) 776-4841
SAE J227a, as revised Feb. 1976, Electric Vehicle Test Procedure 474.3
SAE J227a, as revised Feb. 1976, Electric Vehicle Test Procedure 475.3; 475.10; 475.11
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Provisions</td>
</tr>
<tr>
<td></td>
<td>I Administrative Committee of the Federal Register (Parts 1—49)</td>
</tr>
<tr>
<td></td>
<td>II Office of the Federal Register (Parts 50—299)</td>
</tr>
<tr>
<td></td>
<td>IV Miscellaneous Agencies (Parts 400—500)</td>
</tr>
<tr>
<td>2</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>3</td>
<td>The President</td>
</tr>
<tr>
<td></td>
<td>I Executive Office of the President (Parts 100—199)</td>
</tr>
<tr>
<td>4</td>
<td>Accounts</td>
</tr>
<tr>
<td></td>
<td>I General Accounting Office (Parts 1—99)</td>
</tr>
<tr>
<td></td>
<td>II Federal Claims Collection Standards (General Accounting Office—Department of Justice) (Parts 100—299)</td>
</tr>
<tr>
<td>5</td>
<td>Administrative Personnel</td>
</tr>
<tr>
<td></td>
<td>I Office of Personnel Management (Parts 1—1199)</td>
</tr>
<tr>
<td></td>
<td>II Merit Systems Protection Board (Parts 1200—1299)</td>
</tr>
<tr>
<td></td>
<td>III Office of Management and Budget (Parts 1300—1399)</td>
</tr>
<tr>
<td></td>
<td>IV Advisory Committee on Federal Pay (Parts 1400—1499)</td>
</tr>
<tr>
<td></td>
<td>V The International Organizations Employees Loyalty Board (Parts 1500—1599)</td>
</tr>
<tr>
<td></td>
<td>VI Federal Retirement Thrift Investment Board (Parts 1600—1699)</td>
</tr>
<tr>
<td></td>
<td>VII Advisory Commission on Intergovernmental Relations (Parts 1700—1799)</td>
</tr>
<tr>
<td></td>
<td>VIII Office of Special Counsel (Parts 1800—1899)</td>
</tr>
<tr>
<td></td>
<td>IX Appalachian Regional Commission (Parts 1900—1999)</td>
</tr>
<tr>
<td></td>
<td>XI Armed Forces Retirement Home (Part 2100)</td>
</tr>
<tr>
<td></td>
<td>XIV Federal Labor Relations Authority, General Counsel of the Federal Labor Relations Authority and Federal Service Impasses Panel (Parts 2400—2499)</td>
</tr>
<tr>
<td></td>
<td>XV Office of Administration, Executive Office of the President (Parts 2500—2599)</td>
</tr>
<tr>
<td></td>
<td>XVI Office of Government Ethics (Parts 2600—2699)</td>
</tr>
<tr>
<td></td>
<td>XXI Department of the Treasury (Parts 3100—3199)</td>
</tr>
<tr>
<td></td>
<td>XXII Federal Deposit Insurance Corporation (Part 3201)</td>
</tr>
<tr>
<td></td>
<td>XXIII Department of Energy (Part 3301)</td>
</tr>
</tbody>
</table>
Title 5—Administrative Personnel—Continued

Chap.
XXIV Federal Energy Regulatory Commission (Part 3401)
XXV Department of the Interior (Part 3501)
XXVI Department of Defense (Part 3601)
XXVIII Department of Justice (Part 3801)
XXIX Federal Communications Commission (Parts 3900—3999)
XXX Farm Credit System Insurance Corporation (Parts 4000—4099)
XXXI Farm Credit Administration (Parts 4100—4199)
XXXIII Overseas Private Investment Corporation (Part 4301)
XXXV Office of Personnel Management (Part 4501)
XL Interstate Commerce Commission (Part 5001)
XLI Commodity Futures Trading Commission (Part 5101)
XLII Department of Labor (Part 5201)
XLIII National Science Foundation (Part 5301)
XLV Department of Health and Human Services (Part 5501)
XLVI Postal Rate Commission (Part 5601)
XLVII Federal Trade Commission (Part 5701)
XLVIII Nuclear Regulatory Commission (Part 5801)
L Department of Transportation (Part 6001)
LI Export-Import Bank of the United States (Part 6201)
LII Department of Education (Parts 6300—6399)
LIV Environmental Protection Agency (Part 6401)
LVII General Services Administration (Part 6701)
LVIII Board of Governors of the Federal Reserve System (Part 6801)
LIX National Aeronautics and Space Administration (Part 6901)
LX United States Postal Service (Part 7001)
LXI National Labor Relations Board (Part 7101)
LXII Equal Employment Opportunity Commission (Part 7201)
LXIII Inter-American Foundation (Part 7301)
LXV Department of Housing and Urban Development (Part 7501)
LXVI National Archives and Records Administration (Part 7601)
LXIX Tennessee Valley Authority (Part 7901)
LXX Consumer Product Safety Commission (Part 8101)
LXXIV Federal Mine Safety and Health Review Commission (Part 8401)
LXXVI Federal Retirement Thrift Investment Board (Part 8601)
LXXVII Office of Management and Budget (Part 8701)

Title 6—[Reserved]

Title 7—Agriculture

Subtitle A—Office of the Secretary of Agriculture (Parts 0—26)
Subtitle B—Regulations of the Department of Agriculture
I Agricultural Marketing Service (Standards, Inspections, Marketing Practices), Department of Agriculture (Parts 27—209)
II Food and Consumer Service, Department of Agriculture (Parts 210—299)
Title 7—Agriculture—Continued

III Animal and Plant Health Inspection Service, Department of Agriculture (Parts 300–399)
IV Federal Crop Insurance Corporation, Department of Agriculture (Parts 400–499)
V Agricultural Research Service, Department of Agriculture (Parts 500–599)
VI Natural Resources Conservation Service, Department of Agriculture (Parts 600–699)
VII Farm Service Agency, Department of Agriculture (Parts 700–799)
VIII Grain Inspection, Packers and Stockyards Administration (Federal Grain Inspection Service), Department of Agriculture (Parts 800–899)
IX Agricultural Marketing Service (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), Department of Agriculture (Parts 900–999)
X Agricultural Marketing Service (Marketing Agreements and Orders; Milk), Department of Agriculture (Parts 1000–1199)
XI Agricultural Marketing Service (Marketing Agreements and Orders; Miscellaneous Commodities), Department of Agriculture (Parts 1200–1299)
XII Northeast Dairy Compact Commission (Parts 1300–1399)
XIII Commodity Credit Corporation, Department of Agriculture (Parts 1400–1499)
XIV Foreign Agricultural Service, Department of Agriculture (Parts 1500–1599)
XV Rural Telephone Bank, Department of Agriculture (Parts 1600–1699)
XVI Rural Utilities Service, Department of Agriculture (Parts 1700–1799)
XVII Rural Housing Service, Rural Business-Cooperative Service, Rural Utilities Service, and Farm Service Agency, Department of Agriculture (Parts 1800–2099)
XVIII Office of Inspector General, Department of Agriculture (Parts 2100–2699)
XIX Office of Information Resources Management, Department of Agriculture (Parts 2700–2799)
XX Office of Operations, Department of Agriculture (Parts 2800–2999)
XXI Office of Energy, Department of Agriculture (Parts 2900–2999)
XXII Office of the Chief Financial Officer, Department of Agriculture (Parts 3000–3099)
XXIII Office of Environmental Quality, Department of Agriculture (Parts 3100–3199)
XXIV [Reserved]
XXV Office of Transportation, Department of Agriculture (Parts 3300–3399)
XXVI Cooperative State Research, Education, and Extension Service, Department of Agriculture (Parts 3400–3499)
XXVII Rural Housing Service, Department of Agriculture (Parts 3500–3599)
Title 7—Agriculture—Continued

XXXVI National Agricultural Statistics Service, Department of Agriculture (Parts 3600—3699)

XXXVII Economic Research Service, Department of Agriculture (Parts 3700—3799)

XXXVIII World Agricultural Outlook Board, Department of Agriculture (Parts 3800—3899)

XLI [Reserved]

XLII Rural Business-Cooperative Service and Rural Utilities Service, Department of Agriculture (Parts 4200—4299)

Title 8—Aliens and Nationality

I Immigration and Naturalization Service, Department of Justice (Parts 1—499)

Title 9—Animals and Animal Products

I Animal and Plant Health Inspection Service, Department of Agriculture (Parts 1—199)

II Grain Inspection, Packers and Stockyards Administration (Packers and Stockyards Programs), Department of Agriculture (Parts 200—299)

III Food Safety and Inspection Service, Meat and Poultry Inspection, Department of Agriculture (Parts 300—599)

Title 10—Energy

I Nuclear Regulatory Commission (Parts 0—199)

II Department of Energy (Parts 200—699)

III Department of Energy (Parts 700—999)

X Department of Energy (General Provisions) (Parts 1000—1099)

XI United States Enrichment Corporation (Parts 1100—1199)

XV Office of the Federal Inspector for the Alaska Natural Gas Transportation System (Parts 1500—1599)

XVII Defense Nuclear Facilities Safety Board (Parts 1700—1799)

Title 11—Federal Elections

I Federal Election Commission (Parts 1—9099)

Title 12—Banks and Banking

I Comptroller of the Currency, Department of the Treasury (Parts 1—199)

II Federal Reserve System (Parts 200—299)

III Federal Deposit Insurance Corporation (Parts 300—399)

IV Export-Import Bank of the United States (Parts 400—499)

V Office of Thrift Supervision, Department of the Treasury (Parts 500—599)

VI Farm Credit Administration (Parts 600—699)

VII National Credit Union Administration (Parts 700—799)
Title 12—Banks and Banking—Continued

Chap.

