Protection of Environment

PART 790 TO END
Revised as of July 1, 1999

CONTAINING
A CODIFICATION OF DOCUMENTS
OF GENERAL APPLICABILITY
AND FUTURE EFFECT
AS OF JULY 1, 1999

With Ancillaries

Published by
the Office of the Federal Register
National Archives and Records
Administration
as a Special Edition of
the Federal Register
Table of Contents

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Title 40:

- Chapter I—Environmental Protection Agency (Continued) 3
- Chapter V—Council on Environmental Quality 345
- Chapter VII—Environmental Protection Agency and Department of Defense; Uniform National Discharge Standards for Vessels of the Armed Forces .. 389

Finding Aids:

- Material Incorporated by Reference 401
- Table of CFR Titles and Chapters ... 403
- Alphabetical List of Agencies Appearing in the CFR 421
- Toxic Substances CAS Number—Chemical Index 431
- List of CFR Sections Affected ... 453
Cite this Code: CFR

To cite the regulations in this volume use title, part and section number. Thus, 40 CFR 790.1 refers to title 40, part 790, section 1.
Explanation

The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Register by the Executive departments and agencies of the Federal Government. The Code is divided into 50 titles which represent broad areas subject to Federal regulation. Each title is divided into chapters which usually bear the name of the issuing agency. Each chapter is further subdivided into parts covering specific regulatory areas.

Each volume of the Code is revised at least once each calendar year and issued on a quarterly basis approximately as follows:
- Title 1 through Title 16..as of January 1
- Title 17 through Title 27..as of April 1
- Title 28 through Title 41..as of July 1
- Title 42 through Title 50..as of October 1

The appropriate revision date is printed on the cover of each volume.

LEGAL STATUS

The contents of the Federal Register are required to be judicially noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

The Code of Federal Regulations is kept up to date by the individual issues of the Federal Register. These two publications must be used together to determine the latest version of any given rule.

To determine whether a Code volume has been amended since its revision date (in this case, July 1, 1999), consult the “List of CFR Sections Affected (LSA),” which is issued monthly, and the “Cumulative List of Parts Affected,” which appears in the Reader Aids section of the daily Federal Register. These two lists will identify the Federal Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

Each volume of the Code contains amendments published in the Federal Register since the last revision of that volume of the Code. Source citations for the regulations are referred to by volume number and page number of the Federal Register and date of publication. Publication dates and effective dates are usually not the same and care must be exercised by the user in determining the actual effective date. In instances where the effective date is beyond the cutoff date for the Code a note has been inserted to reflect the future effective date. In those instances where a regulation published in the Federal Register states a date certain for expiration, an appropriate note will be inserted following the text.

OMB CONTROL NUMBERS

The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires Federal agencies to display an OMB control number with their information collection request.
Many agencies have begun publishing numerous OMB control numbers as amendments to existing regulations in the CFR. These OMB numbers are placed as close as possible to the applicable recordkeeping or reporting requirements.

OBSOLETE PROVISIONS

Provisions that become obsolete before the revision date stated on the cover of each volume are not carried. Code users may find the text of provisions in effect on a given date in the past by using the appropriate numerical list of sections affected. For the period before January 1, 1986, consult either the List of CFR Sections Affected, 1949-1963, 1964-1972, or 1973-1985, published in seven separate volumes. For the period beginning January 1, 1986, a “List of CFR Sections Affected” is published at the end of each CFR volume.

INCORPORATION BY REFERENCE

What is incorporation by reference? Incorporation by reference was established by statute and allows Federal agencies to meet the requirement to publish regulations in the Federal Register by referring to materials already published elsewhere. For an incorporation to be valid, the Director of the Federal Register must approve it. The legal effect of incorporation by reference is that the material is treated as if it were published in full in the Federal Register (5 U.S.C. 552(a)). This material, like any other properly issued regulation, has the force of law.

What is a proper incorporation by reference? The Director of the Federal Register will approve an incorporation by reference only when the requirements of 1 CFR part 51 are met. Some of the elements on which approval is based are:

(a) The incorporation will substantially reduce the volume of material published in the Federal Register.

(b) The matter incorporated is in fact available to the extent necessary to afford fairness and uniformity in the administrative process.

(c) The incorporating document is drafted and submitted for publication in accordance with 1 CFR part 51.

Properly approved incorporations by reference in this volume are listed in the Finding Aids at the end of this volume.

What if the material incorporated by reference cannot be found? If you have any problem locating or obtaining a copy of material listed in the Finding Aids of this volume as an approved incorporation by reference, please contact the agency that issued the regulation containing that incorporation. If, after contacting the agency, you find the material is not available, please notify the Director of the Federal Register, National Archives and Records Administration, Washington DC 20408, or call (202) 523-4534.

CFR INDEXES AND TABULAR GUIDES

A subject index to the Code of Federal Regulations is contained in a separate volume, revised annually as of January 1, entitled CFR INDEX AND FINDING AIDS. This volume contains the Parallel Table of Statutory Authorities and Agency Rules (Table 1). A list of CFR titles, chapters, and parts and an alphabetical list of agencies publishing in the CFR are also included in this volume.

An index to the text of “Title 3—The President” is carried within that volume.

The Federal Register Index is issued monthly in cumulative form. This index is based on a consolidation of the “Contents” entries in the daily Federal Register.

A List of CFR Sections Affected (LSA) is published monthly, keyed to the revision dates of the 50 CFR titles.
REPUBLICATION OF MATERIAL

There are no restrictions on the republication of material appearing in the Code of Federal Regulations.

INQUIRIES

For a legal interpretation or explanation of any regulation in this volume, contact the issuing agency. The issuing agency’s name appears at the top of odd-numbered pages.

For inquiries concerning CFR reference assistance, call 202-523-5277 or write to the Director, Office of the Federal Register, National Archives and Records Administration, Washington, DC 20408.

SALES

The Government Printing Office (GPO) processes all sales and distribution of the CFR. For payment by credit card, call 202-512-1800, M-F, 8 a.m. to 4 p.m. e.s.t. or fax your order to 202-512-2233, 24 hours a day. For payment by check, write to the Superintendent of Documents, Attn: New Orders, P.O. Box 371954, Pittsburgh, PA 15250-7954. For GPO Customer Service call 202-512-1803.

ELECTRONIC SERVICES

The Office of the Federal Register also offers a free service on the National Archives and Records Administration’s (NARA) World Wide Web site for public law numbers, Federal Register finding aids, and related information. Connect to NARA’s web site at www.nara.gov/fedreg. The NARA site also contains links to GPO Access.

RAYMOND A. MOSLEY,
Director,
Office of the Federal Register.

July 1, 1999.
THIS TITLE

Title 40—Protection of Environment is composed of twenty-four volumes. The parts in these volumes are arranged in the following order: parts 1-49, parts 50-51, part 52 (52.01-52.1018), part 52 (52.1019-End), parts 53-59, part 60, parts 61-62, part 63 (63.1-63.1199), part 63 (63.1200-End), parts 64-71, parts 72-80, parts 81-85, part 86, parts 87-135, parts 136-149, parts 150-189, parts 190-259, parts 260-265, parts 266-299, parts 300-399, parts 400-424, parts 425-699, parts 700-789, and part 790 to End. The contents of these volumes represent all current regulations codified under this title of the CFR as of July 1, 1999.

Chapter I—Environmental Protection Agency appears in all twenty-four volumes. A Pesticide Tolerance Commodity/Chemical Index appears in parts 150-189. A Toxic Substances Chemical—CAS Number Index appears in parts 700-789 and part 790 to End. Redesignation Tables appear in the volumes containing parts 50-51, parts 150-189, and parts 700-789. Regulations issued by the Council on Environmental Quality appear in the volume containing part 790 to End. The OMB control numbers for title 40 appear in §9.1 of this chapter.

For this volume, Linda L. Jones was Chief Editor. The Code of Federal Regulations publication program is under the direction of Frances D. McDonald, assisted by Alomha S. Morris.
Would you like to know... if any changes have been made to the Code of Federal Regulations or what documents have been published in the Federal Register without reading the Federal Register every day? If so, you may wish to subscribe to the LSA (List of CFR Sections Affected), the Federal Register Index, or both.

LSA
The LSA (List of CFR Sections Affected) is designed to lead users of the Code of Federal Regulations to amending actions published in the Federal Register. The LSA is issued monthly in cumulative form. Entries indicate the nature of the changes—such as revised, removed, or corrected. $27 per year.

Federal Register Index
The index, covering the contents of the daily Federal Register, is issued monthly in cumulative form. Entries are carried primarily under the names of the issuing agencies. Significant subjects are carried as cross-references. $25 per year.

A finding aid is included in each publication which lists Federal Register page numbers with the date of publication in the Federal Register.

Superintendent of Documents Subscription Order Form

Order Processing Code: *5421

☐ YES, send me the following indicated subscriptions for one year:
 ___ LSA (List of CFR Sections Affected), (LCS) for $27 per year.
 ___ Federal Register Index (FRSU) $25 per year.

The total cost of my order is $ __________
Price is subject to change. International customers please add 25%.

Company or personal name ________________________________

Street address __

City, State, ZIP code _____________________________________

Daytime phone with area code ______________________________

Purchase order No. ________________________ (optional)

Fax your orders (202) 512-2250
Phone your orders (202) 512-1800

(Includes regular shipping and handling.)

For privacy check box below:
☐ Do not make my name available to other mailers

Check method of payment:
☐ Check payable to Superintendent of Documents
☐ GPO Deposit Account _______
☐ VISA ☐ MasterCard _______ (expiration date)

Credit card No. ____________________________ (must be 20 digits)

Thank you for your order!

Authorizing signature ________________________________
Mail To: Superintendent of Documents
P.O. Box 371954
Pittsburgh PA 15250–7954

X
Title 40—Protection of Environment

(This book contains part 790 to End)

CHAPTER I—Environmental Protection Agency (Continued) 790
CHAPTER V—Council on Environmental Quality 1500
CHAPTER VII—Environmental Protection Agency and Department of Defense; Uniform National Discharge Standards for Vessels of the Armed Forces 1700
CHAPTER I—ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)

SUBCHAPTER R—TOXIC SUBSTANCES CONTROL ACT (CONTINUED)

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>790</td>
<td>Procedures governing testing consent agreements and test rules</td>
<td>5</td>
</tr>
<tr>
<td>791</td>
<td>Data reimbursement</td>
<td>26</td>
</tr>
<tr>
<td>792</td>
<td>Good laboratory practice standards</td>
<td>33</td>
</tr>
<tr>
<td>795</td>
<td>Provisional test guidelines</td>
<td>46</td>
</tr>
<tr>
<td>796</td>
<td>Chemical fate testing guidelines</td>
<td>80</td>
</tr>
<tr>
<td>797</td>
<td>Environmental effects testing guidelines</td>
<td>101</td>
</tr>
<tr>
<td>798</td>
<td>Health effects testing guidelines</td>
<td>140</td>
</tr>
<tr>
<td>799</td>
<td>Identification of specific chemical substance and mixture testing requirements</td>
<td>225</td>
</tr>
</tbody>
</table>

Editorial Note: Nomenclature changes to Chapter I appear at 57 FR 28087, June 24, 1992.
SUBCHAPTER R—TOXIC SUBSTANCES CONTROL ACT
(Continued)

PART 790—PROCEDURES GOV-
ERNING TESTING CONSENT
AGREEMENTS AND TEST RULES

Subpart A—General Provisions
Sec.
790.1 Scope, purpose, and authority.
790.2 Applicability.
790.3 Definitions.
790.5 Submission of information.
790.7 Confidentiality.

Subpart B—Procedures for Developing
Consent Agreements and Test Rules
790.20 Recommendation and designation of
testing candidates by the ITC.
790.22 Procedures for gathering information
and negotiating consent agreements on
chemicals which the ITC has rec-
ommended for testing with an intent to
designate.
790.24 Criteria for determining whether a
consensus exists concerning the provi-
sions of a draft consent agreement.
790.26 Initiation and completion of rule-
making proceedings on ITC-designated
chemicals.
790.28 Procedures for developing consent
agreements and/or test rules for chemi-
cals that have not been designated or
recommended with intent to designate
by the ITC.

Subpart C—Implementation, Enforcement,
and Modification of Test Rules
790.40 Promulgation of test rules.
790.42 Persons subject to a test rule.
790.45 Submission of letter of intent to con-
duct testing or exemption application.
790.48 Procedure if no one submits a letter
of intent to conduct testing.
790.50 Submission of study plans.
790.52 Phase II test rule.
790.55 Modification of test standards or
schedules during conduct of test.
790.59 Failure to comply with a test rule.

Subpart D—Implementation, Enforcement
and Modification of Consent Agreements
790.60 Contents of consent agreements.
790.62 Submission of study plans and con-
duct of testing.
790.65 Failure to comply with a consent
agreement.
790.68 Modification of consent agreements.

Subpart E—Exemptions From Test Rules
790.80 Submission of exemption appli-
cations.
790.82 Content of exemption application.
790.85 Submission of equivalence data.
790.87 Approval of exemption applications.
790.88 Denial of exemption application.
790.90 Appeal of denial of exemption appli-
cation.
790.93 Termination of conditional exemp-
tion.
790.97 Hearing procedures.
790.99 Statement of financial responsibility.

APPENDIX A TO SUBPART E—SCHEDULE FOR
DEVELOPING CONSENT AGREEMENTS AND
TEST RULES

Subpart A—General Provisions
§ 790.1 Scope, purpose, and authority.
(a) This part establishes procedures
for gathering information, conducting
negotiations, and developing and im-
plementing test rules or consent agree-
ments on chemical substances and mix-
tures under section 4 of TSCA.
(b) Section 4 of the Act authorizes
EPA to require manufacturers and
processors of chemical substances and
mixtures to test these chemicals to de-
termine whether they have adverse
health or environmental effects. Sec-
tion 4 (a) empowers the Agency to pro-
mulgate rules which require such test-
ing. In addition, EPA has implied au-
thority to enter into enforceable con-
sent agreements requiring testing
where they provide procedural safe-
guards equivalent to those that apply
where testing is conducted by rule.
(c) EPA intends to use enforceable
consent agreements to accomplish
testing where a consensus exists among
EPA, affected manufacturers and/or
processors, and interested members of
the public concerning the need for and
scope of testing. If such a consensus
does not exist and the Agency believes
that it can make the findings specified
in section 4(a), EPA will initiate pro-
ceedings to promulgate test rules
which will be codified in part 799 of this
chapter.
§ 790.2

Exemption means an exemption from a testing requirement of a test rule promulgated under section 4 of the Act and part 799 of this chapter.

Impurity means a chemical substance which is unintentionally present with another chemical substance.

Joint sponsor means a person who sponsors testing pursuant to section 4(b)(3)(A) of the Act.

Joint sponsorship means the sponsorship of testing by two or more persons in accordance with section 4(b)(3)(A) of the Act.

Person means an individual, partnership, corporation, association, scientific or academic establishment, or organizational unit thereof, and any other legal entity.

Principal sponsor means an individual sponsor or the joint sponsor who assumes primary responsibility for the direction of a study and for oral and written communication with EPA.

Protocol means the plan and procedures which are to be followed in conducting a test.

Reimbursement period refers to a period that begins when the data from the last non-duplicative test to be completed under a test rule are submitted to EPA and ends after an amount of time equal to that which had been required to develop data or after five years, whichever is later.

Sponsor means the person or persons who design, direct and finance the testing of a substance or mixture.

Test substance means the form of chemical substance or mixture that is specified for use in testing.

§ 790.5 Submission of information.

(a) All submissions to EPA under this part must bear the Code of Federal Regulations (CFR) section number of the subject chemical test rule, or indicate the identity of the consent agreement. For all submissions under this part, six copies must be provided to EPA.

(b) Submissions containing both confidential business information or non-confidential business information must be addressed to the Document Control
§ 790.7 Confidentiality.

(a) Any person subject to the requirements of a consent agreement or a test rule under section 4 of the Act may assert a claim of confidentiality for certain information submitted to EPA in response to the consent agreement or the test rule. Any information claimed as confidential will be treated in accordance with the procedures in part 2 of this title and section 14 of the Act. Failure to assert a claim of confidentiality at the time the information is submitted will result in the information being made available to the public without further notice to the submitter.

(b) A claim of confidentiality must be asserted by circling or otherwise marking the specific information claimed as confidential and designating it with the words “confidential business information,” “trade secret,” or another appropriate phrase indicating its confidential character.

(c) If a person asserts a claim of confidentiality for study plan information described in §§ 790.50(c)(3)(iii)(D), (iv), (v), and (vi) and 790.62(b)(6), (7), (8), (9), and (10), the person must provide a detailed written substantiation of the claim by answering the questions in this paragraph. Failure to provide written substantiation at the time the study plan information is submitted will be considered a waiver of the claim of confidentiality, and the study plan information will be disclosed to the public without further notice.

(1) Would disclosure of the study plan information disclose processes used in the manufacture or processing of a chemical substance or mixture? Describe how this would occur.

(2) Would disclosure of the study plan information disclose the portion of a mixture comprised by any of the substances in the mixture? Describe how this would occur.

(3) What harmful effects to your competitive position, if any, do you think would result from disclosure of this information? How would a competitor use such information? How substantial would the harmful effects be? What is the causal relationship between disclosure and the harmful effects?

(4) For what period of time should confidential treatment be given? Until a specific date, the occurrence of a specific event, or permanently? Why?

(5) What measures have you taken to guard against disclosure of this information to others?

(6) To what extent has this information been disclosed to others? What precautions have been taken in connection with such disclosures?

(7) Has this information been disclosed to the public in any forms? Describe the circumstances.

(8) Has the information been disclosed in a patent?

(9) Has EPA, another Federal agency, or any Federal court made any pertinent confidentiality determination regarding this information? If so, copies of such determinations must be included in the substantiation.

(d) If the substantiation provided under paragraph (c) of this section contains information which the submitter considers confidential, the submitter must assert a separate claim of confidentiality for that information at the time of submission in accordance with paragraph (b) of this section.

Subpart B—Procedures for Developing Consent Agreements and Test Rules

§ 790.20 Recommendation and designation of testing candidates by the ITC.

(a) Recommendations with intent to designate. The ITC has advised EPA that it will discharge its responsibilities under section 4(e) of the Act in the following manner:
§ 790.22 Procedures for gathering information and negotiating consent agreements on chemicals which the ITC has recommended for testing with an intent to designates.

(a) Preliminary EPA evaluation. Following receipt of an ITC report containing a recommendation with an intent to designate, EPA will use the following procedure for completing a preliminary evaluation of testing needs. Appendix A\(^1\) to this part presents the schedule that EPA intends to follow for this purpose.

1. EPA will publish the ITC report in the Federal Register and announce that interested persons have 30 days to submit comments on the ITC’s testing recommendations.
2. EPA will publish a Federal Register notice adding all ITC-recommended chemicals to the automatic reporting provisions of its rules under sections 8(a) and 8(d) of the Act (40 CFR parts 712 and 716).
3. EPA will hold a public “focus meeting” to discuss the ITC’s testing recommendations and obtain comments and information from interested parties.
4. EPA will evaluate submissions received under the sections 8(a) and 8(d) reporting requirements, comments filed on the ITC’s recommendations, and other information and data compiled by the Agency.
5. EPA will make a preliminary staff determination of the need for testing and, where testing appears warranted, will tentatively select the studies to be performed.

--

1Editorial Note: Appendix A appears at the end of subpart E.
(6) EPA will hold a public meeting to announce its preliminary testing determinations.

(b) Negotiation procedures for consent agreements. Where EPA believes that testing is necessary, the Agency will explore whether a consent agreement can be negotiated that satisfies the testing needs identified by the Agency. EPA will use the following procedures for negotiating, formulating and accepting consent agreements. Appendix A to this part presents the schedule that EPA intends to follow for this purpose.

(1) In the Federal Register notice described in paragraph (a)(1) of this section, EPA will explain its procedures and timetable for negotiating consent agreements and invite persons interested in participating in or monitoring negotiations to contact the Agency in writing.

(2) Persons who respond to EPA’s notice by the announced date of the Agency’s course-setting meeting will be deemed “interested parties” for purposes of any negotiations that EPA conducts.

(3) Following the course-setting meeting announcing EPA’s preliminary testing determinations, the Agency will meet with manufacturers, processors and other interested parties for the purpose of attempting to negotiate a consent agreement. To facilitate attendance at these meetings, EPA will contact all interested parties who have expressed a desire to participate in or monitor negotiations under paragraph (b)(2) of this section and advise them of meeting dates.

(4) All negotiating meetings will be open to members of the public. The minutes of each meeting will be prepared by EPA. Meeting minutes, testing proposals, background documents and other materials exchanged at or prepared for negotiating meetings will be included in the public file established by EPA on each ITC-recommended chemical. Materials in this file will be made available for inspection in the OPPTS Reading Room during EPA working hours.

(5) While negotiations are underway, EPA will promptly circulate meeting minutes, testing proposals, correspondence and other relevant materials to interested parties who expressed a desire to participate in or monitor negotiations pursuant to paragraph (b)(2) of this section.

(6) As negotiations progress, EPA will make a tentative decision either to proceed with formulation of a consent agreement or to initiate rulemaking. EPA will terminate negotiations after 10 weeks and proceed with rulemaking unless negotiations are likely to result in a draft consent agreement within 4 additional weeks. By the end of this 4-week period, EPA either will have prepared a draft consent agreement reflecting the apparent consensus of the parties or will terminate negotiations and proceed with rulemaking. If EPA decides to proceed with rulemaking, no further opportunity for negotiations will be provided. EPA will promptly send written notice to all interested parties of the termination of negotiations.

(7) Where EPA prepares a draft consent agreement, it will be circulated for comment to all interested parties who expressed a desire to participate in or monitor negotiations under paragraph (b)(2) of this section. A period of 4 weeks will be provided for submitting comments or written objections under §790.24(a).

(8) If necessary, EPA will hold a public meeting to discuss comments on the draft consent agreement and to determine whether revisions in the agreement are appropriate.

(9) Where a consensus exists concerning the contents of a draft consent agreement, it will be circulated to EPA management and interested parties for final approval and signature.

(10) Upon final approval of a consent agreement, EPA will publish a Federal Register notice that summarizes the agreement, describes the ITC recommendations for the test substance, outlines the chemical’s use and exposure characteristics, and explains the background, objectives and rationale of the testing to be conducted, and codifies in subpart C of part 799 the name of the substance(s) to be tested and the citation to the Federal Register notice of the agreement.
§ 790.24 Criteria for determining whether a consensus exists concerning the provisions of a draft consent agreement.

(a) EPA will enter into consent agreements only where there is a consensus among the Agency, one or more manufacturers and/or processors who agree to conduct or sponsor the testing, and all other interested parties who identify themselves in accordance with §790.22(b)(2). EPA will not enter into a consent agreement in either of the following circumstances:

(1) EPA and affected manufacturers and/or processors cannot reach a consensus on the testing requirements or other provisions to be included in the consent agreement.

(2) A draft consent agreement is considered inadequate by other interested parties who, pursuant to §790.22(b)(2), have asked to participate in or monitor negotiations; and these parties have submitted timely written objections to the draft consent agreement which provide a specific explanation of the grounds on which the draft agreement is objectionable.

(b) EPA may reject objections described in paragraph (a)(2) of this section only where the Agency concludes the objections are either:

(1) Not made in good faith.

(2) Untimely.

(3) Do not involve the adequacy of the proposed testing program or other features of the agreement that may affect EPA’s ability to fulfill the goals and purposes of the Act.

(4) Not accompanied by a specific explanation of the grounds on which the draft agreement is considered objectionable.

(c) The unwillingness of some manufacturers and/or processors of a prospective test chemical to sign the draft consent agreement does not, in itself, establish a lack of consensus if EPA concludes that those manufacturers and/or processors who are prepared to sign the agreement are capable of accomplishing the testing to be required and that the draft agreement will achieve the purposes of the Act in all other respects.

§ 790.26 Initiation and completion of rulemaking proceedings on ITC-designated chemicals.

(a) Where EPA concludes that a consensus does not exist concerning the provisions of a draft consent agreement and that the findings specified by section 4(a) can be made, the Agency will proceed with rulemaking under section 4(a) of TSCA.

(b) When EPA decides to proceed with rulemaking under paragraph (a) of this section, the Agency intends to publish a rulemaking proposal and a final rule or a notice terminating the rulemaking proceeding in accordance with the schedule specified in Appendix A1 to this part.

(c) Where the testing recommendations of the ITC raise unusually complex and novel issues that require additional Agency review and opportunity for public comment, the Agency may publish an Advance Notice of Proposed Rulemaking (ANPR). The schedule that EPA intends to follow for rulemaking proceedings initiated by publication of an ANPR is presented in appendix A1 to this part.

§ 790.28 Procedures for developing consent agreements and/or test rules for chemicals that have not been designated or recommended with intent to designate by the ITC.

(a) Where EPA believes that testing is needed, it may also develop consent agreements and/or test rules on chemical substances or mixtures that either:

(1) Have been recommended but not “recommended with intent to designate” by the ITC.

(2) Have been selected for testing consideration by EPA on its own initiative.

(b) When EPA wishes to initiate negotiations concerning chemicals described in paragraph (a) of this section, it will publish a Federal Register notice describing its tentative evaluation of testing needs, announcing a date for a public course-setting meeting, and inviting persons interested in participating in or monitoring negotiations to

1Editorial Note: Appendix A appears at the end of subpart E.
Environmental Protection Agency § 790.42

contact the Agency in writing. Any negotiations that EPA conducts will conform to the procedures specified in §790.22(b) and, to the extent feasible, will follow the schedules presented in appendix A to this part.

(c) EPA will enter into consent agreements on chemicals described in paragraph (a) of this section only if there is a consensus among EPA, affected manufacturers and/or processors, and any other persons who have asked to participate in or monitor negotiations. In determining whether such a consensus exists, EPA will employ the criteria specified in §790.24. In the absence of consensus, EPA will initiate rulemaking if it concludes that the findings specified in section 4(a) of the Act can be made. The schedule for initiating and completing such rulemaking proceedings will, to the extent feasible, follow the schedule specified in appendix A to this part.

Subpart C—Implementation, Enforcement, and Modification of Test Rules

§ 790.40 Promulgation of test rules.

(a) If EPA determines that it is necessary to test a chemical substance or mixture by rule under section 4 of the Act, it will promulgate a test rule in part 799 of this chapter.

(b) EPA will promulgate specific test rules in part 799 of this chapter either by a single-phase rulemaking procedure or by a two-phase rulemaking procedure.

(1) Under single-phase test rule development, EPA will promulgate a test rule in part 799 of this chapter through a notice and comment rulemaking which specifies the following:

(i) Identification of the chemical for which testing is required under the rule.

(ii) The health or environmental effect or effects or other characteristics for which testing is being required.

(iii) Which test substance(s) must be tested.

(iv) Standards for the development of test data.

(v) The EPA Good Laboratory Practice requirements for the required testing.

(vi) Schedule for submission of interim reports and final reports to EPA.

(vii) Who must submit either letters of intent to conduct testing or exemption applications.

(viii) What types of data EPA will examine in determining equivalence if more than one test substance is to be tested.

(2) Under two-phase test rule development, EPA will promulgate a Phase I test rule in part 799 of this chapter through a notice and comment rulemaking which specifies the following:

(i) Identification of the chemical for which testing is required under the rule.

(ii) The health or environmental effect or effects or other characteristics for which testing is being required.

(iii) Which test substance(s) must be tested.

(iv) A reference to appropriate guidelines for the development of test data.

(v) The EPA Good Laboratory Practice requirements for the required testing.

(vi) Who must submit either letters of intent to conduct testing and study plans, or exemption applications.

(vii) What types of data EPA will examine in determining equivalence if more than one test substance is to be tested.

(3) Under two-phase test rule development, test standards and schedules will be developed in a second phase of rulemaking as described in §§790.50 and 790.52.

§ 790.42 Persons subject to a test rule.

(a) Each test rule described in §790.40 will specify whether manufacturers, processors, or both are subject to the requirement for testing of the subject chemical under section 4(b)(3)(B) of the

1Editorial Note: Appendix A appears at the end of subpart E.
§ 790.45 Submission of letter of intent to conduct testing or exemption application.

(a) No later than 30 days after the effective date of a test rule described in § 790.40, each person subject to that rule and required to comply with the requirements of that rule as provided in § 790.42(a) must, for each test required in accordance with the test rule, either notify EPA by letter of his or her intent to conduct testing or submit to EPA an application for an exemption from testing requirements for the test.

(b) EPA will consider letters of intent to test as commitments to sponsor the tests for which they are submitted unless EPA agrees to the substitution of an exemption application in instances where more than one person indicates an intent to sponsor equivalent tests.

(c) Each letter of intent to conduct testing must include:

(1) Identification of test rule.

(2) Name, address, and telephone number of the firm(s) which will be sponsoring the tests.

(3) Name, address, and telephone number of the appropriate individual to contact for further information.

(4) For sponsors participating in a testing consortium—a list of all members of the consortium, the signature of an authorized representative of each member, and a designation of who is to serve as principal sponsor.

(5) A list of the testing requirements for which the sponsor(s) intends to conduct tests.
(6) If EPA is requiring testing of more than one representative substance—which test substance the sponsor(s) intends to use in each of the tests.

(d)(1) Any person not manufacturing or processing the subject chemical as of the effective date of the test rule described in §790.40 or by 30 days after the effective date of the rule who, before the end of the reimbursement period, manufactures or processes the test chemical and who is subject to and required to comply with the requirements of the test rule must submit the letter of intent to test or an exemption application required by paragraph (a) of this section by the date manufacture or processing begins, or

(2) When both manufacturers and processors are subject to the rule, any person not processing the subject chemical as of the effective date of the test rule described in §790.40 or by 30 days after publication of the FEDERAL REGISTER notice described in §790.48(b)(2) who, before the end of the reimbursement period, processes the test chemical and who is required to comply with the requirements of the rule must submit the letter of intent to test or an exemption application required by paragraph (a) of §790.48(b)(3) of the date processing begins.

(e) Manufacturers subject to a test rule described in §790.40 who do not submit to EPA either a letter of intent to conduct tests or an exemption for each test for which testing is required in the test rule will be considered in violation of that rule beginning on the 31st day after the effective date of the test rule described in §790.40 or on the date manufacture begins as described in paragraph (d) of this section.

(f) Processors subject to a test rule described in §790.40 and required to comply with the requirements of test rule pursuant to §790.42(a)(2) or a FEDERAL REGISTER notice described in §790.48(b)(2) who do not submit to EPA either a letter of intent to conduct tests or a request for an exemption for each test for which testing is required in the test rule will be considered in violation of that rule beginning on the 31st day after the effective date of the test rule described in §790.40 or 31 days after publication of the FEDERAL REGISTER notice described in §790.48(b)(2) or on the date processing begins as described in paragraph (d) of this section, as appropriate.

§790.48 Procedure if no one submits a letter of intent to conduct testing.

(a) If only manufacturers are subject to the rule. (1) This paragraph applies if testing is being required solely to allow evaluation of risks associated with manufacturing and the test rule described in §790.40 states that manufacturers only are responsible for testing.

(2) If no manufacturer subject to the test rule has notified EPA of its intent to conduct one or more of the required tests within 30 days after the effective date of the test rule described in §790.40, EPA will notify all manufacturers, including those described in §790.42(a)(4) and (a)(5), by certified mail or by publishing a notice of this fact in the Federal Register specifying the tests for which no letter of intent has been submitted and will give such manufacturers an opportunity to take corrective action.

(3) If no manufacturer submits a letter of intent to conduct one or more of the required tests within 30 days after receipt of the certified letter or publication of the Federal Register notice described in paragraph (a)(2) of this section, all manufacturers subject to the rule will be in violation of the test rule from the 31st day after receipt of the certified letter or publication of the Federal Register notice described in this paragraph.

(b) If manufacturers and processors are subject to the rule. (1) This paragraph applies if testing is being required to allow evaluation of risks associated with manufacturing and processing or with distribution in commerce, use, or disposal of the chemical and the test rule described in §790.40 states that manufacturers and processors are responsible for testing.

(2) If no manufacturer subject to the rule has notified EPA of its intent to conduct testing for one or more of the required tests within 30 days after the effective date of the test rule described in §790.40, EPA will publish a notice in the FEDERAL REGISTER of this fact
§ 790.50 Submission of study plans.

(a) Who must submit study plans.

(1) Persons who notify EPA of their intent to conduct tests in compliance with the requirements of a single phase test rule as described in §790.40(b)(1) must submit study plans for those tests prior to the initiation of each of these tests, unless directed by a particular test rule or consent agreement to submit study plans at a specific time.

(2) Persons who notify EPA of their intent to conduct tests in compliance with the requirements of a Phase I test rule as described in §790.40(b)(2) must submit the proposed study plans for those tests on or before 90 days after the effective date of the Phase I test rule, or 60 days after the date manufacture or processing begins as described in §790.40(d), as appropriate, to the address in §790.5(b).

(3) Study plans must be prepared according to the requirements of this subpart B and part 792 of this chapter. Only one set of study plans should be prepared and submitted by persons who are jointly sponsoring testing.

(4) Any person subject to a test rule may submit a study plan for any test specifying the tests for which no letter of intent has been submitted.

(3) No later than 30 days after the date of publication of the Federal Register notice described in paragraph (b)(2) of this section, each person processing the subject chemical as of the effective date of the test rule described in §790.40 or by 30 days after the date of publication of the Federal Register notice described in paragraph (b)(2) of this section must, for each test specified in the Federal Register notice, either notify EPA by letter of his or her intent to conduct testing or submit to EPA an application for an exemption from testing requirements for the test.

(4) If no manufacturer or processor of the test chemical has submitted a letter of intent to conduct one or more of the required tests within 30 days after the date of publication of the Federal Register notice described in paragraph (b)(2) of this section, EPA will notify all manufacturers and processors by certified letter or publish a Federal Register notice of this fact, specifying the tests for which no letter of intent has been submitted. This letter or Federal Register notice will give the manufacturers and processors an opportunity to take corrective action.

(5) If no manufacturer or processor submits a letter of intent to conduct one or more of the required tests within 30 days after receipt of the certified letter or publication of the Federal Register notice described in paragraph (c)(2) of this section, all processors subject to the test rule will be in violation of the test rule from the 31st day after receipt of the certified letter or publication of the Federal Register notice described in this paragraph.

required by the rule at any time, regardless of whether the person previously submitted an application for exemption from testing for that test.

(5) Unless EPA has granted an extension of time for submission of proposed study plans, manufacturers who notify EPA that they intend to conduct testing in compliance with the requirements of a Phase I test rule as described in §790.40(b)(2) and who do not submit proposed study plans for those tests on or before 90 days after the effective date of the Phase I test rule or 60 days after the date manufacture begins as described in §790.45(d) will be considered in violation of the test rule as if no letter of intent to test had been submitted.

(6) Unless EPA has granted an extension of time for submission of proposed study plans, processors who notify EPA that they intend to conduct testing in compliance with the requirements of a Phase I test rule as described in §790.40(b)(2) and who do not submit proposed study plans for those tests on or before 90 days after the effective date of the Phase I test rule or 90 days after the publication date of the notice described in §790.48(b)(2), or 60 days after the date processing begins as described in §790.45(d), as appropriate, will be considered in violation of the test rule as if no letter of intent to test had been submitted.

(b) Extensions of time for submission of study plans. (1) EPA may grant requests for additional time for the development of study plans on a case-by-case basis. Requests for additional time for study plan development must be made in writing to EPA at the address in §790.5(b). Each extension request must state why EPA should grant the extension.

(2) Under two-phase rulemaking, extension requests must be submitted to EPA within 60 days after the effective date of the Phase I test rule as described in §790.40(b)(2); or for processors complying with the notice described in §790.48(b)(2), 60 days after the publication date of that notice; or 30 days after the date manufacture or processing begins as described in §790.45(d), as appropriate.

(3) EPA will notify the submitter by certified mail of EPA’s decision to grant or deny an extension request.

(4) Persons who have been granted an extension of time for submission of study plans as described in paragraph (b)(1) of this section and who do not submit proposed study plans in compliance with the requirements of a Phase I test rule in accordance with the new deadline granted by EPA will be considered in violation of the test rule as if no letter of intent to test had been submitted as described in §790.45(e) and (f).

(c) Content of study plans. (1) All study plans are required to contain the following information:

(i) Identity of the test rule.

(ii) The specific test requirements of that rule to be covered by the study plan.

(iii)(A) The names and addresses of the test sponsors.

(B) The names, addresses, and telephone numbers of the responsible administrative officials and project manager(s) in the principal sponsor’s organization.

(C) The name, address, and telephone number of the appropriate individual to contact for oral and written communications with EPA.

(D)(1) The names and addresses of the testing facilities and the names, addresses, and telephone numbers of the testing facilities’ administrative officials and project manager(s) responsible for the testing.

(2) Brief summaries of the training and experience of each professional involved in the study, including study director, veterinarian(s), toxicologist(s), pathologist(s), chemist(s), microbiologist(s), and laboratory assistants.

(iv) Identity and data on the chemical substance(s) being tested, including physical constants, spectral data, chemical analysis, and stability under test and storage conditions, as appropriate.

(v) Study protocol, including the rationale for any combination of test protocols; the rationale for species/strain selection; dose selection (and supporting data); route(s) or method(s) of exposure; description of diet to be used and its source; including nutrients
and contaminants and their concentrations; for in vivo test systems, a description of culture medium and its source; and a summary of expected spontaneous chronic diseases (including tumors), genealogy, and life span.

(vi) Schedule for initiation and completion of each short-term test and of each major phase of long-term tests; dates for submission of interim progress and final reports to EPA that are within the reporting deadlines specified by EPA in the final test rule.

(2) Information required in paragraph (c)(1)(iii)(D) of this section is not required in proposed study plans submitted in compliance with the requirements of a Phase I test rule if the information is not available at the time of study plan submission; however, the information must be submitted before the initiation of testing.

(d) Incomplete study plans. (1) Upon receipt of a study plan, EPA will review the study plan to determine whether it complies with paragraph (c) of this section. If EPA determines that the study plan does not comply with paragraph (c) of this section, EPA will notify the submitter that the submission is incomplete and will identify the deficiencies and the steps necessary to complete the submission.

(2) The submitter will have 15 days after the day it receives this notice to submit appropriate information to make the study plan complete.

(3) If the submitter fails to provide appropriate information to complete a proposed study plan submitted in compliance with the requirements of a Phase I test rule on or before 15 days after receipt of the notice, the submitter will be considered in violation of the requirements of a Phase II test rule.

(e) Amendments to study plans. Test sponsors shall submit all amendments to study plans to the Director, Office of Compliance Monitoring at the address in §790.5(d).

§ 790.52 Phase II test rule.

(a) If EPA determines that the proposed study plan described in §790.50(a)(2) complies with §790.50(c), EPA will publish a proposed Phase II test rule in the Federal Register requesting comments on the ability of the proposed study plan to ensure that data from the test will be reliable and adequate.

(b) EPA will provide a 45-day comment period and will provide an opportunity for an oral presentation upon the request of any person. EPA may extend the comment period if it appears from the nature of the issues raised by EPA’s review or from public comments that further comment is warranted.

(c) After receiving and considering public comments on the study plan, EPA will adopt, as proposed or as modified in response to EPA review and public comments, the study protocol section of the study plan, as defined by §790.50(c)(1)(v) of this chapter, as the test standard for the required testing, and the schedule section of the study plan, as defined by §790.50(c)(1)(vi) of this chapter, as the schedule for the required testing in a final Phase II test rule.

§ 790.55 Modification of test standards or schedules during conduct of test.

(a) Application. Any test sponsor who wishes to modify the test schedule for the mandatory testing conditions or requirements (i.e., “shall statements”) in the test standard for any test required by a test rule must submit an application in accordance with this paragraph. Application for modification must be made in writing to EPA at the address in §790.5(b), or by phone with written confirmation to follow within 10 working days. Applications must include an appropriate explanation and rationale for the modification. Where a test sponsor requests EPA to provide guidance or to clarify a non-mandatory testing requirement (i.e., “should statements”) in a test standard, the test sponsor should submit these requests to EPA at the address in §790.5(b).
Adoption. (1) Where EPA concludes that the requested modification of a test standard or schedule for a test required under a test rule is appropriate, EPA will proceed in accordance with this paragraph (b).

(2) Where, in EPA’s judgment, the requested modification of the test standard or schedule would not alter the scope of the test or significantly change the schedule for completing the test, EPA will not ask for public comment before approving the modification. EPA will notify the test sponsor by letter of EPA’s approval. EPA will place copies of each application and EPA approval letter in the rulemaking record for the test rule in question. EPA will publish a notice annually in the FEDERAL REGISTER indicating the test standards or schedules for tests required in test rules which have been modified under this paragraph (b)(2) and describing the nature of the modifications. Until the FEDERAL REGISTER notice is published, any modification approved by EPA under this paragraph (b)(2) shall apply only to the test sponsor who applied for the modification under this paragraph (a) of this section.

(3) Where, in EPA’s judgment, the requested modification of a test standard or schedule would significantly alter the scope of the test or significantly change the schedule for completing the test, EPA will publish a notice in the FEDERAL REGISTER requesting comment on the proposed modification. However, EPA will approve a requested modification of a test standard under paragraph (b)(3) of this section without first seeking public comment if EPA believes that an immediate modification to the test standard is necessary to preserve the accuracy or validity of an ongoing test. EPA may also modify a testing requirement or test condition in a test standard if EPA determines that the completion or achievement of this requirement or condition is not technically feasible. EPA may approve a test schedule extension under paragraph (b)(3) of this section without first seeking public comment if EPA determines, on a case-by-case basis, that a delay of over 12 months is not the fault of the test sponsor and is the result of unforeseen circumstances such as a lack of laboratory availability, lack of availability of suitable test substance (e.g., 14-C labelled test substance), lack of availability of healthy test organisms, or the unexpected failure of a long-term test. EPA will publish an annual notice in the FEDERAL REGISTER announcing the approval of any test standard modifications and test schedule extensions under paragraph (b)(3) of this section and provide a brief rationale of why the modification was granted.

(4) For purposes of this paragraph (b), a requested modification of a test standard or schedule for a test required under a test rule would alter the scope of the test or significantly change the schedule for completing the test if the modification would:

(i) Change the test species.
(ii) Change the route of administration of the test chemical.
(iii) Change the period of time during which the test species is exposed to the test chemical.
(iv) Except as provided in paragraph (b)(3) of this section, extend the final reporting deadline more than 12 months from the date specified in the final rule.

(c) Disapproval. Where EPA concludes that the requested modification of a test standard or schedule for a test required under a test rule is not appropriate, EPA will so notify the test sponsor in writing.

(d) Timing. (1) Test sponsors should submit all applications for test schedule modifications at least 60 days before the reporting deadline for the test in question.

(2) EPA will not normally approve any test schedule extensions submitted less than 30 days before the reporting deadline for the test in question.

(3) Except as provided in paragraph (b)(3) of this section, EPA may grant extensions for up to 1 year but will normally limit extensions to a period of time equal to the in-life portion of the test plus 60 days.

(4) EPA will normally approve only one deadline extension for each test.

(5) Test sponsors should submit requests for test standard modifications as soon as they determine that the test...
§ 790.59 Failure to comply with a test rule.

(a) Persons who notified EPA of their intent to conduct a test required in a test rule in part 799 of this chapter and who fail to conduct the test in accordance with the test standards and schedules adopted in the test rule, or as modified in accordance with §790.55, will be in violation of the rule.

(b) Any person who fails or refuses to comply with any aspect of this part or a test rule under part 799 of this chapter is in violation of section 15 of the Act. EPA will treat violations of the Good Laboratory Practice standards as indicated in §792.17 of this chapter.

Subpart D—Implementation, Enforcement and Modification of Consent Agreements

Source: 51 FR 23715, June 30, 1986, unless otherwise noted.

§ 790.60 Contents of consent agreements.

(a) Standard provisions. All consent agreements will contain the following provisions:

1. Identification of the chemical(s) to be tested.

2. The health effects, environmental effects and/or other characteristics for which testing will be required.

3. The names and addresses of each manufacturer and/or processor who will sign the agreement.

4. The name and address of the manufacturer, processor or other entity who has agreed to act as the principal test sponsor.

5. The technical or commercial grade, level of purity or other characteristics of the test substances(s) or mixture(s).

6. Standards for the development of test data.

7. A requirement that testing will be conducted in accordance with the Good Laboratory Practice (GLP) regulations (40 CFR part 792).

8. Schedules with reasonable deadlines for submitting interim progress and/or final reports to EPA.

9. A requirement that the principal sponsor will submit a study plan to EPA in accordance with §790.62.

10. A statement that the results of testing conducted pursuant to the consent agreement will be announced to the public in accordance with the procedures specified in section 4(d) of the Act and that the disclosure of data generated by such testing will be governed by section 14(b) of the Act.

11. A requirement that the manufacturers and/or processors signing the consent agreement will comply with the notification requirements of section 12(b)(1) of the Act and part 707 of this chapter if they export or intend to export the substance or mixture for which the submission of data is required under the agreement and a statement that any other person who exports or intends to export such substance or mixture is subject to the above cited export notification requirements.

12. A requirement that, in the event EPA promulgates a significant new use rule applicable to the test chemical under section 5(a)(2), the consent agreement will have the status of a test rule for purposes of section 5(b)(1)(A) and manufacturers and/or processors signing the agreement will comply with the data submission requirements imposed by that provision.

13. A statement that each manufacturer and/or processor signing the agreement agrees that violation of its requirements will constitute a “prohibited act” under section 15(1) of the Act and will trigger all provisions of TSCA applicable to a violation of section 15.

14. A statement that, in the event one or more provisions of the agreement are determined to be unenforceable by a court, the remainder of the agreement would not be presumed to be valid and EPA will then either initiate a rulemaking proceeding or publish in the Federal Register the Administrator’s reason for not initiating such a proceeding.

15. A statement that the Agency may conduct laboratory inspections.
Environmental Protection Agency § 790.62

and/or study audits of the testing being conducted pursuant to the consent agreement in accordance with the authority and procedures contained in section 11 of the Act.

(17) Any other requirements that the parties agree are necessary to achieve the purposes of the Act.

(b) Contents of standards for the development of data. The standards for the development of the data included in consent agreements will be based on the TSCA test guidelines in 40 CFR parts 796, 797, and 798, the Organization for Economic Cooperation and Development (OECD) test guidelines, the EPA pesticide assessment guidelines published by The National Technical Information Service (NTIS), or other suitable test methodologies. During the negotiation of consent agreements, EPA will initially propose suitable test guidelines as the required test standards; manufacturers and processors or other interested parties may then suggest alternative methodologies or modifications to the Agency’s proposed guidelines. These alternative methodologies or modifications will be adopted only where, in the judgment of EPA, they will develop at least equally reliable and adequate data on the chemical substance or mixture subject to the agreement.

(c) Statement of rationale for consent agreement. EPA will prepare a written explanation of the basis for each consent agreement. This document will summarize the agreement, describe any ITC testing recommendations for the chemical involved, outline the chemical’s use and exposure characteristics, and explain the objectives of the testing to be conducted and the rationale for the specific studies selected. This document will be published in the Federal Register and, for ITC-designated chemicals, will constitute the statement of EPA’s reasons for not initiating rulemaking required by section 4(e)(1)(B) of the Act.

[51 FR 23715, June 30, 1986, as amended at 54 FR 36314, Sept. 1, 1989]
(10) A schedule, with reasonable timeables and deadlines, for initiation and completion of each short-term test and of each major phases of long-term tests, and submission of interim progress and/or final reports to EPA.

(c) Review and modification. (1) Upon receipt of a study plan, EPA will review it to determine whether it complies with paragraph (b) of this section. If EPA determines that the study plan does not comply with paragraph (b) of this section, EPA will notify the submitter that the plan is incomplete and will identify the deficiencies and the steps necessary to complete the plan. It is the responsibility of the test sponsor to review the study protocols to determine if they comply with all the mandatory testing conditions and requirements in the test standards (i.e., “shall statements”).

(2) The submitter will have 15 days after the day it receives a notice under paragraph (c)(1) of this section to submit appropriate information to make the study plan complete.

(3) If the submitter fails to provide appropriate information to complete a study plan within 15 days after having received a notice under paragraph (c)(1) of this section, the submitter will be considered to be in violation of the consent agreement and subject to enforcement proceedings pursuant to §790.65(c) and (d).

(4) The test sponsor shall submit any amendments to study plans to EPA at the address specified in §790.5(b).

(d) Functions of the principal test sponsor. When testing is being conducted pursuant to a consent agreement, the principal test sponsor will be responsible for submitting interim progress and final reports to EPA, informing the Agency of any proposed changes in standards for the development of data, study plans or testing schedules, and communicating with the Agency about laboratory inspections and other matters affecting the progress of testing.

§790.65 Failure to comply with a consent agreement.

(a) Manufacturers and/or processors who have signed a consent agreement and who fail to comply with the test requirements, test standards, GLP regulations, schedules, or other provisions contained in the consent agreement, or in modifications to the agreement adopted pursuant to §790.68, will be in violation of the consent agreement.

(b) The Agency considers failure to comply with any aspect of a consent agreement to be a “prohibited act” under section 15 of TSCA, subject to all of the provisions of the Act applicable to violations of section 15. Section 15(1) of TSCA makes it unlawful for any person to fail or refuse to comply with any rule or order issued under section 4. Consent agreements adopted pursuant to this part are “orders issued under section 4” for purposes of section 15(1) of TSCA.

(c) Manufacturers and/or processors who violate consent agreements are subject to criminal and/or civil liability. Under the penalty provisions of section 16 of TSCA, such firms could be subject to a civil penalty of up to $25,000 per violation with each day in violation constituting a separate violation of section 15. Intentional violations could lead to the imposition of criminal penalties of up to $25,000 for each day of violation and imprisonment for up to one year. In addition, EPA could invoke the remedies available under section 17 of TSCA, including seeking an injunction to compel adherence to the requirements of the consent agreement.

(d) Noncompliance with a consent agreement will constitute conduct “in violation of this Act” under section 20(a)(1) of TSCA. Thus, failure to comply with the requirements of a consent agreement could result in a citizens’ civil action under section 20(a)(1) of TSCA.

§790.68 Modification of consent agreements.

(a) Changes in the scope of testing. (1) Manufacturers or processors subject to a consent agreement, other persons or EPA may seek modifications in the scope of testing performed under the consent agreement. If, upon receiving a request for modification, EPA determines that new issues have been raised that warrant reconsideration of the scope of testing, or if EPA determines
on its own that such reconsideration is appropriate, EPA will publish a Federal Register notice describing the proposed modification and soliciting public comment. If, based on the comments received, EPA concludes that differences of opinion may exist about the proposed modification, EPA will establish a schedule for conducting negotiations and invite parties who wish to participate in or monitor these negotiations to contact the Agency in writing. Any negotiations that EPA conducts will conform to the procedures specified in § 790.22(b).

(2) The scope of testing required by a consent agreement will be modified only where there is a consensus concerning the modified testing requirements among EPA, affected manufacturers and/or processors, and other persons who have asked to participate in or monitor negotiations under paragraph (a)(1) of this section. In determining whether a consensus exists, EPA will employ the criteria specified in § 790.24. In the absence of consensus, EPA may initiate rulemaking under section 4(a) of the Act if it concludes that any testing beyond that required by the consent agreement is necessary and that the other statutory findings required by section 4(a) can be made. While such rulemaking proceedings are underway, the consent agreement will remain in effect unless EPA finds that the testing required by the agreement is or may be unnecessary in view of the testing requirements included in EPA’s proposed rule.

(b) Changes in test standards or schedules.

(1) Any test sponsor who wishes to modify the test schedule for any test required under a consent order must submit an application in accordance with this paragraph. Application for modification must be made in writing to EPA at the address in § 790.5(b), or by phone with written confirmation to follow within 10 working days. Applications must include an appropriate explanation and rationale for the modification. EPA will consider only those applications that request modifications to mandatory testing conditions or requirements ("shall statements") in the consent order. Where a test sponsor requests EPA to provide guidance or to clarify a non-mandatory testing requirement (i.e., "should statements"), the test sponsor should submit these requests to EPA at the address in section 790.5(b).

(2)(i) Where EPA concludes that the requested modification of a test standard or schedule for a test required under a consent agreement is appropriate, EPA will proceed in accordance with this paragraph (b)(2).

(ii) Where, in EPA’s judgment, the requested modification of a test standard or schedule would not alter the scope of the test or significantly change the schedule for completing the test, EPA will not ask for public comment before approving the modification. EPA will notify the test sponsor, and any other persons who have signed the consent agreement, by letter of EPA’s approval. EPA will place copies of each application and EPA approval letter in the administrative record maintained for the consent agreement in question. EPA will publish a notice annually in the Federal Register indicating the test standards or schedules for test required in consent agreements which have been modified under this paragraph (b)(2)(ii) and describing the nature of the modifications.

(iii) Where, in EPA’s judgment, the requested modification of a test standard or schedule would significantly alter the scope of the test or significantly change the schedule for completing the test, EPA will publish a notice in the Federal Register requesting comment on the proposed modification. However, EPA will approve a requested modification of a test standard under paragraph (b)(2)(iii) of this section without first seeking public comment if EPA believes that an immediate modification to the test standard is necessary to preserve the accuracy or validity of an ongoing test. EPA also may modify a testing requirement or test condition in a test standard if EPA determines that the completion or achievement of this requirement or condition is not technically feasible. EPA may approve a requested modification of a test schedule under paragraph (b)(2)(iii) of this section without first seeking public comment if EPA determines, on a case-by-case basis, that a delay of over 12 months is not the fault of the test sponsor and is due
§ 790.80 Submission of exemption applications.

(a) Who should file applications. (1) Any manufacturer or processor subject to a test rule in part 799 of this chapter may submit an application to EPA for an exemption from performing any or all of the tests required under the test rule.

(b) When applications must be filed. (1) Exemption applications must be filed within 30 days after the effective date of the test rule described in §790.40 or, if being submitted in compliance with the Federal Register notice described in §790.48(b)(2), within 30 days after the publication of that notice.

Subpart E—Exemptions From Test Rules

SOURCE: 50 FR 20660, May 17, 1985, unless otherwise noted.

§ 790.80 Submission of exemption applications.

(a) Who should file applications. (1) Any manufacturer or processor subject to a test rule in part 799 of this chapter may submit an application to EPA for an exemption from performing any or all of the tests required under the test rule.

(b) When applications must be filed. (1) Exemption applications must be filed within 30 days after the effective date of the test rule described in §790.40 or, if being submitted in compliance with the Federal Register notice described in §790.48(b)(2), within 30 days after the publication of that notice.

22
§ 790.87 Approval of exemption applications.

(a) EPA will conditionally approve exemption applications if:

(1)(i) For single-phase test rules, EPA has received a letter of intent to conduct the testing from which exemption is sought;

(ii) For two-phase test rules, EPA has received a complete proposed study plan for the testing from which exemption is sought and has adopted the study plan, as proposed or modified, as test standards and schedules in a final Phase II test rule; and

(2) The chemical substance or mixture with respect to which the application was submitted is equivalent to a test substance or mixture for which the intent to test or an exemption application.

(3) When both manufacturers and processors are subject to the rule, exemption applications must be filed by the date processing begins by any person not processing as of the effective date of the test rule described in §790.40 or by 30 days after publication of the Federal Register notice described in §790.48(b)(2) who, before the end of the reimbursement period, processes the test substance and who is subject to the requirement to submit either a letter of intent to test or an exemption application.

(c) Scope of application. A person may apply for an exemption from all, or one or more, specific testing requirements in a test rule in part 799 of this chapter.

§ 790.85 Submission of equivalence data.

If EPA requires in a test rule promulgated under section 4 of the Act the testing of two or more test substances which are forms of the same chemical, each exemption applicant must submit the following data:

(a) The chemical identity of each technical-grade chemical substance or mixture manufactured and/or processed by the applicant for which the exemption is sought. The exact type of identifying data required will be specified in the test rule, but may include all characteristics and properties of the applicant’s substance or mixture, such as boiling point, melting point, chemical analysis (including identification and amount of impurities), additives, spectral data, and other physical or chemical information that may be relevant in determining whether the applicant’s substance or mixture is equivalent to the specific test substance.

(b) The basis for the applicant’s belief that the substance or mixture is equivalent to the test substance or mixture.

(c) Any other data which exemption applicants are directed to submit in the test rule which may bear on a determination of equivalence. This may include a description of the process by which each technical-grade chemical substance or mixture for which an exemption is sought is manufactured or processed prior to use or distribution in commerce by the applicant.

§ 790.82 Content of exemption application.

The exemption application must contain:

(a) The identity of the test rule, the chemical identity, and the CAS No. of the test substance on which the application is based.

(b) The specific testing requirement(s) from which an exemption is sought and the basis for the exemption request.

(c) Name, address, and telephone number of applicant.

(d) Name, address, and telephone number of appropriate individual to contact for further information.

(e)(1) If required in the test rule to establish equivalence:

(i) The chemical identity of the test substance on which the application is based.

(ii) Equivalence data specified in §790.85.

(2) If a test rule requires testing of a single representative substance, EPA will consider all forms of the chemical subject to that rule to be equivalent and will not require the submission of equivalence data as described in §790.85.

required data have been or are being submitted in accordance with a test rule; and

(3) Submission of the required test data concerning that chemical substance or mixture would be duplicative of data which have been or are being submitted to EPA in accordance with a test rule.

(b)(1) If a single representative substance is to be tested under a test rule, EPA will consider all forms of the chemical subject to that rule to be equivalent and will contact the exemption applicant only if information is missing or unclear.

(2) If two or more representative substances are to be tested under a test rule, EPA will evaluate equivalence claims made in each exemption application according to the criteria discussed in the test rule.

(i) If EPA finds an equivalence claim to be in error or inadequately supported, the applicant will be notified by certified mail. The applicant will be given 15 days to provide clarifying information.

(ii) Exemption applicants will be notified that equivalence has been accepted or rejected.

(c) The final Phase II test rule which adopts the study plans in two-phase rulemaking, a separate Federal Register notice in single-phase rulemaking, or a letter by certified mail will give exemption applicants final notice that they have received a conditional exemption. All conditional exemptions thus granted are contingent upon the test sponsors' successful completion of testing according to the specifications in the test rule.

§ 790.88 Denial of exemption application.

(a) EPA may deny any exemption application if:

(1) EPA determines that the applicant has failed to demonstrate that the applicant's chemical is equivalent to the test substance; or

(2) The exemption applicant fails to submit any of the information specified in § 790.82; or

(3) The exemption applicant fails to submit any of the information specified in § 790.85 if required in the test rule; or

(4)(i) For single-phase test rules, EPA has not received a letter of intent to conduct the test for which exemption is sought; or

(ii) For two-phase test rules, EPA has not received an adequate study plan for the test for which exemption is sought; or

(5) The study sponsor(s) fails to initiate the required testing by the deadlines adopted in the test rule; or

(6) The study sponsor(s) fails to submit data as required in the test standard and deadlines for submission of test data as adopted in the test rule or as modified in accordance with § 790.55.

(b) EPA will notify the exemption applicant by certified mail or Federal Register notice of EPA's determination that the exemption application is denied.

§ 790.90 Appeal of denial of exemption application.

(a) Within 30 days after receipt of notification that EPA has denied an application for exemption, the applicant may file an appeal with EPA.

(b) The appeal shall indicate the basis for the applicant's request for reconsideration.

(c)(1) The applicant may also include a request for a hearing. Hearings will be held according to the procedures described in § 790.97.

(2) Hearing requests must be in writing and must be received by EPA within 30 days of receipt of the letter or publication of the Federal Register notice described in § 790.88(b). Hearing requests must provide reasons why a hearing is necessary.

(d) If EPA determines that there are material issues of fact, then the request for a hearing will be granted. If EPA denies a hearing request, EPA will base its decision on the written submission.

(e) EPA will notify the applicant of its decision within 60 days after EPA receives the appeal described in paragraph (a) of this section or within 60 days after completion of a hearing described in paragraph (c) of this section.

(f) The filing of an appeal from the denial of an exemption shall not act to stay the applicant's legal obligations under a test rule promulgated under section 4 of the Act.
§ 790.93 Termination of conditional exemption.

(a) EPA shall terminate a conditional exemption if it determines that:

(1) The test which provided the basis for approval of the exemption application has not been started by the deadlines for initiation of testing adopted in the test rule or modified in accordance with § 790.55; or

(2) Data required by the test rule have not been generated in accordance with the test standards or submitted in accordance with the deadlines for submission of test data that were adopted in the test rule or modified in accordance with § 790.55; or

(3) The testing has not been conducted or the data have not been generated in accordance with the Good Laboratory Practice requirements in part 792 of this chapter.

(b) If EPA determines that one or more of the criteria listed in paragraph (a) of this section has been met, EPA will notify each holder of an affected conditional exemption by certified mail or Federal Register notice of EPA's intent to terminate that conditional exemption.

(c) Within 30 days after receipt of a letter of notification or publication of a notice in the Federal Register that EPA intends to terminate a conditional exemption, the exemption holder may submit information to rebut EPA's preliminary decision or notify EPA by letter of its intent to conduct the required test pursuant to the test standard established in the final test rule. Such a letter of intent shall contain all of the information required by § 790.45(c).

(d)(1) The exemption holder may also include a request for a hearing. Hearings will be held in accordance with the procedures set forth in § 790.97.

(2) Hearing requests must be in writing and must be received by EPA within 30 days after receipt of the letter or publication in the Federal Register notice described in paragraph (b) of this section.

(e) EPA will notify the exemption holder by certified letter or by Federal Register notice of EPA's final decision concerning termination of conditional exemptions and will give instructions as to what actions the former exemption holder must take to avoid being found in violation of the test rule.

§ 790.97 Hearing procedures.

(a) Hearing requests must be in writing to EPA and must include the applicant's basis for appealing EPA's decision.

(b) If more than one applicant has requested a hearing on similar grounds, all of those appeals will be considered at the same hearing unless confidentiality claims preclude a joint hearing.

(c) EPA will notify each applicant of EPA's decision within 60 days after the hearing.

§ 790.99 Statement of financial responsibility.

Each applicant for an exemption shall submit the following sworn statement with his or her application:

I understand that if this application is granted before the reimbursement period described in section 4(c)(3)(B) of TSCA expires, I must pay fair and equitable reimbursement to the person or persons who incurred or shared in the costs of complying with the requirement to submit data and upon whose data the granting of my application was based.

APPENDIX A TO SUBPART E—SCHEDULE FOR DEVELOPING CONSENT AGREEMENTS AND TEST RULES

EPA intends to follow the schedule set forth in this Appendix to evaluate testing candidates, conduct negotiations, develop consent agreements where appropriate, and propose and promulgate test rules in those instances where testing can be required under section 4(a) of TSCA but agreement cannot be reached in timely manner on a consent agreement. Where deadlines are imposed by the statute, they are binding on EPA and will be observed by the Agency. The remaining dates represent targets that EPA intends to meet.

This schedule is based on what EPA currently believes are reasonable target dates. As EPA gains experience with the process and determines the feasibility of these schedules, it may adjust the schedule accordingly. EPA will solicit public comment before implementing any changes in the schedule.

<table>
<thead>
<tr>
<th>Week</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Receive ITC report, recommendation.</td>
</tr>
<tr>
<td>2</td>
<td>Publish ITC report, 8(a) and 8(d) notices, and invitation for public participation in negotiations.</td>
</tr>
</tbody>
</table>
WEEK 1 - EVENT

<table>
<thead>
<tr>
<th>Week</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–6</td>
<td>Comment period on ITC report.</td>
</tr>
<tr>
<td>6</td>
<td>Public focus meeting.</td>
</tr>
<tr>
<td>7–14</td>
<td>8(a) and 8(d) reporting period.</td>
</tr>
<tr>
<td>22</td>
<td>Public meeting on course-setting decision and deadline for requests to participate in negotiations.</td>
</tr>
</tbody>
</table>

WEEK 1 - EVENT

<table>
<thead>
<tr>
<th>Week</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>22–30</td>
<td>Negotiations.</td>
</tr>
<tr>
<td>32</td>
<td>EPA decision point: consent agreement or test rule.</td>
</tr>
</tbody>
</table>

1 The dates contained in the left-hand column are calculated from the date EPA receives the ITC report recommending a chemical for testing.

PART 791—DATA REIMBURSEMENT

Subpart A—General Provisions

Sec.

791.1 Scope and authority.
791.2 Applicability.
791.3 Definitions.

Subpart B—Hearing Procedures

791.20 Initiation of reimbursement proceeding.
791.22 Consolidation of hearings.
791.27 Pre-hearing preparation.
791.29 Appointment of hearing officer.
791.31 Hearing procedures.
791.34 Sealing of notice.
791.37 The award.
791.39 Fees and expenses.

Subpart C—Basis for Proposed Order

791.40 Basis for the proposed order.
791.45 Processors.
791.48 Production volume.
791.50 Costs.
791.52 Multiple tests.

Subpart D—Review

791.60 Review.

Subpart E—Final Order

791.85 Availability of final Agency order.

Subpart F—Prohibited Acts

791.105 Prohibited acts.

Authority: 15 U.S.C. 2603 and 2607.

Source: 48 FR 31791, July 11, 1983, unless otherwise noted.
§ 791.3 Definitions.

Terms defined in the Act, and not explicitly defined herein, are used with the meanings given in the Act.

(a) The Act refers to the Toxic Substances Control Act (TSCA) (15 U.S.C. 2601 et seq.).

(b) The Agency or EPA refers to the Environmental Protection Agency.

(c) Byproduct refers to a chemical substance produced without a separate commercial intent during the manufacture, processing, use or disposal of another chemical substance or mixture.

(d) Dispute refers to a present controversy between parties subject to a test rule over the amount or method of reimbursement for the cost of developing health and environmental data on the test chemical.

(e) Exemption holder refers to a manufacturer or processor, subject to a test rule, that has received an exemption under sections 4(c)(1) or 4(c)(2) of TSCA from the requirement to conduct a test and submit data.

(f) Impurity refers to a chemical substance unintentionally present with another chemical substance or mixture.

(g) A party refers to a person subject to a section 4 test rule, who:

(1) Seeks reimbursement from another person under these rules, or

(2) From whom reimbursement is sought under these rules.

(h) Reimbursement period refers to a period that begins when the data from the last non-duplicative test to be completed under a test rule is submitted to EPA and ends after an amount of time equal to that which had been required to develop that data or after 5 years, whichever is later.

(i) Small business refers to a manufacturer or importer whose annual sales, when combined with those of its parent company (if any) are less than $30 million.

(j) Test rule refers to a regulation ordering the development of data on health or environmental effects or chemical fate for a chemical substance or mixture pursuant to TSCA section 4(a).

Subpart B—Hearing Procedures

§ 791.20 Initiation of reimbursement proceeding.

(a) When persons subject to a test rule are unable to reach an agreement on the amount or method of reimbursement for test data development as described in TSCA section 4(c)(3)(A), any of them may initiate a proceeding by filing two signed copies of a request for a hearing with a regional office of the American Arbitration Association and mailing a copy of the request to EPA, and to each person from whom they seek reimbursement, or who seeks reimbursement from them.

(b) The request for hearing must contain the following:

(1) The names and addresses of the filing party and its counsel, if any.

(2) Identification of the test rule under which the dispute arose.

(3) A list of the parties from whom reimbursement is sought or who are seeking reimbursement, a brief description of the attempts to reach agreement and a concise explanation of the issues on which the parties are unable to agree.

(c) The request for a hearing shall be accompanied by the appropriate administrative fee, as provided in a current Fee Schedule of the American Arbitration Association.

§ 791.22 Consolidation of hearings.

(a) Promptly upon receipt of the request for a hearing, the Administrator will publish a notice in the Federal Register, advising those subject to the test rule that a request for a hearing has been made.

(b) Any other person wishing to participate in the hearing shall so notify EPA within 45 days of the Federal Register notice. EPA will promptly inform the regional office of the American Arbitration Association where the request has been filed of the additional parties.

§ 791.27 Pre-hearing preparation.

(a) Responses to requests for hearings. After filing of the request for hearing, if any other party desires to file an answer it shall be made in writing and filed with the American Arbitration Association, and a copy thereof shall...
§ 791.29 Appointment of hearing officer.

(a) Qualifications of hearing officer. All hearing officers shall be neutral, subject to disqualification for the reasons specified in paragraph (f) of this section.

(b) Appointment from panel. Promptly after receiving the complete list of parties at the close of the notice period described in §791.22, the American Arbitration Association shall submit simultaneously to each party to the dispute an identical list of names. Each party to the dispute shall have thirty days from the mailing date in which to cross off any names objected to, number the remaining names to indicate the order of preference, and return the list to the American Arbitration Association. If a party does not return the list within the time specified, all persons named therein shall be deemed acceptable to that party. From among the persons who have been approved on all lists, and in accordance with the designated order of mutual preference, the American Arbitration Association shall invite the acceptance of a hearing officer to serve. If the parties fail to agree upon any of the persons named, or if acceptable hearing officers are unable to act, or if for any other reason the appointment cannot be made from the submitted lists, the American Arbitration Association shall have the power to make the appointment without the submission of any additional list.

(c) Fixing of locale. The parties may mutually agree on the locale where the hearing is to be held. If the locale is not designated within 45 days from the time the complete list of parties is received, the American Arbitration Association shall have the power to determine the locale. Its decision shall be final and binding. If any party requests, and informs the other parties of its request, that the hearing be held in a specific locale and the other parties file no objection thereto within 14 days of the request, the locale shall be the one requested.

(d) Time and place. The hearing officer shall fix the time and place for each hearing. The American Arbitration Association will mail notice to each party at least 14 days in advance.

§ 791.29 Appointment of hearing officer.

(a) Qualifications of hearing officer. All hearing officers shall be neutral, subject to disqualification for the reasons specified in paragraph (f) of this section.

(b) Appointment from panel. Promptly after receiving the complete list of parties within a period of fourteen days from the date of receiving the complete list of parties. After the hearing officer is appointed, however, no new or different claim may be submitted except with the hearing officer’s consent.

(b) Pre-hearing conference. At the request of the parties or at the discretion of the American Arbitration Association, a pre-hearing conference with a representative of the American Arbitration Association and the parties or their counsel will be scheduled in appropriate cases to arrange for an exchange of information and the stipulation of uncontested facts so as to expedite the proceedings.

(c) Fixing of locale. The parties may mutually agree on the locale where the hearing is to be held. If the locale is not designated within 45 days from the time the complete list of parties is received, the American Arbitration Association shall have power to determine the locale. Its decision shall be final and binding. If any party requests, and informs the other parties of its request, that the hearing be held in a specific locale and the other parties file no objection thereto within 14 days of the request, the locale shall be the one requested.

(d) Time and place. The hearing officer shall fix the time and place for each hearing. The American Arbitration Association will mail notice to each party at least 14 days in advance.
(g) Vacancies. If any hearing officer should resign, die, withdraw, refuse, be disqualified or be unable to perform the duties of the office, the American Arbitration Association may, on proof satisfactory to it, declare the office vacant. Vacancies shall be filled in accordance with the applicable provisions of these rules and the matter shall be reheard unless the parties shall agree otherwise.

§ 791.30 Hearing procedures.

(a) Representation by counsel. Any party may be represented by counsel. A party intending to be so represented shall notify the other parties and the American Arbitration Association of the name and address of counsel at least 5 days prior to the date set for the hearing at which counsel is first to appear. When a hearing is initiated by counsel, or where an attorney replies for the other party, such notice is deemed to have been given.

(b) Stenographic record. The American Arbitration Association shall make the necessary arrangements for the taking of a stenographic record. The parties shall share the cost of such record.

(c) Attendance at hearings. The hearing officer shall have the power to require the exclusion of anyone, including a party or other essential person, during the testimony of any witness to protect confidential business information. It shall be discretionary with the hearing officer to determine the propriety of the attendance of any other person.

(d) Oaths. Hearing officers shall swear or affirm their neutrality and their dedication to a fair and equitable resolution. Witnesses shall swear or affirm that they are telling the truth.

(e) Order of proceedings. (1) A hearing shall be opened by the filing of the oath of the hearing officer and by the recording of the place, time and date of the hearing, the presence of the hearing officer and parties, and counsel, if any, and by the receipt by the hearing officer of the request for hearing and answer, if any.

(2) The hearing officer may, at the beginning of the hearing, ask for statements clarifying the issues involved.

(3) The party or parties seeking reimbursement shall then present a claim and proofs and witnesses, who shall submit to questions or other examination. The party or parties from whom reimbursement is sought shall then present a defense and proofs and witnesses, who shall submit to questions or other examination. The hearing officer has discretion to vary this procedure but shall afford full and equal opportunity to all parties for the presentation of any material or relevant proofs.

(f) Exhibits, when offered by any party, shall be received in evidence by the hearing officer. The names and addresses of all witnesses and exhibits in order received shall be made a part of the record.

(g) Evidence. (1) The parties may offer such evidence as they desire and shall produce such additional evidence as the hearing officer may deem necessary to an understanding and determination of the dispute. The hearing officer shall be the judge of the relevancy and materiality of the evidence offered and conformity to legal rules of evidence shall not be necessary. All evidence shall be taken in the presence of all the hearing officers and of all the parties, except where any of the parties is absent in default, has waived the right to be present, or has been excluded by the hearing officer to protect confidential business information.

(2) All documents not filed with the hearing officer at the hearing, but arranged for by agreement of the parties, shall be filed with the American Arbitration Association for transmission to the hearing officer, according to the agreed-upon schedule. All parties shall be afforded opportunity to examine such documents.

(h) Evidence by affidavit and filing of documents. The hearing officer shall receive and consider the evidence of witnesses by affidavit, but shall give it only such weight as the hearing officer
(i) Closing of hearings. The hearing officer shall specifically inquire of all parties whether they have any further proofs to offer or witnesses to be heard. Upon receiving negative replies, the hearing officer shall declare the hearings closed and record the time of closing of the hearing. If briefs are to be filed, the hearings shall be declared closed as of the final date set by the hearing officer for the receipt of briefs. If documents are to be filed as provided for in paragraph (g)(2) of this section and the date set for their receipt is later than that set for the receipt of briefs, the later date shall be the date of closing the hearings.

