Food and Drug Administration, HHS

§ 178.3930 Terpene resins.

The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified in paragraph (b) of this section may be safely used as components of polyolefin film intended for use in contact with food;

(a) Terpene resins consisting of the hydrogenated polymers of terpene hydrocarbons obtainable from sulfate turpentine and meeting the following specifications: Drop-softening point of 118–138 °C; iodine value less than 20.

(b) Terpene resins consisting of polymers of beta-pinene and meeting the following specifications: Acid value less than 1; saponification number less than 1; color less than 4 on the Gardner scale as measured in 50 percent mineral spirits solution.

§ 178.3940 Tetraethylene glycol di-(2-ethylhexoate).

Tetraethylene glycol di-(2-ethylhexoate) containing not more than 22 parts per million ethylene and/or diethylene glycols may be used at a level not to exceed 0.7 percent by weight of twine as a finish on twine to be used for tying meat provided the twine fibers are produced from nylon resins complying with §177.1500 of this chapter.

§ 178.3950 Tetrahydrofuran.

Tetrahydrofuran may be safely used in the fabrication of articles intended for packaging, transporting, or storing foods, subject to the provisions of this section.

(a) It is used as a solvent in the casting of film from a solution of polymeric resins of vinyl chloride, vinyl acetate, or vinylidene chloride that have been polymerized singly or copolymerized with one another in any combination, or it may be used as a solvent in the casting of film prepared from vinyl chloride copolymers complying with §177.1980 of this chapter.

(b) The residual amount of tetrahydrofuran in the film does not exceed 1.5 percent by weight of film.

PART 179—IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF FOOD

Subpart A [Reserved]

Subpart B—Radiation and Radiation Sources

Sec.
179.21 Sources of radiation used for inspection of food, for inspection of packaged food, and for controlling food processing.
179.25 General provisions for food irradiation.
179.26 Ionizing radiation for the treatment of food.
179.30 Radiofrequency radiation for the heating of food, including microwave frequencies.
179.39 Ultraviolet radiation for the processing and treatment of food.
179.41 Pulsed light for the treatment of food.

Subpart C—Packaging Materials for Irradiated Foods

§ 179.45 Packaging materials for use during the irradiation of prepackaged foods.

Source: 42 FR 14635, Mar. 15, 1977, unless otherwise noted.

Subpart A [Reserved]

Subpart B—Radiation and Radiation Sources

§ 179.21 Sources of radiation used for inspection of food, for inspection of packaged food, and for controlling food processing.

Sources of radiation for the purposes of inspection of foods, for inspection of packaged food, and for controlling food processing may be safely used under the following conditions:

(a) The radiation source is one of the following:
§ 179.25 General provisions for food irradiation.

For the purposes of § 179.26, current good manufacturing practice is defined to include the following restrictions:

(a) Any firm that treats foods with ionizing radiation shall comply with the requirements of part 110 of this chapter and other applicable regulations.

(b) Food treated with ionizing radiation shall receive the minimum radiation dose reasonably required to accomplish its intended technical effect and not more than the maximum dose specified by the applicable regulation for that use.

(c) Packaging materials subjected to irradiation incidental to the radiation treatment and processing of pre-packaged foods shall comply with § 179.45.

(d) Radiation treatment of food shall conform to a scheduled process. A scheduled process for food irradiation is a written procedure that ensures that the radiation dose range selected by the food irradiation processor is adequate under commercial processing conditions (including atmosphere and temperature) for the radiation to achieve its intended effect on a specific product and in a specific facility. A food irradiation processor shall operate with a scheduled process established by qualified persons having expert knowledge in radiation processing requirements of food and specific for that food and for that irradiation processor’s treatment facility.

(e) A food irradiation processor shall maintain records as specified in this section for a period of time that exceeds the shelf life of the irradiated food product by 1 year, up to a maximum of 3 years, whichever period is shorter, and shall make these records available for inspection and copy by authorized employees of the Food and Drug Administration. Such records shall include the food treated, lot identification, scheduled process, evidence of compliance with the scheduled process, ionizing energy source, source calibration, dosimetry, dose distribution in the product, and the date of irradiation.

[51 FR 13399, Apr. 18, 1986]

§ 179.26 Ionizing radiation for the treatment of food.