VIII Federal Financing Bank (Parts 800—899)
IX Federal Housing Finance Board (Parts 900—999)
XI Federal Financial Institutions Examination Council (Parts 1100—1199)
XIV Farm Credit System Insurance Corporation (Parts 1400—1499)
XV Thrift Depositor Protection Oversight Board (Parts 1500—1599)
XVII Office of Federal Housing Enterprise Oversight, Department of Housing and Urban Development (Parts 1700—1799)
XVIII Community Development Financial Institutions Fund, Department of the Treasury (Parts 1800—1899)

Title 13—Business Credit and Assistance

I Small Business Administration (Parts 1—199)
III Economic Development Administration, Department of Commerce (Parts 300—399)

Title 14—Aeronautics and Space

I Federal Aviation Administration, Department of Transportation (Parts 1—199)
II Office of the Secretary, Department of Transportation (Aviation Proceedings) (Parts 200—299)
III Commercial Space Transportation, Federal Aviation Administration, Department of Transportation (Parts 400—499)
V National Aeronautics and Space Administration (Parts 1200—1299)

Title 15—Commerce and Foreign Trade

SUBTITLE A—Office of the Secretary of Commerce (Parts 0—29)
SUBTITLE B—Regulations Relating to Commerce and Foreign Trade
I Bureau of the Census, Department of Commerce (Parts 30—199)
II National Institute of Standards and Technology, Department of Commerce (Parts 200—299)
III International Trade Administration, Department of Commerce (Parts 300—399)
IV Foreign-Trade Zones Board, Department of Commerce (Parts 400—499)
VII Bureau of Export Administration, Department of Commerce (Parts 700—799)
VIII Bureau of Economic Analysis, Department of Commerce (Parts 800—899)
IX National Oceanic and Atmospheric Administration, Department of Commerce (Parts 900—999)
XI Technology Administration, Department of Commerce (Parts 1100—1199)
XIII East-West Foreign Trade Board (Parts 1300—1399)
XIV Minority Business Development Agency (Parts 1400—1499)
Title 15—Commerce and Foreign Trade—Continued

Chap.

Subtitle C—Regulations Relating to Foreign Trade Agreements
XX Office of the United States Trade Representative (Parts 2000–2099)

Subtitle D—Regulations Relating to Telecommunications and Information
XXIII National Telecommunications and Information Administration, Department of Commerce (Parts 2300–2399)

Title 16—Commercial Practices

I Federal Trade Commission (Parts 0–999)
II Consumer Product Safety Commission (Parts 1000–1799)

Title 17—Commodity and Securities Exchanges

I Commodity Futures Trading Commission (Parts 1–199)
II Securities and Exchange Commission (Parts 200–399)
IV Department of the Treasury (Parts 400–499)

Title 18—Conservation of Power and Water Resources

I Federal Energy Regulatory Commission, Department of Energy (Parts 1–399)
III Delaware River Basin Commission (Parts 400–499)
VI Water Resources Council (Parts 700–799)
VIII Susquehanna River Basin Commission (Parts 800–899)
XIII Tennessee Valley Authority (Parts 1300–1399)

Title 19—Customs Duties

I United States Customs Service, Department of the Treasury (Parts 1–199)
II United States International Trade Commission (Parts 200–299)
III International Trade Administration, Department of Commerce (Parts 300–399)

Title 20—Employees' Benefits

I Office of Workers' Compensation Programs, Department of Labor (Parts 1–199)
II Railroad Retirement Board (Parts 200–399)
III Social Security Administration (Parts 400–499)
IV Employees' Compensation Appeals Board, Department of Labor (Parts 500–599)
V Employment and Training Administration, Department of Labor (Parts 600–699)
VI Employment Standards Administration, Department of Labor (Parts 700–799)
VII Benefits Review Board, Department of Labor (Parts 800–899)
VIII Joint Board for the Enrollment of Actuaries (Parts 900–999)
Title 20—Employees' Benefits—Continued

Chap. IX Office of the Assistant Secretary for Veterans' Employment and Training, Department of Labor (Parts 1000—1099)

Title 21—Food and Drugs

I Food and Drug Administration, Department of Health and Human Services (Parts 1—1299)

II Drug Enforcement Administration, Department of Justice (Parts 1300—1399)

III Office of National Drug Control Policy (Parts 1400—1499)

Title 22—Foreign Relations

I Department of State (Parts 1—199)

II Agency for International Development, International Development Cooperation Agency (Parts 200—299)

III Peace Corps (Parts 300—399)

IV International Joint Commission, United States and Canada (Parts 400—499)

V United States Information Agency (Parts 500—599)

VI United States Arms Control and Disarmament Agency (Parts 600—699)

VII Overseas Private Investment Corporation, International Development Cooperation Agency (Parts 700—799)

IX Foreign Service Grievance Board Regulations (Parts 900—999)

X Inter-American Foundation (Parts 1000—1099)

XI International Boundary and Water Commission, United States and Mexico, United States Section (Parts 1100—1199)

XII United States International Development Cooperation Agency (Parts 1200—1299)

XIII Board for International Broadcasting (Parts 1300—1399)

XIV Foreign Service Labor Relations Board; Federal Labor Relations Authority; General Counsel of the Federal Labor Relations Authority; and the Foreign Service Impasse Disputes Panel (Parts 1400—1499)

XV African Development Foundation (Parts 1500—1599)

XVI Japan-United States Friendship Commission (Parts 1600—1699)

XVII United States Institute of Peace (Parts 1700—1799)

Title 23—Highways

I Federal Highway Administration, Department of Transportation (Parts 1—999)

II National Highway Traffic Safety Administration and Federal Highway Administration, Department of Transportation (Parts 1200—1299)

III National Highway Traffic Safety Administration, Department of Transportation (Parts 1300—1399)
Title 25—Indians—Continued

Chap.
VII Office of the Special Trustee for American Indians, Department of the Interior (Part 1200)

Title 26—Internal Revenue

I Internal Revenue Service, Department of the Treasury (Parts 1—799)

Title 27—Alcohol, Tobacco Products and Firearms

I Bureau of Alcohol, Tobacco and Firearms, Department of the Treasury (Parts 1—299)

Title 28—Judicial Administration

I Department of Justice (Parts 0—199)
III Federal Prison Industries, Inc., Department of Justice (Parts 300—399)
V Bureau of Prisons, Department of Justice (Parts 500—599)
VI Offices of Independent Counsel, Department of Justice (Parts 600—699)
VII Office of Independent Counsel (Parts 700—799)

Title 29—Labor

SUBTITLE A—Office of the Secretary of Labor (Parts 0—99)
SUBTITLE B—Regulations Relating to Labor
I National Labor Relations Board (Parts 100—199)
II Office of Labor-Management Standards, Department of Labor (Parts 200—299)
III National Railroad Adjustment Board (Parts 300—399)
IV Office of Labor-Management Standards, Department of Labor (Parts 400—499)
V Wage and Hour Division, Department of Labor (Parts 500—899)
IX Construction Industry Collective Bargaining Commission (Parts 900—999)
X National Mediation Board (Parts 1200—1299)
XII Federal Mediation and Conciliation Service (Parts 1400—1499)
XIV Equal Employment Opportunity Commission (Parts 1600—1699)
XVII Occupational Safety and Health Administration, Department of Labor (Parts 1900—1999)
XX Occupational Safety and Health Review Commission (Parts 2200—2499)
XXV Pension and Welfare Benefits Administration, Department of Labor (Parts 2500—2599)
XXVII Federal Mine Safety and Health Review Commission (Parts 2700—2799)
XL Pension Benefit Guaranty Corporation (Parts 4000—4999)
Title 30—Mineral Resources

Chap. I Mine Safety and Health Administration, Department of Labor (Parts 1—199)
II Minerals Management Service, Department of the Interior (Parts 200—299)
III Board of Surface Mining and Reclamation Appeals, Department of the Interior (Parts 300—399)
IV Geological Survey, Department of the Interior (Parts 400—499)
VI Bureau of Mines, Department of the Interior (Parts 600—699)
VII Office of Surface Mining Reclamation and Enforcement, Department of the Interior (Parts 700—999)

Title 31—Money and Finance: Treasury

Subtitle A—Office of the Secretary of the Treasury (Parts 0—50)
Subtitle B—Regulations Relating to Money and Finance
I Monetary Offices, Department of the Treasury (Parts 51—199)
II Fiscal Service, Department of the Treasury (Parts 200—399)
IV Secret Service, Department of the Treasury (Parts 400—499)
V Office of Foreign Assets Control, Department of the Treasury (Parts 500—599)
VI Bureau of Engraving and Printing, Department of the Treasury (Parts 600—699)
VII Federal Law Enforcement Training Center, Department of the Treasury (Parts 700—799)
VIII Office of International Investment, Department of the Treasury (Parts 800—899)