(j) Reopening of hearings. The hearings may be reopened on the hearing officer's own motion, or upon application of a party at any time before the award is made. If the reopening of the hearings would prevent the making of the award within the specified time the matter may not be reopened, unless the parties agree upon the extension of the time limit.

(k) Waiver of oral hearings. The parties may provide, by written agreement, for the waiver of oral hearings. If the parties are unable to agree as to the procedure, the American Arbitration Association shall specify a fair and equitable procedure.

(l) Waiver of rules. Any party who proceeds with the hearing after knowledge that any provision or requirement of these rules has not been complied with and who fails to state objection thereto in writing, shall be deemed to have waived the right to object.

(m) Extensions of time. The parties may modify any period of time by mutual agreement. The American Arbitration Association for good cause may extend any period of time established by these rules, except the time for making the award. (§791.37(a)) The American Arbitration Association shall notify the parties of any such extension of time and its reason therefor.

(n) Communication with hearing officer. There shall be no direct communication between the parties and a hearing officer other than at oral hearings. Any other oral or written communications from the parties to the hearing officer shall be directed to the American Arbitration Association for transmittal to the hearing officer.
officer(s) appointed. Any objection by a party to such hearing officer shall be confirmed in writing to the American Arbitration Association with a copy to the other parties.

(d) Time and place of hearing. The hearing officer shall fix the date, time and place of the hearing. The American Arbitration Association will notify the parties by telephone, 7 days in advance of the hearing date. Formal notice of hearing will be sent by the American Arbitration Association to the parties.

(e) The hearing. Generally, the hearing shall be completed within 1 day. The hearing officer, for good cause shown, may schedule an additional hearing to be held within 5 days.

(f) Time of award. Unless otherwise agreed to by the parties, the Award shall be rendered not later than 15 business days from the date of the closing of the hearing.

§ 791.34 Serving of notice.

(a) Each party shall be deemed to have consented that any papers, notices or process necessary or proper for the initiation or continuation of a hearing under these rules and for any appeal to EPA or any court action in connection therewith may be served upon such party by mail addressed to such party or its attorney at its last known address or by personal service, within or without the state wherein the arbitration is to be held (whether such party be within or without the United States of America), provided that reasonable opportunity to be heard with regard thereto has been granted such party.

(b) The American Arbitration Association shall, upon the written request of a party, furnish to such party, at its expense, certified facsimiles of any papers in the American Arbitration Association’s possession that may be required in appeal to EPA or judicial proceedings relating to the hearing.

§ 791.37 The award.

(a) Time of award. The award shall be made promptly by the hearing officer and, unless otherwise agreed by the parties, no later than 30 days from the date of closing the hearings, or if oral hearings have been waived, from the date of transmitting the final statements and proofs to the hearing officer.

(b) Form of award. The award shall be in writing and shall be signed either by the sole hearing officer or by at least a majority if there is more than one. It shall contain a concise statement of its basis and rationale, and a timetable for payment of any ordered reimbursement.

(c) Delivery of award to parties. Parties shall accept as legal delivery of the award the delivery of the award or a true copy thereof by certified mail to the party at its last known address or to its attorney, or by personal service.

§ 791.39 Fees and expenses.

(a) Administrative fees. (1) As a not-for-profit organization, the American Arbitration Association shall prescribe an Administrative Fee Schedule and a Refund Schedule to compensate it for the cost of providing administrative services. The schedule in effect at the time of filing or the time of refund shall be applicable.

(2) The administrative fees shall be advanced by the initiating party or parties, subject to final apportionment by the hearing officer in the award. The administrative fee is increased by 10 percent of the original for each additional party.

(3) Fees and expenses in excess of the limit contained in section 26(b) of TSCA ($2,500 per person, or $100 per small business) will be paid by EPA.

(b) Expenses. Subject to paragraph (a)(3) of this section, all expenses of the hearing, including the cost of recording (though not transcribing) the hearing and required traveling and other expenses of the hearing officer and of American Arbitration Association representatives, and the expenses of any witness or the cost of any proofs produced at the direct request of the hearing officer, shall be borne equally by the parties, unless they agree otherwise, or unless the hearing officer, in the award, assesses such expenses or any part thereof against any specified party or parties.

(c) Hearing officer’s fee. Hearing officers will normally serve without a fee. In prolonged or special cases the American Arbitration Association, in consultation with the Administrator may
§ 791.40 Basis for the proposed order.

(a) The hearing officer shall propose a fair and equitable amount of reimbursement. The formula in paragraph (b) of this section shall be presumed to be fair and equitable as applied to all persons subject to a test rule. However, the hearing officer has the discretion to modify the formula, or to use some other basis for allocation if necessary. Additional factors that may be taken into account include, but are not limited to, relative amounts of exposure attributable to each person and the effect of the reimbursement share on competitive position.

(b) In general, each person’s share of the test cost shall be in proportion to its share of the total production volume of the test chemical:

\[R_x = \frac{C \cdot V_x}{V_t} \]

Where:
- \(R_x \) = the reimbursement share owed by company X.
- \(C \) = the total cost of the testing required by the test rule.
- \(V_x \) = the volume of the test chemical produced or imported by company X over the period defined by § 791.48.
- \(V_t \) = the total volume of the test chemical produced or imported over the period defined by § 791.48.

(c) The burden of proposing modifications to the formula shall lie with the party requesting the modification.

§ 791.45 Processors.

(a) Generally, processors will be deemed to have fulfilled their testing and reimbursement responsibilities indirectly, through higher prices passed on by those directly responsible, the manufacturers. There are three circumstances in which processors will have a responsibility to provide reimbursement directly to those paying for the testing:

(1) When a test rule or subsequent Federal Register notice pertaining to a test rule expressly obligates processors as well as manufacturers to assume direct testing and data reimbursement responsibilities.

(2) When one or more manufacturers demonstrate to the hearing officer that it is necessary to include processors in order to provide fair and equitable reimbursement in a specific case.

(3) When one or more processors voluntarily agree to reimburse manufacturers for a portion of test costs. Only those processors who volunteer will incur the obligation.

(b) A hearing including processors shall be initiated in the same way as those including only manufacturers. Voluntary negotiations must be attempted in good faith first, and the request for a hearing must contain the names of the parties and a description of the unsuccessful negotiations.

(c) When processors as well as manufacturers are required to provide reimbursement, the hearing officer will decide for each case how the reimbursement should be allocated among the participating parties. When a test rule is applicable solely to processors, the hearing officer will apply the formula to the amount of the test chemical purchased or processed.

§ 791.48 Production volume.

(a) Production volume will be measured over a period that begins one calendar year before publication of the final test rule in the Federal Register and continues up to the latest data available upon resolution of a dispute.

(b) For the purpose of determining fair reimbursement shares, production volume shall include amounts of the test chemical imported in bulk form and mixtures, and the total domestic production of the chemical including that produced as a byproduct. Impurities will not be included unless the test rule specifically includes them.
(c) Amounts of the test chemical manufactured for export will not be included unless covered by a finding under TSCA section 12(a)(2).

(d) Chemicals excluded from the jurisdiction of TSCA by section 3(2)(B) need not be included in the computation of production volume. (Chemicals used as intermediates to produce pesticides are covered by TSCA.)

(e) The burden of establishing the fact that particular amounts of the test chemical are produced for exempt purposes lies with the party seeking to exclude those amounts from the calculation of his production volume.

§ 791.50 Costs.

(a) All costs reasonable and necessary to comply with the test rule, taking into account the practices of other laboratories in conducting similar tests, are eligible for reimbursement. Necessary costs include:

1. Direct and indirect costs of planning, conducting, analyzing and submitting the test results to EPA.

2. A reasonable profit, and a reasonable rate of interest and depreciation on the tester's initial capital investment.

3. The cost of repeating or repairing tests where failure was demonstrably due to some cause other than negligence of the tester.

(b) Costs attributable to tests beyond those specified by EPA shall not be eligible for reimbursement under this rule.

§ 791.52 Multiple tests.

When more than one of a particular kind of test required by the test rule is performed, the additional costs will be shared among all those holding exemptions. The costs of all the tests will be added together and each exemption holder shall be responsible for a share of the total which is equal to its share of the total production of the test chemical. The exemption holders shall divide their shares between test sponsors in proportion to the costs of their respective tests. Those sponsoring a particular test do not have to obtain exemptions for that test and therefore do not have reimbursement responsibilities for the same tests done by others.
§ 792.1 Scope.

(a) This part prescribes good laboratory practices for conducting studies relating to health effects, environmental effects, and chemical fate testing. This part is intended to ensure the quality and integrity of data submitted pursuant to testing consent agreements and test rules issued under section 4 of the Toxic Substances Control Act (TSCA) (Pub. L. 94–469, 90 Stat. 2006, 15 U.S.C. 2603 et seq.).

(b) This part applies to any study described by paragraph (a) of this section which any person conducts, initiates, or supports on or after September 18, 1989.

(c) It is EPA’s policy that all data developed under section 5 of TSCA be in accordance with provisions of this part. If data are not developed in accordance with the provisions of this part, EPA will consider such data insufficient to evaluate the health and environmental effects of the chemical substances unless the submitter provides additional information demonstrating that the data are reliable and adequate.

§ 792.3 Definitions.

As used in this part the following terms shall have the meanings specified:

Batch means a specific quantity or lot of a test, control, or reference substance that has been characterized according to § 792.105(a).

Carrier means any material, including but not limited to, feed, water, soil, and nutrient media, with which the test substance is combined for administration to a test system.

Control substance means any chemical substance or mixture, or any other material other than a test substance, feed, or water, that is administered to the test system in the course of a study for the purpose of establishing a basis for comparison with the test substance for chemical or biological measurements.

EPA means the U.S. Environmental Protection Agency.

Experimental start date means the first date the test substance is applied to the test system.

Experimental termination date means the last date on which data are collected directly from the study.

FDA means the U.S. Food and Drug Administration.

Person includes an individual, partnership, corporation, association, scientific or academic establishment, government agency, or organizational unit thereof, and any other legal entity.

Quality assurance unit means any person or organizational element, except...
Environmental Protection Agency § 792.10

the study director, designated by testing facility management to perform the duties relating to quality assurance of the studies.

Raw data means any laboratory worksheets, records, memoranda, notes, or exact copies thereof, that are the result of original observations and activities of a study and are necessary for the reconstruction and evaluation of the report of that study. In the event that exact transcripts of raw data have been prepared (e.g., tapes which have been transcribed verbatim, dated, and verified accurate by signature), the exact copy or exact transcript may be substituted for the original source as raw data. “Raw data” may include photographs, microfilm or microfiche copies, computer printouts, magnetic media, including dictated observations, and recorded data from automated instruments.

Reference substance means any chemical substance or mixture, or analytical standard, or material other than a test substance, feed, or water, that is administered to or used in analyzing the test system in the course of a study for the purposes of establishing a basis for comparison with the test substance for known chemical or biological measurements.

Specimen means any material derived from a test system for examination or analysis.

Sponsor means:

(1) A person who initiates and supports, by provision of financial or other resources, a study;

(2) A person who submits a study to the EPA in response to a TSCA section 4(a) test rule and/or a person who submits a study under a TSCA section 4 testing consent agreement or a TSCA section 5 rule or order to the extent the agreement, rule or order references this part; or

(3) A testing facility, if it both initiates and actually conducts the study.

Study means any experiment at one or more test sites, in which a test substance is studied in a test system under laboratory conditions or in the environment to determine or help predict its effects, metabolism, environmental and chemical fate, persistence, or other characteristics in humans, other living organisms, or media. The term “study” does not include basic exploratory studies carried out to determine whether a test substance or a test method has any potential utility.

Study completion date means the date the final report is signed by the study director.

Study director means the individual responsible for the overall conduct of a study.

Study initiation date means the date the protocol is signed by the study director.

Test substance means a substance or mixture administered or added to a test system in a study, which substance or mixture is used to develop data to meet the requirements of a TSCA section 4(a) test rule and/or is developed under a TSCA section 4 testing consent agreement or section 5 rule or order to the extent the agreement, rule or order references this part.

Test system means any animal, plant, microorganism, chemical or physical matrix, including but not limited to, soil or water, or components thereof, to which the test, control, or reference substance is administered or added for study. “Test system” also includes appropriate groups or components of the system not treated with the test, control, or reference substance.

Testing facility means a person who actually conducts a study, i.e., actually uses the test substance in a test system. “Testing facility” encompasses only those operational units that are being or have been used to conduct studies.

TSCA means the Toxic Substances Control Act (15 U.S.C., 2601 et seq.)

Vehicle means any agent which facilitates the mixture, dispersion, or solubilization of a test substance with a carrier.

§ 792.10 Applicability to studies performed under grants and contracts.

When a sponsor or other person utilizes the services of a consulting laboratory, contractor, or grantee to perform all or a part of a study to which this part applies, it shall notify the consulting laboratory, contractor, or grantee that the service is, or is part of, a study that must be conducted in compliance with the provisions of this part.
§ 792.12 Statement of compliance or non-compliance.

Any person who submits to EPA a test required by a testing consent agreement or a test rule issued under section 4 of TSCA shall include in the submission a true and correct statement, signed by the sponsor and the study director, of one of the following types:

(a) A statement that the study was conducted in accordance with this part; or

(b) A statement describing in detail all differences between the practices used in the study and those required by this part; or

(c) A statement that the person was not a sponsor of the study, did not conduct the study, and does not know whether the study was conducted in accordance with this part.

§ 792.15 Inspection of a testing facility.

(a) A testing facility shall permit an authorized employee or duly designated representative of EPA or FDA, at reasonable times and in a reasonable manner, to inspect the facility and to inspect (and in the case of records also to copy) all records and specimens required to be maintained regarding studies to which this part applies. The records inspection and copying requirements shall not apply to quality assurance unit records of findings and problems, or to actions recommended and taken, except the EPA may seek production of these records in litigation or formal adjudicatory hearings.

(b) EPA will not consider reliable for purposes of showing that a chemical substance or mixture does not present a risk of injury to health or the environment any data developed by a testing facility or sponsor that refuses to permit inspection in accordance with this part. The determination that a study will not be considered reliable does not, however, relieve the sponsor of a required test of the obligation under any applicable statute or regulation to submit the results of the study to EPA.

(c) Since a testing facility is a place where chemicals are stored or held, it is subject to inspection under section 11 of TSCA.

§ 792.17 Effects of non-compliance.

(a) The sponsor or any other person who is conducting or has conducted a test to fulfill the requirements of a testing consent agreement or a test rule issued under section 4 of TSCA will be in violation of section 15 of TSCA if:

(1) The test is not being or was not conducted in accordance with any requirement of this part;

(2) Data or information submitted to EPA under this part (including the statement required by § 792.12) include information or data that are false or misleading, contain significant omissions, or otherwise do not fulfill the requirements of this part; or

(3) Entry in accordance with § 792.15 for the purpose of auditing test data or inspecting test facilities is denied. Persons who violate the provisions of this part may be subject to civil or criminal penalties under section 16 of TSCA, legal action in United States district court under section 17 of TSCA, or criminal prosecution under 18 U.S.C. 2 or 1001.

(b) EPA, at its discretion, may not consider reliable for purposes of showing that a chemical substance or mixture does not present a risk of injury to health or the environment any study which was not conducted in accordance with this part. EPA, at its discretion, may rely upon such studies for purposes of showing adverse effects. The determination that a study will not be considered reliable does not, however, relieve the sponsor of a required test of the obligation under any applicable statute or regulation to submit the results of the study to EPA.

(c) If data submitted to fulfill a requirement of a testing consent agreement or a test rule issued under section 4 of TSCA are not developed in accordance with this part, EPA may determine that the sponsor has not fulfilled its obligations under section 4 of TSCA and may require the sponsor to develop data in accordance with the requirements of this part in order to satisfy such obligations.
Subpart B—Organization and Personnel

§ 792.29 Personnel.
(a) Each individual engaged in the conduct of or responsible for the supervision of a study shall have education, training, and experience, or combination thereof, to enable that individual to perform the assigned functions.
(b) Each testing facility shall maintain a current summary of training and experience and job description for each individual engaged in or supervising the conduct of a study.
(c) There shall be a sufficient number of personnel for the timely and proper conduct of the study according to the protocol.
(d) Personnel shall take necessary personal sanitation and health precautions designed to avoid contamination of test, control, and reference substances and test systems.
(e) Personnel engaged in a study shall wear clothing appropriate for the duties they perform. Such clothing shall be changed as often as necessary to prevent microbiological, radiological, or chemical contamination of test systems and test, control, and reference substances.
(f) Any individual found at any time to have an illness that may adversely affect the quality and integrity of the study shall be excluded from direct contact with test systems, test, control, and reference substances and any other operation or function that may adversely affect the study until the condition is corrected. All personnel shall be instructed to report to their immediate supervisors any health or medical conditions that may reasonably be considered to have an adverse effect on a study.

§ 792.31 Testing facility management.
For each study, testing facility management shall:
(a) Designate a study director as described in § 792.33 before the study is initiated.
(b) Replace the study director promptly if it becomes necessary to do so during the conduct of a study.
(c) Assure that there is a quality assurance unit as described in § 792.35.
(d) Assure that test, control, and reference substances or mixtures have been appropriately tested for identity, strength, purity, stability, and uniformity, as applicable.
(e) Assure that personnel, resources, facilities, equipment, materials and methodologies are available as scheduled.
(f) Assure that personnel clearly understand the functions they are to perform.
(g) Assure that any deviations from these regulations reported by the quality assurance unit are communicated to the study director and corrective actions are taken and documented.

§ 792.33 Study director.
For each study, a scientist or other professional of appropriate education, training, and experience, or combination thereof, shall be identified as the study director. The study director has overall responsibility for the technical conduct of the study, as well as for the interpretation, analysis, documentation, and reporting of results, and represents the single point of study control. The study director shall assure that:
(a) The protocol, including any change, is approved as provided by § 792.120 and is followed.
(b) All experimental data, including observations of unanticipated responses of the test system are accurately recorded and verified.
(c) Unforeseen circumstances that may affect the quality and integrity of the study are noted when they occur, and corrective action is taken and documented.
(d) Test systems are as specified in the protocol.
(e) All applicable good laboratory practice regulations are followed.
(f) All raw data, documentation, protocols, specimens, and final reports are transferred to the archives during or at the close of the study.

§ 792.35 Quality assurance unit.
(a) A testing facility shall have a quality assurance unit which shall be responsible for monitoring each study to assure management that the facilities, equipment, personnel, methods, practices, records, and controls are in
conformance with the regulations in this part. For any given study, the quality assurance unit shall be entirely separate from and independent of the personnel engaged in the direction and conduct of that study. The quality assurance unit shall conduct inspections and maintain records appropriate to the study.

(b) The quality assurance unit shall:
(1) Maintain a copy of a master schedule sheet of all studies conducted at the testing facility indexed by test substance and containing the test system, nature of study, date study was initiated, current status of each study, identity of the sponsor, and name of the study director.
(2) Maintain copies of all protocols pertaining to all studies for which the unit is responsible.
(3) Inspect each study at intervals adequate to ensure the integrity of the study and maintain written and properly signed records of each periodic inspection showing the date of the inspection, the study inspected, the phase or segment of the study inspected, the person performing the inspection, findings and problems, action recommended and taken to resolve existing problems, and the scheduled date for re-inspection. Any problems which are likely to affect study integrity found during the inspection shall be brought to the attention of the study director and management immediately.
(4) Periodically submit to management and the study director written status reports on each study, noting any problems and the corrective actions taken.
(5) Determine that no deviations from approved protocols or standard operating procedures were made without proper authorization and documentation.
(6) Review the final study report to assure that such report accurately describes the methods and standard operating procedures, and that the reported results accurately reflect the raw data of the study.
(7) Prepare and sign a statement to be included with the final study report which shall specify the dates inspections were made and findings reported to management and to the study director.

(c) The responsibilities and procedures applicable to the quality assurance unit, the records maintained by the quality assurance unit, and the method of indexing such records shall be in writing and shall be maintained. These items including inspection dates, the study inspected, the phase or segment of the study inspected, and the name of the individual performing the inspection shall be made available for inspection to authorized employees or duly designated representatives of EPA or FDA.

(d) An authorized employee or a duly designated representative of EPA or FDA shall have access to the written procedures established for the inspection and may request testing facility management to certify that inspections are being implemented, performed, documented, and followed up in accordance with this paragraph.

Subpart C—Facilities

§ 792.41 General.
Each testing facility shall be of suitable size and construction to facilitate the proper conduct of studies. Testing facilities which are not located within an indoor controlled environment shall be of suitable location to facilitate the proper conduct of studies. Testing facilities shall be designed so that there is a degree of separation that will prevent any function or activity from having an adverse effect on the study.

§ 792.43 Test system care facilities.
(a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure proper separation of species or test systems, isolation of individual projects, quarantine or isolation of animals or other test systems, and routine or specialized housing of animals or other test systems.
(1) In tests with plants or aquatic animals, proper separation of species can be accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of species is unnecessary where the protocol specifies the simultaneous exposure of two or more species in the
Environmental Protection Agency

§ 792.49 Laboratory operation areas.

Same chamber, aquarium, or housing unit.

(2) Aquatic toxicity tests for individual projects shall be isolated to the extent necessary to prevent cross-contamination of different chemicals used in different tests.

(b) A testing facility shall have a number of animal rooms or other test system areas separate from those described in paragraph (a) of this section to ensure isolation of studies being done with test systems or test, control, and reference substances known to be biohazardous, including volatile substances, aerosols, radioactive materials, and infectious agents.

(c) Separate areas shall be provided, as appropriate, for the diagnosis, treatment, and control of laboratory test system diseases. These areas shall provide effective isolation for the housing of test systems either known or suspected of being diseased, or of being carriers of disease, from other test systems.

(d) Facilities shall have proper provisions for collection and disposal of contaminated water, soil, or other spent materials. When animals are housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so provided and operated as to minimize vermin infestation, odors, disease hazards, and environmental contamination.

(e) Facilities shall have provisions to regulate environmental conditions (e.g., temperature, humidity, photoperiod) as specified in the protocol.

(f) Facilities for marine test organisms, an adequate supply of clean sea water or artificial sea water (prepared from de-ionized or distilled water and sea salt mixture) shall be available. The ranges of composition shall be as specified in the protocol.

(g) Facilities for freshwater organisms, an adequate supply of clean water of the appropriate hardness, pH, and temperature, and which is free of contaminants capable of interfering with the study shall be available as specified in the protocol.

(h) Facilities for plants, an adequate supply of soil of the appropriate composition, as specified in the protocol, shall be available as needed.

§ 792.45 Test system supply facilities.

(a) There shall be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and equipment. Storage areas for feed, nutrients, soils, and bedding shall be separated from areas where the test systems are located and shall be protected against infestation or contamination. Perishable supplies shall be preserved by appropriate means.

(b) When appropriate, plant supply facilities shall be provided. These include:

(1) Facilities, as specified in the protocol, for holding, culturing, and maintaining algae and aquatic plants.

(2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields.

(c) Facilities for aquatic animal tests shall be provided. These include but are not limited to aquaria, holding tanks, ponds, and ancillary equipment, as specified in the protocol.

§ 792.47 Facilities for handling test, control, and reference substances.

(a) As necessary to prevent contamination or mixups, there shall be separate areas for:

(1) Receipt and storage of the test, control, and reference substances.

(2) Mixing of the test, control, and reference substances with a carrier, e.g., feed.

(3) Storage of the test, control, and reference substance mixtures.

(b) Storage areas for test, control, and/or reference substance and for test, control, and/or reference mixtures shall be separate from areas housing the test systems and shall be adequate to preserve the identity, strength, purity, and stability of the substances and mixtures.

§ 792.49 Laboratory operation areas.

Separate laboratory space and other space shall be provided, as needed, for the performance of the routine and specialized procedures required by studies.
§ 792.51 Specimen and data storage facilities.

Space shall be provided for archives, limited to access by authorized personnel only, for the storage and retrieval of all raw data and specimens from completed studies.

Subpart D—Equipment

§ 792.61 Equipment design.

Equipment used in the generation, measurement, or assessment of data and equipment used for facility environmental control shall be of appropriate design and adequate capacity to function according to the protocol and shall be suitably located for operation, inspection, cleaning, and maintenance.

§ 792.63 Maintenance and calibration of equipment.

(a) Equipment shall be adequately inspected, cleaned, and maintained. Equipment used for the generation, measurement, or assessment of data shall be adequately tested, calibrated, and/or standardized.

(b) The written standard operating procedures required under § 792.81(b)(11) shall set forth in sufficient detail the methods, materials, and schedules to be used in the routine inspection, cleaning, maintenance, testing, calibration, and/or standardization of equipment, and shall specify, when appropriate, remedial action to be taken in the event of failure or malfunction of equipment. The written standard operating procedures shall designate the person responsible for the performance of each operation.

(c) Written records shall be maintained of all inspection, maintenance, testing, calibrating, and/or standardizing operations. These records, containing the date of the operation, shall describe whether the maintenance operations were routine and followed the written standard operating procedures. Written records shall be kept of non-routine repairs performed on equipment as a result of failure and malfunction. Such records shall document the nature of the defect, how and when the defect was discovered, and any remedial action taken in response to the defect.

Subpart E—Testing Facilities

Operation

§ 792.81 Standard operating procedures.

(a) A testing facility shall have standard operating procedures in writing, setting forth study methods that management is satisfied are adequate to insure the quality and integrity of the data generated in the course of a study. All deviations in a study from standard operating procedures shall be authorized by the study director and shall be documented in the raw data. Significant changes in established standard operating procedures shall be properly authorized in writing by management.

(b) Standard operating procedures shall be established for, but not limited to, the following:

(1) Test system room preparation.

(2) Test system care.

(3) Receipt, identification, storage, handling, mixing, and method of sampling of the test, control, and reference substances.

(4) Test system observations.

(5) Laboratory or other tests.

(6) Handling of test systems found moribund or dead during study.

(7) Necropsy of test systems or post-mortem examination of test systems.

(8) Collection and identification of specimens.

(9) Histopathology.

(10) Data handling, storage and retrieval.

(11) Maintenance and calibration of equipment.

(12) Transfer, proper placement, and identification of test systems.

(c) Each laboratory or other study area shall have immediately available manuals and standard operating procedures relative to the laboratory or field procedures being performed. Published literature may be used as a supplement to standard operating procedures.

(d) A historical file of standard operating procedures, and all revisions thereof, including the dates of such revisions, shall be maintained.

§ 792.83 Reagents and solutions.

All reagents and solutions in the laboratory areas shall be labeled to indicate identity, titer or concentration,
Environmental Protection Agency

§ 792.105 Test, control, and reference substance characterization.

(a) The identity, strength, purity, and composition, or other characteristics which will appropriately define the test, control, or reference substance shall be determined for each batch and shall be documented before its use in a study. Methods of synthesis, fabrication, or derivation of the test, control,

§ 792.90 Animal and other test system care.

(a) There shall be standard operating procedures for the housing, feeding, handling, and care of animals and other test systems.

(b) All newly received test systems from outside sources shall be isolated and their health status or appropriateness for the study shall be evaluated. This evaluation shall be in accordance with acceptable veterinary medical practice or scientific methods.

(c) At the initiation of a study, test systems shall be free of any disease or condition that might interfere with the purpose or conduct of the study. If during the course of the study, the test systems contract such a disease or condition, the diseased test systems should be isolated, if necessary. These test systems may be treated for disease or signs of disease provided that such treatment does not interfere with the study. The diagnosis, authorization of treatment, description of treatment, and each date of treatment shall be documented and shall be retained.

(d) Warm-blooded animals, adult reptiles, and adult terrestrial amphibians used in laboratory procedures that require manipulations and observations over an extended period of time, or in studies that require these test systems to be removed from and returned to their test system-housing units for any reason (e.g., cage cleaning, treatment, etc.), shall receive appropriate identification (e.g., tattoo, color code, ear tag, ear punch, etc.). All information needed to specifically identify each test system within the test system-housing unit shall appear on the outside of that unit. Suckling mammals and juvenile birds are excluded from the requirement of individual identification unless otherwise specified in the protocol.

(e) Except as specified in paragraph (e)(1) of this section, test systems of different species shall be housed in separate rooms when necessary. Test systems of the same species, but used in different studies, should not ordinarily be housed in the same room when inadvertent exposure to test, control, or reference substances or test system mixup could affect the outcome of either study. If such mixed housing is necessary, adequate differentiation by space and identification shall be made.

(1) Plants, invertebrate animals, aquatic vertebrate animals, and organisms that may be used in multispecies tests need not be housed in separate rooms, provided that they are adequately segregated to avoid mixup and cross contamination.

(2) [Reserved]

(f) Cages, racks, pens, enclosures, aquaria, holding tanks, ponds, growth chambers, and other holding, rearing, and breeding areas, and accessory equipment, shall be cleaned and sanitized at appropriate intervals.

(g) Feed, soil, and water used for the test systems shall be analyzed periodically to ensure that contaminants known to be capable of interfering with the study and reasonably expected to be present in such feed, soil, or water are not present at levels above those specified in the protocol. Documentation of such analyses shall be maintained as raw data.

(h) Bedding used in animal cages or pens shall not interfere with the purpose or conduct of the study and shall be changed as often as necessary to keep the animals dry and clean.

(i) If any pest control materials are used, the use shall be documented. Cleaning and pest control materials that interfere with the study shall not be used.

(j) All plant and animal test systems shall be acclimatized to the environmental conditions of the test, prior to their use in a study.

Subpart F—Test, Control, and Reference Substances

§ 792.105 Test, control, and reference substance characterization.

(a) The identity, strength, purity, and composition, or other characteristics which will appropriately define the test, control, or reference substance shall be determined for each batch and shall be documented before its use in a study. Methods of synthesis, fabrication, or derivation of the test, control,
or reference substance shall be documented by the sponsor or the testing facility, and such location of documentation shall be specified.

(b) When relevant to the conduct of the study, the solubility of each test, control, or reference substance shall be determined by the testing facility or the sponsor before the experimental start date. The stability of the test, control, or reference substance shall be determined before the experimental start date or concomitantly according to written standard operating procedures, which provide for periodic analysis of each batch.

(c) Each storage container for a test, control, or reference substance shall be labeled by name, chemical abstracts service number (CAS) or code number, batch number, expiration date, if any, and, where appropriate, storage conditions necessary to maintain the identity, strength, purity, and composition of the test, control, or reference substance. Storage containers shall be assigned to a particular test substance for the duration of the study.

(d) For studies of more than 4 weeks experimental duration, reserve samples from each batch of test, control, and reference substances shall be retained for the period of time provided by §792.105.

(e) The stability of test, control, and reference substances under storage conditions at the test site shall be known for all studies.

§792.107 Test, control, and reference substance handling.

Procedures shall be established for a system for the handling of the test, control, and reference substances to ensure that:

(a) There is proper storage.

(b) Distribution is made in a manner designed to preclude the possibility of contamination, deterioration, or damage.

(c) Proper identification is maintained throughout the distribution process.

(d) The receipt and distribution of each batch is documented. Such documentation shall include the date and quantity of each batch distributed or returned.

§792.113 Mixtures of substances with carriers.

(a) For each test, control, or reference substance that is mixed with a carrier, tests by appropriate analytical methods shall be conducted:

(1) To determine the uniformity of the mixture and to determine, periodically, the concentration of the test, control, or reference substance in the mixture.

(2) When relevant to the conduct of the experiment, to determine the solubility of each test, control, or reference substance in the mixture by the testing facility or the sponsor before the experimental start date.

(3) To determine the stability of the test, control or reference substance in the mixture before the experimental start date or concomitantly according to written standard operating procedures, which provide for periodic analysis of each batch.

(b) Where any of the components of the test, control, or reference substance carrier mixture has an expiration date, that date shall be clearly shown on the container. If more than one component has an expiration date, the earliest date shall be shown.

(c) If a vehicle is used to facilitate the mixing of a test substance with a carrier, assurance shall be provided that the vehicle does not interfere with the integrity of the test.

Subpart G—Protocol for and Conduct of A Study

§792.120 Protocol.

(a) Each study shall have an approved written protocol that clearly indicates the objectives and all methods for the conduct of the study. The protocol shall contain but shall not necessarily be limited to the following information:

(1) A descriptive title and statement of the purpose of the study.

(2) Identification of the test, control, and reference substance by name, chemical abstracts service (CAS) number or code number.

(3) The name and address of the sponsor and the name and address of the testing facility at which the study is being conducted.
(4) The proposed experimental start and termination dates.
(5) Justification for selection of the test system.
(6) Where applicable, the number, body weight, sex, source of supply, species, strain, substrain, and age of the test system.
(7) The procedure for identification of the test system.
(8) A description of the experimental design, including methods for the control of bias.
(9) Where applicable, a description and/or identification of the diet used in the study as well as solvents, emulsifiers and/or other materials used to solubilize or suspend the test, control, or reference substances before mixing with the carrier. The description shall include specifications for acceptable levels of contaminants that are reasonably expected to be present in the dietary materials and are known to be capable of interfering with the purpose or conduct of the study if present at levels greater than established by the specifications.
(10) The route of administration and the reason for its choice.
(11) Each dosage level, expressed in milligrams per kilogram of body or test system weight or other appropriate units, of the test, control, or reference substance to be administered and the method and frequency of administration.
(12) The type and frequency of tests, analyses, and measurements to be made.
(13) The records to be maintained.
(14) The date of approval of the protocol by the sponsor and the dated signature of the study director.
(15) A statement of the proposed statistical method.

§ 792.130 Conduct of a study.
(a) The study shall be conducted in accordance with the protocol.
(b) The test systems shall be monitored in conformity with the protocol.
(c) Specimens shall be identified by test system, study, nature, and date of collection. This information shall be located on the specimen container or shall accompany the specimen in a manner that precludes error in the recording and storage of data.
(d) In animal studies where histopathology is required, records of gross findings for a specimen from postmortem observations shall be available to a pathologist when examining that specimen histopathologically.
(e) All data generated during the conduct of a study, except those that are generated by automated data collection systems, shall be recorded directly, promptly, and legibly in ink. All data entries shall be dated on the day of entry and signed or initialed by the person entering the data. Any change in entries shall be made so as not to obscure the original entry, shall indicate the reason for such change, and shall be dated and signed or identified at the time of the change. In automated data collection systems, the individual responsible for direct data input shall be identified at the time of data input. Any change in automated data entries shall be made so as not to obscure the original entry, shall indicate the reason for change, shall be dated, and the responsible individual shall be identified.

§ 792.135 Physical and chemical characterization studies.
(a) All provisions of the GLPs shall apply to physical and chemical characterization studies designed to determine stability, solubility, octanol water partition coefficient, volatility, and persistence (such as biodegradation, photodegradation, and chemical degradation studies).
(b) The following GLP standards shall not apply to studies designed to determine physical and chemical characteristics of a test, control, or reference substance:
Section 792.31 (c), (d), and (g)
Section 792.35 (b) and (c)
Section 792.43
Section 792.45
Section 792.47
Section 792.49
Section 792.81 (b) (1), (2), (6) through (9), and (12)
Section 792.90
Section 792.105 (a) through (d)
§ 792.185 Reporting of study results.

(a) A final report shall be prepared for each study and shall include, but not necessarily be limited to, the following:

1. Name and address of the facility performing the study and the dates on which the study was initiated and was completed, terminated, or discontinued.

2. Objectives and procedures stated in the approved protocol, including any changes in the original protocol.

3. Statistical methods employed for analyzing the data.

4. The test, control, and reference substances identified by name, chemical abstracts service (CAS) number or code number, strength, purity, and composition, or other appropriate characteristics.

5. Stability, and when relevant to the conduct of the study, the solubility of the test, control, and reference substances under the conditions of administration.

6. A description of the methods used.

7. A description of the test system used. Where applicable, the final report shall include the number of animals or other test organisms used, sex, body weight range, source of supply, species, strain and substrain, age, and procedure used for identification.

8. A description of the dosage, dosage regimen, route of administration, and duration.

9. A description of all circumstances that may have affected the quality or integrity of the data.

10. The name of the study director, the names of other scientists or professionals and the names of all supervisory personnel, involved in the study.

11. A description of the transformations, calculations, or operations performed on the data, a summary and analysis of the data, and a statement of the conclusions drawn from the analysis.

12. The signed and dated reports of each of the individual scientists or other professionals involved in the study, including each person who, at the request or direction of the testing facility or sponsor, conducted an analysis or evaluation of data or specimens from the study after data generation was completed.

13. The locations where all specimens, raw data, and the final report are to be stored.

14. The statement prepared and signed by the quality assurance unit as described in § 792.35(b)(7).

(b) The final report shall be signed and dated by the study director.

(c) Corrections or additions to a final report shall be in the form of an amendment by the study director. The amendment shall clearly identify that part of the final report that is being added to or corrected and the reasons for the correction or addition, and shall be signed and dated by the person responsible. Modification of a final report to comply with the submission requirements of EPA does not constitute a correction, addition, or amendment to a final report.

(d) A copy of the final report and of any amendment to it shall be maintained by the sponsor and the test facility.

§ 792.190 Storage and retrieval of records and data.

(a) All raw data, documentation, records, protocols, specimens, and final reports generated as a result of a study shall be retained. Specimens obtained from mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, and biological fluids, do not need to be retained after quality assurance verification. Correspondence and other documents relating to interpretation and evaluation of data, other than those documents contained in the final report, also shall be retained.

(b) There shall be archives for orderly storage and expedient retrieval of all raw data, documentation, protocols, specimens, and interim and final reports. Conditions of storage shall minimize deterioration of the documents or
specimens in accordance with the requirements for the time period of their retention and the nature of the documents of specimens. A testing facility may contract with commercial archives to provide a repository for all material to be retained. Raw data and specimens may be retained elsewhere provided that the archives have specific reference to those other locations.

(c) An individual shall be identified as responsible for the archives.

(d) Only authorized personnel shall enter the archives.

(e) Material retained or referred to in the archives shall be indexed to permit expedient retrieval.

§ 792.195 Retention of records.

(a) Record retention requirements set forth in this section do not supersede the record retention requirements of any other regulations in this subchapter.

(b)(1) Except as provided in paragraph (c) of this section, documentation records, raw data, and specimens pertaining to a study and required to be retained by this part shall be retained in the archive(s) for a period of at least ten years following the effective date of the applicable final test rule.

(2) In the case of negotiated testing agreements, each agreement will contain a provision that, except as provided in paragraph (c) of this section, documentation records, raw data, and specimens pertaining to a study and required to be retained by this part shall be retained in the archive(s) for a period of at least ten years following the date on which the results of the study are submitted to the agency.

(c) Wet specimens, samples of test, control, or reference substances, and specially prepared material which are relatively fragile and differ markedly in stability and quality during storage, shall be retained only as long as the quality of the preparation affords evaluation. Specimens obtained from mutagenicity tests, specimens of soil, water, and plants, and wet specimens of blood, urine, feces, biological fluids, do not need to be retained after quality assurance verification. In no case shall retention be required for longer periods than those set forth in paragraph (b) of this section.

(d) The master schedule sheet, copies of protocols, and records of quality assurance inspections, as required by §792.39(c) shall be maintained by the quality assurance unit as an easily accessible system of records for the period of time specified in paragraph (b) of this section.

(e) Summaries of training and experience and job descriptions required to be maintained by §792.29(b) may be retained along with all other testing facility employment records for the length of time specified in paragraph (b) of this section.

(f) Records and reports of the maintenance and calibration and inspection of equipment, as required by §792.63(b) and (c), shall be retained for the length of time specified in paragraph (b) of this section.

(g) If a facility conducting testing or an archive contracting facility goes out of business, all raw data, documentation, and other material specified in this section shall be transferred to the archives of the sponsor of the study. The EPA shall be notified in writing of such a transfer.

(h) Specimens, samples, or other non-documentary materials need not be retained after EPA has notified in writing the sponsor or testing facility holding the materials that retention is no longer required by EPA. Such notification normally will be furnished upon request after EPA or FDA has completed an audit of the particular study to which the materials relate and EPA has concluded that the study was conducted in accordance with this part.

(i) Records required by this part may be retained either as original records or as true copies such as photocopies, microfilm, microfiche, or other accurate reproductions of the original records.
PART 795—PROVISIONAL TEST GUIDELINES

Subpart A [Reserved]

Subpart B—Provisional Chemical Fate Guidelines

Sec. 795.70 Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic substances.

Subpart C—Provisional Environmental Effects Guidelines

795.120 Gammarid acute toxicity test.

Subpart D—Provisional Health Effects Guidelines

795.225 Dermal pharmacokinetics of DGBE and DGBA.
795.228 Oral/dermal pharmacokinetics.
795.231 Pharmacokinetics of isopropanal.
795.232 Inhalation and dermal pharmacokinetics of commercial hexane.
795.250 Developmental neurotoxicity screen.

Subpart A [Reserved]

Subpart B—Provisional Chemical Fate Guidelines

§ 795.70 Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic substances.

(a) Introduction. (1) Chemicals dissolved in natural waters are subject to two types of photoreaction. In the first case, the chemical of interest absorbs sunlight directly and is transformed to products when unstable excited states of the molecule decompose. In the second case, reaction of dissolved chemical is the result of chemical or electronic excitation transfer from light-absorbing humic species in the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water. In contrast to direct photolysis, this photoreaction is governed initially by the spectroscopic properties of the natural water.

(2) In general, both indirect and direct processes can proceed simultaneously. Under favorable conditions the measurement of a photoreaction rate constant in sunlight \(k_{DE}\) in a natural water body will yield a net value that is the sum of two first-order reactions, the rate constants for the direct \(k_{DE}\) and indirect \(k_{IE}\) pathways which can be expressed by the relationship

\[k_{pE} = k_{DE} + k_{IE}. \]

This relationship is obtained when the reaction volume is optically thin so that a negligible fraction of the incident light is absorbed and is sufficiently dilute in test chemical; thus the direct and indirect photoreaction processes become first-order.

(3) In pure water only, direct photoreaction is possible, although hydrolysis, biotransformation, sorption, and volatilization also can decrease the concentration of a test chemical. By measuring \(k_{pE}\) in a natural water and \(k_{DE}\) in pure water, \(k_{IE}\) can be calculated.

(4) Two protocols have been written that measure \(k_{pE}\) in sunlight or predict \(k_{DE}\) in sunlight from laboratory measurements with monochromatic light (USEPA (1984) under paragraph (f)(14) and (15) of this section; Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1982) under paragraph (f)(10) of this section; Mill et al. (1983) under paragraphs (f)(11) of this section). As a preface to the use of the present protocol, it is not necessary to know \(k_{DE}\); it will be determined under conditions that definitively establish whether \(k_{IE}\) is significant with respect to \(k_{DE}\).

(5) This protocol provides a cost effective test method for measuring \(k_{IE}\) for test chemicals in a natural water (synthetic humic water, SHW) derived from commercial humic material. It describes the preparation and standardization of SHW. To implement the method, a test chemical is exposed to sunlight in round tubes containing SHW and tubes containing pure water for defined periods of time based on a screening test.

(6) To correct for variations in solar irradiance during the reaction period, an actinometer is simultaneously isolated. From these data, an indirect photoreaction rate constant is calculated that is applicable to clear-sky, near-surface, conditions in fresh water bodies.

(7) In contrast to \(k_{DE}\), which, once measured, can be calculated for different seasons and latitudes, \(k_{IE}\) only
applies to the season and latitude for which it is determined. This condition exists because the solar action spectrum for indirect photoreaction in humic-containing waters is not generally known and would be expected to change for different test chemicals. For this reason, \(k_{\text{HW}} \), which contains \(k_{\text{DE}} \), is likewise valid only for the experimental data and latitude.

(8) The value of \(k_{\text{HW}} \) represents an atypical quantity because \(k_{\text{HW}} \) will change somewhat from water body to water body as the amount and quality of dissolved aquatic humic substances change. Studies have shown, however, that for optically-matched natural waters, these differences are usually within a factor of two (Zepp et al. 1981) under paragraph (f)(17) of this section.

(9) This protocol consists of three separate phases that should be completed in the following order: In Phase 1, SHW is prepared and adjusted; in Phase 2, the test chemical is irradiated in SHW and pure water (PW) to obtain approximate sunlight photoreaction rate constants and to determine whether direct and indirect photoprocesses are important; in Phase 3, the test chemical is again irradiated in PW and SHW. To correct for photobleaching of SHW and also solar irradiance variations, tubes containing SHW and actinometer solutions are exposed simultaneously. From these data \(k_{\text{HR}} \) is calculated that is the sum of \(k_{\text{II}} \), \(k_{\text{DE}} \) (Equation 1) (Winterle and Mill 1985) under paragraph (f)(12) of this section.

(b) Phase 1—Preparation and standardization of synthetic natural water—(1) Approach. (i) Recent studies have demonstrated that natural waters can promote the indirect (or sensitized) photoreaction of dissolved organic chemicals. This reactivity is imparted by dissolved organic material (DOM) in the form of humic substances. These materials absorb sunlight and produce reactive intermediates that include singlet oxygen \((\text{O}_2^{ullet}) \) (Zepp et al. 1977) under paragraph (f)(9) of this section, Zepp et al. 1981 under paragraph (f)(17) of this section, Zepp et al. 1981 under paragraph (f)(12) of this section, Wolff et al. 1981 under paragraph (f)(18) of this section, Wolff et al. 1981 under paragraph (f)(16) of this section, Haag et al. 1984 under paragraph (f)(7) of this section; peroxy radicals \((\text{RO}_2^{ullet}) \) (Mill et al. 1983) under paragraph (f)(11) of this section; hydroxyl radicals \((\text{HO}_2^{ullet}) \) (Mill et al. 1981) under paragraph (f)(8) of this section; superoxide anion \((\text{O}_2^{ullet}^-) \) and hydroperoxy radicals \((\text{HO}_2^{ullet}) \). (Cooper and Zika 1983) under paragraph (f)(1) of this section, Draper and Crosby (1981) under paragraph (f)(2) of this section; and triplet excited states of the humic substances (Zepp et al. 1981) under paragraph (f)(17) of this section, Zepp et al. 1985 under paragraph (f)(21) of this section. Synthetic humic waters, prepared by extracting commercial humic or fulvic materials with water, photoreact similarly to natural waters when optically matched (Zepp et al. 1981) under paragraphs (f)(17) and (18) of this section.

(ii) The indirect photoreactivity of a chemical in a natural water will depend on its response to these reactive intermediates, and possibly others yet unknown, as well as the ability of the water to generate such species. This latter feature will vary from water-to-water in an unpredictable way, judged by the complexity of the situation.

(iii) The approach to standardizing a test for indirect photoreactivity is to use a synthetic humic water (SHW) prepared by water-extracting commercial humic material. This material is inexpensive, and available to any laboratory, in contrast to a specific natural water. The SHW can be diluted to a dissolved organic carbon (DOC) content and uv-visible absorbance typical of most surface fresh waters.

(iv) In recent studies it has been found that the reactivity of SHW mixtures depends on pH, and also the history of sunlight exposure (Mill et al. 1983) under paragraph (f)(11) of this section. The SHW solutions initially photobleach with a time-dependent rate constant. As such, an SHW test system has been designed that is buffered to maintain pH and is pre-aged in sunlight to produce, subsequently, a predictable bleaching behavior.

(iv) The purpose of Phase 1 is to prepare, pre-age, and dilute SHW to a
§ 795.70

standard mixture under defined, reproducible conditions.

(2) Procedure. (i) Twenty grams of Aldrich humic acid are added to a clean 2-liter Pyrex Erlenmeyer flask. The flask is filled with 2 liters of 0.1 percent NaOH solution. A stir bar is added to the flask, the flask is capped, and the solution is stirred for 1 hour at room temperature. At the end of this time the dark brown supernatant is decanted off and either filtered through coarse filter paper or centrifuged and then filtered through 0.4 \(\mu \text{m} \) microfilter. The pH is adjusted to 7.0 with dilute \(\text{H}_2\text{SO}_4 \) and filter sterilized through a 0.2 \(\mu \text{m} \) filter into a rigorously cleaned 2-liter Erlenmeyer flask. This mixture contains roughly 60 ppm DOC and the absorbance (in a 1 \text{cm} path length cell) is approximately 1.7 at 313 nm and 0.7 at 370 nm.

(ii) Pre-aging is accomplished by exposing the concentrated solution in the 2-liter flask to direct sunlight for 4 days in early spring or late fall; 3 days in late spring, summer, or early fall. At this time the absorbance of the solution is measured at 370 nm, and a dilution factor is calculated to decrease the absorbance to 0.50 in a 1 \text{cm} path length cell. If necessary, the pH is re-adjusted to 7.0. Finally, the mixture is brought to exact dilution with a precalculated volume of reagent-grade water to give a final absorbance of 0.500 in a 1-cm path length cell at 370 nm. It is tightly capped and refrigerated.

(iii) This mixture is SHW stock solution. Before use it is diluted 10-fold with 0.010 M phosphate buffer to produce a pH 7.0 mixture with an absorbance of 5.00 \times 10^{-2} at 370 nm, and a dissolved organic carbon of about 5 ppm. Such values are characteristic of many surface fresh waters.

(3) Rationale. The foregoing procedure is designed to produce a standard humic-containing solution that is pH controlled, and sufficiently aged that its photobleaching first-order rate constant is not time dependent. It has been demonstrated that after 7 days of winter sunlight exposure, SHW solutions photobleached with a nearly constant rate constant (Mill et al. (1983) under paragraph (f)(11) of this section).

(c) Phase 2—Screening test—(1) Introduction and purpose. (i) Phase 2 measurements provide approximate solar photolysis rate constants and half-lives of test chemicals in PW and SHW. If the photoreaction rate in SHW is significantly larger than in PW (factor of >2X) then the test chemical is subject to indirect photoreaction and Phase 3 is necessary. Phase 2 data are needed for more accurate Phase 3 measurements, which require parallel solar irradiation of actinometer and test chemical solutions. The actinometer composition is adjusted according to the results of Phase 2 for each chemical, to equalize as much as possible photoreaction rate constants of chemical in SHW and actinometer.

(ii) In Phase 2, sunlight photoreaction rate constants are measured in round tubes containing SHW and then mathematically corrected to a flat water surface geometry. These rate constants are not corrected to clear-sky conditions.

(2) Procedure. (i) Solutions of test chemicals should be prepared using sterile, air-saturated, 0.010 M, pH 7.0 phosphate buffer and reagent-grade (or purer) chemicals.2 Reaction mixtures should be prepared with chemicals at concentrations at least than one-half their solubility in pure water and at concentrations such that, at any wavelengths above 290 nm, the absorbance in a standard quartz sample cell with a 1-cm path length cell is less than 0.05. If the chemicals are too insoluble in water to permit reasonable handling or analytical procedures, 1-volume percent acetonitrile may be added to the buffer as a cosolvent.

(ii) This solution should be mixed 9.00:1.00 by volume with PW or SHW stock solution to provide working solutions. In the case of SHW, it gives a ten-fold dilution of SHW stock solution. Six mL aliquots of each working solution should then be transferred to separate 12 \times 100 mm quartz tubes with screw tops and tightly sealed with Mininert valves.2 Twenty four tubes are required for each chemical solution.

1 The water should be ASTM Type IIA, or an equivalent grade.
2 Mininert Teflon sampling vials are available from Alltech Associates, Inc., 202 Campus Dr., Arlington Heights, IL 60005.
(12 samples and 12 dark controls), to give a total of 48 tubes.

(iii) The sample tubes are mounted in a photolysis rack with the tops facing geographically north and inclined 30° from the horizontal. The rack should be placed outdoors over a black background in a location free of shadows and excessive reflection.

(iv) Reaction progress should be measured with an analytical technique that provides a precision of at least ±5 percent. High pressure liquid chromatography (HPLC) or gas chromatograph (GC) have proven to be the most general and precise analytical techniques.

(v) Sample and control solution concentrations are calculated by averaging analytical measurements for each solution. Control solutions should be analyzed at least twice at zero time and at other times to determine whether any loss of chemical in controls or samples has occurred by some adventitious process during the experiment.

(vi) Whenever possible the following procedures should be completed in clear, warm, weather so that solutions will photolyze more quickly and not freeze.

(A) Starting at noon on day zero, expose to sunlight 24 sample tubes mounted on the rack described above. Tape 24 foil-wrapped controls to the bottom of the rack.

(B) Analyze two sample tubes and two unexposed controls in PW and SHW for chemical at 24 hours. Calculate the round tube photolysis rate constants \(k_{\text{pSHW}} \) and \(k_{\text{pW}} \) if the percent conversions are J 20 percent but F 80 percent. The rate constants \(k_{\text{pSHW}} \) and \(k_{\text{pW}} \) are calculated, respectively, from Equations 2 and 3:

\[
\begin{align*}
\text{Equation 2} \\
(\text{k}_{\text{pSHW}}) = \frac{(1/\pi) P n (C_{\text{o}}/C_{\text{i}})_{\text{SHW}}}{(\text{in d}^{-1})}
\end{align*}
\]

\[
\begin{align*}
\text{Equation 3} \\
(\text{k}_{\text{pW}}) = \frac{(1/\pi) P n (C_{\text{o}}/C_{\text{i}})_{\text{W}}}{(\text{in d}^{-1})},
\end{align*}
\]

where the subscript identifies a reaction in SHW or PW; \(t \) is the photolysis time in calendar days; \(C_{\text{i}} \) is the initial molar concentration; and \(C_{\text{o}} \) is the molar concentration in the irradiated tube at \(t \). In this case \(t=1 \) day.

(C) If less than 20 percent conversion occurs in SHW in 1 day, repeat the procedure for SHW and PW at 2 days, 4 days, 8 days, or 16 days, or until 20 percent conversion is reached. Do not extend the experiment past 16 days. If less than 20 percent photoreaction occurs in SHW at the end of 16 days the chemical is “photoinert”. Phase 3 is not applicable.

(D) If more than 80 percent photoreaction occurs at the end of day 1 in SHW, repeat the experiment with eight each of the remaining foil-wrapped PW and SHW controls. Divide these sets into four sample tubes each, leaving four foil-wrapped controls taped to the bottom of the rack.

(1) Expose tubes of chemical in SHW and PW to sunlight starting at 0900 hours and remove one tube and one control at 1, 2, 4, and 8 hours. Analyze all tubes the next day.

(2) Estimate \(k_{\text{pSHW}} \) for the first tube in which photoreaction is J 20 percent but F 80 percent. If more than 80 percent conversion occurs in the first SHW tube, report: “The half-life is less than one hour” and end all testing. The chemical is “photolabile.” Phase 3 is not applicable.

(3) The rate constants \(k_{\text{pSHW}} \) and \(k_{\text{pW}} \) are calculated from equations 2 and 3 but the time of irradiation must be adjusted to reflect the fact that day-averaged rate constants are approximately one-third of rate constants averaged over only 8 daylight hours. For 1 hour of insolation enter \(t =0.125 \) day into equation 2. For reaction times of 2, 4, and 8 hours enter 0.25, 0.50 and 1.0 days, respectively. Proceed to Phase 3 testing.

(4) Once \(k_{\text{pSHW}} \) and \(k_{\text{pW}} \) are measured, determine the ratio \(R \) from equation 4:

\[
\begin{align*}
\text{Equation 4} \\
R = \frac{(k_{\text{pSHW}})}{(k_{\text{pW}})}.
\end{align*}
\]

The coefficient \(R \), defined by Equation 4, is equal to \([(k_{1}+k_{2})/k_{2}] \). If \(R \) is in the range 0 to 1, the photoreaction is inhibited by the synthetic humic water and Phase 3 does not apply. If \(R \) is in the range 1 to 2, the test chemical is marginally susceptible to indirect photolysis. In this case, Phase 3 studies are optional. If \(R \) is greater than 2, Phase 3 measurements are necessary to measure \(k_{\text{pH}} \) and to evaluate \(k_{\text{WB}} \).
(vii) Since the rate of photolysis in tubes is faster than the rate in natural water bodies, values of near-surface photolysis rate constants in natural and pure water bodies, \(k_{\text{ph}} \) and \(k_{\text{DE}} \), respectively, can be obtained from \((k_p)_{\text{SHW}} \) and \((k_p)_{\text{W}} \) from Equations 5 and 6:

\[
k_{\text{ph}} = 0.45(k_p)_{\text{SHW}}
\]

Equation 5

\[
k_{\text{DE}} = 0.45(k_p)_{\text{W}}.
\]

Equation 6

The factor 0.45 is an approximate geometric correction for scattered light in tubes versus horizontal surfaces. A rough value of \(k_{\text{ph}} \), the rate constant for indirect photolysis in natural waters or SHW, can be estimated from the difference between \(k_{\text{ph}} \) and \(k_{\text{DE}} \) using Equation 7:

\[
k_{\text{PH}} = k_{\text{DE}} - k_{\text{ph}}.
\]

Equation 7

(iii) Criteria for Phase 2. (i) If no loss of chemical is found in dark control solutions compared with the analysis in tubes at zero time (within experimental error), any loss of chemical in sunlight is assumed to be due to photolysis, and the procedure provides a valid estimate of \(k_{\text{ph}} \) and \(k_{\text{DE}} \). Any loss of chemical in the dark-control solutions may indicate the intervention of some other loss process such as hydrolysis, microbial degradation, or volatilization. In this case, more detailed experiments are needed to trace the problem and if possible eliminate or minimize the source of loss.

(ii) Rate constants determined by the Phase 2 protocol depend upon latitude, season, and weather conditions. Note that \((k_p)_{\text{SHW}} \) and \(k_{\text{DPH}} \) values apply to round tubes and \(k_{\text{PH}} \) and \(k_{\text{DE}} \) values apply to a natural water body. Because both \((k_p)_{\text{SHW}} \) and \(k_{\text{DPH}} \) are measured under the same conditions the ratio \(((k_p)_{\text{SHW}}/k_{\text{DPH}}) \) is a valid measure of the susceptibility of a chemical to indirect photolysis. However, since SHW is subject to photobleaching, \((k_p)_{\text{SHW}} \) will decrease with time because the indirect rate will diminish. Therefore, \(R > 2 \) is considered to be a conservative limit because \((k_p)_{\text{SHW}} \) will become systematically smaller with time.

(4) Rationale. The Phase 2 protocol is a simple procedure for evaluating direct and indirect sunlight photolysis rate constants of a chemical at a specific time of year and latitude. It provides a rough rate constant for the chemical in SHW that is necessary for Phase 3 testing. By comparison with the direct photoreaction rate constant, it can be seen whether the chemical is subject to indirect photoreaction and whether Phase 3 tests are necessary.

(5) Scope and limitations. (i) Phase 2 testing separates test chemicals into three convenient categories: “Photolabile”, “Photo inert”, and those chemicals having sunlight half-lives in round tubes in the range of 1 hour to 50 days. Chemicals in the first two categories fall outside the practical limits of the test, and cannot be used in Phase 3. All other chemicals are suitable for Phase 3 testing.

(ii) The test procedure is simple and inexpensive, but does require that the chemical dissolve in water at sufficient concentrations to be measured by some analytical technique but not have appreciable absorbance in the range 290 to 825 nm. Phase 2 tests should be done during a clear-sky period to obtain the best results. Testing will be less accurate for chemicals with half-lives of less than 1 day because dramatic fluctuations in sunlight intensity can arise from transient weather conditions and the difficulty of assigning equivalent reaction times. Normal diurnal variations also affect the photolysis rate constant. Phase 3 tests should be started as soon as possible after the Phase 2 tests to ensure that the \((k_p)_{\text{SHW}} \) estimate remains valid.

(6) Illustrative Example. (i) Chemical A was dissolved in 0.010 M pH 7.0 buffer. The solution was filtered through a 0.2 \(\mu \)m filter, air saturated, and analyzed. It contained \(1.7 \times 10^{-5} \) M A, five-fold less than its water solubility of \(8.5 \times 10^{-5} \) M at 25 °C. A uv spectrum (1-cm path length) versus buffer blank showed no absorbance greater than 0.05 in the wavelength interval 290 to 825 nm, a condition required for the Phase 2 protocol. The 180 mL mixture was diluted by the addition of 20 mL of SHW stock solution.

(ii) The SHW solution of A was photolized in sealed quartz tubes
Environmental Protection Agency

(12±100 mm) in the fall season starting on October 1. At the end of 1 and 2 days, respectively, the concentration of A was found to be 1.13×10⁻⁴ M and 0.92×10⁻⁵ M compared to unchanged dark controls (1.53×10⁻³ M).

(iii) The tube photolysis rate constant of chemical A was calculated from Equation 2 under paragraph (c)(2)(vi)(B) of this section. The first time point at day 1 was used because the fraction of A remaining was in the range 20 to 80 percent:

\[(k_{D,sw} = \frac{1.2}{1.20} Pn \{1.53 \times 10^{-3} \} \times 10^{-4}) \]

(k\(D_{sw}\) = 0.30 d⁻¹).

(iv) From this value, k\(D_{sw}\) was found to be 0.14 d⁻¹ using equation 5 under paragraph (c)(2)(vii) of this section:

\[k_{D,sw} = 0.45(0.30 \text{ d}^{-1}) \]

(v) From measurements in pure water, k\(D_{o}\), for chemical A was found to be 0.085 d⁻¹. Because the ratio of (k\(D_{sw}\)/k\(D_{o}\) = (3.5)) is greater than 2, Phase 3 experiments were started.

(d) Phase 3—Indirect photoreaction with actinometer: Calculation of k\(IE\) and k\(IE\)-equivalent:

(i) The purpose of Phase 3 is to measure k\(IE\), the indirect photolysis rate constant in tubes, and then to calculate k\(IE\) for the test chemical in a natural water. If the approximate (k\(D_{sw}\)/k\(D_{o}\) = (3.5)) is greater than 2, Phase 3 is not necessary because the test chemical is not subject to indirect photoreaction.

(ii) In the case (k\(D_{sw}\) ≫ k\(D_{o}\)), Phase 3 is necessary. The rate constant (k\(D_{sw}\))/k\(D_{o}\) is used to choose an actinometer composition that matches the actinometer rate to the test chemical rate. Test chemical solutions in SHW and in pure water buffer are then irradiated in sunlight in parallel with actinometer solutions, all in tubes.

(iii) The actinometer used is the p-nitroacetophenone-pyridine (PNAP/PYR) system developed by Dulin and Mill (1982) under paragraph (f) (5) of this section and is used in two EPA test guidelines (USEPA 1984) under paragraphs (f) (14) and (15) of this section. By varying the pyridine concentration, the PNAP photolysis half-life can be adjusted over a range of several hours to several weeks. The starting PNAP concentration is held constant.

(iv) SHW is subject to photobleaching that decreases its ability to promote indirect photolysis based on its ability to absorb sunlight. This effect will be significant when the test period exceeds a few days. To correct for photobleaching, tubes containing SHW are irradiated in action to the other tubes above.

(v) At any time, the loss of test chemical is given by Equation 8 assuming actinometric correction to constant light flux:

\[-\frac{d[C]}{dt} = k_{IE} + k_{D}[C]. \]

(vi) The indirect photolysis rate constant, k\(IE\), is actually time dependent because SHW photobleaches; the rate constant k\(W\), after pre-aging, obeys the formula:

\[k_{W} = k_{W,0} \exp(-kt), \]

in which k\(W,0\) is the initial indirect photolysis rate constant and k is the SHW photobleaching rate constant. After substituting equation 9 for k\(W\), in Equation 8 under paragraph (d)(1)(v) of this section, and rearranging, one obtains

\[-\frac{d[C]}{dt} = k_{W,0}[\exp(-kt) + 1] dt + k_{D}[C]. \]

This expression is integrated to give Equation 10:

\[Pn(C/C)_{sw} = (k_{W,0}[1 - \exp(-kt)]) + k_{D}[C]. \]

The term (k\(W,0\)/k) can now be evaluated. Since in pure water, Pn(C/C)\(w\) = k\(D\), t, then subtracting this equation from Equation 10 gives

\[Pn(C/C)_{sw} - Pn(C/C)_{w} = k_{W,0}[1 - \exp(-kt)]. \]

The photobleaching fraction, [1-\(\exp(-kt)\)], is equivalent to the expression [1/(A\(370\)/A\(370\))], where A\(370\) and A\(370\) are the absorbances at 370 nm, and are proportional to humic sensitizer content at times zero and t. Therefore, (k\(W,0\)), is derived from the slope of a linear regression using [Pn(C/C)\(sw\) - Pn(C/C)\(w\)].
(vii) To evaluate k_D, the parameter k has to be evaluated under standard sunlight conditions. Therefore, the photolysis rate constant for the PNAP/PYR actinometer (k_α) is used to evaluate k by linear regression on Equation 12:

$$Pn(A^*PnA_\text{PNAP}) = (k_\alpha/k_\omega)Pn(C_\omega/CPNAP).$$

where the slope is (k/k_ω) and the value of k_α is calculated from the concentration of pyridine and the absorption of light by PNAP: $k_\alpha = 2.0(0.0169)[\text{PYR}]$. Values of k_α are listed in the following Table 1.

<table>
<thead>
<tr>
<th>TABLE 1—DAY AVERAGED RATE CONSTANT (k_α) (^1) FOR SUNLIGHT ABSORPTION BY PNAP AS A FUNCTION OF SEASON AND DECADIC LATITUDE (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
</tr>
<tr>
<td>20°N</td>
</tr>
<tr>
<td>30°N</td>
</tr>
<tr>
<td>40°N</td>
</tr>
<tr>
<td>50°N</td>
</tr>
</tbody>
</table>

\(^1\) $k_\alpha = 2.0(0.0169)[\text{PYR}]$ (in the units of day \(^{-1}\)). \(^2\) For use in Equation 15 under paragraph (d)\(1\)\(vii\) of this section.

The value of k_ω is then given by Equation 13:

$$k_\omega = (k_\alpha/k_\omega)k_\alpha.$$

(viii) To obtain k_D, determine the ratio (k_D/k_α) from a linear regression of $Pn(C_\omega/C_\text{PNAP})$ versus $Pn(C_\omega/CPNAP)$ according to Equation 13a:

$$Pn(C_\omega/C_\text{PNAP}) = (k_D/k_\omega)Pn(C_\omega/CPNAP).$$

The slope is (k_D/k_α), and k_D is obtained by multiplication of this slope with the known value of k_α: i.e., $k_D = (k_D/k_\alpha)k_\alpha$.

(ix) Then, $(k_D)_\text{SW}$ values in SHW are determined by summing k_D and k_ω, as follows:

$$\text{(viii)} \quad (k_D)_\text{SW} = k_\omega + k_D.$$

(x) Finally, k_ω is calculated from the precise relationship, Equation 5a:

$$k_\omega = 0.455(k_\omega)_{\text{SWW}}.$$

(2) Procedure. (i) Using the test chemical photoreaction rate constant in round tubes, $(k_\alpha)_\text{SWW}$ determined in Phase 2 under paragraph (c) of this section, and the absorption rate constant, k_α found in Table 1, under paragraph (d)\(1\)\(vii\) of this section, calculate the molar pyridine concentration required by the PNAP/PYR actinometer using Equation 15:

$$[\text{PYR}] = \frac{(k_\alpha)_\text{SWW}}{(k_\alpha)}.$$

This pyridine concentration makes the actinometer rate constant match the test chemical rate constant.

(A) The variable k_α ($= @ e_{pE} L_p$) is equal to the day-averaged rate constant for sunlight absorption by PNAP (USEPA (1984) under paragraph (f)\(1\)) of this section; Mill et al. (1982) under paragraph (f)\(1\)\(a\) of this section, Zepp and Cline (1977) under paragraph (f)\(1\)\(b\) of this section) which changes with season and latitude.

(B) The variable k_ω is selected from Table 1 under paragraph (d)\(1\)\(vii\) of this section for the season nearest the mid-experiment date of Phase 2 studies and the decadic latitude nearest the experimental site.

(ii) Once $[\text{PYR}]$ is determined, an actinometer solution is prepared by adding 1.00 mL of 1.0 \times 10$^{-2}$ M (0.165 gms/100 mL) PNAP stock solution (in CH$_3$CN solvent) and the required volume, V, of PYR to a 1 liter volumetric flask. The flask is then filled with distilled water to give 1 liter of solution. The volume V can be calculated from Equation 16:

$$V/mL = \frac{[\text{PYR}]}{0.0124}.$$

The PNAP/PYR solutions should be wrapped with aluminum foil and kept out of bright light after preparation.

(iii) The following solutions should be prepared and individually added in 6.00 mL aliquots to 12/100 mm quartz
sample tubes; 8 tubes should be filled with each solution:

(A) PNAP/PYR actinometer solution.
(B) Test chemical in pH 7.0, 0.010 M phosphate buffer.
(C) Test chemical in pH 7.0, 0.010 M phosphate buffer/SHW.
(D) pH 7.0, 0.010 M phosphate buffer/SHW. Four tubes of each set are wrapped in foil and used as controls.

(iv) The tubes are placed in the photolysis rack (Phase 2, Procedure) at 0900 hours on day zero, with the controls taped to the bottom of the rack. One tube of each composition is removed, along with their respective controls, according to a schedule found in Table 2, which categorizes sampling times on the basis of \(k_{o370} \) determined in Phase 1.

Table 2—Category and Sampling Procedure for Test and Actinometry Solutions

<table>
<thead>
<tr>
<th>Category</th>
<th>(k_o) ((d^+)_SHW)</th>
<th>Sampling procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.5 J (k_o) 0.69</td>
<td>Sample at 0, 1, 2, 4, and 8h.</td>
</tr>
<tr>
<td>B</td>
<td>0.69 (k_o) 0.017</td>
<td>Sample at 0, 1, 2, 4, and 8d.</td>
</tr>
<tr>
<td>C</td>
<td>0.17 (k_o) 0.043</td>
<td>Sample at 0, 4, 8, 16, and 32d.</td>
</tr>
</tbody>
</table>

(v) The tubes containing PNAP, test chemical, and their controls are analyzed for residual concentrations soon after the end of the experiment. PNAP is conveniently analyzed by HPLC, using a 30 cm C18 reverse phase column and a uv detector set at 280 nm. The mobile phase is 2 percent acetic acid, 50 percent acetonitrile and 48 percent water (2 mL/min flow rate). Tubes containing only SHW (solution D) should be analyzed by absorption spectroscopy at 370 nm after storage at 4°C in the dark. The absorbance range to be measured is 0.05 to 0.01 AU (1 cm).

(vi) If controls are well-behaved and show no significant loss of chemical or absorbance change, then \(k_1 \) can be calculated. In tabular form (see Table 4 under paragraph (d)(6)(iii)(A) of this section) arrange the quantities \(Pn(C/C)_{SHW} \), \(Pn(C/C)_{SHW} \cdot [1-(A_{370}/A_{370})] \), \(Pn(A_{370}/A_{370}) \), and \(Pn(C/C)_{PNAP} \) in order of increasing time. According to Equation 11 under paragraph (d)(1)(vi) of this section, the value of \(k_1 \) is obtained using Equation 17.

\[
Pn(C/C)_{SHW} - Pn(C/C)_{SHW} = [k_o/k_1](1 - [A_{370}/A_{370}])
\]

Equation 17

plot the quantities \([Pn(C/C)_{SHW} - Pn(C/C)_{SHW}] \) versus the independent variable \([1-(A_{370}/A_{370})] \). Obtain the slope (S1) by least square linear regression. Under the assumptions of the protocol, \(S_1 = k_o/k_1 \).

(vii) According to Equation 12 under paragraph (d)(1)(vii) of this section, the value of \(k_{o370} \) is obtained by plotting the quantities \([Pn(A_{370}/A_{370})] \) versus the independent variable \([1-(A_{370}/A_{370})] \). Obtain the slope (S2) by least squares linear regression on Equation 12 under paragraph (d)(1)(vii) of this section. Under the assumptions of the protocol, \(S_2 = (k_1/k_{o370}) \).

(viii) Then, using Equation 13a under paragraph (d)(1)(vii) of this section, determine the slope (S3) by least squares linear regression. Under the assumptions of the protocol, \(S_3 \) is equal to \((k_D/k_{o370}) \).

(ix) From Equation 18

\[
k_{a} = 0.0372[PYR]k_o
\]

Equation 18

calculate \(k_a \) using \(k_o \) values found in Table 1 under paragraph (d)(1)(vii) of this section. The value of \(k_o \) chosen must correspond to the date closest to the mid-experiment date and latitude closest to that of the experimental site.

(x) The indirect photoreaction rate constant, \(k_{o370} \), is determined using Equation 19.

\[
k_{o370} = (S_1)(k_1)(S_2)
\]

Equation 19

by incorporating the quantities \(k_a \), S1, and S2 determined as described in paragraphs (d)(2)(ix), (vi), and (vii) of this section, respectively.

(xi) The rate constant \(k_D \) is calculated from Equation 20.

\[
k_D = (S_3)(k_{o370})
\]

Equation 20

using the quantities S3 and \(k_{o370} \) determined as described above.

(xii) Then, \((k_o)_{SHW} \) is obtained by summing \(k_D \) and \(k_{o370} \) as described by
Equation 14 in paragraph (d)(1)(ix) of this section:

Equation 14

\((k_p)_{SW} = k_p + k_d \)

(xiii) Finally, \(k_p \) is obtained by multiplying \((k_p)_{SNW}\) by the factor 0.455, as described by Equation 5a in paragraph (d)(1)(x) of this section:

Equation 5a

\(k_p = 0.455 (k_p)_{SNW} \)

As determined, \(k_p \) is the net environmental photoreaction rate constant. It applies to clear sky conditions and is valid for predicting surface photoreaction rates in an average humic containing freshwater body. It is strictly valid only for the experimental latitude and season.

(3) Criteria for Phase 3. As in Phase 2, Phase 3 tests are assumed valid if the dark controls are well behaved and show no significant loss of chemical. In such a case, loss of test chemical in irradiated samples is due to photoreaction.

(4) Rationale. Simultaneous irradiation of a test chemical and actinometer provide a means of evaluating sunlight intensities during the reaction period. Parallel irradiation of SW solutions allows evaluation of the extent of photobleaching and loss of sensitizing ability of the natural water.