Ionizing radiation for treatment of foods may be safely used under the following conditions:

(a) Energy sources. Ionizing radiation is limited to:

(1) Gamma rays from sealed units of the radionuclides cobalt-60 or cesium-137.

(2) Electrons generated from machine sources at energies not to exceed 10 million electron volts.
Food and Drug Administration, HHS

431

§ 179.26

(3) X-rays generated from machine sources at energies not to exceed 5 million electron volts.

(b) Limitations.

<table>
<thead>
<tr>
<th>Use</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. For control of Trichinella spiralis in pork carcasses or fresh, non-heat-processed cuts of pork carcasses.</td>
<td>Minimum dose 0.3 kiloGray (kGy) (30 kilorad (krad)); maximum dose not to exceed 1 kGy (100 krad).</td>
</tr>
<tr>
<td>2. For growth and maturation inhibition of fresh foods.</td>
<td>Not to exceed 1 kGy (100 krad).</td>
</tr>
<tr>
<td>3. For disinfection of arthropod pests in food.</td>
<td>Not to exceed 10 kGy (1 megarad (Mrad)).</td>
</tr>
<tr>
<td>4. For microbial disinfection of the following dry or dehydrated aromatic vegetable substances when used as ingredients in small amounts solely for flavoring or aromatic: culinary herbs, seeds, spices, vegetable seasonings that are used to impart flavor but that are not either represented as, or appear to be, a vegetable that is eaten for its own sake, and blends of these aromatic vegetable substances. Turmeric and paprika may also be irradiated when they are to be used as color additives. The blends may contain sodium chloride and minor amounts of dry food ingredients ordinarily used in such blends.</td>
<td>Not to exceed 30 kGy (3 Mrad).</td>
</tr>
<tr>
<td>6. For control of food-borne pathogens in fresh or frozen, uncooked poultry products that are: (1) Whole carcasses or disjointed portions of such carcasses that are “ready-to-cook poultry” within the meaning of 9 CFR 381.1(b)(44), or (2) mechanically separated poultry product (a finely comminuted ingredient produced by the mechanical deboning of poultry carcasses or parts of carcasses).</td>
<td>Not to exceed 3 kGy (300 krad); any packaging used shall not exclude oxygen.</td>
</tr>
<tr>
<td>7. For the sterilization of frozen, packaged meats used solely in the National Aeronautics and Space Administration space flight programs.</td>
<td>Minimum dose 44 kiloGray (4.4 megarad). Packaging materials used need not comply with § 179.25(c) provided that their use is otherwise permitted by applicable regulations in parts 174 through 186 of this chapter.</td>
</tr>
<tr>
<td>8. For control of foodborne pathogens in, and extension of the shelf-life of, refrigerated or frozen, uncooked products that are meat within the meaning of 9 CFR 301.2(r), meat byproducts within the meaning of 9 CFR 301.2(t), or meat food products within the meaning of 9 CFR 301.2(u), with or without nonfluid seasoning, that are otherwise composed solely of intact or ground meat, meat byproducts, or both meat and meat byproducts.</td>
<td>Not to exceed 4.5 kiloGray maximum for refrigerated products; not to exceed 7.0 kiloGray maximum for frozen products.</td>
</tr>
</tbody>
</table>

(c) Labeling. (1) The label and labeling of retail packages of foods irradiated in conformance with paragraph (b) of this section shall bear the following logo along with either the statement

```
“Treated with radiation” or the statement “Treated by irradiation” in addition to information required by other regulations. The logo shall be placed prominently and conspicuously
```
in conjunction with the required statement. The radiation disclosure statement is not required to be more prominent than the declaration of ingredients required under §101.4 of this chapter. As used in this provision, the term "radiation disclosure statement" means the written statement that discloses that a food has been intentionally subject to irradiation.

(2) For irradiated foods not in package form, the required logo and phrase "Treated with radiation" or "Treated by irradiation" shall be displayed to the purchaser with either (i) the labeling of the bulk container plainly in view or (ii) a counter sign, card, or other appropriate device bearing the information that the product has been treated with radiation. As an alternative, each item of food may be individually labeled. In either case, the information must be prominently and conspicuously displayed to purchasers.

The labeling requirement applies only to a food that has been irradiated, not to a food that merely contains an irradiated ingredient but that has not itself been irradiated.