Title 32—National Defense

Subtitle A—Department of Defense
I Office of the Secretary of Defense (Parts 1—399)
V Department of the Army (Parts 400—699)
VI Department of the Navy (Parts 700—799)
VII Department of the Air Force (Parts 800—1099)
Subtitle B—Other Regulations Relating to National Defense
XII Defense Logistics Agency (Parts 1200—1299)
XVI Selective Service System (Parts 1600—1699)
XIX Central Intelligence Agency (Parts 1900—1999)
XX Information Security Oversight Office, National Archives and Records Administration (Parts 2000—2099)
XXI National Security Council (Parts 2100—2199)
XXIV Office of Science and Technology Policy (Parts 2400—2499)
XXVII Office for Micronesian Status Negotiations (Parts 2700—2799)
XXVIII Office of the Vice President of the United States (Parts 2800—2899)
XXIX Presidential Commission on the Assignment of Women in the Armed Forces (Part 2900)
Title 33—Navigation and Navigable Waters

Chap.
I Coast Guard, Department of Transportation (Parts 1—199)
II Corps of Engineers, Department of the Army (Parts 200—399)
IV Saint Lawrence Seaway Development Corporation, Department of Transportation (Parts 400—499)

Title 34—Education

SUBTITLE A—Office of the Secretary, Department of Education (Parts 1—99)

SUBTITLE B—Regulations of the Offices of the Department of Education
I Office for Civil Rights, Department of Education (Parts 100—199)
II Office of Elementary and Secondary Education, Department of Education (Parts 200—299)
III Office of Special Education and Rehabilitative Services, Department of Education (Parts 300—399)
IV Office of Vocational and Adult Education, Department of Education (Parts 400—499)
V Office of Bilingual Education and Minority Languages Affairs, Department of Education (Parts 500—599)
VI Office of Postsecondary Education, Department of Education (Parts 600—699)
VII Office of Educational Research and Improvement, Department of Education (Parts 700—799)
XI National Institute for Literacy (Parts 1100-1199)

SUBTITLE C—Regulations Relating to Education
XII National Council on Disability (Parts 1200—1299)

Title 35—Panama Canal

I Panama Canal Regulations (Parts 1—299)

Title 36—Parks, Forests, and Public Property

I National Park Service, Department of the Interior (Parts 1—199)
II Forest Service, Department of Agriculture (Parts 200—299)
III Corps of Engineers, Department of the Army (Parts 300—399)
IV American Battle Monuments Commission (Parts 400—499)
V Smithsonian Institution (Parts 500—599)
VII Library of Congress (Parts 700—799)
VIII Advisory Council on Historic Preservation (Parts 800—899)
IX Pennsylvania Avenue Development Corporation (Parts 900—999)
XI Architectural and Transportation Barriers Compliance Board (Parts 1100—1199)
XII National Archives and Records Administration (Parts 1200—1299)
XIV Assassination Records Review Board (Parts 1400-1499)
Title 37—Patents, Trademarks, and Copyrights

I Patent and Trademark Office, Department of Commerce (Parts 1—199)
II Copyright Office, Library of Congress (Parts 200—299)
IV Assistant Secretary for Technology Policy, Department of Commerce (Parts 400—499)
V Under Secretary for Technology, Department of Commerce (Parts 500—599)

Title 38—Pensions, Bonuses, and Veterans' Relief

I Department of Veterans Affairs (Parts 0—99)

Title 39—Postal Service

I United States Postal Service (Parts 1—999)
III Postal Rate Commission (Parts 3000—3099)

Title 40—Protection of Environment

I Environmental Protection Agency (Parts 1—799)
V Council on Environmental Quality (Parts 1500—1599)

Title 41—Public Contracts and Property Management

SUBTITLE B—Other Provisions Relating to Public Contracts
50 Public Contracts, Department of Labor (Parts 50±1—50±999)
51 Committee for Purchase From People Who Are Blind or Severely Disabled (Parts 51±1—51±99)
60 Office of Federal Contract Compliance Programs, Equal Employment Opportunity, Department of Labor (Parts 60±1—60±999)
61 Office of the Assistant Secretary for Veterans Employment and Training, Department of Labor (Parts 61±1—61±999)

SUBTITLE C—Federal Property Management Regulations System
101 Federal Property Management Regulations (Parts 101±1—101±999)
105 General Services Administration (Parts 105±1—105±999)
109 Department of Energy Property Management Regulations (Parts 109±1—109±999)
114 Department of the Interior (Parts 114±1—114±999)
115 Environmental Protection Agency (Parts 115±1—115±999)
128 Department of Justice (Parts 128±1—128±999)

SUBTITLE D—Other Provisions Relating to Property Management [Reserved]

SUBTITLE E—Federal Information Resources Management Regulations System
201 Federal Information Resources Management Regulation (Parts 201±1—201±999) [Reserved]

SUBTITLE F—Federal Travel Regulation System
301 Travel Allowances (Parts 301±1—301±999)
302 Relocation Allowances (Parts 302±1—302±999)
Title 41—Public Contracts and Property Management—Continued

303 Payment of Expenses Connected with the Death of Certain Employees (Parts 303-1—303-2)
304 Payment from a Non-Federal Source for Travel Expenses (Parts 304-1—304-99)

Title 42—Public Health

I Public Health Service, Department of Health and Human Services (Parts 1—199)
IV Health Care Financing Administration, Department of Health and Human Services (Parts 400—499)
V Office of Inspector General—Health Care, Department of Health and Human Services (Parts 1000—1999)

Title 43—Public Lands: Interior

SUBTITLE A—Office of the Secretary of the Interior (Parts 1—199)
SUBTITLE B—Regulations Relating to Public Lands
I Bureau of Reclamation, Department of the Interior (Parts 200—499)
II Bureau of Land Management, Department of the Interior (Parts 1000—9999)
III Utah Reclamation Mitigation and Conservation Commission (Parts 10000—10005)

Title 44—Emergency Management and Assistance

I Federal Emergency Management Agency (Parts 0—399)
IV Department of Commerce and Department of Transportation (Parts 400—499)

Title 45—Public Welfare

SUBTITLE A—Department of Health and Human Services (Parts 1—199)
SUBTITLE B—Regulations Relating to Public Welfare
II Office of Family Assistance (Assistance Programs), Administration for Children and Families, Department of Health and Human Services (Parts 200—299)
III Office of Child Support Enforcement (Child Support Enforcement Program), Administration for Children and Families, Department of Health and Human Services (Parts 300—399)
IV Office of Refugee Resettlement, Administration for Children and Families Department of Health and Human Services (Parts 400—499)
V Foreign Claims Settlement Commission of the United States, Department of Justice (Parts 500—599)
VI National Science Foundation (Parts 600—699)
VII Commission on Civil Rights (Parts 700—799)
VIII Office of Personnel Management (Parts 800—899)
Title 45—Public Welfare—Continued

X Office of Community Services, Administration for Children and Families, Department of Health and Human Services (Parts 1000—1099)

XI National Foundation on the Arts and the Humanities (Parts 1100—1199)

XII ACTION (Parts 1200—1299)

XIII Office of Human Development Services, Department of Health and Human Services (Parts 1300—1399)

XVI Legal Services Corporation (Parts 1600—1699)

XVII National Commission on Libraries and Information Science (Parts 1700—1799)

XVIII Harry S. Truman Scholarship Foundation (Parts 1800—1899)

XXI Commission on Fine Arts (Parts 2100—2199)

XXII Christopher Columbus Quincentenary Jubilee Commission (Parts 2200—2299)

XXIII Arctic Research Commission (Part 2301)

XXIV James Madison Memorial Fellowship Foundation (Parts 2400—2499)

XXV Corporation for National and Community Service (Parts 2500—2599)

Title 46—Shipping

I Coast Guard, Department of Transportation (Parts 1—199)

II Maritime Administration, Department of Transportation (Parts 200—399)

IV Federal Maritime Commission (Parts 500—599)

Title 47—Telecommunication

I Federal Communications Commission (Parts 0—199)

II Office of Science and Technology Policy and National Security Council (Parts 200—299)

III National Telecommunications and Information Administration, Department of Commerce (Parts 300—399)