(5) Scope and limitations of Phase 3 protocol. Test chemicals that are classified as having half-lives in SW in the range of 1 hour to 50 days in Phase 2 testing are suitable for use in Phase 3 testing. Such chemicals have photoreaction half-lives in a range accommodated by the PNAP/PYR actinometry in sunlight and also accommodate the persistence of SW in sunlight.

(6) Illustrative example. (i) From Phase 2 testing, under paragraph (c)(6)(iii) of this section, chemical A was found to have a photolysis rate constant, \((k_p)_{SW} \) of 0.30 \(\text{d}^{-1} \) in fall in round tubes at latitude 33\(^\circ \) N. Using Table 1 under paragraph (d)(1)(vii) of this section for 30\(^\circ \) N, the nearest decadic latitude, a fall value of \(k_p \) equal to 333 \(\text{d}^{-1} \) is found for PNAP. Substitution of \((k_p)_{SW}\) and \(k_p \) into Equation 15 under paragraph (d)(2)(i) of this section gives \([\text{PYR}] = 0.0242 \text{ M}\). This is the concentration of pyridine that gives an actinometer rate constant of 0.30 \(\text{d}^{-1} \) in round tubes in fall at this latitude.

(ii) The actinometer solution was made up by adding a volume of pyridine (1.95 mL) calculated from equation 16 under paragraph (d)(2)(ii) of this section to a 1 liter volumetric flask containing 1.00 \(\times 10^{-5} \text{ M PNAP} \) in acetonitrile. The flask was filled to the mark with distilled water to give final concentrations of \([\text{PYR}] = 0.0242 \text{ M} \) and \([\text{PNAP}] = 1.00 \times 10^{-5} \text{ M} \). Ten tubes of each of the following solutions were placed in the photolysis rack at 1,200 hours on day zero:

(A) Chemical A (1.53 \(\times 10^{-5} \text{ M} \)) in standard SW (0.010 M, pH 7 phosphate buffer).

(B) Chemical A (1.53 \(\times 10^{-5} \text{ M} \)), in 0.010 M, pH 7 phosphate buffer.

(C) SW standard solution diluted with water 0.90 to 1.00 to match solution A.

(D) PNAP/PYR actinometer solution. Ten additional foil-wrapped controls of each mixture were taped to the bottom of the rack.

(iii) The test chemical had been placed in category B, Table 2 under the paragraph (d)(2)(iv) of this section, on the basis of its Phase 2 rate constant under paragraph (c) of this section. Accordingly, two tubes of each irradiated solution and two tubes of each blank solution were removed at 0, 1, 2, 4, and 8 days at 1,200 hours. The averaged analytical results obtained at the end of the experiment are shown in the following Table 3.

| Table 3—Chemical Analytical Results for Illustrative Example, Phase 3 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Day | \(10\text{[C]}_{SW} \text{ M} \) | \(10\text{[C]}_{SW} \text{ M} \) | \(\text{[PNAP]} \text{ M} \) |
| 0 | 1.53 | 1.53 | 0.0500 | 1.00 |
| 1 | 1.03 | 1.40 | 0.0470 | 0.810 |
| 2 | 0.76 | 1.30 | 0.0440 | 0.690 |
| 4 | 0.30 | 1.01 | 0.0370 | 0.380 |
| 8 | 0.13 | 0.80 | 0.0320 | 0.220 |
Data for solutions A through D are given in column 2 through 5, respectively. No significant chemical loss was found in the dark controls.

(A) From these items the functions $P_n(C_o/C)_{SNW}$, $P_n(C_o/C)_{W}$, and $P_n(C_o/C)_{PNAP}$ were calculated, as shown in the following Table 4 which was derived from Table 3 under paragraph (d)(6)(iii) of this section:

<table>
<thead>
<tr>
<th>Day</th>
<th>$P_n(C_o/C)_{SNW}$</th>
<th>$P_n(C_o/C)_{W}$</th>
<th>$1-(A_{370}/A_{o 370})$</th>
<th>$P_n(A_{o 370}/A_{370})$</th>
<th>$P_n(C_o/C)_{PNAP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.396</td>
<td>0.0888</td>
<td>0.0600</td>
<td>0.0618</td>
<td>0.211</td>
</tr>
<tr>
<td>2</td>
<td>0.700</td>
<td>0.163</td>
<td>0.120</td>
<td>0.128</td>
<td>0.371</td>
</tr>
<tr>
<td>4</td>
<td>1.629</td>
<td>0.415</td>
<td>0.260</td>
<td>0.301</td>
<td>0.968</td>
</tr>
<tr>
<td>8</td>
<td>2.465</td>
<td>0.648</td>
<td>0.360</td>
<td>0.446</td>
<td>1.514</td>
</tr>
</tbody>
</table>

(B) Slope $S_1=(k_{Io}/k)$ was calculated according to Equation 17 under paragraph (d)(2)(vi) of this section and was found to be 4.96 by a least squares regression with a correlation coefficient equal to 0.9980. The following Figure 1 shows a plot of Equation 17 under paragraph (d)(2)(vi) of this section and its best-fit line.

\[S_1 = 4.96 \]

(C) Slope $S_2=(k/k_a)$ was also derived from Table 4 under paragraph (d)(6)(iii)(A) of this section by a fit of $P_n(A_{o 370}/A_{370})_{SNW}$ and $P_n(C_o/C)_{PNAP}$ to Equation 12 under paragraph (d)(1)(vii) of this section. This plot is displayed in the following Figure 2; the slope S_2 was found to be 0.295 and the correlation coefficient was equal to 0.9986.

\[S_2 = 0.295 \]

(D) Using the data in columns 3 and 6 in Table 4 under paragraph (d)(6)(iii)(A) of this section, slope S_3 was calculated by regression from Equation 13 under paragraph (d)(1)(viii) of this section and was found to be 0.428 with correlation coefficient equal to 0.9997.

(E) Using Equation 18 under paragraph (d)(2)(ix) of this section, k_a was found to be 0.300 d$^{-1}$.

(F) The values of S_1, S_2, and k_a were then combined in Equation 19 under paragraph (d)(2)(x) of this section to give k_{Io} as follows:

\[k_{Io} = (4.96)(0.300)(0.295) = 0.439 \text{ d}^{-1} \]
§ 795.70

(G) The rate constant k_D was calculated from the product of S3 and k_A as expressed in Equation 20 under paragraph (d)(2)(xi) of this section as follows:

Equation 20

$$k_D = (0.428)(0.300) = 0.128 \text{d}^{-1}.$$

(H) The sum of k_D and k_{Io} was multiplied by 0.455 to obtain k_{pE} as follows:

Equation 21

$$k_{pE} = (0.455)(0.439 + 0.128) \text{d}^{-1} = 0.258 \text{d}^{-1}.$$

(I) Since k_{pE} is a first-order rate constant, the half-life, $t_{1/2E}$, is given by

Equation 22

$$t_{1/2E} = \frac{0.693}{k_{pE}}.$$

Substituting the value of k_{pE} from Equation 21 under paragraph (d)(6)(iii)(H) of this section in Equation 22 yielded

Equation 23

$$t_{1/2E} = \frac{0.693}{0.258} = 2.7 \text{d}.$$

(e) Data and reporting—(1) Test conditions—(i) Specific analytical and recovery procedures. (A) Provide a detailed description or reference for the analytical procedures used, including the calibration data and precision.

(B) If extraction methods were used to separate the solute from the aqueous solution, provide a description of the extraction method as well as the recovery data.

(ii) Other test conditions. (A) Report the site and latitude where the photolysis experiments were carried out.

(B) Report the dates of photolysis, weather conditions, times of exposure, and the duration of exposure.

(C) If acetonitrile was used to solubilize the test chemical, report the volume percent.

(D) If a significant loss of test chemical occurred in the control solutions for pure water and SHW, indicate the causes and how they were eliminated or minimized.

(2) Test data report—(i) Phase 2 Screening Test under paragraph (c) of this section. (A) Report the initial molar concentration of test chemical, C_{oi}, in pure water and SHW for each replicate and the mean value.

(B) Report the molar concentration of test chemical, C_{ti}, in pure water and SHW for each replicate and the mean value for each time point.

(C) Report the molar concentration of test chemical for each replicate control sample and the mean value for each time point.

(D) Report the values of (k_{pSHW}) and (k_{pW}) for the time point t in which the fraction of test chemical photoreacted is in the range 20 to 80 percent.

(E) If small losses of test chemical were observed in SHW and pure water, report a first-order rate constant loss, $(k_{p})_{loss}$. Calculate and report $(k_{p})_{obs}$ for SHW and/or pure water. Calculate and report the corrected first-order rate constant for SHW and/or pure water using the relationship expressed in Equation 24:

Equation 24

$$k_{p} = (k_{p})_{obs} \cdot (k_{p})_{loss}.$$

(F) Report the value of R calculated from Equation 4 under paragraph (c)(2)(vi)(D)(4) of this section.

(G) Report the values of k_{pE} and k_{DE} obtained from Equations 5 and 6, respectively under paragraph (c)(2)(vii) of this section; report the corresponding half-life calculated from Equation 22 under paragraph (d)(6)(iii)(I) of this section.

(ii) Phase 3—Indirect photoreaction with actinometer. (A) Report the initial molar concentration of test chemical, C_{oi}, in pure water and in SHW for each replicate and the mean value.

(B) Report the initial absorbance A^{0}_{370} of the SNW solution.

(C) Report the initial molar concentration of PNAP of each replicate and the mean value in the actinometer. Report the concentration of pyridine used in the actinometer which was obtained from Equation 15 under paragraph (d)(2)(i) of this section.

(D) Report the time and date the photolysis experiments were started, the time and date the experiments were completed, and the elapsed photolysis time in days.

(E) For each time point t, report the separate values of the absorbance of the SHW solution, and the mean values.
Environmental Protection Agency § 795.70

(F) For each time point for the controls, report the separate values of the molar concentrations of test chemical in pure water and SHW, and the absorbance of the SHW solution, and the mean values.

(G) Tabulate and report the following data: t, \([C]_{SNW}\), \([C]_W\), A\(_{SNW,370}\) [PNAP].

(H) From the data in (G), tabulate and report the following data: t, Pn(C\(_o\)/C\(_{SW}\)), Pn(C\(_o\)/C\(_{SW}\), [1 – (A\(_{370}/A\(_{370})_{SNW}\), Pn(A\(_{370}/A\(_{370})_{PNAP}\). From the linear regression analysis of the appropriate data in step (H) in Equation 17 under paragraph (d)(2)(ix) of this section, report the slope S1 and the correlation coefficient.

(I) From the linear regression analysis of the appropriate data in step (H) in Equation 12 under paragraph (d)(1)(vii) of this section, report the slope S2 and the correlation coefficient.

(J) From the linear regression analysis of the appropriate data in step (H) in Equation 13a under paragraph (d)(1)(viii) of this section, report the slope S3 and the correlation coefficient.

(K) From the linear regression analysis of the appropriate data in step (H) in Equation 13a under paragraph (d)(1)(viii) of this section, report the slope S3 and the correlation coefficient.

(L) If loss of chemical was observed during photolysis in pure water and SHW, then report the data Pn(C\(_o\)/C\(_{SW}\), Pn(C\(_o\)/C\(_{SW}\), as described in paragraph (e)(2)(E) of this section. Repeat steps (H), (I), (J), (K) where applicable and report S1, S2, S3 and the corresponding correlation coefficients.

(M) Report the value of the actinometer rate constant obtained from Equation 18 under paragraph (d)(2)(ix) of this section.

(N) Report the value of k\(_{w}\) obtained from Equation 19 under paragraph (d)(2)(x) of this section.

(O) Report the value of k\(_{D}\) obtained from Equation 20 under paragraph (d)(2)(xi) of this section.

(P) Report the value of (k\(_{ph}\))\(_{SHW}\), obtained from Equation 14 under paragraph (d)(1)(x) of this section, and the value of k\(_{ph}\) obtained from Equation 5a under paragraph (d)(1)(x) of this section.

(Q) Report the half-life, t\(_{1/2E}\), obtained from Equation 22 under paragraph (d)(6)(iii)(l) of this section.

Referred to. For additional background information on this test guide-line the following references should be consulted.

(9) Mill T., Mabey W.R., Bomberger D.C., Chou T.W., Hendry D.G., Smith J.H. “Laboratory protocols for evaluating the fate of organic chemicals in air and water. Chapter 3. Photoysis in water. Chapter 4. Oxidation in water.” EPA 600/3-82-022 Environmental Research Laboratory, Office of Research...
Subpart C—Provisional Environmental Effects Guidelines

§ 795.120 Gammarid acute toxicity test.

(a) Purpose. This guideline is intended for use in developing data on the acute toxicity of chemical substances and mixtures subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq.). This guideline describes a test to develop data on the acute toxicity of chemicals to gammarids. The United States Environmental Protection Agency (EPA) will use data from this test in assessing the hazard of a chemical to aquatic organisms.

(b) Definitions. The definitions in section 3 of TSCA and in part 792 of this chapter, Good Laboratory Practice Standards, apply to this test guideline. The following definitions also apply to this guideline:

Death means the lack of reaction of a test organism to gentle prodding.

Flow-through means a continuous or an intermittent passage of test solution or dilution water through a test...
chamber or a holding or acclimation tank, with no recycling.

LC50 means the median lethal concentration, i.e., that concentration of a chemical in air or water killing 50 percent of the test batch of organisms within a particular period of exposure (which shall be stated).

Loading means the ratio of the biomass of gammarids (grams, wet weight) to the volume (liters) of test solution in either a test chamber or passing through it in a 24-hour period.

Solvent means a substance (e.g., acetone) which is combined with the test substance to facilitate introduction of the test substance into the dilution water.

Static system means a test chamber in which the test solution is not renewed during the period of the test.

(c) Test procedures—(1) Summary of the test. In preparation for the test, test chambers are filled with appropriate volumes of dilution water. If a flow-through test is performed, the flow of dilution water through each chamber is adjusted to the rate desired. In a static test, the test substance is introduced into each test chamber. In a flow-through test, the rate in which the test substance is added is adjusted to establish and maintain the desired concentration of test substance in each test chamber. The test is started by randomly introducing gammarids, which have been acclimated to the test conditions, into the test chambers. Gammarids in the test chambers are observed periodically during the test: the dead gammarids are removed and the findings recorded. Dissolved oxygen concentration, pH, temperature, and the concentration of test substance in test chambers are measured at specified intervals. Data collected during the test are used to develop concentration—response curves and LC50 values for the test substance.

(2) [Reserved]

(3) Range-finding test. (i) A range-finding test should be conducted to establish test substance concentrations to be used for the definitive test.

(ii) The gammarids shall be exposed to a wide-range of concentrations of the test substance (e.g., 1, 10, 100 mg/L, etc.), usually under static conditions.

(iii) A minimum of five gammarids should be exposed to each concentration of test substance for a period of 96 hours. The exposure period may be shortened if data suitable for determining concentrations in the definitive test can be obtained in less time. Nominal concentrations of the test substance may be acceptable.

(4) Definitive test. (i) The purpose of the definitive test is to determine the 24, 48, 72, and 96—hour LC50 values and the concentration-response curves.

(ii) A minimum of 20 gammarids per concentration shall be exposed to five or more concentrations of the test substance chosen in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, 64 mg/L). The range and number of concentrations to which the organisms are exposed shall be such that in 96 hours there is at least one concentration resulting in mortality greater than 50 and less than 100 percent, and one concentration causing greater than zero and less than 50 percent mortality. An equal number of gammarids may be placed in two or more replicate test chambers. Solvents should be avoided, if possible. If solvents have to be used, a solvent control, as well as a dilution control, shall be tested at the highest solvent concentration employed in the treatments. The solvent should not be toxic or have an effect on the toxicity of the test substance. The concentration of solvent should not exceed 0.1 ml/L.

(iii) Every test shall include a concurrent control using gammarids from the same population or culture container. The control group shall be exposed to the same dilution water, conditions and procedures, except that none of the test substance shall be added to the chamber.

(iv) The dissolved oxygen concentration, temperature and pH of the test solution shall be measured at the beginning of the test and at 24, 48, 72 and 96 hours in at least one replicate each of the control, and the highest, lowest and middle test concentrations.

(v) The test duration is 96 hours. The test is unacceptable if more than 10 percent of the control organisms die during the test.
(vi) In addition to death, any abnormal behavior or appearance shall also be reported.

(vii) Gammarids shall be randomly assigned to the test chambers. Test chambers shall be positioned within the testing area in a random manner or in a way in which appropriate statistical analyses can be used to determine whether there is any variation due to placement.

(viii) Gammarids shall be introduced into the test chambers after the test substance has been added.

(ix) Observations on compound solubility shall be recorded. The investigator should record the appearance of surface slicks, precipitates, or material adhering to the sides of the test chambers.

(5) [Reserved]

(6) Analytical measurements—(i) Water quality analysis. The hardness, acidity, alkalinity, pH, conductivity, TOC or COD, and particulate matter of the dilution water shall be measured at the beginning of each definitive test.

(ii) Collection of samples for measurement of test substance. Each sample to be analyzed for the test substance concentrations shall be taken at a location midway between the top, bottom, and sides of the test chamber. Samples should not include any surface scum or material dislodged from the bottom or sides. Samples shall be analyzed immediately or handled and stored in a manner which minimizes loss of test substance through microbial degradation, photogradation, chemical reaction, volatilization, or sorption.

(iii) Measurement of test substance. (A) For static tests, the concentration of dissolved test substance (that which passes through a 0.45 micron filter) shall be measured in each test chamber at least at the beginning (zero-hour, before gammarids are added) and at the end of the test. During flow-through tests, the concentration of dissolved test substance shall be measured in each test chamber at least at 0 and 96-hours and in at least one chamber whenever a malfunction of the test substance delivery system is observed.

(B) The analytical methods used to measure the amount of test substance in a sample shall be validated before beginning the test. This involves adding a known amount of the test substance to each of three water samples taken from a chamber containing dilution water and the same number of gammarids as are placed in each test chamber. The nominal concentrations of the test substance in these samples should span the concentration range to be used in the test. Validation of the analytical method should be performed on at least two separate days prior to starting the test.

(C) An analytical method is not acceptable if likely degradation products of the test substance give positive or negative interferences, unless it is shown that such degradation products are not present in the test chambers during the test.

(D) Among replicate test chambers, the measured concentrations shall not vary more than 20 percent. The measured concentration of the test substance in any chamber during the test shall not vary more than plus or minus 30 percent from the measured concentration in that chamber at zero time.

(E) The mean measured concentration of dissolved test substance shall be used to calculate all LC50’s and to plot all concentration-response curves.

(d) Test conditions for definitive test—(1) Test species—(i) Selection. (A) The amphipods, Gammarus fasciatus, G. pseudolimnaeus, and G. lacustris are specified for this test.

(B) Gammarids can be cultured in the laboratory or collected from natural sources. If collected, they must be held in the laboratory for at least 14 days prior to testing.

(iii) Care and handling. Gammarids shall be cultured in dilution water
under similar environmental conditions to those used in the test. Organisms shall be handled as little as possible. When handling is necessary it should be done as gently, carefully and quickly as possible. During culturing and acclimation, gammarids shall be observed carefully for signs of stress and mortality. Dead and abnormal individuals shall be discarded.

(iv) Feeding. The organisms shall not be fed during testing. During culturing, holding, and acclimation, a sufficient quantity of deciduous leaves, such as maple, aspen, or birch, should be placed in the culture and holding containers to cover the bottom with several layers. These leaves should be aged for at least 30 days in a flow-through system before putting them in aquaria. As these leaves are eaten, more aged leaves should be added. Pelleted fish food may also be added.

(2) Facilities—(i) Apparatus—(A) Facilities needed to perform this test include:

(1) Containers for culturing, acclimating and testing gammarids;

(2) Containers for aging leaves under flow-through conditions;

(3) A mechanism for controlling and maintaining the water temperature during the culturing, acclimation and test periods;

(4) Apparatus for straining particulate matter, removing gas bubbles, or aerating the dilution water, as necessary; and

(5) An apparatus for providing a 16-hour light and 8-hour dark photoperiod with a 15- to 30-minute transition period.

(B) Facilities should be well ventilated and free of fumes and disturbances that may affect the test organism.

(C) Test chambers shall be covered loosely to reduce the loss of test solution or dilution water due to evaporation and to minimize the entry of dust or other particulates into the solutions.

(ii) Construction materials. Construction materials and equipment that may contact the stock solution, test solution or dilution water should not contain substances that can be leached or dissolved into aqueous solutions in quantities that can alter the test results. Materials and equipment that contact stock or test solutions should be chosen to minimize sorption of test substances. Glass, stainless steel, and perfluorocarbon plastic should be used wherever possible. Concrete, fiberglass, or plastic (e.g., PVC) may be used for holding tanks, acclimation tanks, and water supply systems, but they should be aged prior to use. Rubber, cooper, brass, galvanized metal, and lead should not come in contact with the dilution water, stock solution, or test solution.

(iii) Test substance delivery system. In flow-through tests, diluters, metering pump systems or other suitable devices shall be used to deliver the test substance to the test chambers. The system used shall be calibrated before each test. The general operation of the test substance delivery system shall be checked twice daily during a test. The 24-hour flow shall be equal to at least five times the volume of the test chamber. During a test, the flow rates should not vary more than 10 percent from one test chamber to another.

(iv) Test chambers. Test chambers shall contain at least one liter of test solution. Test chambers made of stainless steel should be welded, not soldered. Test chambers made of glass should be glued using clear silicone adhesive. As little adhesive as possible should be left exposed in the interior of the chamber. A substrate, such as a bent piece of stainless steel screen, should be placed on the bottom of each test chamber to provide cover for the gammarids.

(v) Cleaning of test system. Test substance delivery systems and test chambers should be cleaned before each test. They should be washed with detergent and then rinsed sequentially with clean water, pesticide-free acetone, clean water, and 5-percent nitric acid, followed by two or more changes of dilution water.

(vi) Dilution water. (A) Clean surface or ground water, reconstituted water, or dechlorinated tap water is acceptable as dilution water if gammarids will survive in it for the duration of the culturing, acclimating, and testing periods without showing signs of
strees. The quality of the dilution water should be constant enough that the month-to-month variation in hardness, acidity, alkalinity, conductivity, TOC or COD, and particulate matter is not more than 10 percent. The pH should be constant within 0.4 unit. In addition, the dilution water should meet the following specifications measured at least twice a year:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td>20 mg/L</td>
</tr>
<tr>
<td>Total organic carbon (TOC) or</td>
<td>2 mg/L</td>
</tr>
<tr>
<td>chemical oxygen demand (COD)</td>
<td>5 mg/L</td>
</tr>
<tr>
<td>Boron, fluoride</td>
<td>100 ug/L</td>
</tr>
<tr>
<td>Un-ionized ammonia</td>
<td>1 ug/L</td>
</tr>
<tr>
<td>Aluminum, arsenic, chromium, cobalt,</td>
<td>1 ug/L</td>
</tr>
<tr>
<td>copper, iron, lead, nickel, zinc</td>
<td></td>
</tr>
<tr>
<td>Residual chlorine</td>
<td>3 ug/L</td>
</tr>
<tr>
<td>Cadmium, mercury, silver</td>
<td>100 ng/L</td>
</tr>
<tr>
<td>Total organophosphorus pesticides</td>
<td>50 ng/L</td>
</tr>
<tr>
<td>Total organochlorine pesticides plus</td>
<td>50 ng/L</td>
</tr>
<tr>
<td>polychlorinated biphenyls (PCBs) or</td>
<td>25 ng/L</td>
</tr>
<tr>
<td>organic chlorine</td>
<td></td>
</tr>
</tbody>
</table>

(B) If the dilution water is from a ground or surface water source, conductivity and total organic carbon (TOC) or chemical oxygen demand (COD) shall be measured. Reconstituted water can be made by adding specific amounts of reagent-grade chemicals to deionized or distilled water. Glass-distilled or carbon-filtered deionized water with a conductivity less than 1 micromho/cm is acceptable as the diluent for making reconstituted water.

(C) The concentration of dissolved oxygen in the dilution water shall be between 90 and 100 percent saturation. If necessary, the dilution water can be aerated before the addition of the test substance. All reconstituted water should be aerated before use.

(3) Test parameters. Environmental parameters during the test shall be maintained as specified below:

(i) Water temperature of 18 ± 1 °C.
(ii) Dissolved oxygen concentration between 60 and 105 percent saturation.
(iii) The number of gammarids placed in a test chamber shall not be so great as to affect the results of the test. Ten gammarids per liter is the recommended level of loading for the static test. Loading requirements for the flow-through test will vary depending on the flow rate of dilution water. The loading should not cause the dissolved oxygen concentration to fall below the recommended levels.
(iv) Photoperiod of 16 hours light and 8 hours darkness.

(e) Reporting. The sponsor shall submit to the EPA all data developed by the test that are suggestive or predictive of toxicity. In addition, the test report shall include, but not necessarily be limited to, the following information:

(1) Name and address of the facility performing the study and the dates on which the study was initiated and completed.
(2) Objectives and procedures stated in the approved protocol, including any changes in the original protocol.
(3) Statistical methods employed for analyzing the data.
(4) The test substance identified by name, Chemical Abstracts (CAS) number or code number, source, lot or batch number, strength, purity, and composition, or other appropriate characteristics.
(5) Stability of the test substance under the conditions of the test.
(6) A description of the methods used, including:

(i) The source of the dilution water, its chemical characteristics (e.g., hardness, pH, etc.), and a description of any pretreatment.
(ii) A description of the test substance delivery system, test chambers, the depth and volume of solution in the chamber, the way the test was begun (e.g., test substance addition), the loading, the lighting, and the flow rate.
(iii) Frequency and methods of measurements and observations.
(7) The scientific name, weight, length, source, and history of the organisms used, and the acclimation procedures and food used.

(8) The concentrations tested, the number of gammarids and replicates per test concentration. The reported results should include:

(i) The results of dissolved oxygen, pH and temperature measurements.
(ii) If solvents are used, the name and source of the solvent, the nominal concentration of the test substance in the stock solution, the highest solvent concentration in the test solution and a description of the solubility determination in water and solvents.
Environmental Protection Agency

§ 795.225

(iii) The measured concentration of the test substance in each test chamber just before the start of the test and at all subsequent sampling periods.

(iv) In each test chamber at each observation period, the number of dead and live test organisms, the percentage of organisms that died, and the number of test organisms that showed any abnormal effects in each test chamber at each observation period.

(v) The 48, 72 and 96-hour LC50’s and their 95 percent confidence limits. When sufficient data have been generated, the 24-hour LC50 value also. These calculations should be made using the mean measured test substance concentrations.

(vi) The observed no-effect concentration (the highest concentration tested at which there were no mortalities or abnormal behavioral or physiological effects), if any.

(vii) Methods and data for all chemical analyses of water quality and test substance concentrations, including method validations and reagent blanks.

(9) A description of all circumstances that may have affected the quality or integrity of the data.

(10) The names of the sponsor, study director, principal investigator, names of other scientists or professionals, and the names of all supervisory personnel involved in the study.

(11) A description of the transformations, calculations, or operations performed on the data, a summary and analysis of the data, and a statement of the conclusions drawn from the analysis. Results of the analysis of data should include the calculated LC50 value, 95 percent confidence limits, slope of the transformed concentration-response line, and the results of a goodness-of-fit test (e.g., chi-square test).

(12) The signed and dated reports prepared by any individual scientist or other professional involved in the study, including each person who, at the request or direction of the testing facility or sponsor, conducted an analysis or evaluation of data or specimens from the study after data generation was completed.

(13) The locations where all specimens, raw data, and the final report are stored.

(14) The statement prepared and signed by the quality assurance unit.

[52 FR 24462, July 1, 1987]

Subpart D—Provisional Health Effects Guidelines

§ 795.225 Dermal pharmacokinetics of DGBE and DGBA.

(a) Purpose. The purpose of these studies is to determine:

(1) The absorption of diethylene glycol butyl ether (DGBE) after administration by the dermal route.

(2) The biotransformation of DGBE administered dermally.

(3) The dermal absorption of DGBE and diethylene glycol butyl ether acetate (DGBA).

(b) Test procedures—(1) Animal selection—(i) Species. The species utilized for investigating DGBE and DGBA shall be the rat, a species for which historical data on the toxicity and carcinogenicity of many compounds are available and which is used extensively in percutaneous absorption studies.

(ii) Animals. Adult female Sprague Dawley rats shall be used. The rats shall be 7 to 8 weeks old and weigh 180 to 220 grams. Prior to testing, the animals shall be selected at random for each group. Animals showing signs of ill health shall not be used.

(iii) Animal care. (A) The animals should be housed in environmentally controlled rooms with 10 to 15 air changes per hour. The rooms should be maintained at a temperature of 25± 2°C and humidity of 50± 10 percent with a 12-hour light/dark cycle per day. The rats should be isolated for at least 7 days prior to use.

(B) During the acclimatization period, the rats should be housed in cages on hardwood chip bedding. All animals shall be provided with conventional laboratory diets and water ad libitum.

(2) Administration of DGBE and DGBA—(i) Test substances. These studies require the use of 14C-labeled DGBE and DGBA. The use of 14C-DGBE and 14C-DGBA is required for the determinations in paragraphs (a) (1), (2), and (3) of this section because they will facilitate the work and improve the reliability of quantitative determinations.
§ 795.225 40 CFR Ch. I (7–1–99 Edition)

(ii) Dosage and treatment. (A) Two doses of DGBA shall be used in the study, a “low” dose and a “high” dose. Three doses of DGBE shall be used in the study, a neat “low” dose, an aqueous “low” dose, and neat “high” dose. When administered dermally, the “high” dose level should ideally induce some overt toxicity such as weight loss. The “low” dose level should correspond to a no observed effect level.

(B) For dermal treatment, the doses shall be applied in a volume adequate to deliver the prescribed doses. The backs of the rats should be lightly shaved with an electric clipper shortly before treatment. The dose shall be applied with a micropipette on a specific area (for example, 2 cm2) on the freshly shaven skin.

(iii) Washing efficiency study. Before initiation of the dermal absorption studies described in paragraph (b)(2)(iv)(A) of this section, an initial washing efficiency experiment shall be performed to assess the extent of removal of the applied DGBE and DGBA by washing with soap and water. Groups of four rats should be lightly anesthetized with sodium pentobarbital. These animals shall then be treated with dermal doses of test substance at the low dose level. Soon after application (5 to 10 minutes) the treated animals shall be washed with soap and water then housed in individual metabolism cages for excreta collection. Urine and feces shall be collected at 8, 24, 48, 72, and 96 hours after dosing, and if necessary, daily thereafter until at least 90 percent of the dose has been excreted or until 7 days after dosing, whichever occurs first.

(iv) Determination of absorption, biotransformation, and excretion. (A) Eight animals shall be dosed once dermally with the low dose of ^{14}C-DGBE.

(B) Eight animals shall be dosed once dermally with the high dose of ^{14}C-DGBE.

(C) Eight animals shall be dosed once dermally with the low dose of ^{14}C-DGBA.

(D) Eight animals shall be dosed once dermally with the high dose of ^{14}C-DGBA.

(E) The high and low doses of ^{14}C-DGBE and ^{14}C-DGBA shall be kept on the skin for 24 hours. After application, the animals shall be placed in metabolism cages for excreta collection. After 24 hours, any test material remaining on the skin will be washed off and the containment cell removed. Radiolabeled material in the wash will be accounted for in the total recovery. Urine and feces shall be collected at 8, 24, 48, 72, and 96 hours after dosing, and if necessary, daily thereafter until at least 90 percent of the dose has been excreted or until 7 days after dosing, whichever occurs first.

(c) Data and reporting—(1) Treatment of results. Data shall be summarized in tabular form.

(2) Evaluation of results. All observed results, quantitative or incidental, shall be evaluated by an appropriate statistical method.

(3) Test report. In addition to the reporting requirements as specified in the TSCA Good Laboratory Practice Standards, in part 792, subpart J of this chapter, the following specific information shall be reported:

(i) Species, strain, and supplier of laboratory animals.

(ii) Information on the degree (i.e., specific activity for a radiolabel) and sites of labeling of the test substances.

(iii) A full description of the sensitivity and precision of all procedures used to produce the data.

(iv) Relative percent absorption by the dermal route for rats administered low and high doses of ^{14}C-DGBE and ^{14}C-DGBA.
Environmental Protection Agency § 795.228

(v) Quantity of isotope, together with percent recovery of the administered dose, in feces and urine.
(vi) Biotransformation pathways and quantities of DGBE and metabolites in urine collected after administering single high and low dermal doses to rats.

§ 795.228 Oral/dermal pharmacokinetics.

(a) Purpose. The purposes of these studies are to:
(1) Ascertain whether the pharmacokinetics and metabolism of a chemical substance or mixture ("test substance") are similar after oral and dermal administration.
(2) Determine bioavailability of a test substance after oral and dermal administration.
(3) Examine the effects of repeated dosing on the pharmacokinetics and metabolism of the test substance.

(b) Definitions. (1) Bioavailability refers to the rate and relative amount of administered test substance which reaches the systemic circulation.
(2) Metabolism means the study of the sum of the processes by which a particular substance is handled in the body and includes absorption, tissue distribution, biotransformation, and excretion.
(3) Percent absorption means 100 times the ratio between total excretion of radioactivity following oral or dermal administration and total excretion following intravenous administration of test substance.
(4) Pharmacokinetics means the study of the rates of absorption, tissue distribution, biotransformation, and excretion.

(c) Test procedures—(1) Animal selection—(i) Species. The rat shall be used for pharmacokinetics testing because it has been used extensively for metabolic and toxicological studies. For dermal bioavailability studies, the rat and the mini-pig shall be used.
(ii) Test animals. For pharmacokinetics testing and dermal studies, adult male and female Sprague-Dawley rats, 7 to 9 weeks of age, shall be used. For dermal studies, young adult mini-pigs shall also be used. The animals should be purchased from a reputable dealer and shall be identified upon arrival at the testing laboratory. The animals shall be selected at random for the test groups and any animal showing signs of ill health shall not be used. In all studies, unless otherwise specified, each test group shall contain at least 4 animals of each sex for a total of at least 8 animals.
(iii) Animal care. (A) The animals shall be housed in environmentally controlled rooms with at least 10 air changes per hour. The rooms shall be maintained at a temperature of 24 ± 2 °C and humidity of 50 ± 20 percent with a 12-hour light/dark cycle per day. The animals shall be kept in a quarantine facility for at least 7 days prior to use and shall be acclimated to the experimental environment for a minimum of 48 hours prior to administration of the test substance.
(B) During the acclimatization period, the animals shall be housed in suitable cages. All animals shall be provided with certified feed and tap water ad libitum. The mini-pig diet shall be supplemented with adequate amounts of ascorbic acid in the drinking water.
(2) Administration of test substance—(A) Intravenous. The low dose of test substance, in an appropriate vehicle, shall be administered intravenously to groups of rats and mini-pigs of each sex. If feasible, the same low dose should be used for intravenous, oral, and dermal studies.
(B) Oral. Two doses of test substance shall be used in the oral study, a low dose and a high dose. The high dose should ideally induce some overt toxicity, such as weight loss. The low dose...
§ 795.228

40 CFR Ch. I (7–1–99 Edition)

should correspond to a no-observed-effect level. The oral dosing shall be accomplished by gavage or by administering the encapsulated test substance. If feasible, the same high and low doses should be used for oral and dermal studies.

(C) Dermal. (1) Dermal treatment. For dermal treatment, two doses, comparable to the low and high oral doses, shall be dissolved in a suitable vehicle and applied in volumes adequate to deliver comparable doses. The backs of the animals should be lightly shaved with an electric clipper 24 hours before treatment. The test substance shall be applied to the intact shaven skin (approximately 2 cm² for rats, 5 cm² for mini-pigs). The dosed areas shall be protected with a suitable porous covering which is secured in place, and the animals shall be housed separately.

(ii) Washing efficacy study. Before initiation of the dermal absorption studies, an initial washing efficacy experiment shall be conducted to assess the removal of the applied low dose of the test substance by washing the exposed skin area with soap and water and an appropriate organic solvent. The low dose shall be applied to 4 rats and 4 mini-pigs in accordance with paragraph (c)(2)(ii)(C)(1) of this section. After application (5 to 10 minutes), the treated areas of 2 rats and 2 mini-pigs shall be washed with soap and water and the treated areas of the remaining rats and pigs shall be washed with an appropriate solvent. The amounts of test substance recovered in the washings shall be determined to assess efficacy of its removal by washing.

(iii) Dosing and sampling schedule—(A) Rat studies. After administration of the test substance, each rat shall be placed in a metabolic unit to facilitate collection of excreta. For the dermal studies, excreta from the rats shall also be collected during the 6 hour exposure periods. At the end of each collection period, the metabolic units shall be cleaned to recover any excreta that might adhere to them. All studies, except the repeated dosing study, shall be terminated at 7 days or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(1) Intravenous study. Group A shall be dosed once intravenously at the low dose of test substance.

(2) Oral study. (i) Group B shall be dosed once per os with the low dose of test substance.

(ii) Group C shall be dosed once per os with the high dose of test substance.

(3) Dermal studies. Unless precluded by corrosivity, the test substance shall be applied and kept on the skin for a minimum of 6 hours. At the time of removal of the porous covering, the treated area shall be washed with an appropriate solvent to remove any test substance that may be on the skin surface. Both the covering and the washing shall be assayed to recover residual radioactivity. At the termination of the studies, each animal shall be sacrificed and the exposed skin area removed. An appropriate section of the skin shall be solubilized and assayed for radio-activity to ascertain if the skin acts as a reservoir for the test substance. Studies on the dermal absorption of corrosive test substances should be discussed with EPA prior to initiation.

(i) Group D shall be dosed once dermally with the low dose of test compound.

(ii) Group E shall be dosed once dermally with the high dose of the test substance.

(4) Repeated dosing study. Group F shall receive a series of single daily oral low doses of nonradioactive test substance over a period of at least 7 days. Twenty-four hours after the last nonradioactive dose, a single oral low dose of radioactive test substance shall be administered. Following dosing with the radioactive substance, the rats shall be placed in individual metabolic units as described in paragraph (c)(2)(iii) of this section. The study shall be terminated at 7 days after the last dose, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(B) Mini-Pig studies. For all mini-pig studies, the test groups shall consist of four young adult animals. After administration of the test substance, each mini-pig shall be kept in a metabolic unit to facilitate collection of excreta. At the end of each collection period, the metabolic units are to be cleaned.
to recover any excreta that might adhere to them. All studies shall be terminated at 7 days, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(1) Intravenous study. Group G is to be dosed once intravenously at the low dose of the test substance.

(2) Dermal studies. Following the experimental guidance described in (c)(2)(iii)(A) of this section:

(i) Group H shall be dosed once dermally with the low dose of test substance.

(ii) Group I shall be dosed once dermally with the high dose of the test substance.

(3) Types of studies—(i) Pharmacokinetics studies—(A) Rat studies. Groups A through F shall be used to determine the kinetics of absorption of the test substance. In the group administered the test substance by intravenous routes, (i.e., Group A), the concentration of radioactivity in blood and excreta shall be measured following administration. In groups administered the test substance by the oral and dermal route (i.e., Groups B, C, D, E and F), the concentration of radioactivity in blood and excreta shall be measured at selected time intervals during and following the exposure period.

(B) Mini-Pig studies. Groups G, H, and I shall be used to determine the extent of dermal absorption of the test substance. The amount of radioactivity in excreta shall be determined at selected time intervals.

(ii) Metabolism studies—Rat studies. Groups A through F shall be used to determine the metabolism of the test substance. Urine, feces, and expired air shall be collected for identification and quantification of the test substance and metabolites.

(4) Measurements—(i) Pharmacokinetics. Four animals from each group shall be used for these purposes.

(A) Rat studies—(1) Bioavailability. The levels of radioactivity shall be determined in whole blood, blood plasma or blood serum at 15 and 30 minutes and at 1, 2, 4, 8, 24, 48, and 96 hours after initiation of dosing.

(2) Extent of absorption. The total quantities of radioactivity shall be determined for excreta collected daily for 7 days or until at least 90 percent of the radioactivity has been recovered in the excreta.

(3) Excretion. The quantities of radioactivity eliminated in the urine, feces, and expired air shall be determined separately at appropriate time intervals. The collection of carbon dioxide may be discontinued when less than one percent of the dose is found to be exhaled as radioactive carbon dioxide in 24 hours.

(4) Tissue distribution. At the termination of each study, the quantities of radioactivity in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lungs, muscle, skin, and residual carcass of each animal shall be determined.

(5) Changes in pharmacokinetics. Results of pharmacokinetics measurements (i.e., bioavailability and extent of absorption, tissue distribution, and excretion) obtained in rats receiving the single low oral dose of the test substance (Groups B and C) shall be compared to the corresponding results obtained in rats receiving repeated oral doses of the test substance (Group F).

(B) Mini-Pig studies—Extent of absorption. The total quantities of radioactivity shall be determined for excreta daily for 7 days or until at least 90 percent of the test substance has been excreted.

(ii) Metabolism. Four animals from each group shall be used for these purposes.

(A) Rat studies—(1) Biotransformation. Appropriate qualitative and quantitative methods shall be used to assay urine, feces, and expired air collected from rats. Efforts shall be made to identify any metabolite which comprises 5 percent or more of the administered dose and the major radioactive components of blood.

(2) Changes in biotransformation. Appropriate qualitative and quantitative assay methodology shall be used to compare the composition of radioactive compounds in excreta from rats receiving a single oral dose (Groups B and C) with those in the excreta from rats receiving repeated oral doses (Group H).

(d) Data and reporting. The final test report shall include the following:
(1) Presentation of results. Numerical data shall be summarized in tabular form. Pharmacokinetic data shall also be presented in graphical form. Qualitative observations shall also be reported.

(2) Evaluation of results. All quantitative results shall be evaluated by an appropriate statistical method.

(3) Reporting results. In addition to the reporting requirements as specified in 40 CFR part 792, the following specific information shall be reported:

(i) Species and strains of laboratory animals.

(ii) Chemical characterization of the test substance, including:

(A) For the radioactive test substances, information on the site(s) and degree of radiolabeling, including type of label, specific activity, chemical purity, and radiochemical purity.

(B) For the nonradioactive compound, information on chemical purity.

(C) Results of chromatography.

(iii) A full description of the sensitivity, precision, and accuracy of all procedures used to generate the data.

(iv) Percent of absorption of test substance after oral and dermal exposures to rats and dermal exposure to mini-pigs.

(v) Quantity and percent recovery of radioactivity in feces, urine, expired air, and blood. In dermal studies on rats and mini-pigs, include recovery data for skin, skin washings, and residual radioactivity in the covering as well as results of the washing efficacy study.

(vi) Tissue distribution reported as quantity of radioactivity in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lung, muscle, skin and in residual carcass of rats.

(vii) Materials balance developed from each study involving the assay of body tissues and excreta.

(viii) Biotransformation pathways and quantities of test substance and metabolites in excreta collected after administering single high and low doses to rats.

(ix) Biotransformation pathways and quantities of the test substance and metabolites in excreta collected after administering repeated low doses to rats.

(x) Pharmacokinetics model(s) developed from the experimental data.

§ 795.231 Pharmacokinetics of isopropanol.

(a) Purpose. The purposes of these studies are to:

(1) Ascertain whether the pharmacokinetics and metabolism of the “test substance” are similar after oral and inhalation administration.

(2) Determine bioavailability of the test substance after oral and inhalation administration.

(3) Examine the effects of repeated dosing on the pharmacokinetics and metabolism of the test substance.

(b) Definitions. (1) “Bioavailability” refers to the rate and relative amount of administered test substance which reaches the systemic circulation.

(2) “Metabolism” means the study of the sum of the processes by which a particular substance is handled in the body, and includes absorption, tissue distribution, biotransformation, and excretion.

(3) “Pharmacokinetics” means the study of the rates of absorption, tissue distribution, biotransformation, and excretion.

(c) Test procedures—(1) Animal selection—(i) Species. The rat shall be used because it has been used extensively for metabolic and toxicological studies.

(ii) Test animals. For pharmacokinetics testing, adult male and female rats (Fischer 344 or strain used for major toxicity testing), 7 to 9 weeks of age, shall be used. The animals should be purchased from a reputable dealer and shall be identified upon arrival at the testing laboratory. The animals shall be selected at random for the testing groups and any animal showing signs of ill health shall not be used. In all studies, unless otherwise specified, each test group shall contain at least four animals of each sex for a total of at least eight animals.

(iii) Animal care. (A) Animal care and housing should be in accordance with DHEW Publication No. (NIH)-85-23, 1985, entitled “Guidelines for the Care and Use of Laboratory Animals.”

(B) The animals should be housed in environmentally controlled rooms with
Environmental Protection Agency

§ 795.231

at least 10 air changes per hour. The rooms shall be maintained at a temperature of 22±2 °C and humidity of 50±20 percent with a 12-hour light/dark cycle per day. The animals shall be kept in a quarantine facility for at least 7 days prior to use and shall be acclimated to the experimental environment for a minimum of 48 hours prior to treatment.

(C) During the acclimatization period, the animals should be housed in suitable cages. All animals shall be provided with certified feed and tap water ad libitum.

(2) Administration of test substance—(i) Test substance. The use of radioactive test substance is required for all materials balance and metabolite identification requirements of the study. Ideally, the purity of both radioactive and non-radioactive test substance should be greater than 99 percent. The radioactive and nonradioactive substances shall be chromatographed separately and together to establish purity and identity. If the purity is less than 99 percent or if the chromatograms differ significantly, EPA should be consulted.

(ii) Dosage and treatment—(A) Intravenous. The low dose of test substance, in an appropriate vehicle, shall be administered intravenously to four rats of each sex.

(B) Oral. Two doses of test substance shall be used in the oral portion of the study, a low dose and a high dose. The high dose should ideally induce some overt toxicity, such as weight loss. The low dose level should correspond to a no-observed effect level. The oral dosing shall be accomplished by gavage or by administering an encapsulated test substance. If feasible, the same high and low doses should be used for oral and dermal studies.

(C) Inhalation. Two concentrations of the test substance shall be used in this portion of the study, a low concentration and a high concentration. The high concentration should ideally induce some overt toxicity, while the low concentration should correspond to a no observed level. Inhalation treatment should be conducted using a "nose-cone" or "head only" apparatus to prevent ingestion of the test substance through "grooming".

(iii) Dosing and sampling schedule. After administration of the test substance, each rat shall be placed in a separate metabolic unit to facilitate collection of excreta. For the inhalation studies, excreta from the rats shall also be collected during the exposure periods. At the end of each collection period, the metabolic units shall be cleaned to recover any excreta that might adhere to the cages. All studies, except the repeated dose study, shall be terminated at 7 days, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(A) Intravenous study. Group A shall be dosed once intravenously at the low dose of test substance.

(B) Oral studies. (1) Group B shall be dosed once per os with the low dose of the test substance.

(C) Inhalation studies. A single 6-hour exposure period shall be used for each group.

(1) Group D shall be exposed to a mixture of the test substance in air at the low concentration.

(2) Group E shall be exposed to a mixture of test substance in air at the high concentration.

(D) Repeated dosing study. Group F shall receive a series of single daily oral low doses of nonradioactive test substance over a period of at least 7 consecutive days. Twenty four hours after the last nonradioactive dose, a single oral low dose of radioactive test substance shall be administered. Following dosing with radioactive substance, the rats shall be placed in individual metabolic units as described in paragraph (c)(2)(iii) of this section. The study shall be terminated 7 days after the last dose, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(3) Types of studies—(i) Pharmacokinetics studies. Groups A through F shall be used to determine the kinetics of absorption of the test substance. In groups administered the substance by intravenous or oral routes, (i.e., Groups A, B, C, F), the concentration of radioactivity in blood and excreta including...
expired air shall be measured following administration. In groups administered the substance by the inhalation route (i.e., Groups D and E), the concentration of radioactivity in blood shall be measured at selected time intervals during and following the exposure period. In the groups administered the substance by inhalation (i.e., Groups D and E), the concentration of radioactivity in excreta (including expired air) shall be measured at selected time intervals following the exposure period. In addition, in the groups administered the substance by inhalation, the concentration of test substance in expired air shall be measured at selected time intervals during the exposure period.

(ii) Metabolism studies. Groups A through F shall be used to determine the metabolism of the test substance. Excreta (urine, feces, and expired air) shall be collected for identification and quantification of test substance and metabolites.

(4) Measurements—(i) Pharmacokinetics. Four animals from each group shall be used for these purposes.

(A) Bioavailability. The levels of radioactivity shall be determined in whole blood, blood plasma or blood serum at 15 minutes, 30 minutes, 1, 2, 3, 6, 9, and 18 hours after dosing; and at 30 minutes, 3, 6, 6.5, 7, 8, 9, 12, and 18 hours after initation of inhalation exposure.

(B) Extent of absorption. The total quantities of radioactivity shall be determined for excreta collected daily for 7 days, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(C) Excretion. The quantities of radioactivity eliminated in the urine, feces, and expired air shall be determined separately at appropriate time intervals. The collection of the intact test substance or its metabolites, including carbon dioxide, may be discontinued when less than 1 percent of the administered dose is found to be exhaled as radioactive carbon dioxide in 24 hours.

(D) Tissue distribution. At the termination of each study, the quantities of radioactivity in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lungs, muscle, skin, spleen, and residual carcass of each animal shall be determined.

(E) Changes in pharmacokinetics. Results of pharmacokinetics measurements (i.e., biotransformation, extent of absorption, tissue distribution, and excretion) obtained in rats receiving the single low oral dose of test substance (Group B) shall be compared to the corresponding results obtained in rats receiving repeated oral doses of test substance (Group F).

(F) Biotransformation. Appropriate qualitative and quantitative methods shall be used to assay urine, feces, and expired air collected from rats. Efforts shall be made to identify any metabolite which comprises 5 percent or more of the dose eliminated.

(G) Changes in biotransformation. Appropriate qualitative and quantitative assay methodology shall be used to compare the composition of radioactive substances in excreta from the rats receiving a single oral dose (Groups B and C) with those in the excreta from rats receiving repeated oral doses (Group F).

(ii) [Reserved]

(d) Data and reporting. The final test report shall include the following:

(1) Presentation of results. Numerical data shall be summarized in tabular form. Pharmacokinetics data shall also be presented in graphical form. Qualitative observations shall also be reported.

(2) Evaluation of results. All quantitative results shall be evaluated by an appropriate statistical method.

(3) Reporting results. In addition to the reporting requirements as specified in the EPA Good Laboratory Practice Standards (40 CFR 792.185), the following specific information shall be reported:

(i) Species and strains of laboratory animals.

(ii) Chemical characterization of the test substance, including:

(A) For the radioactive test substance, information on the site(s) and degree of radiolabeling, including type of label, specific activity, chemical purity, and radiochemical purity.

(B) For the nonradioactive substance, information on chemical purity.

(C) Results of chromatography.

(iii) A full description of the sensitivity, precision, and accuracy of all procedures used to generate the data.
Environmental Protection Agency

§ 795.232 Inhalation and dermal pharmacokinetics of commercial hexane.

(a) Purposes. The purposes of these studies are to:

(1) Determine the bioavailability of the test substances after dermal and inhalation administration.

(2) Compare the pharmacokinetics and metabolism of the test substances after intravenous, dermal, and inhalation administration.

(3) Examine the effects of repeated doses on the pharmacokinetics and metabolism of the test substances.

(b) Definitions. (1) Bioavailability refers to the relative amount of administered test substance which reaches the systemic circulation and the rate at which this process occurs.

(2) Metabolism means the sum of the enzymatic and nonenzymatic processes by which a particular substance is handled in the body.

(3) Pharmacokinetics means the study of the rates of absorption, tissue distribution, biotransformation, and excretion.

(4) Low dose should correspond to 1/10 of the high dose.

(iv) Extent of absorption of the test substance as indicated by: percent absorption of the administered oral dose; and total body burden after inhalation exposure.

(v) Quantity and percent recovery of radioactivity in feces, urine, expired air, and blood.

(vi) Tissue distribution reported as quantity of radioactivity in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lung, muscle, skin, spleen and in residual carcass of each rat.

(vii) Biotransformation pathways and quantities of the test substance and metabolites in excreta collected after administering single high and low doses to rats.

(viii) Biotransformation pathways and quantities of the test substance and metabolites in excreta collected after administering repeated low doses to rats.

(ix) Pharmacokinetics model(s) developed from the experimental data.

(b)[54 FR 43261, Oct. 23, 1989]

§ 795.232 Inhalation and dermal pharmacokinetics of commercial hexane.

(a) Purposes. The purposes of these studies are to:

(1) Determine the bioavailability of the test substances after dermal and inhalation administration.

(2) Compare the pharmacokinetics and metabolism of the test substances after intravenous, dermal, and inhalation administration.

(3) Examine the effects of repeated doses on the pharmacokinetics and metabolism of the test substances.

(b) Definitions. (1) Bioavailability refers to the relative amount of administered test substance which reaches the systemic circulation and the rate at which this process occurs.

(2) Metabolism means the sum of the enzymatic and nonenzymatic processes by which a particular substance is handled in the body.

(3) Pharmacokinetics means the study of the rates of absorption, tissue distribution, biotransformation, and excretion.

(4) Low dose should correspond to 1/10 of the high dose.

(5) High dose shall not exceed the lower explosive limit (LEL) and ideally should induce minimal toxicity.

(6) Test substance refers to the unlabeled and both radiolabeled mixtures (\(^{14}\)C-n-hexane and \(^{14}\)C-methylcyclopentane) of commercial hexane used in the testing.

(c) Test procedures—(1) Animal selection—(i) Species. The rat shall be used for pharmacokinetics testing because it has been used extensively for metabolic and toxicological studies.

(ii) Test animals. Adult male and female rats shall be used for testing. The rats shall be 7 to 9 weeks old and their weight range should be comparable from group to group. The animals shall be purchased from a reputable dealer and shall be permanently identified upon arrival. The animals shall be selected at random for the testing groups, and any animal showing signs of ill health shall not be used.

(iii) Animal care. (A) Animal care and housing shall be in accordance with DHHS/PHS NIH Publication No. 86-23, 1985, “Guidelines for the Care and Use of Laboratory Animals.”

(B) The animals shall be housed in environmentally controlled rooms with at least 10 air changes per hour. The rooms shall be maintained at a temperature of 18 to 26 degrees centigrade and humidity of 40 to 70 percent with a 12-hour light/dark cycle per day. The animal subjects shall be kept in a quarantine facility for at least 7 days prior to use, and shall be acclimated to the experimental environment for a minimum of 48 hours prior to treatment.

(C) During the acclimatization period, the rats shall be housed in suitable cages. All animals shall be provided with certified feed and tap water ad libitum.

(2) Administration of test substances—(i) Test substances. The study will require the use of both radiolabeled and unlabeled test substances. All unlabeled commercial hexane shall be from the same lot number. Two kinds of radiolabeled test substances will be tested. \(^{14}\)C-n-hexane shall be the only radiolabeled component of one, and \(^{14}\)C-MCP shall be the only radiolabeled component of the other test substance.
The use of both radiolabeled test substances is required for all pharmacokinetics and metabolism studies described in this rule, except for the bioavailability measurements required in (c)(4)(i)(A) of this section. The bioavailability measurements need only be conducted with the test substance containing \(^{14}C\)-n-hexane or an unlabeled test substance may be used if it can be demonstrated that the analytical sensitivity of the method used with the unlabeled test substance is equal to or greater than the sensitivity which could be obtained with the radiolabeled test substance. If an unlabeled test substance is used for bioavailability measurements, these measurements shall be extended to include relevant metabolites of n-hexane. These test substances shall contain at least 40 liquid volume percent but no more than 55 liquid volume percent n-hexane and no less than 10 liquid volume percent methylcyclopentane (MCP) and otherwise conform to the specifications prescribed in the American Society for Testing and Materials Designation D 1836-83 (ASTM D 1836), “Standard Specification for Commercial Hexanes”, published in the 1986 Annual Book of ASTM Standards: Petroleum Products and Lubricants, ASTM D 1836-83, pp. 966-967, 1986, which is incorporated by reference in accordance with 5 U.S.C. 552(a). ASTM D 1863-83 is available for public inspection at the Office of the Federal Register, Suite 700, 800 North Capitol St., NW., Washington, DC, and copies may be obtained from the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B-607 NE M., 401 M Street, SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays. This incorporation by reference was approved by the Director of the Office of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This material is incorporated as it exists on the date of approval, and a notice of any change in this material will be published in the Federal Register.

(ii) Dosage and treatment—(A) Intravenous. An appropriate dose of the test substance shall be administered intravenously. The intravenous data obtained in this portion of the study shall be suitable for the determination of absorption, distribution, and excretion parameters of the test substance. Factors that should be considered in the selection of the intravenous doses are: The acute toxicity of the test substance, the availability of a suitable vehicle (if saline is unsuitable) and the solubility of the test substance in the vehicle.

(B) Inhalation. Two concentrations of each test substance shall be used in this portion of the study, a low concentration and a high concentration. The high concentration should induce minimal toxicity, but shall not exceed the lower explosive limit (LEL). The low concentration shall correspond to 1/10 of the high concentration. Inhalation treatment shall be conducted using a “nose-cone” or “head only” apparatus to reduce ingestion of the test substance through “grooming” or dermal absorption.

(C) Dermal. Dermal absorption studies should be conducted by the methodology of Susten, A.S., Dames, B.L. and Niemeier, R.W., “In vivo percutaneous absorption studies of volatile solvents in hairless mice. I. Description of a skin depot”, In: Journal of Applied Toxicology 6:43-46, (1986), or by some other suitable method because the test substances have significant volatility. The high and low doses shall be tested in rats.

(iii) Dosing and sampling schedule. Each experimental group shall contain at least four animals of each sex. After administration of the test substance, each rat shall be placed in an individual metabolic unit for collection of urine, feces, and expired air. For the dermal studies, excreta from the rats shall also be collected during the exposure periods. At the end of each collection period, the metabolic units shall be cleaned to recover any excreta that might adhere to the units. All studies, except the repeated dose studies, shall be terminated at 7 days, or after at least 90 percent of the administered radioactivity has been recovered in the excreta, whichever occurs first. All studies described below shall be conducted separately with each radiolabeled test substance.
(A) Intravenous study. Group A shall be given a single intravenous dose of the radiolabeled test substance to result in a level of commercial hexane in the blood that approximates the level from the other routes of exposure so that the data can be used to determine absorption and excretion parameters.

(B) Inhalation studies. A single 6-hour exposure period shall be used for each group.

(1) Group B shall be exposed to a mixture of the radiolabeled test substance in air at the low concentration.

(2) Group C shall be exposed to a mixture of the radiolabeled test substance in air at the high concentration.

(C) Dermal studies. The test substance shall be applied and kept on the skin for a minimum of 6 hours. The covering apparatus components shall be assayed to recover residual radioactivity. At the termination of the studies, each animal shall be sacrificed and the exposed skin area removed. An appropriate section of the skin shall be solubilized and assayed for radioactivity to ascertain whether the skin acts as a reservoir for the test substance.

(1) Group D shall be given one dermal, low dose of the radiolabeled test substance.

(2) Group E shall be given one dermal, high dose of the radiolabeled test substance.

(D) Repeated dosing study. Group F shall receive a series of single daily 6-hour inhalation exposures to unlabeled test substance at the low dose over a period of at least 7 days. A single 6-hour inhalation exposure to the radiolabeled test substance at the low dose shall be administered 24 hours after the last unlabeled exposure. Following administration of the radiolabeled substance, the rats shall be placed in individual metabolic units and excreta collected. The study shall be terminated 7 days after the last exposure, or after at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(3) Types of studies—(i) Pharmacokinetics studies. Groups A through F shall be used to determine the kinetics of absorption of the test substance. In animal subjects administered the test substance intravenously (i.e., Group A), the concentration of test substance in blood and excreta shall be measured following administration. In animal subjects administered the test substance by the inhalation and dermal routes (i.e., Groups B through F), the concentration of test substance in blood shall be measured at selected time intervals during and following the exposure period. In animal subjects administered the test substance by the inhalation route (i.e., Groups B, C, and F) the concentration of test substance in excreta shall be measured following exposure. In animal subjects administered the test substance by the dermal route (i.e., Groups D and E) the concentration of test substance in excreta shall be measured during and following exposure. These measurements allow calculation of uptake, half lives, and clearance. In addition, in the groups administered the test substance by inhalation (i.e., Groups B, C, and F), the concentration of test substance in the exposure chamber air shall be measured at selected time intervals during the exposure period.

(ii) Metabolism studies. Groups A through F shall be used to determine the metabolism of the test substance. Excreta (urine, feces, and expired air) shall be collected for identification and measurement of the quantities of test substance and metabolites.

(4) Measurements—(i) Pharmacokinetics. At least four animals from each group shall be used for these purposes.

(A) Bioavailability. The levels of test substance and relevant metabolites, as appropriate, shall be determined in whole blood, blood plasma or blood serum at appropriate intervals after initiation of intravenous, dermal, and inhalation exposure. The sampling intervals should be compatible with the exposure route under study. The determinations need only be done on animals administered the test substance containing 14C-n-hexane or, if the analytical sensitivity is equal or greater, unlabeled test substance may be used.

(B) Extent of absorption. The total quantities of radioactivity shall be determined for excreta collected daily for 7 days, or until at least 90 percent of the radioactivity has been recovered in the excreta, whichever occurs first.

(C) Excretion. The quantities of radioactivity eliminated in the urine, feces,
§ 795.250 Developmental neurotoxicity screen.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of a chemical, it is important to determine when acceptable exposures in the

and expired air shall be determined separately at time intervals that provide accurate measurement of clearance and excretory rates. The collection of carbon dioxide may be discontinued when less than one percent of the dose is found to be exhaled as radioactive carbon dioxide in 24 hours.

(D) Tissue distribution. At the termination of each study, the quantities of radioactivity shall be determined in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lungs, muscle, skin, spleen, thymus, and residual carcass of each animal.

(E) Change in pharmacokinetics. Results of pharmacokinetics measurements (i.e., biotransformation, extent of absorption, tissue distribution, and excretion) obtained in rats receiving the single inhalation exposure to the low dose of the test substance (Group B) shall be compared to the corresponding results obtained in rats receiving repeated inhalation exposures to the low dose of the test substance (Group F).

(i) Metabolism. At least four animals from each group shall be used for these purposes.

(A) Biotransformation. Appropriate qualitative and quantitative methods shall be used to assay urine, feces, and expired air collected from rats. Efforts shall be made to identify any metabolite which comprises 5 percent or more of the dose administered.

(B) Changes in biotransformation. Appropriate qualitative and quantitative assay methods shall be used to compare the composition of radioactive compounds in excreta from rats receiving a single inhalation exposure (Groups B and C) with that from rats receiving repeated inhalation exposures (Group F).

(d) Data and reporting. The final test report shall include the following:

(1) Presentation of results. Numerical data shall be summarized in tabular form. Pharmacokinetics data shall also be presented in graphical form. Qualitative observations shall also be reported.

(2) Evaluation of results. All data shall be evaluated by appropriate statistical methods.

(3) Reporting results. In addition to the reporting requirements as specified in 40 CFR part 792, the following information shall be reported.

(i) Strain of laboratory animals.

(ii) Chemical characterization of the test substances, including:

(A) For the radiolabeled test substances, information on the sites and degree of radiolabeling, including type of label, specific activity, chemical purity prior to mixing with the unlabeled hexane mixture, and radiochemical purity.

(B) For the unlabeled test substance, information on lot number and the percentage of MCP and n-hexane.

(C) Results of chromatography.

(iii) A full description of the sensitivity, precision, and accuracy of all procedures used to obtain the data.

(iv) Percent and rate of absorption of the test substance after inhalation and dermal exposures.

(v) Quantity and percent recovery of radioactivity in feces, urine, expired air, and blood. For dermal studies, include recovery data for skin and residual radioactivity in the covering apparatus.

(vi) Tissue distribution reported as quantity of radioactivity in blood, in various tissues including bone, brain, fat, gastrointestinal tract, gonads, heart, kidney, liver, lung, muscle, skin, spleen, thymus, and in residual carcass.

(vii) Biotransformation pathways, to the extent possible, and quantities of the test substances and metabolites in excreta collected after administering single high and low doses.

(viii) Biotransformation pathways, to the extent possible, and quantities of test substances and metabolites in excreta collected after administering repeated low doses.

(ix) Pharmacokinetics models to the extent they can be developed from the experimental data.

adult may not be acceptable to a developing organism. This test is designed to provide information on the potential functional and morphologic hazards to the nervous system which may arise in the offspring from exposure of the mother during pregnancy and lactation.

(b) Principle of the test method. The test substance is administered to several groups of pregnant animals during gestation and lactation, one dose level being used per group. Offspring are randomly selected from within litters for neurotoxicity evaluation. The evaluation includes observation to detect gross neurological and behavioral abnormalities, determination of motor activity, neuropathological evaluation, and brain weights. Measurements are carried out periodically during both postnatal development and adulthood.

(c) Test procedures—(1) Animal selection—(i) Species and strain. Testing should be performed in the Sprague Dawley rat.

(ii) Age. Young adult animals (nulliparous females) shall be used.

(iii) Sex. Pregnant females shall be used at each dose level.

(iv) Number of animals. The objective is for a sufficient number of pregnant rats to be exposed to ensure that an adequate number of offspring are produced for neurotoxicity evaluation. At least 20 litters are recommended at each dose level. This number assumes a coefficient of variation of 20 to 25 percent for most behavioral tests. If, based upon experience with historical control data or data for positive controls in a given laboratory, the coefficient of variation for a given task is higher than 20 to 25 percent, then calculation of appropriate sample sizes to detect a 20 percent change from control values with 80 percent power would need to be done. For most designs, calculations can be made according to Dixon and Massey (1957) under paragraph (e)(5) of this section, Neter and Wasserman (1974) under paragraph (e)(10) of this section, Sokal and Rohlf (1969) under paragraph (e)(11) of this section, or Jensen (1972) under paragraph (e)(8) of this section.

(A) On day 4 after birth, the size of each litter should be adjusted by eliminating extra pups by random selection to yield, as nearly as possible, 4 males and 4 females per litter. Whenever the number of male or female pups prevents having 4 of each sex per litter, partial adjustment (for example, 5 males and 3 females) is permitted. Adjustments are not appropriate for litters of less than 8 pups. Elimination of runts only is not appropriate. Individual pups should be identified uniquely after standardization of litters. A method that may be used can be found in Adams et al. (1985) under paragraph (e)(1) of this section.

(B) After standardization of litters, males and females shall be randomly assigned to one of each of three behavioral tasks. Alternatively, more than one of the behavioral tasks may be conducted in the same animal. In the latter case, a minimum of 1 to 2 days should separate the tests when conducted at about the same age.

(C) One male and one female shall be randomly selected from each litter for sacrifice at weaning as specified in paragraph (c)(8) of this section.

(2) Control group. A concurrent control group shall be used. This group shall be a sham treated group, or, if a vehicle is used in administering the test substance, a vehicle control group. Animals in the control groups shall be handled in an identical manner to test group animals. The vehicle shall neither be developmentally toxic nor have effects on reproduction.

(3) Dose levels and dose selection. (i) At least 3 dose levels plus a control (vehicle control, if a vehicle is used) shall be used.

(ii) If the substance has been shown to be developmentally toxic either in a standard developmental toxicity study or a pilot study, the highest dose level shall be the maximum dose which will not induce in utero or neonatal deaths or malformations sufficient to preclude a meaningful evaluation of neurotoxicity.

(iii) In the absence of standard developmental toxicity, unless limited by the physicochemical nature or biological properties of the substance, the highest dose level shall induce some overt maternal toxicity but shall not result in a reduction in weight gain exceeding 20 percent during gestation and lactation.
(iv) The lowest dose should not produce any grossly observable evidence of either maternal or developmental neurotoxicity.

(v) The intermediate dose(s) shall be equally spaced between the highest and lowest dose.

(4) Dosing period. Day 0 in the test is the day on which a vaginal plug and/or sperm are observed. The dose period shall cover the period from day 6 of gestation through weaning (21 days postnatally).

(5) Administration of test substance. The test substance or vehicle should be administered orally by intubation. The test substance shall be administered at the same time each day. The animals shall be weighed periodically and the dosage based on the most recent weight determination.

(6) Observation of dams. (i) A gross examination of the dams shall be made at least once each day, before daily treatment. The animals shall be observed by trained technicians who are blind with respect to the animal’s treatment, using standardized procedures to maximize inter-observer reliability. Where possible, it is advisable that the same observer be used to evaluate the animals in a given study. If this is not possible, some demonstration of inter-observer reliability is required.

(ii) During the treatment and observation periods, cage-side observations shall include:

(A) Any responses with respect to body position, activity level, coordination of movement, and gait.

(B) Any unusual or bizarre behavior including, but not limited to headflicking, head searching, compulsive biting or licking, self-mutilation, circling, and walking backwards.

(C) The presence of:

(1) Convulsions.

(2) Tremors.

(3) Increased levels of lacrimation and/or red-colored tears.

(4) Increased levels of salivation.

(5) Piloerection.

(6) Pupillary dilation or constriction.

(7) Unusual respiration (shallow, labored, dyspneic, gasping, and retching) and/or mouth breathing.

(8) Diarrhea.

(9) Excessive or diminished urination.

(10) Vocalization.

(iii) Signs of toxicity shall be recorded as they are observed, including the time of onset, the degree and duration.

(iv) Animals shall be weighed at least weekly.

(v) The day of delivery of litters shall be recorded.

(7) Study conduct—(i) Observation of offspring. (A) All offspring shall be examined cage-side daily for gross signs of mortality and morbidity.

(B) All offspring shall be examined outside the cage for gross signs of toxicity whenever they are weighed or removed from their cages for behavioral testing. The offspring shall be observed by trained technicians, who are blind with respect to the animal’s treatment using standardized procedures to maximize inter-observer reliability. Where possible, it is advisable that the same observer be used to evaluate the animals in a given study. If this is not possible, some demonstration of inter-observer reliability is required. At a minimum, the end points outlined in paragraph (c)(6)(ii) of this section shall be monitored as appropriate for the developmental stage being observed.

(C) Any gross signs of toxicity in the offspring shall be recorded as they are observed, including the time of onset, the degree, and duration.

(ii) Developmental landmarks. Live pups should be counted and litters weighed by weighing each individual pup at birth, or soon thereafter, and on days 4, 7, 13, 17, and 21, and biweekly thereafter. The age of the pups at the time of the appearance of the following developmental landmarks shall be determined:

(A) Vaginal opening. General procedure for this determination may be found in Adams et al. (1985) under paragraph (e)(1) of this section.

(B) Testes descent. General procedure for this determination may be found in Adams et al. (1985) under paragraph (e)(3) of this section.

(iii) Motor activity. (A) Motor activity shall be monitored specifically on days 13, 17, 21, 45 (±2 days), and 60 (±2 days). Motor activity shall be monitored by an automated activity recording apparatus. The device used shall be capable
of detecting both increases and decreases in activity, i.e., baseline activity as measured by the device shall not be so low as to preclude decreases nor so high as to preclude increases. Each device shall be tested by standard procedures to ensure, to the extent possible, reliability of operation across devices and testing of animals within dose groups shall be balanced across devices.

(B) Each animal shall be tested individually. The test session shall be long enough to demonstrate habituation of motor activity in control animals, i.e., to approach asymptotic levels by the last 20 percent of the session. Animals’ activity counts shall be collected in equal time periods of no greater than 10 minutes duration. All sessions shall have the same duration. Treatment groups shall be counter-balanced across test times.

(C) Efforts shall be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables which can affect motor activity are sound level, size, and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of home cage or novel test cage, and environmental distractions.

(D) Additional information on the conduct of a motor activity study may be obtained in the TSCA motor activity guideline, in §798.6200 of this chapter.

(iv) Auditory startle test. An auditory startle habituation test shall be performed on the offspring on days 22 and 60. Details on the conduct of this testing may be obtained in Adams et al. (1985) under paragraph (e)(1) of this section. In performing the auditory startle task, the mean response amplitude on each block of 10 trials (5 blocks of 10 trials per session on each day of testing) shall be made. While use of prepulse inhibition is not a requirement, it may be used at the discretion of the investigator. Details on the conduct of this testing may be obtained from Ison (1984) under paragraph (e)(7) of this section.

(v) Active avoidance test. Active avoidance testing shall be conducted beginning at 60 to 61 days of age. Details on the apparatus may be obtained in Brush and Knaff (1959) and on the conduct of testing from Brush (1962), under paragraphs (e)(2) and (e)(4) of this section, respectively; reviews on active avoidance conditioning by Brush (1971) and McAllister and McAllister (1971) can be found under paragraphs (e)(3) and (e)(9) of this section, respectively. In performing the active avoidance task, the following measures should be made:

(A) Mean number of shuttles during the adaptation period preceding each daily session.

(B) Mean number and latency of avoidances per session, presented in blocks of 10 trials (2 blocks of 10 trials per session across 5 sessions).

(C) Mean number and latency of escapes per session, presented in blocks of 10 trials as above.

(D) Mean duration of shocks per session, presented in blocks of 10 trials as above.

(E) Mean number of shuttles during the inter-trial intervals.

(8) Post-mortem evaluation—(i) Age of animals. One male and one female per litter shall be sacrificed at weaning and the remainder following the last behavioral measures. Neuropathology and brain weight determinations shall be made on animals sacrificed at weaning and after the last behavioral measures.

