denitrification or by neutralization with gaseous ammonia to produce ammonium diuranate with subsequent filtering, drying, and calcining.

(2) Especially designed or prepared systems for the conversion of UO3 to UF6.

Conversion of UO3 to UF6 can be performed directly by fluorination. The process requires a source of fluorine gas or chlorine trifluoride.

(3) Especially Designed or Prepared Systems for the conversion of UO3 to UO2.

Conversion of UO3 to UO2 can be performed through reduction of UO3 with cracked ammonia gas or hydrogen.

(4) Especially Designed or Prepared Systems for the conversion of UO2 to UF4.

Conversion of UO2 to UF4 can be performed by reacting UO2 with hydrogen fluoride gas (HF) at 300-500°C.

(5) Especially Designed or Prepared Systems for the conversion of UF4 to UF6.

Conversion of UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from the hot effluent gases by passing the effluent stream through a cold trap cooled to -10°C. The process requires a source of fluorine gas.

(6) Especially Designed or Prepared Systems for the conversion of UF4 to U metal.

Conversion of UF4 to U metal is performed by reduction with magnesium (large batches) or calcium (small batches). The reaction is carried out at temperatures above the melting point of uranium (1130°C).

(7) Especially designed or prepared systems for the conversion of UF6 to UO2.

Conversion of UF6 to UO2 can be performed by one of three processes. In the first, UF6 is reduced and hydrolyzed to UO2 using hydrogen and steam. In the second, UF6 is hydrolyzed by solution in water, ammonia is added to precipitate ammonium diuranate, and the diuranate is reduced to UO2 with hydrogen at 500°C. In the third process, gaseous UF6, CO2, and NH3 are combined in water, precipitating ammonium uranyl carbonate. The ammonium uranyl carbonate is combined with steam and hydrogen at 500-600°C to yield UO2. UF6 to UO2 conversion is often performed as the first stage of a fuel fabrication plant.

(8) Especially Designed or Prepared Systems for the conversion of UF6 to UF4. Conversion of UF6 to UF4 is performed by reduction with hydrogen.

[61 FR 35606, July 8, 1996]
water-hydrogen sulphide exchange process (GS process) or the ammonia-hydrogen exchange process are common to several segments of the chemical and petroleum industries; particularly in small plants using the GS process. However, few items are available "off-the-shelf." Both processes require the handling of large quantities of flammable, corrosive and toxic fluids at elevated pressures. Thus, in establishing the design and operating standards for plants and equipment using these processes, careful attention to materials selection and specifications is required to ensure long service life with high safety and reliability factors. The choice is primarily a function of economics and need. Most equipment, therefore, is prepared to customer requirements.

In both processes, equipment which individually is not especially designed or prepared for heavy water production can be assembled into especially designed or prepared systems for producing heavy water. Examples of such systems are the catalyst production system used in the ammonia-hydrogen exchange process and the water distillation systems used for the final concentration of heavy water to reactor-grade in either process.

C.2. Equipment especially designed or prepared for the production of heavy water utilizing either the water-hydrogen sulphide exchange process or the ammonia-hydrogen exchange process:

(i) Water-hydrogen Sulphide Exchange Towers

Exchange towers fabricated from carbon steel (such as ASTM A516) with diameters of 6 m (20 ft) to 9 m (30 ft), capable of operating at pressures greater than or equal to 2 MPa (300 psi) and with a corrosion allowance of 6 mm or greater.

(ii) Blowers and Compressors

Single stage, low head (i.e., 0.2 MPa or 30 psi) centrifugal blowers or compressors for hydrogen-sulphide gas circulation (i.e., gas containing more than 70 percent H2S). The blowers or compressors have a throughput capacity greater than or equal to 56 m3/sec (120,000 SCF M) while operating at pressures greater than or equal to 1.8 MPa (260 psi) suction and have seals designed for wet H2S service.

(iii) Ammonia-Hydrogen Exchange Towers

Ammonia-hydrogen exchange towers greater or equal to 35 m (114.3 ft) in height with diameters of 1.5 m (4.9 ft) to 2.5 m (8.2 ft) capable of operating at pressures greater than 15 MPa (2225 psi). The towers have at least one flanged, axial opening of the same diameter as the cylindrical part through which the tower internals can be inserted or withdrawn.

(iv) Tower Internals and Stage Pumps Used in the Ammonia-hydrogen Exchange Process.

Tower internals include especially designed stage contactors which promote intimate gas/liquid contact. Stage pumps include especially designed submersible pumps for circulation of liquid ammonia within a contacting stage internal to the stage towers.

(v) Ammonia Crackers Utilizing the Ammonia-hydrogen Exchange Process.

Ammonia crackers with operating pressures greater than or equal to 3 MPa (450 psi).

(vi) Infrared Absorption Analyzers

Infrared absorption analyzers capable of "on-line" hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90 percent.


Catalytic burners for the conversion of enriched deuterium gas into heavy water.

Appendix L to Part 110—Illustrative List of Byproduct Materials Under NRC Export/Import Licensing Authority