Title 48—Federal Acquisition Regulations System

1 Federal Acquisition Regulation (Parts 1—99)

2 Department of Defense (Parts 200—299)

3 Department of Health and Human Services (Parts 300—399)

4 Department of Agriculture (Parts 400—499)

5 General Services Administration (Parts 500—599)

6 Department of State (Parts 600—699)

7 United States Agency for International Development (Parts 700—799)

8 Department of Veterans Affairs (Parts 800—899)

9 Department of Energy (Parts 900—999)

10 Department of the Treasury (Parts 1000—1099)
Title 48—Federal Acquisition Regulations System—Continued

Chap. 12 Department of Transportation (Parts 1200—1299)
13 Department of Commerce (Parts 1300—1399)
14 Department of the Interior (Parts 1400—1499)
15 Environmental Protection Agency (Parts 1500—1599)
16 Office of Personnel Management Federal Employees Health Benefits Acquisition Regulation (Parts 1600—1699)
17 Office of Personnel Management (Parts 1700—1799)
18 National Aeronautics and Space Administration (Parts 1800—1899)
19 United States Information Agency (Parts 1900—1999)
20 Nuclear Regulatory Commission (Parts 2000—2099)
21 Office of Personnel Management, Federal Employees Group Life Insurance Federal Acquisition Regulation (Parts 2100—2199)
22 Social Security Administration (Parts 2200—2299)
23 Department of Housing and Urban Development (Parts 2300—2399)
24 National Science Foundation (Parts 2400—2499)
25 National Aeronautics and Space Administration (Parts 2400—2499)
26 Nuclear Regulatory Commission (Parts 2500—2599)
27 Department of Justice (Parts 2700—2799)
28 Department of Labor (Parts 2800—2899)
29 Department of the Treasury (Parts 2900—2999)
30 Department of Education Acquisition Regulation (Parts 3000—3099)
31 Department of Education (Parts 3100—3199)
32 Department of Energy (Parts 3200—3299)
33 Federal Emergency Management Agency (Parts 3300—3399)
34 Department of the Army Acquisition Regulations (Parts 3400—3499)
35 Department of the Navy Acquisition Regulations (Parts 3500—3599)
36 Department of the Air Force Federal Acquisition Regulation Supplement (Parts 3600—3699)
37 Defense Logistics Agency, Department of Defense (Part 3700)
38 African Development Foundation (Parts 3800—3899)
39 General Services Administration Board of Contract Appeals (Parts 3900—3999)
40 Department of Transportation Board of Contract Appeals (Parts 4000—4099)
41 Cost Accounting Standards Board, Office of Federal Procurement Policy, Office of Management and Budget (Parts 4100—4199)

Title 49—Transportation

Subtitle A—Office of the Secretary of Transportation (Parts 1—99)
Subtitle B—Other Regulations Relating to Transportation
I Research and Special Programs Administration, Department of Transportation (Parts 100—199)
II Federal Railroad Administration, Department of Transportation (Parts 200—299)
Title 49—Transportation—Continued

III Federal Highway Administration, Department of Transportation (Parts 300—399)
IV Coast Guard, Department of Transportation (Parts 400—499)
V National Highway Traffic Safety Administration, Department of Transportation (Parts 500—599)
VI Federal Transit Administration, Department of Transportation (Parts 600—699)
VII National Railroad Passenger Corporation (AMTRAK) (Parts 700—799)
VIII National Transportation Safety Board (Parts 800—999)
X Surface Transportation Board, Department of Transportation (Parts 1000—1399)

Title 50—Wildlife and Fisheries

I United States Fish and Wildlife Service, Department of the Interior (Parts 1—199)
II National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 200—299)
III International Fishing and Related Activities (Parts 300—399)
IV Joint Regulations (United States Fish and Wildlife Service, Department of the Interior and National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce); Endangered Species Committee Regulations (Parts 400—499)
V Marine Mammal Commission (Parts 500—599)
VI Fishery Conservation and Management, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 600—699)

CFR Index and Finding Aids

Subject/Agency Index
List of Agency Prepared Indexes
Parallel Tables of Statutory Authorities and Rules
List of CFR Titles, Chapters, Subchapters, and Parts
Alphabetical List of Agencies Appearing in the CFR
Alphabetical List of Agencies Appearing in the CFR

(Revised as of January 1, 1998)