(ii) Neuropathology. Details for the conduct of neuropathology evaluation may be obtained in the TSCA neuropathology guideline, in §798.6400 of this chapter. At least 6 offspring per dose group shall be randomly selected from each sacrificed group (weaning and adulthood) for neuropathologic evaluation. These animals shall be balanced across litters, and equal numbers of males and females shall be used. The remaining sacrificed animals shall be used to determine brain weight. Animals shall be perfused in situ by a generally recognized technique. After perfusion, the brain and spinal cord shall be removed and gross abnormalities noted. Cross-sections of the following areas shall be examined: The forebrain, the center of the cerebrum and midbrain, the cerebellum and pons, and the medulla oblongata; the spinal cord at cervical and lumbar swelling; Gasserian ganglia, dorsal root ganglia,
dorsal and ventral root fibers, proximal sciatic nerve (mid-thigh and sciatic notch), sural nerve (at knee), and tibial nerve (at knee). Tissue samples from both the central and peripheral nervous system shall be further immersion-fixed and stored in appropriate fixative for further examination. After dehydration, tissue specimens shall be cleared with xylene and embedded in paraffin or paraplast except for the sural nerve which should be embedded in plastic. A method for plastic embedding is described by Spencer et al. under paragraph (e)(12) of this section. Tissue sections shall be prepared from the tissue blocks. The following general testing sequence is recommended for gathering histopathological data:

(A) General staining. A general staining procedure shall be performed on all tissue specimens in the highest treatment group. Hematoxylin and eosin (H&E) shall be used for this purpose. The staining shall be differentiated properly to achieve bluish nuclei with pinkish background.

(B) Special stains. Based on the results of the general staining, selected sites and cellular components shall be further evaluated by use of specific techniques. If H&E screening does not provide such information, a battery of stains shall be used to assess the following components in all appropriate required samples: Neuronal body (e.g., Einarson's gallocyanin), axon (e.g., Kluver's Luxol Fast Blue), and neurofibrils (e.g., Bielchosky). In addition, nerve fiber teasing shall be used. A section of normal tissue shall be included in each staining to assure that adequate staining has occurred. Any changes shall be noted and representative photographs shall be taken. If lesions are observed, the special techniques shall be repeated in the next lower treatment group until no further lesions are detectable.

(C) Alternative technique. If the anatomical locus of expected neuropathology is well-defined, epoxy-embedded sections stained with toluidine blue may be used for small sized tissue samples. This technique obviates the need for special stains.

(d) Data reporting and evaluation. In addition to the reporting requirements specified in part 792, subpart J of this chapter, the final test report shall include the following information.

(1) Description of system and test methods. (i) A detailed description of the procedures used to standardize observation and operational definitions for scoring observations.

(ii) Positive control data from the laboratory performing the test that demonstrate the sensitivity of the procedures being used. These data do not have to be from studies using prenatal exposures. However, the laboratory must demonstrate competence in testing neonatal animals perinatally exposed to chemicals and establish test norms for the appropriate age group.

(iii) Procedures for calibrating and assuring the equivalence of devices and balancing treatment groups.

(iv) A short justification explaining any decisions where professional judgement is involved such as fixation technique and choice of stains.

(2) Results. The following information shall be arranged by test group dose level.

(i) In tabular form, data for each animal shall be provided showing:

(A) Its identification number and litter from which it came.
(B) Its body weight and score on each developmental landmark at each observation time; total session activity counts and intrasession subtotals on each day measured; auditory startle response magnitude session counts and intrasession subtotals on each day measured; time and cause of death (if appropriate); locations, nature or frequency, and severity of the lesions; total brain weight; absolute weight of each of the four sections; and weight of each section as a percentage of total brain weight. A commonly used scale such as 1+, 2+, 3+, and 4+ for degree of severity of lesions ranging from very slight to extensive may be used for morphologic evaluation. Any diagnoses derived from neurologic signs and lesions, including naturally occurring diseases or conditions, shall also be recorded.

(ii) Summary data for each group shall include:

(A) The number of animals at the start of the test.

(B) Body weights of the dams during gestation and lactation.

(C) Litter size and mean weight at birth.

(D) The number of animals showing each observation score at each observation time.

(E) The percentage of animals showing each abnormal sign at each observation time.

(F) The mean and standard deviation for each continuous end point at each observation time. These will include body weight, motor activity counts, acoustic startle responses, performance in active avoidance tests, and brain weights (both absolute and relative).

(G) The number of animals in which any lesion was found.

(H) The number of animals affected by each different type of lesion, the average grade of each type of lesion, and the frequency of each different type and/or location of lesions.

(3) Evaluation of data. An evaluation of the test results shall be made. The evaluation shall include the relationship between the doses of the test substance and the presence or absence, incidence, and severity of any neurotoxic effect. The evaluation shall include appropriate statistical analyses. The choice of analyses shall consider tests appropriate to the experimental design and needed adjustments for multiple comparisons.

(e) References. For additional background information on this test guideline, the following references should be consulted:

PART 796—CHEMICAL FATE TESTING GUIDELINES

Subpart A [Reserved]

Subpart B—Physical and Chemical Properties

Sec. 796.1050 Absorption in aqueous solution: Ultraviolet/visible spectra.
796.1950 Vapor pressure.

Subpart C—Transport Processes

796.2750 Sediment and soil adsorption isotherm.

Subpart D—Transformation Processes

796.3100 Aerobic aquatic biodegradation.
796.3500 Hydrolysis as a function of pH at 25 °C.

Subpart A [Reserved]

Subpart B—Physical and Chemical Properties

§ 796.1050 Absorption in aqueous solution: Ultraviolet/visible spectra.

(a) Introductory information—(1) Guidance information. (i) Molecular formula.
(ii) Structural formula.
(2) Standard documents. The spectrophotometric method is based on national standards and consensus methods which are applied to measure the absorption spectra.

(b) Method—(1)(i) Introduction, purpose, scope, relevance, application and limits of test. (A) The primary environmental purpose in determining the ultraviolet-visible (UV-VIS) absorption spectrum of a chemical compound is to have some indication of the wavelengths at which the compounds may be susceptible to photochemical degradation. Since photochemical degradation is likely to occur in both the atmosphere and the aquatic environment, spectra appropriate to these media will be informative concerning the need for further persistence testing.
(B) Degradation will depend upon the total energy absorbed in specific wavelength regions. Such energy absorption is characterized by both molar absorption coefficient (molar extinction coefficient) and band width. However, the absence of measurable absorption does not preclude the possibility of photodegradation.

(ii) Definitions and units. The UV-VIS absorption spectrum of a solution is a function of the concentration, \(c_i \), expressed in mol/L, of all absorbing species present; the path length, \(d \), of the spectrophotometer cell, expressed in cm; and the molar absorption (extinction) coefficient, \(\varepsilon_i \), of each species. The absorbance (optical density) \(A \) of the solution is then given by:

\[
A = d \sum_i \varepsilon_i c_i
\]

For a resolvable absorbance peak, the band width \(\lambda \) is the wavelength range, expressed in nm=\(10^{-9}\)m, of the peak at half the absorbance maximum.

(iii) Reference substances. (A) The reference substances need not be employed in all cases when investigating a new substance. They are provided primarily so that calibration of the method may be performed from time to time and to offer the chance to compare the results when another method is applied.

(B) Reference compounds appropriate for the calibration of the system are:

1. Potassium dichromate (in 0.005 mol/L, \(\text{H}_2\text{SO}_4 \) solution) from J.A.A. Ketelaar, paragraph (d)(2) of this section:

\[
\begin{array}{cccc}
\text{log} \varepsilon & 3.56 & 3.63 & 3.16 & 3.50 \\
\lambda \text{ in nm} & 235 & 257 & 313 & 350
\end{array}
\]

2. Fluoranthene (in methanol) from C.R.C. Atlas of Spectral Data, paragraph (d)(3) of this section:

\[
\begin{array}{cccc}
\text{log} \varepsilon & 4.75 & 4.18 & 4.73 & 3.91 & 3.92 \\
\lambda \text{ in nm} & 237 & 256 & 288 & 339 & 357
\end{array}
\]

3. 4-nitrophenol (in methanol) from C.R.C. Atlas of Spectral Data, paragraph (d)(3) of this section:

\[
\text{log} \varepsilon = 3.88, 4.04
\]
(iv) Principle of the test method. This method utilizes a double-beam spectrophotometer which records only the absorption differences between the blank and test solutions to give the spectrum of the chemical being tested.

(v) Quality criteria—Reproducibility and sensitivity. (A) Reproducibility and sensitivity, need not be measured directly. Instead, the accuracy of the system in measuring the spectra of reference compounds will be defined so as to assure appropriate reproducibility and sensitivity. It is preferable to use a recording double-beam spectrophotometer to obtain the UV-VIS spectrum of the test compound. Such an instrument should have a photometric accuracy of ±0.02 units over the absorbance range of 0 to 2 units. It should be capable of recording absorbances at wavelengths of 200 to 750 nanometers nm with a wavelength accuracy of ±0.5 nm. The cells employed with the instrument must necessarily be transparent over this wavelength range and must have a path length determined to within 1 percent. To ensure that the instrument is performing satisfactorily, spectra for test solutions of K$_2$Cr$_2$O$_7$ (for absorbance accuracy) and holmium glass (for wavelength accuracy) should be run periodically.

(B) In the event that a recording double-beam instrument is not available, it will be necessary to determine the absorbance of the test solution in a single-beam instrument at 5-nm intervals over the entire wavelength range and at 1-nm intervals where there are indicated absorbance maxima. Wavelength and absorbance tests should be done as with the double-beam instrument.

(2) Description of the test procedure—(i) Preparation—(A) Preparation of test solutions. (1) Solutions should be prepared by accurately weighing an appropriate amount of the purest form of the test substance available. This should be made up in a concentration which will result in at least one absorbance maximum in the range 0.5 to 1.5 units.

(2) The absorption of a compound is due to its particular chemical form. It is often the case that different forms are present, depending on whether the medium is acidic, basic, or neutral. Consequently, spectra under all three conditions are required where solubility and concentration allow. Where it is not possible to obtain sufficient concentrations in any of the aqueous media, a suitable organic solvent should be used (methanol preferred).

(3) The acid medium should have a pH of less than 2, and the basic medium should be at least pH 10. The solvent for the neutral solution, and for preparing the acidic and basic ones, should be distilled water, transparent to ultraviolet radiation down to 200 nm. If methanol must be used, acidic and basic solutions can be prepared by adding 10 percent by volume of HCl or NaOH in aqueous solution ([HCl], [NaOH]=1 mol/L).

(4) In theory, all chemical species other than that being tested are present in both beams and would therefore not appear in the recorded spectrum of a double-beam instrument. In practice, because the solvent is usually present in great excess, there is a threshold value of wavelength below which it is not possible to record the spectrum of the test chemical. Such a wavelength will be a property of the solvent or of the test medium. In general, distilled water is useful from 200 nm (dissolved ions will often increase this), methanol from 210 nm, hexane from 210 nm, acetonitrile from 215 nm and dichloromethane from 235 nm.

(B) Blank solutions. A blank must be prepared which contains the solvent and all chemical species other than the test chemical. The absorption spectrum of this solution should be recorded in a manner identical to that of the test solution and preferably on the same chart. This “baseline” spectrum should never record an absorbance reading varying more than ±0.05 from the nominal zero value.

(C) Cells. Cell pathlengths are usually between 0.1 cm and 10 cm. Cell lengths should be selected to permit recording of at least one maximum in the absorbance range of 0.5 to 1.5 units. Which set of cells should be used will be governed by the concentration and the absorbance of the test solution as indicated by the Beer-Lambert Law. The cells should be transparent over the range of the spectrum being recorded, and the
§ 796.1950 Vapor pressure.

(a) Introduction—(1) Background and purpose. (i) Volatilization, the evaporative loss of a chemical, depends upon the vapor pressure of chemical and on environmental conditions which influence diffusion from a surface. Volatilization is an important source of material for airborne transport and may lead to the distribution of a chemical over wide areas and into bodies of water far from the site of release. Vapor pressure values provide indications of the tendency of pure substances to vaporize in an unperturbed situation, and thus provide a method for ranking the relative volatilities of chemicals. Vapor pressure data combined with water solubility data permit the calculation of Henry’s law constant, a parameter essential to the calculation of volatility from water.

(ii) Chemicals with relatively low vapor pressures, high adsorptivity onto solids, or high solubility in water are less likely to vaporize and become airborne than chemicals with high vapor pressures or with low water solubility or low adsorptive tendencies.

(b) General procedure. (1) The test should be carried out at a temperature of 25 °C.

(2) Spectrophotometric measurement—(i) Path-lengths should be known to an accuracy of at least 1 per cent. Cells should be thoroughly cleaned in an appropriate manner (chromic acid is useful for quartz cells) and rinsed several times with the test or blank solutions.

(ii) Performance of the test. Both cells to be employed should be rinsed with the blank solution and then filled with same. The instrument should be set to scan at a rate appropriate for the required wavelength resolution and the spectrum of the blank recorded. The sample cell should then be rinsed and filled with the test solution and the scanning repeated, preferably on the same spectrum chart, to display the baseline. The test should be carried out at 25 °C.

(c) Data and reporting—(1) Treatment of results. (i) The molar absorption coefficient ε should be calculated for all absorbance maxima of the test substance. The formula for this calculation is:

\[\varepsilon = \frac{A}{c \times d} \]

where the quantities are as defined above (see Definitions and units).

(ii) For each peak which is capable of being resolved, either as recorded or by extrapolated symmetrical peaks, the bandwidth should be recorded.

(2) Test report. (i) The report should contain a copy of each of the three spectra (3 pH conditions). If neither water nor methanol solutions are feasible, there will be only one spectrum. Spectra should include a readable wavelength scale. Each spectrum should be clearly marked with the test conditions.

(ii) For each maximum in each spectrum, the ε value and bandwidth (when applicable) should be calculated and reported, along with the wavelength of the maximum. This should be presented in tabular form.

(iii) The various test conditions should be included, such as scan speed, the name and model of the spectrophotometer, the slit width (where available), cell type and path length, the concentrations of the test substance, and the nature and acidity of the solvent medium. A recent test spectrum on appropriate reference materials for photometric and wavelength accuracy should also be submitted (see Reproducibility and sensitivity).

(d) Literature references. For additional background information on this test guideline, the following references should be consulted:

in atmosphere transport, so that concerns regarding them should focus on soils and water.

(iii) Vapor pressure data are an important consideration in the design of other chemical fate and effects tests; for example, in preventing or accounting for the loss of volatile chemicals during the course of the test.

(2) Definitions and units. (i) "Desorption efficiency" of a particular compound applied to a sorbent and subsequently extracted with a solvent is the weight of the compound which can be recovered from the sorbent divided by the weight of the compound originally sorbed.

(ii) "Pascal" (Pa) is the standard international unit of vapor pressure and is defined as newtons per square meter (N/m²). A newton is the force necessary to give acceleration of one meter per second squared to one kilogram of mass.

(iii) The "torr" is a unit of pressure which equals 133.3 pascals or 1 mm Hg at 0 °C.

(iv) "Vapor pressure" is the pressure at which a liquid or solid is in equilibrium with its vapor at a given temperature.

(v) "Volatilization" is the loss of a substance to the air from a surface or from solution by evaporation.

(3) Principle of the test methods. (i) The isoteniscope procedure uses a standardized technique [ASTM 1978] that was developed to measure the vapor pressure of certain liquid hydrocarbons. The sample is purified within the equipment by removing dissolved and entrained gases until the measured vapor pressure is constant, a process called "degassing." Impurities more volatile than the sample will tend to increase the observed vapor pressure and thus must be minimized or removed. Results are subject to only slight error for samples containing nonvolatile impurities.

(ii) Gas saturation (or transpiration) procedures use a current of inert gas passed through or over the test material slowly enough to ensure saturation and subsequent analysis of either the loss of material or the amount (and sometimes kind) of vapor generated. Gas saturation procedures have been described by Spencer and Cliath (1969) under paragraph (d)(2) of this section. Results are easy to obtain and can be quite precise. The same procedures also can be used to study volatilization from laboratory scale environmental simulations. Vapor pressure is computed on the assumption that the total pressure of a mixture of gases is equal to the sum of the pressures of the separate or component gases and that the ideal gas law is obeyed. The partial pressure of the vapor under study can be calculated from the total gas volume and the weight of the material vaporized. If \(v \) is the volume which contains \(w \) grams of the vaporized material having a molecular weight \(M \), and if \(p \) is the pressure of the vapor in equilibrium at temperature \(T \) (K), then the vapor pressure, \(p \), of the sample is calculated by

\[
p = \frac{w}{M} \left(\frac{RT}{v} \right),
\]

where \(R \) is the gas constant (8.31 Pa m² mol⁻¹ K⁻¹) when the pressure is in pascals (Pa) and the volume is in cubic meters. As noted by Spencer and Cliath (1970) under paragraph (d)(3) of this section, direct vapor pressure measurements by gas saturation techniques are more directly related to the volatilization of chemicals than are other techniques.

(iii) In an effort to improve upon the procedure described by Spencer and Cliath (1969) under paragraph (d)(2) of this section, and to determine the applicability of the gas saturation method to a wide variety of chemical types and structures, EPA has sponsored research and development work at SRI International (EPA 1982) under paragraph (d)(1) of this section. The procedures described in this Test Guideline are those developed under that contract and have been evaluated with a wide variety of chemicals of differing structure and vapor pressures.

(4) Applicability and specificity. (i) A procedure for measuring the vapor pressure of materials released to the environment ideally would cover a wide range of vapor pressure values, at ambient temperatures. No single procedure can cover this range, so two different procedures are described in this section, each suited for a different part
of the range. The isoteniscope procedure is for pure liquids with vapor pressures from 0.1 to 100 kPa. For vapor pressures of 10^{-5} to 10^3 Pa, a gas saturation procedure is to be used.

(ii) With respect to the isoteniscope method, if compounds that boil close to or form azeotropes with the test material are present, it is necessary to remove the interfering compounds and use pure test material. Impurities more volatile than the sample will tend to increase the observed vapor pressure above its true value but the purification steps will tend to remove these impurities. Soluble, nonvolatile impurities will decrease the apparent vapor pressure. However, because the isoteniscope procedure is a static, fixed-volume method in which an insignificant fraction of the liquid sample is vaporized, it is subject to only slight error for samples containing nonvolatile impurities. That is, the nonvolatile impurities will not be concentrated due to vaporization of the sample.

(iii) The gas saturation method is applicable to solid or liquid chemicals. Since the vapor pressure measurements are made at ambient temperatures, the need to extrapolate data from high temperatures is not necessary and high temperature extrapolation, which can often cause serious errors, is avoided.

The method is most reliable for vapor pressures below 10^3 Pa. Above this limit, the vapor pressures are generally underestimated, probably due to aerosol formation. Finally, the gas saturation method is applicable to the determination of the vapor pressure of impure materials.

(b) Test procedures—(1) Test conditions.

(i) The apparatus in the isoteniscope method is described in paragraph (b)(2)(i) of this section.

(ii) The apparatus used in the gas saturation method is described in paragraph (b)(2)(ii) of this section.

(2) Performance of the tests—(i) Isoteniscope Procedure. The isoteniscope procedure described as ANSI/ASTM Method D 2879-86 is applicable for the measurement of vapor pressures of liquids with vapor pressures of 0.1 to 100 kilopascals (kPa) (0.75 to 750 torr). ASTM D 2879-86 is available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC. This incorporation by reference was approved by the Director of the Office of the Federal Register. This material is incorporated as it exists on the date of approval and a notice of any change in this material will be published in the Federal Register. Copies of the incorporated material may be obtained from the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B-807 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays, or from the American Society for Testing and Materials (ASTM), 1916 Race Street, Philadelphia, PA 19103. The isoteniscope method involves placing liquid sample in a thermostated bulb (the isoteniscope) connected to a manometer and a vacuum pump. Dissolved and entrained gases are removed from the sample in the isoteniscope by degassing the sample at reduced pressure. The vapor pressure of the sample at selected temperatures is determined by balancing the pressure due to the vapor of the sample against a known pressure of an inert gas. The vapor pressure of the test compound is determined in triplicate at $25 \pm 0.5^\circ$ C and at any other suitable temperatures ($\pm 0.5^\circ$). It is important that additional vapor pressure measurements be made at other temperatures, as necessary, to assure that there is no need for further degassing, as described in the ASTM method.

(ii) Gas saturation procedure. (A) The test procedures require the use of a constant-temperature box as depicted in the following Figure 1.
The insulated box, containing sample holders, may be of any suitable size and shape. The sketch in Figure 1 shows a box containing three solid sample holders and three liquid sample holders, which allows for the triplicate analysis of either a solid or liquid sample. The temperature within the box is controlled to ±0.5 ° or better. Nitrogen gas, split into six streams and controlled by fine needle valves (approximately 0.79 mm orifice), flows into the box via 3.8 mm (0.125 in.) i.d. copper tubing. After temperature equilibration, the gas flows through the sample and the sorbent trap and exits from the box. The flow rate of the effluent carrier gas is measured at room temperature with a bubble flow meter or other suitable device. The flow rate is checked frequently during the experiment to assure that there is an accurate value for the total volume of carrier gas. The flow rate is used to calculate the total volume (at room temperature) of gas that has passed through the sample and sorbent (\(\frac{\text{vol}}{\text{time}} \times \text{time} = \text{volume} \)). The vapor pressure of the test substance can be calculated from the total gas volume and the mass of sample vaporized. If \(v \) is the volume of gas that transported mass \(w \) of the vaporized test material having a molecular weight \(M \), and if \(p \) is the equilibrium vapor pressure of the sample at temperature \(T \), then \(p \) is calculated by the equation

\[
p = \frac{w}{M} (RT/v).
\]

In this equation, \(R \) is the gas constant (8.31 Pa m\(^3\)mol\(^{-1}\)K\(^{-1}\)). The pressure is expressed in pascals (Pa), the volume in cubic meters (m\(^3\)), mass in grams and \(T \) in kelvins (K). \(T = 273.15 + t \), if \(t \) is measured in degrees Celsius (°C).

(B) Solid samples are loaded into 5 mm i.d. glass tubing between glass wool plugs. The following Figure 2 depicts a drawing of a sample holder and absorber system.
(D) At very low vapor pressures and sorbent loadings, adsorption of the chemical on the glass wool separating the sample and the sorbent and on the glass surfaces may be a serious problem. Therefore, very low loadings should be avoided whenever possible. Incoming nitrogen gas (containing no interfering impurities) passes through a coarse frit and bubbles through a 38 cm column of liquid sample. The stream passes through a glass wool column to trap aerosols and then through a sorbent tube, as described above. The pressure drop across the glass wool column and the sorbent tube are negligible.

(E) With both solid and liquid samples, at the end of the sampling time, the front and backup sorbent sections are analyzed separately. The compound on each section is desorbed by adding the sorbent from that section to 1.0 ml of desorption solvent in a small vial and allowing the mixture to stand at a suitable temperature until no more test compound desorbs. It is extremely important that the desorption solvent contain no impurities which would interfere with the analytical method of choice. The resulting solutions are analyzed quantitatively by a suitable analytical method to determine the weight of sample desorbed from each section. The choice of the analytical method, sorbent, and desorption solvent is dictated by the nature of the test material. Commonly used sorbents include charcoal, Tenax GC, and XAD-2. Describe in detail the sorbent, desorption solvent, and analytical methods employed.

(F) Measure the desorption efficiency for every combination of sample, sorbent, and solvent used. The desorption efficiency is determined by injecting a known mass of sample onto a sorbent and later desorbing it and analyzing for the mass recovered. For each combination of sample, sorbent, and solvent used, carry out the determination in triplicate at each of three concentrations. Desorption efficiency may vary with the concentration of the actual sample and it is important to measure the efficiency at or near the concentration of sample under gas saturation test procedure conditions.
(G) To assure that the gas is indeed saturated with test compound vapor, sample each compound at three differing gas flow rates. Appropriate flow rates will depend on the test compound and test temperature. If the calculated vapor pressure shows no dependence on flow rate, then the gas is assumed to be saturated.

(c) Data and reporting. (1) Report the triplicate calculated vapor pressures for the test material at each temperature, the average calculated vapor pressure at each temperature, and the standard deviation.

(2) Provide a description of analytical methods used to analyze for the test material and all analytical results.

(3) For the iseniscope procedure, include the plot of p vs. the reciprocal of the temperature in K, developed during the degasing step and showing linearity in the region of 298.15 K (25°C) and any other required test temperatures.

(4) For the gas saturation procedure, include the data on the calculation of vapor pressure at three or more gas flow rates at each test temperature, showing no dependence on flow rate. Include a description of sorbents and solvents employed and the desorption efficiency calculations.

(5) Provide a description of any difficulties experienced or any other pertinent information.

(d) References. For additional background information on this test guideline, the following references should be consulted:

Subpart C—Transport Processes

§ 796.2750 Sediment and soil adsorption isotherm.

(a) Introduction—(1) Background and purpose. The adsorption of chemicals to sediments and soils is an important process that affects a chemical’s distribution in the environment. If a chemical is adsorbed to soil particles, it will remain on the soil surface and will not reach ground water. If a chemical is not adsorbed, it will leach through the soil profile and may reach ground waters and then surface waters. Similarly, if a chemical adsorbed to sediment, it will accumulate in the bed and suspended load of aquatic systems. Information on the adsorption potential is needed under certain circumstances to assess the transport of chemicals in the environment. This section describes procedures that will enable sponsors to determine the adsorption isotherm of a chemical on sediments and soils.

(2) Definitions and units. (i) The “cation exchange capacity” (CEC) is the sum total of exchangeable cations that a sediment or soil can adsorb. The CEC is expressed in milliequivalents of negative charge per 100 grams (meq/100g) or milliequivalents of negative charge per gram (meq/g) of soil or sediment.

(ii) “Clay mineral analysis” is the estimation or determination of the kinds of clay-size minerals and the amount present in a sediment or soil.

(iii) “Organic matter” is the organic fraction of the sediment or soil; it includes plant and animal residues at various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by the microbial population.

(iv) “Particle size analysis” is the determination of the various amounts of the different particle sizes in a sample (i.e., sand, silt, clay), usually by sedimentation, sieving, micrometry, or combinations of these methods. The names and diameter range commonly used in the United States are:

<table>
<thead>
<tr>
<th>Name</th>
<th>Diameter range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very coarse sand</td>
<td>2.0 to 1.0 mm</td>
</tr>
</tbody>
</table>

(v) The "pH" of a sediment or soil is the negative logarithm to the base ten of the hydrogen ion activity of the sediment or soil suspension. It is usually measured by a suitable sensing electrode coupled with a suitable reference electrode at a 1/1 solid/solution ratio by weight.

(vi) The adsorption ratio, "K_d," is the amount of test chemical adsorbed by a sediment or soil (i.e., the solid phase) divided by the amount of test chemical in the solution phase, which is in equilibrium with the solid phase, at a fixed solid/solution ratio.

(vii) "Sediment" is the unconsolidated inorganic and organic material that is suspended in and being transported by surface water, or has settled out and has deposited into beds.

(viii) "Soil" is the unconsolidated mineral material on the immediate surface of the earth that serves as a natural medium for the growth of land plants. Its formation and properties are determined by various factors such as parent material, climate, macro- and microorganisms, topography, and time.

(ix) "Soil aggregate" is the combination or arrangement of soil separates (sand, silt, clay) into secondary units. These units may be arranged in the soil profile in a distinctive characteristic pattern that can be classified according to size, shape, and degree of distinctness into classes, types, and grades.

(x) "Soil classification" is the systematic arrangement of soils into groups or categories. Broad groupings are based on general soil characteristics while subdivisions are based on more detailed differences in specific properties. The soil classification system used in this standard and the one used today in the United States is the 7th Approximation-Comprehensive System. The ranking of subdivisions under this system is: Order, Suborder, Great group, family, and series.

(xi) A "soil horizon" is a layer of soil approximately parallel to the land surface. Adjacent layers differ in physical, chemical, and biological properties such as color, structure, texture, consistency, kinds and numbers of organisms present, and degree of acidity or alkalinity.

(xii) "Soil Order" is the broadest category of soil classification and is based on the general similarities of soil physical/chemical properties. The formation of soil by similar general genetic processes causes these similarities. The Soil Orders found in the United States are: Alfisol, Aridisol, Entisol, Histosol, Inceptisol, Mollisol, Oxisol, Spodosol, Ultisol, and Vertisol.

(xiii) "Soil series" is the basic unit of soil classification and is a subdivision of a family. A series consists of soils that were developed under comparable climatic and vegetational conditions. The soils comprising a series are essentially alike in all major profile characteristics except for the texture of the "A" horizon (i.e., the surface layer of soil).

(xiv) "Soil texture" is a classification of soils that is based on the relative proportions of the various soil separates present. The soil textural classes are: clay, sandy clay, silty clay, clay loam, silty clay loam, sandy clay loam, loam, silt, sandy loam, loamy sand, and sand.

(3) Principle of the test method. (i) The extent of adsorption of a chemical onto sediment or soil is measured, using this test guideline, by equilibrating aqueous solutions containing different, but environmentally realistic, concentrations of the test chemical with a known quantity of sediment or soil. After equilibrium is reached, the distribution of the chemical between the water phase and the solid phase is quantitatively measured by a suitable analytical method. Then, sorption constants are calculated by using the Freundlich equation:

\[
x/m = C_s/C_e = K C_e^{1/n}
\]

where:
- \(C_e \) = Equilibrium concentration of the chemical in the solution phase
- \(C_s \) = Equilibrium concentration of the chemical in the solid phase
- \(K \) = Freundlich adsorption coefficient
- \(m \) = The mass of the solid in grams
- \(1/n \) = Exponent where \(n \) is a constant
Environmental Protection Agency § 796.2750

x = The mass in micrograms of the chemical adsorbed by m grams of solid.

Logarithmic transformation of the Freundlich equation yields the following linear relationship:

Equation 2

\[\log C_s = \log K + \left(\frac{1}{n}\right) \log C_e \]

(ii) In order to estimate the environmental movement of the test chemical, the values K and \(1/n\) are compared with the values of other chemicals whose behavior in soil and sediment systems is well-documented in scientific literature.

(iii) The adsorption isotherm (AI) test has many desirable features. First, adsorption results are highly reproducible. The test provides excellent quantitative data readily amenable to statistical analyses. Also, it has relatively modest requirements for chemicals, soils, laboratory space, and equipment. It allows solution phase organic chemical determinations that are relatively uncomplicated. A chemical extraction-mass balance procedure to elicit information on chemical transformations occurring at colloid interfaces can be incorporated into this test. The ease of performing the isotherm test and mass balance will depend upon the physical/chemical properties of the test chemical and the availability of suitable analytical techniques to measure the chemical.

(iv) The papers by Aharonson and Kafkafi (1975) under paragraph (d)(1) of this section, Harvey (1974) under paragraph (d)(3) of this section, Murray (1975) under paragraph (d)(4) of this section, Saltzman (1972) under paragraph (d)(5) of this section, Weber (1971) under paragraph (d)(6) of this section, and Wu (1975) under paragraph (d)(7) of this section served as the basis for this section. The soil and colloid chemistry literature and the analytical chemistry literature substantiate the experimental conditions and procedures specified in this guideline as accepted, standard procedures.

(4) Applicability and specificity. The AI Test Guideline can be used to determine the soil and sediment adsorption potential of sparingly water soluble to infinitely soluble chemicals. In general, a chemical having a water solubility of less than 0.5 ppm need not be tested with soil as the solid phase, since the literature indicates that these chemicals are, in general, immobile in soils, see Goring and Hamaker (1972) under paragraph (d)(2) of this section. However, this does not preclude future soil adsorption/transforming testing of these chemicals if more refined data are needed for the assessment process.

(b) Test procedures—(1) Test conditions—(i) Special laboratory equipment. (A) Equilibrating solutions that contain, besides the test chemical, 0.01M calcium nitrate dissolved in sterilized, distilled-deionized H₂O adjusted to neutral pH 7 by boiling to remove CO₂.

(B) Containers shall be composed of material that (1) adsorb negligible amounts of test chemical, and (2) withstand high speed centrifugation. The volume of the container is not a major consideration; however, it is extremely important that the amount of soil or sediment and the solid/solution ratio used in the study result in minimal container headspace. It is also extremely important that the containers be sterilized before use.

(C) A 150 micron (100 mesh) stainless-steel or brass sieve.

(D) Drying oven, with circulating air, that can attain 100 °C.

(E) Vortex mixer or a comparable device.

(F) Rotary shaker or a comparable device.

(G) High speed temperature-controlled centrifuge capable of sedimenting particles greater than 0.5 micron from aqueous solution.

(ii) Temperature. The test procedure shall be performed at 23±5 °C.

(iii) Replications. Three replications of the experimental treatments shall be used.

(iv) Soil pretreatment. The following soil pretreatment steps shall be performed under the following conditions:

(A) Decrease the water content, air or oven-dry soils at or below 50 °C.

(B) Reduce aggregate size before and during sieving, crush and grind dried soil very gently.

(C) Eliminate microbial growth during the test period using a chemical or physical treatment that does not alter
or minimally alters the soil surface properties.

(D) Sieve soils with a 100 mesh stainless-steel or brass sieve.

(E) Store all solutions and soils at temperatures between 0 and 5 °C.

(v) Sediment pretreatment. The following sediment pretreatment steps shall be performed under the following conditions:

(A) Decrease the H₂O content by air or oven-drying sediments at or below 50 °C. Sediments should not be dried completely and should remain moist at all times prior to testing and analysis.

(B) Eliminate microbial growth during the test period by using a chemical and/or physical treatment that does not alter or minimally alters the colloid surface’s properties.

(C) Store at temperatures between 0 and 5 °C.

(vi) Solid/solution ratio. The solid/solution ratio shall be equal to or greater than 1/10. If possible, the ratios should be equal to or greater than 1/5. The sediment or soil dry weight after drying for a 24-hour minimum at 90 °C is recommended for use as the weight of the solid for ratio and data calculations. If an insufficient amount of chemical remains in the water phase for quantification, the solid/solution ratio should be adjusted so that measurable amounts of the test chemical remain in solution.

(vii) Equilibration time. The equilibration time will depend upon the length of time needed for the parent chemical to attain an equilibrium distribution between the solid phase and the aqueous solution phase. The equilibration time shall be determined by the following procedure:

(A) Equilibrate one solution containing a known concentration of the test chemical with the sediment or soil in a solid/solution ratio equal to or greater than 1/2 and preferably equal to or greater than 1/5. It is important that the concentration of the test chemical in the equilibrating solution (1) does not exceed one-half of its solubility and (2) be 10 ppm or less at the end of the equilibration period.

(B) Measure the concentration of the chemical in the solution phase at frequent intervals during the equilibration period.

(C) Determine the equilibration time by plotting the measured concentration versus time of sampling; the equilibration time is the minimum period of time needed to establish a rate of change of solution concentration of 5 percent or less per 24 hours.

(viii) Centrifugation time. Calculate the centrifugation time, t, necessary to remove particles from solution greater than approximately 0.5 μm (5×10⁻⁷ mm) equivalent diameter (which represents all particles except the fine clay fraction) using the following equation:

Equation 3

\[t_c = 1.41 \times 10^{9} \left(\frac{\log(R_2/R_1)}{N^2} \right) \]

where:

\(t_c \) = centrifuge time in minutes

\(R_2 \) = distance from centrifuge spindle to deposition surface of centrifuge

\(R_1 \) = distance from spindle to surface of the sample

\(N \) = number of revolutions of the centrifuge per minute.

(ix) Storage of solutions. If the chemical analysis is delayed during the course of the experiment, store all solutions between 0 and 5 °C.

(x) Solvents for extraction. It is important that the solvent used to extract the chemical from the sediment or soil is reagent grade or better. Solvents shall contain no impurities which could interfere with the determination of the test compound.

(2) Test procedure—(i) Equilibration. Add six solutions containing different concentrations of the test chemical to at least one gram of each solid. The initial concentration of the test chemical in these solutions will depend on the affinity the chemical has for the sediment or soil. Therefore, after equilibration is attained, it is extremely important that the highest concentration of the test chemical in the equilibrating solution does not exceed 10 ppm, is at least one order of magnitude greater than the lowest concentration reported, and does not exceed one half of its solubility.

(A) Immediately after the solutions are added to the solids, tightly cap the containers and vigorously agitate them for several minutes with a vortex mixture or similar device.
§ 796.3100 Aerobic aquatic biodegradation.

(a) Introduction—(1) Purpose. (i) This Guideline is designed to develop data on the rate and extent of aerobic biodegradation that might occur when chemical substances are released to aquatic environments. A high biodegradability result in this test provides evidence that the test substance will be biodegradable in natural aerobic freshwater environments. (ii) On the contrary, a low biodegradation result may have other causes than poor biodegradability of the test substance. Inhibition of the microbial inoculum by the test substance at the test concentration may

(B) Shake the containers throughout the equilibration period at a rate that suspends all solids in the solution phase.

(ii) Centrifugation. When the equilibration time has expired, centrifuge the containers for t minutes.

(iii) Chemical extraction. (A) After centrifugation, remove the supernatant aqueous phase from the solid-solution mixture.

(B) Extract the chemical adsorbed on the sediment or soil colloid surfaces with solvent.

(iv) Chemical analysis. Determine the amount of parent test chemical in the aqueous equilibrating solution and organic solvent extractions. Use any method or combination of methods suitable for the identification and quantitative detection of the parent test chemical.

(c) Reporting. Report the following information:

(1) Temperature at which the test was conducted.

(2) Detailed description of the analytical technique(s) used in the chemical extraction, recovery, and quantitative analysis of the parent chemical.

(3) Amount of parent test chemical applied, the amount recovered, and the percent recovered.

(4) Extent of adsorption by containers and the approach used to correct the data for adsorption by containers.

(5) The individual observations, the mean values, and graphical plots of x/m as a function of C, for each sediment or soil for (i) the equilibration time determination and (ii) the isotherm determination.

(6) The quantities K, n, and l/n.

(7) Soil information: Soil Order, series, texture, sampling location, horizon, general clay fraction mineralogy.

(8) Sediment information: sampling location, general clay fraction mineralogy.

(9) Sediment and soil physical-chemical properties: percent sand, silt, and clay (particle size analysis); percent organic matter; pH (1/1 solids/H2O); and cation exchange capacity.

(10) The procedures used to determine the physical/chemical properties listed under paragraphs (c) (7) through (9) of this section.

(d) References. For additional background information on this test guideline the following references should be consulted:

be observed. In such cases, further work is needed to assess the aerobic aquatic biodegradability and to determine the concentrations at which toxic effects are evident. An estimate of the expected environmental concentration will help to put toxic effects into perspective.

(2) Definitions. (i) “Adaptation” is the process by which a substance induces the synthesis of any degradative enzymes necessary to catalyze the transformation of that substance.

(ii) “Ultimate Biodegradability” is the breakdown of an organic compound to CO₂, water, the oxides or mineral salts of other elements and/or to products associated with normal metabolic processes of microorganisms.

(iii) “Ready Biodegradability” is an expression used to describe those substances which, in certain biodegradation test procedures, produce positive results that are unequivocal and which lead to the reasonable assumption that the substance will undergo rapid and ultimate biodegradation in aerobic aquatic environments.

(3) Principle of the test method. This Guideline method is based on the method described by William Gledhill (1975) under paragraph (d)(1) of this section. The method consists of a 2-week inoculum buildup period during which soil and sewage microorganisms are provided the opportunity to adapt to the test compound. This inoculum is added to a specially equipped Erlenmeyer flask containing a defined medium with test substance. A reservoir holding barium hydroxide solution is suspended in the test flask. After inoculation, the test flasks are sparged with CO₂-free air, sealed, and incubated, with shaking in the dark. Periodically, samples of the test mixture containing water-soluble test substances are analyzed for dissolved organic carbon (DOC) and the Ba(OH)₂ from the reservoirs is titrated to measure the amount of CO₂ evolved. Differences in the extent of DOC disappearance and CO₂ evolution between control flasks containing no test substance, and flasks containing test substance are used to estimate the degree of ultimate biodegradation.

(4) Prerequisites. The total organic carbon (TOC) content of the test substance shall be calculated or, if this is not possible, analyzed, to enable the percent of theoretical yield of carbon dioxide and percent of DOC loss to be calculated.

(5) Guideline information. (i) Information on the relative proportions of the major components of the test substance will be useful in interpreting the results obtained, particularly in those cases where the result lies close to a “pass level.”

(ii) Information on the toxicity of the chemical may be useful in the interpretation of low results and in the selection of appropriate test concentrations.

(6) Reference substances. Where investigating a chemical substance, reference compounds may be useful and an inventory of suitable reference compounds needs to be identified. In order to check the activity of the inoculum the use of a reference compound is desirable. Aniline, sodium citrate, dextrose, phthalic acid and trimellitic acid will exhibit ultimate biodegradation under the conditions of this Test Guideline method. These reference substances must yield 60 percent of theoretical maximum CO₂ and show a removal of 70 percent DOC within 28 days. Otherwise the test is regarded as invalid and shall be repeated using an inoculum from a different source.

(7) Reproducibility. The reproducibility of the method has not yet been determined; however it is believed to be appropriate for a screening test which has solely an acceptance but no rejective function.

(8) Sensitivity. The sensitivity of the method is determined by the ability to measure the endogenous CO₂ production of the inoculum in the blank flask and by the sensitivity limit of the dissolved organic carbon analysis. If the test is adapted to handle ¹⁴C-labeled test substances, test substance concentrations can be much lower.

(9) Possibility of standardization. This possibility exists. The major difficulty is to standardize the inoculum in such a way that interlaboratory reproducibility is ensured.

(10) Possibility of automation. None at present, although parts of the analyses may be automated.
(b) Test procedures—(1) Preparations—
(i) Apparatus. The shake flask apparatus under the following Figure 1 contains 10 mL of 0.2N Ba(OH)$_2$ in an open container suspended over 1 liter of culture medium in a 2-liter Erlenmeyer flask.

![Diagram of shake flask system](image)

FIGURE 1—SHAKE-FLASK SYSTEM FOR CARBON DIOXIDE EVOLUTION

The Ba(OH)$_2$ container is made by placing a constriction just above the 10 mL mark of a 50 mL heavy-duty centrifuge tube and attaching the centrifuge tube to a 2 mm I.D. x 9 mm O.D. glass tube by means of 3 glass support rods. The centrifuge tube opening is large enough to permit CO$_2$ to diffuse into the Ba(OH)$_2$, while the constriction permits transferal of the flask to and from the shaker without Ba(OH)$_2$ spillage into the medium. For periodic removal and addition of base from the center well, a polypropylene capillary tube, attached at one end to a 10 ml disposable syringe, is inserted through the 9 mm O.D. glass tube into the Ba(OH)$_2$ reservoir. The reservoir access port is easily sealed during incubation with a serum bottle stopper. Two glass tubes are added for sparging, venting, and medium sampling. The tops of these tubes are connected with a short section of flexible tubing during incubation.

(ii) Reagents and stock solutions. (A) Stock solutions, I, II, and III under the following Table 1.
(B) Yeast extract.
(C) Vitamin-free casamino acids.
(D) 70 percent O$_2$ in nitrogen or CO$_2$-free air.
(E) 0.2N Ba(OH)$_2$.
(F) 0.1 N HCl.
(G) 20 percent H$_2$SO$_4$.
(H) Phenolphthalein.
(I) Dilution water—distilled, deionized water (DIW).

(iii) Soil inoculum. A fresh sample of an organically rich soil is used as the inoculum in the ultimate biodegradation test. Soil is collected, prepared, and stored according to the recommendations of Pramer and Bartha (1972) under paragraph (d)(2) of this section. The soil surface is cleared of litter and a soil sample is obtained 10 to 20 cm below the surface. The sample is screened through a sieve with 2 to 5 mm openings and stored in a polyethylene bag at 2 to 4°C for not more
than 30 days prior to use. The soil is never allowed to air-dry, and shall not be frozen during storage.

Table 1—Medium Employed for Assay of CO₂ Evolution

<table>
<thead>
<tr>
<th>Solution</th>
<th>Compound</th>
<th>Stock Solution Conc. (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>NH₄Cl</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>KNO₃</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>K₂HPO₄·3H₂O</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Na₂HPO₄·2H₂O</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>KCl</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>MgSO₄</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>FeSO₄·7H₂O</td>
<td>1</td>
</tr>
<tr>
<td>II²</td>
<td>CaCl₂</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>MnCl₂·4H₂O</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>CuCl₂</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>CoCl₂</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>H₂BO₃</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>MoO₃</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

1. Each liter of test medium contains 1 mL of each solution.
2. Final pH is adjusted to 3.0 with 0.10 N HCl.

(iv) Acclimation Medium. Acclimation medium is prepared by adding, for each liter of distilled, deionized water (DIW): 1 mL each of solutions I, II, and III in Table 1 in paragraph (b)(1)(iii) of this section, 1.0 gm of soil inoculum (prepared according to paragraph (b)(1)(iii) of this section), 2.0 mL of aerated mixed liquor obtained from an activated sludge treatment plant not more than 2 days prior to commencing the acclimation phase, and stored in the interim at 4 °C and 50 mL raw domestic influent sewage. This medium is mixed for 15 minutes and filtered through a glass wool plug in a glass funnel. The filtrate is permitted to stand for 1 hour, refiltered through glass wool, and supplemented with 25 mg/L each of Difco vitamin-free casamino acids and yeast extract. Appropriate volumes are added to 2-liter Erlenmeyer flasks. Test compounds are added incrementally during the acclimation period at concentrations equivalent to 4, 8, and 8 mg/L carbon on days 0, 7, and 11, respectively. On day 14, the medium is refiltered through glass wool prior to use in the test. For evaluating the biodegradability of a series of functionally or structurally related chemicals, media from all inoculum flasks may be combined before final filtration.

(2) Procedures. (i) Inoculum. (100 mL of acclimation medium) is added to 900 mL DIW containing 1 mL each of solutions I, II, and III in Table 1 under paragraph (b)(1)(iii) of this section in a 2-liter Erlenmeyer flask. Test compound equivalent to 10 mg/L carbon is added to each of the replicate flasks containing the test medium. Ten mL of 0.2 N Ba(OH)₂ are added to the suspended reservoir in each flask and duplicate 10 mL samples of Ba(OH)₂ are also saved as titration blanks for analysis with test samples. Flasks are sparged with CO₂-free air (for volatile test materials, sparging is done prior to addition of the chemical), sealed, and placed on a groytoquick shaker (approximately 125 rpm) at 20 to 25 °C in the dark. For each set of experiments, each test, reference, inhibited, and control system should be analyzed at time zero and at a minimum of four other times from time zero through day 28. Sampling must be made with sufficient frequency to allow for a smooth plot of biodegradation with time. Sampling times should be varied by the investigator as deemed appropriate to match the rate of degradation of the test substance. Tests may be terminated when biodegradation reaches a plateau and is consistent (±10 percent) over 3 consecutive days or on day 28, whichever occurs first. For chemicals which are water soluble at the test concentration, an adequate volume (5 to 10 mL) of medium is removed for DOC analysis. Each sample for DOC analysis should be filtered through a membrane filter of 0.45 micrometer pore diameter before DOC analysis. For all test and reference compounds, Ba(OH)₂ from the center well is removed for analysis. The center well is rinsed with 10 mL CO₂-free DIW and is refilled with fresh base. Rinse water is combined with the Ba(OH)₂ sample to be analyzed. Flasks are resealed and placed on the shaker. On the day prior to terminating the test, 3 mL of 20 percent H₂SO₄ are added to the medium to release carbonate bound CO₂.

(iii) For each set of experiments, each test substance shall be tested in triplicate.
Environmental Protection Agency

§ 796.3100

reference compound equivalent to 10 mg/liter carbon to each of two flasks containing the test medium. Reference compounds which are positive for ultimate biodegradability include: sodium citrate, dextrose, phthalic acid, trimellitic acid, and aniline.

(iv) For each test set, triplicate controls receiving inoculated medium and no test compound, plus all test and reference flasks, are analyzed for CO₂ evolution and DOC removal. Results from analysis of the control flasks (DOC, CO₂ evolution, etc.) are subtracted from corresponding experimental flasks containing test compound in order to arrive at the net effect due to the test compound.

(v) A test system containing a growth inhibitor should be established as a control for each substance tested for biodegradation by this method. That inhibited system must contain the same amount of water, mineral nutrients, inoculum, and test substance used in the uninhibited test systems, plus 50 mg/L mercuric chloride (HgCl₂) to inhibit microbial activity.

(vi) Flasks shall be incubated in the dark to minimize both photochemical reactions and algal growth. Appropriate sterile controls or controls containing a metabolic inhibitor, such as 50 mg/L HgCl₂, are needed to correct for interferences due to nonbiological degradation. With volatile organic materials, sparging with CO₂-free air is performed only once, just prior to addition of the test chemical. Analyses for CO₂ evolution and DOC removal are conducted within 2 to 3 hours of sampling to minimize interferences which may occur in storage. All glassware should be free of organic carbon contaminants.

(3) Analytical measurements. The quantity of CO₂ evolved is measured by titration of the entire Ba(OH)₂ sample (10 mL Ba(OH)₂ + 10 mL rinse water) with 0.1 N HCl to the phenolphthalein end point. Ba(OH)₂ blanks are also supplemented with 10 mL CO₂-free DIW and titrated in a similar manner. Samples (5 mL) for DOC are centrifuged and/or filtered and supernatant or filtrate analyzed by a suitable total organic carbon method.

(c) Data and reporting—(1) Treatment of results. (i) Test compound (10 mg carbon) is theoretically converted to 0.833 mmol CO₂. Absorbed CO₂ precipitates as BaCO₃ from Ba(OH)₂, causing a reduction in alkalinity by the equivalent of 16.67 mL of 0.1 N HCl for complete conversion of the test compound carbon to CO₂. Therefore, the percent theoretical CO₂ evolved from the test compound is calculated at any sampling time from the formula:

\[
\text{Percent CO}_2 \text{ evolved} = \frac{(TF - CF) \times 16.67}{100}
\]

where:

- \(TF\) = mL 0.1 N HCl required to titrate Ba(OH)₂ samples from the test flask
- \(CF\) = mL 0.1 N HCl required to titrate Ba(OH)₂ samples from the control flask

(ii) The cumulative percent CO₂ evolution at any sample time is calculated as the summation of the percent CO₂ evolved at all sample points of the test.

(iii) The percent DOC disappearance from the test compound is calculated from the following equation:

\[
\text{Percent DOC Removal} = \frac{1 - (DTF - DCF)}{(DTF) \times 100}
\]

where:

- \(DTF\) = Dissolved organic carbon from test flask
- \(DCF\) = Dissolved organic carbon from control flask
- \(x\) = Day of measurements
- \(o\) = Day zero measurements

(iv) The difference between the amount of 0.1 N HCl used for the Ba(OH)₂ titration blank samples and the Ba(OH)₂ samples from the control units (no test compound) is an indication of the activity of the microorganisms in the test system. In general, this difference is approximately 1 to 3 mL of 0.1 N HCl at each sampling time. A finding of no difference in the titration volumes between these two samples indicates a poor inoculum. In this case, the validity of the test results is questionable and the test set shall be rerun beginning with the acclimation phase.

(v) CO₂ evolution in the reference flasks is also indicative of the activity of the microbial test system. The suggested reference compounds should all yield final CO₂ evolution values of at least 60 percent of theoretical CO₂. If, for any test set, the percent theoretical CO₂ evolution value for the reference
§ 796.3500 Hydrolysis as a function of pH at 25 ºC.

(a) Introduction—(1) Background and purpose. (i) Water is one of the most widely distributed substances in the environment. It covers a large portion of the earth’s surface as oceans, rivers, and lakes. The soil also contains water, as does the atmosphere in the form of water vapor. As a result of this ubiquitousness, chemicals introduced into the environment almost always come into contact with aqueous media. Certain classes of these chemicals, upon contact, can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and is, therefore, one of the main chemical degradation paths of these substances in the environment.

(ii) Since hydrolysis can be such an important degradation path for certain classes of chemicals, it is necessary, in assessing the fate of these chemicals in the environment, to know whether, at what rate, and under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that there may be greater concern about the products of the transformation than about the parent compounds. In other cases, a substance will be resistant to hydrolysis under typical environmental conditions, while, in still other instances, the substance may have an intermediate stability that can result in the necessity for an assessment of both the original compound and its transformation products. The importance of transformation of chemicals via hydrolysis in aqueous media in the environment can be determined quantitatively from data on hydrolysis rate constants. This hydrolysis Test Guideline represents a test to

line the following references should be consulted:

§ 796.3500 Hydrolysis as a function of pH at 25 ºC.

(a) Introduction—(1) Background and purpose. (i) Water is one of the most widely distributed substances in the environment. It covers a large portion of the earth’s surface as oceans, rivers, and lakes. The soil also contains water, as does the atmosphere in the form of water vapor. As a result of this ubiquitousness, chemicals introduced into the environment almost always come into contact with aqueous media. Certain classes of these chemicals, upon contact, can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and is, therefore, one of the main chemical degradation paths of these substances in the environment.

(ii) Since hydrolysis can be such an important degradation path for certain classes of chemicals, it is necessary, in assessing the fate of these chemicals in the environment, to know whether, at what rate, and under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that there may be greater concern about the products of the transformation than about the parent compounds. In other cases, a substance will be resistant to hydrolysis under typical environmental conditions, while, in still other instances, the substance may have an intermediate stability that can result in the necessity for an assessment of both the original compound and its transformation products. The importance of transformation of chemicals via hydrolysis in aqueous media in the environment can be determined quantitatively from data on hydrolysis rate constants. This hydrolysis Test Guideline represents a test to

line the following references should be consulted:

§ 796.3500 Hydrolysis as a function of pH at 25 ºC.

(a) Introduction—(1) Background and purpose. (i) Water is one of the most widely distributed substances in the environment. It covers a large portion of the earth’s surface as oceans, rivers, and lakes. The soil also contains water, as does the atmosphere in the form of water vapor. As a result of this ubiquitousness, chemicals introduced into the environment almost always come into contact with aqueous media. Certain classes of these chemicals, upon contact, can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and is, therefore, one of the main chemical degradation paths of these substances in the environment.

(ii) Since hydrolysis can be such an important degradation path for certain classes of chemicals, it is necessary, in assessing the fate of these chemicals in the environment, to know whether, at what rate, and under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that there may be greater concern about the products of the transformation than about the parent compounds. In other cases, a substance will be resistant to hydrolysis under typical environmental conditions, while, in still other instances, the substance may have an intermediate stability that can result in the necessity for an assessment of both the original compound and its transformation products. The importance of transformation of chemicals via hydrolysis in aqueous media in the environment can be determined quantitatively from data on hydrolysis rate constants. This hydrolysis Test Guideline represents a test to
allow one to determine rates of hydrolysis at any pH of environmental concern at 25°C.

(2) Definitions and units. (i) “Hydrolysis” is defined as the reaction of an organic chemical with water, such that one or more bonds are broken and the reaction products of the transformation incorporate the elements of water (H₂O).

(ii) “Elimination” is defined in this Test Guideline to be a reaction of an organic chemical (RX) in water in which the X group is lost. These reactions generally follow the same type of rate laws that hydrolysis reactions follow and, thus, are also covered in this Test Guideline.

(iii) A “first-order reaction” is defined as a reaction in which the rate of disappearance of the chemical substance being tested is directly proportional to the concentration of the chemical substance and is not a function of the concentrations of any other substances present in the reaction mixture.

(iv) The “half-life” of a chemical is defined as the time required for the concentration of the chemical substance being tested to be reduced to one-half its initial value.

(v) “Hydrolysis” refers to a reaction of an organic chemical with water such that one or more bonds are broken and the reaction products incorporate the elements of water (H₂O). This type of transformation often results in the net exchange of a group X, on an organic chemical RX, for the OH group from water. This can be written as:

RX + HOH → ROH + HX.

(A) Another result of hydrolysis can be the incorporation of both H and OH in a single product. An example of this is the hydrolysis of epoxides, which can be represented by

(B) The hydrolysis reaction can be catalyzed by acidic or basic species, including OH⁻ and H₂O⁺ (H⁺). The promotion of the reaction by H₂O⁺ or OH⁻ is called specific acid or specific base catalysis, respectively, as contrasted with general acid or base catalysis encountered with other cationic or anionic species. Usually, the rate law for chemical RX can be written as:

Equation 1

\[-d[RX]_0 = k_h[RX] = k_A[H⁺][RX] + k_B[OH⁻][RX] + k_N[H₂O][RX], \]

where \(k_A, k_B \) and \(k_N \) are the second-order rate constants for acid and base catalyzed and neutral water processes, respectively. In dilute solutions, such as are encountered in following this Test Guideline, water is present in great excess and its concentration is, thus, essentially constant during the course of the hydrolysis reaction. At fixed pH, the reaction, therefore, becomes pseudo first-order, and the rate constant \(k_h \) can be written as:

Equation 2

\[k_h = k_A[H⁺] + k_B[OH⁻] + k_N, \]

where \(k_N \) is the first-order neutral water rate constant. Since this is a pseudo first-order process, the half-life is independent of the concentration and can be written as:

Equation 3

\[t_{1/2} = \frac{0.693}{k_h}. \]

At constant pH, Equation 1 can be integrated to yield the first order rate expression

Equation 4

\[\log_{10} C = \frac{(k_At)_{2.303} + \log_{10} C_0}{k_h}. \]

where \(C \) is the concentration of the test chemical at time \(t \) and \(C_0 \) is the initial chemical concentration (t=0).

(C) At a given pH, Equation 2 under paragraph (a)(2)(v)(B) of this section contains three unknowns, \(k_A, k_B, \) and \(k_N \). Therefore, three equations (i.e., measurements at three different pH’s at a fixed temperature) are required if one wishes to solve for these quantities. Making suitable approximations for quantities that are negligible, the expressions for \(k_A, k_B, \) and \(k_N \) using values of \(k_h \) measured at pH 3, 7, and 11 are:

Equation 5

\[k_A = 10^{3} \left[k_h(3) - k_h(7) + 10^{-4} k_h(11) \right]. \]
The calculated rate constants from equation 5 under this paragraph can be employed in equation 2 under paragraph (a)(2)(v)(B) of this section to calculate the hydrolysis rate of a chemical at any pH of environmental concern.

(D) The equations under paragraph (a)(2) of this section apply whether the test chemical has one or more hydrolyzable groups. In the latter case, the rate may be written as:

\[
-k_n = 10^9 \left[k_n \left(11\right) - k_s \left(7\right) \right] + 10^{11} \cdot k_s \left(3\right)
\]

The calculated rate constants from equation 5 under this paragraph can be employed in equation 2 under paragraph (a)(2)(v)(B) of this section to calculate the hydrolysis rate of a chemical at any pH of environmental concern.

(E) Temperature controls. All hydrolysis reactions shall be carried out at 25 °C ± 1°C and with the temperature controlled to ±0.1°C.

(F) pH conditions. It is recommended that all hydrolysis experiments be performed at pH 3.00, 7.00, and 11.00 ± 0.05 using the appropriate buffers described in paragraph (b)(2)(i) of this section.

(G) Concentration of solutions of chemical substances. The concentration of the test chemical shall be less than one-half the chemical's solubility in water but not greater than 10⁻³ M.

(C) Stoppered volumetric flasks (no grease) or glass ampoules that can be sealed.

(ii) Purity of water. Reagent-grade water (e.g., water meeting ASTM Type IIA standards or an equivalent grade) shall be used to minimize biodegradation. ASTM Type IIA water is described in ASTM D 1193-77 (Reapproved 1983), "Standard Specification for Reagent Water." ASTM D 1193-77 (Reapproved 1983) is available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC. This incorporation by reference was approved by the Director of the Office of the Federal Register. This material is incorporated as it exists on the date of approval and a notice of any change in this material will be published in the FEDERAL REGISTER. Copies of the incorporated material may be obtained from the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B-607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays, or from the American Society for Testing and Materials (ASTM), 1916 Race Street, Philadelphia, PA 19103.

(iii) Sterilization. All glassware shall be sterilized. Aseptic conditions shall be used in the preparation of all solutions and in carrying out all hydrolysis experiments to eliminate or minimize biodegradation. Glassware can be sterilized in an autoclave or by any other suitable method.

(iv) Precautions for volatility. If the chemical is volatile the reaction vessels shall be almost completely filled and sealed.

(2) Test procedures—(1) Test conditions—(i) Special laboratory equipment. (A) A thermostatic bath that can be maintained at a temperature of 25±1°C. (B) A pH meter that can resolve differences of 0.05 pH units or less.
(viii) Effect of acidic and basic groups. Complications can arise upon measuring the rate of hydrolysis of chemicals that reversibly ionize or are protonated in the pH range 3.00 to 11.00. Therefore, for these chemicals, it is recommended that these hydrolysis tests be performed at pH 5.00, 7.00, and 9.00 ± 0.05 using the appropriate buffers described in paragraphs (b)(2)(i) (A) and (B) of this section. If a test chemical reversibly ionizes or protonates in the pH range 5.00 to 9.00, then it is recommended that additional hydrolysis tests should be carried out at pH 6.00 and 8.00 ± 0.05 using the buffers described in paragraph (b)(2)(i)(B) of this section.

(ix) Buffer catalysis. For certain chemicals, buffers may catalyze the hydrolysis reaction. If this is suspected, hydrolysis rate determination shall be carried out with the appropriate buffers and the same experiments repeated at buffer concentrations lowered by at least a factor of five. If the hydrolysis reaction produces a change of greater than 0.05 pH units in the lower concentration buffers at the end of the measurement time, the test chemical concentrations also shall be lowered by at least a factor of five. Alternatively, test chemical concentrations and buffer concentrations may both be lowered simultaneously by a factor of five. A sufficient criterion for minimization of buffer catalysis is an observed equality in the hydrolysis rate constant for two different solutions differing in buffer or test chemical concentration by a factor of five.

(x) Photosensitive chemicals. The solution absorption spectrum can be employed to determine whether a particular chemical is potentially subject to photolytic transformation upon exposure to light. For chemicals that absorb light of wavelengths greater than 290 nm, the hydrolysis experiment shall be carried out in the dark, under amber or red safelights, in amber or red glassware, or employing other suitable methods for preventing photolysis. The absorption spectrum of the chemical in aqueous solution can be measured under § 796.1050.

(xi) Chemical analysis of solutions. In determining the concentrations of the test chemicals in solution, any suitable analytical method may be employed, although methods which are specific for the compound to be tested are preferred. Chromatographic methods are recommended because of their compound specificity in analyzing the parent chemical without interferences from impurities. Whenever practicable, the chosen analytical method should have a precision within ±5 percent.

(2) Preparation—(i) Reagents and solutions—(A) Buffer solutions. Prepare buffer solutions using reagent-grade chemicals and reagent-grade water as follows:

 (1) pH 3.00: use 250 mL of 0.100M potassium hydrogen phthalate; 111 mL of 0.100M hydrochloric acid; and adjust volume to 500 mL with reagent-grade water.

 (2) pH 7.00: use 250 mL of 0.100M potassium dihydrogen phosphate; 145 mL of 0.100M sodium hydroxide; and adjust volume to 500 mL with reagent-grade water.

 (3) pH 11.00: use 250 mL of 0.0500M sodium bicarbonate; 113 mL of 0.100M sodium hydroxide; and adjust volume to 500 mL with reagent-grade water.

 (B) Additional buffer solutions. For chemicals that ionize or are protonated as discussed in paragraph (b)(1)(viii) of this section, prepare buffers using reagent-grade water and reagent-grade chemicals as follows:

 (1) pH 5.00: use 250 mL of 0.100M potassium hydrogen phthalate; 113 mL of 0.100M sodium hydroxide; and adjust volume to 500 mL with reagent-grade water.

 (2) pH 6.00: use 250 mL of 0.100M potassium dihydrogen phosphate; 28 mL of 0.100M sodium hydroxide; and adjust volume to 500 mL with reagent-grade water.

 (3) pH 8.00: use 250 mL of 0.100M potassium dihydrogen phosphate; 234 mL of 0.100M sodium hydroxide; and adjust volume to 500 mL with reagent-grade water.

 (4) pH 9.00: use 250 mL of 0.0250M borax (Na₂B₄O₇); 23 mL of 0.100M hydrochloric acid; and adjust volume to 500 mL with reagent-grade water.

 (C) Adjustment of buffer concentrations. The concentrations of all the above buffer solutions are the maximum concentration to be employed in carrying out hydrolysis measurements. If the
§ 796.3500 40 CFR Ch. 1 (7–1–99 Edition)

initial concentration of the test chemical is less than 10^{-3} M, the buffer concentration shall be lowered by a corresponding amount; e.g., if the initial test chemical concentration is 10^{-4} M, the concentration of the above buffers shall be reduced by a factor of 10. In addition, for those reactions in which an acid or base is not a reaction product, the minimum buffer concentration necessary for maintaining the pH within $±0.05$ units shall be employed.

(2) Check the pH of all buffer solutions with a pH meter at 25° C and adjust the pH to the proper value, if necessary.

(D) Preparation of test solution. (1) If the test chemical is readily soluble in water, prepare an aqueous solution of the chemical in the appropriate buffer and determine the concentration of the chemical. Alternatively, a solution of the chemical in water may be prepared and added to an appropriate buffer solution and the concentration of the chemical then determined. In the latter case, the aliquot shall be small enough so that the concentration of the buffer in the final solution and the pH of the solution remain essentially unchanged. Do not employ heat in dissolving the chemical. The final concentration shall not be greater than one-half the chemical’s solubility in water and not greater than 10^{-3} M.

(2) If the test chemical is too insoluble in pure water to permit reasonable handling and analytical procedures, it is recommended that the chemical be dissolved in reagent-grade acetonitrile and buffer solution and then added to an aliquot of the acetonitrile solution. Do not employ heat to dissolve the chemical in acetonitrile. The final concentration of the test chemical shall not be greater than one-half the chemical’s solubility in water and not greater than 10^{-3} M. In addition, the final concentration of the acetonitrile shall be one volume percent or less.

(F) Performance of the test. Carry out all hydrolysis experiments by employing one of the procedures described in this paragraph. Prepare the test solutions as described in paragraph (b)(2)(i) of this section at pH 3.00, 7.00, and 11.00$±0.05$, and determine the initial test chemical concentration (C_i) in triplicate. Analyze each reaction mixture in triplicate at regular intervals, employing one of the following procedures:

(i) Procedure 1. Analyze each test solution at regular intervals to provide a minimum of six measurements with the extent of hydrolysis between 20 to 70 percent. Rates should be rapid enough so that 60 to 70 percent of the chemical is hydrolyzed in 672 hours.

(ii) Procedure 2. If the reaction is too slow to conveniently follow hydrolysis to high conversion in 672 hours but still rapid enough to attain at least 20 percent conversion, take 15 to 20 time points at regular intervals after 10 percent conversion is attained.

(iii) Procedure 3. (A) If chemical hydrolysis is less than 20 percent after 672 hours, determine the concentration (C) after this time period.

(B) If the pH at the end of concentration measurements employing any of the above three procedures has changed by more than 0.05 units from the initial pH, repeat the experiment using a solution having a test chemical concentration lowered sufficiently to keep the pH variation within 0.05 pH units.

(iv) Analytical methodology. Select an analytical method that is most applicable to the analysis of the specific chemical being tested under paragraph (b)(1)(xi) of this section.

(c) Data and reporting—(1) Treatment of results. (i) If Procedure 1 or 2 were employed in making concentration measurements, use a linear regression analysis with Equation 4 under paragraph (a)(2)(v)(B) of this section to calculate k_w at 25° C for each pH employed in the hydrolysis experiments. Calculate the coefficient of determination (R^2) for each rate constant. Use Equation 3 under paragraph (a)(2)(v)(B) of this section to calculate the hydrolysis half-life using k_w.

(ii) If Procedure 3 was employed in making rate measurements, use the mean initial concentration (C_i) and the mean concentration of chemical (C) in Equation 4 under paragraph (a)(2)(v)(B) of this section to calculate k_w for each pH used in the experiments. Calculate the hydrolysis half-life using k_w in Equation 3 under paragraph (a)(2)(v)(B) of this section.
For each set of three concentration replicates, calculate the mean value of C and the standard deviation. For test chemicals that are not ionized or protonated between pH 3 and 11, calculate \(k_A \), \(k_B \), and \(k_N \) using Equation 5.

(2) Specific analytical and recovery procedures. (i) Provide a detailed description or reference for the analytical procedure used, including the calibration data and precision. (ii) If extraction methods were used to separate the solute from the aqueous solution, provide a description of the extraction method as well as the recovery data.

(3) Test data report. (i) For Procedures 1 and 2, report \(k_h \), the hydrolysis half-life \((t_{1/2})\), and the coefficient of determination \((R^2)\) for each pH employed in the rate measurements. In addition, report the individual values, the mean value, and the standard deviation for each set of replicate concentration measurements. Finally, report \(k_A \), \(k_B \), and \(k_N \).

(ii) For Procedure 3, report \(k_h \) and the half-life for each pH employed in the rate measurements. In addition, report the individual values, the mean value, and the standard deviation for each set of replicate concentration measurements. Finally, report \(k_A \), \(k_B \), and \(k_N \).

(iii) If, after 672 hours, the concentration (C) is the same as the initial concentration \((C_0)\) within experimental error, then \(k_h \) cannot be calculated and the chemical can be reported as being persistent with respect to hydrolysis.

PART 797—ENVIRONMENTAL EFFECTS TESTING GUIDELINES

Subpart A [Reserved]

Subpart B—Aquatic Guidelines

§ 797.1050 Algal acute toxicity test.

(a) Purpose. The guideline in this section is intended for use in developing data on the acute toxicity of chemical substances and mixtures (“chemicals”) subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94–469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes test procedures and conditions using freshwater and marine algae to develop data on the phytotoxicity of chemicals. The United States Environmental Protection Agency (U.S. EPA) will use data from these tests in assessing the hazard of a chemical to the environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA) and the definitions in part 792—Good Laboratory Practice Standards of this chapter apply to this test guideline. The following definitions also apply to this guideline:

(1) Algicidal means having the property of killing algae.

(2) Algistatic means having the property of inhibiting algal growth.

(3) \(EC_x \) means the experimentally derived chemical concentration that is calculated to effect X percent of the test criterion.

(4) Growth means a relative measure of the viability of an algal population based on the number and/or weight of algal cells per volume of nutrient medium or test solution in a specified period of time.

(5) Static system means a test container in which the test solution is not renewed during the period of the test.

(6) Test procedures—(1) Summary of the test. (i) In preparation for the test, fill test containers with appropriate volumes of nutrient medium and/or test solution. Start the test by introducing algae into the test and control containers in the growth chambers. Environmental conditions within the
§ 797.1050

growth chambers are established at predetermined limits.

(ii) At the end of 96 hours enumerate the algal cells in all containers to determine inhibition or stimulation of growth in test containers compared to controls. Use data to define the concentration-response curve, and calculate the EC_{10}, EC_{50}, and EC_{90} values.

(2) [Reserved]

(3) Range-finding test. (i) A range-finding test should be conducted to determine:

(A) If definitive testing is necessary.

(B) Test chemical concentrations for the definitive test.

(ii) Algae are exposed to a widely spaced (e.g., log interval) chemical concentration series. The lowest value in the series, exclusive of controls, should be at the chemical’s detection limit. The upper value, for water soluble compounds, should be the saturation concentration. No replicates are required; and nominal concentrations of the chemical are acceptable unless definitive testing is not required.

(iii) The test is performed once for each of the recommended algal species or selected alternates. Test chambers should contain equal volumes of test solution and approximately 1×10^{4} Selenastrum cells/ml or 7.7×10^{4} Skeletonema cells/ml of test solution. The algae should be exposed to each concentration of test chemical for up to 96 hours. The exposure period may be shortened if data suitable for the purposes of the range-finding test can be obtained in less time.

(iv) Definitive testing is not necessary if the highest chemical concentration tested (water saturation concentration or 1000 mg/l) results in less than a 50 percent reduction in growth or if the lowest concentration tested (analytical detection limit) results in greater than a 50 percent reduction in growth.

(4) Definitive test. (i) The purpose of the definitive test is to determine the concentration response curves, the EC_{10}'s, EC_{50}'s, and EC_{90}'s for algal growth for each species tested, with a minimum amount of testing beyond the range-finding test.

(ii) Algae should be exposed to five or more concentrations of the test chemical in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, and 64 mg/l). Algae shall be placed in a minimum of three replicate test containers for each concentration of test chemical and control. More than three replicates may be required to provide sufficient quantities of test solution for determination of test substance concentration at the end of the test. Each test chamber should contain equal volumes of test solution and approximately 1×10^{4} Selenastrum cells/ml or 7.7×10^{4} Skeletonema cells/ml of test solution. The chemical concentrations should result in greater than 90 percent of algal growth being inhibited or stimulated at the highest concentrations of test substance compared to controls.

(iii) Every test shall include a control consisting of the same nutrient medium, conditions, procedures, and algae from the same culture, except that none of the test substance is added. If a carrier is present in any of the test chambers, a separate carrier control is required.

(iv) The test begins when algae from 5 to 10-day-old stock cultures are placed in the test chambers containing test solutions having the appropriate concentrations of the test substance. Algal growth in controls should reach the logarithmic growth phase by 96 hours. If logarithmic growth cannot be demonstrated, the test shall be repeated. At the end of 24, 48, 72, and 96 hours the algal growth response (number or weight of algal cells/ml) in all test chambers and controls shall be determined by an indirect (spectrophotometry, electronic cell counters, dry weight, etc.) or a direct (actual microscopic cell count) method. Indirect methods shall be calibrated by a direct microscopic count. The percentage inhibition or stimulation of growth for each concentration, EC_{10}, EC_{50}, EC_{90} and the concentration-response curves are determined from these counts.

(v) At the end of the definitive test, the following additional analyses of algal growth response shall be performed:

(A) Determine whether the altered growth response between controls and test algae was due to a change in relative cell numbers, cell sizes or both. Also note any unusual cell shapes,
color differences, flocculations, adherence of algae to test containers, or aggregation of algal cells.

(B) In test concentrations where growth is maximally inhibited, algistatic effects may be differentiated from algicidal effects by the following two methods for Skeletonema and by the second method for Selenastrum.

(1) Add 0.5 ml of a 0.1 percent solution (weight/volume) of Evans blue stain to a 1 milliliter aliquot of algae from a control container and to a 1 milliliter aliquot of algae from the test container having the lowest concentration of test chemical which completely inhibited algal growth (if algal growth was not completely inhibited, select an aliquot of algae for staining from the test container having the highest concentration of test chemical which inhibited algal growth). Wait 10 to 30 minutes, examine microscopically, and determine the percent of the cells which stain blue (indicating cell mortality). A staining control shall be performed concurrently using heat-killed or formaldehyde-preserved algal cells; 100 percent of these cells shall stain blue.