(3) For a food, any portion of which is irradiated in conformance with paragraph (b) of this section, the label and labeling and invoices or bills of lading shall bear either the statement "Treated with radiation—do not irradiate again" or the statement "Treated by irradiation—do not irradiate again" when shipped to a food manufacturer or processor for further processing, labeling, or packing.

§ 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies.

Radiofrequency radiation, including microwave frequencies, may be safely used for heating food under the following conditions:

(a) The radiation source consists of electronic equipment producing radio waves with specific frequencies for this purpose authorized by the Federal Communications Commission.

(b) The radiation is used or intended for use in the production of heat in food wherever heat is necessary and effective in the treatment or processing of food.

§ 179.39 Ultraviolet radiation for the processing and treatment of food.

Ultraviolet radiation for the processing and treatment of food may be safely used under the following conditions:

(a) The radiation sources consist of ultraviolet emission tubes designed to emit wavelengths within the range of 2200–3000 Angstrom units with 90 percent of the emission being the wavelength 2537 Angstrom units.

(b) The ultraviolet radiation is used or intended for use as follows:

<table>
<thead>
<tr>
<th>Irradiated food</th>
<th>Limitations</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food and food products</td>
<td>Irradiated with 2.200 to 3,000 A. emissions, without ozone production: high fat-content food irradiated in vacuum or in an inert atmosphere; intensity of radiation, 1 W (of 2.537 A. radiation) per 5 to 10 ft.².</td>
<td>Surface microorganism control.</td>
</tr>
<tr>
<td>Potable water</td>
<td>Irradiated with 2.200 to 3,000 A. emissions, without ozone production; coefficient of absorption, 0.19 per cm or less; flow rate, 100 gal/h per watt of 2.537 A. radiation; water depth, 1 cm or less; lamp-operating temperature, 36° to 46 °C.</td>
<td>Sterilization of water used in food production.</td>
</tr>
</tbody>
</table>

§ 179.41 Pulsed light for the treatment of food.

Pulsed light may be safely used for treatment of foods under the following conditions:

(a) The radiation sources consist of xenon flashlamps designed to emit broadband radiation consisting of wavelengths covering the range of 200 to 1,100 nanometers (nm), and operated
so that the pulse duration is no longer than 2 milliseconds (msec);
(b) The treatment is used for surface microorganism control;
(c) Foods treated with pulsed light shall receive the minimum treatment reasonably required to accomplish the intended technical effect; and
(d) The total cumulative treatment shall not exceed 12.0 Joules/square centimeter (J/cm²).

[61 FR 42383, Aug. 15, 1996]

Subpart C—Packaging Materials for Irradiated Foods

§179.45 Packaging materials for use during the irradiation of pre-packaged foods

The packaging materials identified in this section may be safely subjected to irradiation incidental to the radiation treatment and processing of pre-packaged foods, subject to the provisions of this section and to the requirement that no induced radioactivity is detectable in the packaging material itself:

(a) The radiation of the food itself shall comply with regulations in this part.
(b) The following packaging materials may be subjected to a dose of radiation, not to exceed 10 kilograys, unless otherwise indicated, incidental to the use of gamma radiation in the radiation treatment of prepackaged foods:

(1) Nitrocellulose-coated or vinylidene chloride copolymer-coated cellophane complying with §177.1200 of this chapter.

(2) Glassine paper complying with §176.170 of this chapter.

(3) Wax-coated paperboard complying with §176.170 of this chapter.

(4) Polyolefin film prepared from one or more of the basic olefin polymers complying with §177.1520 of this chapter. The finished film may contain:

(i) Adjuvant substances used in compliance with §§178.3740 and 181.22 through 181.30 of this chapter, sodium citrate, sodium lauryl sulfate, polyvinyl chloride, and materials as listed in paragraph (d)(2)(i) of this section.

(ii) Coatings comprising a vinylidene chloride copolymer containing a minimum of 85 percent vinylidene chloride with one or more of the following monomers: Acrylic acid, acrylonitrile, itaconic acid, methyl acrylate, and methyl methacrylate.

(iii) Coatings consisting of polyethylene conforming to §177.1520 of this chapter.

(5) Kraft paper prepared from un-bleached sulfate pulp to which rosin, complying with §178.3870 of this chapter, and alum may be added. The kraft paper is used only as a container for flour and is irradiated with a dose not exceeding 500 grays.