<table>
<thead>
<tr>
<th>Agency</th>
<th>CFR Title, Subtitle or Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
<td>45, XII</td>
</tr>
<tr>
<td>Agency for International Development, United States</td>
<td>22, II</td>
</tr>
<tr>
<td>Agriculture Department</td>
<td></td>
</tr>
<tr>
<td>Agriculture Marketing Service</td>
<td>7, I, IX, X, XI</td>
</tr>
<tr>
<td>Agricultural Research Service</td>
<td>7, V</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Cooperative State Research, Education, and Extension Service</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Energy, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Farm Service Agency</td>
<td>7, VII, XVIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 4</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>7, IV</td>
</tr>
<tr>
<td>Food and Consumer Service</td>
<td>7, II</td>
</tr>
<tr>
<td>Food Safety and Inspection Service</td>
<td>9, III</td>
</tr>
<tr>
<td>Foreign Agricultural Service</td>
<td>7, XV</td>
</tr>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXVII</td>
</tr>
<tr>
<td>Inspector General, Office of</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XLI</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Operations, Office of</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLII</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVII, XVIII, XLII</td>
</tr>
<tr>
<td>Secretary of Agriculture, Office of</td>
<td>7, Subtitle A</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>7, XXXVIII</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation Supplement</td>
<td>48, 53</td>
</tr>
<tr>
<td>Alaska Natural Gas Transportation System, Office of the Federal Inspector</td>
<td>10, XV</td>
</tr>
<tr>
<td>Alcohol, Tobacco and Firearms, Bureau of</td>
<td>27, I</td>
</tr>
<tr>
<td>AMTRAK</td>
<td>49, VII</td>
</tr>
<tr>
<td>American Battle Monuments Commission</td>
<td>36, IV</td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Appalachian Regional Commission</td>
<td>5, IX</td>
</tr>
<tr>
<td>Architectural and Transportation Barriers Compliance Board</td>
<td>36, XI</td>
</tr>
<tr>
<td>Arctic Research Commission</td>
<td>45, XXIII</td>
</tr>
<tr>
<td>Armed Forces Retirement Home</td>
<td>5, XI</td>
</tr>
<tr>
<td>Arms Control and Disarmament Agency, United States</td>
<td>22, VI</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, I; 36, III</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 51</td>
</tr>
<tr>
<td>Assassination Records Review Board</td>
<td>36, XIV</td>
</tr>
<tr>
<td>Benefits Review Board</td>
<td>20, VII</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of People Who Are</td>
<td>41, 51</td>
</tr>
<tr>
<td>Board for International Broadcasting</td>
<td>22, XIII</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Central Intelligence Agency</td>
<td>32, XIX</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for</td>
<td>45, II, III, IV, X</td>
</tr>
<tr>
<td>Christopher Columbus Quincentenary J ubilee Commission</td>
<td>45, XXII</td>
</tr>
<tr>
<td>Civil Rights, Commission on</td>
<td>45, VII</td>
</tr>
<tr>
<td>Civil Rights, Office for</td>
<td>34, I</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, I; 46, I; 49, IV</td>
</tr>
<tr>
<td>Commerce Department</td>
<td>44, IV</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Economic Affairs, Under Secretary</td>
<td>37, V</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, IV</td>
</tr>
<tr>
<td>Export Administration, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>National Telecommunications and Information</td>
<td>15, XXIII; 47, III</td>
</tr>
<tr>
<td>Administration</td>
<td>15, I</td>
</tr>
<tr>
<td>National Weather Service</td>
<td>37, I</td>
</tr>
<tr>
<td>Patent and Trademark Office</td>
<td>37, I</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Secretary for Secretary of Commerce, Office of Technology for</td>
<td>37, V</td>
</tr>
<tr>
<td>Technology, Under Secretary for Technology Administration</td>
<td>15, XI</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Commodity Futures Trading Commission</td>
<td>5, XL; 17, I</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant Secretary for</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Community Services, Office of</td>
<td>45, X</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Construction Industry Collective Bargaining Commission</td>
<td>29, IX</td>
</tr>
<tr>
<td>Consumer Product Safety Commission</td>
<td>5, LXXI; 16, II</td>
</tr>
<tr>
<td>Cooperative State Research, Education, and Extension</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Cost Accounting Standards Board</td>
<td>48, 99</td>
</tr>
<tr>
<td>Council on Environmental Quality</td>
<td>40, V</td>
</tr>
<tr>
<td>Customs Service, United States</td>
<td>19, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Department</td>
<td>5, XXVI; 32, Subtitle A</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V; 33, II; 36, III, 48, 51</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, I, XI; 48, 54</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 2</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI; 48, 52</td>
</tr>
<tr>
<td>Secretary of Defense, Office of</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, XII; 48, 54</td>
</tr>
<tr>
<td>Defense Nuclear Facilities Safety Board</td>
<td>10, XVII</td>
</tr>
<tr>
<td>Delaware River Basin Commission</td>
<td>18, III</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>East-West Foreign Trade Board</td>
<td>15, XIII</td>
</tr>
<tr>
<td>Economic Affairs, Under Secretary</td>
<td>37, V</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>5, XXXVII</td>
</tr>
<tr>
<td>Education, Department of</td>
<td>34, V</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of Civil</td>
<td>34, I</td>
</tr>
<tr>
<td>Rights, Office for</td>
<td>Educational Research and Improvement, Office of</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 2</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>Secretary of Education, Office of</td>
<td>34, Subtitle A</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of</td>
<td>34, III</td>
</tr>
<tr>
<td>Vocational and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Educational Research and Improvement, Office of</td>
<td>34, VII</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, I</td>
</tr>
<tr>
<td>Employees' Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, IV</td>
</tr>
<tr>
<td>Energy, Department of</td>
<td>5, XXIII; 10, II, III, X</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 9</td>
</tr>
<tr>
<td>Federal Energy Regulatory Commission</td>
<td>5, XXIV; 18, I</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 109</td>
</tr>
<tr>
<td>Energy, Office of</td>
<td>7, XXIX</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Enrichment Corporation, United States</td>
<td>10, XI</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>5, LIV; 40, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 15</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 115</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Equal Employment Opportunity Commission</td>
<td>5, LXIII; 29, XIV</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Executive Office of the President</td>
<td>3, I</td>
</tr>
<tr>
<td>Administration, Office of</td>
<td>5, XV</td>
</tr>
<tr>
<td>Management and Budget, Office of</td>
<td>40, V</td>
</tr>
<tr>
<td>National Drug Control Policy, Office of</td>
<td>23, III</td>
</tr>
<tr>
<td>National Security Council</td>
<td>32, XXI; 47, 2</td>
</tr>
<tr>
<td>Presidential Documents</td>
<td>3</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of</td>
<td>32, XXIV; 47, II</td>
</tr>
<tr>
<td>Trade Representative, Office of the United States</td>
<td>15, XX</td>
</tr>
<tr>
<td>Export Administration, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>Export-Import Bank of the United States</td>
<td>5, LII; 12, IV</td>
</tr>
<tr>
<td>Family Assistance, Office of</td>
<td>45, II</td>
</tr>
<tr>
<td>Farm Credit Administration</td>
<td>5, XXXI; 12, VI</td>
</tr>
<tr>
<td>Farm Credit System Insurance Corporation</td>
<td>5, XXX; 12, XIV</td>
</tr>
<tr>
<td>Farm Service Agency</td>
<td>7, VII; XVIII</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 1</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>14, I</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Federal Claims Collection Standards</td>
<td>4, IV</td>
</tr>
<tr>
<td>Federal Communications Commission</td>
<td>5, XXIX; 47, I</td>
</tr>
<tr>
<td>Federal Contract Compliance Programs, Office of</td>
<td>41, 60</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>7, IV</td>
</tr>
<tr>
<td>Federal Deposit Insurance Corporation</td>
<td>5, XXII; 12, III</td>
</tr>
<tr>
<td>Federal Election Commission</td>
<td>11, I</td>
</tr>
<tr>
<td>Federal Emergency Management Agency</td>
<td>44, 1</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 16</td>
</tr>
<tr>
<td>Federal Employees Health Benefits Acquisition Regulation</td>
<td>48, 21</td>
</tr>
<tr>
<td>Federal Energy Regulatory Commission</td>
<td>5, XXIV; 18, I</td>
</tr>
<tr>
<td>Federal Financial Institutions Examination Council</td>
<td>12, XI</td>
</tr>
<tr>
<td>Federal Financing Bank</td>
<td>12, VIII</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>23, I, II, 49, III</td>
</tr>
<tr>
<td>Federal Home Loan Mortgage Corporation</td>
<td>1, IV</td>
</tr>
<tr>
<td>Federal Housing Enterprise Oversight Office</td>
<td>12, XVII</td>
</tr>
<tr>
<td>Federal Housing Finance Board</td>
<td>12, IX</td>
</tr>
<tr>
<td>Federal Inspector for the Alaska Natural Gas Transportation System, Office of Federal Labor Relations Authority, and General Counsel of the Federal Labor Relations Authority</td>
<td>5, XIV; 22, XIV</td>
</tr>
<tr>
<td>Federal Law Enforcement Training Center</td>
<td>31, VII</td>
</tr>
<tr>
<td>Federal Maritime Commission</td>
<td>46, IV</td>
</tr>
<tr>
<td>Federal Mediation and Conciliation Service</td>
<td>29, XII</td>
</tr>
<tr>
<td>Federal Mine Safety and Health Review Commission</td>
<td>5, XXIV; 29, XXVII</td>
</tr>
<tr>
<td>Federal Pay, Advisory Committees on</td>
<td>5, IX</td>
</tr>
<tr>
<td>Federal Prison Industries, Inc.</td>
<td>28, III</td>
</tr>
<tr>
<td>Federal Procurement Policy Office</td>
<td>48, 99</td>
</tr>
<tr>
<td>Federal Property Management Regulations</td>
<td>41, 103</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, Subtitle C</td>
</tr>
<tr>
<td>Federal Railroad Administration</td>
<td>49, II</td>
</tr>
<tr>
<td>Federal Register, Administrative Committee of</td>
<td>1, I</td>
</tr>
<tr>
<td>Federal Register, Office of</td>
<td>1, II</td>
</tr>
<tr>
<td>Federal Reserve System</td>
<td>12, II</td>
</tr>
<tr>
<td>Board of Governors</td>
<td>5, LVIII</td>
</tr>
<tr>
<td>Federal Retirement Thrift Investment Board</td>
<td>5, VI, LXXVI</td>
</tr>
<tr>
<td>Federal Service Impasses Panel</td>
<td>5, XIV</td>
</tr>
<tr>
<td>Federal Trade Commission</td>
<td>5, XLVII; 16, I</td>
</tr>
<tr>
<td>Federal Transit Administration</td>
<td>49, VI</td>
</tr>
<tr>
<td>Federal Travel Regulation System</td>
<td>41, Subtitle F</td>
</tr>
<tr>
<td>Fine Arts, Commission on</td>
<td>45, XXI</td>
</tr>
<tr>
<td>Fiscal Service</td>
<td>31, II</td>
</tr>
<tr>
<td>Fish and Wildlife Service, United States</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Fishery Conservation and Management</td>
<td>50, VI</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
<td>21, I</td>
</tr>
<tr>
<td>Food and Consumer Service</td>
<td>7, II</td>
</tr>
<tr>
<td>Food Safety and Inspection Service</td>
<td>9, III</td>
</tr>
<tr>
<td>Foreign Agricultural Service</td>
<td>7, XV</td>
</tr>
<tr>
<td>Foreign Assets Control, Office of</td>
<td>31, V</td>
</tr>
<tr>
<td>Foreign Claims Settlement Commission of the United States</td>
<td>45, V</td>
</tr>
<tr>
<td>Foreign Service Grievance Board</td>
<td>22, 1X</td>
</tr>
<tr>
<td>Foreign Service Impasses Disputes Panel</td>
<td>22, XIV</td>
</tr>
<tr>
<td>Foreign Service Labor Relations Board</td>
<td>22, XIV</td>
</tr>
<tr>
<td>Foreign-Trade Zones Board</td>
<td>15, IV</td>
</tr>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>4, I, II</td>
</tr>
<tr>
<td>General Services Administration</td>
<td>5, LVII</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>48, 61</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 5</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, 101, 105</td>
</tr>
<tr>
<td>Federal Travel Regulation System</td>
<td>41, Subtitle F</td>
</tr>
<tr>
<td>Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 304</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>41, 302</td>
</tr>
<tr>
<td>Travel Allowances</td>
<td>41, 301</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, I</td>
</tr>
<tr>
<td>Government Ethics, Office of</td>
<td>30, XVII</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Great Lakes Pilotage</td>
<td>46, III</td>
</tr>
<tr>
<td>Harry S. Truman Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>Health and Human Services, Department of</td>
<td>5, XLV; 45, Subtitle A</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for Community Services, Office of</td>
<td>45, III, IV, X</td>
</tr>
<tr>
<td>Family Assistance, Office of</td>
<td>45, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 3</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
<td>21, I</td>
</tr>
<tr>
<td>Health Care Financing Administration</td>
<td>42, IV</td>
</tr>
<tr>
<td>Human Development Services, Office of</td>
<td>45, XII</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Inspector General (Health Care), Office of</td>
<td>42, V</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Health Care Financing Administration</td>
<td>42, IV</td>
</tr>
<tr>
<td>Housing and Urban Development, Department of</td>
<td>5, LXV; 24, Subtitle B</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant Secretary for</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 24</td>
</tr>
<tr>
<td>Federal Housing Enterprise Oversight, Office of</td>
<td>12, XVII</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Assistant Secretary for Inspector General, Office of</td>
<td>24, XII</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for Secretary, Office of</td>
<td>24, Subtitle A, VII</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of Assistant Secretary for</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Human Development Services, Office of</td>
<td>45, XIII</td>
</tr>
<tr>
<td>Immigration and Naturalization Service</td>
<td>8, I</td>
</tr>
<tr>
<td>Independent Counsel, Office of</td>
<td>28, VII</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Information Agency, United States</td>
<td>22, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 19</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXVII</td>
</tr>
<tr>