(2) Remove 0.5 ml aliquots of test solution containing growth-inhibited algae from each replicate test container having the concentration of test substance evaluated in paragraph (c)(4)(v)(B)(1) of this section. Combine these aliquots into a new test container and add a sufficient volume of fresh nutrient medium to dilute the test chemical to a concentration which does not affect growth. Incubate this subculture under the environmental conditions used in the definitive test for a period of up to 9 days, and observe for algal growth to determine if the algistatic effect noted after the 96-hour test is reversible. This subculture test may be discontinued as soon as growth occurs.

(5) [Reserved]

(6) Analytical measurements—(i) Chemical. (A) Glass distilled or deionized water shall be used in the preparation of the nutrient medium. The pH of the test solution shall be measured in the control and test containers at the beginning and at the end of the definitive test by standard analytical methods which have been validated prior to the test. An analytical method is unacceptable if likely degradation products of the chemical, such as hydrolysis and oxidation products, give positive or negative interference.

(B) At the end of the test and after aliquots have been removed for algal growth-response determinations, microscopic examination, mortality staining, or subculturing, the replicate test containers for each chemical concentration may be pooled into one sample. An aliquot of the pooled sample may then be taken and the concentration of test chemical determined. In addition, the concentration of test chemical associated with the algae alone should be determined. Separate and concentrate the algal cells from the test solution by centrifuging or filtering the remaining pooled sample and measure the test substance concentration in the algal-cell concentrate.

(ii) Numerical. Algal growth response (as percent of inhibition or stimulation in the test solutions compared to the controls) is calculated at the end of the test. Mean and standard deviation should be calculated and plotted for each treatment and control. Appropriate statistical analyses should provide a goodness-of-fit determination for the concentration response curves. The concentration response curves are plotted using the mean measured test solution concentrations obtained at the end of the test.

(d) Test conditions—(1) Test species. Species of algae recommended as test organisms for this test are the freshwater green alga, Selenastrum capricornutum, and the marine diatom, Skeletonema costatum. Algae to be used in acute toxicity tests may be initially obtained from commercial sources and subsequently cultured using sterile technique. Toxicity testing shall not be performed until algal cultures are shown to be actively growing (i.e., capable of logarithmic growth within the test period) in at least 2 subcultures lasting 7 days each prior to the start of the definitive test. All algae used for a particular test shall be from the same source and the same stock culture.
§ 797.1050

Test algae shall not have been used in a previous test, either in a treatment or a control.

(2) Facilities—(i) General. (A) Facilities needed to perform this test include: a growth chamber or a controlled environment room that can hold the test containers and will maintain the air temperature, lighting intensity and photoperiod specified in this test guideline; apparatus for culturing and enumerating algae; a source of distilled and/or deionized water; and apparatus for carrying out analyses of the test chemical.

(B) Disposal facilities should be adequate to accommodate spent glassware, algae and test solutions at the end of the test and any bench covering, lab clothing, or other contaminated materials.

(ii) Test containers. Erlenmeyer flasks should be used for test containers. The flasks may be of any volume between 125 and 500 ml as long as the same size is used throughout a test and the test solution volume does not exceed 50 percent of the flask volume.

(iii) Cleaning and sterilization. New test containers may contain substances which inhibit growth of algae. They shall therefore be cleaned thoroughly and used several times to culture algae before being used in toxicity testing. All glassware used in algal culturing or testing shall be cleaned and sterilized prior to use according to standard good laboratory practices.

(iv) Conditioning. Test containers should be conditioned by a rinse with the appropriate test solutions prior to the start of the test. Decant and add fresh test solutions after an appropriate conditioning period for the test chemical.

(v) Nutrient medium. (A) Formulation and sterilization of nutrient medium used for algal culture and preparation of test solutions should conform to those currently recommended by the U.S. EPA for freshwater and marine algal bioassays. No chelating agents are to be included in the nutrient medium used for test solution preparation. Nutrient medium should be freshly prepared for algal testing and may be dispensed in appropriate volumes in test containers and sterilized by autoclaving or filtration. The pH of the nutrient medium shall be 7.5 (±0.1) for Selenastrum and 8.1 (±0.1) for Skeletonema at the start of the test and may be adjusted prior to test chemical addition with 0.1N NaOH or HCl.

(B) Dilution water used for preparation of nutrient medium and test solutions should be filtered, deionized or glass distilled. Saltwater for marine algal nutrient medium and test solutions should be prepared by adding a commercial, synthetic, sea salt formulation to distilled/deionized water to a concentration of 30 parts per thousand.

(vi) Carriers. Nutrient medium shall be used in making stock solutions of the test chemical. If a carrier other than nutrient medium is absolutely necessary to dissolve the chemical, the volume used shall not exceed the minimum volume necessary to dissolve or suspend the chemical in the test solution.

(3) Test parameters. (i) The test temperature shall be 24 °C for Selenastrum and 20 °C for Skeletonema. Excursions from the test temperature shall be no greater than ±2 °C. Temperature should be recorded hourly during the test.

(ii) Test chambers containing Selenastrum shall be illuminated continuously and those containing Skeletonema shall be provided a 14-hour light and 10-hour dark photoperiod with a 30 minute transition period under fluorescent lamps providing 300 ± 25 µEin/m² sec (approximately 400 ft-c) measured adjacent to the test chambers at the level of test solution.

(iii) Stock algal cultures should be shaken twice daily by hand. Test containers shall be placed on a rotary shaking apparatus and oscillated at approximately 100 cycles/minute for Selenastrum and at approximately 60 cycles/minute for Skeletonema during the test. The rate of oscillation should be determined at least once daily during testing.

(iv) The pH of nutrient medium in which algae are subcultured shall be 7.5 (±0.1) for Selenastrum and 8.1 (±0.1) for Skeletonema, and is not adjusted after the addition of the algae. The pH of all test solutions shall be measured at the beginning and end of the test.
§ 797.1300 Daphnid acute toxicity test.

(a) Purpose. This guideline is intended for use in developing data on the acute toxicity of chemical substances and mixtures ("chemicals") subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94–469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes an acute toxicity test in which daphnids (Daphnia magna or D. pulex) are exposed to a chemical in static and flow-through systems. The United States Environmental Protection Agency will use data from this test in assessing the hazard a chemical may present in the aquatic environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA) and part 792—Good Laboratory Practice Standards of this chapter apply to this test guideline. In addition, the following definitions apply to this guideline:

1. Brood stock means the animals which are cultured to produce test organisms through reproduction.
2. EC₅₀ means that experimentally derived concentration of test substance in dilution water that is calculated to affect 50 percent of a test population during continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization.
3. Ephippium means a resting egg which develops under the carapace in response to stress conditions in daphnids.
4. Flow-through means a continuous or an intermittent passage of test solution or dilution water through a test system.
5. Light intensity shall be monitored at least daily during the test at the level of the test solution.
6. Reporting. The sponsor shall submit to the EPA all data developed by the test that are suggestive or predictive of acute phytotoxicity. In addition to the general reporting requirements prescribed in part 792—Good Laboratory Practice Standards of this chapter, the following shall be reported:

1. Detailed information about the test organisms, including the scientific name, method of verification, and source.
2. A description of the test chambers and containers, the volumes of solution in the containers, the way the test was begun (e.g., conditioning, test substance additions, etc.), the number of replicates, the temperature, the lighting, and method of incubation, oscillation rates, and type of apparatus.
3. The concentration of the test chemical in the control and in each treatment at the end of the test and the pH of the solutions.
4. The number of algal cells per milliliter in each treatment and control and the method used to derive these values at the beginning, 24, 48, and 72 hours, and end of the test; the percentage of inhibition or stimulation of growth relative to controls; and other adverse effect in the control and in each treatment.
5. The 96-hour EC₁₀, EC₅₀, and EC₉₀ values, and when sufficient data have been generated, the 24, 48, and 72 hour LC₅₀/s and 95 percent confidence limits, the methods used to derive these values, the data used to define the shape of the concentration-response curve and the goodness-of-fit determination.
6. Methods and data records of all chemical analyses of water quality and test substance concentrations, including method validations and reagent blanks.
7. The results of any optional analyses such as: Microscopic appearance of algae, size or color changes, percent mortality of cells and the fate of subcultured cells, the concentration of test substance associated with algae and test solution supernate or filtrate.
8. If the range-finding test showed that the highest concentration of the chemical tested (not less than 1000 mg/l or saturation concentration) had no effect on the algae, report the results and concentration and a statement that the chemical is of minimum phytotoxic concern.
9. If the range-finding test showed greater than a 50 percent inhibition of algal growth at a test concentration below the analytical detection limit, report the results, concentration, and a statement that the chemical is phytotoxic below the analytical detection limit.

§ 797.1300

(5) Immobilization means the lack of movement by the test organisms except for minor activity of the appendages.

(6) Loading means the ratio of daphnid biomass (grams, wet weight) to the volume (liters) of test solution in a test chamber at a point in time, or passing through the test chamber during a specific interval.

(7) Static system means a test system in which the test solution and test organisms are placed in the test chamber and kept there for the duration of the test without renewal of the test solution.

(c) Test procedures—(1) Summary of the test. (i) Test chambers are filled with appropriate volumes of dilution water. In the flow-through test, the flow of dilution water through each chamber is adjusted to the rate desired. The test chemical is introduced into each treatment chamber. The addition of test chemical in the flow-through system is conducted at a rate which is sufficient to establish and maintain the desired concentration in the test chamber. The test is started within 30 minutes after the test chemical has been added and uniformly distributed in static test chambers or after the concentration of test chemical in each flow-through test chamber reaches the prescribed level and remains stable. At the initiation of the test, daphnids which have been cultured and acclimated in accordance with the test design are randomly placed into the test chambers. Daphnids in the test chambers are observed periodically during the test, the immobile daphnids removed, and the findings recorded.

(ii) Dissolved oxygen concentration, pH, temperature, the concentration of test chemical and other water quality parameters are measured at specified intervals in selected test chambers. Data are collected during the test to develop concentration response curves and determine EC_{50} values for the test chemical.

(2) [Reserved]

(3) Range-finding test. (i) A range-finding test should be conducted to establish test solution concentrations for the definitive test.

(ii) The daphnids should be exposed to a series of widely spaced concentrations of the test chemical (e.g., 1, 10, 100 mg/l, etc.), usually under static conditions.

(iii) A minimum of five daphnids should be exposed to each concentration of test chemical for a period of 48 hours. The exposure period may be shortened if data suitable for the purpose of the range-finding test can be obtained in less time. No replicates are required and nominal concentrations of the chemical are acceptable.

(4) Definitive test. (i) The purpose of the definitive test is to determine the concentration response curves and the 24- and 48-hour EC_{50} values with the minimum amount of testing beyond the range-finding test.

(ii) A minimum of 20 daphnids per concentration shall be exposed to five or more concentrations of the chemical chosen in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, and 64 mg/l). An equal number of daphnids shall be placed in two or more replicates. If solvents, solubilizing agents or emulsifiers have to be used, they shall be commonly used carriers and shall not possess a synergistic or antagonistic effect on the toxicity of the test chemical. The concentration of solvent should not exceed 0.1 mg/l. The concentration ranges shall be selected to determine the concentration response curves and EC_{50} values at 24 and 48 hours. Concentration of test chemical in test solutions should be analyzed prior to use.

(iii) Every test shall include controls consisting of the same dilution water, conditions, procedures and daphnids from the same population (culture container), except that none of the chemical is added.

(iv) The dissolved oxygen concentration, temperature and pH shall be measured at the beginning and end of the test in each chamber.

(v) The test duration is 48 hours. The test is unacceptable if more than 10 percent of the control organisms are immobilized during the 48-hour test period. Each test chamber shall be checked for immobilized daphnids at 24 and 48 hours after the beginning of the test. Concentration response curves and 24-hour and 48-hour EC_{50} values for
immobilization shall be determined along with their 95 percent confidence limits.

(vi) In addition to immobility, any abnormal behavior or appearance shall also be reported.

(vii) Test organisms shall be impartially distributed among test chambers in such a manner that test results show no significant bias from the distributions. In addition, test chambers within the testing area shall be positioned in a random manner or in a way in which appropriate statistical analyses can be used to determine the variation due to placement.

(viii) The concentration of the test chemical in the chambers should be measured as often as is feasible during the test. In the static test the concentration of test chemical shall be measured, at a minimum, at the beginning of the test and at the end of the test in each test chamber. In the flow-through test the concentration of test chemical shall be measured at a minimum:

(A) In each chamber at the beginning of the test and at 48 hours after the start of the test;

(B) In at least one appropriate chamber whenever a malfunction is detected in any part of the test substance delivery system.

Among replicate test chambers of a treatment concentration, the measured concentration of the test chemical shall not vary more than ±20 percent.

(5) [Reserved]

(6) Analytical measurements. (i) Test chemical. Deionized water should be used in making stock solutions of the test chemical. Standard analytical methods should be used whenever available in performing the analyses. The analytical method used to measure the amount of test chemical in a sample shall be validated before beginning the test by appropriate laboratory practices. Any analytical method is not acceptable if likely degradation products of the test chemical, such as hydrolysis and oxidation products, give positive or negative interferences which cannot be systematically identified and corrected mathematically.

(ii) Numerical. The number of immobilized daphnids shall be counted during each definitive test. Appropriate statistical analyses should provide a goodness-of-fit determination for the concentration-response curves. A 24- and 48-hour EC50 and corresponding 95 percent interval shall be calculated.

(d) Test conditions—(1) Test species—(i) Selection. (A) The cladocerans, Daphnia magna or D. pulex, are the test species to be used in this test. Either species may be used for testing of a particular chemical. The species identity of the test organisms should be verified using appropriate systematic keys. First instar daphnids, ≤24 hours old, are to be used to start the test.

(B) Daphnids to be used in acute toxicity tests should be cultured at the test facility. Records should be kept regarding the source of the initial stock and culturing techniques. All organisms used for a particular test shall have originated from the same culture population.

(C) Daphnids shall not be used for a test (1) if cultures contain ephippia; (2) if adults in the cultures do not produce young before day 12; (3) if more than 20 percent of the culture stock die during the 2 days preceding the test; (4) if adults in the culture do not produce an average of at least 3 young per adult per day over the 7-day period prior to the test and (5) if daphnids have been used in any portion of a previous test, either in a treatment or in a control.

(ii) Acclimation. (A) Brood daphnids shall be maintained in 100-percent dilution water at the test temperature for at least 48 hours prior to the start of the test. This is easily accomplished by culturing them in the dilution water at the test temperature. During production of neonates, daphnids should not be fed.

(B) During culturing and acclimation to the dilution water, daphnids should be maintained in facilities with background colors and light intensities similar to those of the testing area.

(iii) Care and handling. (A) Daphnids should be cultured in dilution water under similar environmental conditions to those used in the test. Organisms should be handled as little as possible. When handling is necessary it should be done as gently, carefully, and quickly as possible. During culturing and acclimation, daphnids should be observed carefully for ephippia and
§ 797.1300

40 CFR Ch. I (7–1–99 Edition)

other signs of stress, physical damage and mortality. Dead and abnormal individuals shall be discarded. Organisms that touch dry surfaces or are dropped or injured in handling shall be discarded.

(B) Smooth glass tubes (I.D. greater than 5 mm) equipped with rubber bulb should be used for transferring daphnids with minimal culture media carry-over. Care should be exercised to introduce the daphnids below the surface of any solution to avoid trapping air under the carapace.

(iv) Feeding. A variety of foods (e.g., unicellular green algae) have been demonstrated to be adequate for daphnid culture. Daphnids shall not be fed during testing.

(2) Facilities—(i) Apparatus. (A) Facilities needed to perform this test include: (1) Containers for culturing and acclimating daphnids; (2) a mechanism for controlling and maintaining the water temperature during the culturing, acclimation, and test periods; (3) apparatus for straining particulate matter, removing gas bubbles, or aerating the water as necessary; and (4) an apparatus for providing a 16-hour light and 8-hour dark photoperiod with a 15 to 30 minute transition period. In addition, the flow-through system shall contain appropriate test chambers in which to expose daphnids to the test chemical and an appropriate test substance delivery system.

(B) Facilities should be well ventilated and free of fumes and disturbances that may affect the test organisms.

(C) Test chambers shall be loosely covered to reduce the loss of test solution or dilution water due to evaporation and to minimize the entry of dust or other particulates into the solutions.

(ii) Construction materials. (A) Materials and equipment that contact test solutions should be chosen to minimize sorption of test chemicals from the dilution water and should not contain substances that can be leached into aqueous solution in quantities that can affect the test results.

(B) For static tests, daphnids can be conveniently exposed to the test chemical in 250 ml beakers or other suitable containers.

(C) For flow-through tests, daphnids can be exposed in glass or stainless steel containers with stainless steel or nylon screen bottoms. The containers should be suspended in the test chamber in such a manner to insure that the test solution flows regularly into and out of the container and that the daphnids are always submerged in at least 5 centimeters of test solution. Test chambers can be constructed using 250 ml beakers or other suitable containers equipped with screened overflow holes, standpipes or V-shaped notches.

(iii) Dilution water. (A) Surface or ground water, reconstituted water or dechlorinated tap water are acceptable as dilution water if daphnids will survive in it for the duration of the culturing, acclimation and testing periods without showing signs of stress. The quality of the dilution water should be constant and should meet the following specifications:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td>20 mg/liter</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>2 mg/liter</td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>5 mg/liter</td>
</tr>
<tr>
<td>Un-ionized ammonia</td>
<td>1 µg/liter</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td><3 µg/liter</td>
</tr>
<tr>
<td>Total organophosphorus pesticides</td>
<td>50 ng/liter</td>
</tr>
<tr>
<td>Total organochlorine pesticides plus</td>
<td>50 ng/liter</td>
</tr>
<tr>
<td>poly-chlorinated biphenyls (PCBs)</td>
<td></td>
</tr>
<tr>
<td>Organic chlorine</td>
<td>25 ng/liter</td>
</tr>
</tbody>
</table>

(B) The above water quality parameters under paragraph (d)(2)(iii)(A) of this section shall be measured at least twice a year or whenever it is suspected that these characteristics may have changed significantly. If dechlorinated tap water is used, daily chlorine analysis shall be performed.

(C) If the diluent water is from a ground or surface water source, conductivity and total organic carbon (TOC) or chemical oxygen demand (COD) shall be measured. Reconstituted water can be made by adding specific amounts of reagent-grade chemicals to deionized or distilled water. Glass distilled or carbon-filtered deionized water with a conductivity less than 1 µohm/cm is acceptable as the diluent for making reconstituted water.

(iv) Cleaning. All test equipment and test chambers shall be cleaned before
each use using standard laboratory procedures.
(v) Test substance delivery system. In flow-through tests, proportional dilutors, metering pump systems, or other suitable devices should be used to deliver test chemical to the test chambers. The system shall be calibrated before each test. Calibration includes determining the flow rate through each chamber and the concentration of the test chemical in each chamber. The general operation of the test substance delivery system should be checked twice during a test. The 24-hour flow through a test chamber shall be equal to at least 5 times the volume of the test chamber. During a test, the flow rates should not vary more than 10 percent from any one test chamber to another.

(3) Test parameters. Environmental parameters of the water contained in test chambers shall be maintained as specified below:

(i) The test temperature shall be 20 °C. Excursions from the test temperature shall be no greater than ±2 °C.

(ii) Dissolved oxygen concentration between 60 and 105 percent saturation. Aeration, if needed to achieve this level, shall be done before the addition of the test chemical. All treatment and control chambers shall be given the same aeration treatment.

(iii) The number of daphnids placed in a test chamber shall not affect test results. Loading shall not exceed 40 daphnids per liter test solution in the static system. In the flow-through test, loading limits will vary depending on the flow rate of dilution water. Loading shall not cause the dissolved oxygen concentration to fall below the recommended levels.

(iv) Photoperiod of 16 hours light and 8 hours darkness.

(e) Reporting. The sponsor shall submit to the U.S. EPA all data developed by the test that are suggestive or predictive of acute toxicity and all concomitant gross toxicological manifestations. In addition to the reporting requirements prescribed in part 792—Good Laboratory Practice Standards of this chapter, the reporting of test data shall include the following:

(1) The name of the test, sponsor, testing laboratory, study director, principal investigator, and dates of testing.

(2) A detailed description of the test chemical including its source, lot number, composition (identity and concentration or major ingredients and major impurities), known physical and chemical properties and any carriers or other additives used and their concentrations.

(3) The source of the dilution water, its chemical characteristics (e.g., conductivity, hardness, pH, etc.) and a description of any pretreatment.

(4) Detailed information about the daphnids used as brood stock, including the scientific name and method of verification, age, source, treatments, feeding history, acclimation procedures, and culture method. The age of the daphnids used in the test shall be reported.

(5) A description of the test chambers, the volume of solution in the chambers, the way the test was begun (e.g., conditioning, test chemical additions), the number of test organisms per test chamber, the number of replicates per treatment, the lighting, the method of test chemical introduction or the test substance delivery system and the flow rate (in flow-through test) expressed as volume additions per 24 hours.

(6) The concentration of the test chemical in each test chamber at times designated for static and flow-through tests.

(7) The number and percentage of organisms that were immobilized or showed any adverse effects in each test chamber at each observation period.

(8) Utilizing the average measured test chemical concentration, concentration-response curves should be fitted to immobilization data at 24 and 48 hours. A statistical test of goodness-of-fit should be performed and the results reported.

(9) The 24- and 48-hour EC₅₀ values and their respective 95 percent confidence limits using the mean measured test chemical concentration and the methods used to calculate both the EC₅₀ values and their confidence limits.

(10) All chemical analyses of water quality and test chemical concentrations, including methods, method validations and reagent blanks.
§ 797.1330 Daphnid chronic toxicity test.

(a) Purpose. This guideline is intended for use in developing data on the chronic toxicity of chemical substances and mixtures ("chemicals") subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes a chronic toxicity test in which daphnids are exposed to a chemical in a renewal or a flow-through system. The United States Environmental Protection Agency will use data from this test in assessing the hazard a chemical may present to the aquatic environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA), and the definitions in part 792 Good Laboratory Practice Standards of this chapter apply to this test guideline. In addition, the following definitions apply to this guideline:

(1) Brood stock means the animals which are cultured to produce test organisms through reproduction.

(2) Chronic toxicity test means a method used to determine the concentration of a substance in water that produces an adverse effect on a test organism over an extended period of time. In this test guideline, mortality and reproduction (and optionally, growth) are the criteria of toxicity.

(3) EC₅₀ means that experimentally derived concentration of test substance in dilution water that is calculated to affect 50 percent of a test population during continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization.

(4) Ephippium means a resting egg which develops under the carapace in response to stress conditions in daphnids.

(5) Flow-through means a continuous or intermittent passage of test solution or dilution water through a test chamber or culture tank with no recycling.

(6) Immobilization means the lack of movement by daphnids except for minor activity of the appendages.

(7) Loading means the ratio of daphnid biomass (grams, wet weight) to the volume (liters) of test solution in a test chamber at a point in time or passing through the test chamber during a specific interval.

(8) MATC (Maximum Acceptable Toxicant Concentration) means the maximum concentration at which a chemical can be present and not be toxic to the test organism.

(9) Renewal system means the technique in which test organisms are periodically transferred to fresh test solution of the same composition.

(c) Test procedures—(1) Summary of the test. (i) Test chambers are filled with appropriate volumes of dilution water. In the flow-through test the flow of dilution water through each chamber is then adjusted to the rate desired. The test substance is introduced into each test chamber. The addition of test substance in the flow-through system is done at a rate which is sufficient to establish and maintain the desired concentration of test substance in the test chamber.

(ii) The test is started within 30 minutes after the test substance has been added and uniformly distributed in the test chambers in the renewal test or after the concentration of test substance in each test chamber of the flow-through test system reaches the prescribed level and remains stable. At the initiation of the test, daphnids which have been cultured or acclimated in accordance with the test design, are randomly placed into the test chambers. Daphnids in the test chambers are observed periodically during the test, immobile adults and offspring produced are counted and removed, and the findings are recorded. Dissolved oxygen concentration, pH, temperature, the concentration of test substance, and other water quality parameters are measured at specified intervals in selected test chambers. Data are collected during the test to determine any significant differences (p≤0.05) in immobilization and reproduction as compared to the control.
(2) [Reserved]

(3) Range-finding test. (i) A range-finding test should be conducted to establish test solution concentrations for the definitive test.

(ii) The daphnids should be exposed to a series of widely spaced concentrations of the test substance (e.g., 1, 10, 100 mg/l), usually under static conditions.

(iii) A minimum of five daphnids should be exposed to each concentration of test substance for a period of time which allows estimation of appropriate chronic test concentrations. No replicates are required and nominal concentrations of the chemical are acceptable.

(4) Definitive test. (i) The purpose of the definitive test is to determine concentration-response curves, EC value, and effects of a chemical on immobilization and reproduction during chronic exposure.

(ii) A minimum of 20 daphnids per concentration shall be exposed to five or more concentrations of the chemical chosen in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, 64 mg/l). An equal number of daphnids shall be placed in two or more replicates. The concentration ranges shall be selected to determine the concentration-response curves, EC value, and MATC. Solutions shall be analyzed for chemical concentration at designated times during the test.

(iii) Every test shall include controls consisting of the same dilution water, conditions, procedures and daphnids from the same population (culture container), except that none of the chemical is added.

(iv) The test duration is 21 days. The test is unacceptable if:

(A) More than 20 percent of the control organisms appear to be immobilized, stressed or diseased during the test.

(B) Each control daphnid living the full 21 days produces an average of less than 60 young.

(C) Any ephippia are produced by control animals.

(v) The number of immobilized daphnids in each chamber shall be recorded on day 21 of the test. After offspring are produced, they shall be counted and removed from the test chambers every 2 or 3 days. Concentration-response curves, EC value, and associated 95 percent confidence limits for adult immobilization shall be determined for day 21. An MATC shall be determined for the most sensitive test criteria measured (number of adult animals immobilized, number of young per adult, and number of immobilized young per adult).

(vi) In addition to immobility, any abnormal behavior or appearance shall also be reported.

(vii) Test organisms shall be impartially distributed among test chambers in such a manner that test results show no significant bias from the distributions. In addition, test chambers within the testing area shall be positioned in a random manner as in a way in which appropriate statistical analyses can be used to determine the variation due to placement.

(5) [Reserved]

(6) Analytical measurements. (i) Test chemical. Deionized water should be used in making stock solutions of the test substance. Standard analytical methods should be used whenever available in performing the analyses. The analytical method used to measure the amount of test substance in a sample shall be validated before beginning the test by appropriate laboratory practices. An analytical method is not acceptable if likely degradation products of the test substance, such as hydrolysis and oxidation products, give positive or negative interferences which cannot be systematically identified and corrected mathematically.

(ii) Numerical. The number of immobilized adults, total offspring per adult, and immobilized offspring per adult shall be counted during each test. Appropriate statistical analyses should provide a goodness-of-fit determination for the adult immobilization concentration-response curves calculated on day 21. A 21-day EC value, based on adult immobilization and corresponding 95 percent confidence intervals shall also be calculated. Appropriate statistical tests (e.g., analysis of variance, mean separation test) should be used to test for significant chemical effects on chronic test criteria (cumulative number of immobilized adults, cumulative...
§ 797.1330 40 CFR Ch. I (7-1-99 Edition)

number of offspring per adult and cumulative number of immobilized offspring per adult) on day 21. An MATC shall be calculated using these chronic test criteria.

(d) Test conditions—(1) Test species—(i) Selection. (A) The cladocerans, Daphnia magna or D. pulex, are the species to be used in this test. Either species can be utilized for testing of a particular chemical. The species identity of the test organisms should be verified using appropriate systematic keys.

(B) First instar daphnids, ≤24 hours old, are to be used to start the test.

(ii) Acquisition. (A) Daphnids to be used in chronic toxicity tests should be cultured at the test facility. Records should be kept regarding the source of the initial stock and culturing techniques. All organisms used for a particular test shall have originated from the same culture population.

(B) Daphnids shall not be used for a test if:

1. Cultures contain ephippia.

2. Adults in the cultures do not produce young before day 12.

3. More than 20 percent of the culture stock die in the 2 days preceding the test.

4. Adults in the culture do not produce an average of at least 3 young per adult per day over the 7-day period prior to the test.

5. Daphnids have been used in any portion of a previous test either in a treatment or in a control.

(iii) Feeding. (A) During the test the daphnids shall be fed the same diet and with the same frequency as that used for culturing and acclimation. All treatments and control(s) shall receive, as near as reasonably possible, the same ration of food on a per-animal basis.

(B) The food concentration depends on the type used. Food concentrations should be sufficient to support normal growth and development and to allow for asexual (anaphidonic) reproduction. For automatic feeding devices, a suggested rate is 5 to 7 mg food (either solids or algal cells, dry weight) per liter dilution water or test solution. For manual once-a-day feeding, a suggested rate is 15 mg food (dry weight) per liter dilution water or test solution.

(iv) Loading. The number of test organisms placed in a test chamber shall not affect test results. Loading shall not exceed 40 daphnids per liter in the renewal system. In the flow-through test, loading limits will vary depending on the flow rate of the dilution water. Loading shall not cause the dissolved oxygen concentration to fall below the recommended level.

(v) Care and handling of test organisms. (A) Daphnids should be cultured in dilution water under similar environmental conditions to those used in the test. A variety of foods have been demonstrated to be adequate for daphnid culture. They include algae, yeasts and a variety of mixtures.

(B) Organisms should be handled as little as possible. When handling is necessary it should be done as gently, carefully, and quickly as possible. During culturing and acclimation, daphnids should be observed carefully for ephippia and other signs of stress, physical damage, and mortality. Dead and abnormal individuals shall be discarded. Organisms that touch dry surfaces or are dropped or injured during handling shall be discarded.

(C) Smooth glass tubes (I.D. greater than 5mm) equipped with a rubber bulb can be used for transferring daphnids with minimal culture media carry-over.

(D) Care should be exercised to introduce the daphnids below the surface of any solution so as not to trap air under the carapace.

(vi) Acclimation. (A) Brood daphnids shall be maintained in 100 percent dilution water at the test temperature for at least 48 hours prior to the start of the test. This is easily accomplished by culturing them in dilution water at the test temperature. During acclimation, daphnids shall be fed the same food as will be used for the definitive test.

(B) During culturing and acclimation to the dilution water, daphnids should be maintained in facilities with background colors and light intensities similar to those of the testing area.

(2) Facilities—(i) General. (A) Facilities needed to perform this test include:

1. Containers for culturing and acclimating daphnids.
(2) A mechanism for controlling and maintaining the water temperature during the culturing, acclimation and test periods.

(3) Apparatus for straining particulate matter, removing gas bubbles, or aerating the water when water supplies contain particulate matter, gas bubbles, or insufficient dissolved oxygen, respectively.

(4) An apparatus for providing a 16-hour light and 8-hour dark photoperiod.

(5) An apparatus to introduce food if continuous or intermittent feeding is used.

(6) In addition, the flow-through test shall contain appropriate test chambers in which to expose daphnids to the test substance and an appropriate test substance delivery system.

(B) Facilities should be well ventilated and free of fumes and other disturbances that may affect the test organisms.

(ii) Test chambers. (A) Materials and equipment that contact test solutions should be chosen to minimize sorption of test chemicals from the dilution water and should not contain substances that can be leached into aqueous solution in quantities that can affect test results.

(B) For renewal tests, daphnids can be conveniently exposed to the test solution in 250 ml beakers or other suitable containers.

(C) For flow-through test daphnids can be exposed in glass or stainless steel containers with stainless steel or nylon screen bottoms. Such containers shall be suspended in the test chamber in such a manner to ensure that the test solution flows regularly into and out of the container and that the daphnids are always submerged in at least 5 centimeters of test solution. Test chambers can be constructed using 250 ml beakers or other suitable containers equipped with screened overflow holes, standpipes or V-shaped notches.

(D) Test chambers shall be loosely covered to reduce the loss of test solution or dilution water due to evaporation and to minimize the entry of dust or other particulates into the solutions.

(iii) Test substance delivery system. (A) In the flow-through test, proportional diluters, metering pump systems or other suitable systems should be used to deliver the test substance to the test chambers.

(B) The test substance delivery system shall be calibrated before each test. Calibration includes determining the flow rate through each chamber and the concentration of the test substance in each chamber. The general operation of the test substance delivery system should be checked twice daily during a test. The 24-hour flow rate through each chamber shall be equal to at least five times the volume of the test chamber. During a test, the flow rates shall not vary more than 10 percent from any one test chamber to another. For the renewal test, test substance dilution water shall be completely replaced at least once every 3 days.

(iv) Dilution water. (A) Surface or ground water, reconstituted water, or dechlorinated tap water are acceptable as dilution water if daphnids will survive in it for the duration of the culturing, acclimation, and testing periods without showing signs of stress. The quality of the dilution water should be constant and should meet the following specifications:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td>20 mg/l.</td>
</tr>
<tr>
<td>Total organic carbon or ...</td>
<td>2 mg/l.</td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>5 mg/l.</td>
</tr>
<tr>
<td>Un-ionized ammonia</td>
<td><20 µg/l.</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td><3 µg/l.</td>
</tr>
<tr>
<td>Total organophosphorus pesticides</td>
<td>50 ng/l.</td>
</tr>
<tr>
<td>Total organochlorine pesticides plus poly-chlorinated biphenyls (PCBs). or organic chlorine</td>
<td>50 ng/l. 25 ng/l.</td>
</tr>
</tbody>
</table>

(B) The water quality characteristics listed above shall be measured at least twice a year or when it is suspected that these characteristics may have changed significantly. If dechlorinated tap water is used, daily chlorine analysis shall be performed.

(C) If the diluent water is from a ground or surface water source, conductivity and total organic carbon (TOC) or chemical oxygen demand
(COD) shall be measured. Reconstituted water can be made by adding specific amounts of reagent-grade chemicals to deionized or distilled water. Glass distilled or carbon filtered deionized water with a conductivity of less than 1 microohm/cm is acceptable as the diluent for making reconstituted water.

(D) If the test substance is not soluble in water an appropriate carrier should be used.

(v) Cleaning of test system. All test equipment and test chambers shall be cleaned before each use following standard laboratory procedures. Cleaning of test chambers may be necessary during the testing period.

(3) Test parameters. (i) Environmental conditions of the water contained in test chambers should be maintained as specified in this paragraph:

(A) The test temperature shall be 20 °C. Excursions from the test temperature shall be no greater than ±2 °C.

(B) Dissolved oxygen concentration between 60 and 105 percent saturation. Aeration, if needed to achieve this level, shall be done before the addition of the test substance. All treatment and control chambers shall be given the same aeration treatment.

(C) Photoperiod of 16-hours light and 8-hours darkness.

(ii) Additional measurements include:

(A) The concentration of the test substance in the chambers shall be measured during the test.

(B) At a minimum, the concentration of test substance should be measured as follows:

(1) In each chamber before the test.

(2) In each chamber on days 7, 14, and 21 of the test.

(3) In at least one appropriate chamber whenever a malfunction is detected in any part of the test substance delivery system. Equal aliquots of test solution may be removed from each replicate chamber and pooled for analysis. Among replicate test chambers of a treatment concentration, the measured concentration of the test substance should not vary more than 20 percent.

(4) An apparatus for providing a 16-hour light and 8-hour dark photoperiod.

(C) The dissolved oxygen concentration, temperature and pH shall be measured at the beginning of the test and on days 7, 14, and 21 in at least two chambers of the high, middle, low, and control test concentrations.

(e) Reporting. The sponsor shall submit to the U.S. Environmental Protection Agency all data developed by the test that are suggestive or predictive of chronic toxicity and all associated toxicologic manifestations. In addition to the reporting requirements prescribed in the part 792—Good Laboratory Practice Standards of this chapter the reporting of test data shall include the following:

(1) The name of the test, sponsor, testing laboratory, study director, principal investigator, and dates of testing.

(2) A detailed description of the test substance including its source, lot number, composition (identity and concentration of major ingredients and major impurities), known physical and chemical properties, and any carriers or other additives used and their concentrations.

(3) The source of the dilution water, its chemical characteristics (e.g., conductivity, hardness, pH), and a description of any pretreatment.

(4) Detailed information about the daphnids used as brood stock, including the scientific name and method of verification, age, source, treatments, feeding history, acclimation procedures, and culture methods. The age of the daphnids used in the test shall be reported.

(5) A description of the test chambers, the volume of solution in the chambers, the way the test was begun (e.g., conditioning, test substance additions), the number of test organisms per test chamber, the number of replicates per treatment, the lighting, the renewal process and schedule for the renewal chronic test, the test substance delivery system and flow rate expressed as volume additions per 24 hours for the flow-through chronic test, and the method of feeding (manual or continuous) and type of food.

(6) The concentration of the test substance in test chambers at times designated for renewal and flow-through tests.
§ 797.1400 Fish acute toxicity test.

(a) Purpose. This guideline may be used to develop data on the acute toxicity of chemical substances and mixtures ("chemicals") subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94–469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes tests to be used to develop data on the acute toxicity of chemicals to fish. The United States Environmental Protection Agency (EPA) will use data from these tests in assessing the hazard of a chemical to the environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA), and the definitions in part 792—Good Laboratory Practice Standards of this chapter apply to this test guideline. The following definitions also apply to this guideline:

1. Acclimation means the physiological compensation by test organisms to new environmental conditions (e.g., temperature, hardness, pH).
2. Acute toxicity test means a method used to determine the concentration of a substance that produces a toxic effect on a specified percentage of test organisms in a short period of time (e.g., 96 hours). In this guideline, death is used as the measure of toxicity.
3. Carrier means a solvent used to dissolve a test substance prior to delivery to the test chamber.
4. Conditioning means the exposure of construction materials, test chambers, and testing apparatus to dilution water or to test solutions prior to the start of a test in order to minimize the sorption of the test substance onto the test facilities or the leaching of substances from the test facilities into the dilution water or test solution.
5. Death means the lack of opercular movement by a test fish.
6. Flow-through means a continuous or an intermittent passage of test solution or dilution water through a test chamber, or a holding or acclimation tank with no recycling.
7. Incipient LC_{50} means that test substance concentration, calculated from...
§ 797.1400

experimentally-derived mortality data, that is lethal to 50 percent of a test population when exposure to the test substance is continued until the mean increase in mortality does not exceed 10 percent in any concentration over a 24-hour period.

(8) LC	extsubscript{50} means that test substance concentration, calculated from experimentally-derived mortality data, that is lethal to 50 percent of a test population when exposure to the test substance is continued until the mean increase in mortality does not exceed 10 percent in any concentration over a specified period of time.

(9) Loading means the ratio of fish biomass (grams, wet weight) to the volume (liters) of test solution in a test chamber or passing through it in a 24-hour period.

(10) Static means the test solution is not renewed during the period of the test.

(11) Test solution means the test substance and the dilution water in which the test substance is dissolved or suspended.

(c) Test procedures—(1) Summary of the test. (i) Test chambers are filled with appropriate volumes of dilution water. If a flow-through test is performed, the flow of dilution water through each chamber is adjusted to the rate desired.

(ii) The test substance is introduced into each test chamber. In a flow-through test, the amount of test substance which is added to the dilution water is adjusted to establish and maintain the desired concentration of test substance in each test chamber.

(iii) Test fish which have been acclimated in accordance with the test design are introduced into the test and control chambers by stratified random assignment.

(iv) Fish in the test and control chambers are observed periodically during the test; dead fish are removed at least twice each day and the findings are recorded.

(v) The dissolved oxygen concentration, pH, temperature and the concentration of test substance are measured at intervals in selected test chambers.

(vi) Concentration-response curves and LC	extsubscript{50} values for the test substance are developed from the mortality data collected during the test.

(2) [Reserved]

(3) Range finding test. If the toxicity of the test substance is not already known, a range finding test should be performed to determine the range of concentrations to be used in the definitive test. The highest concentration of test substance for use in the range finding test should not exceed its solubility in water or the permissible amount of the carrier used.

(4) Definitive test. (i) A minimum of 20 fish should be exposed to each of five or more test substance concentrations. The range of concentrations to which the fish are exposed should be such that in 96 hours there are at least two partial mortality exposures bracketing 50 percent survival.

(ii) For exposure to each concentration of a test substance, an equal number of test fish shall be placed in two or more replicate test chambers. Test fish shall be impartially distributed among test chambers in such a manner that test results show no significant bias from the distributions.

(iii) Every test shall include a control consisting of the same dilution water, conditions, procedures, and fish from the same group used in the test, except that none of the test substance is added.

(iv) Mortality data collected during the test are used to calculate a 96-hour LC	extsubscript{50}. The 24-, 48-, and 72-hour values should be calculated when there is sufficient mortality data to determine such values. If the 96-hour LC	extsubscript{50} is less than 50 percent of the estimated 48-hour LC	extsubscript{50} in a flow-through test, the test shall be continued until the mean increase in mortality at any test concentration does not exceed 10 percent over a 24-hour period or until 14 days.

(v) Test fish shall not be fed while they are being exposed to the test substance under static conditions or during the first 96 hours of flow-through testing. If the test continues past 96 hours, the fish should be fed a suitable food at a maintenance level every other day beginning on test day 5. Any excess food and the fecal material should be removed when observed.

(5) Test results. (i) Death is the primary criterion used in this test guideline to evaluate the toxicity of the test substance.
(ii) In addition to death, any abnormal behavior such as, but not limited to, erratic swimming, loss of reflex, increased excitability, lethargy, or any changes in appearance or physiology such as discoloration, excessive mucous production, hyperventilation, opaque eyes, curved spine, or hemorrhaging shall be recorded.

(iii) Observations on compound solubility shall be recorded. The investigator shall report the appearance of surface slicks, precipitates, or material adhering to the sides of the test chamber.

(iv) Each test and control chamber shall be checked for dead fish and observations recorded at 24, 48, 72, and 96 hours after the beginning of the test or within one hour of the designated times. If the test is continued past 96 hours, additional observations shall be made every 24 hours until termination.

(v) The mortality data is used to calculate LC\textsubscript{50}'s and their 95 percent confidence limits, and to plot concentration-response curves for each time interval whenever sufficient data exists. The methods recommended for use in calculating LC\textsubscript{50}'s include probit, logit, binomial, and moving average angle.

(vi) A test is unacceptable if more than 10 percent of the control fish die or exhibit abnormal behavior during a 96-hour test. If a flow-through test is continued past 96 hours, the maximum allowable additional mortality is 10 percent.

(6) Analytical measurements—(i) Water quality analysis. (A) The hardness, acidity, alkalinity, pH, conductivity, TOC or COD, and particulate matter of the dilution water should be measured at the beginning of each static test and at the beginning and end of each flow-through test. The month to month variation of the above values should be less than 10 percent and the pH should vary less than 0.4 units.

(B) During static tests, the dissolved oxygen concentration, temperature, and pH shall be measured in each test chamber at the beginning and end of the test. The test solution volume shall not be reduced by more than 10 percent as a result of these measurements.

(C) During flow-through tests, dissolved oxygen, temperature, and pH measurements shall be made in each chamber at the beginning and end of the test.

(ii) Collection of samples for measurement of test substance. Test solution samples to be analyzed for the test substance should be taken midway between the top, bottom, and sides of the test chamber. These samples should not include any surface scum or material dislodged from the bottom or sides. Samples should be analyzed immediately or handled and stored in a manner which minimizes loss of test substance through microbial degradation, photodegradation, chemical reaction, volatilization, or sorption.

(iii) Measurement of test substance. (A) For static tests, the concentration of the test substance shall be measured at a minimum in each test chamber at each test concentration at the beginning (0-hour, before fish are added) and at the end of the test. During flow-through tests, the concentration of test substance shall be measured as follows:

(1) In at least the chamber of each test concentration at 0-hour.

(2) In at least the chamber of each test concentration at 96-hours and every 4 days thereafter, as long as the test is continued.

(3) In at least one appropriate chamber whenever a malfunction is detected in any part of the test substance delivery system.

(4) Equal aliquots of test solution may be removed from each replicate chamber and pooled for analysis.

(B) Filters and their holders used for determining the dissolved test substance concentrations should be prewashed with several volumes of distilled water and undergo a final rinse with test solution. Glass or stainless steel filter holders are best for organic test substances, while plastic holders are best for metals. The sample should be filtered within 30 minutes after it is taken from the test chamber.

(C) The analytical methods used to measure the amount of test substance in a sample shall be validated before beginning the test. The accuracy of a method should be verified by a method such as using known additions. This involves adding a known amount of the test substance to three water samples.
taken from a chamber containing dilution water and the same number and species of fish as are used in the test. The nominal concentration of the test substance in those samples should span the concentration range to be used in the test.

(D) An analytical method is not acceptable if likely degradation products of the test substance give positive or negative interferences, unless it is shown that such degradation products are not present in the test chambers during the test.

(E) In addition to analyzing samples of test solution, at least one reagent blank, containing all reagents used, should also be analyzed.

(F) If the measured concentrations of dissolved test substance are considerably lower (e.g., <50 percent) than the nominal concentrations, the total test substance concentration should be measured in the highest test concentration.

(G) Among replicate test chambers, the measured concentrations shall not vary more than 20 percent. The measured concentration of the test substance in any chamber during the test should not vary more than 30 percent from the measured concentration at time 0.

(H) The mean measured concentration of test substance shall be used to calculate all LC60's and to plot all concentration-response curves.

(d) Test conditions—(1) Test species—(i) Selection. The test species for this test are the rainbow trout (Salmo gairdneri), bluegill (Lepomis macrochirus) and fathead minnow (Pimephales promelas). The particular species of fish to be used will be prescribed in the test rule.

(ii) Age and condition of fish. (A) Juvenile fish shall be used. Fish used in a particular test shall be the same age and be of normal size and appearance for their age. The longest fish shall not be more than twice the length of the shortest.

(B) All newly acquired fish should be quarantined and observed for at least 14 days prior to use in a test.

(C) Fish shall not be used for a test if they appear stressed or if more than five percent die during the 48 hours immediately prior to the test.

(iii) Acclimation of test fish. (A) If the holding water is not from the same source as the test dilution water, acclimation to the dilution water should be done gradually over a 48-hour period. The fish should then be held an additional 14 days in the dilution water prior to testing. Any changes in water temperature should not exceed 3°C per day. Fish should be held for a minimum of 7 days at the test temperature prior to testing.

(B) During the final 48 hours of acclimation, fish should be maintained in facilities with background colors and light intensities similar to those of the testing area and should not be fed.

(ii) Apparatus—(i) General. Facilities needed to perform this test include:

(A) Flow-through tanks for holding and acclimating fish.

(B) A mechanism for controlling and maintaining the water temperature during the holding, acclimation and test periods.

(C) Apparatus for straining particulate matter, removing gas bubbles, or insufficient dissolved oxygen, respectively.

(D) Apparatus for providing a 16-hour light and 8-hour dark photoperiod with a 15- to 30-minute transition period.

(E) Chambers for exposing test fish to the test substance.

(F) A test substance delivery system for flow-through tests.

(ii) Construction materials. Construction materials and commercially purchased equipment that may contact the stock solution, test solution, or dilution water should not contain substances that can be leached or dissolved into aqueous solutions in quantities that can alter the test results. Materials and equipment that contact stock or test solutions should be chosen to minimize sorption of test chemicals. Glass, stainless steel, and perfluorocarbon plastic should be used whenever possible. Concrete, fiberglass, or plastic (e.g., PVC) may be used for holding tanks, acclimation tanks, and water supply systems, but they should be used to remove rust particles. Rubber, copper, brass, galvanized metal, epoxy glues, and lead should not come in contact with the dilution water, stock solution, or test solution.
(iii) Test substance delivery system. In flow-through tests, diluters, metering pump systems, or other suitable devices should be used to deliver the test substance to the test chambers. The system used should be calibrated before each test. Calibration includes determining the flow rate through each chamber and the concentration of the test substance delivered to each chamber. The general operation of the test substance delivery system should be checked twice daily during a test. The 24-hour flow rate through a test chamber should be a minimum of 6 tank volumes. During a test, the flow rates should not vary more than 10 percent from one test chamber to another.

(iv) Test chambers. Test chambers made of stainless steel should be welded, not soldered. Test chambers made of glass should be fused or bonded using clear silicone adhesive. As little adhesive as possible should be left exposed in the interior of the chamber.

(v) Cleaning of test system. Test substance delivery systems and test chambers should be cleaned before each test. They should be washed with detergent and then rinsed in sequence with clean water, pesticide-free acetone, clean water, and 5 percent nitric acid, followed by two or more changes of dilution water.

(vi) Dilution water. (A) Clean surface or ground water reconstituted water, or dechlorinated tap water is acceptable as dilution water if the test fish will survive in it for the duration of the holding, acclimating, and testing periods without showing signs of stress, such as discoloration, hemorrhaging, disorientation or other unusual behavior. The quality of the dilution water should be constant and should meet the following specifications measured at least twice a year:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td>20 µg/liter</td>
</tr>
<tr>
<td>Total organic carbon or chemical oxygen demand</td>
<td>2 mg/liter</td>
</tr>
<tr>
<td>Un-ionized ammonia</td>
<td>1 µg/liter</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td>1 µg/liter</td>
</tr>
<tr>
<td>Total organochlorine pesticides</td>
<td>50 µg/liter</td>
</tr>
<tr>
<td>Total organochlorine pesticides plus polychlorinated biphenyls (PCBs), or organic chlorine</td>
<td>50 µg/liter</td>
</tr>
</tbody>
</table>

(B) The concentration of dissolved oxygen in the dilution water should be between 90 and 100 percent saturation; 9.8 to 10.9 mg/l for tests with trout, and 8.0 to 8.9 mg/l for tests with bluegill or fathead minnow at sea level. If necessary, the dilution water can be aerated before the addition of the test substance. All reconstituted water should be aerated before use. Buffered soft water should be aerated before but not after the addition of buffers.

(C) If disease organisms are present in the dilution water in sufficient numbers to cause infection, they should be killed or removed by suitable equipment.

(vii) Carriers. (A) Distilled water should be used in making stock solutions of the test substance. If the stock volume however is more than 10 percent of the test solution volume, dilution water should be used. If a carrier is absolutely necessary to dissolve the test substance, the volume used should not exceed the minimum volume necessary to dissolve or suspend the test substance in the test solution. If the test substance is a mixture, formulation, or commercial product, none of the ingredients is considered a carrier unless an extra amount is used to prepare the stock solution.

(B) Triethylene glycol and dimethyl formamide are the preferred carriers, but acetone may also be used. The concentration of triethylene glycol in the test solution should not exceed 80 mg/l. The concentration of dimethyl formamide or acetone in the test solution should not exceed 5.0 mg/l.

(3) Test parameters—(i) Loading. The number of fish placed in a test chamber should not be so great as to affect the results of the test. The loading should not be so great that the test substance concentrations are decreased by more than 20 percent due to uptake by the fish. In static tests, loading should not exceed 0.5 grams of fish per liter of solution in the test chamber at any one
time. In flow-through tests loading should not exceed 0.5 grams of fish per liter of test solution passing through the chamber in 24 hours. These loading rates should be sufficient to maintain the dissolved oxygen concentration above the recommended levels and the ammonia concentration below 20 µg/l.

(ii) Dissolved oxygen concentration. (A) During static tests with rainbow trout the dissolved oxygen in each test chamber shall be greater than 5.5 mg/l. In tests with bluegill and fathead minnows, the DO shall be maintained above 4.5 mg/l.

(B) During flow-through tests the dissolved oxygen concentration shall be maintained above 8.2 mg/l in tests with trout and above 6.6 mg/l in tests with bluegill or fathead minnows.

(iii) Temperature. The test temperature shall be 22 °C for bluegill and fathead minnow and 12 °C for rainbow trout. Excursions from the test temperature shall be no greater than ±2 °C. The temperature shall be measured at least hourly in one test chamber.

(iv) Light. A 16-hour light and 8-hour dark photoperiod should be maintained.

(e) Reporting. The sponsor shall submit to the EPA all data developed by the test that are suggestive or predictive of toxicity. In addition to the reporting requirements prescribed in part 792—Good Laboratory Practice Standards of this chapter, the reported test data shall include the following:

(1) The source of the dilution water, a description of any pretreatment, and the measured hardness, acidity, alkalinity, pH, conductivity, TOC or COD and particulate matter.

(2) A description of the test chambers, the depth and volume of solution in the chamber, the specific way the test was begun (e.g., conditioning, test substance additions), and for flow-through tests, a description of the test substance delivery system.

(3) Detailed information about the test fish, including the scientific name and method of verification, average weight (grams, wet weight), standard length, age, source, history, observed diseases, treatments, and mortalities, acclimation procedures, and food used.

(4) The number of replicates used, the number of organisms per replicate, the loading rate, and the flow rate for flow-through tests.

(5) The measured DO, pH and temperature and the lighting regime.

(6) The solvent used, the test substance concentration in the stock solution, the highest solvent concentration in the test solution and a description of the solubility determinations in water and solvents if used.

(7) The concentrations of the test substance at each test concentration just before the start of the test and at all subsequent sampling periods.

(8) The number of dead and live tests organisms, the percentage of organisms that died, and the number that showed any abnormal effects in the control and in each test chamber at each observation period.

(9) The 96-hour LC50, and when sufficient data have been generated, the 24-, 48-, 72-, and incipient LC50 values, their 95 percent confidence limits, and the methods used to calculate the LC50 values and their confidence limits.

(10) When observed, the observed no effect concentration (the highest concentration tested at which there were no mortalities or abnormal behavioral or physiological effects).

(11) The concentration-response curve at each observation period for which a LC50 was calculated.

(12) Methods and data records of all chemical analyses of water quality parameters and test substance concentrations, including method validations and reagent blanks.

§ 797.1600 − 40 CFR Ch. I (7–1–99 Edition)

Fish early life stage toxicity test.

(a) Purpose. This guideline is intended to be used for assessing the propensity of chemical substances to produce adverse effects to fish during the early stages of their growth and development. This guideline describes the conditions and procedures for the continuous exposure of several representative species to a chemical substance during egg, fry and early juvenile life stages. The Environmental Protection Agency (EPA) will use data from this test in assessing the potential hazard
of the test substance to the aquatic environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA) and the definitions in part 792—Good Laboratory Practice Standards, apply to this section. In addition, the following definitions are applicable to this specific test guideline:

(1) "Acclimation" physiological or behavioral adaptation of organisms to one or more environmental conditions associated with the test method (e.g., temperature, hardness, pH).

(2) "Carrier" solvent or other agent used to dissolve or improve the solubility of the test substance in dilution water.

(3) "Conditioning" exposure of construction materials, test chambers, and testing apparatus to dilution water or to the test solution prior to the start of the test in order to minimize the sorption of test substance onto the test facilities or the leaching of substances from test facilities into the dilution water or the test solution.

(4) "Control" an exposure of test organisms to dilution water only or dilution water containing the test solvent or carrier (no toxic agent is intentionally or inadvertently added).

(5) "Dilution water" the water used to produce the flow-through conditions of the test to which the test substance is added and to which the test species is exposed.

(6) "Early life stage toxicity test" a test to determine the minimum concentration of a substance which produces a statistically significant observable effect on hatching, survival, development and/or growth of a fish species continuously exposed during the period of their early development.

(7) "Embryo cup" a small glass jar or similar container with a screened bottom in which the embryos of some species (i.e., minnow) are placed during the incubation period and which is normally oscillated to ensure a flow of water through the cup.

(8) "Flow through" refers to the continuous or very frequent passage of fresh test solution through a test chamber with no recycling.

(9) "Hardness" the total concentration of the calcium and magnesium ions in water expressed as calcium carbonate (mg CaCO₃/liter).

(10) "Loading" the ratio of biomass (grams of fish, wet weight) to the volume (liters) of test solution passing through the test chamber during a specific interval (normally a 24-hr. period).

(11) "No observed effect concentration (NOEC)" the highest tested concentration in an acceptable early life stage test: (i) which did not cause the occurrence of any specified adverse effect (statistically different from the control at the 95 percent level); and (ii) below which no tested concentration caused such an occurrence.

(12) "Observed effect concentration (OEC)" the lowest tested concentration in an acceptable early life stage test: (i) Which caused the occurrence of any specified adverse effect (statistically different from the control at the 95 percent level); and (ii) above which all tested concentrations caused such an occurrence.

(13) "Replicate" two or more duplicate tests, samples, organisms, concentrations, or exposure chambers.

(14) "Stock solution" the source of the test solution prepared by dissolving the test substance in dilution water or a carrier which is then added to dilution water at a specified, selected concentration by means of the test solution delivery system.

(15) "Test chamber" the individual containers in which test organisms are maintained during exposure to test solution.

(16) "Test solution" dilution water with a test substance dissolved or suspended in it.

(c) Test Procedures—(1) Summary of test. (i) The early life stage toxicity test with fish involves exposure of newly fertilized embryos to various concentrations of a test substance. Exposure continues for 28 days post hatch for the minnows and 60 days post hatch for the trout species. During this time various observations and measurements are made in a specific manner and schedule in order to determine the lowest effect and highest no-effect concentrations of the test substance.
§ 797.1600 40 CFR Ch. I (7–1–99 Edition)

(ii) A minimum of five exposure (treatment) concentrations of a test substance and one control are required to conduct an early life stage toxicity test. The concentration of the test substance in each treatment is usually 50 percent of that in the next higher treatment level.

(iii) For each exposure concentration of the test substance and for each control (i.e., regular control and carrier control is required) there shall be:

(A) At least two replicate test chambers, each containing one or more embryo incubation trays or cups; and there shall be no water connections between the replicate test chambers;

(B) At least 60 embryos divided equally between the embryo incubation trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates);

(C) All surviving larvae divided equally between the test chambers for each test concentration and control (e.g., 30 larvae per test chamber with 2 replicates).

(iv) Duration. (A) For fathead minnow and sheepshead minnow a test begins when the newly fertilized minnow embryos (less than 48-hours old) are placed in the embryo cups and are exposed to the test solution concentrations. The test terminates following 28 days of post-hatch exposure, i.e., 28 days after the newly hatched fry are transferred from the embryo cups into the test chambers.

(B) For brook trout and rainbow trout a test begins when newly fertilized trout embryos (less than 48-hours old) are placed in the embryo trays or cups and are exposed to the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an approximate total exposure period of 90 days).

(C) For silverside a test begins with newly fertilized embryos (less than 24-hours old) placed in the embryo trays or cups and are exposed to the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an approximate total exposure period of 90 days).

(2) [Reserved]

(3) Range-finding test. (i) A range-finding test is normally performed with the test substance to determine the test concentrations to be used in the early life stage toxicity test, especially when the toxicity is unknown. It is recommended that the test substance concentrations be selected based on information gained from a 4- to 10-day flow-through toxicity test with juveniles of the selected test species.

(ii) The highest concentration selected for the early life stage toxicity test should approximate the lowest concentration indicated in any previous testing to cause a significant reduction in survival. The range of concentrations selected is expected to include both observed effect and no-observed effect levels. The dilution factor between concentrations is normally 0.50; however, other dilution factors may be used as necessary.

(4) Definitive test—(i) General. (A) A test shall not be initiated until after the test conditions have been met and the test substance delivery system has been observed functioning properly for 48-hours. This includes temperature stability, flow requirements of dilution water, lighting requirements, and the function of strainers and air traps included in the water-supply system, and other conditions as specified previously.

(B) New holding and test facilities should be tested with sensitive organisms (i.e., juvenile test species or daphnids) before use to assure that the facilities or substances possibly leaching from the equipment will not adversely affect the test organisms during an actual test.

(C) Embryos should be acclimated for as long as practical to the test temperature and dilution water prior to the initiation of the test.

(D) When embryos are received from an outside culture source (i.e., rainbow and brook trout) at a temperature at variance with the recommended test temperature they shall be acclimated to the test temperature. When eggs are received, they should be immediately unpacked and the temperature of the surrounding water determined. Sudden temperature changes should be avoided. Acclimation to the appropriate test temperature should be accomplished within a period of 6 hours, and should incorporate the use of dilution water.
(E) Embryos should be visually inspected prior to placement in the embryo cups or screen trays. All dead embryos shall be discarded. Dead embryos can be discerned by a change in coloration from that of living embryos (e.g., trout embryos turn white when dead). During visual inspection, empty shells, opaque embryos, and embryos with fungus or partial shells attached shall be removed and discarded. If less than 50 percent of the eggs to be used appear to be healthy, all embryos in such a lot shall be discarded.

(ii) Embryo incubation procedures. (A) Embryos can be distributed to the embryo cups or screen trays using a pipette with a large bore or a similar apparatus. Newly-hatched silverside fry are very sensitive to handling; the egg incubation cups should not be handled at all the first 5 days after hatching begins. Just before hatching is expected to begin, the embryos should be transferred to clean incubation cups. Trout embryos can be distributed by using a small container which has been precalibrated to determine the approximate number of embryos it can hold; embryos are measured volumetrically in this manner, and are then poured onto the screen tray (or embryo cup). Trout embryos should be separated on the screen tray so that they are not in contact with each other. A final count will ensure the actual number on the screen tray. After random assignment, the screen trays or embryo cups are placed in the test chambers.

(C) When embryos begin to hatch they should not be handled.

(iii) Initiation of fry exposure. (A) Forty-eight hours after the first hatch in each treatment level, or when hatching is completed, the live young fish shall be counted and transferred from each embryo cup into the appropriate test chamber. For silverside, all surviving fry are not counted until six days after hatching and are not transferred to embryo cups. All of the normal and abnormal fry shall be gently released into the test chamber by allowing the fry to swim out of each embryo cup; nets shall not be used. The trout embryos incubated on screen trays will hatch out in the test chambers, therefore handling of fish is not necessary.

(B) If necessary, fry can be transferred from one replicate embryo cup to the other replicate within a test concentration to achieve equal numbers in each replicate chamber.

(C) The number of live fry, live normal fry, live embryos, dead embryos and unaccounted for embryos for each cup shall be recorded when hatching is deemed complete. Those fry which are visibly (without the use of a dissecting scope or magnifying viewer) lethargic or grossly abnormal (either in swimming behavior or physical appearance) shall be counted. Late hatching embryos shall be left in the embryo cups to determine if they will eventually hatch or not. The range of time-to-hatch (to the nearest day) for each cup shall be recorded.

(iv) Time to first feeding. (A) The first feeding for the fathead and sheepshead minnow fry shall begin shortly after transfer of the fry from the embryo cups to the test chambers. Silversides are fed the first day after hatch. Trout species initiate feeding at swim-up. The trout fry shall be fed trout starter mash three times a day ad libitum with excess food siphoned off daily. The minnow fry shall be fed live newly-hatched brine shrimp nauplii (Artemia salina) at least three times a day.

(B) For the first seven days, feeding shall be done at minimum intervals of four hours (i.e., 8 am, 12 noon, and 4 pm); thereafter the fry shall be fed as indicated below.

(v) Feeding. (A) The fathead and sheepshead minnow fry shall be fed newly hatched brine shrimp nauplii for the duration of the test at approximately 4-hour intervals three times a
day during the week and twice on the weekend after the first week. Trout fry shall be fed at similar intervals and may receive live brine shrimp nauplii in addition to the trout starter food after the first week. Between days 1 and 8 after first hatching, silverside fry are fed the rotifer, Brachionus plicatilis, three times daily at a concentration of 5,000 to 10,000 organisms per egg cup (based on 15 fish/cup). From days 9 to 11, the fry shall be fed approximately 2,500 newly hatched brine shrimp (Artemia) nauplii and 5,000 to 10,000 rotifers twice daily. For the remainder of the test, the fish will be fed brine shrimp exclusively. The number of organisms used should be gradually increased to approximately 5,000 nauplii by test day 28.

(B) An identical amount of food should be provided to each chamber. Fish should be fed ad libitum for 30 minutes with excess food siphoned off the bottom once daily if necessary.

(C) Fish should not be fed for the last 24 hours prior to termination of the test.

(vi) Carriers. Water should be used in making up the test stock solutions. If carriers other than water are absolutely necessary, the amount used should be the minimum necessary to achieve solution of the test substance. Triethylene glycol and dimethyl formamide are preferred, but ethanol and acetone can be used if necessary. Carrier concentrations selected should be kept constant at all treatment levels.

(vii) Controls. Every test requires a control that consists of the same dilution water, conditions, procedures, and test organisms from the same group used in the other test chambers, except that none of the test substance is added. If a carrier (solvent) is used, a separate carrier control is required in addition to the regular control. The carrier control shall be identical to the regular control except that the highest amount of carrier present in any treatment is added to this control. If the test substance is a mixture, formulation, or commercial product, none of the ingredients is considered a carrier unless an extra amount is used to prepare the stock solution.

(viii) Randomization. The location of all test chambers within the test system shall be randomized. A representative sample of the test embryos should be impartially distributed by adding to each cup or screen tray no more than 20 percent of the number of embryos to be placed in each cup or screen tray and repeating the process until each cup or screen tray contains the specified number of embryos. Alternatively, the embryos can be assigned by random assignment of a small group (e.g., 1 to 5) of embryos to each embryo cup or screen tray, followed by random assignment of a second group of equal number to each cup or tray, which is continued until the appropriate number of embryos are contained in each embryo cup or screen tray. The method of randomization used shall be reported.

(ix) Observations. During the embryo exposure period observations shall be made to check for mortality. During the exposure period of the fry, observations shall be made to check for mortality and to note the physical appearance and behavior of the young fish. The biological responses are used in combination with physical and chemical data in evaluating the overall lethal and sublethal effects of the test substance. Additional information on the specific methodology for the data obtained during the test procedure are discussed in the following sections.

(x) Biological data. (A) Death of embryos shall be recorded daily.

(B) When hatching commences, daily records of the number of embryos remaining in each embryo cup are required. This information is necessary to quantify the hatching success. A record of all deformed larvae shall be kept throughout the entire post-hatch exposure. Time to swim-up shall be recorded for the trout. Upon transfer of fry from the embryo cups to the test chambers, daily counts of the number of live fish should be made. At a minimum, live fish shall be counted on days 4, 11, 18, 25 and (weekly thereafter for the trout species) finally on termination of the test.

(C) The criteria for death of young fish is usually immobility, especially absence of respiratory movement, and lack of reaction to gentle prodding. Deaths should be recorded daily and dead fish removed when discovered.
D Daily and at termination of the test, the number of fish that appear (without the use of a magnifying viewer) to be abnormal in behavior (e.g., swimming erratic or uncoordinated, obviously lethargic, hyperventilating, or over excited, etc.) or in physical appearance (e.g., hemorrhaging, producing excessive mucus, or are discolored, deformed, etc.) shall be recorded and reported in detail.

E All physical abnormalities (e.g., stunted bodies, scoliosis, etc.) shall be photographed and the deformed fish which die, or are sacrificed at the termination of the test, shall be preserved for possible future pathological examination.

F At termination, all surviving fish shall be measured for growth. Standard length measurements should be made directly with a caliper, but may be measured photographically. Measurements shall be made to the nearest millimeter (0.1 mm is desirable). Weight measurements shall also be made for each fish alive at termination (wet, blotted dry, and to the nearest 0.01 g for the minnows and 0.1 g for the trout). If the fish exposed to the toxicant appear to be edematous compared to control fish, determination of dry, rather than wet, weight is recommended.

G Special physiological, biochemical and histological investigations on embryos, fry, and juveniles may be deemed appropriate and shall be performed on a case by case basis.

H Test results. (i) Data from toxicity tests are usually either continuous (e.g. length or weight measurements) or dichotomous (e.g. number hatching or surviving) in nature. Several methods are available and acceptable for statistical analysis of data derived from early life stage toxicity tests; however, the actual statistical methodology to analyze and interpret the test results shall be reported in detail.

(1) The significance level for all statistical testing shall be a minimum of P=0.05 (95 percent confidence level).

(A) Example of statistical analysis. (1) Mortality data for the embryonic stage, fry stage and for both stages in replicate exposure chambers should first be analyzed using a two-way analysis of variance (ANOVA) with interaction model. This analysis will determine if replicates are significantly different from each other. If a significant difference between replicates or a significant interaction exists, cause for the difference should be determined. Modification should then be made in the test apparatus or in handling procedures for future toxicity tests. Further calculations should incorporate the separation of replicates. If no significant difference is observed, replicates may be pooled in further analyses.

(2) After consideration of replicate responses, mortality data should then be subjected to one-way ANOVA. The purpose of this analysis is to determine if a significant difference exists in the percentage mortality between control fish and those exposed to the test material.

(3) If the one-way ANOVA results in an F ratio that is significant, it would be acceptable to perform t-tests on the control versus each concentration. A second technique is to identify treatment means that are significantly different; this method should involve the additional assumption that the true mean response decreases generally with increasing concentration. The researcher may also be interested in determining significant differences between concentrations.

(4) Growth data should also be analyzed by one-way ANOVA with the inclusion of a covariate to account for possible differences in growth of surviving fry in embryo cup(s) that contain fewer individuals. This condition can occur in cases when the same amount of food is given to each test chamber regardless of the number of survivors.

(B) Test data to be analyzed. Data to be statistically analyzed are:

(1) Percentage of healthy, fertile embryos at 40-48 hours after initiation of the test. Percentage is based upon initial number used.

(2) Percentage of embryos that produce live fry for release into test chambers. Percentage is based on number of embryos remaining after thinning.

(3) Percentage of embryos that produce live, normal fry for release into test chambers. Percentage is based
§ 797.1600

40 CFR Ch. I (7–1–99 Edition)

upon number of embryos remaining after thinning.

(4) Percentage of fry survival at swim-up for trout. Percentage is based upon number of embryos remaining after thinning.

(5) Percentage of embryos that produce live fish at end of test. Percentage is based upon number of embryos remaining after thinning.

(6) Percentage of embryos that produce live, normal fish at end of test. Percentage is based upon number of embryos remaining after thinning.

(7) Weights and lengths of individual fish alive at the end of the test.

(C) It is important that fish length and weight measurements be associated with individual test chambers since the density of the fish and available food should be considered in the growth of the organism.

(iii) Acceptability criteria. (A) An early life stage toxicity test is not acceptable unless at least one of the following criteria is significantly different (p=0.05) from control organisms when compared with treated organisms, and the responses are concentration-dependent: mortality of embryos, hatching success, mortality of fry (at swim-up for trout), total mortality throughout the test, and growth (i.e. weight). If no significant effects occur, but the concentrations tested were the highest possible due to solubility or other physio-chemical limitations, the data will be considered for acceptance.

(B) In addition to obtaining significant effects on the exposed test species, a measure of acceptability in the response of control fish is also required.

(C) A test is not acceptable if the average survival of the control fish at the end of the test is less than 80 percent or if survival in any one control chamber is less than 70 percent. For silversides, a test is not acceptable if the average overall survival of the control embryos and fish at the end of the test is less than 60 percent.

(D) If a carrier is used, the criteria for effect (mortality of embryos and fry, growth, etc.) used in the comparison of control and exposed test organisms shall also be applied to the control and control with carrier chambers. For the test to be considered acceptable, no significant difference shall exist between these criteria.

(E) A test is not acceptable if the relative standard deviation (RSD=100 times the standard deviation divided by the mean) of the weights of the fish that were alive at the end of the test in any control test chamber is greater than 40 percent.

(6) Analytical measurements—(i) Analysis of water quality. Measurement of certain dilution water quality parameters shall be performed every 6 months, to determine the consistency of the dilution water quality. In addition, if data in 30-day increments are not available to show that freshwater dilution water is constant, measurements of hardness, alkalinity, pH, acidity, conductivity, TOC or COD and particulate matter should be conducted once a week in the highest test substance concentration. Measurement of calcium, magnesium, sodium, potassium, chloride, and sulfate is desirable.

(ii) Dissolved oxygen measurement. The dissolved oxygen concentration shall be measured in each test chamber at the beginning of the test and at least once weekly thereafter (as long as live organisms are present) in two replicates of the control and the high, medium, and low test substance concentrations.

(iii) Temperature measurement. Temperatures shall be recorded in all test chambers at the beginning of the test, once weekly thereafter and at least hourly in one test chamber. When possible, the hourly measurement shall be alternated between test chambers and between replicates.

(iv) Test substance measurement. (A) Prior to the addition of the test substance to the dilution water, it is recommended that the test substance stock solution be analyzed to verify the concentration. After addition of the test substance, the concentration of test substance should be measured at the beginning of the test in each test concentration and control(s), and at least once a week thereafter. Equal aliquots of test solution may be removed from each replicate chamber and pooled for analysis. If a malfunction in the delivery system is discovered, water samples shall be taken
from the affected test chambers immediately and analyzed.

(B) The measured concentration of test substance in any chamber should be no more than 30 percent higher or lower than the concentration calculated from the composition of the stock solution and the calibration of the test substance delivery system. If the difference is more than 30 percent, the concentration of test substance in the solution flowing into the exposure chamber (influent) should be analyzed. These results will indicate whether the problem is in the stock solution, the test substance delivery system or in the test chamber. Measurement of degradation products of the test substance is recommended if a reduction of the test substance concentration occurs in the test chamber.

(v) Sampling and analysis methodology.
(A) Generally, total test substance measurements are sufficient; however, the chemical characteristics of the test substance may require both dissolved and suspended test substance measurements.

(B) For measurement of the test substance, water samples shall be taken midway between the top, bottom, and sides of the test chamber and should not include any surface scum or material stirred up from the bottom or sides. Samples of test solutions shall be handled and stored appropriately to minimize loss of test substance by microbial degradation, photodegradation, chemical reaction, volatilization, or sorption.

(C) Chemical and physical analyses shall be performed using standardized methods whenever possible. The analytical method used to measure the concentration of the test substance in the test solution shall be validated before the beginning of the test. At a minimum, a measure of the accuracy of the method should be obtained on each of two separate days by using the method of known additions, and using dilution water from a tank containing test organisms. Three samples should be analyzed at the next-to-lowest test substance concentration. It is also desirable to study the accuracy and precision of the analytical method for test guideline determination by use of reference (split) samples, or interlabo-

tory studies, and by comparison with alternative, reference, or corroborative methods of analysis.