(6) Polyethylene terephthalate film prepared from the basic polymer as described in §177.1630(e)(4)(i) and (ii) of this chapter. The finished film may contain:

(i) Adjuvant substances used in compliance with §§178.3740 and 181.22 through 181.30 of this chapter, sodium citrate, sodium lauryl sulfate, polyvinyl chloride, and materials as listed in paragraph (d)(2)(i) of this section.

(ii) Coatings comprising a vinylidene chloride copolymer containing a minimum of 85 percent vinylidene chloride with one or more of the following monomers: Acrylic acid, acrylonitrile, itaconic acid, methyl acrylate, and methyl methacrylate.

(iii) Coatings consisting of polyethylene conforming to §177.1520 of this chapter.

(7) Polystyrene film prepared from styrene basic polymer. The finished film may contain adjuvant substances used in compliance with §§178.3740 and 181.22 through 181.30 of this chapter.

(8) Rubber hydrochloride film prepared from rubber hydrochloride basic polymer having a chlorine content of 30-32 weight percent and having a maximum extractable fraction of 2 weight percent when extracted with n-hexane at reflux temperature for 2 hours. The finished film may contain adjuvant substances used in compliance with §§178.3740 and 181.22 through 181.30 of this chapter.

(9) Vinylidene chloride-vinyl chloride copolymer film prepared from vinylidene chloride-vinyl chloride basic copolymers containing not less than 70 weight percent of vinylidene chloride and having a viscosity of 0.50-1.50 centipoises as determined by ASTM method D729-81, “Standard Specification for Vinylidene Chloride Molding Compounds,” which is incorporated by reference. Copies may be obtained from
(d) The following packaging materials may be subjected to a dose of radiation, not to exceed 60 kilograys incidental to the use of gamma or X-radiation in the radiation processing of prepackaged foods:

1. Vegetable parchments, consisting of a cellulose material made from waterleaf paper (unsized) treated with concentrated sulfuric acid, neutralized, and thoroughly washed with distilled water.

2. Films prepared from basic polymers and with or without adjuvants, as follows:
 - (i) Polyethylene film prepared from the basic polymer as described in §177.1520(a) of this chapter. The finished film may contain one or more of the following added substances:
 - Amides of erucic, linoleic, oleic, palmitic, and stearic acid: Not to exceed 1 percent by weight of the polymer.
 - BHA as described in §172.110 of this chapter: Do.
 - BHT as described in §172.115 of this chapter: Do.
 - Calcium and sodium propionates: Do.
 - Petroleum wax as described in §178.3710 of this chapter: Do.
 - Polypropylene, noncrystalline, as described in §177.1520(c) of this chapter: Not to exceed 2 percent by weight of the polymer.
 - Stearates of aluminum, calcium, magnesium, potassium, and sodium as described in §172.863(a) of this chapter: Not to exceed 1 percent by weight of the polymer.
 - Triethylene glycol as described in §178.3740(b) of this chapter: Do.
 - Mineral oil as described in §178.3620(a) or (b) of this chapter: Do.
 - (ii) Polyethylene terephthalate film prepared from the basic polymer as described in §177.1630(e)(4)(ii) of this chapter. The finished film may contain one or more of the added substances listed in paragraph (d)(2)(i) of this section.
 - (iii) Nylon 6 films prepared from the nylon 6 basic polymer as described in §177.1500(a)(6) of this chapter and meeting the specifications of item 6.1 of the table in §177.1500(b) of this chapter. The finished film may contain one or more of the added substances listed in paragraph (d)(2)(i) of this section.
 - (iv) Vinyl chloride-vinyl acetate copolymer film prepared from the basic copolymer containing 88.5 to 90.0 weight percent of vinyl chloride with 10.0 to 11.5 weight percent of vinyl acetate and having a maximum volatility of not over 3.0 percent (1 hour at 105°C) and viscosity not less than 0.30 determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” Method A, which is incorporated by reference. The availability of this incorporation by reference is given in paragraph (b)(9) of this section. The finished film may contain one or more of the added substances listed in paragraph (d)(2)(i) of this section.
 - (e) Acrylonitrile copolymers identified in this section shall comply with the provisions of §180.22 of this chapter.