<td>Information Security Oversight Office, National Archives and Records Administration</td>
<td>32, XX</td>
</tr>
<tr>
<td>Inspector General</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>Agriculture Department</td>
<td>42, V</td>
</tr>
<tr>
<td>Health and Human Services Department</td>
<td>24, XII</td>
</tr>
<tr>
<td>Institute of Peace, United States</td>
<td>22, XVII</td>
</tr>
<tr>
<td>Inter-American Foundation</td>
<td>5, LXIII; 22, X</td>
</tr>
<tr>
<td>Intergovernmental Relations, Advisory Commission on Interior Department</td>
<td>5, VII</td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 14</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, 114</td>
</tr>
<tr>
<td>Fish and Wildlife Service, United States</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, IV</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, II</td>
</tr>
<tr>
<td>Minerals Management Service</td>
<td>30, II</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Mines, Bureau of</td>
<td>30, VI</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Secretary of the Interior, Office of</td>
<td>43, Subtitle A</td>
</tr>
<tr>
<td>Surface Mining and Reclamation Appeals, Board of</td>
<td>30, III</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>International Boundary and Water Commission, United States and Mexico, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>International Development, United States Agency for</td>
<td>22, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 7</td>
</tr>
<tr>
<td>International Development Cooperation Agency, United States</td>
<td>22, XII</td>
</tr>
<tr>
<td>International Development, United States Agency for</td>
<td>22, II; 48, 7</td>
</tr>
<tr>
<td>Overseas Private Investment Corporation</td>
<td>5, XXXIII; 22, VII</td>
</tr>
<tr>
<td>International Fishing and Related Activities</td>
<td>50, III</td>
</tr>
<tr>
<td>International Investment, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>International Joint Commission, United States and Canada</td>
<td>22, IV</td>
</tr>
<tr>
<td>International Organizations Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>International Trade Administration</td>
<td>15, III; 19, III</td>
</tr>
<tr>
<td>International Trade Commission, United States</td>
<td>19, II</td>
</tr>
<tr>
<td>Interstate Commerce Commission</td>
<td>5, XL</td>
</tr>
<tr>
<td>James Madison Memorial Fellowship Foundation</td>
<td>45, XXIV</td>
</tr>
<tr>
<td>Japan-United States Friendship Commission</td>
<td>22, XVI</td>
</tr>
<tr>
<td>Joint Board for the Enrollment of Actuaries</td>
<td>20, VIII</td>
</tr>
<tr>
<td>Justice Department</td>
<td>5, XXVIII; 28, I</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 28</td>
</tr>
<tr>
<td>Federal Claims Collection Standards</td>
<td>4, II</td>
</tr>
<tr>
<td>Federal Prison Industries, Inc.</td>
<td>28, III</td>
</tr>
<tr>
<td>Foreign Claims Settlement Commission of the United States</td>
<td>45, V</td>
</tr>
<tr>
<td>Immigration and Naturalization Service</td>
<td>8, I</td>
</tr>
<tr>
<td>Offices of Independent Counsel</td>
<td>28, VI</td>
</tr>
<tr>
<td>Prisons, Bureau of</td>
<td>28, V</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 128</td>
</tr>
<tr>
<td>Labor Department</td>
<td>5, XLII</td>
</tr>
<tr>
<td>Benefits Review Board</td>
<td>20, VII</td>
</tr>
<tr>
<td>Employees' Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 29</td>
</tr>
<tr>
<td>Federal Contract Compliance Programs, Office of</td>
<td>41, 60</td>
</tr>
<tr>
<td>Federal Procurement Regulations System</td>
<td>41, 50</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II, IV</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Pension and Welfare Benefits Administration</td>
<td>29, XXV</td>
</tr>
<tr>
<td>Public Contracts</td>
<td>41, 50</td>
</tr>
<tr>
<td>Secretary of Labor, Office of</td>
<td>29, Subtitle A</td>
</tr>
<tr>
<td>Veterans' Employment and Training, Office of the Assistant Secretary for</td>
<td>41, 61; 20, IX</td>
</tr>
<tr>
<td>Wage and Hour Division</td>
<td>29, V</td>
</tr>
<tr>
<td>Workers' Compensation Programs, Office of</td>
<td>20, I</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II, IV</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Legal Services Corporation</td>
<td>45, XVII</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>36, VII</td>
</tr>
<tr>
<td>Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Management and Budget, Office of</td>
<td>5, III, LXXVII; 48, 99</td>
</tr>
<tr>
<td>Marine Mammal Commission</td>
<td>50, V</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>Merit Systems Protection Board</td>
<td>5, II</td>
</tr>
<tr>
<td>Micronesian Status Negotiations, Office for</td>
<td>32, XXVII</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Minerals Management Service</td>
<td>30, II</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Mines, Bureau of</td>
<td>30, VI</td>
</tr>
<tr>
<td>Minority Business Development Agency</td>
<td>15, XIV</td>
</tr>
<tr>
<td>Miscellaneous Agencies</td>
<td>1, IV</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>5, LI; 14, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 18</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XLI</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>National Archives and Records Administration</td>
<td>5, LXVI; 36, XII</td>
</tr>
<tr>
<td>Information Security Oversight Office</td>
<td>32, XX</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td>15, II</td>
</tr>
<tr>
<td>National Capital Planning Commission</td>
<td>7, IV</td>
</tr>
<tr>
<td>National Commission for Employment Policy</td>
<td>1, IV</td>
</tr>
<tr>
<td>National Commission on Libraries and Information Science</td>
<td>45, XVII</td>
</tr>
<tr>
<td>National and Community Service, Corporation for</td>
<td>45, XXV</td>
</tr>
<tr>
<td>National Council on Disability</td>
<td>34, XII</td>
</tr>
<tr>
<td>National Credit Union Administration</td>
<td>12, VII</td>
</tr>
<tr>
<td>National Drug Control Policy, Office of</td>
<td>21, I</td>
</tr>
<tr>
<td>National Foundation on the Arts and the Humanities</td>
<td>45, XI</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, I, III; 49, V</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Institute for Literacy</td>
<td>34, XI</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>15, II</td>
</tr>
<tr>
<td>National Labor Relations Board</td>
<td>5, LXI; 29, I</td>
</tr>
<tr>
<td>National Marine Fisheries Service</td>
<td>50, II, IV</td>
</tr>
<tr>
<td>National Mediation Board</td>
<td>29, X</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>15, IX; 50, II, III, IV, VI</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>National Railroad Adjustment Board</td>
<td>29, I</td>
</tr>
<tr>
<td>National Railroad Passenger Corporation (AMTRAK)</td>
<td>49, VII</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>5, XLIII; 45, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 25</td>
</tr>
<tr>
<td>National Security Council</td>
<td>32, XI</td>
</tr>
<tr>
<td>National Security Council and Office of Science and Technology Policy</td>
<td>47, II</td>
</tr>
<tr>
<td>National Telecommunications and Information Administration</td>
<td>15, XXIII; 47, III</td>
</tr>
<tr>
<td>National Transportation Safety Board</td>
<td>49, VIII</td>
</tr>
<tr>
<td>National Weather Service</td>
<td>15, IX</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Navajo and Hopi Indian Relocation, Office of</td>
<td>25, IV</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 52</td>
</tr>
<tr>
<td>Neighborhood Reinvestment Corporation</td>
<td>24, XXV</td>
</tr>
<tr>
<td>Northeast Dairy Compact Commission</td>
<td>7, XIII</td>
</tr>
<tr>
<td>Nuclear Regulatory Commission</td>
<td>5, XLVIII; 10, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 20</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Occupational Safety and Health Review Commission</td>
<td>29, XX</td>
</tr>
<tr>
<td>Offices of Independent Counsel</td>
<td>28, VI</td>
</tr>
<tr>
<td>Operations Office</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Overseas Private Investment Corporation</td>
<td>5, XXXIII; 22, VII</td>
</tr>
<tr>
<td>Panama Canal Commission</td>
<td>48, 25</td>
</tr>
<tr>
<td>Panama Canal Regulations</td>
<td>35, I</td>
</tr>
<tr>
<td>Patent and Trademark Office</td>
<td>37, I</td>
</tr>
<tr>
<td>Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 304</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Peace Corps</td>
<td>22, III</td>
</tr>
<tr>
<td>Pennsylvania Avenue Development Corporation</td>
<td>36, 1X</td>
</tr>
<tr>
<td>Pension and Welfare Benefits Administration</td>
<td>29, XXV</td>
</tr>
<tr>
<td>Pension Benefit Guaranty Corporation</td>
<td>29, XL</td>
</tr>
<tr>
<td>Personnel Management, Office of</td>
<td>5, I; 30, XX; 45, VIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 17</td>
</tr>
<tr>
<td>Federal Employees Group Life Insurance Federal Acquisition Regulation</td>
<td>48, 21</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Federal Employees Health Benefits Acquisition Regulation</td>
<td>48, 16</td>
</tr>
<tr>
<td>Postal Rate Commission</td>
<td>5, XLVI; 39, III</td>
</tr>
<tr>
<td>Postal Service, United States</td>
<td>5, LX; 39, I</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>President’s Commission on White House Fellowships</td>
<td>1, IV</td>
</tr>
<tr>
<td>Presidential Commission on the Assignment of Women in the Armed Forces</td>
<td>32, XXIX</td>
</tr>
<tr>
<td>Presidential Documents</td>
<td>3, 28, V</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant Secretary</td>
<td>37, IV</td>
</tr>
<tr>
<td>Public Contracts, Department of Labor</td>
<td>41, 50</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for</td>
<td>24, IX</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Railroad Retirement Board</td>
<td>20, II</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Regional Action Planning Commissions</td>
<td>13, V</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>42, 302</td>
</tr>
<tr>
<td>Research and Special Programs Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLII</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVIII, XVIII, XLII</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of</td>
<td>32, XXIV</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of, and National Security Council</td>
<td>47, II</td>
</tr>
<tr>
<td>Secret Service</td>
<td>31, IV</td>
</tr>
<tr>
<td>Securities and Exchange Commission</td>
<td>17, II</td>
</tr>
<tr>
<td>Selective Service System</td>
<td>32, XVI</td>
</tr>
<tr>
<td>Small Business Administration</td>
<td>13, I</td>
</tr>
<tr>
<td>Smithsonian Institution</td>
<td>36, V</td>
</tr>
<tr>
<td>Social Security Administration</td>
<td>20, 101; 48, 23</td>
</tr>
<tr>
<td>Soldiers’ and Airmen’s Home, United States</td>
<td>5, XI</td>
</tr>
<tr>
<td>Special Counsel, Office of</td>
<td>5, VIII</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of</td>
<td>34, III</td>
</tr>
<tr>
<td>State Department</td>
<td>22, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 12</td>
</tr>
<tr>
<td>Surface Mining and Reclamation Appeals, Board of</td>
<td>30, III</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Surface Transportation Board</td>
<td>49, X</td>
</tr>
<tr>
<td>Susquehanna River Basin Commission</td>
<td>18, VIII</td>
</tr>
<tr>
<td>Technology Administration</td>
<td>15, XI</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Technology, Under Secretary for</td>
<td>37, V</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>5, L XIX; 18, XIII</td>
</tr>
<tr>
<td>Thrift Depositor Protection Oversight Board</td>
<td>12, XV</td>
</tr>
<tr>
<td>Thrift Supervision Office, Department of the Treasury</td>
<td>12, V</td>
</tr>
<tr>
<td>Trade Representative, United States, Office of</td>
<td>15, XX</td>
</tr>
<tr>
<td>Transportation, Department of</td>
<td>5, L</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, 1; 46, 1; 49, IV</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>46, 63</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, 11</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 12</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>14, 1</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>23, 1, II; 49, III</td>
</tr>
<tr>
<td>Federal Railroad Administration</td>
<td>49, II</td>
</tr>
<tr>
<td>Federal Transit Administration</td>
<td>49, VI</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, 1, II; 49, V</td>
</tr>
<tr>
<td>Research and Special Programs Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Secretary of Transportation, Office of</td>
<td>14, II; 49, Subtitle A</td>
</tr>
<tr>
<td>Surface Transportation Board</td>
<td>49, X</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>Travel Allowances</td>
<td>41, 301</td>
</tr>
<tr>
<td>Treasury Department</td>
<td>5, XXI; 17, IV</td>
</tr>
<tr>
<td>Alcohol, Tobacco and Firearms, Bureau of</td>
<td>27, I</td>
</tr>
<tr>
<td>Community Development Financial Institutions Fund</td>
<td>12, XVIII</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Customs Service, United States</td>
<td>19, I</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 10</td>
</tr>
<tr>
<td>Federal Law Enforcement Training Center</td>
<td>31, VII</td>
</tr>
<tr>
<td>Fiscal Service</td>
<td>31, II</td>
</tr>
<tr>
<td>Foreign Assets Control, Office of</td>
<td>31, V</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>International Investment, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>Secret Service</td>
<td>31, IV</td>
</tr>
<tr>
<td>Secretary of the Treasury, Office of</td>
<td>31, Subtitle A</td>
</tr>
<tr>
<td>Thrift Supervision, Office of</td>
<td>12, V</td>
</tr>
<tr>
<td>Truman, Harry S. Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>United States and Canada, International Joint Commission</td>
<td>22, IV</td>
</tr>
<tr>
<td>United States and Mexico, International Boundary and Water Commission, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>United States Enrichment Corporation</td>
<td>10, XI</td>
</tr>
<tr>
<td>Utah Reclamation Mitigation and Conservation Commission</td>
<td>43, III</td>
</tr>
<tr>
<td>Veterans Affairs Department</td>
<td>38, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 8</td>
</tr>
<tr>
<td>Veterans' Employment and Training, Office of the Assistant Secretary for</td>
<td>41, 61; 20, IX</td>
</tr>
<tr>
<td>Vice President of the United States, Office of</td>
<td>32, XXVIII</td>
</tr>
<tr>
<td>Vocational and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Wage and Hour Division</td>
<td>29, V</td>
</tr>
<tr>
<td>Water Resources Council</td>
<td>18, VI</td>
</tr>
<tr>
<td>Workers' Compensation Programs, Office of</td>
<td>20, I</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>7, XXXVIII</td>
</tr>
</tbody>
</table>
List of CFR Sections Affected