(D) An analytical method is not acceptable if likely degradation products of the test substance, such as hydrolysis and oxidation products, give positive or negative interferences, unless it is shown that such degradation products are not present in the test chambers during the test. In general, atomic absorption spectrophotometric methods for metals and gas chromatographic methods for organic compounds are preferable to colorimetric methods.

(E) In addition to analyzing samples of test solution, at least one reagent blank also should be analyzed when a reagent is used in the analysis. At least one sample for the method of known additions should be prepared by adding test substance at the concentration used in the toxicity test.

(d) Test conditions—(1) Test species. (i) One or more of the recommended test species will be specified in rules under part 799 of this chapter requiring testing of specific chemicals. The recommended test species are:

(A) Fathead minnow (Pimephales promelas Rafinesque).

(B) Sheepshead minnow (Cyprinodon variegatus).

(C) Brook trout (Salvelinus fontinalis).

(D) Rainbow trout (Salmo gairdneri).

(E) Atlantic silverside (Menidia menidia).

(F) Tidewater silverside (Menidia peninsulae).

(ii) Embryos used to initiate the early life stage test shall be less than 48 hours old for the fathead and sheepshead minnows, silversides, and less than 96 hours old for the brook trout and rainbow trout. In addition, the following requirements shall be met:

(A) All embryos used in the test shall be from the same source. Embryos shall be obtained from a stock cultured in-house when possible, and maintained under the same parameters as specified for the test conditions. When it is necessary to obtain embryos from an external source, caution should be exercised to ensure embryo viability and to minimize the possibility of fungal growth. A description of the brood
§ 797.1600 40 CFR Ch. I (7-1-99 Edition)

stock history or embryo source shall be made available to EPA upon request.

(B) Test species shall be cared for and handled properly in order to avoid unnecessary stress. To maintain test species in good condition and to maximize growth, crowding shall be prevented, and the dissolved oxygen level shall be maintained near saturation.

(C) Embryos and fish shall be handled as little as possible. Embryos shall be counted and periodically inspected until hatching begins. When larvae begin to hatch, they shall not be handled. Transfer of minnow larvae from embryo cups to test chambers shall not involve the use of nets. No handling is necessary following introduction into the test chambers until termination of the test.

(D) If fathead minnow embryos are obtained from in-house culture units, the embryos should be gently removed from the spawning substrate. The method for separating the fertilized eggs from the substrate is important and can affect the viability of the embryos; therefore the finger-rolling procedure is recommended.

(E) Disease treatment. Chemical treatments to cure or prevent diseases should not be used before, and should not be used during a test. All prior treatments of brood stock should be reported in detail. Severely diseased organisms should be destroyed.

(2) Test facilities—(i) Construction materials. Construction materials and equipment that contact stock solutions, test solutions, or dilution water into which test embryos or fish are placed should not contain any substances that can be leached or dissolved into aqueous solutions in quantities that can affect test results. Materials and equipment that contact stock or test solutions should be chosen to minimize sorption of test chemicals from dilution water. Glass, #316 stainless steel, nylon screen and perfluorocarbon plastic (e.g., Teflon®) are acceptable materials. Concrete or rigid (unplasticized) plastic may be used for holding and acclimation tanks, and for water supply systems, but they should be thoroughly conditioned before use. If cast iron pipe is used in freshwater supply systems, colloidal iron may leach into the dilution water and strainers should be used to remove rust particles. Natural rubber, copper, brass, galvanized metal, epoxy glues, and flexible tubing should not come in contact with dilution water, stock solutions, or test solutions.

(ii) Test chambers (exposure chambers). (A) Stainless steel test chambers should be welded or glued with silicone adhesive, and not soldered. Glass should be fused or bonded using clear silicone adhesive. Epoxy glues are not recommended, but if used ample curing time should be allowed prior to use. As little adhesive as possible should be in contact with the water.

(B) Many different sizes of test chambers have been used successfully. The size, shape and depth of the test chamber is acceptable if the specified flow rate and loading requirements can be achieved.

(C) The actual arrangement of the test chambers can be important to the statistical analysis of the test data. Test chambers can be arranged totally on one level (tier) side by side, or on two levels with each level having one of the replicate test substance concentrations or controls. Regardless of the arrangement, it shall be reported in detail and considered in the data analysis.

(iii) Embryo incubation apparatus. (A) Recommended embryo incubation apparatus include embryo cups for the minnow species and screen trays for the trout species, although embryo cups can be used for the trout species. Embryo cups are normally constructed from approximately 4-5 cm inside diameter, 7-8 cm high, glass jars with the end cut off or similar sized sections of polyethylene tubing. One end of the jar or tubing is covered with stainless steel or nylon screen (approximately 40 meshes per inch is recommended). Embryo cups for silversides are normally constructed using silicone adhesive to glue a 10-cm high, 363-um nylon mesh tube inside a 9-cm I.D. glass Petri dish bottom. The embryo cups shall be appropriately labeled and then suspended in the test chamber in such a manner as to ensure that the test solution regularly flows through the cup and that the embryos are always submerged but are not agitated too vigorously. Cups may be oscillated by a
rocker arm apparatus with a low rpm motor (e.g., 2 rpm) to maintain the required flow of test water. The vertical travel distance of the rocker arm apparatus during oscillation is normally 2.5-4.0 cm. The water level in the test chambers may also be varied by means of a self-starting siphon in order to ensure exchange of water in the embryo cups.

(B) The trout embryo incubation trays can be made from stainless steel screen (or other acceptable material such as plastic) of about 3-4 mm mesh. The screen tray should be supported above the bottom of the test chamber by two folds of screen or other devices which function as legs or supports. The edges of the screen tray should be turned up to prevent bump spills and to prevent the embryos from rolling off in the event of excessive turbulence. Suspending or supporting the screen tray off the bottom ensures adequate water circulation around the embryos and avoids contact of embryos with possible bottom debris.

(iv) Test substance delivery system. (A) The choice of a specific delivery system depends upon the specific properties and requirements of the test substance. The apparatus used should accurately and precisely deliver the appropriate amount of stock solution and dilution water to the test chambers. The system selected shall be calibrated before each test. Calibration includes determining the flow rate through each test chamber, and the proportion of stock solution to dilution water delivered to each chamber. The general operation of the test substance delivery system shall be checked at least twice daily for normal operation throughout the test. A minimum of five test substance concentrations and one control shall be used for each test.

(B) The proportional diluter and modified proportional diluter systems and metering pump systems have proven suitable and have received extensive use.

(C) Mixing chambers shall be used between the diluter and the test chamber(s). This may be a small container or flow-splitting chamber to promote mixing of test substance stock solution and dilution water, and is positioned between the diluter and the test chambers for each concentration. If a proportional diluter is used, separate delivery tubes shall run from the flow-splitting chamber to each replicate test chamber. Daily checks on this latter system shall be made.

(D) Silverside fry are injured easily and are susceptible to impingement on the mesh of the incubation cups. Consequently, water flow into and out of the cups when counting fry must be at a slow rate. This can be accomplished by using small diameter (e.g., 2 mm I.D.) capillary tubes to drain the test solution from spitter boxes into the replicate test chambers. The use of a self-starting siphon to gradually lower (i.e., less than or equal to 1 min.) the water level approximately 2 cm in the test chamber is recommended. A minimum water depth of 5 cm should be maintained in the cups. Although it may be satisfactory, a rocker-arm type apparatus has not yet been used with silversides.

(v) Other equipment required. (A) An apparatus for removing undesirable organisms, particulate matter and air bubbles.

(B) An apparatus for aerating water.

(C) A suitable magnifying viewer for examination of minnow embryos.

(D) A suitable apparatus for the precise measurement of growth of the fish, including both length (e.g., with metric or ruler caliper or photographic equipment) and weight.

(E) Facilities for providing a continuous supply of live brine shrimp nauplii (Artemia salina).

(F) For silversides, facilities for providing a supply of rotifers (Brachionus plicatilis) for approximately 11 days.

(G) Facilities (or access to facilities) for performing the required water chemistry analyses.

(vi) Cleaning of equipment. (A) Test substance delivery systems and test chambers should be cleaned before use. Test chambers should be cleaned during the test as needed to maintain the dissolved oxygen concentration, and to prevent clogging of the embryo cup screens and narrow flow passages.

(B) Debris can be removed with a rubber bulb and large pipette or by siphoning with a glass tube attached to a flexible hose. Debris should be run into
§ 797.1600

40 CFR Ch. 1 (7–1–99 Edition)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organochlorine pesticides plus poly-chlorinated biphenyls (PCBs)</td>
<td><50 ng/liter.</td>
</tr>
<tr>
<td>Total organic chlorine</td>
<td><25 ng/liter.</td>
</tr>
</tbody>
</table>

(3) During any one month, freshwater dilution water should not vary more than 10 percent from the respective monthly averages of hardness, alkalinity and specific conductance; the monthly pH range should be less than 0.4 pH units.

(C) Saltwater. (1) Marine dilution water is considered to be of constant quality if the minimum salinity is greater than 15‰, and the weekly range of the salinity is less than 15‰. The monthly range of pH shall be less than 0.8 pH units. Saltwater shall be filtered to remove larval predators. A pore size of ≤20 micrometers (µm) is recommended. For silversides, the recommended salinity is 20 ppt and shall be maintained between 15 and 25 ppt throughout testing.

(2) Artificial sea salts may be added to natural seawater during periods of low salinity to maintain salinity above 15‰.

(3) Test parameters—(i) Dissolved oxygen concentration. It is recommended that the dissolved oxygen concentration be maintained between 90 and 100 percent saturation; but it shall be no less than 75 percent saturation at all times for both minnow species and between 90 and 100 percent saturation for the trout species in all test chambers. Dilution water in the head box may be aerated, but the test solution itself shall not be aerated.

(ii) Loading and flow rate. (A) The loading in test chambers should not exceed 0.1 grams of fish per liter of test solution passing through the test chamber in 24 hours. The flow rate to each chamber should be a minimum of 6 tank volumes per 24 hours. During a test, the flow rates should not vary more than 10 percent from any one test chamber to any other.

(B) A lower loading or higher flow rate or both shall be used if necessary to meet the following three criteria at all times during the test in each chamber containing live test organisms:

(1) The concentration of dissolved oxygen shall not fall below 75 percent
saturation for the fathead and sheepshead minnows and 90 percent for the rainbow and brook trout;

(2) The concentration of un-ionized ammonia should not exceed 1 µg/l; and

(3) The concentration of toxicant should not be lowered (i.e., caused by uptake by the test organisms and/or materials on the sides and bottoms of the chambers) more than 20 percent of the mean measured concentration.

(iii) Temperature. (A) The recommended test temperatures are:

(1) Fathead minnow—25 °C for all life stages.

(2) Sheepshead minnow—30 °C for all life stages.

(3) Rainbow and brook trout—10 °C for embryos. 12 °C for fry and alevins.

(4) Atlantic and tidewater silversides—25 °C for all life stages.

(B) Excursions from the test temperature shall be no greater than ±2.0 °C. It is recommended that the test system be equipped with an automatic alarm system to alert staff of instantaneous temperature changes in excess of 2 °C. If the water is heated (i.e., for minnow species), precautions should be taken to ensure that supersaturation of dissolved gases is avoided. Temperatures shall be recorded in all test chambers at the beginning of the test and weekly thereafter. The temperature shall be recorded at least hourly in one test chamber throughout the test.

(iv) Light. (A) Brook and rainbow trout embryos shall be maintained in darkness or very low light intensity through one week post-hatch, at which time a 14-hour light and 10-hour dark photoperiod shall be provided.

(B) For fathead and sheepshead minnows, a 16-hour light and 8-hour dark (or 12:12) photoperiod shall be used throughout the test period.

(C) For silversides, a 14-hour light and 10-hour dark photoperiod shall be used throughout the test period.

(D) A 15-minute to 30-minute transition period between light and dark is optional.

(E) Light intensities ranging from 30 to 100 lumens at the water surface shall be provided; the intensity selected should be duplicated as closely as possible for all test chambers.

(e) Reporting. A report of the results of an early life stage toxicity test shall include the following:

(1) Name of test, sponsor, investigator, laboratory, and dates of test duration.

(2) Detailed description of the test substance including its source, lot number, composition (identity and concentration of major ingredients and major impurities), known physical and chemical properties, and any carriers (solvents) or other additives used.

(3) The source of the dilution water, its chemical characteristics, and a description of any pretreatment.

(4) Detailed information about the test organisms including scientific name and how verified and source history, observed diseases, treatments, acclimation procedure, and concentration of any contaminants and the method of measurement.

(5) A description of the experimental design and the test chambers, the depth and volume of the solution in the chambers, the way the test was begun, the number of organisms per treatment, the number of replicates, the loading, the lighting, a description of the test substance delivery system, and the flow rate as volume additions per 24 hours.

(6) Detailed information on feeding of fish during the toxicity test, including type of food used, its source, feeding frequency and results of analysis (i.e., concentrations) for contaminants.

(7) Number of embryos hatched, number of healthy embryos, time to hatch, mortality of embryos and fry, measurements of growth (weight and length), incidence of pathological or histological effects and observations of other effects or clinical signs, number of healthy fish at end of test.

(8) Number of organisms that died or showed an effect in the control and the results of analysis for concentration(s) of any contaminant in the control(s) should mortality occur.

(9) Methods used for, and the results of (with standard deviation), all chemical analyses of water quality and test substance concentration, including validation studies and reagent blanks; the average and range of the test temperature(s).
§ 797.1930 Mysid shrimp acute toxicity test.

(a) Purpose. This guideline is intended for use in developing data on the acute toxicity of chemical substances and mixtures ("chemicals") subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes a test using mysid shrimp as test organisms to develop data on the acute toxicity of chemicals. The United States Environmental Protection Agency (EPA) will use data from these tests in assessing the hazard of a chemical to the aquatic environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA) and in part 792—Good Laboratory Practice Standards of this chapter, apply to this test guideline. The following definitions also apply to this guideline.

(1) “Death” means the lack of reaction of a test organism to gentle prodding.

(2) “Flow-through” means a continuous or an intermittent passage of test solution or dilution water through a test chamber or a holding or acclimation tank, with no recycling.

(3) “LC₅₀” means that experimentally derived concentration of test substance that is calculated to kill 50 percent of a test population during continuous exposure over a specified period of time.

(4) “Loading” means the ratio of test organisms biomass (grams, wet weight) to the volume (liters) of test solution in a test chamber.

(5) “Retention chamber” means a structure within a flow-through test chamber which confines the test organisms, facilitating observation of test organisms and eliminating loss of organisms in outflow water.

(6) “Static system” means a test chamber in which the test solution is not renewed during the period of the test.

(c) Test procedures—(1) Summary of the test. In preparation for the test, test chambers are filled with appropriate volumes of dilution water. If a flow-through test is performed, the flow of dilution water through each chamber is adjusted to the rate desired. The test substance is introduced into each test chamber. In a flow-through test, the rate at which the test substance is added is adjusted to establish and maintain the desired concentration of test substance in each test chamber. The test is started by randomly introducing mysids acclimated in accordance with the test design into the test chambers. Mysids in the test chambers are observed periodically during the test, the dead mysids removed and the findings recorded. Dissolved oxygen concentration, pH, temperature, salinity, the concentration of test substance, and other water quality characteristics are measured at specified intervals in test chambers. Data collected during the test are used to develop concentration-response curves and LC₅₀ values for the test substance.

(2) [Reserved]

(3) Range-finding test. (i) A range-finding test should be conducted to determine:

(A) Which life stage (juvenile or young adult) is to be utilized in the definitive test.

(B) The test solution concentrations for the definitive test.

(ii) The mysids should be exposed to a series of widely spaced concentrations of test substance (e.g., 1, 10, 100 mg/l, etc.), usually under static conditions.

(iii) This test should be conducted with both newly hatched juvenile (< 24 hours old) and young adult (5 to 6 days old) mysids. For each age class (juvenile or young adult), a minimum of 10 mysids should be exposed to each concentration of test substance for up to 96 hours. The exposure period may be shortened if data suitable for the purpose of the range-finding test can be...
obtained in less time. The age class which is most sensitive to the test substance in the range-finding test shall be utilized in the definitive test. When no apparent difference in sensitivity of the two life stages is found, juveniles shall be utilized in the definitive test. No replicates are required, and nominal concentrations of the chemical are acceptable.

(4) Definitive test. (i) The purpose of the definitive test is to determine the concentration-response curves and the 48- and 96-hour \(LC_{50} \) values with the minimum amount of testing beyond the range-finding test.

(ii) The definitive test shall be conducted on the mysid life stage (juveniles or young adults) which is most sensitive to the test substance being evaluated.

(iii) A minimum of 20 mysids per concentration shall be exposed to five or more concentrations of the chemical chosen in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, and 64 mg/l). An equal number of mysids shall be placed in two or more replicates. If solvents, solubilizing agents or emulsifiers have to be used, they shall be commonly used carriers and shall not possess a synergistic or antagonistic effect on the toxicity of the test substance. The concentration of solvent shall not exceed 0.1 ml/l. The concentration ranges shall be selected to determine the concentration-response curves and \(LC_{50} \) values at 48 and 96 hours.

(iv) Every test shall include controls consisting of the same dilution water, conditions, procedures, and mysids from the same population or culture container, except that none of the chemical is added.

(v) The dissolved oxygen concentration, temperature, salinity, and pH shall be measured at the beginning and end of the test in each chamber.

(vi) The test duration is 96 hours. The test is unacceptable if more than 10 percent of the control organisms die or exhibit abnormal behavior during the 96 hour test period. Each test chamber should be checked for dead mysids at 24, 48, 72, and 96 hours after the beginning of the test. Concentration-response curves and 24-, 48-, 72- and 96-hour \(LC_{50} \) values should be determined along with their 95 percent confidence limits.

(vii) In addition to death, any abnormal behavior or appearance shall also be reported.

(viii) Test organisms shall be impartially distributed among test chambers in such a manner that test results show no significant bias from the distributions. In addition, test chambers within the testing area shall be positioned in a random manner or in a way in which appropriate statistical analyses can be used to determine the variation due to placement.

(ix) The concentration of the test substance in the chambers should be measured as often as is feasible during the test. At a minimum, during static tests the concentration of test substance shall be measured at each concentration at the beginning and at the end of the test. During the flow-through test, the concentration of test substance should be measured at the beginning and end of the test and in at least one appropriate chamber whenever a malfunction is detected in any part of the test substance delivery system. Equal aliquots of test solution may be removed from each replicate chamber and pooled for analysis. Among replicate test chambers of a treatment concentration, the measured concentration of the test substance should not vary more than 20 percent.

(5) [Reserved]

(6) Analytical measurements—(i) Test chemical. Deionized water should be used in making stock solutions of the test substance. Standard analytical methods should be used whenever available in performing the analyses. The analytical method used to measure the amount of test substance in a sample shall be validated before beginning the test by appropriate laboratory practices. An analytical method is not acceptable if likely degradation products of the test substance, such as hydrolysis and oxidation products, give positive or negative interferences which cannot be systematically identified and corrected mathematically.

(ii) Numerical. The number of dead mysids shall be counted during each definitive test. Appropriate statistical analyses should provide a goodness-of-
fit determination for the concentration-response curves. A 48- and 96-hour LC50 and corresponding 95 percent interval shall be calculated.

(d) Test conditions—(1) Test species—(i) Selection. (A) The mysid shrimp, Mysisipis bahia, is the organism specified for these tests. Either juvenile (<24 hours old) or young adult (5 to 6 days old) mysids are to be used to start the test.

(B) Mysids to be used in chronic toxicity tests should originate from laboratory cultures in order to ensure the individuals are of similar age and experimental history. Mysids used for establishing laboratory cultures may be purchased commercially or collected from appropriate natural areas. Because of similarities with other mysids species, taxonomic verification should be obtained from the commercial supplier by experienced laboratory personnel or by an outside expert.

(C) Mysids used in a particular test shall be of similar age and be of normal size and appearance for their age. Mysids shall not be used for a test if they exhibit abnormal behavior or if they have been used in a previous test, either in a treatment or in a control group.

(ii) Acclimation. (A) Any change in the temperature and chemistry of the dilution water used for holding or culturing the test organisms to those of the test shall be gradual. Within a 24-hour period, changes in water temperature shall not exceed 1 °C, while salinity changes shall not exceed 5 percent.

(B) During acclimation mysids should be maintained in facilities with background colors and light intensities similar to those of the testing areas.

(iii) Care and handling. Methods for the care and handling of mysids such as those described in paragraph (f)(1) of this section can be used during holding, culturing and testing periods.

(iv) Feeding. Mysids should be fed during testing. Any food utilized should support survival, growth and reproduction of the mysids. A recommended food is live Artemia spp. (48-hour-old nauplii).

(2) Facilities—(i) Apparatus. (A) Facilities which may be needed to perform the test include: (1) flow-through or recirculating tanks for holding and acclimating mysids; (2) a mechanism for controlling and maintaining the water temperature during the holding, acclimation and test periods; (3) apparatus for straining particulate matter, removing gas bubbles, or aerating the water, as necessary; and (4) an apparatus for providing a 14-hour light and 10-hour dark photoperiod with a 15 to 30 minute transition period. In addition, for flow-through tests, flow-through chambers and a test substance delivery system are required. Furthermore, it is recommended that mysids be held in retention chambers within test chambers to facilitate observations and eliminate loss of test organisms through outflow water. For static tests, suitable chambers for exposing test mysids to the test substance are required. Facilities should be well ventilated and free of fumes and disturbances that may affect the test organisms.

(B) Test chambers shall be loosely covered to reduce the loss of test solution or dilution water due to evaporation and to minimize the entry of dust or other particulates into the solutions.

(ii) Cleaning. Test substance delivery systems and test chambers shall be cleaned before each test following standard laboratory practices.

(iii) Construction materials. (A) Materials and equipment that contact test solutions should be chosen to minimize sorption of test chemicals from dilution water and should not contain substances that can be leached into aqueous solution in quantities that can affect test results.

(B) For use in the flow-through test, retention chambers utilized for confinement of test organisms can be constructed with netting material of appropriate mesh size.

(iv) Dilution water. (A) Natural or artificial seawater is acceptable as dilution water if mysids will survive and successfully reproduce in it for the duration of the holding, acclimating and testing periods without showing signs of stress, such as reduced growth and fecundity. Mysids shall be cultured and tested in dilution water from the same origin.
(B) Natural seawater shall be filtered through a filter with a pore size of <20 microns prior to use in a test.

(C) Artificial seawater can be prepared by adding commercially available formulations or by adding specific amounts of reagent-grade chemicals to deionized water. Deionized water with a conductivity less than 1 μohm/cm at 12 °C is acceptable for making artificial seawater. When deionized water is prepared from a ground or surface water source, conductivity and total organic carbon (or chemical oxygen demand) shall be measured on each batch.

(v) Test substance delivery system. In flow-through tests, proportional diluters, metering pumps, or other suitable systems should be used to deliver test substance to the test chambers. The system used shall be calibrated before each test. Calibration includes determining the flow rate through each chamber and the concentration of the test substance in each chamber. The general operation of the test substance delivery system should be checked twice daily during a test. The 24-hour flow through a test chamber shall be equal to at least 5 times the volume of the test chamber. During a test, the flow rates should not vary more than 10 percent among test chambers or across time.

(3) Test parameters. Environmental parameters of the water contained in test chambers shall be maintained as specified below:

(i) The test temperature shall be 25°C. Excursions from the test temperature shall be not greater than ± 2°C.

(ii) Dissolved oxygen concentration between 60 and 105 percent saturation. Aeration, if needed to achieve this level, shall be done before the addition of the test substance. All treatment and control chambers shall be given the same aeration treatment.

(iii) The number of mysids placed in a test solution shall not be so great as to affect results of the test. Loading shall not exceed 30 mysids per liter for a static test. Loading requirements for the flow-through test will vary depending on the flow rate of dilution water. The loading shall not cause the dissolved oxygen concentration to fall below the recommended levels.

(iv) Photoperiod of 14 hours light and 10 hours darkness, with a 15 to 30 minute transition period.

(v) Salinity of 20 parts per thousand ±3 percent.

(e) Reporting. The sponsor shall submit to the EPA all data developed during the test that are suggestive or predictive of acute toxicity and all concomitant toxicologic manifestations. In addition to the general reporting requirements prescribed in part 792—Good Laboratory Practice Standards of this chapter, the reporting of test data shall include the following:

(1) The source of the dilution water, its chemical characteristics (e.g., salinity, pH, etc.) and a description of any pretreatment.

(2) Detailed information about the test organisms, including the scientific name and method of verification, age, source, history, abnormal behavior, acclimation procedures and food used.

(3) A description of the test chambers, the depth and volume of solution in the chamber, the way the test was begun (e.g., conditioning, test substance additions, etc.), the number of organisms per treatment, the number of replicates, the loading, the lighting, the test substance delivery system and the flow rate expressed as volume additions per 24 hours.

(4) The measured concentration of test substance in test chambers at the times designated.

(5) The number and percentage of organisms that died or showed any other adverse effects in the control and in each treatment at each observation period.

(6) Concentration-response curves shall be fitted to mortality data collected at 24, 48, 72, and 96 hours. A statistical test of goodness-of-fit shall be performed and the results reported.

(7) The 96-hour LC_{50}, and when sufficient data have been generated, the 24-, 48-, and 72-hour LC_{50}'s and the corresponding 95-percent confidence limits and the methods used to calculate the values. These calculations shall be made using the average measured concentration of the test substance.

(8) Methods and data records of all chemical analyses of water quality and
test substance concentrations, including method validations and reagent blanks.

(9) The data records of the holding, acclimation and test temperature and salinity.

(f) References. For additional background information on this test guideline the following references should be consulted:

(2) [Reserved]

§ 797.1950 Mysid shrimp chronic toxicity test.

(a) Purpose. This guideline is intended for use in developing data on the chronic toxicity of chemical substances and mixtures ("chemicals") subject to environmental effects test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C. 2601 et seq.). This guideline prescribes tests using mysids as test organisms to develop data on the chronic toxicity of chemicals. The United States Environmental Protection Agency (EPA) will use data from these tests in assessing the hazard of a chemical to the aquatic environment.

(b) Definitions. The definitions in section 3 of the Toxic Substances Control Act (TSCA) and in part 792—Good Laboratory Practice Standards of this chapter apply to this test guideline. The following definitions also apply to this guideline:

(1) "Chronic toxicity test" means a method used to determine the concentration of a substance that produces an adverse effect from prolonged exposure of an organism to that substance. In this test, mortality, number of young per female and growth are used as measures of chronic toxicity.

(2) "Death" means the lack of reaction of a test organism to gentle prodding.

(3) "Flow-through" means a continuous or an intermittent passage of test solution or dilution water through a test chamber or a holding or acclimation tank, with no recycling.

(4) "G1 (Generation 1)" means those mysids which are used to begin the test, also referred to as adults; G2 (Generation 2) are the young produced by G1.

(5) "LC50" means that experimentally derived concentration of test substance that is calculated to kill 50 percent of a test population during continuous exposure over a specified period of time.

(6) "Loading" means the ratio of test organism biomass (gram, wet weight) to the volume (liters) of test solution in a test chamber.

(7) "MATC" (Maximum Acceptable Toxicant Concentration) means the maximum concentration at which a chemical can be present and not be toxic to the test organism.

(8) "Retention chamber" means a structure within a flow-through test chamber which confines the test organisms, facilitating observation of test organisms and eliminating washout from test chambers.

(c) Test procedures—(1) Summary of the test. (i) In preparation for the test, the flow of test solution through each chamber is adjusted to the rate desired. The test substance is introduced into each test chamber. The rate at which the test substance is added is adjusted to establish and maintain the desired concentration of test substance in each test chamber. The test is started by randomly introducing mysids acclimated in accordance with the test design into retention chambers within the test and control chambers. Mysids in the test and control chambers are observed periodically during the test, the dead mysids removed and the findings reported.

(ii) Dissolved oxygen concentration, pH, temperature, salinity, the concentration of test substance and other water quality characteristics are measured at specified intervals in selected test chambers.

(iii) Data collected during the test are used to develop a MATC (Maximum Acceptable Toxicant Concentration) and quantify effects on specific chronic parameters.

(2) [Reserved]
(3) Range-finding test. (i) A range-finding test should be conducted to establish test solution concentrations for the definitive test.

(ii) The mysids should be exposed to a series of widely spaced concentrations of the test substance (e.g., 1, 10, 100 mg/l), usually under static conditions.

(iii) A minimum of 10 mysids should be exposed to each concentration of test substance for a period of time which allows estimation of appropriate chronic test concentrations. No replicates are required and nominal concentrations of the chemical are acceptable.

(4) Definitive test. (i) The purpose of the definitive test is to determine concentration-response curves, \(LC_{50} \) values, and effects of a chemical on growth and reproduction during chronic exposure.

(ii) A minimum of 40 mysids per concentration shall be exposed to four or more concentrations of the chemical chosen in a geometric series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, and 64 mg/l). An equal number of mysids shall be placed in two or more replicates. If solvents, solubilizing agents or emulsifiers have to be used, they shall be commonly used carriers and shall not possess a synergistic or antagonistic effect on the toxicity of the test substance. The concentration of solvent should not exceed 0.1 ml/l. The concentration ranges should be selected to determine the concentration response curves, \(LC_{50} \) values and MATC. Concentration of test substance in test solutions should be analyzed prior to use.

(iii) Every test should include controls consisting of the same dilution water, conditions, procedures and mysids from the same population or culture container, except that none of the chemical is added.

(iv) The dissolved oxygen concentration, temperature, salinity, and pH shall be measured weekly in each chamber.

(v) The test duration is 28 days. The test is unacceptable if more than 20 percent of the control organisms die, appear stressed or are diseased during the test. The number of dead mysids in each chamber shall be recorded on days 7, 14, 21, and 28 of the test. At the time when sexual characteristics are discernible in the mysids (approximately 10 to 12 days in controls; possible delays may occur in mysids exposed to test substances), the number of males and females (identified by ventral brood pouch) in each chamber shall be recorded. Body length (as measured by total midline body length, from the anterior tip of the carapace to the posterior margin of the uropod) shall be recorded for males and females at the time when sex can be determined simultaneously for all mysids in control and treatment groups. This time cannot be specified because of possible delays in sexual maturation of mysids exposed to test substances. A second observation of male and female body lengths shall be conducted on day 28 of the test. To reduce stress on the mysids, body lengths can be recorded by photography through a stereomicroscope with appropriate scaling information. As offspring are produced by the G1 mysids (approximately 13 to 16 days in controls), the young shall be counted and separated into retention chambers at the same test substance concentration as the chambers where they originated. If available prior to termination of the test, observations on the mortality, number of males and females and male and female body length shall be recorded for the G2 mysids. Concentration-response curves, \(LC_{50} \) values and associated 95 percent confidence limits for the number of dead mysids (G1) shall be determined for days 7, 14, 21, and 28. An MATC shall be determined for the most sensitive test criteria measured (cumulative mortality of adult mysids, number of young per female, and body lengths of adult males and females).

(vi) In addition to death, any abnormal behavior or appearance shall also be reported.

(vii) Test organisms shall be impartially distributed among test chambers in such a manner that test results show no significant bias from the distributions. In addition, test chambers within the testing area shall be positioned in a random manner or in a way in which appropriate statistical analyses can be used to determined the variation due to placement.
§ 797.1950 40 CFR Ch. I (7–1–99 Edition)

(viii) The concentration of the test substance in the chambers should be measured as often as is feasible during the test. The concentration of test substance shall be measured:
 (A) At each test concentration at the beginning of the test and on days 7, 14, 21, and 28; and
 (B) In at least one appropriate chamber whenever a malfunction is detected in any part of the test substance delivery system.

Equal aliquots of test solutions may be removed from each test chamber and pooled for analysis. Among replicate test chambers of a treatment concentration, the measured concentration of the test substance should not vary more than 20 percent.

(5) [Reserved]

(6) Analytical measurements—(i) Test chemical. Deionized water should be used in making stock solutions of the test substance. Standard analytical methods should be employed whenever available in performing the analyses. The analytical method used to measure the amount of test substance in a sample shall be validated before beginning the test by appropriate laboratory practices. An analytical method is not acceptable if likely degradation products of the test substance, such as hydrolysis and oxidation products, give positive or negative interferences which cannot be systematically identified and corrected mathematically.

 (ii) Numerical. (A) The number of dead mysids, cumulative young per female, and body lengths of male and female mysids shall be recorded during each definitive test. Appropriate statistical analyses shall provide a goodness-of-fit determination for the day 7, 14, 21 and 28 adult (Gl) death concentration-response curves.

 (B) A 7-, 14-, 21- and 28-day LC₅₀, based on adult (Gl) death, and corresponding 95 percent confidence intervals shall be calculated. Appropriate statistical tests (e.g., analysis of variance, mean separation test) should be used to test for significant chemical effects on chronic test criteria (cumulative mortality of adults, cumulative number of young per female and body lengths of adult male and females) on designated days. An MATC shall be calculated using these chronic test criteria.

 (d) Test conditions—(1) Test species—(i) Selection. (A) The mysid shrimp, Mysidopsis bahia, is the organism specified for these tests. Juvenile mysids, ≤24 hours old, are to be used to start the test.

 (B) Mysids to be used in chronic toxicity tests should originate from laboratory cultures in order to ensure the individuals are of similar age and experimental history. Mysids used for establishing laboratory cultures may be purchased commercially or collected from appropriate natural areas. Because of similarities with other mysid species, taxonomic verification should be obtained from the commercial supplier, by experienced laboratory personnel, or by an outside expert.

 (C) Mysids used in a particular test shall be of similar age and be of normal size and appearance for their age.

 (D) Mysids shall not be used for a test if they exhibit abnormal behavior, or if they have been used in a previous test, either in a treatment or in a control group.

 (ii) Acclimation. (A) Any change in the temperature and chemistry of the water used for holding or culturing the test organisms to those of the test should be gradual. Within a 24-hour period, changes in water temperature should not exceed 1 °C, while salinity changes should not exceed 5 percent.

 (B) During acclimation mysids should be maintained in facilities with background colors and light intensities similar to those of the testing areas.

 (iii) Care and handling. Methods for the care and handling of mysids such as those described in paragraph (f)(1) of this section can be used during holding, culturing and testing periods.

 (iv) Feeding. Mysids should be fed during testing. Any food utilized should support survival, growth and reproduction of the mysids. A recommended food is live Artemia spp. nauplii (approximately 48 hours old).

 (2) Facilities—(i) Apparatus. (A) Facilities which may be needed to perform this test include: (1) flow-through or recirculating tanks for holding and acclimating mysids; (2) a mechanism for controlling and maintaining the water temperature during the holding
acclimation and test periods; (3) apparatus for straining particulate matter, removing gas bubbles, or aerating the water, as necessary; and (4) an apparatus for providing a 14-hour light and 10-hour dark photoperiod with a 15- to 30-minute transition period. In addition, flow-through chambers and a test substance delivery system are required. It is recommended that mysids be held in retention chambers within test chambers to facilitate observations and eliminate loss through outflow water.

(B) Facilities should be well ventilated and free of fumes and disturbances that may affect test organisms.

(C) Test chambers shall be loosely covered to reduce the loss of test solution or dilution water due to evaporation and to minimize the entry of dust or other particulates into the solutions.

(ii) Cleaning. Test substance delivery systems and test chambers shall be cleaned before each use following standard laboratory practices.

(iii) Construction materials. (A) Materials and equipment that contact test solutions should be chosen to minimize sorption of test chemicals from the dilution water and should not contain substances that can be leached into aqueous solution in quantities that can affect the test results.

(B) Retention chambers utilized for confinement of test organisms can be constructed with netting material of appropriate mesh size.

(iv) Dilution water. (A) Natural or artificial seawater is acceptable as dilution water if mysids will survive and successfully reproduce in it for the duration of the holding, acclimating and testing periods without showing signs of stress, such as reduced growth and fecundity. Mysids shall be cultured and tested in dilution water from the same origin.

(B) Natural seawater shall be filtered through a filter with a pore size of >20 microns prior to use in a test.

(C) Artificial seawater can be prepared by adding commercially available formulations or by adding specific amounts of reagent-grade chemicals to deionized or glass-distilled water. Deionized water with a conductivity less than 1 µohm/cm at 12 °C is acceptable as the diluent for making artificial seawater. When deionized water is prepared from a ground or surface water source, conductivity and total organic carbon (or chemical oxygen demand) shall be measured on each batch.

(v) Test substance delivery system. Proportional diluters, metering pumps, or other suitable systems should be used to deliver test substance to the test chambers. The system used shall be calibrated before each test. Calibration includes determining the flow rate and the concentration of the test substance in each chamber. The general operation of the test substance delivery system should be checked twice daily during a test. The 24-hour flow rate through a chamber shall be equal to at least 5 times the volume of the chamber. The flow rates should not vary more than 10 percent among chambers or across time.

(3) Test parameters. Environmental parameters of the water contained in test chambers shall be maintained as specified below:

(i) The test temperature shall be 25 °C. Excursions from the test temperature shall be no greater than ±2 °C.

(ii) Dissolved oxygen concentration between 60 and 105 percent saturation. Aeration, if needed to achieve this level, shall be done before the addition of the test substance. All treatment and control chambers shall be given the same aeration treatment.

(iii) The number of mysids placed in a test solution shall not be so great as to affect results of the test. Loading requirements for the test will vary depending on the flow rate of dilution water. The loading shall not cause the dissolved oxygen concentration to fall below the recommended levels.

(iv) Photoperiod of 14 hours light and 10 hours darkness, with a 15–30 minute transition period.

(v) Salinity of 20 parts per thousand ±3 percent.

(e) Reporting. The sponsor shall submit to the EPA all data developed by the test that are suggestive or predictive of chronic toxicity and all concomitant toxicologic manifestations. In addition to the general reporting requirements prescribed in part 792—Good Laboratory Practice Standards of
this chapter, the reporting of test data shall include the following:

(1) The source of the dilution water, its chemical characteristics (e.g., salinity, pH, etc.) and a description of any pretreatment.

(2) Detailed information about the test organisms, including the scientific name and method of verification, average length, age, source, history, observed diseases, treatments, acclimation procedures and food used.

(3) A description of the test chambers, the depth and volume of solution in the chamber, the way the test was begun (e.g., conditioning, test substance additions, etc.), the number of organisms per treatment, the number of replicates, the loading, the lighting, the test substance delivery system, and the flow rate expressed as volume additions per 24 hours.

(4) The measured concentration of test substance in test chambers at the times designated.

(5) The first time (day) that sexual characteristics can be observed in controls and in each test substance concentration.

(6) The length of time for the appearance of the first brood for each concentration.

(7) The means (average of replicates) and respective 95 percent confidence intervals for:
 (i) Body length of males and females at the first observation day (depending on time of sexual maturation) and on day 28.
 (ii) Cumulative number of young produced per female on day 28.
 (iii) Cumulative number of dead adults on day 7, 14, 21 and 28.
 (iv) If available prior to test termination (day 28), effects on G2 mysids (number of males and females, body length of males and females and cumulative mortality).

(8) The MATC is calculated as the geometric mean between the lowest measured test substance concentration that had a significant \(P < 0.05\) effect and the highest measured test substance concentration that had no significant \(P < 0.05\) effect in the chronic test. The most sensitive of the test criteria for adult (GI) mysids (cumulative number of dead mysids, body lengths of males and females or the number of young per female) is used to calculate the MATC. The criterion selected for MATC computation is the one which exhibits an effect (a statistically significant difference between treatment and control groups; \(P < 0.05\)) at the lowest test substance concentration for the shortest period of exposure. Appropriate statistical tests (analysis of variance, mean separation test) should be used to test for significant chemical effects. The statistical tests employed and the results of these tests shall be reported.

(9) Concentration-response curves shall be fitted to the cumulative number of adult dead for days 7, 14, 21, and 28. A statistical test of goodness-of-fit shall be performed and the results reported.

(10) An LC\(_{50}\) value based on the number of dead adults with corresponding 95 percent confidence intervals for days 7, 14, 21 and 28. These calculations shall be made using the average measured concentration of the test substance.

(11) Methods and data records of all chemical analyses of water quality and test substance concentrations, including method validations and reagent blanks.

(12) The data records of the holding, acclimation and test temperature and salinity.

(f) References. For additional background information on this test guideline the following references should be consulted:

(2) [Reserved]
Environmental Protection Agency

Subpart D—Chronic Exposure

798.2260 Chronic toxicity.
798.3300 Oncogenicity.
798.3320 Combined chronic toxicity/oncogenicity.

Subpart E—Specific Organ/Tissue Toxicity

798.4100 Dermal sensitization.
798.4350 Inhalation developmental toxicity study.
798.4700 Reproduction and fertility effects.
798.4900 Developmental toxicity study.

Subpart F—Genetic Toxicity

798.5195 Mouse biochemical specific locus test.
798.5200 Mouse visible specific locus test.
798.5285 The salmonella typhimurium reverse mutation assay.
798.5265 The salmonella typhimurium reverse mutation assay.
798.5275 Sex-linked recessive lethal test in drosophila melanogaster.
798.5300 Detection of gene mutations in somatic cells in culture.
798.5375 In vitro mammalian bone marrow cytogenetics test: Chromosomal analysis.
798.5385 In vivo mammalian bone marrow cytogenetics test: Micronucleus assay.
798.5395 In vivo mammalian bone marrow cytogenetics test: Micronucleus assay.
798.5450 Rodent dominant lethal assay.
798.5460 Rodent heritable translocation assays.
798.5500 Differential growth inhibition of repair proficient and repair deficient bacteria: "Bacterial DNA damage or repair tests."
798.5955 Heritable translocation test in drosophila melanogaster.

Subpart G—Neurotoxicity

798.6050 Functional observational battery.
798.6200 Motor activity.
798.6400 Neuropathology.
798.6500 Schedule-controlled operant behavior.
798.6560 Subchronic delayed neurotoxicity of organophosphorus substances.

Source: 50 FR 39397, Sept. 27, 1985, unless otherwise noted.

Subpart A-B [Reserved]

Subpart C—Subchronic Exposure

§ 798.2250 Dermal toxicity.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of a chemical, the determination of subchronic dermal toxicity may be carried out after initial information on toxicity has been obtained by acute testing. The subchronic dermal study has been designed to permit the determination of the no-observed-effect level and toxic effects associated with continuous or repeated exposure to a test substance for a period of 90 days. The test is not capable of determining those effects that have a long latency period for development (e.g., carcinogenicity and life shortening). It provides information on health hazards likely to arise from repeated exposure by the dermal route over a limited period of time. It will provide information on target organs, the possibilities of accumulation, and can be of use in selecting dose levels for chronic studies and for establishing safety criteria for human exposure.

(b) Definitions. (1) Subchronic dermal toxicity is the adverse effects occurring as a result of the repeated daily exposure of experimental animals to a chemical by dermal application for part (approximately 10 percent) of a life span.

(2) Dose in a dermal test is the amount of test substance applied to the skin (applied daily in subchronic tests). Dose is expressed as weight of the substance (g, mg) per unit weight of test animal (e.g., mg/kg).

(3) No-effect level/No-toxic-effect level/No-adverse-effect level/No-observed-effect level is the maximum dose used in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of the weight of a test substance given daily per unit weight of test animal (mg/kg).

(4) Cumulative toxicity is the adverse effects of repeated doses occurring as a result of prolonged action on, or increased concentration of the administered test substance or its metabolites in susceptible tissues.

(c) Principle of the test method. The test substance is applied daily to the skin in graduated doses to several groups of experimental animals, one dose level per unit group, for a period of 90 days. During the period of application the animals are observed daily to detect signs of toxicity. Animals which die during the test are necropsied, and at the conclusion of the test the surviving animals are sacrificed and
(d) Limit test. If a test at one dose level of at least 1,000 mg/kg body weight (expected human exposure may indicate the need for a higher dose level), using the procedures described for this study, produces no observable toxic effects and if toxicity would not be expected based upon data of structurally related compounds, then a full study using three dose levels might not be necessary.

(e) Test procedures—(1) Animal selection—(i) Species and strain. A mammalian species shall be used for testing. The rat, rabbit, or guinea pig may be used, although the albino rabbit is preferred. The albino rabbit is preferred because of its size, skin permeability, and extensive data base. Commonly used laboratory strains shall be employed. If another mammalian species is used, the tester shall provide justification/reasoning for its selection.

(ii) Age. Young adult animals shall be used. The following weight ranges at the start of the test are suggested in order to provide animals of a size which facilitates the conduct of the test: rats, 200 to 300 g; rabbits, 2.0 to 3.0 kg; guinea pigs, 350 to 450 g.

(iii) Sex. (A) Equal numbers of animals of each sex with healthy skin shall be used at each dose level.

(B) The females shall be nulliparous and nonpregnant.

(iv) Numbers. (A) At least 20 animals (10 females and 10 males) shall be used at each dose level.

(B) If interim sacrifices are planned, the number shall be increased by the number of animals scheduled to be sacrificed before completion of the study.

(2) Control groups. A concurrent control group is required. This group shall be an untreated or sham-treated control group or, if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are required.

(3) Satellite group. A satellite group of 20 animals (10 animals per sex) may be treated with the high dose level for 90 days and observed for reversibility, persistence, or delayed occurrence, of toxic effects for a posttreatment period of appropriate length, normally not less than 28 days.

(4) Dose level and dose selection. (i) In subchronic toxicity tests, it is desirable to have a dose-response relationship as well as a no-observed-toxic-effect level. Therefore, at least 3 dose levels with a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest exposure level) shall be used. Doses should be spaced appropriately to produce test groups with a range of toxic effects. The data shall be sufficient to produce a dose-response curve.

(ii) The highest dose level should result in toxic effects but not produce severe skin irritation or an incidence of fatalities which would prevent a meaningful evaluation.

(iii) The lowest dose level should not produce any evidence of toxicity. Where there is a usable estimation of human exposure, the lowest dose level should exceed this.

(iv) Ideally, the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate dose is used, the dose levels should be spaced appropriately to produce a gradation of toxic effects.

(v) In the low and intermediate groups and in the controls the incidence of fatalities should be low, to permit a meaningful evaluation of the results.

(5) Exposure conditions. The animals are treated with test substance, ideally for at least 6 hours per day on a 7-day per week basis, for a period of 90 days. However, based primarily on practical considerations, application on a 5-day per week basis is considered to be acceptable.

(6) Observation period. (i) Duration of observation shall be at least 90 days.

(ii) Animals in the satellite group scheduled for followup observations should be kept for at least 28 days further without treatment to detect recovery from, or persistence of, toxic effects.

(7) Preparation of animal skin. (i) Shortly before testing, fur shall be clipped from the dorsal area of the trunk of the test animals. Shaving may be employed, but it should be carried...
out approximately 24 hours before the test. Repeat clipping or shaving is usually needed at approximately weekly intervals. When clipping or shaving the fur, care should be taken to avoid abrading the skin, which could alter its permeability.

(ii) Not less than 10 percent of the body surface area should be clear for the application of the test substance. The weight of the animal should be taken into account when deciding on the area to be cleared and on the dimensions of any covering used.

(iii) When testing solids, which may be pulverized if appropriate, the test substance should be moistened sufficiently with water or, where necessary, a suitable vehicle to ensure good contact with the skin. When a vehicle is used, the influence of the vehicle on toxicity of and penetration of the skin by the test substance should be taken into account.

(8) Application of the test substance. (i) The test substance shall be applied uniformly over an area which is approximately 10 percent of the total body surface area. With highly toxic substances, the area of the skin to be covered may be less, but as much of the area shall be covered with as thin and uniform a film as possible.

(ii) During the exposure period, the test substance shall be held in contact with the skin with a porous gauze dressing and nonirritating tape. The test site shall be further covered in a suitable manner to retain the gauze dressing and test substance and ensure that the animals cannot ingest the test substance. Restrainers may be used to prevent the ingestion of the test substance, but complete immobilization is not a recommended method.

(9) Observation of animals. (i) Each animal shall be observed daily, and if necessary handled to appraise its physical condition.

(ii) Additional observations shall be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Signs of toxicity shall be recorded as they are observed, including the time of onset, the degree, and duration.

(iv) Cage-side observations shall include, but not be limited to, changes in skin and fur, eyes and mucous membranes, respiratory, circulatory, autonomic and central nervous systems, somatomotor activity and behavior pattern.

(v) Animals shall be weighed weekly. Feed consumption shall also be determined weekly if abnormal body weight changes are observed.

(vi) At the end of the study period, all survivors in the nonsatellite treatment groups shall be sacrificed. Moribund animals shall be removed and sacrificed when noticed.

(10) Clinical examinations. (i) The following examinations shall be made on all animals of each sex in each group:

(A) Certain hematology determinations shall be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Hematology determinations which are appropriate to all studies: Hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count, and a measure of clotting potential such as clotting time, prothrombin time, thromboplastin time, or platelet count.

(B) Certain clinical biochemistry determinations on blood should be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Clinical biochemistry test areas which are considered appropriate to all studies: Electrolyte balance, carbohydrate metabolism, and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance. Suggested determinations: Calcium, phosphorus, chloride, sodium, potassium, fasting glucose (with period of fasting appropriate to the species), serum glutamic pyruvic transaminase (now known as serum alanine aminotransferase), serum glutamic oxaloacetic transaminase (now known as serum aspartate aminotransferase), ornithine decarboxylase, gamma glutamyl
transpeptidase, urea nitrogen, albumen,
blood creatinine, total bilirubin, and
total serum protein measurements.
Other determinations which may be
necessary for an adequate toxicological
evaluation include: Analyses of lipids,
hormones, acid/base balance,
methemoglobin, and cholinesterase ac-
tivity. Additional clinical bio-
chemistry may be employed, where
necessary, to extend the investigation
of observed effects.

(ii) The following examinations shall
be made on high dose and control
groups. If changes in the eyes are de-
tected all animals should be examined.
(A) Ophthalmological examination,
using an ophthalmoscope or equivalent
suitable equipment, shall be made
prior to exposure to the test substance
and at the termination of the study.
(B) Urinalysis is not recommended on
a routine basis, but only when there is
an indication based on expected or ob-
served toxicity.

(i) Gross necropsy. (i) All animals
shall be subjected to a full gross ne-
cropsy which includes examination of
the external surface of the body, all
orifices, and the cranial, thoracic, and
abdominal cavities and their contents.
(ii) The liver, kidneys, adrenals,
brain, and gonads shall be weighed wet,
as soon as possible after dissection, to
avoid drying. In addition, for the ro-
dent, the brain; for the non-rodent, the
thyroid with parathyroids also shall be
weighed wet.
(iii) The following organs and tissues,
or representative samples thereof, shall
be preserved in a suitable medium for
possible future histopathological exam-
ation: All gross lesions; lungs—which
should be removed intact, weighed, and
treated with a suitable fixative to en-
sure that lung structure is maintained
(perfusion with the fixative is consid-
ered to be an effective procedure); na-
sopharyngeal tissues; brain—including
sections of medulla/pons, cerebellar cortex,
and cerebral cortex; pituitary; thyroid/parathyroid; thymus; trachea;
heart; sternum with bone marrow; sali-
vary glands; liver; spleen; kidneys;
adrenals; pancreas; gonads; uterus; ac-
cessory genital organs (epididymis,
prostate, and, if present, seminal ves-
cicles); aorta (skin); gall bladder (if
present); esophagus; stomach; duode-
num; jejunum; ileum; cecum; colon;
rectum; urinary bladder; representa-
tive lymph node; (mammary gland);
thigh musculature); peripheral nerve;
(eyes); (femur—including articular sur-
face); (spinal cord at three levels—cer-
vical, midthoracic, and lumbar); and
(zymbal and exorbital lachrymal
glands).

(12) Histopathology. The following
histopathology shall be performed:
(i) Full histopathology on normal
and treated skin and on organs and tis-
sues, listed above, of all animals in the
control and high dose groups.
(ii) All gross lesions in all animals.
(iii) Target organs in all animals.
(iv) The tissues listed in parenthesis
in paragraph (e)(11)(iii) of this section,
if indicated by signs of toxicity or ex-
pected target organ involvement.
(v) Lungs of animals (rodents) in the
low and intermediate dose groups shall
be subjected to histopathological ex-
amination for evidence of infection,
since this provides a convenient assess-
ment of the state of health of the ani-
mal.

(vi) When a satellite group is used,
histopathology shall be performed on
tissues and organs identified as show-
ing effects in the treated groups.

(f) Data and reporting—(1) Treatment
of results. (i) Data shall be summarized
in tabular form, showing for each test
group the number of animals at the
start of the test, the number of ani-
mals showing lesions, the types of le-
sions, and the percentage of animals
displaying each type of lesion.
(ii) All observed results, quantitative
and incidental, should be evaluated by
an appropriate statistical method. Any
generally accepted statistical method
may be used; the statistical methods
should be selected during the design of
the study.

(2) Evaluation of results. The findings
of a subchronic dermal toxicity study
should be evaluated in conjunction
with the findings of preceding studies
and considered in terms of the observed
toxic effects and the necropsy and
histopathological findings. The evalua-
tion should include the relationship be-
tween the dose of the test substance
and the presence or absence, the inci-
dence and severity, of abnormalities,
Environmental Protection Agency § 798.2450

including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effect on mortality and any other general or specific toxic effects. A properly conducted subchronic test should provide a satisfactory estimation of a no-effect level.

(3) Test report. In addition to the reporting requirements as specified in the EPA Good Laboratory Practice Standards under 40 CFR part 792, subpart J, the following specific information shall be reported.

(i) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:

(A) Number of animals dying.

(B) Number of animals showing signs of toxicity.

(C) Number of animals exposed.

(ii) Individual animal data. (A) Date of death during the study or whether animals survived to termination.

(B) Date of observation of each abnormal sign and its subsequent course.

(C) Body weight data.

(D) Feed consumption data when collected.

(E) Hematological tests employed and all results.

(F) Clinical biochemistry tests employed and all results.

(G) Necropsy findings.

(H) Detailed description of all histopathological findings.

(I) Statistical treatment of results where appropriate.

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.2450 Inhalation toxicity.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of a gas, volatile substance, or aerosol/particulate, determination of subchronic inhalation toxicity may be carried out after initial information on toxicity has been obtained by acute testing. The subchronic inhalation study has been designed to permit the determination of the no-observed-effect level and toxic effects associated with continuous or repeated exposure to a test substance for a period of 90 days. The test is not capable of determining those effects that have a long latency period for development (e.g., carcinogenicity and life shortening). It provides information on health hazards likely to arise from repeated exposures by the inhalation route over a limited period of time. It will provide information on target organs, the possibilities of accumulation, and can be of use in selecting dose levels for chronic studies and for establishing safety criteria for human exposure. Hazards of inhaled substances are influenced by the inherent toxicity and by physical factors such as volatility and particle size.

(b) Definitions. (1) Subchronic inhalation toxicity is the adverse effects occurring as a result of the repeated daily exposure of experimental animals to a chemical by inhalation for part (approximately 10 percent) of a life span.

(2) Aerodynamic diameter applies to the size of particles of aerosols. It is the diameter of a sphere of unit density which behaves aerodynamically as the particle of the test substance. It is used to compare particles of different size and densities and to predict where in the respiratory tract such particles may be deposited. This term is used in
contrast to measured or geometric diameter which is representative of actual diameters which in themselves cannot be related to deposition within the respiratory tract.

(3) The geometric mean diameter or the median diameter is the calculated aerodynamic diameter which divides the particles of an aerosol in half based on the weight of the particles. Fifty percent of the particles by weight will be larger than the median diameter and 50 percent of the particles will be smaller than the median diameter. The median diameter describes the particle size distribution of any aerosol based on the weight and size of the particles.

(4) Inhalable diameter refers to that aerodynamic diameter of a particle which is considered to be inhalable for the organism. It is used to refer to particles which are capable of being inhaled and may be deposited anywhere within the respiratory tract from the trachea to the alveoli. For man, inhalable diameter is considered as 15 micrometers or less.

(5) Dose refers to an exposure level. Exposure is expressed as weight or volume of test substance per volume of air (mg/l), or as parts per million (ppm).

(6) No-effect level/No-toxic-effect level/No-adverse-effect level/No-observed-effect level is the maximum dose used in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of weight or volume of test substance given daily per unit volume of air (mg/l or ppm).

(7) Cumulative toxicity is the adverse effects of repeated doses occurring as a result of prolonged action on, or increased concentration of the administered test substance or its metabolites in susceptible tissues.

(c) Principle of the test method. Several groups of experimental animals are exposed daily for a defined period to the test substance in graduated concentrations, one concentration being used per group, for a period of 90 days. During the period of administration, the animals are observed daily to detect signs of toxicity. Animals which die during the test are necropsied and at the conclusion of the test, surviving animals are sacrificed and necropsied and appropriate histopathological examinations carried out.

(d) Test procedures—(1) Animal selection—(i) Species and strain. A mammalian species shall be used for testing. A variety of rodent species may be used, although the rat is the preferred species. Commonly used laboratory strains shall be employed. If another mammalian species is used, the tester shall provide justification/ reasoning for its selection.

(ii) Age. Young adult animals shall be used. At the commencement of the study the weight variation of animals shall not exceed ±20 percent of the mean weight for each sex.

(iii) Sex. (A) Equal numbers of animals of each sex shall be used at each dose level.

(B) Females shall be nulliparous and nonpregnant.

(iv) Numbers. (A) At least 20 rodents (10 females and 10 males) shall be used for each test group. If another mammalian species is selected (e.g. dog, rabbit, or non-human primate), at least 8 animals (4 males and 4 females) shall be used.

(B) If interim sacrifices are planned, the number of animals shall be increased by the number of animals scheduled to be sacrificed before the completion of the study.

(2) Control groups. A concurrent control group is required. This group shall be an untreated or sham-treated control group. Except for treatment with the test substance, animals in the control group shall be handled in a manner identical to the test group animals. Where a vehicle is used to help generate an appropriate concentration of the substance in the atmosphere, a vehicle control group shall be used. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are required.

(3) Satellite group. A satellite group of 20 animals (10 animals per sex) may be treated with the high concentration level for 90 days and observed for reversibility, persistence, or delayed occurrence of toxic effects for a post-treatment period of appropriate length, normally not less than 28 days.
(4) Dose levels and dose selection. (i) In subchronic toxicity tests, it is desirable to have a concentration-response relationship as well as a no-observed-toxic-effect level. Therefore, at least 3 concentration levels with a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest exposure level) shall be used. Concentrations should be spaced appropriately to produce test groups with a range of toxic effects. The data should be sufficient to produce a concentration-response curve.

(ii) The highest concentration should result in toxic effects but not produce an incidence of fatalities which would prevent a meaningful evaluation.

(iii) The lowest concentration should not produce any evidence of toxicity. Where there is a usable estimation of human exposure the lowest concentration should exceed this.

(iv) Ideally, the intermediate concentration level(s) should produce minimal observable toxic effects. If more than one intermediate concentration level is used, the concentrations should be spaced to produce a gradation of toxic effects.

(v) In the low and intermediate groups and in the controls the incidence of fatalities should be low, to permit a meaningful evaluation of the results.

(vi) In the case of potentially explosive test substances, care should be taken to avoid generating explosive concentrations.

(5) Exposure conditions. The animals should be exposed to the test substance, ideally for 6 hours per day on a 7-day per week basis, for a period of 90 days. However, based primarily on practical considerations, exposure on a 5-day-per-week basis for 6 hours per day is the minimum acceptable exposure period.

(6) Observation period. (i) Duration of observation shall be for at least 90 days.

(ii) Animals in a satellite group scheduled for followup observations should be kept for at least 28 days further without treatment to detect recovery from, or persistence of, toxic effects.

(7) Inhalation exposure. (i) The animals shall be tested in inhalation equipment designed to sustain a minimum dynamic air flow of 12 to 15 air changes per hour and ensure an adequate oxygen content of 19 percent and an evenly distributed exposure atmosphere. Where a chamber is used, its design should minimize crowding of the test animals and maximize their exposure to the test substance. This is best accomplished by individual caging. To ensure stability of a chamber atmosphere, the total “volume” of the test animals shall not exceed 5 percent of the volume of the test chamber. Oronasal or head-only exposure may be used if it is desirable to avoid concurrent exposure by the dermal or oral routes.

(ii) A dynamic inhalation system with a suitable flow control system shall be used. The rate of air flow shall be adjusted to ensure that conditions throughout the exposure chamber are essentially the same. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into surrounding areas.

(iii) The temperature at which the test is performed should be maintained at 22 °C (±2°). Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.

(8) Physical measurements. Measurements or monitoring shall be made of the following:

(i) The rate of air flow shall be monitored continuously and recorded at least every 30 minutes.

(ii) The actual concentrations of the test substance shall be measured in the breathing zone. During the exposure period the actual concentrations of the test substance shall be held as constant as practicable, monitored continuously or intermittently depending on the method of analysis, and recorded at least at the beginning, at an intermediate time, and at the end of the exposure period.

(iii) During the development of the generating system, particle size analysis shall be performed to establish the stability of aerosol concentrations.
§ 798.2450

with respect to particle size. During exposure, analysis shall be conducted as often as necessary to determine the consistency of particle size distribution.

(iv) Temperature and humidity shall be monitored continuously but shall be recorded at least every 30 minutes.

(9) Feed and water during exposure period. Feed shall be withheld during exposure. Water may also be withheld during exposure.

(10) Observation of animals. (i) Each animal shall be observed daily and, if necessary, handled to appraise its physical condition.

(ii) Additional observations should be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Signs of toxicity shall be recorded as they are observed including the time of onset, the degree, and duration.

(iv) Cage-side observations should include, but not be limited to, changes in the skin and fur, eyes and mucous membranes, respiratory, circulatory, autonomic and central nervous systems, somatomotor activity and behavior pattern.

(v) Animals shall be weighed weekly. Feed consumption shall also be determined weekly if abnormal body weight changes are observed.

(vi) At the end of the study period all survivors in the nonsatellite treatment groups shall be sacrificed. Moribund animals shall be removed and sacrificed when noticed.

(11) Clinical examinations. (i) The following examinations shall be made on all animals of each sex in each group:

(A) Certain hematology determinations shall be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Hematology determinations which are appropriate to all studies: Hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count, and a measure of clotting potential such as clotting time, prothrombin time, thromboplastin time, or platelet count.

(B) Certain clinical biochemistry determinations on blood should be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Clinical biochemistry test areas which are considered appropriate to all studies: Electrolyte balance, carbohydrate metabolism, and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance. Suggested determinations: calcium, phosphorus, chloride, sodium, potassium, fasting glucose (with period of fasting appropriate to the species), serum glutamic-pyruvic transaminase, (now known as serum alanine aminotransferase), serum glutamic-oxaloacetic transaminase (now known as serum aspartate aminotransferase), ornithine decarboxylase, gamma glutamyl transpeptidase, urea nitrogen, albumen, blood creatinine, total bilirubin, and total serum protein measurements. Other determinations which may be necessary for an adequate toxicological evaluation include: Analyses of lipids, hormones, acid/base balance, methemoglobin, and cholinesterase activity. Additional clinical biochemistry may be employed, where necessary, to extend the investigation of observed effects.

(ii) The following examinations shall be made on high dose and control groups. If changes in the eyes are detected, all animals shall be examined:

(A) Ophthalmological examination, using an ophthalmoscope or equivalent suitable equipment, shall be made prior to exposure to the test substance and at the termination of the study.

(B) Urinalysis is not recommended on a routine basis, but only when there is an indication based on expected and/or observed toxicity.

(12) Gross pathology. (i) All animals shall be subjected to a full gross necropsy which includes examination of the external surface of the body, all orifices and the cranial, thoracic, and abdominal cavities and their contents.

(ii) At least the liver, kidneys, adrenals, brain, and gonads shall be
weighed wet, as soon as possible after dissection to avoid drying. In addition, for the rodent, the brain; for the non-rodent, the thyroid with parathyroids also shall be weighed wet.

(iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: All gross lesions; lungs—which should be removed intact, weighed, and treated with a suitable fixative to ensure that lung structure is maintained (perfusion with the fixative is considered to be an effective procedure); nasopharyngeal tissues; brain—including sections of medulla/pons cerebellar cortex and cerebral cortex; pituitary; thyroid/parathyroid; thymus; trachea; heart; sternum with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; pancreas; gonads; uterus; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles); aorta; (skin); gall bladder (if present); esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph node; (mammary gland); (thigh musculature); peripheral nerve; (eyes); (femur—including articular surface); (spinal cord at three levels—cervical, midthoracic, and lumbar); and (zymbal and exorbital lachrymal glands).

(13) Histopathology. The following histopathology shall be performed:

(i) Full histopathology on the respiratory tract and other organs and tissues, listed above, of all animals in the control and high dose groups.

(ii) All gross lesions in all animals.

(iii) Target organs in all animals.

(iv) The tissues mentioned in brackets (listed above) if indicated by signs of toxicity or target organ involvement.

(v) Lungs of animals (rodents) in the low and intermediate dose groups shall also be subjected to histopathological examination, primarily for evidence of infection since this provides a convenient assessment of the state of health of the animals.

(vi) When a satellite group is used, histopathology shall be performed on tissues and organs identified as showing effects in the treated groups.

(e) Data and reporting—(1) Treatment of results. (i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions, and the percentage of animals displaying each type of lesion.

(ii) All observed results, quantitative and incidental, should be evaluated by an appropriate statistical method. Any generally accepted statistical method may be used; the statistical methods should be selected during the design of the study.

(2) Evaluation of results. The findings of the subchronic inhalation toxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the observed toxic effects and the necropsy and histopathological findings. The evaluation will include the relationship between the concentration of the test substance and duration of exposure, and the presence or absence, the incidence and severity, of abnormalities, including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects. A properly conducted subchronic test should provide a satisfactory estimation of a no-effect level.

(3) Test report. In addition to the reporting requirements as specified under EPA Good Laboratory Practice Standards, 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Test conditions. (A) Description of exposure apparatus, including design, type, dimensions, source of air, system for generating particulates and aerosols, method of conditioning air, treatment of exhaust air, and the method of housing animals in a test chamber.

(B) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size shall be described.

(ii) Exposure data. These shall be tabulated and presented with mean values and measure of variability (e.g., standard deviation) and shall include:

(A) Airflow rates through the inhalation equipment.
§ 798.2650 Oral toxicity.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of a chemical, the determination of subchronic oral toxicity may be carried out after initial information on toxicity has been obtained by acute testing. The subchronic oral study has been designed to permit the determination of the no-observed-effect level and toxic effects associated with continuous or repeated exposure to a test substance for a period of 90 days. The test is not capable of determining those effects that have a long latency period for development (e.g., carcinogenicity and life shortening). It provides information on health hazards likely to arise from repeated exposure by the oral route over a limited period of time. It will provide information on target organs, the possibilities of accumulation, and can be of use in selecting dose levels for chronic studies and for establishing safety criteria for human exposure.

(b) Definitions.

(1) Subchronic oral toxicity is the adverse effects occurring as a result of the repeated daily exposure of experimental animals to a chemical by the oral route for a part (approximately 10 percent) of a life span.

(2) Dose is the amount of test substance administered. Dose is expressed as weight of test substance (g, mg) per unit weight of test animal (e.g., mg/kg), or as weight of test substance per unit weight of food or drinking water.

(3) No-effect level/No-toxic-effect level/No-adverse-effect level/No-observed-effect level is the maximum dose used in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of the weight of the substance given daily per unit weight of test animal (mg/kg).
When administered to animals in food or drinking water the no-observed-effect level is expressed as mg/kg of food or mg/ml of water.

(4) Cumulative toxicity is the adverse effects of repeated doses occurring as a result of prolonged action on, or increased concentration of, the administered test substance or its metabolites in susceptible tissue.

(c) Principle of the test method. The test substance is administered orally in graduated daily doses to several groups of experimental animals, one dose level per group, for a period of 90 days. During the period of administration the animals are observed daily to detect signs of toxicity. Animals which die during the period of administration are necropsied. At the conclusion of the test all animals are necropsied and histo-pathological examinations carried out.

(d) Limit test. If a test at one dose level of at least 1,000 mg/kg body weight (expected human exposure may indicate the need for a higher dose level), using the procedures described for this study, produces no observable toxic effects and if toxicity would not be expected based upon data of structurally related compounds, then a full study using three dose levels might not be necessary.

(e) Test procedures—(1) Animal selection—(i) Species and strain. A mammalian species shall be used for testing. A variety of rodent species may be used, although the rat is the preferred species. Commonly used laboratory strains shall be employed. The commonly used nonrodent species is the dog, preferably of a defined breed; the beagle is frequently used. If other mammalian species are used, the tester shall provide justification/reasoning for his or her selection.

(ii) Age—(A) General. Young adult animals shall be employed. At the commencement of the study the weight variation of animals used shall not exceed ±20 percent of the mean weight for each sex.

(B) Rodents. Dosing shall begin as soon as possible after weaning, ideally before the rats are 6, and in any case, not more than 8 weeks old.

(C) Non-rodents. In the case of the dog, dosing shall commence after acclimatization, preferably at 4 to 6 months and not later than 9 months of age.

(iii) Sex. (A) Equal numbers of animals of each sex shall be used at each dose level.

(B) The females shall be nulliparous and nonpregnant.

(iv) Numbers—(A) Rodents. At least 20 animals (10 females and 10 males) shall be used at each dose level.

(B) Non-rodents. At least eight animals (four females and four males) shall be used at each dose level.

(C) If interim sacrifices are planned, the number shall be increased by the number of animals scheduled to be sacrificed before the completion of the study.

(2) Control groups. A concurrent control group is required. This group shall be an untreated or sham-treated control group or, if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are required.

(3) Satellite group. (Rodent) A satellite group of 20 animals (10 animals per sex) may be treated with the high dose level for 90 days and observed for reversibility, persistence, or delayed occurrence of toxic effects for a post-treatment period of appropriate length, normally not less than 28 days.

(4) Dose levels and dose selection. (i) In subchronic toxicity tests, it is desirable to have a dose response relationship as well as a no-observed-toxic-effect level. Therefore, at least 3 dose levels with a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest exposure level) shall be used. Doses should be spaced appropriately to produce test groups with a range of toxic effects. The data should be sufficient to produce a dose-response curve.

(ii) The highest dose level in rodents should result in toxic effects but not produce an incidence of fatalities which would prevent a meaningful evaluation; for non-rodents there should be no fatalities.

(iii) The lowest dose level should not produce any evidence of toxicity. Where there is a usable estimation of
human exposure the lowest dose level should exceed this.

(iv) Ideally, the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate dose is used, the dose levels should be spaced to produce a gradation of toxic effects.

(v) For rodents, the incidence of fatalities in low and intermediate dose groups and in the controls should be low, to permit a meaningful evaluation of the results; for non-rodents, there should be no fatalities.

(5) Exposure conditions. The animals are dosed with the test substance ideally on a 7-day per week basis over a period of 90 days. However, based primarily on practical considerations, dosing in gavage or capsule studies on a 5-day per week basis is considered to be acceptable.

(6) Observation period. (i) Duration of observation shall be for at least 90 days.

(ii) Animals in the satellite group scheduled for followup observations should be kept for at least 28 days further without treatment to detect recovery from, or persistence of, toxic effects.

(7) Administration of the test substance. (i) The test substance may be administered in the diet or in capsules. In addition, for rodents it may also be administered by gavage or in the drinking water.

(ii) All animals shall be dosed by the same method during the entire experimental period.

(iii) Where necessary, the test substance is dissolved or suspended in a suitable vehicle. If a vehicle or diluent is needed, ideally it should not elicit important toxic effects itself nor substantially alter the chemical or toxicological properties of the test substance. It is recommended that wherever possible the usage of an aqueous solution be considered first, followed by consideration of a solution of oil and then by possible solution in other vehicles.

(iv) For substances of low toxicity, it is important to ensure that when administered in the diet the quantities of the test substance involved do not interfere with normal nutrition. When the test substance is administered in the diet either a constant dietary concentration (ppm) or a constant dose level in terms of the animals' body weight shall be used; the alternative used shall be specified.

(v) For a substance administered by gavage or capsule, the dose shall be given at approximately the same time each day, and adjusted at intervals (weekly or bi-weekly) to maintain a constant dose level in terms of animal body weight.

(8) Observation of animals. (i) Each animal shall be observed daily and, if necessary, handled to appraise its physical condition.

(ii) Additional observations shall be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Signs of toxicity shall be recorded as they are observed including the time of onset, degree and duration.

(iv) Cage-side observations shall include, but not be limited to, changes in skin and fur, eyes and mucous membranes, respiratory, circulatory, autonomic and central nervous systems, somatomotor activity and behavior pattern.

(v) Measurements shall be made weekly of feed consumption or water consumption when the test substance is administered in the feed or drinking water, respectively.

(vi) Animals shall be weighed weekly.

(vii) At the end of the 90-day period all survivors in the nonsatellite treatment groups shall be sacrificed. Moribund animals shall be removed and sacrificed when noticed.

(9) Clinical examinations. (i) The following examinations shall be made on all animals of each sex in each group for rodents and all animals when non-rodents are used as test animals.

(A) Certain hematology determinations shall be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Hematology determinations which are appropriate to all studies: Hematocrit, hemoglobin concentration, erythrocyte count, total
and differential leukocyte count, and a measure of clotting potential such as clotting time, prothrombin time, thromboplastin time, or platelet count.

(B) Certain clinical biochemistry determinations on blood should be carried out at least two times during the test period on all groups of animals including concurrent controls: After 30 days of test and just prior to terminal sacrifice at the end of the test period. Clinical biochemistry test areas which are considered appropriate to all studies: Electrolyte balance, carbohydrate metabolism, and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance. Suggested determinations: Calcium, phosphorus, chloride, sodium, potassium, fasting glucose (with period of fasting appropriate to the species), serum glutamic-pyruvic transaminase (now known as serum alanine aminotransferase), serum glutamic oxaloacetic transaminase (now known as serum aspartate aminotransferase), ornithine decarboxylase, gamma glutamyl transpeptidase, urea nitrogen, albumen, blood creatinine, total bilirubin, and total serum protein measurements. Other determinations which may be necessary for an adequate toxicological evaluation include: Analyses of lipids, hormones, acid/base balance, methemoglobin, and cholinesterase activity. Additional clinical biochemistry may be employed, where necessary, to extend the investigation of observed effects.

(ii) The following examinations shall be made on high dose and control groups. If changes in the eyes are detected, all animals should be examined.

(A) Ophthalmological examination, using an ophthalmoscope or equivalent suitable equipment, shall be made prior to the administration of the test substance and at the termination of the study.

(B) Urinalysis is not recommended on a routine basis, but only when there is an indication based on expected and observed toxicity.

(10) Gross necropsy. (i) All animals shall be subjected to a full gross necropsy which includes examination of the external surface of the body, all orifices, and the cranial, thoracic and abdominal cavities and their contents.

(ii) At least the liver, kidneys, adrenals, and gonads shall be weighed wet, as soon as possible after dissection to avoid drying. In addition, for the rodent, the brain; for the non-rodent, the thyroid with parathyroids also shall be weighed wet.

(iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: All gross lesions; lungs—which should be removed intact, weighed, and treated with a suitable fixative to ensure that lung structure is maintained (perfusion with the fixative is considered to be an effective procedure); nasopharyngeal tissues; brain—including sections of medulla/pons, cerebellar cortex, and cerebral cortex; pituitary; thyroid/parathyroid; thymus; trachea; heart; sternum with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; pancreas; gonads; uterus; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles); aorta; (skin); gall bladder (if present); esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph node; (mammary gland); (thigh musculature); peripheral nerve; (eyes); (femur—including articular surface); (spinal cord at three levels—cervical, midthoracic, and lumbar); and (zymbal and exorbital lachrymal glands); and (rodent±zymbal glands).

(11) Histopathology. The following histopathology shall be performed:

(i) Full histopathology on the organs and tissues, listed above, of all rodents in the control and high dose groups, all non-rodents, and all rodents that died or were killed during the study.

(ii) All gross lesions in all animals.

(iii) Target organs in all animals.

(iv) The tissues mentioned in brackets (listed above) if indicated by signs of toxicity of target organ involvement.

(v) Lungs, liver and kidneys of all animals. Special attention to examination of the lungs of rodents shall be made for evidence of infection since this provides a convenient assessment of the state of health of the animals.
(vi) When a satellite group is used (rodents), histopathology shall be performed on tissues and organs identified as showing effects in the treated groups.

(f) Data and reporting—(1) Treatment of results. (i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions and the percentage of animals displaying each type of lesion.

(ii) All observed results, quantitative and incidental, should be evaluated by an appropriate statistical method. Any generally accepted statistical methods may be used; the statistical methods should be selected during the design of the study.

(2) Evaluation of the study results. (i) The findings of a subchronic oral toxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the toxic effects and the necropsy and histopathological findings. The evaluation will include the relationship between the dose of the test substance and the presence or absence, the incidence and severity, of abnormalities, including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects. A properly conducted subchronic test should provide a satisfactory estimation of a no-effect level.

(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(3) Test report. In addition to the reporting requirements as specified under EPA Good Laboratory Practice Standards, 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:

(A) Number of animals dying.

(B) Number of animals showing signs of toxicity.

(C) Number of animals exposed.

(ii) Individual animal data. (A) Date of death during the study or whether animals survived to termination.

(B) Date of observation of each abnormal sign and its subsequent course.

(C) Body weight data.

(D) Feed consumption data when collected.

(E) Hematological tests employed and all results.

(F) Clinical biochemistry tests employed and all results.

(G) Necropsy findings.

(H) Detailed description of all histopathological findings.

(I) Statistical treatment of results where appropriate.

(g) References. For additional background information on this test guideline the following references should be consulted:

Subpart D—Chronic Exposure

§ 798.3260 Chronic toxicity.

(a) Purpose. The objective of a chronic toxicity study is to determine the effects of a substance in a mammalian species following prolonged and repeated exposure. Under the conditions of the chronic toxicity test, effects which require a long latency period or which are cumulative should become manifest. The application of this guideline should generate data on which to identify the majority of chronic effects and shall serve to define long term dose-response relationships. The design and conduct of chronic toxicity tests should allow for the detection of general toxic effects, including neurological, physiological, biochemical, and hematological effects and exposure-related morphological (pathology) effects.

(b) Test procedures—(1) Animal selection—(i) Species and strain. Testing should be performed with two mammalian species, one a rodent and another a non-rodent. The rat is the preferred rodent species and the dog is the preferred non-rodent species. Commonly used laboratory strains should be employed. If other mammalian species are used, the tester should provide justification/reasoning for their selection.

(ii) Age. (A) Dosing of rats should begin as soon as possible after weaning, ideally before the rats are 6, but in no case more than 8 weeks old.

(B) Dosing of dogs should begin between 4 and 6 months of age and in no case later than 9 months of age.

(C) At commencement of the study the weight variation of animals used should not exceed ±20 percent of the mean weight for each sex.

(iii) Sex. (A) Equal numbers of animals of each sex should be used at each dose level.

(B) The females should be nulliparous and non-pregnant.

(iv) Numbers. (A) For rodents, at least 40 animals (20 females and 20 males) and for non-rodents (dogs) at least 8 animals (4 females and 4 males) should be used at each dose level.

(B) If interim sacrifices are planned, the number should be increased by the number of animals scheduled to be sacrificed during the course of the study.

(C) The number of animals at the termination of the study must be adequate for a meaningful and valid statistical evaluation of chronic effects.

(2) Control groups. (i) A concurrent control group is suggested. This group should be an untreated or sham treated control group or, if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are strongly suggested.

(ii) In special circumstances such as inhalation studies involving aerosols or the use of an emulsifier of uncharacterized biological activity in oral studies, a concurrent negative control group should be utilized. The negative control group should be treated in the same manner as all other test animals except that this control group should not be exposed to either the test substance or any vehicle.

(3) Dose levels and dose selections. (i) In chronic toxicity tests, it is necessary to have a dose-response relationship as well as a no-observed-toxic-effect level. Therefore, at least three dose levels should be used in addition to the concurrent control group. Dose levels should be spaced to produce a gradation of effects.

(ii) The high dose level in rodents should elicit some signs of toxicity without causing excessive lethality; for non-rodents, there should be signs of toxicity but there should be no fatalities.

(iii) The lowest dose level should not produce any evidence of toxicity. Where there is a usable estimation of human exposure the lowest dose level should exceed this even though this dose level may result in some signs of toxicity.

(iv) Ideally, the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate dose is used, the dose level should be spaced to produce a gradation of toxic effects.

(v) For rodents, the incidence of fatalities in low and intermediate dose groups and in the controls should be low to permit a meaningful evaluation of the results. For non-rodents, there should be no fatalities.
(4) Exposure conditions. The animals are dosed with the test substance ideally on a 7-day per week basis over a period of at least 12 months. However, based primarily on practical considerations, dosing on a 5-day per week basis is considered to be acceptable.

(5) Observation period. Duration of observation should be for at least 12 months, and may be concurrent with or subsequent to dosing. If there is a post-exposure observation period, an interim sacrifice should be performed on no fewer than half of the animals of each sex at each dose level immediately upon termination of exposure.

(6) Administration of the test substance. The three main routes of administration are oral, dermal, and inhalation. The choice of the route of administration depends upon the physical and chemical characteristics of the test substance and the form typifying exposure in humans.

(i) Oral studies. (A) The animals should receive the test substance in their diet, dissolved in drinking water, or given by gavage or capsule for a period of at least 12 months.

(B) If the test substance is administered in the drinking water, or mixed in the diet, exposure is continuous.

(C) For a diet mixture, the highest concentration should not exceed 5 percent.

(ii) Dermal studies. (A) The animals are treated by topical application with the test substance, ideally for at least 6 hours per day.

(B) Fur should be clipped from the dorsal area of the trunk of the test animals. Care must be taken to avoid abrading the skin which could alter its permeability.

(C) The test substance should be applied uniformly over a shaved area which is approximately 10 percent of the total body surface area. With highly toxic substances, the surface area covered may be less, but as much of the area should be covered with as thin and uniform a film as possible.

(D) During the exposure period, the test substance may be held if necessary, in contact with the skin with a porous gauze dressing and non-irritating tape. The test site should be further covered in a suitable manner to retain the gauze dressing and test substance and ensure that the animals cannot ingest the test substance.

(iii) Inhalation studies. (A) The animals should be tested with inhalation equipment designed to sustain a dynamic air flow of 12 to 15 air changes per hour, ensure an adequate oxygen content of 19 percent and an evenly distributed exposure atmosphere. Where a chamber is used, its design should minimize crowding of the test animals and maximize their exposure to the test substance. This is best accomplished by individual caging. As a general rule to ensure stability of a chamber atmosphere, the total "volume" of the test animals should not exceed 5 percent of the volume of the test chamber. Alternatively, oro-nasal, head-only or whole body individual chamber exposure may be used.

(B) The temperature at which the test is performed should be maintained at 22 °C (±2 °C). Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.

(C) Feed and water should be withheld during each daily 6 hour exposure period.

(D) A dynamic inhalation system with a suitable analytical concentration control system should be used. The rate of air flow should be adjusted to ensure that conditions throughout the equipment are essentially the same. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into the surrounding areas.

(7) Observation of animals. (i) Each animal should be handled and its physical condition appraised at least once each day.

(ii) Additional observations should be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Clinical signs of toxicity including suspected tumors and mortality should be recorded as they are observed, including the time of onset, the degree and duration.
(iv) Cage-side observations should include, but not be limited to, changes in skin and fur, eyes and mucous membranes, respiratory, circulatory, autonomic and central nervous systems, somatomotomotor activity and behavior pattern.

(v) Body weights should be recorded individually for all animals once a week during the first 13 weeks of the test period and at least once every 4 weeks thereafter unless signs of clinical toxicity suggest more frequent recordings to facilitate monitoring of health status.

(vi) When the test substance is administered in the feed or drinking water, measurements of feed or water consumption, respectively, should be determined weekly during the first 13 weeks of the study and then at approximately monthly intervals unless health status or body weight changes dictate otherwise.

(vii) At the end of the study period all survivors should be sacrificed. Moribund animals should be removed and sacrificed when noticed.

8 Physical measurements. For inhalation studies, measurements or monitoring should be made of the following:

(i) The rate of air flow should be monitored continuously, but should be recorded at intervals of at least once every 30 minutes.

(ii) During each exposure period the actual concentrations of the test substance should be held as constant as practicable, monitored continuously and measured at least three times during the test period: at the beginning, at an intermediate time and at the end of the period.

(iii) During the development of the generating system, particle size analysis should be performed to establish the stability of aerosol concentrations. During exposure, analysis should be conducted as often as necessary to determine the consistency of particle size distribution and homogeneity of the exposure stream.

(iv) Temperature and humidity should be monitored continuously, but should be recorded at intervals of at least once every 30 minutes.

9 Clinical examinations. The following examinations should be made on at least 10 rats of each sex per dose and on all non-rodents.

(i) Certain hematology determinations (e.g., hemoglobin content, packed cell volume, total red blood cells, total white blood cells, platelets, or other measures of clotting potential) should be performed at termination and should be performed at 3 months, 6 months and at approximately 6 month intervals thereafter (for studies extending beyond 12 months) on blood samples collected from all non-rodents and from 10 rats per sex of all groups. These collections should be from the same animals at each interval. If clinical observations suggest a deterioration in health of the animals during the study, a differential blood count of the affected animals should be performed. A differential blood count should be performed on samples from those animals in the highest dosage group and the controls. Differential blood counts should be performed for the next lower group(s) if there is a major discrepancy between the highest group and the controls. If hematological effects were noted in the subchronic test, hematological testing should be performed at 3, 6, 12, 18, and 24 months for a two year study and at 3, 6, and 12 months for a 1-year study.

(ii) Certain clinical biochemistry determinations on blood should be carried out at least three times during the test period: just prior to initiation of dosing (base line data), near the middle and at the end of the test period. Blood samples should be drawn for clinical chemistry measurements from all non-rodents and at least ten rodents per sex of all groups; if possible, from the same rodents at each time interval. Test areas which are considered appropriate to all studies: electrolyte balance, carbohydrate metabolism and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance and signs of clinical toxicity. Suggested chemical determinations: calcium, phosphorus, chloride, sodium, potassium, fasting glucose (with period of fasting appropriate to the species), serum glutamic-pyruvic transaminase (now known as serum alanine aminotransferase), serum glutamic oxaloacetic transaminase (now known...
as serum aspartate aminotransferase, ornithine decarboxylase, gamma glutamyl transpeptidase, blood urea nitrogen, albumen, blood creatinine, creatinine phosphokinase, total cholesterol, total bilirubin and total serum protein measurements. Other determinations which may be necessary for an adequate toxicological evaluation include analyses of lipids, hormones, acid/base balance, methemoglobin and cholinesterase activity. Additional clinical biochemistry may be employed where necessary to extend the investigation of observed effects.

(iii) Urine samples from rodents at the same intervals as the hematological examinations under paragraph (b)(9)(i) of this section should be collected for analysis. The following determinations should be made from either individual animals or on a pooled sample/sex/group for rodents: appearance (volume and specific gravity), protein, glucose, ketones, bilirubin, occult blood (semi-quantitatively); and microscopy of sediment (semi-quantitatively).

(iv) Ophthalmological examination, using an ophthalmoscope or equivalent suitable equipment, should be made prior to the administration of the test substance and at the termination of the study. If changes in eyes are detected all animals should be examined.

(10) Gross necropsy. (i) A complete gross examination should be performed on all animals, including those which died during the experiment or were killed in moribund conditions.

(ii) The liver, kidneys, adrenals, brain and gonads should be weighed wet, as soon as possible after dissection to avoid drying. For these organs, at least 10 rodents per sex per group and all non-rodents should be weighed.

(iii) The following organs and tissues, or representative samples thereof, should be preserved in a suitable medium for possible future histopathological examination: All gross lesions and tumors; brain—including sections of medulla/pons, cerebellar cortex, and cerebral cortex; pituitary; thyroid/parathyroid; thymus; lungs; trachea; heart; sternum and/or femur with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph nodes; pancreas; gonads; uterus; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles; female mammary gland; aorta; gall bladder (if present); skin; musculature; peripheral nerve; spinal cord at three levels—cervical, midthoracic, and lumbar; and eyes. In inhalation studies, the entire respiratory tract, including nose, pharynx, larynx, and paranasal sinuses should be examined and preserved. In dermal studies, skin from sites of skin painting should be examined and preserved.

(iv) Inflation of lungs and urinary bladder with a fixative is the optimal method for preservation of these tissues. The proper inflation and fixation of the lungs in inhalation studies is considered essential for appropriate and valid histopathological examination.

(v) If other clinical examinations are carried out, the information obtained from these procedures should be available before microscopic examination, since they may provide significant guidance to the pathologist.

(11) Histopathology. (i) The following histopathology should be performed:

(A) Full histopathology on the organs and tissues, listed above, of all non-rodents, of all rodents in the control and high dose groups and of all rodents that died or were killed during the study.

(B) All gross lesions in all animals.

(C) Target organs in all animals.

(D) Lungs, liver and kidneys of all animals. Special attention to examination of the lungs of rodents should be made for evidence of infection since this provides an assessment of the state of health of the animals.

(ii) If excessive early deaths or other problems occur in the high dose group compromising the significance of the data, the next dose level should be examined for complete histopathology.

(iii) In case the results of an experiment give evidence of substantial alteration of the animals' normal longevity or the induction of effects that might affect a toxic response, the next lower dose level should be examined fully, as described under paragraph (b)(11)(i) of this section.
(iv) An attempt should be made to correlate gross observations with microscopic findings.

(c) Data and reporting—(1) Treatment of results. (i) Data should be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions and the percentage of animals displaying each type of lesion.

(ii) All observed results, quantitative and incidental, should be evaluated by an appropriate statistical method. Any generally accepted statistical methods may be used; the statistical methods should be selected during the design of the study.

(2) Evaluation of study results. (i) The findings of a chronic toxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the toxic effects, the necropsy and histopathological findings. The evaluation will include the relationship between the dose of the test substance and the presence, incidence and severity of abnormalities (including behavioral and clinical abnormalities), gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects.

(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(3) Test report. (i) In addition to the reporting requirements as specified under 40 CFR part 792 subpart J, the following specific information should be reported:

(A) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:

(1) Number of animals dying.
(2) Number of animals showing signs of toxicity.
(3) Number of animals exposed.

(B) Individual animal data. (1) Time of death during the study or whether animals survived to termination.
(2) Time of observation of each abnormal sign and its subsequent course.
(3) Body weight data.
(4) Feed and water consumption data, when collected.

(5) Results of ophthalmological examination, when performed.

(6) Hematological tests employed and all results.

(7) Clinical biochemistry tests employed and all results.

(8) Necropsy findings.

(9) Detailed description of all histopathological findings.

(10) Statistical treatment of results, where appropriate.

(ii) In addition, for inhalation studies the following should be reported:

(A) Test conditions. (1) Description of exposure apparatus including design, type, dimensions, source of air, system for generating particulates and aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.

(2) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size should be described.

(B) Exposure data. These should be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and should include:

(1) Airflow rates through the inhalation equipment.

(2) Temperature and humidity of air.

(3) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).

(4) Actual concentration in test breathing zone.

(5) Particle size distribution (e.g., median aerodynamic diameter of particles with standard deviation from the mean).

(d) References. For additional background information on this test guideline the following references should be consulted:

§ 798.3300 Oncogenicity.

(a) Purpose. The objective of a long-term oncogenicity study is to observe test animals for a major portion of their life span for the development of neoplastic lesions during or after exposure to various doses of a test substance by an appropriate route of administration.

(b) Test procedures—(1) Animal selection—(i) Species and strain. A compound of unknown activity shall be tested on two mammalian species. Rats and mice are the species of choice because of their relatively short life spans, the limited cost of their maintenance, their widespread use in pharmacological and toxicological studies, their susceptibility to tumor induction, and the availability of inbred or sufficiently characterized strains. Commonly used laboratory strains shall be employed. If other species are used, the tester shall provide justification/reasoning for their selection.

(ii) Age. (A) Dosing of rodents shall begin as soon as possible after weaning, ideally before the animals are 6 weeks old, but in no case more than 8 weeks old.

(B) At commencement of the study, the weight variation of animals used shall not exceed ±20 percent of the mean weight for each sex.

(C) Studies using prenatal or neonatal animals may be recommended under special conditions.

(iii) Sex. (A) Animals of each sex shall be used at each dose level.

(B) The females shall be nulliparous and non-pregnant.

(iv) Numbers. (A) For rodents, at least 100 animals (50 females and 50 males) shall be used at each dose level and concurrent control.

(B) If interim sacrifices are planned the number shall be increased by the number of animals scheduled to be sacrificed during the course of the study.

(C) The number of animals at the termination of the study should be adequate for a meaningful and valid statistical evaluation of long term exposure. For a valid interpretation of negative results, it is essential that survival in all groups does not fall below 50 percent at the time of termination.

(2) Control groups. (i) A concurrent control group is required. This group
shall be an untreated or sham treated control group or, if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are required.

(ii) In special circumstances such as in inhalation studies involving aerosols or the use of an emulsifier of uncharacterized biological activity in oral studies, a concurrent negative control group shall be utilized. The negative control group shall be treated in the same manner as all other test animals except that this control group shall not be exposed to either the test substance or any vehicle.

(iii) The use of historical control data (i.e., the incidence of tumors and other suspect lesions normally occurring under the same laboratory conditions and in the same strain of animals employed in the test) is desirable for assessing the significance of changes observed in exposed animals.

(3) Dose levels and dose selection. (i) For risk assessment purposes, at least 3 dose levels shall be used, in addition to the concurrent control group. Dose levels should be spaced to produce a gradation of chronic effects.

(ii) The high dose level should elicit signs of minimal toxicity without substantially altering the normal life span.

(iii) The lowest dose should not interfere with normal growth, development and longevity of the animal; and it should not otherwise cause any indication of toxicity. In general, this should not be lower than ten percent of the high dose.

(iv) The intermediate dose(s) should be established in a mid-range between the high and low doses, depending upon the toxicokinetic properties of the chemical, if known.

(v) The selection of these dose levels should be based on existing data, preferably on the results of subchronic studies.

(4) Exposure conditions. The animals are dosed with the test substance ideally on a 7 day per week basis over a period of at least 24 months for rats, and 18 months for mice. However, based primarily on practical considerations, dosing on a 5 day per week basis is considered to be acceptable.

(5) Observations period. It is necessary that the duration of an oncogenicity test comprise the majority of the normal life span of the strain of animals to be used. This time period shall not be less than 24 months for rats and 18 months for mice, and ordinarily not longer than 30 months for rats and 24 months for mice. For longer time periods, and where any other species are used, consultation with the Agency in regard to the duration of the test is advised.

(6) Administration of the test substance. The three main routes of administration are oral, dermal, and inhalation. The choice of the route of administration depends upon the physical and chemical characteristics of the test substance and the form typifying exposure in humans.

(i) Oral studies. (A) The animals shall receive the test substance in their diet, dissolved in drinking water at levels that do not exceed the maximum solubility of the test chemical under testing condition.

(B) If the test substance is administered in the drinking water, or mixed in the diet, exposure shall be continuous.

(C) For a diet mixture, the highest concentration should not exceed 5 percent.

(ii) Dermal studies. (A) The animals are treated by topical application with the test substance, ideally for at least 6 hours per day.

(B) If necessary, the test substance may be held in contact with the skin with a porous gauze dressing and non-irritating tape. The test site should be further covered in a suitable manner to
retain the gauze dressing and test substance and ensure that the animals cannot ingest the test substance.

(iii) Inhalation studies. (A) The animals shall be tested with inhalation equipment designed to sustain a minimum dynamic air flow of 12 to 15 air changes per hour, ensure an adequate oxygen content of 19 percent and an evenly distributed exposure atmosphere. Where a chamber is used, its design should minimize crowding of the test animals and maximize their exposure to the test substance. This is best accomplished by individual caging. To ensure stability of a chamber atmosphere, the total “volume” of the test animals shall not exceed 5 percent of the volume of the test chamber. Alternatively, oro-nasal, head-only, or whole-body individual chamber exposure may be used.

(B) The temperature at which the test is performed should be maintained at 22 °C (±2°). Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g. tests of aerosols, use of water vehicle) this may not be practicable.

(C) Feed and water shall be withheld during each daily 6-hour exposure period.

(D) A dynamic inhalation system with a suitable flow control system shall be used. The rate of air flow shall be adjusted to ensure that conditions throughout the equipment are essentially the same. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into the surrounding areas.

(7) Observations of animals. (i) Each animal shall be observed daily and if necessary should be handled to appraise its physical condition.

(ii) Additional observations shall be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Clinical signs and mortality shall be recorded for all animals. Special attention should be paid to tumor development. The day of onset, location, dimensions, appearance and progression of each grossly visible or palpable tumor shall be recorded.

(iv) Body weights shall be recorded individually for all animals once a week during the first 13 weeks of the test period and at least once every 4 weeks thereafter unless signs of clinical toxicity suggest more frequent weighings to facilitate monitoring of health status.

(v) When the test substance is administered in the feed or drinking water, measurements of feed or water consumption, respectively, shall be determined weekly during the first 13 weeks of the study and then at approximately monthly intervals unless health status or body weight changes dictate otherwise.

(vi) At the end of the study period all survivors are sacrificed. Moribund animals shall be removed and sacrificed when noticed.

(8) Physical measurements. For inhalation studies, measurements or monitoring should be made of the following:

(i) The rate of air flow shall be monitored continuously and recorded at intervals of at least once every 30 minutes.

(ii) During each exposure period the actual concentrations of the test substance shall be held as constant as practicable, monitored continuously and recorded at least three times during the test period: at the beginning, at an intermediate time and at the end of the period.

(iii) During the development of the generating system, particle size analysis shall be performed to establish the stability of aerosol concentrations with respect to particle size. During exposure, analyses shall be conducted as often as necessary to determine the consistency of particle size, distribution, and homogeneity of the exposure stream.

(iv) Temperature and humidity shall be monitored continuously, but should be recorded at intervals of at least once every 30 minutes.

(9) Clinical examinations. At 12 months, 18 months, and at sacrifice, a blood smear shall be obtained from all animals. A differential blood count shall be performed on blood smears from those animals in the highest dosage group and the controls. If these
data, or data from the pathological examination indicate a need, then the 12- and 18-month blood smears from other dose levels shall also be examined. Differential blood counts shall be performed for the next lower group(s) if there is a major discrepancy between the highest group and the controls. If clinical observations suggest a deterioration in health of the animals during the study, a differential blood count of the affected animals shall be performed.

(10) Gross necropsy. (i) A complete gross examination shall be performed on all animals, including those which died during the experiment or were killed in moribund conditions.

(ii) The following organs and tissues or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: All gross lesions and tumors of all animals shall be preserved; brain—including sections of medulla/pons, cerebellar cortex and cerebral cortex; pituitary; thyroid/parathyroid; thymus; lungs; trachea; heart; spinal cord at three levels—cervical, midthoracic and lumbar; sternum and/or femur with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph nodes; pancreas; gonads; uterus; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles); mammary gland; skin; musculature; peripheral nerve; and eyes. In inhalation studies, the entire respiratory tract shall be preserved, including nasal cavity, pharynx, larynx and paranasal sinuses. In dermal studies, skin from sites of skin painting shall be examined and preserved.

(iii) Inflation of lungs and urinary bladder with a fixative is the optimal method for preservation of these tissues. The proper inflation and fixation of the lungs in inhalation studies is required for appropriate and valid histopathological examination.

(iv) If other clinical examinations are carried out, the information obtained from these procedures shall be available before microscopic examination, since they may provide significant guidance to the pathologist.

(11) Histopathology. (i) The following histopathology shall be performed:

(A) Full histopathology on organs and tissues listed above of all animals in the control and high dose groups and all animals that died or were killed during the study.

(B) All gross lesions in all animals.

(C) Target organs in all animals.

(ii) If a significant difference is observed in hyperplastic, pre-neoplastic or neoplastic lesions between the highest dose and control groups, microscopic examination shall be made on that particular organ or tissue of all animals in the study.

(iii) If excessive early deaths or other problems occur in the high dose group, compromising the significance of the data, the next lower dose level shall be examined for complete histopathology.

(iv) In case the results of an experiment give evidence of substantial alteration of the animals' normal longevity or the induction of effects that might affect a neoplastic response, the next lower dose level shall be examined fully as described in this section.

(v) An attempt shall be made to correlate gross observations with microscopic findings.

(c) Data and reporting—(1) Treatment of results. (i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions and the percentage of animals displaying each type of lesion.

(ii) All observed results, quantitative and incidental, shall be evaluated by an appropriate statistical method. Any generally accepted statistical method may be used; the statistical methods shall be selected during the design of the study.

(2) Evaluation of study results. (i) The findings of an oncogenic toxicity study shall be evaluated in conjunction with the findings of preceding studies and considered in terms of the toxic effects, the necropsy and histopathological findings. The evaluation shall include the relationship between the dose of the test substance and the presence, incidence and severity of abnormalities (including behavioral and clinical abnormalities), gross lesions, identified
(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(iii) In order for a negative test to be acceptable, it shall meet the following criteria: no more than 10 percent of any group is lost due to autolysis, cannibalism, or management problems; and survival in each group should be no less than 50 percent at 18 months for mice and hamsters and at 24 months for rats.

(3) Test report. (i) In addition to the reporting requirements as specified under 40 CFR part 792, subpart J the following specific information shall be reported:

(A) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:

(1) Number of animals dying.

(2) Number of animals showing signs of toxicity.

(3) Number of animals exposed.

(B) Individual animal data. (1) Time of death during the study or whether animals survived to termination.

(2) Time of observation of each abnormal sign and its subsequent course.

(3) Body weight data.

(4) Feed and water consumption data, when collected.

(5) Results of ophthalmological examination, when performed.

(6) Hematological tests employed and all results.

(7) Clinical biochemistry tests employed and all results.

(8) Necropsy findings.

(9) Detailed description of all histopathological findings.

(10) Statistical treatment of results, where appropriate.

(11) Historical control data, if taken into account.

(ii) In addition, for inhalation studies the following shall be reported:

(A) Test conditions. (1) Description of exposure apparatus including design, type, dimensions, source of air, system for generating particulates and aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.

(2) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size shall be described.

(B) Exposure data. These shall be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and shall include:

(1) Airflow rates through the inhalation equipment.

(2) Temperature and humidity of air.

(3) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).

(4) Actual concentration in test breathing zone.

(5) Particle size distribution (e.g., median aerodynamic diameter of particles with standard deviation from the mean).

(d) References. For additional background information on this test guideline the following references should be consulted:

(5) National Academy of Sciences. “Principles and Procedures for Evaluating the Toxicity of Household Substances.” A report prepared by the Committee for the Revision of NAS Publication 1138, under the auspices of the Committee on Toxicology, National Research Council, National
§ 798.3320 Combined chronic toxicity/oncogenicity.

(a) Purpose. The objective of a combined chronic toxicity/oncogenicity study is to determine the effects of a substance in a mammalian species following prolonged and repeated exposure. The application of this guideline should generate data which identify the majority of chronic and oncogenic effects and determine dose-response relationships. The design and conduct should allow for the detection of neoplastic effects and a determination of oncogenic potential as well as general toxicity, including neurological, physiological, biochemical, and hematological effects and exposure-related morphological (pathology) effects.

(b) Test procedures—(1) Animal selection—(i) Species and strain. Preliminary studies providing data on acute, subchronic, and metabolic responses should have been carried out to permit an appropriate choice of animals (species and strain). As discussed in other guidelines, the mouse and rat have been most widely used for assessment of oncogenic potential, while the rat and dog have been most often studied for chronic toxicity. The rat is the species of choice for combined chronic toxicity and oncogenicity studies. The provisions of this guideline are designed primarily for use with the rat as the test species. If other species are used, the tester should provide justification/reasoning for their selection. The strain selected should be susceptible to the oncogenic or toxic effect of the class of substances being tested, if known, and provided it does not have a spontaneous background too high for meaningful assessment. Commonly used laboratory strains should be employed.

(ii) Age. (A) Dosing of rats should begin as soon as possible after weaning, ideally before the rats are 6 weeks old, but in no case more than 8 weeks old. (B) At commencement of the study, the weight variation of animals used should not exceed ±20 percent of the mean weight for each sex.

(C) Studies using prenatal or neonatal animals may be recommended under special conditions.

(iii) Sex. (A) Equal numbers of animals of each sex should be used at each dose level.

(B) The females should be nulliparous and nonpregnant.

(iv) Numbers. (A) At least 100 rodents (50 females and 50 males) should be used at each dose level and concurrent control for those groups not intended for early sacrifice. At least 40 rodents
§ 798.3320

(20 females and 20 males) should be used for satellite dose group(s) and the satellite control group. The purpose of the satellite group is to allow for the evaluation of pathology other than neoplasia.

(B) If interim sacrifices are planned, the number of animals should be increased by the number of animals scheduled to be sacrificed during the course of the study.

(C) The number of animals at the termination of each phase of the study should be adequate for a meaningful and valid statistical evaluation of long term exposure. For a valid interpretation of negative results, it is essential that survival in all groups not fall below 50 percent at the time of termination.

(2) Control groups. (i) A concurrent control group (50 females and 50 males) and a satellite control group (20 females and 20 males) are recommended. These groups should be untreated or sham treated control groups or, if a vehicle is used in administering the test substance, vehicle control groups. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are recommended. Animals in the satellite control group should be sacrificed at the same time the satellite test group is terminated.

(ii) In special circumstances such as inhalation studies involving aerosols or the use of an emulsifier of uncharacterized biological activity in oral studies, a concurrent negative control group should be utilized. The negative control group should be treated in the same manner as all other test animals, except that this control group should not be exposed to the test substance or any vehicle.

(iii) The use of historical control data (i.e., the incidence of tumors and other suspect lesions normally occurring under the same laboratory conditions and in the same strain of animals employed in the test) is desirable for assessing the significance of changes observed in exposed animals.

(3) Dose levels and dose selection. (i) For risk assessment purposes, at least three dose levels should be used, in addition to the concurrent control group.

Dose levels should be spaced to produce a gradation of effects.

(ii) The highest dose level in rodents should elicit signs of toxicity without substantially altering the normal life span due to effects other than tumors.

(iii) The lowest dose level should produce no evidence of toxicity. Where there is a usable estimation of human exposure, the lowest dose level should exceed this even though this dose level may result in some signs of toxicity.

(iv) Ideally, the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate dose is used the dose levels should be spaced to produce a gradation of toxic effects.

(v) For rodents, the incidence of fatalities in low and intermediate dose groups and in the controls should be low to permit a meaningful evaluation of the results.

(vi) For chronic toxicological assessment, a high dose treated satellite and a concurrent control satellite group should be included in the study design. The highest dose for satellite animals should be chosen so as to produce frank toxicity, but not excessive lethality, in order to elucidate a chronic toxicological profile of the test substance. If more than one dose level is selected for satellite dose groups, the doses should be spaced to produce a gradation of toxic effects.

(4) Exposure conditions. The animals are dosed with the test substance ideally on a 7-day per week basis over a period of at least 24 months for rats, and 18 months for mice and hamsters, except for the animals in the satellite control group, which should be dosed for 12 months.

(5) Observation period. It is necessary that the duration of the oncogenicity test comprise the majority of the normal life span of the animals to be used. It has been suggested that the duration of the study should be for the entire lifetime of all animals. However, a few animals may greatly exceed the average lifetime and the duration of the study may be unnecessarily extended and complicate the conduct and evaluation of the study. Rather, a finite period covering the majority of the expected life span of the strain is preferred since the probability is high.
that, for the great majority of chemicals, induced tumors will occur within such an observation period. The following guidelines are recommended:

(i) Generally, the termination of the study should be at 18 months for mice and hamsters and 24 months for rats; however, for certain strains of animals with greater longevity and/or low spontaneous tumor rate, termination should be at 24 months for mice and hamsters and at 30 months for rats. For longer time periods, and where any other species are used, consultation with the Agency in regard to duration of the test is advised.

(ii) However, termination of the study is acceptable when the number of survivors of the lower doses or of the control group reaches 25 percent. In the case where only the high dose group dies prematurely for obvious reasons of toxicity, this should not trigger termination of the study.

(iii) The satellite groups and the concurrent satellite control group should be retained in the study for at least 12 months. These groups should be scheduled for sacrifice for an estimation of test-substance-related pathology uncomplicated by geriatric changes.

Administration of the test substance. The three main routes of administration are oral, dermal, and inhalation. The choice of the route of administration depends upon the physical and chemical characteristics of the test substance and the form typifying exposure in humans.

(i) Oral studies. (A) The animals should receive the test substance in their diet, dissolved in drinking water, or given by gavage or capsule for a period of at least 24 months for rats and 18 months for mice and hamsters.

(B) If the test substance is administered in the drinking water, or mixed in the diet, exposure is continuous.

(C) For a diet mixture, the highest concentration should not exceed 5 percent.

(ii) Dermal studies. (A) The animals are treated by topical application with the test substance, ideally for at least 6 hours per day.

(B) Fur should be clipped from the dorsal area of the trunk of the test animals. Care should be taken to avoid abraded skin which could alter its permeability.

(C) The test substance should be applied uniformly over a shaved area which is approximately 10 percent of the total body surface area. With highly toxic substances, the surface area covered may be less, but as much of the area as possible should be covered with as thin and uniform a film as possible.

(D) During the exposure period, the test substance may be held, if necessary, in contact with the skin with a porous gauze dressing and nonirritating tape. The test site should be further covered in a suitable manner to retain the gauze dressing and test substance and ensure that the animals cannot ingest the test substance.

(iii) Inhalation studies. (A) The animals should be tested with inhalation equipment designed to sustain a dynamic air flow of 12 to 15 air changes per hour, to ensure an adequate oxygen content of 19 percent and an evenly distributed exposure atmosphere. Where a chamber is used, its design should minimize crowding of the test animals and maximize their exposure to the test substance. This is best accomplished by individual caging. As a general rule, to ensure stability of a chamber atmosphere, the total “volume” of the test animals should not exceed 5 percent of the volume of the test chamber. Alternatively, oro-nasal, head only, or whole body individual chamber exposure may be used.

(B) The temperature at which the test is performed should be maintained at 22 °C (±2). Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.

(C) Feed and water should be withheld during each daily 6-hour exposure period.

(D) A dynamic inhalation system with a suitable analytical concentration control system should be used. The rate of air flow should be adjusted to ensure that conditions throughout the equipment are essentially the same. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into the surrounding areas.
(7) Observation of animals. (i) Each animal should be handled and its physical condition appraised at least once each day.

(ii) Additional observations should be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Clinical signs and mortality should be recorded for all animals. Special attention should be paid to tumor development. The time of onset, location, dimensions, appearance and progression of each grossly visible or palpable tumor should be recorded.

(iv) Body weights should be recorded individually for all animals once a week during the first 13 weeks of the test period and at least once every 4 weeks thereafter, unless signs of clinical toxicity suggest more frequent weighings to facilitate monitoring of health status.

(v) When the test substance is administered in the feed or drinking water, measurements of feed or water consumption, respectively, should be determined weekly during the first 13 weeks of the test period and at least once every 4 weeks thereafter, unless signs of clinical toxicity suggest more frequent weighings to facilitate monitoring of health status.

(vi) At the end of the study period, all survivors are sacrificed. Moribund animals should be removed and sacrificed when noticed.

(8) Physical measurements. For inhalation studies, measurements or monitoring should be made of the following:

(i) The rate of airflow should be monitored continuously, but should be recorded at intervals of at least once every 30 minutes.

(ii) During each exposure period the actual concentrations of the test substance should be held as constant as practicable, monitored continuously and recorded at least three times during the test period: At the beginning, at an intermediate time and at the end of the period.

(iii) During the development of the generating system, particle size analysis should be performed to establish the stability of aerosol concentrations. During exposure, analyses should be conducted as often as necessary to determine the consistency of particle size distribution and homogeneity of the exposure stream.

(iv) Temperature and humidity should be monitored continuously, but should be recorded at intervals of at least once every 30 minutes.

(9) Clinical examinations. (i) The following examinations should be made on at least 20 rodents of each sex per dose level:

(A) Certain hematology determinations (e.g., hemoglobin content, packed cell volume, total red blood cells, total white blood cells, platelets, or other measures of clotting potential) should be performed at termination and should be performed at 3 months, 6 months and at approximately 6-month intervals thereafter (for those groups on test for longer than 12 months) on blood samples collected from 20 rodents per sex of all groups. These collections should be from the same animals at each interval. If clinical observations suggest a deterioration in health of the animals during the study, a differential blood count of the affected animals should be performed. A differential blood count should be performed on samples from animals in the highest dosage group and the controls. Differential blood counts should be performed for the next lower group(s) if there is a major discrepancy between the highest group and the controls. If hematological effects were noted in the subchronic test, hematological testing should be performed at 3, 6, 12, 18 and 24 months for a year study.

(B) Certain clinical biochemistry determinations on blood should be carried out at least three times during the test period; just prior to initiation of dosing (baseline data), near the middle and at the end of the test period. Blood samples should be drawn for clinical measurements from at least ten rodents per sex of all groups; if possible, from the same rodents at each time interval. Test areas which are considered appropriate to all studies: electrolyte balance, carbohydrate metabolism and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance and signs of clinical
Environmental Protection Agency § 798.3320

... tox... should be preserved in a suitable medium for possible future histopathological examination: All gross lesions and tumors; brain-including sections of medulla/pons, cerebellar cortex, and cerebral cortex; pituitary; thyroid/parathyroid; thymus; lungs; trachea; heart; sternum and/or femur with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph nodes; ileum; ecum; colon; rectum; urinary bladder; representative lymph nodes; pancreas; gonads; uterus; accessory genital organs (epididymis, prostate, and, if present); seminal vesicles; female mammary gland; aorta; gall bladder (if present); skin; musculature; peripheral nerve; spinal cord at three levels—cervical, midthoracic, and lumbar; and eyes. In inhalation studies, the entire respiratory tract, including nose, pharynx, larynx and paranasal sinuses should be examined and preserved. In dermal studies, skin from sites of skin painting should be examined and preserved.

(iv) Inflation of lungs and urinary bladder with a fixative is the optimal method for preservation of these tissues. The proper inflation and fixation of the lungs in inhalation studies is considered essential for appropriate and valid histopathological examination.

(v) If other clinical examinations are carried out, the information obtained from these procedures should be available before microscopic examination, since they may provide significant guidance to the pathologist.

(11) Histopathology. (i) The following histopathology should be performed:

(A) Full histopathology on the organs and tissues, listed above, of all non-rodents, of all rodents in the control and high dose groups and of all rodents that died or were killed during the study.

(B) All gross lesions in all animals.

(C) Target organs in all animals.

(D) Lungs, liver and kidneys of all animals. Special attention to examination of the lungs of rodents should be made for evidence of infection since this provides an assessment of the state of health of the animals.

(ii) If excessive early deaths or other problems occur in the high dose group...
compromising the significance of the data, the next dose level should be examined for complete histopathology.

(iii) In case the results of the experiment give evidence of substantial alteration of the animals' normal longevity or the induction of effects that might affect a toxic response, the next lower dose level should be examined as described above.

(iv) An attempt should be made to correlate gross observations with microscopic findings.

(c) Data and reporting—(1) Treatment of results. (i) Data should be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions and the percentage of animals displaying each type of lesion.

(ii) All observed results, quantitative and incidental, should be evaluated by an appropriate statistical method. Any generally accepted statistical methods may be used; the statistical methods should be selected during the design of the study.

(2) Evaluation of study results. (i) The findings of a combined chronic toxicity/oncogenicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the toxic effects, the necropsy and histopathological findings. The evaluation will include the relationship between the dose of the test substance and the presence, incidence and severity of abnormalities (including behavioral and clinical abnormalities), gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects.

(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(iii) In order for a negative test to be acceptable, it should meet the following criteria: No more than 10 percent of any group is lost due to autolysis, cannibalism, or management problems; and survival in each group is no less than 50 percent at 18 months for mice and hamsters and at 24 months for rats.

(3) Test report. (i) In addition to the reporting requirements as specified under 40 CFR part 792, subpart J the following specific information should be reported:

(A) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:
 (1) Number of animals dying.
 (2) Number of animals showing signs of toxicity.
 (3) Number of animals exposed.

(B) Individual animal data. (1) Time of death during the study or whether animals survived to termination.

(2) Time of observation of each abnormal sign and its subsequent course.

(3) Body weight data.

(4) Feed and water consumption data, when collected.

(5) Results of ophthalmological examination, when performed.

(6) Hematological tests employed and all results.

(7) Clinical biochemistry tests employed and all results.

(8) Necropsy findings.

(9) Detailed description of all histopathological findings.

(10) Statistical treatment of results where appropriate.

(11) Historical control data, if taken into account.

(ii) In addition, for inhalation studies the following should be reported:

(A) Test conditions. (1) Description of exposure apparatus including design, type, dimensions, source of air, system for generating particulates and aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.

(2) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size should be described.

(B) Exposure data. These should be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and should include:

(1) Airflow rates through the inhalation equipment.

(2) Temperature and humidity of air.

(3) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).
(4) Actual concentration in test breathing zone.
(5) Particle size distribution (e.g. median aerodynamic diameter of particles with standard deviation from the mean).

d) References. For additional background information on this test guideline the following references should be consulted:

§ 798.4100 Dermal sensitization.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of a substance, determination of its potential to provoke skin sensitization reactions is important. Information derived from tests for skin sensitization serves to identify the possible hazard to a population repeatedly exposed to a test substance. While the desirability of skin sensitization testing is recognized, there are some real differences of opinion about the best method to use. The test selected should be a reliable screening procedure which should not fail to identify substances with significant allergenic potential, while at the same time avoiding false negative results.

(b) Definitions. (1) Skin sensitization (allergic contact dermatitis) is an immunologically mediated cutaneous reaction to a substance. In the human, the responses may be characterized by pruritis, erythema, edema, papules, vesicles, bullae, or a combination of these. In other species the reactions may differ and only erythema and edema may be seen.

(2) Induction period is a period of at least 1 week following a sensitization exposure during which a hypersensitive state is developed.

(3) Induction exposure is an experimental exposure of a subject to a test substance with the intention of inducing a hypersensitive state.

(4) Challenge exposure is an experimental exposure of a previously treated subject to a test substance following an induction period, to determine whether the subject will react in a hypersensitive manner.

(c) Principle of the test method. Following initial exposure(s) to a test substance, the animals are subsequently subjected, after a period of not less than 1 week, to a challenge exposure with the test substance to establish whether a hypersensitive state has been induced. Sensitization is determined by examining the reaction to the challenge exposure and comparing this reaction to that of the initial induction exposure.

(d) Test procedures. (1) Any of the following seven test methods is considered to be acceptable. It is realized, however, that the methods differ in their probability and degree of reaction to sensitizing substances.

(i) Freund's complete adjuvant test.

(ii) Guinea-pig maximization test.

(iii) Split adjuvant technique.

(iv) Buehler test.

(v) Open epicutaneous test.

(vi) Mauer optimization test.

(vii) Footpad technique in guinea pig.

(2) Removal of hair is by clipping, shaving, or possibly by depilation, depending on the test method used.

(3) Animal selection—(i) Species and strain. The young adult guinea pig is the preferred species. Commonly used laboratory strains should be employed. If other species are used, the tester should provide justification/reasoning for their selection.

(ii) Number and sex. (A) The number and sex of animals used will depend on the method employed.

(B) The females should be nulliparous and nonpregnant.

(4) Control animals. (i) Periodic use of a positive control substance with an acceptable level of reliability for the test system selected is recommended;

(ii) Animals may act as their own controls or groups of induced animals can be compared to groups which have received only a challenge exposure.

(5) Dose levels. The dose level will depend upon the method selected.

(6) Observation of animals. (i) Skin reactions should be graded and recorded after the challenge exposures at the time specified by the methodology selected. This is usually at 24, 48, and 72 hours. Additional notations should be made as necessary to fully describe unusual responses;
(ii) Regardless of method selected, initial and terminal body weights should be recorded.

(7) Procedures. The procedures to be used are those described by the methodology chosen.

(e) Data and reporting. (1) Data should be summarized in tabular form, showing for each individual animal the skin reaction, results of the induction exposure(s) and the challenge exposure(s) at times indicated by the method chosen. As a minimum, the erythema and edema should be graded and any unusual finding should be recorded.

(2) Evaluation of the results. The evaluation of results will provide information on the proportion of each group that became sensitized and the extent (slight, moderate, severe) of the sensitization reaction in each individual animal.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information should be reported:

(i) A description of the method used and the commonly accepted name.

(ii) Information on the positive control study, including positive control used, method used, and time conducted.

(iii) The number and sex of the test animals.

(iv) Species and strain.

(v) Individual weights of the animals at the start of the test and at the conclusion of the test.

(vi) A brief description of the grading system.

(vii) Each reading made on each individual animal.

(f) References. For additional background information on this test guideline the following references should be consulted:

(1) Buehler, E.V. “Delayed Contact Hypersensitivity in the Guinea Pig,” Archives Dermatology. 91:171 (1965).

§ 798.4350 Inhalation developmental toxicity study.

(a) Purpose. In the assessment and evaluation of the toxic characteristics of an inhalable material such as a gas, volatile substance, or aerosol/particle, determination of the potential developmental toxicity is important. The inhalation developmental toxicity study is designed to provide information on the potential hazard to the unborn which may arise from exposure of the mother during pregnancy.

(b) Definitions. (1) Developmental toxicity is the property of a chemical that causes in utero death, structural or functional abnormalities or growth retardation during the period of development.

(2) “Aerodynamic diameter” applies to the behavioral size of particles of aerosols. It is the diameter of a sphere of unit density which behaves aerodynamically like the particles of the test substance. It is used to compare particles of different sizes, shapes, and
densities and to predict where in the respiratory tract such particles may be deposited. This term is used in contrast to “optical,” “measured” or “geometric” diameters which are representation of actual diameters which in themselves cannot be related to deposition within the respiratory tract.

(3) “Geometric mean diameter” or “median diameter” is the calculated aerodynamic diameter which divides the particles of an aerosol in half based on the weight of the particles. Fifty percent of the particles by weight will be larger than the median diameter and 50 percent of the particles will be smaller than the median diameter. The median diameter and its geometric standard deviation are used to statistically describe the particle size distribution of any aerosol based on the weight and size of the particles.

(4) “Inhalable diameter” refers to that aerodynamic diameter of a particle which is considered to be inhalable for the organism. It is used to refer to particles which are capable of being inhaled and may be deposited anywhere within the respiratory tract from the trachea to the deep lung (the alveoli). For man, the inhalable diameter is considered here as 15 micrometers or less.

(5) “Concentration” refers to an exposure level. Exposure is expressed as weight or volume of test substance per volume of air (mg/l), or as parts per million (ppm).

(6) “No-observed-effect level” is the maximum concentration in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of weight or volume of test substance given daily per unit volume of air.

(c) Principle of the test method. The test substance is administered in graded concentrations, for at least that part of the pregnancy covering the major period of organogenesis, to several groups of pregnant experimental animals, one exposure level being used per group. Shortly before the expected date of delivery, the pregnant females are sacrificed, the uteri removed, and the contents examined for embryonic or fetal deaths, and live fetuses.

(d) Limit test. If a test at an exposure of 5 mg/l (actual concentration of respirable substances) or, where this is not possible due to physical or chemical properties of the test substance, the maximum attainable concentration, produces no observable developmental toxicity, then a full study using three exposure levels might not be necessary.

(e) Test procedures—(1) Animal selection—(i) Species and strain. Testing shall be performed in at least two mammalian species. Commonly used species include the rat, mouse, rabbit, and hamster. If other mammalian species are used, the tester shall provide justification/reasoning for their selection. Commonly used laboratory strains shall be employed. The strain shall not have low fecundity and shall preferably be characterized for its sensitivity to developmental toxins.

(ii) Age. Young adult animals (nulliparous females) shall be used.

(iii) Sex. Pregnant female animals shall be used at each exposure level.

(iv) Number of animals. At least 20 pregnant rats, mice, or hamsters or 12 pregnant rabbits are required at each exposure level. The objective is to ensure that sufficient pups are produced to permit meaningful evaluation of the potential developmental toxicity of the test substance.

(2) Control group. A concurrent control group shall be used. This group shall be exposed to clean, filtered air under conditions identical to those used for the group exposed to the substance of interest. In addition, a vehicle-exposed group may be necessary when the substance under study requires a vehicle for delivery. It is recommended that during preliminary range finding studies, air vs. vehicle exposure be compared. If there is no substantial difference, air exposure itself would be an appropriate control. If vehicle and air exposure yield different results, both vehicle and air exposed control groups are recommended.

(3) Concentration levels and concentration selection. (i) At least three concentration levels with a control and, where appropriate, a vehicle control, shall be used.

(ii) The vehicle shall neither be developmentally toxic nor have effects on reproduction.
(iii) To select the appropriate concentration levels, a pilot or trial study may be advisable. Since pregnant animals have an increased minute ventilation as compared to non-pregnant animals, it is recommended that the trial study be conducted in pregnant animals. Similarly, since presumably the minute ventilation will vary with progression of pregnancy, the animals should be exposed during the same period of gestation as in the main study. In the trial study, the concentration producing embryonic or fetal lethality or maternal toxicity should be determined.

(iv) Unless limited by the physical/chemical nature or biological properties of the substance, the highest concentration level shall induce some overt maternal toxicity such as reduced body weight or body weight gain, but not more than 10 percent maternal deaths.

(v) The lowest concentration level should not produce any grossly observable evidence of either maternal or developmental toxicity.

(vi) Ideally, the intermediate concentration level(s) shall produce minimal observable toxic effects. If more than one intermediate concentration is used, the concentration levels shall be spaced to produce a gradation of toxic effects.

(4) Exposure duration. The duration of exposure shall be at least six hours daily allowing appropriate additional time for chamber equilibrium.

(5) Observation period. Day 0 in the test is the day on which a vaginal plug and/or sperm are observed. The exposure period shall cover the period of major organogenesis. This may be taken as days 6 to 15 for rat and mouse, 6 to 14 for hamster, or 6 to 18 for rabbit.

(6) Inhalation exposure. (i)(A) The animals shall be tested in inhalation equipment designed to sustain a minimum dynamic air flow of 12 to 15 air changes per hour and ensure an adequate oxygen content of 19 percent and an evenly distributed exposure atmosphere. Where a chamber is used, its design should minimize crowding of the test animals and maximize their exposure to the test substance. This is best accomplished by individual caging. To ensure stability of a chamber atmosphere, the total “volume” of the test animals shall not exceed 5 percent of the volume of the test chamber.

(B) Pregnant animals shall not be subjected to beyond the minimum amount of stress. Since whole-body exposure appears to be the least stressful mode of exposure, it is the method preferred. In general oro-nasal or head-only exposure, which is sometimes used to avoid concurrent exposure by the dermal or oral routes, is not recommended because of the associated stress accompanying the restraining of the animals. However, there may be specific instances where it may be more appropriate than whole-body exposure. The tester shall provide justification/reasoning for its selection.

(ii) A dynamic inhalation system with a suitable flow control system shall be used. The rate of air flow shall be adjusted to ensure that conditions throughout the exposure chamber are essentially the same. Test material distribution should be established before animals are committed to dosing. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into the surrounding areas.

(iii) The temperature at which the test is performed should be maintained at 22°C (±2°C) for rodents or 20°C (±3°C) for rabbits. Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.

(7) Physical measurements. Measurements or monitoring should be made of the following:

(i) The rate of airflow shall be monitored continuously but shall be recorded at least every 30 minutes.

(ii) The actual concentration of the test substance shall be measured at 22°C (±2°C) for rodents or 20°C (±3°C) for rabbits. Ideally, the relative humidity should be maintained between 40 to 60 percent, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.
stability of aerosol concentrations with respect to particle size. During exposure, analysis shall be conducted as often as necessary to determine the consistency of particle size distribution.

(iv) Temperature and humidity shall be monitored continuously and be recorded at least every 30 minutes.

(b) Food and water during exposure period. Food should be withheld during exposure. Water may or may not be withheld. If it is not withheld it should not come in direct contact with the test atmospheres.

(9) Observation of animals. (i) A gross examination shall be made at least once each day.

(ii) Additional observations should be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Signs of toxicity shall be recorded as they are observed, including the time of onset, the degree and duration.

(iv) Cage-side observations shall include, but not be limited to: Changes in skin and fur, eye and mucous membranes, as well as respiratory, autonomic and central nervous systems, somatomotor activity and behavioral pattern. Particular attention should be directed to observation of tremors, convulsions, salivation, diarrhea, lethargy, sleep, and coma.

(v) Measurements should be made weekly of food consumption for all animals in the study.

(vi) Animals shall be weighed at least weekly.

(vii) Females showing signs of abortion or premature delivery shall be sacrificed and subjected to a thorough macroscopic examination.

(10) Gross necropsy. (i) At the time of sacrifice or death during the study, the dam shall be examined macroscopically for any structural abnormalities or pathological changes which may have influenced the pregnancy.

(ii) Immediately after sacrifice or death, the uterus shall be removed, weighed, and the contents examined for embryonic or fetal deaths and the number of viable fetuses. Gravid uterine weights should not be obtained from dead animals if autolysis or where decomposition has occurred. The degree of resorption shall be described in order to help estimate the relative time of death.

(iii) The number of corpora lutea shall be determined for all species except mice.

(iv) The sex of the fetuses shall be determined and they shall be weighed individually, the weights recorded, and the mean fetal weight derived.

(v) Following removal, each fetus shall be examined externally.

(vi) For rats, mice and hamsters, one-third to one-half of each litter shall be prepared and examined for skeletal anomalies, and the remaining part of each litter shall be prepared and examined for soft tissue anomalies using appropriate methods.

(vii) For rabbits, each fetus shall be examined by careful dissection for visceral anomalies and then examined for skeletal anomalies.

(f) Data and reporting—(1) Treatment of results. Data shall be summarized in tabular form, showing for each test group: the number of animals at the start of the test, the number of pregnant animals, the number and percentages of live fetuses and the number of fetuses with any soft tissue or skeletal abnormalities.

(2) Evaluation of results. The findings of a developmental toxicity study shall be evaluated in terms of the observed effects and the exposure levels producing effects. It is necessary to consider the historical developmental toxicity data on the species/strain tested. A properly conducted developmental toxicity study should provide a satisfactory estimation of a no-effect level.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Test conditions. (A) Description of exposure apparatus including design, type, dimensions, source of air, system for generating particulates and aerosols, methods of conditioning air, and the method of housing the animals in a test chamber when this apparatus is used.
(B) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size shall be described.

(ii) Exposure data. These shall be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and shall include:
(A) Airflow rates through the inhalation equipment.
(B) Temperature of air.
(C) Nominal concentration—total amount of test substance fed into the inhalation equipment divided by volume of air (no standard deviation).
(D) Measured total concentrations (particulate and/or gaseous phases) in test breathing zone.
(E) Particle size distribution (e.g., median aerodynamic diameter of particles with geometric standard deviation) including estimates of the percents of inhalable and non-inhalable portions for the test animals.

(iii) Animal data.
(A) Toxic response data by concentration.
(B) Species and strain.
(C) Date of death during the study or whether animals survived to termination.
(D) Date of onset and duration of each abnormal sign and its subsequent course.
(E) Feed, body weight and uterine weight data.
(F) Pregnancy and litter data.
(G) Fetal data (live/dead, sex, soft tissue and skeletal defects, resorptions).

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.4700 Reproduction and fertility effects.

(a) Purpose. This guideline for two-generation reproduction testing is designed to provide general information concerning the effects of a test substance on gonadal function, conception, parturition, and the growth and development of the offspring. The study may also provide information about the effects of the test substance on neonatal morbidity, mortality, and preliminary data on teratogenesis and serve as a guide for subsequent tests.

(b) Principle of the test method. The test substance is administered to parental (P) animals prior to their mating, during the resultant pregnancies, and through the weaning of their F1 offspring. The substance is then administered to selected F1 offspring during their growth into adulthood, mating, and production of an F2 generation, up until the F2 generation is weaned.

(c) Test procedures—(1) Animal selection—(i) Species and strain. The rat is the preferred species. If another mammalian species is used, the tester shall provide justification/reasoning for its selection. Strains with low fecundity shall not be used.
(ii) Age. Parental (P) animals shall be about 5 to 8 weeks old at the start of dosing.
(iii) Sex. (A) For an adequate assessment of fertility, both males and females shall be studied.
(B) The females shall be nulliparous and non-pregnant.
(iv) Number of animals. Each test and control group shall contain at least 20 males and a sufficient number of females to yield at least 20 pregnant females at or near term.

(2) Control groups. (i) A concurrent control group shall be used. This group shall be an untreated or sham treated control group or if a vehicle is used in administering the test substance, a vehicle control group.
(ii) If a vehicle is used in administering the test substance, the control group shall receive the vehicle in the highest volume used.

(iii) If a vehicle or other additive is used to facilitate dosing, it shall not interfere significantly with absorption of the test substance or produce toxic effects.

(3) Dose levels and dose selection. (i) At least three dose levels and a concurrent control shall be used.

(ii) The highest dose level should induce toxicity but not high levels of mortality in the parental (P) animals.

(iii) The lowest dose level should not produce any grossly observable evidence of toxicity.

(iv) Ideally the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate dose is used, dose levels should be spaced to produce a gradation of toxic effects.

(4) Exposure conditions. The animals should be dosed with the test substance, ideally, on a 7 days per week basis.

(i) Dosing, mating, delivery, and sacrifice schedule.

(A) Daily dosing of the parental (P) males and females shall begin when they are 5 to 8 weeks old. For both sexes, dosing shall be continued for at least 10 weeks before the mating period.

(B) Dosing of P males shall continue throughout the 3-week mating period. At the end of the mating period, P males may be sacrificed and examined, or may be retained for possible production of a second litter. If these animals are retained for a second litter, dosing shall be continued. Dosing of the F₁ males saved for mating shall continue from the time they are weaned through the period they are mated with the F₁ females (11 weeks). F₁ males may be sacrificed after the F₁ mating period.

(C) Daily dosing of the P females shall continue through the three-week mating period, pregnancy, and to the weaning of the F₁ offspring. Dosing of the F₁ females saved for mating shall continue from the time they are weaned, through the period they are mated with the F₁ males (11 weeks from the time of weaning) pregnancy, and to the weaning of the F₂ offspring.

(ii) All animals are sacrificed as scheduled.

(A) All P males should be sacrificed at the end of the 3-week mating period, or may be retained for possible production of a second litter. If these animals are retained for a second litter, dosing shall be continued.

(B) F₁ males selected for mating should be sacrificed at the end of the three-week period of the F₁ mating.

(C) F₁ males and females not selected for mating should be sacrificed when weaned.

(D) The P females should be sacrificed upon weaning of their F₁ offspring.

(E) F₁ dams and their F₂ offspring are sacrificed when the offspring are weaned.

(5) Administration of the test substance—(i) Oral studies. (A) It is recommended that the test substance be administered in the diet or drinking water.

(B) If administered by gavage or capsule, the dosage administered to each animal prior to mating shall be based on the individual animal's body weight and adjusted weekly. During pregnancy the dosage shall be based on the body weight at day 0 and 6 of pregnancy.

(ii) If another route of administration is used, the tester should provide justification and reasoning for its selection.

(6) Mating procedure—(i) Parental. (A) For each mating, each female shall be placed with a single male from the same dose level until pregnancy occurs or 1 week has elapsed. If mating has not occurred after 1 week, the female shall be placed with a different male. Paired matings should be clearly identified.

(B) Those pairs that fail to mate should be evaluated to determine the cause of the apparent infertility. This may involve such procedures as additional opportunities to mate with proven fertile males or females, histological examination of the reproductive organs, and examination of the estrus or spermatogenic cycles.

(C) Each day, the females shall be examined for presence of sperm or vaginal plugs. Day 0 of pregnancy is defined as the day vaginal plugs or sperm are found.
(ii) F₁ cross. (A) For mating the F₁ offspring, one male and one female are randomly selected at weaning from each litter for cross mating with another pup of the same dose level but different litter, to produce the F₂ generation.

(B) F₁ males and females not selected for mating are sacrificed upon weaning.

(iii) Special housing. After evidence of copulation, pregnant animals shall be caged separately in delivery or maternity cages. Pregnant animals shall be provided with nesting materials when parturition is near.

(iv) Standardization of litter sizes. (A) On day 4 after birth, the size of each litter should be adjusted by eliminating extra pups by random selection to yield, as nearly as possible, 4 males and 4 females per litter.

(B) Whenever the number of male or female pups prevents having 4 of each sex per litter, partial adjustment (for example, 5 males and 3 females) is permitted. Adjustments are not appropriate for litters of less than 8 pups.

(C) Elimination of runts only is not appropriate.

(D) Adjustments of the F₂ litters is conducted in the same manner.

(7) Observation of animals. (i) A gross examination shall be made at least once each day. Pertinent behavioral changes, signs of difficult or prolonged parturition, and all signs of toxicity, including mortality, shall be recorded. These observations shall be reported for each individual animal. Food consumption for all animals shall be monitored weekly except during the mating period.

(ii) The duration of gestation shall be calculated from day 0 of pregnancy.

(iii) Each litter should be examined as soon as possible after delivery for the number of pups, stillbirths, live births, sex, and the presence of gross anomalies. Live pups should be counted and litters weighed at birth or soon thereafter, and on days 4, 7, 14, and 21 after parturition.

(iv) Physical or behavioral abnormalities observed in the dams of offspring shall be recorded.

(v) F₁ males and females shall be weighed on the first day of dosing and weekly thereafter. F₁ litters shall be weighed at birth, or soon thereafter, and on days 4, 7, 14, and 21. In all cases, litter weights shall be calculated from the weights of the individual pups.

(8) Gross necropsy. (i) A complete gross examination shall be performed on all adult animals, including those which died during the experiment or were killed in moribund conditions.

(ii) Special attention shall be directed to the organs of the reproductive system.

(iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: Vagina; uterus; ovaries; testes; epididymides; seminal vesicles; prostate, pituitary gland; and, target organ(s) when previously identified of all P and F₁ animals selected for mating.

(9) Histopathology. Except if carried out in other studies of comparable duration and dose levels the following histopathology shall be performed:

(i) Full histopathology on the organs listed above for all high dose, and control P₁ and F₁ animals selected for mating.

(ii) Organs demonstrating pathology in these animals shall then be examined in animals from the other dose groups.

(iii) Microscopic examination shall be made of all tissues showing gross pathological changes.

(d) Data and reporting—(1) Treatment of results. Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals pregnant, the types of change and the percentage of animals displaying each type of change.

(2) Evaluation of study results. (i) An evaluation of test results, including the statistical analysis, based on the clinical findings, the gross necropsy findings, and the microscopic results shall be made and supplied. This should include an evaluation of the relationship, or lack thereof, between the animals' exposure to the test substance and the incidence and severity of all abnormalities.

(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and
bioavailability of the test substance should be considered.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Toxic response data by sex and dose, including fertility, gestation, viability, and lactation indices, and length of gestation.

(ii) Species and strain.

(iii) Date of death during the study or whether animals survived to termination.

(iv) Toxic or other effects on reproduction, offspring, or postnatal growth.

(v) Date of observation of each abnormal sign and its subsequent course.

(vi) Body weight data for P, F1, and F2 animals.

(vii) Necropsy findings.

(viii) Detailed description of all histopathological findings.

(ix) Statistical treatment of results where appropriate.

(e) References. For additional background information on this test guideline the following references should be consulted:

[50 FR 39939, Sept. 27, 1985, as amended at 52 FR 10077, May 20, 1987]
be characterized for its sensitivity to developmental toxins.

(ii) Age. Young adult animals (nulliparous females) shall be used.

(iii) Sex. Pregnant female animals shall be used at each dose level.

(iv) Number of animals. At least 20 pregnant rats, mice or hamsters or 12 pregnant rabbits are required at each dose level. The objective is to ensure that sufficient pups are produced to permit meaningful evaluation of the potential developmental toxicity of the test substance.

(2) Control group. A concurrent control group shall be used. This group shall be an untreated or sham treated control group, or, if a vehicle is used in administering the test substance, a vehicle control group. Except for treatment with the test substance, animals in the control group(s) shall be handled in an identical manner to test group animals.

(3) Dose levels and dose selection. (i) At least 3 dose levels with a control and, where appropriate, a vehicle control, shall be used.

(ii) The vehicle shall neither be developmentally toxic nor have effects on reproduction.

(iii) To select the appropriate dose levels, a pilot or trial study may be advisable. It is not always necessary to carry out a trial study in pregnant animals. Comparison of the results from a trial study in non-pregnant, and the main study in pregnant animals will demonstrate if the test substance is more toxic in pregnant animals. If a trial study is carried out in pregnant animals, the dose producing embryonic or fetal lethality or maternal toxicity shall be determined.

(iv) Unless limited by the physical/chemical nature or biological properties of the substance, the highest dose level shall induce some overt maternal toxicity such as reduced body weight or body weight gain, but not more than 10 percent maternal deaths.

(v) The lowest dose level should not produce any grossly observable evidence of either maternal or developmental toxicity.

(vi) Ideally, the intermediate dose level(s) should produce minimal observable toxic effects. If more than one intermediate concentration is used, the concentration levels should be spaced to produce a gradation of toxic effects.

(4) Observation period. Day 0 in the test is the day on which a vaginal plug and/or sperm are observed. The dose period shall cover the period of major organogenesis. This may be taken as days 6 to 15 for rat and mouse, 6 to 14 for hamster, or 6 to 18 for rabbit.

(5) Administration of test substance. The test substance or vehicle is usually administered orally, by oral intubation unless the chemical or physical characteristics of the test substance or pattern of human exposure suggest a more appropriate route of administration.

(6) Exposure conditions. The female test animals are treated with the test substance daily throughout the appropriate treatment period. When given by gavage, the dose may be based on the weight of the females at the start of substance administration, or, alternatively, in view of the rapid weight gain which takes place during pregnancy, the animals may be weighed periodically and the dosage based on the most recent weight determination.

(7) Observation of animals. (i) A gross examination shall be made at least once each day.

(ii) Additional observations shall be made daily with appropriate actions taken to minimize loss of animals to the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) Signs of toxicity shall be recorded as they are observed, including the time of onset, the degree and duration.

(iv) Cage-side observations shall include, but not be limited to: changes in skin and fur, eye and mucous membranes, as well as respiratory, autonomic and central nervous systems, somatomotor activity and behavioral pattern.

(v) Measurements should be made weekly of food consumption for all animals in the study.

(vi) Animals shall be weighed at least weekly.
(vii) Females showing signs of abortion or premature delivery shall be sacrificed and subjected to a thorough macroscopic examination.

(b) Gross necropsy. (i) At the time of sacrifice or death during the study, the dam shall be examined macroscopically for any structural abnormalities or pathological changes which may have influenced the pregnancy.

(ii) Immediately after sacrifice or as soon as possible after death, the uterus shall be removed and the contents examined for embryonic or fetal deaths and the number of viable fetuses. The degree of resorption shall be described in order to help estimate the relative time of death of the conceptus. The weight of the gravid uterus should be recorded for dams that are sacrificed. Gravid uterine weights should not be obtained from dead animals if autolysis or decomposition has occurred.

(iii) The number of corpora lutea shall be determined for all species except mice.

(iv) The sex of the fetuses shall be determined and they shall be weighed individually, the weights recorded, and the mean fetal weight derived.

(v) Following removal, each fetus shall be examined externally.

(vi) For rats, mice and hamsters, one-third to one-half of each litter shall be prepared and examined for skeletal anomalies, and the remaining part of each litter shall be prepared and examined for soft tissue anomalies using appropriate methods.

(vii) For rabbits, each fetus shall be examined by careful dissection for visceral anomalies and then examined for skeletal anomalies.

(f) Data and reporting—(1) Treatment of results. Data shall be summarized in tabular form, showing for each test group: the number of animals at the start of the test, the number of pregnant animals, the number and percentages of live fetuses and the number of fetuses with any soft tissue or skeletal abnormalities.

(2) Evaluation of results. The findings of a developmental toxicity study shall be evaluated in terms of the observed effects and the exposure levels producing effects. It is necessary to consider the historical developmental toxicity data on the species/strain tested. A properly conducted developmental toxicity study should provide a satisfactory estimation of a no-effect level.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J the following specific information shall be reported:

(i) Toxic response data by concentration.

(ii) Species and strain.

(iii) Date of death during the study or whether animals survived to termination.

(iv) Date of onset and duration of each abnormal sign and its subsequent course.

(v) Food, body weight and uterine weight data.

(vi) Pregnancy and litter data.

(vii) Fetal data (live/dead, sex, soft tissue and skeletal defects, resorptions).

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.5195 Mouse biochemical specific locus test.

(a) Purpose. The mouse biochemical specific locus test (MBSL) may be used to detect and quantitate mutations
Environmental Protection Agency § 798.5195

originating in the germ line of a mammalian species.

(b) Definitions. (1) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing alterations in proteins that can be detected by electrophoretic methods.

(2) The germ line is comprised of the cells in the gonads of higher eukaryotes, which are the carriers of the genetic information for the species.

(c) Reference substances. Not applicable.

(d) Test method—(1) Principle. The principle of the MBSL is that heritable damage to the genome can be detected by electrophoretic analysis of proteins in the tissues of the progeny of mice treated with germ cell mutagens.

(2) Description. For technical reasons, males rather than females are generally treated with the test chemical. Treated males are then mated to untreated females to produce F1 progeny. Both blood and kidney samples are taken from progeny for electrophoretic analysis. Up to 33 loci can be examined by starch-gel electrophoresis and broad-range isoelectric focusing. Mutants are identified by variations from the normal electrophoretic pattern. Presumed mutants are bred to confirm the genetic nature of the change.

(3) Animal selection—(i) Species and strain. Mice shall be used as the test species. Although the biochemical specific locus test could be performed in a number of inbred strains, in the most frequently used cross, C57BL/6 females are mated to DBA/2 males to produce (C57BL/6 x DBA/2) F1 progeny for screening.

(ii) Age. Healthy, sexually-mature (at least 8 weeks old) animals shall be used for treatment and breeding.

(iii) Number. A decision on the minimum number of treated animals should take into account possible effects of the test chemical on the fertility of the treated animals. Other considerations should include:

(A) The production of concurrent spontaneous controls.

(B) The use of positive controls.

(C) The power of the test.

(4) Control groups—(i) Concurrent controls. An appropriate number of concurrent control loci shall be analyzed in each experiment. These should be partly derived from matings of untreated animals (from 5 to 20 percent of the treated matings), although some data on control loci can be taken from the study of the alleles transmitted from the untreated parent in the experimental cross. However, any laboratory which has had no prior experience with the test shall produce a spontaneous control sample of about 5,000 progeny animals and a positive control (using 100 mg/kg ethylnitrosourea) sample of at least 1,200 offspring.

(ii) Historical controls. Long-term, accumulated spontaneous control data (currently, 1 mutation in 1,200,000 control loci screened) are available for comparative purposes.

(5) Test chemicals—(i) Vehicle. When possible, test chemicals shall be dissolved or suspended in distilled water or buffered isotonic saline. Water-insoluble chemicals shall be dissolved or suspended in appropriate vehicles. The vehicle used shall neither interfere with the test chemical nor produce major toxic effects. Fresh preparations of the test chemical should be employed.

(ii) Dose levels. Usually, only one dose need be tested. This should be the maximum tolerated dose (MTD), the highest dose tolerated without toxic effects. Any temporary sterility induced due to elimination of spermatogonia at this dose must be of only moderate duration, as determined by the return of males to fertility within 80 days after treatment. For evaluation of dose-response, it is recommended that at least two dose levels be tested.

(iii) Route of administration. Acceptable routes of administration include, but are not limited to, gavage, inhalation, and mixture with food or water, and intraperitoneal or intravenous injections.

(e) Test performance—(1) Treatment and mating. Male DBA/2 mice shall be treated with the test chemical and mated to virgin C57BL/6 females immediately after cessation of treatment. Each treated male shall be mated to new virgin C57BL/6 females each week. Each pairing will continue for a week until the next week’s mating is to begin. This mating schedule permits sampling of all post-spermatogonial
stages of germ-cell development during the first 7 weeks after exposure. Spermatogonial stem cells are studied thereafter. Repeated mating cycles should be conducted until sufficient offspring have been obtained to meet the power criterion of the assay for spermatogonial stem cells.