All changes in this volume of the Code of Federal Regulations which were made by documents published in the Federal Register since January 1, 1986 are enumerated in the following list. Entries indicate the nature of the changes effected. Page numbers refer to Federal Register pages. The user should consult the entries for chapters and parts as well as sections for revisions.

For the period between January 12, 1974, when Title 10, Chapter II was established at 39 FR 744, and December 31, 1985, see the “List of Sections Affected, 1973-1985,” Volume I.

1986

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revised/Removed</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.350—205.353</td>
<td>Authority citation revised</td>
<td>39745</td>
</tr>
<tr>
<td>205.350 Revised</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>205.351 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.352 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.353 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.354 Removed</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>216 Authority citation revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.1 (a) and (c) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.2 (e) and (h) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.3 (a) introductory text amended; (a)(11) and (b) revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.5 (a) and (b) amended</td>
<td></td>
<td>8312</td>
</tr>
<tr>
<td>420 Class deviation</td>
<td></td>
<td>18548</td>
</tr>
<tr>
<td>430 Authority citation revised</td>
<td></td>
<td>47550</td>
</tr>
<tr>
<td>430.27 Revised</td>
<td></td>
<td>42826</td>
</tr>
<tr>
<td>430.32 Removed</td>
<td></td>
<td>7550</td>
</tr>
<tr>
<td>430.33 Removed</td>
<td></td>
<td>7550</td>
</tr>
<tr>
<td>436.106 Revised</td>
<td></td>
<td>4586</td>
</tr>
<tr>
<td>436.106 (a) (vi) and (vii) redesignated as (a)(4) (iv) and (v)</td>
<td></td>
<td>4586</td>
</tr>
<tr>
<td>463 Form ERA-166 availability</td>
<td></td>
<td>593, 42994</td>
</tr>
<tr>
<td>477 Removed</td>
<td></td>
<td>31317</td>
</tr>
</tbody>
</table>

1987

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revised/Removed</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.350—205.353</td>
<td>Authority citation revised</td>
<td>39745</td>
</tr>
<tr>
<td>205.350 Revised</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>205.351 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.352 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.353 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.354 Removed</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>216 Authority citation revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.1 (a) and (c) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.2 (e) and (h) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.3 (a) introductory text amended; (a)(11) and (b) revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.5 (a) and (b) amended</td>
<td></td>
<td>8312</td>
</tr>
<tr>
<td>420 Class deviation</td>
<td></td>
<td>18548</td>
</tr>
<tr>
<td>430 Authority citation revised</td>
<td></td>
<td>47550</td>
</tr>
<tr>
<td>430.22 (c)(i)(ii) and (2)(ii) added; eff. 2-16-88</td>
<td></td>
<td>47550</td>
</tr>
<tr>
<td>430.21—430.27 (Subpart B) Appendix C amended; eff. 2-16-88</td>
<td></td>
<td>47551</td>
</tr>
<tr>
<td>456 Revised</td>
<td></td>
<td>6715</td>
</tr>
<tr>
<td>458 Removed</td>
<td></td>
<td>34185</td>
</tr>
<tr>
<td>465 Class deviation</td>
<td></td>
<td>18548</td>
</tr>
</tbody>
</table>

1988

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revised/Removed</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.350—205.353</td>
<td>Authority citation revised</td>
<td>39745</td>
</tr>
<tr>
<td>205.350 Revised</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>205.351 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.352 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.353 Revised</td>
<td></td>
<td>39746</td>
</tr>
<tr>
<td>205.354 Removed</td>
<td></td>
<td>39745</td>
</tr>
<tr>
<td>216 Authority citation revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.1 (a) and (c) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.2 (e) and (h) amended</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.3 (a) introductory text amended; (a)(11) and (b) revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>216.5 (a) and (b) amended</td>
<td></td>
<td>8312</td>
</tr>
<tr>
<td>420 Class deviation</td>
<td></td>
<td>15601</td>
</tr>
<tr>
<td>420.2 Amended</td>
<td></td>
<td>52394</td>
</tr>
<tr>
<td>420.3 (e) and (f) added</td>
<td></td>
<td>52394</td>
</tr>
<tr>
<td>420.4 (b)(1) revised; (b)(4) added</td>
<td></td>
<td>52395</td>
</tr>
<tr>
<td>420.12 (a)(4) and (5) and (b) amended; (a)(6) removed; (e) added</td>
<td></td>
<td>52395</td>
</tr>
<tr>
<td>430.2 Class deviation</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>430.12 Amended</td>
<td></td>
<td>10696</td>
</tr>
<tr>
<td>430.22 (m) revised</td>
<td></td>
<td>8311</td>
</tr>
<tr>
<td>430.23 (m) (2) through (7) revised</td>
<td></td>
<td>8312</td>
</tr>
<tr>
<td>430.21—430.27 (Subpart B) Appendix M amended</td>
<td></td>
<td>8313</td>
</tr>
<tr>
<td>10 CFR</td>
<td>Continued</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Chapter II—Continued</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>Added; interim eff. 2-21-89</td>
<td>32545</td>
</tr>
<tr>
<td>465</td>
<td>Class deviation</td>
<td>15801</td>
</tr>
</tbody>
</table>

1989

<table>
<thead>
<tr>
<th>10 CFR</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter II</td>
<td>Page</td>
</tr>
<tr>
<td>420.2</td>
<td>Amended; interim</td>
</tr>
<tr>
<td>420.5</td>
<td>Revised; interim</td>
</tr>
<tr>
<td>420.9</td>
<td>Revised; interim</td>
</tr>
<tr>
<td>430.2</td>
<td>Corrected</td>
</tr>
<tr>
<td>430.22</td>
<td>(e) and (2) revised; (el)(4) added; eff. 4-15-91</td>
</tr>
<tr>
<td>430.21—430.27</td>
<td>Subpart B Appendix E revised; eff. 4-15-91</td>
</tr>
<tr>
<td>430.31</td>
<td>Amended; eff. 4-15-91</td>
</tr>
<tr>
<td>430.32</td>
<td>(e) regulation at 54 FR 6077 effective date corrected</td>
</tr>
<tr>
<td>430.22</td>
<td>(e)(4) added; eff. 4-15-91</td>
</tr>
<tr>
<td>430.21—430.27</td>
<td>Subpart B Appendix E revised; eff. 4-15-91</td>
</tr>
<tr>
<td>435.97—435.112</td>
<td>Subpart A</td>
</tr>
</tbody>
</table>

Appendices:
- **Appendix A**
 - 435 Standby loss criteria statement and response to comments...
- **Appendix B**
 - 435.109 Table 9.3-1 revised
 - 436 Authority citation revised
 - 436.1 Revised
 - 436.2 Revised
 - 436.30—436.34 Subpart A Revised
 - 436.40—436.46 Subpart C Revised
 - 436.40—436.46 Subpart C Removed
 - 436.40—436.46 Subpart CRemoved
List of CFR Sections Affected

10 CFR—Continued

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>455.110—455.115</td>
<td>(Subpart J)</td>
<td>Added; interim</td>
</tr>
<tr>
<td>465.2</td>
<td>Amended; interim</td>
<td>3006</td>
</tr>
<tr>
<td>465.8</td>
<td>Revised; interim</td>
<td>3007</td>
</tr>
<tr>
<td>465.10</td>
<td>Revised; interim</td>
<td>3007</td>
</tr>
</tbody>
</table>

1991

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>430.2</td>
<td>Amended</td>
</tr>
<tr>
<td>430.22</td>
<td>(k) and (l) removed; (q) added</td>
</tr>
<tr>
<td>430.23</td>
<td>(k) and (l) removed; (q) added</td>
</tr>
<tr>
<td>430.21—430.27</td>
<td>(Subpart B) Appendixes K1, K2 and L removed; Appendix Q amended</td>
</tr>
<tr>
<td>430.32</td>
<td>(f), (g) and (h) revised; eff. 5-14-94</td>
</tr>
<tr>
<td>435</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>435.302</td>
<td>Revised</td>
</tr>
<tr>
<td>435.304</td>
<td>Nomenclature change</td>
</tr>
<tr>
<td>435.305</td>
<td>Added</td>
</tr>
<tr>
<td>435.306</td>
<td>Added</td>
</tr>
</tbody>
</table>

1992

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.90—205.98</td>
<td>(Subpart G) Removed</td>
</tr>
<tr>
<td>205.191</td>
<td>Removed</td>
</tr>
<tr>
<td>205.199</td>
<td>Removed</td>
</tr>
<tr>
<td>220</td>
<td>Removed</td>
</tr>
<tr>
<td>300</td>
<td>Removed</td>
</tr>
<tr>
<td>320</td>
<td>Removed</td>
</tr>
<tr>
<td>417</td>
<td>Removed</td>
</tr>
<tr>
<td>420</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>420.1</td>
<td>(a) revised; (c) added</td>
</tr>
<tr>
<td>420.2</td>
<td>Amended</td>
</tr>
</tbody>
</table>

1993

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>440</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>440.1</td>
<td>Revised</td>
</tr>
<tr>
<td>440.3</td>
<td>Amended</td>
</tr>
<tr>
<td>440.10</td>
<td>(e) amended</td>
</tr>
<tr>
<td>440.11</td>
<td>(a) introductory text, (b), (c) introductory text, (d) and (e) amended</td>
</tr>
<tr>
<td>440.12</td>
<td>(a) and (c) introductory text amended</td>
</tr>
<tr>
<td>440.13</td>
<td>(a)(2) and (c) revised; (d), (e) and (f) added</td>
</tr>
<tr>
<td>440.14</td>
<td>(b) revised</td>
</tr>
<tr>
<td>440.15</td>
<td>(e) added</td>
</tr>
<tr>
<td>440.16</td>
<td>(b), (d), (f) and (g) revised; (h) and (i) added</td>
</tr>
<tr>
<td>440.17</td>
<td>(a) introductory text amended</td>
</tr>
<tr>
<td>440.18</td>
<td>Revised</td>
</tr>
<tr>
<td>440.19</td>
<td>(a)(2) amended</td>
</tr>
<tr>
<td>440.20</td>
<td>(b) amended</td>
</tr>
<tr>
<td>440.21</td>
<td>Revised</td>
</tr>
</tbody>
</table>
List of CFR Sections Affected

10 CFR—Continued 61 FR Page 62 FR Page

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>436.10</td>
<td>Revised</td>
<td>32649</td>
</tr>
<tr>
<td>436.11</td>
<td>Amended</td>
<td>32649</td>
</tr>
<tr>
<td>436.13</td>
<td>(a), (b) introductory text and (2) revised</td>
<td>32650</td>
</tr>
<tr>
<td>436.14</td>
<td>(b)(1), (c) introductory text, (d)(2), (e) and (g) revised</td>
<td>32650</td>
</tr>
<tr>
<td>436.16</td>
<td>Heading revised; (b) and (c) redesignated as (c) and (d); new (b) added</td>
<td>32650</td>
</tr>
<tr>
<td>436.17</td>
<td>Heading revised; (c) and (d) added</td>
<td>32650</td>
</tr>
<tr>
<td>436.18</td>
<td>(c) introductory text, (d) and (f) revised; (e) amended</td>
<td>32650</td>
</tr>
<tr>
<td>436.19</td>
<td>(d) revised</td>
<td>32651</td>
</tr>
<tr>
<td>436.21</td>
<td>Revised</td>
<td>32651</td>
</tr>
<tr>
<td>436.22</td>
<td>Revised</td>
<td>32651</td>
</tr>
<tr>
<td>436.23</td>
<td>Revised</td>
<td>32651</td>
</tr>
<tr>
<td>436.24</td>
<td>Amended</td>
<td>32651</td>
</tr>
<tr>
<td>436.25</td>
<td>Amended; interim</td>
<td>35903</td>
</tr>
<tr>
<td>436.26</td>
<td>Amended; eff. 7±1±01</td>
<td>23115</td>
</tr>
<tr>
<td>436.27</td>
<td>Amended; eff. 10±1±00</td>
<td>50148</td>
</tr>
<tr>
<td>430.2</td>
<td>Amended; eff. 2±23±98</td>
<td>45500</td>
</tr>
</tbody>
</table>

1997

10 CFR

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>Authority citation revised</td>
<td>46183</td>
</tr>
<tr>
<td>218</td>
<td>Authority citation revised</td>
<td>46183</td>
</tr>
<tr>
<td>218.42</td>
<td>(b)(1), (2) and (3) revised</td>
<td>46183</td>
</tr>
<tr>
<td>420</td>
<td>Regulation at 61 FR 35895 confirmed</td>
<td>26726</td>
</tr>
<tr>
<td>420.2</td>
<td>Amended</td>
<td>26726</td>
</tr>
<tr>
<td>420.13</td>
<td>Heading, (a), (b)(4)(iii), (v), (5) and (6) revised</td>
<td>26727</td>
</tr>
<tr>
<td>420.14</td>
<td>Heading and (a) revised</td>
<td>26727</td>
</tr>
<tr>
<td>420.17</td>
<td>(a)(3) introductory text, (i) and (7) revised</td>
<td>26727</td>
</tr>
<tr>
<td>420.18</td>
<td>(e) introductory text, (3) and (5) revised; (e)(6) introductory text, (i) and (ii) redesignated as (f) introductory text, (1) and (2)</td>
<td>26727</td>
</tr>
<tr>
<td>430</td>
<td>Authority citation revised</td>
<td>46183</td>
</tr>
<tr>
<td>430.1</td>
<td>Revised</td>
<td>29237</td>
</tr>
</tbody>
</table>

Regulation at 62 FR 29237 eff. date delayed to 10-18-97 | 35067

Regulation at 62 FR 29240 eff. date delayed to 10-18-97 | 35067

Appendix N amended; interim | 53510

Regulation at 62 FR 29240 eff. date delayed to 10-18-97 | 35067

Appendix A1 amended | 47539, 47540