(2) Examination of offspring—(i) Birth and weaning. Offspring shall be examined at birth and at weaning for externally detectable changes in morphology and behavior; these could be due to dominant mutations. Such characteristics may include, but are not limited to, variations in coat color, appearance of eyes, size (in which case weighing of variant animals and littermates should be carried out), fur texture, etc. Gross changes in external form and behavior shall also be sought. Scrutiny of such visible characteristics of all animals shall be made during all subsequent manipulations of the animals.

(ii) Tissue sampling. Blood (about 0.1 mL) and one kidney shall be removed from progeny mice under anesthesia. Both tissues are then prepared for analysis by electrophoresis.

(iii) Electrophoresis. The gene products of 6 loci shall be analyzed in the blood sample by broad-range isoelectric focussing and of 27 loci in the kidney sample by starch-gel electrophoresis and enzyme-specific staining. Details on these procedures are included in paragraphs (g)(1) through (g)(3) of this section.

(iv) Mutant identification. Presumptive electrophoretic mutants shall be identified by variation from the normal electrophoretic banding patterns. Reruns of all variant samples shall be performed to confirm the presence of altered banding patterns. Samples from parents of progeny exhibiting banding pattern variations shall be assayed to determine whether the variant was induced by the experimental treatment or was pre-existing. All treatment-induced variants are bred to determine the genetic nature of the change.

(f) Data and reports—(1) Treatment of results. Data shall be presented in tabular form and shall permit independent analysis of cell stage-specific effects, and dose-dependent phenomena. The data shall be recorded and analyzed in such a way that clusters of identical mutations are clearly identified. The individual mutants detected shall be thoroughly described. In addition, concurrent positive control data (if employed) and spontaneous control data shall also be tabulated. These concurrent controls shall be added to, as well as compared with, the historical control data.

(2) Statistical evaluation. Data shall be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive response, one of which is a statistically significant dose-related increase in the frequency of electrophoretic mutations. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of these test points.

(ii) A test chemical which does not produce a statistically significant increase in the frequency of electrophoretic mutations over the spontaneous frequency, or a statistically significant and reproducible positive response for at least one of the test points, is considered nonmutagenic in this system, provided that the sample size is sufficient to exclude a biologically significant increase in mutation frequency.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the MBSL indicate that, under the test conditions, the test chemical induces heritable gene mutations in a mammalian species.

(ii) Negative results indicate that, under the test conditions, the test chemical does not induce heritable gene mutations in a mammalian species.

(5) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, and paragraph (h) of this section, the following specific information shall be reported:

(i) Strain, age and weight of animals used; numbers of animals of each sex in experimental and control groups.

(ii) Test chemical vehicle, doses used, rationale for dose selection, and toxicity data, if available.

(iii) Route and duration of exposure.
(iv) Mating schedule.
(v) Number of loci screened for both treated and spontaneous data.
(vi) Criteria for scoring mutants.
(vii) Number of mutants found/locus.
(viii) Loci at which mutations were found.
(ix) Use of concurrent negative and positive controls.
(x) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline, the following references should be consulted:

(h) Additional requirements. Testing facilities conducting the mouse biochemical specific locus test in accordance with this section shall, in addition to adhering to the provisions of §§792.190 and 792.195 of this chapter, obtain, adequately identify, and retain for at least 10 years, acceptable 35-mm photographs (and their negatives) of the stained isoelectric-focussing columns and the stained starch-gels obtained following analyses of blood and kidney preparations, respectively, from mutant mice, their siblings, and their parents.

[55 FR 12641, Apr. 5, 1990]

§ 798.5200 Mouse visible specific locus test.

(a) Purpose. The mouse visible specific locus test (MSLT) may be used to detect and quantitate mutations in the germ line of a mammalian species.
(b) Definitions. (1) A visible specific locus mutation is a genetic change that alters factors responsible for coat color and other visible characteristics of certain mouse strains.
(2) The germ line is the cells in the gonads of higher eukaryotes which are the carriers of the genetic information for the species.
(c) Reference substances. Not applicable.
(d) Test method—(1) Principle. (i) The principle of the MSLT is to cross individuals who differ with respect to the genes present at certain specific loci, so that a genetic alteration involving the standard gene at any one of these loci will produce an offspring detectably different from the standard heterozygote. The genetic change may be detectable by various means, depending on the loci chosen to be marked.
(ii) Three variations of the method currently exist for detecting newly arising point mutations in mouse germ cells:
(A) The visible specific locus test using either 5 or 7 loci.
(B) The biochemical specific locus test using up to 20 enzymes.
(C) The test for mutations at histocompatibility loci.
(iii) Of the three tests, the visible specific locus test has been most widely used in assessing genetic hazard due to environmental agents. It is the method described in this guideline.
(2) Description. For technical reasons, males rather than females are generally treated with the test agent. Treated males are then mated to females which are genetically homozygous for certain specific visible marker loci. Offspring are examined in the next generation for evidence that a new mutation has arisen.
(3) Animal selection—(i) Species and strain. Mice shall be used as the test...
species. Male mice shall be either (C3H×101)F1 or (101×C3H)F1 hybrids. Females shall be T stock virgins.

(ii) Age. Healthy sexually mature animals shall be used.

(iii) Number. A decision on the minimum number of treated animals should take into account the spontaneous variation of the biological characterization being evaluated. Other considerations should include:

(A) The use of either historical or concurrent controls.

(B) The power of the test.

(C) The minimal rate of induction required.

(D) The use of positive controls.

(E) The level of significance desired.

(iv) Assignment to groups. Animals shall be randomized and assigned to treatment and control groups.

(4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is left to the discretion of the investigator. However, any laboratory which has had no prior experience with the test shall, at its first attempt, produce a negative control sample of 20,000 and a positive control, using 100 mg/kg 1-ethyl-nitrosourea, in a sample of 5,000 offspring.

(ii) Historical controls. Long term, accumulated spontaneous control data of 43/801,406 are available for comparative purposes.

(5) Test chemicals—(i) Vehicle. When possible, test chemicals should be dissolved or suspended in distilled water or isotonic saline buffered appropriately, if needed, for stability. Water-insoluble chemicals shall be dissolved or suspended in appropriate vehicles. The vehicle used shall neither interfere with the test compound nor produce major toxic effects. Fresh preparations of the test chemical should be employed.

(ii) Dose levels. Usually, only one dose level need be tested. This should be the highest dose tolerated without toxic effects, provided that any temporary sterility induced due to elimination of spermatagonia is of only moderate duration, as determined by a return of males to fertility within 80 days after treatment. For evaluation of dose-response, it is recommended that at least two dose levels be tested.

(iii) Route of administration. Acceptable routes of administration include gavage, inhalation, admixture with food or water, and IP or IV injections.

(e) Test performance—(1) Treatment and mating. Hybrid F1 (C3H×101 or 101×C3H) male mice shall be treated with the test substance and immediately mated to virgin T stock females. Each treated male shall be mated to a fresh group of 2 to 4 virgin females each week for 7 weeks, after which he shall be returned to the first group of females and rotated through the seven sets of females repeatedly. This mating schedule generally permits sampling of all post-spermatagonial stages of germ cell development during the first 7 weeks and rapid accumulation of data for exposed spermatogonial stem cells thereafter. Repeated mating cycles should be conducted until the entire spermatogonial cycle has been evaluated and enough offspring have been obtained to meet the power criterion of the assay.

(2) Examination of offspring. (i) Offspring may be examined at (or soon after) birth but must be examined at about 3 weeks of age at which time the numbers of mutant and nonmutant offspring in each litter shall be recorded.

(ii) Nonmutant progeny should be discarded. Mutant progeny shall be subjected to genetic tests for verification.

(f) Data and report—(1) Treatment of results. Data shall be presented in tabular form and shall permit independent analysis of cell stage specific effects and dose dependent phenomena. The data shall be recorded and analyzed in such a way that clusters of identical mutations are clearly identified. The individual mutants detected shall be thoroughly described. In addition, concurrent positive and negative control data, if they are available, shall be tabulated so that it is possible to differentiate between concurrent (when available) and long-term accumulated mutation frequencies.

(2) Statistical evaluation. Data shall be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a
positive result, one of which is a statistically significant dose-related increase in the number of specific locus mutations. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of specific locus mutations or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the MSLT indicate that under the test conditions the test substance induces heritable gene mutations in the test species.

(ii) Negative results indicate that under the test conditions the test substance does not induce heritable gene mutations in the test species.

(5) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, and paragraph (h) of this section, the following specific information shall be reported:

(i) Strain, age and weight of animals used, number of animals of each sex in experimental and control groups.

(ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data.

(iii) Route and duration of exposure.

(iv) Mating schedule.

(v) Time of examination for mutant progeny.

(vi) Criteria for scoring mutants.

(vii) Use of concurrent or negative controls.

(viii) Dose response relationship, if applicable.

(g) References. For additional background information on this test guide line the following references should be consulted:

(2) [Reserved]

(h) Additional requirements. Testing facilities conducting the mouse visible specific locus test in accordance with this section shall, in addition to adhering to the provisions of §§792.190 and 792.195 of this chapter, obtain, and retain for at least 10 years, acceptable 35-mm color photographs (and their negatives) demonstrating the visible mutations observed in mutant animals and the lack of such mutations in their siblings and parents.

§ 798.5265 The salmonella typhimurium reverse mutation assay.

(a) Purpose. The Salmonella typhimurium histidine (his) reversion system is a microbial assay which measures his−→his+ reversion induced by chemicals which cause base changes or frameshift mutations in the genome of this organism.

(b) Definitions. (1) A reverse mutation assay in Salmonella typhimurium detects mutation in a gene of a histidine requiring strain to produce a histidine independent strain of this organism.

(2) Base pair mutagens are agents which cause a base change in the DNA. In a reversion assay, this change may occur at the site of the original mutation or at a second site in the chromosome.

(3) Frameshift mutagens are agents which cause the addition or deletion of single or multiple base pairs in the DNA molecule.

(c) Reference substances. These may include, but need not be limited to, sodium azide, 2-nitrofluorene, 9-amino-acridine, 2-aminonaphthacene, congo red, benzopurpurin 4B, trypan blue or direct blue 1.

(d) Test method—(1) Principle. Bacteria are exposed to test chemical with and without a metabolic activation system and plated onto minimal medium. After a suitable period of incubation, revertant colonies are counted and compared to the number of spontaneous revertants in an untreated and/or vehicle control culture.
(2) Description. Several methods for performing the test have been described. Among those used are:
(i) The direct plate incorporation method.
(ii) The preincubation method.
(iii) The azo-reduction method.

The procedures described here are for the direct plate incorporation method and the azo-reduction method.

(3) Strain selection—(i) Designation. At the present time four strains, TA 1535, TA 1537, TA 98 and TA 100 should be used. The use of other strains in addition to these four is left to the discretion of the investigator.
(ii) Preparation and storage. Recognized methods of stock culture preparation and storage should be used. The requirement of histidine for growth should be demonstrated for each strain. Other phenotypic characteristics should be checked using such methods as crystal violet sensitivity and resistance to ampicillin. Spontaneous reversion frequency should be in the range expected either as reported in the literature or as established in the laboratory by historical control values.
(iii) Bacterial growth. Fresh cultures of bacteria should be grown up to the late exponential or early stationary phase of growth (approximately 10^8 to 10^9 cells per ml).

(4) Metabolic activation. Bacteria should be exposed to the test substance both in the presence and absence of an appropriate metabolic activation system. For the direct plate incorporation method, the most commonly used system is a cofactor supplemented postmitochondrial fraction prepared from the livers of rodents treated with enzyme inducing agents such as Aroclor 1254. For the azo-reduction method, a cofactor supplemented postmitochondrial fraction prepared from the livers of untreated hamsters is preferred. For this method, the cofactor supplement should contain flavin mononucleotide, exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate.

(5) Control groups—(i) Concurrent controls. Concurrent positive and negative (untreated and/or vehicle) controls shall be included in each experiment. Positive controls shall ensure both strain responsiveness and efficacy of the metabolic activation system.
(ii) Strain specific positive controls. Strain specific positive controls shall be included in the assay. Examples of strain specific positive controls are as follows:
(A) Strain TA 1535, TA 100, sodium azide.
(B) TA 98, 2-nitrofluorene.
(C) TA 1537, 9-aminoacridine.
(iii) Positive controls to ensure the efficacy of the activation system. The positive control reference substance for tests including a metabolic activation system should be selected on the basis of the type of activation system used in the test. 2-Aminoanthracene is an example of a positive control compound in plate-incorporation tests using postmitochondrial fractions from the livers of rodents treated with enzyme inducing agents such as Aroclor-1254. Congo red is an example of a positive control compound in the azo-reduction method. Other positive control reference substances may be used.
(iv) Class-specific positive controls. The azo-reduction method should include positive controls from the same class of compounds as the test agent wherever possible.
(6) Test chemicals—(i) Vehicle. Test chemicals and positive control reference substances should be dissolved or suspended in an appropriate vehicle and then further diluted in vehicle for use in the assay.
(ii) Exposure concentrations. (A) The test should initially be performed over a broad range of concentrations. Among the criteria to be taken into consideration for determining the upper limits of test chemical concentration are cytotoxicity and solubility. Cytotoxicity of the test chemical may be altered in the presence of metabolic activation systems. Toxicity may be evidenced by a reduction in the number of spontaneous revertants, a clearing of the background lawn or by the degree of survival of treated cultures. Relatively insoluble compounds should be tested up to the limits of solubility. For freely soluble nontoxic chemicals, the upper test chemical concentration should be determined on a case by case basis.
(B) Generally, a maximum of 5 mg/plate for pure substances is considered acceptable. At least 5 different amounts of test substance shall be tested with adequate intervals between test points.

(C) When appropriate, a single positive response shall be confirmed by testing over a narrow range of concentrations.

(e) Test performance—(1) Direct plate incorporation method. For this test without metabolic activation, test chemical and 0.1 ml of a fresh bacterial culture should be added to 2.0 ml of overlay agar. For tests with metabolic activation, 0.5 ml of activation mixture containing an adequate amount of postmitochondrial fraction should be added to the agar overlay after the addition of test chemical and bacteria. Contents of each tube shall be mixed and poured over the surface of a selective agar plate. Overlay agar shall be allowed to solidify before incubation. At the end of the incubation period, revertant colonies per plate shall be counted.

(2) Azo-reduction method. (i) For this test with metabolic activation, 0.5 ml of S-9 mix containing 150 ul of S-9 and 0.1 ml of bacterial culture should be added to a test tube kept on ice. One-tenth milliliter of chemical should be added, and the tubes should be incubated with shaking at 30 °C for 30 min. At the end of the incubation period, 20 ml of agar should be added to each tube, the contents mixed and poured over the surface of a selective agar plate. Overlay agar shall be allowed to solidify before incubation. At the end of the incubation period, revertant colonies per plate shall be counted.

(ii) For tests without metabolic activation, 0.5 ml of buffer should be used in place of the 0.5 ml of S-9 mix. All other procedures shall be the same as those used for the test with metabolic activation.

(3) Other methods. Other methods may also be appropriate.

(4) Media. An appropriate selective medium with an adequate overlay agar shall be used.

(5) Incubation conditions. All plates within a given experiment shall be incubated for the same time period. This incubation period shall be for 48-72 hours at 37 °C.

(f) Data and report—(1) Treatment of results. Data shall be presented as number of revertant colonies per plate for each replicate and dose. The numbers of revertant colonies on both negative (untreated and/or vehicle) and positive control plates shall also be presented. Individual plate counts, the mean number of revertant colonies per plate and standard deviation shall be presented for test chemical and positive and negative (untreated and/or vehicle) controls.

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of revertants. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test substance concentrations.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of revertants or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results from the S. typhimurium reverse mutation assay indicate that, under the test conditions, the test substance induces point mutations by base changes or frameshifts in the genome of this organism.

(ii) Negative results indicate that under the test conditions the test substance is not mutagenic in S. typhimurium.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Bacterial strain used.
§ 798.5275 Sex-linked recessive lethal test in drosophila melanogaster.

(a) Purpose. The sex-linked recessive lethal (SLRL) test using Drosophila melanogaster detects the occurrence of mutations, both point mutations and small deletions, in the germ line of the insect. This test is a forward mutation assay capable of screening for mutations at about 800 loci on the X-chromosome. This represents about 80 percent of all X-chromosome loci. The X-chromosome represents approximately one-fifth of the entire haploid genome.

(b) Definitions. (1) Lethal mutation is a change in the genome which, when expressed, causes death to the carrier.

(2) Recessive mutation is a change in the genome which is expressed in the homozygous or hemizygous condition.

(3) Sex-Linked genes are present on the sex (X or Y) chromosomes. Sex-linked genes in the context of this guideline refer only to those located on the X-chromosome.

(4) Lethal mutation is a change in the genome which, when expressed, causes death to the carrier.

(5) Recessive mutation is a change in the genome which is expressed in the homozygous or hemizygous condition.

(6) Sex-Linked genes are present on the sex (X or Y) chromosomes. Sex-linked genes in the context of this guideline refer only to those located on the X-chromosome.

(7) Reference substances. These may include, but need not be limited to, ethyl methanesulfonate or N-nitroso-dimethylamine.

(d) Test method—(1) Principle. Mutations in the X-chromosome of D. melanogaster are phenotypically expressed in males carrying the mutant gene. When the mutation is lethal in the hemizygous condition, its presence is inferred from the absence of one class of male offspring out of the two that are normally produced by a heterozygous female. The SLRL test takes advantage of these facts by means of specially marked and arranged chromosomes.

(2) Description. Wild-type males are treated and mated to appropriate females. Female offspring are mated individually to their brothers, and in the next generation the progeny from each separate dose are scored for phenotypically wild-type males. Absence of these males indicates that a sex-linked recessive lethal mutation has occurred in a germ cell of the P1 male.

(3) Drosophila stocks. Males of a well-defined wild type stock and females of the Muller-5 stock may be used. Other appropriately marked female stocks with multiple inverted X-chromosomes may also be used.

(4) Control groups—(i) Concurrent controls. Concurrent positive and negative (vehicle) controls shall be included in each experiment.

(ii) Positive controls. Examples of positive controls include ethyl methanesulfonate and N-nitroso-dimethylamine.

(iii) Other positive controls. Other positive control reference substances may be used.

(iv) Negative controls. Negative (vehicle) controls shall be included. The size of the negative (vehicle) control group shall be determined by the availability of appropriate laboratory historical control data.
(5) Test chemicals—(i) Vehicle. Test chemicals should be dissolved in water. Compounds which are insoluble in water may be dissolved or suspended in appropriate vehicles (e.g., a mixture of ethanol and Tween-60 or 80) and then diluted in water or saline prior to administration. Dimethylsulfoxide should be avoided as a vehicle.

(ii) Dose levels. For the initial assessment of mutagenicity, it is sufficient to test a single dose of the test substance for screening purposes. This dose should be the maximum tolerated dose, or that which produces some indication of toxicity, or shall be the highest dose attainable. For dose-response purposes, at least three additional dose levels should be used.

(iii) Route of administration. Exposure may be oral, by injection or by exposure to gases or vapors. Feeding of the test compound may be done in sugar solution. When necessary, substances may be dissolved in 0.7 percent NaCl solution and injected into the thorax or abdomen.

(e) Test performance—(1) Treatment and mating. Wild-type males (3 to 5 days old) shall be treated with the test substance and mated individually to an appropriate number of virgin females from the Muller-5 stock or females from another appropriately marked (with multiply-inverted X-chromosomes) stock. The females shall be replaced with fresh virgins every 2 to 3 days to cover the entire germ cell cycle. The offspring of these females are scored for lethal effects corresponding to the effects on mature sperm, mid or late stage spermatids, early spermatids, spermatocytes and spermatogonia at the time of treatment.

(2) F1 matings. Heterozygous F1 females from the above crosses shall be allowed to mate individually (i.e., one female per vial) with their brothers. In the F2 generation, each culture shall be scored for the absence of wild-type males. If a culture appears to have arisen from an F1 female carrying a lethal in the parental X-chromosome (i.e., no males with the treated chromosome are observed), daughters of that female with the same genotype shall be tested to ascertain if the lethality is repeated in the next generation.

(iii) Number of matings. (i) The test should be designed with a predetermined sensitivity and power. The number of flies in each group should reflect these defined parameters. The spontaneous mutant frequency observed in the appropriate control group will strongly influence the number of treated chromosomes that must be analysed to detect substances which show mutation rates close to those of the controls.

(ii) Test results should be confirmed in a separate experiment.

(f) Data and report—(1) Treatment of results. Data shall be tabulated to show the number of chromosomes tested, the number of nonfertile males and the number of lethal chromosomes at each exposure concentration and for each mating period per male treated. Numbers of clusters of different size per male shall be reported.

(2) Statistical evaluation. Data shall be evaluated by appropriate statistical techniques.

(iii) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of sex-linked recessive lethals. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of sex-linked recessive lethals or a statistically significant and reproducible positive response at any one of the test points is considered non-mutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the SLRL test in D. melanogaster indicate that under the test conditions the test agent causes mutations in germ cells of this insect.

(ii) Negative results indicate that under the test conditions the test substance is not mutagenic in D. melanogaster.
§ 798.5300 Detection of gene mutations in somatic cells in culture.

(a) Purpose. Mammalian cell culture systems may be used to detect mutations induced by chemical substances. Widely used cell lines include L5178Y mouse lymphoma cells and the CHO lines V-79 and Chinese hamster cells. In these cell lines the most commonly used systems measure mutation at the thymidine kinase (TK), hypoxanthine-guanine-phosphoribosyl transferase (HPRT) and Na+/K+ ATPase loci. The TK and HPRT mutational systems detect base pair mutations, frameshift mutations, and small deletions; the Na+/K+ ATPase system detects base pair mutations only.

(b) Definitions. (1) A forward mutation assay detects a gene mutation from the parental type to the mutant form which gives rise to a change in an enzymatic or functional protein.

(2) Base pair mutagens are agents which cause a base change in the DNA.

(3) Frameshift mutagens are agents which cause the addition or deletion of single or multiple base pairs in the DNA molecule.

(4) Phenotypic expression time is a period during which unaltered gene products are depleted from newly mutated cells.

(c) Reference substances. These may include, but need not be limited to, ethyl methanesulfonate, N-nitroso-di-methylamine, 2-acetylaminofluorene, 7,12-dimethylbenzanthracene or hycanthone.

(d) Test method—(1) Principle. Cells are exposed to test substance, both with and without metabolic activation, for a suitable period of time and subcultured to determine cytotoxicity and to allow phenotypic expression prior to mutant selection. Cells deficient in thymidine kinase (TK) due to the forward mutation TK→TK are resistant to the cytotoxic effects of pyrimidine analogues such as bromodeoxyuridine (BrdU), fluorodeoxyuridine (FdU) or trifluorothymidine (TFT). The deficiency of the "salvage" enzyme thymidine kinase means that these antimetabolites are not incorporated into cellular nucleotides and the nucleotides needed for cellular metabolism are obtained solely from de novo synthesis. However, in the presence of thymidine kinase, BrdU, FdU or TFT are incorporated into the nucleotides, resulting in inhibition of cellular metabolism and cytotoxicity. Thus mutant cells are able to proliferate in the presence of BrdU, FdU or TFT whereas normal cells, which contain thymidine kinase, are not. Similarly cells deficient in HPRT are selected by resistance to 8-azaquainine (AG) or 6-thioguanine (TG) and cells with altered Na+/K+ ATPase are selected by resistance to ouabain.

(2) Description. Cells in suspension or monolayer culture are exposed to the test substance, both with and without
metabolic activation, for a defined period of time. Cytotoxicity is determined by measuring the colony forming ability or growth rate of the cultures after the treatment period. The treated cultures are maintained in growth medium for a sufficient period of time—characteristic of each selected locus—to allow near-optimal phenotypic expression of induced mutations. Mutant frequency is determined by seeding known numbers of cells in medium containing the selective agent to detect mutant cells, and in medium without selective agent to determine the cloning efficiency. After a suitable incubation time, cell colonies are counted. The number of mutant colonies in selective medium is adjusted by the number of colonies in nonselective medium to derive the mutant frequency.

(3) Cells—(i) Type of cells used in the assay. A variety of cell lines are available for use in this assay including subclones of LS178Y, CHO cells or V-79 cells. Cell types used in this assay should have a demonstrated sensitivity to chemical mutagens, a high cloning efficiency and a low spontaneous mutation frequency. Cells should be checked for Mycoplasma contamination and may be periodically checked for karyotype stability.

(ii) Cell growth and maintenance. Appropriate culture media and incubation conditions (culture vessels, CO\textsubscript{2} concentrations, temperature and humidity) shall be used.

(4) Metabolic activation. Cells shall be exposed to test substance both in the presence and absence of an appropriate metabolic activation system.

(5) Control groups. Positive and negative (untreated and/or vehicle) controls shall be included in each experiment. When metabolic activation is used, the positive control substance shall be known to require such activation.

(6) Test chemicals—(i) Vehicle. Test substances may be prepared in culture media or dissolved or suspended in appropriate vehicles prior to treatment of the cells. The final concentration of the vehicle shall not interfere with cell viability or growth rate. Treatment vessels should be chosen to ensure that there is no visible interaction, such as etching, between the solvent, the test chemical, and the vessel.

(ii) Exposure concentrations. (A) The test should be designed to have a predetermined sensitivity and power. The number of cells, cultures, and concentrations of test substance used should reflect these defined parameters. The number of cells per culture is based on the expected background mutant frequency; a general guide is to use a number which is 10 times the inverse of this frequency.

(B) Several concentrations (usually at least 4) of the test substance shall be used. Generally, these shall yield a concentration-related toxic effect. The highest concentration shall produce a low level of survival (approximately 10 percent), and the survival in the lowest concentration shall approximate the negative control. Cytotoxicity shall be determined after treatment with the test substance both in the presence and in the absence of an exogenous metabolic activation system. Relatively insoluble substances should be tested up to their limit of solubility under culture conditions. For freely-soluble nontoxic substances the highest concentration used should be determined on a case-by-case basis.

(c) Test performance. (1) Cells shall be exposed to the test substance both with and without exogenous metabolic activation. Exposure shall be for a suitable period of time, in most cases 1 to 5 hours is effective; exposure time may be extended over one or more cell cycles.

(2) At the end of the exposure period, cells shall be washed and cultured to determine viability and to allow for expression of the mutant phenotype.

(3) At the end of the expression period, which shall be sufficient to allow near optimal phenotypic expression of induced mutants, cells should be grown in medium with and without selective agent(s) for determination of number of mutants and cloning efficiency, respectively.

(4) Results shall be confirmed in an independent experiment. When appropriate, a single positive response should be confirmed by testing over a narrow range of concentrations.
§ 798.5300
40 CFR Ch. I (7–1–99 Edition)

(f) Data and report—(1) Treatment of results. Data shall be presented in tabular form. Individual colony counts for the treated and control groups shall be presented for both mutation induction and survival. Survival and cloning efficiencies shall be given as a percentage of the controls. Mutant frequency shall be expressed as number of mutants per number of surviving cells.

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant concentration-related increase in the mutant frequency. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test substance concentrations.

(ii) A test substance which does not produce either a statistically significant concentration-related increase in the mutant frequency or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results for an in vitro mammalian cell gene mutation test indicate that, under the test conditions, a substance induces gene mutations in the cultured mammalian cells used.

(ii) Negative results indicate that, under the test conditions, the test substance does not induce gene mutations in the cultured mammalian cells used.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the following specific information shall be reported:

(i) Cell type used, number of cell cultures, methods used for maintenance of cell cultures.

(ii) Rationale for selection of concentrations and number of cultures.

(iii) Test conditions; composition of media, CO₂ concentration, concentration of test substance, vehicle, incubation temperature, incubation time, duration of treatment, cell density during treatment, type of metabolic activation system, positive and negative controls, length of expression period (including number of cells seeded and subculture and feeding schedules, if appropriate), selective agent(s).

(iv) Methods used to enumerate numbers of viable and mutant cells.

(v) Dose-response relationship, where possible.

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.5375 In vitro mammalian cytogenetics.

(a) Purpose. The in vitro cytogenetics test is a mutagenicity test system for the detection of chromosomal aberrations in cultured mammalian cells. Chromosomal aberrations may be either structural or numerical. However, because cytogenetics assays are usually designed to analyze cells at their first post-treatment mitosis and numerical aberrations require at least one cell division to be visualized, this type of aberration is generally not observed in a routine cytogenetics assay. Structural aberrations may be of two types, chromosome or chromatid.

(b) Definitions. (1) Chromosome-type aberrations are changes which result from damage expressed in both sister chromatids at the same time.

(2) Chromatid-type aberrations are damage expressed as breakage of single chromatids or breakage and/or reunion between chromatids.

(c) Reference substances. Not applicable.

(d) Test method—(1) Principle. In vitro cytogenetics assays may employ cultures of established cell lines, cell strains or primary cell cultures. Cell cultures are exposed to the test substance both with and without metabolic activation. Following exposure of cell cultures to test substances, they are treated with a spindle inhibitor (e.g., colchicine or Colcemid®) to arrest cells in a metaphase-like stage of mitosis (c-metaphase). Cells are then harvested and chromosome preparations made. Preparations are stained and metaphase cells are analyzed for chromosomal aberrations.

(2) Description. Cell cultures are exposed to test compounds and harvested at various intervals after treatment. Prior to harvesting, cells are treated with a spindle inhibitor (e.g., colchicine or Colcemid®) to arrest cells in a metaphase-like stage of mitosis (c-metaphase). Cells are then harvested and chromosome preparations made. Preparations are stained and scored for chromosomal aberrations.

(3) Cells—(i) Type of cells used in the assay. There are a variety of cell lines or primary cell cultures, including human cells, which may be used in the assay. Established cell lines and strains should be checked for Mycoplasma contamination and may be periodically checked for karyotype stability.

(ii) Cell growth and maintenance. Appropriate culture media, and incubation conditions (culture vessels CO₂ concentrations, temperature and humidity) shall be used.

(4) Metabolic activation. Cells shall be exposed to test substance both in the presence and absence of an appropriate metabolic activation system.

(5) Control groups. Positive and negative (untreated and/or vehicle) controls both with and without metabolic activation shall be included in each experiment. When metabolic activation is used, the positive control substance shall be known to require such activation.

(6) Test chemicals—(i) Vehicle. Test substances may be prepared in culture media or dissolved or suspended in appropriate vehicles prior to treatment of the cells. Final concentration of the vehicle shall not interfere with cell viability or growth rate. Treatment vessels should be chosen to ensure that there is no visible interaction, such as etching, between the solvent, the test chemical, and the vessel.

(ii) Exposure concentrations. Multiple concentrations of the test substance over a range adequate to define the response should be tested. Generally the highest test substance concentrations tested with and without metabolic activation should show evidence of cytotoxicity or reduced mitotic activity. Relatively insoluble substances should be tested up to the limit of solubility. For freely soluble nontoxic chemicals, the upper test chemical concentration should be determined on a case by case basis.

(e) Test performance—(1) Established cell lines and strains. Prior to use in the assay, cells should be generated from stock cultures, seeded in culture vessels at the appropriate density and incubated at 37 °C.

(2) Human lymphocyte cultures. Heparinized or acid-citrate-dextrose whole blood should be added to culture medium containing a mitogen, e.g., phytohemagglutinin (PHA) and incubated at 37°C. White cells sedimented by gravity (buffy coat) or lymphocytes
which have been purified on a density gradient may also be utilized.

(3) Treatment with test substance. For established cell lines and strains, cells in the exponential phase of growth shall be treated with test substances in the presence and absence of an exogenous metabolic activation system. Mitogen-stimulated human lymphocyte cultures may be treated with the test substance in a similar manner.

(4) Number of cultures. At least two independent cultures shall be used for each experimental point.

(5) Culture harvest time. (i) For established cell lines and strains, multiple harvest times are recommended. However, for screening purposes, a single harvest time may be appropriate. If the test chemical changes the cell cycle length, the fixation intervals should be changed accordingly. If a single harvest time is selected, supporting data for the harvest time should be presented in such a study.

(ii) For human lymphocyte cultures, the substance to be tested may be added to the cultures at various times after mitogen stimulation so that there is a single harvest time after the initiation of the cell culture. Alternatively, a single treatment may be followed by multiple harvest times. Harvest time should be extended for those chemicals which induce an apparent cell cycle delay. Because the population of human lymphocytes is only partially synchronized, a single treatment, at, or close to, the time when metaphase stages first appear in the culture will include cells in all phases of the division cycle. Therefore, a single harvest at the time of second mitosis may be carried out for screening purposes.

(iii) Cell cultures shall be treated with a spindle inhibitor, (e.g., colchicine or Colcemid®), 1 or 2 hours prior to harvesting. Each culture shall be harvested and processed separately for chromosome preparation.

(7) Analysis. Slides shall be coded before analysis. In human lymphocytes, only cells containing 46 centromeres shall be analyzed. In established cell lines and strains, only metaphases containing ±2 centromeres of the modal number shall be analyzed. Uniform criteria for scoring aberrations shall be used.

(8) Confirmatory tests. When appropriate, a single positive response shall be confirmed by testing over a narrow range of concentrations.

(f) Data and report—(1) Treatment of results. Data shall be presented in a tabular form. Different types of structural chromosomal aberrations shall be listed with their numbers and frequencies for experimental and control groups. Data should be evaluated by appropriate statistical methods. Gaps or achromatic lesions are recorded separately and not included in the total aberration frequency.

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of structural chromosomal aberrations. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test substance concentrations.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of structural chromosomal aberrations or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the in vitro cytogenetics assay indicate that under the test conditions the test substance induces chromosomal aberrations in cultured mammalian somatic cells.

(ii) Negative results indicate that under the test conditions the test substance does not induce chromosomal aberrations in cultured mammalian somatic cells.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the
following specific information shall be reported:

(i) Cells used, density and passage number at time of treatment, number of cell cultures.

(ii) Methods used for maintenance of cell cultures including medium, temperature and CO\textsubscript{2} concentration.

(iii) Test chemical vehicle, concentration and rationale for the selection of the concentrations used in the assay, duration of treatment.

(iv) Details of both the protocol used to prepare the metabolic activation system and of its use in the assay.

(v) Identity of spindle inhibitor, its concentration and duration of treatment.

(vi) Date of cell harvest.

(vii) Positive and negative controls.

(viii) Methods used for preparation of slides for microscopic examination.

(ix) Number of metaphases analysed.

(x) Mitotic index where applicable.

(xi) Criteria for scoring aberrations.

(xii) Type and number of aberrations, given separately for each treated and control culture, total number of aberrations per group; frequency distribution of number of chromosomes in established cell lines and strains.

(xiii) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted.

§ 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

(a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural chromosomal aberrations. Chromosomal aberrations are generally evaluated in first post-treatment mitoses. With the majority of chemical mutagens, induced aberrations are of the chromatid type but chromosome type aberrations also occur.

(b) Definitions. (1) Chromosome-type aberrations are changes which result from damage expressed in both sister chromatids at the same time.

(2) Chromatid-type aberrations are damage expressed as breakage of single chromatids or breakage and/or reunion between chromatids.

(c) Reference substances. Not applicable.

(d) Test method—(1) Principle. Animals are exposed to test chemicals by appropriate routes and are sacrificed at sequential intervals. Chromosome preparations are made from bone marrow cells. The stained preparations are examined and metaphase cells are scored for chromosomal aberrations.

(2) Description. The method employs bone marrow of laboratory rodents which have been exposed to test chemicals. Prior to sacrifice, animals are further treated with a spindle inhibitor, (e.g., colchicine or Colcemid®) to arrest the cells in metaphase. Chromosome preparations from the cells are stained and scored for chromosomal aberrations.

(3) Animal selection—(I) Species and strain. Any appropriate mammalian species may be used. Examples of commonly used rodent species are rats, mice, and hamsters.
(ii) Age. Healthy young adult animals shall be used.

(iii) Number and sex. At least five female and five male animals per experimental and control group shall be used. Thus, 10 animals would be sacrificed per time per group treated with the test compound if several test times after treatment are included in the experimental schedule. The use of a single sex or smaller number of animals should be justified.

(iv) Assignment to groups. Animals shall be randomized and assigned to treatment and control groups.

(4) Control groups—(1) Concurrent controls. (i) Concurrent positive and negative (vehicle) controls shall be included in the assay.

(ii) Positive controls. A single dose positive control showing a significant response at any one time point is adequate. A compound known to produce chromosomal aberrations in vivo shall be employed as the positive control.

(5) Test chemicals—(i) Vehicle. When possible, test chemicals shall be dissolved in isotonic saline or distilled water. Water insoluble chemicals may be dissolved or suspended in appropriate vehicles. The vehicles used shall neither interfere with the test chemical nor produce toxic effects. Fresh preparations of the test compound should be employed.

(ii) Dose levels. For an initial assessment, one dose of the test substance may be used, the dose being the maximum tolerated dose (to a maximum of 5,000 mg/kg) or that producing some indication of cytotoxicity (e.g., partial inhibition of mitosis) or shall be the highest dose attainable (to a maximum of 5,000 mg/kg). Additional dose levels may be used. For determination of dose-response, at least three dose levels should be used.

(iii) Route of administration. The usual routes are oral or by intraperitoneal injection. Other routes may be appropriate.

(iv) Treatment schedule. In general, test substances should be administered once only. However, based on toxicological information a repeated treatment schedule may be employed.

(e) Test performance—(1) Generally the test may be performed in two assays. (i) Animals should be treated with the test substance once at the selected dose(s). Samples should be taken at three times after treatment. For rodents, the central sampling interval is 24 hours. Since cell cycle kinetics can be influenced by the test substance, one earlier and one later sampling interval adequately spaced within the range of 6 to 48 hours shall be applied. Where the additional dose levels are tested in a subsequent experiment, samples shall be taken at the predetermined most sensitive interval or, if this is not established, at the central sampling time. If the most sensitive interval is known and documented with data, only this one time point shall be sampled.

(ii) If a repeated treatment schedule is used at the selected dose(s), samples shall be taken 6 and 24 hours after the last treatment; other sampling times may be used if justified. Where the additional dose levels are tested in a subsequent experiment, samples shall be taken at the predetermined most sensitive interval or, if this is not established, at 6 hours after the last treatment.

(2) Administration of spindle inhibitor. Prior to sacrifice, animals shall be injected IP with an appropriate dose of a spindle inhibitor (e.g., colchicine or Colcemid®) to arrest cells in c-metaphase.

(3) Preparation of slides. Immediately after sacrifice, the bone marrow shall be obtained, exposed to hypotonic solution, and fixed. The cells shall then be spread on slides and stained. Chromosome preparations shall be made following standard procedures.

(4) Analysis. The number of cells to be analyzed per animal should be based upon the number of animals used, the number of animals used, the negative control frequency, the predetermined sensitivity, and the power chosen for the test. Slides shall be coded before microscopic analysis.

(f) Data and report—(1) Treatment of results. Data should be presented in tabular form for both cells and animals. Different types of structural chromosomal aberrations should be listed with their numbers and a mean frequency per cell for each animal in all treated and control groups. Gaps (achromatic lesions) should be recorded separately and not included in the
total aberration frequency. Differences among animals within each group should be considered before making comparisons between treated and control groups.

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of structural chromosomal aberrations or abnormal metaphase figures. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of chromosomal aberrations or abnormal metaphase figures or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the in vivo bone marrow cytogenetics assay indicate that under the test conditions the test substance induces chromosomal aberrations in the bone marrow of the test species.

(ii) Negative results indicate that under the test conditions, the test substance does not induce chromosomal aberrations in the bone marrow of the test species.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the following specific information shall be reported:

(i) Species, strain, age, weight, number and sex of animals in each treatment and control group.

(ii) Test chemical vehicle, dose levels used, rationale for dose selection.

(iii) Route of administration, treatment and sampling schedules, toxicity data, negative and positive controls.

(iv) Identity of spindle-inhibitor, its concentration and duration of treatment.

(v) Details of the protocol used for chromosome preparation, number of cells scored per animal, type and number of aberrations given separately for each treated and control animal.

(vi) Mitotic index, where applicable.

(vii) Criteria for scoring aberrations.

(viii) Number and frequency of aberrant cells per animal in each treatment and control groups.

(ix) Total number of aberrations per group.

(x) Number of cells with aberrations per group.

(xi) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted:

[50 FR 39397, Sept. 27, 1985, as amended at 52 FR 19080, May 20, 1987]
of rodents are used in this assay. When the erythroblast develops into an erythrocyte the main nucleus is extruded and may leave a micronucleus in the cytoplasm. The visualization of micronuclei is facilitated in these cells because they lack a nucleus. Micronuclei form under normal conditions. The assay is based on an increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow of treated animals.

(b) Definition. Micronuclei are small particles consisting of acentric fragments of chromosomes or entire chromosomes, which lag behind at anaphase of cell division. After telophase, these fragments may not be included in the nuclei of daughter cells and form single or multiple micronuclei in the cytoplasm.

(c) Reference substances. Not applicable.

(d) Test method—(1) Principle. (i) Animals are exposed to test substance by an appropriate route. They are sacrificed, the bone marrow extracted and smear preparations made and stained. Polychromatic erythrocytes are scored for micronuclei under the microscope. (ii) Micronuclei may also be detected in other test systems:

(A) Tissue culture.
(B) Plants.
(C) Blood smears.
(D) Fetal tissues.
(E) Meiotic cells.
(F) Hepatic cells.
(iii) The present guideline is based on the mammalian bone marrow assay.

(2) Description. The method employs bone marrow of laboratory mammals which are exposed to test substances.

(3) Animal selection—(i) Species and strain. Mice are recommended. However, any appropriate mammalian species may be used.

(ii) Age. Young adult animals shall be used.

(iii) Number and sex. At least five female and five male animals per experimental and control group shall be used. Thus, 10 animals would be sacrificed per time per group if several test times after treatment were included in the experimental schedule. The use of a single sex or a smaller number of animals should be justified.

(iv) Assignment to groups. Animals shall be randomized and assigned to treatment and control groups.

(4) Control groups—(i) Concurrent controls. Concurrent positive and negative (vehicle) controls shall be included in each assay.

(ii) Positive controls. A compound known to produce micronuclei in vivo shall be employed as the positive control.

(5) Test chemicals—(i) Vehicle. When appropriate for the route of administration, solid and liquid test substances should be dissolved or suspended in distilled water or isotonic saline. Water insoluble chemicals may be dissolved or suspended in appropriate vehicles. The vehicle used shall neither interfere with the test compound nor produce toxic effects. Fresh preparations of the test compound should be employed.

(ii) Dose levels. For an initial assessment, one dose of the test substance may be used, the dose being the maximum tolerated dose (to a maximum of 5,000 mg/kg) or that producing some indication of cytotoxicity, e.g., a change in the ratio of polychromatic to normochromatic erythrocytes. Additional dose levels may be used. For determination of dose response, at least three dose levels shall be used.

(iii) Route of administration. The usual routes of administration are IP or oral. Other routes may be appropriate.

(iv) Treatment schedule. Test substances should generally be administered only once. However, based upon toxicological information a repeated treatment schedule may be employed.

(e) Test performance—(1) Treatment and sampling times. (i) Animals shall be treated with the test substance once at the highest tolerated dose. Sampling times should coincide with the maximum responses of the assay which varies with the test substance. Therefore, using the highest dose, bone marrow samples should be taken at least three times, starting not earlier than 12 hours after treatment, with appropriate intervals following the first sample but not extending beyond 72 hours. When other doses are used sampling shall be at the maximum sensitive period, or, if that is not known,
approximately 24 hours after treatment. Other appropriate sampling times may be used in addition. If the most sensitive interval is known and documented with data, only this one time point need be sampled.

(ii) If a repeated treatment schedule is used, samples shall be taken at least three times, starting not earlier than 12 hours after the last treatment and at appropriate intervals following the first sample, but not extending beyond 72 hours.

(iii) Bone marrow shall be obtained immediately after sacrifice. Cells shall be prepared, put on slides, spread as a smear and stained.

(2) Analysis. Slides shall be coded before microscopic analysis. At least 1,000 polychromatic erythrocytes per animal shall be scored for the incidence of micronuclei. The ratio of polychromatic to normochromatic erythrocytes should be determined for each animal by counting a total of 200 erythrocytes. To ensure consistency with OECD and other guidelines, 1,000 polychromatic erythrocytes are recommended. Additional information may be obtained by scoring normochromatic erythrocytes for micronuclei.

(f) Data and report—(1) Treatment of results. Criteria for scoring micronuclei shall be given. Individual data shall be presented in a tabular form including positive and negative (vehicle) controls and experimental groups. The number of polychromatic erythrocytes scored, the number of micronucleated polychromatic erythrocytes, the percentage of micronucleated cells, the number of micronucleated polychromatic erythrocytes, and, if applicable, the percentage of micronucleated normochromatic erythrocytes, and, if applicable, the percentage of micronucleated polychromatic to normochromatic erythrocytes shall be listed separately for each experimental and control animal. Absolute numbers shall be included if percentages are reported.

(ii) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(iii) Interpretation of results. (i) There are several criteria for determining a positive response, one of which is a statistically significant dose-related increase in the number of micronucleated polychromatic erythrocytes. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test substance concentrations.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of micronucleated polychromatic erythrocytes or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) The results of the micronucleus test provide information on the ability of a chemical to induce micronuclei in polychromatic erythrocytes of the test species under the conditions of the test. This damage may have been the result of chromosomal damage or damage to the mitotic apparatus.

(ii) Negative results indicate that under the test conditions the test substance does not produce micronuclei in the bone marrow of the test species.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Species, strain, age, weight, number and sex of animals in each treatment and control group.

(ii) Test chemical vehicle, dose levels used, rationale for dose selection.

(iii) Rationale for and description of treatment and sampling schedules, toxicity data, negative and positive controls.

(iv) Details of the protocol used for slide preparation.

(v) Criteria for identifying micronucleated erythrocytes.

(vi) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.5450 Rodent dominant lethal assay.

(a) Purpose. Dominant lethal (DL) effects cause embryonic or fetal death. Induction of a dominant lethal event after exposure to a chemical substance indicates that the substance has affected germinal tissue of the test species. Dominant lethals are generally accepted to be the result of chromosomal damage (structural and numerical anomalies) but gene mutations and toxic effects cannot be excluded.

(b) Definition. A dominant lethal mutation is one occurring in a germ cell which does not cause dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo.

(c) Reference substances. These may include, but need not be limited to, triethylennemelamine, cyclophosphamide or ethyl methanesulfonate.

(d) Test method—(1) Principle. Generally, male animals are exposed to the test substance and mated to untreated virgin females. The various germ cell stages can be tested separately by the use of sequential mating intervals. The females are sacrificed after an appropriate period of time and the contents of the uteri are examined to determine the numbers of implants and live and dead embryos. The calculation of the dominant lethal effect is based on comparison of the live implants per female in the treated group to the live implants per female in the control group. The increase of dead implants per female in the treated group over the dead implants per female in the control group reflects the post-implantation loss. The post-implantation loss is calculated by determining the ratio of dead to total implants from the treated group compared to the ratio of dead to total implants from the control group. Pre-implantation loss can be estimated on the basis of corpora lutea counts or by comparing the total implants per female in treated and control groups.

(2) Description. (i) Several treatment schedules are available. The most widely used requires single administration of the test substance. Other treatment schedules, such as treatment on five consecutive days, may be used if justified by the investigator.

(ii) Individual males are mated sequentially to virgin females at appropriate intervals. The number of matings following treatment is governed by the treatment schedule and should ensure that germ cell maturation is adequately covered. Females are sacrificed in the second half of pregnancy and the uterine contents examined to determine the total number of implants and the number of live and dead embryos.

(3) Animal selection—(i) Species. Rats or mice are generally used as the test species. Strains with low background dominant lethality, high pregnancy frequency and high implant numbers are recommended.

(ii) Age. Healthy, sexually mature animals shall be used.

(iii) Number. An adequate number of animals shall be used taking into account the spontaneous variation of the
biological characteristics being evaluated. The number chosen should be based on the predetermined sensitivity of detection and power of significance. For example, in a typical experiment, the number of males in each group shall be sufficient to provide between 30 and 50 pregnant females per mating interval.

(iv) Assignment to groups. Animals shall be randomized and assigned to treatment and control groups.

(4) Control groups—(i) Concurrent controls. Generally concurrent positive and negative (vehicle) controls shall be included in each experiment. When acceptable positive control results are available from experiments conducted recently (within the last 12 months) in the same laboratory these results can be used instead of a concurrent positive control.

(ii) Positive controls. Positive control substances shall be used at a dose which demonstrates the test sensitivity.

(5) Test chemicals—(i) Vehicle. When possible, test substances shall be dissolved or suspended in isotonic saline or distilled water. Water-insoluble chemicals may be dissolved or suspended in appropriate vehicles. The vehicle used shall neither interfere with the test chemical nor produce toxic effects. Fresh preparations of the test chemical should be employed.

(ii) Dose levels. Normally, three dose levels shall be used. The highest dose shall produce signs of toxicity (e.g., slightly reduced fertility and slightly reduced body weight). However, in an initial assessment of dominant lethality a single high dose may be sufficient. Nontoxic substances shall be tested at 5g/kg or, if this is not practicable, then as the highest dose attainable.

(iii) Route of administration. The usual routes of administration are oral or by IP injection. Other routes may be appropriate.

(e) Test performance. (1) Individual males are mated sequentially at appropriate predetermined intervals to one or two virgin females. Females should be left with the males for at least the duration of one estrus cycle or alternatively until mating has occurred as determined by the presence of sperm in the vagina or by the presence of a vaginal plug.

(2) The number of matings following treatment should be governed by the treatment schedule and should ensure that germ cell maturation is adequately covered.

(3) Females should be sacrificed in the second half of pregnancy and uterine contents examined to determine the number of implants and live and dead embryos. The ovaries may be examined to determine the number of corpora lutea.

(f) Data and report—(1) Treatment of results. Data shall be tabulated to show the number of males, the number of pregnant females, and the number of nonpregnant females. Results of each mating, including the identity of each male and female, shall be reported individually. For each female, the dose level and week of mating and the frequencies of live implants and of dead implants shall be enumerated. If the data are recorded as early and late deaths, the tables shall make that clear. If preimplantation loss is estimated, it shall be reported. Preimplantation loss can be calculated as the difference between the number of corpora lutea and the number of implants or as a reduction in the average number of implants per female in comparison with control matings.

(2) Statistical evaluation. Data shall be evaluated by appropriate statistical methods. Differences among animals within the control and treatment groups shall be considered before making comparisons between treated and control groups.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of dominant lethals. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of dominant lethals or a statistically significant and reproducible positive response at any one of the test
points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) A positive DL assay suggests that under the test conditions the test substance may be genotoxic in the germ cells of the treated sex of the test species.

(ii) A negative result suggests that under the conditions of the test the test substance may not be genotoxic in the germ cells of the treated sex of the test species.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the following specific information shall be reported:

(i) Species, strain, age and weights of animals used, number of animals of each sex in experimental and control groups.

(ii) Test substance, vehicle used, dose levels and rationale for dosage selection, negative (vehicle) and positive controls, experimental observations, including signs of toxicity.

(iii) Route and duration of exposure.

(iv) Mating schedule.

(v) Methods used to determine that mating has occurred (where applicable).

(vi) Criteria for scoring dominant lethals including the number of early and late embryonic deaths.

(vii) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted:

§ 798.5460 Rodent heritable translocation assays.

(a) Purpose. This test detects transmitted chromosomal damage which manifests as balanced reciprocal translocations in progeny descended from parental males treated with chemical mutagens.

(b) Definitions. (1) A heritable translocation is one in which distal segments of nonhomologous chromosomes are involved in a reciprocal exchange.

(2) Diakinesis and metaphase I are stages of meiotic prophase scored cytologically for the presence of multivalent chromosome association characteristic of translocation carriers.

(c) Reference substances. Not applicable.

(d) Test method—(1) Principle. When a balanced reciprocal translocation is induced in a parental male germ cell, the resulting progeny is translocation heterozygote.

(i) Basis for fertility screening. Male translocation heterozygotes may be completely sterile. This class consists of two types of translocations:

(A) Translocations between non-homologous chromosomes in which at least one of the breaks occurs close to one end of a chromosome.

(B) Those that carry multiple translocations. The majority of male translocation heterozygotes are semisterile—-they carry one or (rarely) two translocations. The degree of semisterility is dependent upon the proportions of balanced and unbalanced (duplication-deficiency) gametes produced in the ejaculate as a function of meiotic segregation. Balanced and unbalanced sperm are equally capable of fertilizing an egg. Balanced sperm lead to viable progeny. Unbalanced sperm result in early embryonic lethality.

(ii) Basis for cytological screening. The great majority of male translocation heterozygotes can be identified cytologically through analysis of diakinesis in male spermatocytes.
Translocation heterozygotes are characterized by the presence of multivalent chromosome association such as a ring or chain of four chromosomes held together by chiasmata in paired homologous regions. Some translocation carriers can be identified by the presence of extra long and/or extra short chromosomes in spermatogonial and somatic cell metaphase preparations.

(2) Description. Essentially, two methods have been used to screen for translocation heterozygosity; one method uses a mating sequence to identify sterile and semisterile males followed by cytological examination of suspect male individuals; the other method deletes the mating sequence altogether and all F1 male progeny are examined cytologically for presence of translocation. In the former approach, the mating sequence serves as a screen which eliminates most fully fertile animals for cytological confirmation as translocation heterozygotes.

(3) Animal selection—(i) Species. The mouse is the species generally used, and is recommended.

(ii) Age. Healthy sexually mature animals shall be used.

(iii) Number. (A) The number of male animals necessary is determined by the following factors:

1. The use of either historical or concurrent controls.
2. The power of the test.
3. The minimal rate of induction required.
4. Whether positive controls are used.
5. The level of significance desired.

(B) [Reserved]

(iv) Assignment to groups. Animals shall be randomized and assigned to treatment and control groups.

(4) Control groups—(i) Concurrent controls. No concurrent positive or negative (vehicle) controls are recommended as routine parts of the heritable translocation assay. However, investigators not experienced in performing translocation testing shall include a substance known to produce translocations in the assay as a positive control reference chemical.

(ii) Historical controls. At the present time, historical control data must be used in tests for significance. When statistically reliable historical controls are not available, negative (vehicle) controls shall be used.

(5) Test chemicals—(i) Vehicle. When appropriate for the route of administration, solid and liquid test substances should be dissolved or suspended in distilled water or isotonic saline. Water-insoluble chemicals may be dissolved or suspended in appropriate vehicles. The vehicle used shall neither interfere with the test chemical nor produce toxic effects. Fresh preparations of the test chemical should be employed.

(ii) Dose levels. At least two dose levels shall be used. The highest dose level shall result in toxic effects (which shall not produce an incidence of fatalities which would prevent a meaningful evaluation) or shall be the highest dose attainable or 5g/kg body weight.

(iii) Route of administration. Acceptable routes of administration include oral, inhalation, admixture with food or water, and IP or IV injection.

(e) Test performance—(1) Treatment and mating. The animals shall be dosed with the test substances 7 days per week over a period of 35 days. After treatment, each male shall be caged with 2 untreated females for a period of 1 week. At the end of 1 week, females shall be separated from males and caged individually. When females give birth, the day of birth, litter size, and sex of progeny shall be recorded. All male progeny should be weaned, and all female progeny should be discarded.

(2) Testing for translocation heterozygosity. When males are sexually mature, testing for translocation heterozygosity shall begin. One of two methods shall be used; the first method involves mating, determining those F1 progeny which are sterile or semisterile and subsequent cytological analysis of suspect progeny; the other method does not involve mating and determining sterility or semisterility; all progeny are examined cytologically.

(i) Determination of sterility or semisterility—(A) Conventional method. Females are mated, usually three females for each male, and each female is killed at midpregnancy. Living and dead implantations are counted. Criteria for determining normal and
semisterile males are usually established for each new strain because the number of dead implantations varies considerably among strains.

(B) Sequential method. Males to be tested are caged individually with females and the majority of the presumably normal males are identified on the basis of a predetermined size of 1 or 2 litters. Breeding pens are examined daily on weekdays beginning 18 days after pairing. Young are discarded immediately after they are scored. Males that sire a litter whose size is the same as or greater than the minimum set for a translocation-free condition are discarded with their litter. If the litter size is smaller than the predetermined number, a second litter is produced with the same rule applying. Males that cannot be classified as normal after production of a second litter are tested further by the conventional method or by cytological confirmation of translocation.

(ii) Cytological analysis. For cytological analysis of suspected semisteriles, the air-drying technique is used. Observation of at least 2 diakinesis-metaphase I cells with multivalent association constitutes the required evidence for the presence of a translocation. Sterile males are examined by one of two methods, those with testes of normal size and sperm in the epididymis are examined by the same techniques used for semisteriles. Animals with small testes are examined by squash preparations or, alternatively, by examination of mitotic metaphase preparations. If squash preparations do not yield diakinesis-metaphase I cells, analysis of spermatogonia or bone marrow for the presence of unusually long or short chromosomes should be performed.

(f) Data and report—(1) Treatment of results. (i) Data shall be presented in tabular form and shall include the number of animals at risk, the germ cell stage treated, the number of partial steriles and semisteriles (if the fertility test is used), the number of cytogenetically confirmed translocation heterozygotes (if the fertility test is used, report the number of confirmed steriles and confirmed partial steriles), the translocation rate, and either the standard error of the rate or the upper 95 percent confidence limit on the rate.

(ii) These data shall be presented for both treated and control groups. Historical or concurrent controls shall be specified, as well as the randomization procedure used for concurrent controls.

(2) Statistical evaluation. Data shall be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of heritable translocations. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of heritable translocations or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the heritable translocation assay indicate that under the test conditions the test substance causes heritable chromosomal damage in the test species.

(ii) Negative results indicate that under the test conditions the test substance does not cause heritable chromosomal damage in the test species.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J, the following specific information shall be reported:

(i) Species, strain, age, weight and number of animals of each sex in each group.

(ii) Test chemical vehicle, route and schedule of administration, toxicity data.

(iii) Dosing regimen, doses tested and rationale for dosage selection.

(iv) Mating schedule, number of females mated to each male.

(v) The use of historical or concurrent controls.
(vi) Screening procedure including the decision criteria used and the method by which they were determined.

(vii) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted:

(2) [Reserved]

§ 798.5500 Differential growth inhibition of repair proficient and repair deficient bacteria: "Bacterial DNA damage or repair tests."

(a) Purpose. Bacterial DNA damage or repair tests measure DNA damage which is expressed as differential cell killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient strains. These tests do not measure mutagenic events per se. They are used as an indication of the interaction of a chemical with genetic material implying the potential for genotoxicity.

(b) Definition. Test for differential growth inhibition of repair proficient and repair deficient bacteria measure differences in chemically induced cell killing between wild-type strains with full repair capacity and mutant strains deficient in one or more of the enzymes which govern repair of damaged DNA.

(c) Reference substances. These may include, but need not be limited to, chloramphenicol or methyl methanesulfonate.

(d) Test method—(1) Principle. The tests detect agents that interact with cellular DNA to produce growth inhibition or killing. This interaction is recognized by specific cellular repair systems. The assays are based upon the use of paired bacterial strains that differ by the presence of absence of specific DNA repair genes. The response is expressed in the preferential inhibition of growth or the preferential killing of the DNA repair deficient strain since it is incapable of removing certain chemical lesions from its DNA.

(2) Description. Several methods for performing the test have been described. Those described here are:

(i) Tests performed on solid medium (diffusion tests).

(ii) Tests performed in liquid culture (suspension tests).

(iii) Strain selection—(i) Designation. At the present time, Escherichia coli polA (W3110/p3478) or Bacillus subtilis rec (H17/M45) pairs are recommended. Other pairs may be utilized when appropriate.

(ii) Preparation and storage. Stock culture preparation and storage, growth requirements, method of strain identification and demonstration of appropriate phenotypic requirements should be performed using good microbiological techniques and should be documented.

(iv) Control groups—(i) Concurrent controls. Concurrent positive, negative, and vehicle controls should be included in each assay.

(ii) Negative controls. The negative control should show nonpreferential growth inhibition (i.e., should affect both strains equally). Chloramphenicol is an example of a negative control.

(iii) Genotype specific controls. Examples of genotype specific positive controls are methyl methanesulfonate for polA strains and mitomycin C for rec strains.

(iv) Positive controls to ensure the efficiency of the activation system. The positive control reference substance for tests including a metabolic activation system should be selected on the basis
of the type of activation system used in the test.

(v) Other positive controls. Other positive control reference substances may be used.

(7) Test chemicals—(i) Vehicle. Test chemicals and positive and negative control reference substances should be dissolved in an appropriate vehicle and then further diluted in vehicle for use in the assay.

(ii) Exposure concentrations. The test should initially be performed over a broad range of concentrations. Among the criteria to be taken into consideration for determining the upper limits of test chemical concentration are cytotoxicity and solubility. Cytotoxicity of the test chemical may be altered in the presence of metabolic activation systems. For freely soluble nontoxic chemicals, the upper test chemical concentration should be determined on a case by case basis. Because results are expressed as diameters of zones of growth inhibition in the diffusion test, it is most important that the amounts of chemical on the disc (or in the wells) are exact replicates. When appropriate, a positive response should be confirmed by testing over a narrow range of concentrations.

(e) Test performance—(1) Diffusion assay—(i) Disc diffusion assays. Disc diffusion assays may be performed in two ways:

(A) A single strain of bacteria may be added to an agar overlay or spread on the surface of the agar and the test chemical placed on a filter disc on the surface of the agar or;

(B) DNA repair proficient and DNA repair deficient bacteria may be streaked in a line on the surface of the agar of the same plate and a disc saturated with test chemical placed on the surface of the agar in contact with the streaks.

(ii) Well diffusion assays. In well diffusion assays, bacteria may be either added to the agar overlay or spread onto the surface of the agar. A solution of the test chemical is then placed into a well in the agar.

(2) Suspension assays. (i) A bacterial suspension may be exposed to the test chemical and the number of surviving bacteria determined (as colony-forming units) either as a function of time of treatment or as a function of the concentration of test agent.

(ii) Nonturbid suspensions of bacteria may be exposed to serial dilutions of the test agent and a minimal inhibitory concentration for each strain determined, as evidenced by the presence or absence of visible growth after a period of incubation.

(iii) Paired bacterial suspensions (usually with some initial turbidity) may be treated with a single dose of the chemical. Positive results are indicated by a differential inhibition in the rate of increase of turbidity of the paired cultures.

(3) Number of cultures. When using a plate diffusion procedure, at least two independent plates should be used at each dilution. In liquid suspension assays, at least two independent specimens for determination of the number of viable cells should be plated.

(4) Incubation conditions. All plates in a given test should be incubated for the same time period. This incubation period should be for 18 to 24 hrs at 37 °C.

(f) Data and report—(1) Treatment of results—(i) Diffusion assays. Results should be expressed in diameters of zones of growth inhibition in millimeters or as areas derived therefrom as mm². Dose-response data, if available, should be presented using the same units.

(ii) Liquid suspension assays. (A) Survival data can be presented as dose responses, preferably as percentage of survivors or fractional survival of each strain or as a relative survival (ratio) of the two strains.

(B) Results can also be expressed as the concentrations required to effect a predetermined survival rate (e.g., D₃₇, the dose permitting 37 percent survival). These data are derived from the survival curve. The concentration should be expressed as weight per volume, as moles, or as molarity.

(C) Similarly, results can be expressed as minimal inhibitory concentration or as minimal lethal dose. The former is determined by the absence of visible growth in liquid medium and the latter is determined by plating dilutions onto semisolid media.

(iii) In all tests, concentrations must be given as the final concentrations
during the treatment. Raw data, prior to transformation, should be provided. These should include actual quantities measured, e.g., neat numbers. For measurement of diffusion, the diameters of the discs and/or well should be indicated and the measurements should indicate whether the diameter of the discs and/or well was subtracted. Moreover, mention should be made as to whether the test chemical gave a sharp, diffuse, or double-zone of growth inhibition. If it is the latter, the investigator should indicate whether the inner or the outer zone was measured.

(iv) Viability data should be given as the actual plate counts with an indication of the dilution used and the volume plated or as derived titers (cells per ml). Transformed data alone in the absence of experimental data are not acceptable (i.e., ratios, differences, survival fraction).

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related preferential inhibition or killing of the repair deficient strain. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related preferential inhibition or killing of the repair deficient strain or a statistically significant and reproducible positive response at any one of the test points is considered not to interact with the genetic material of the organisms used in assay.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. DNA damage tests in bacteria do not measure DNA repair per se nor do they measure mutations. They measure DNA damage which is expressed as cell killing or growth inhibition. A positive result in a DNA damage test in the absence of a positive result in another system is difficult to evaluate in the absence of a better data base.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J the following specific information should be reported:

(i) Bacterial strains used.

(ii) Phase of bacterial cell growth at time of use in the assay.

(iii) Media composition.

(iv) Details of both the protocol used to prepare the metabolic activation system and its use in the assay.

(v) Treatment protocol, including doses used and rationale for dose selection, positive and negative controls.

(vi) Method used for determination of degree of cell kill.

(vii) Dose-response relationship, if applicable.

(g) References. For additional background information on this test guideline the following references should be consulted:

(2) Kada, T., Sadie, Y., Tutikawa, K. "In vitro and host-mediated "rec-assay" procedures for screening chemical mutagens; and phloxine, a mutagenic red dye detected," Mutation Research, 16:165-174 (1972).

§ 798.5955 Heritable translocation test in drosophila melanogaster.

(a) Purpose. The heritable translocation test in Drosophila measures the induction of chromosomal translocations in germ cells of insects. Stocks carrying genetic markers on two or more chromosomes are used to follow the assortment of chromosomes in meiosis. The F₁ male progeny of treated parents are individually mated to females and the F₂ progeny phenotypes are scored.
The observed spectrum of phenotypes is used to determine the presence or absence of a translocation. This is usually indicated by a lack of independent assortment of genes on different chromosomes.

(b) Definitions—(1) Chromosome mutations are chromosomal changes resulting from breakage and reunion of chromosomes. Chromosomal mutations are also produced through nondisjunction of chromosomes during cell division.

(2) Reciprocal translocations are chromosomal translocations resulting from reciprocal exchanges between two or more chromosomes.

(c) Reference substances. These may include, but need not be limited to, ethyl methanesulfonate or N-dimethylnitrosamine.

(d) Test method—(1) Principle. The method is based on the principle that balanced reciprocal chromosomal translocations can be induced by chemicals in the germ cells of treated flies and that these translocations are detected in the F₂ progeny using genetic markers (mutations). Different mutations may be used as genetic markers and two or more of the four chromosomes may be genetically marked for inclusion in this test.

(2) Description. Wild-type males are treated with chemical and bred with females of known genetic markers. The F₁ males are collected and individually bred with virgin females of the female parental stock. The resulting F₂ progeny are scored. Putative translocation carriers are confirmed with an F₃ cross.

(i) Illustrative example. The following example serves to illustrate the method. Males carrying genes for red eye color on chromosomes II and III are bred with females of white eye color carrying alleles for brown (bw) on the second chromosome and scarlet (st) and pink (pp) on the third chromosome. The F₁ male progeny are bred with virgin females of the female parental stock and the resulting F₂ progeny are examined for eye color phenotypes. If there is no translocation in the F₁ male, then the resulting F₂ progeny will have four eye color phenotypes: red, white, orange, and brown. If the F₁ male carries a translocation between chromosomes II and III, only red and white eye phenotypes are obtained in the F₂ generation. This happens because the F₁ translocation heterozygote produces two balanced (carrying either the parental or the translocated configuration of markers) and two unbalanced gametes. The unbalanced gametes (carrying one normal and one translocated chromosome) are unable to develop into normal individuals in the F₂ generation.

(ii) [Reserved]

(3) Drosophila stocks. Wild-type males and females of the genotype bw:st:pp (white eyes) may be used in the heritable translocation test. Other appropriately marked Drosophila stocks may also be used.

(4) Control groups. (i) Concurrent positive and negative (vehicle) controls should be included in each experiment.

(ii) Negative (vehicle) controls should be included. The size of the negative (vehicle) control group should be determined by the availability of appropriate laboratory historical control data.

(iii) If the historical control data are of sufficient numbers, concurrent controls may not be necessary.

(5) Test chemicals—(i) Vehicle. Test chemicals should be dissolved in water. Compounds which are insoluble in water may be dissolved or suspended in appropriate vehicles (e.g., a mixture of ethanol and Tween-60 or 80), and then diluted in water or saline prior to administration. Dimethylsulfoxide should be avoided as a vehicle.

(ii) Dose levels. For the initial assessment of mutagenicity, it may be sufficient to test a single dose of the test substance. This dose should be the maximum tolerated dose or that which produces some indication of toxicity. If the test is being used to verify mutagenic activity, at least two additional exposure levels should be used.

(iii) Route of administration. Exposure may be oral, by injection or by exposure to gases or vapours. Feeding of the test compound may be done in sugar solution. When necessary, substances may be dissolved in 0.7 percent NaCl solution and injected into the thorax or abdomen.
(e) Test performance—(1) P1 mating. (i) In the primary screen of a chemical, it is enough to sample one germ cell stage, either mature sperm or spermatids (for indirect acting mutagens). Other stages may be sampled if needed, i.e., when mature germ cells give a positive result and data from earlier germ cells are needed for the purpose of risk assessment. Thus, the treated males may be mated only once for a period of 3 days to sample sperm or transferred every 2 to 3 days to cover the entire germ cell cycle.

(ii) Mass matings may be performed because the control rate for translocations in the available literature is very low (near 0) and clustered events are extremely rare. Mated females may be aged for 2 weeks in order to recover an enhanced incidence of translocation due to the storage effect. The females are then allowed to lay eggs and F1 males are collected for test mating.

(2) F1 mating. F1 males should be bred with virgin females of the parental female stock. Since each F1 male represents one treated gamete of the male parent, the F1 males have to be mated individually to virgin females. Each F1 male should be mated to three females to ensure sufficient progeny.

(3) Scoring the F2 generation. F2 cultures (each representing 1 F1 male tested) should be scored for the presence or absence of phenotype variations (linkage of markers) from the expected types. The test should be designed with a predetermined sensitivity and power. The number of flies in each group should reflect these defined parameters. The spontaneous mutant frequency observed in the appropriate control group will strongly influence the number of treated chromosomes that must be analyzed to detect substances which show mutation rates close to those of the controls. A positive test should be confirmed by F3 mating trials.

(4) Number of replicate experiments. Replicate experiments are usually performed for each dose of the compound tested. If a chemical is a potent inducer of translocations, one experiment may be sufficient. Otherwise two or three replicate experiments should be done.

(f) Data and report—(1) Treatment of results. Data should be tabulated to show the number of translocations and the number of fertile F1 males at each exposure for each germ cell stage sampled.

(2) Statistical evaluation. Data should be evaluated by appropriate statistical methods.

(3) Interpretation of results. (i) There are several criteria for determining a positive result, one of which is a statistically significant dose-related increase in the number of heritable translocations. Another criterion may be based upon detection of a reproducible and statistically significant positive response for at least one of the test points.

(ii) A test substance which does not produce either a statistically significant dose-related increase in the number of heritable translocations or a statistically significant and reproducible positive response at any one of the test points is considered nonmutagenic in this system.

(iii) Both biological and statistical significance should be considered together in the evaluation.

(4) Test evaluation. (i) Positive results in the heritable translocation test in Drosophila indicate that under the test conditions the test substance causes chromosome damage in germ cells of this insect.

(ii) Negative results indicate that under the test conditions the test substance does not cause chromosomal damage in D. melanogaster.

(5) Test report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J, the following specific information should be reported:

(i) Drosophila stock used in the assay, age of insects, number of males treated, number of F2 cultures established, number of replicate experiments.

(ii) Test chemical vehicle, treatment and mating schedule, exposure levels, toxicity data, dose and route of exposure.

(iii) Positive and negative (vehicle) controls.

(iv) Historical control data, if available.

(v) Number of chromosomes scored.
§ 798.6050

Subpart G—Neurotoxicity

§ 798.6050 Functional observational battery.

(a) Purpose. In the assessment and evaluation of the potential human health effects of substances, it may be necessary to test for neurotoxic effects. Substances that have been observed to cause neurotoxic signs (e.g., convulsions, tremors, ataxia) in other toxicity tests, as well as those having a structural similarity to known neurotoxicants, should be evaluated for neurotoxicity. The functional observational battery is a noninvasive procedure designed to detect gross functional deficits in young adults resulting from exposure to chemicals and to better quantify neurotoxic effects detected in other studies. This battery of tests is not intended to provide a detailed evaluation of neurotoxicity. It is designed to be used in conjunction with neuropathologic evaluation and/or general toxicity testing. Additional functional tests may be necessary to assess completely the neurotoxic potential of a chemical.

(b) Definitions. (1) Neurotoxicity is any adverse effect on the structure or function of the central and/or peripheral nervous system related to exposure to a chemical substance.

(2) A toxic effect is an adverse change in the structure or function of an experimental animal as a result of exposure to a chemical substance.

(c) Principle of the test method. The material is administered by an appropriate route to laboratory rodents. The animals are observed under carefully standardized conditions with sufficient frequency to ensure the detection of behavioral and/or neurologic abnormalities, if present. Various functions that could be affected by neurotoxicants are assessed during each observation period.

(d) Test procedures—(1) Animal selection—(i) Species and strain. The laboratory rat or mouse is recommended. Although information will generally be lacking, whenever possible the choice of species should take into consideration such factors as the comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as evidenced by the results of other studies. The potential for combined studies should also be considered. Standard strains should be used.

(ii) Age. Young adult animals (at least 42 days old for the rat or mouse) shall be used.

(iii) Sex. (A) Equal numbers of animals of each sex are required for each dose level.

(B) The females shall be nulliparous and nonpregnant.

(2) Number of animals. At least eight animals of each sex should be used at each dose level and should be designated for behavioral testing. If interim sacrifices are planned, the number should be increased by the number of animals scheduled to be sacrificed before the end of the study. Animals shall be randomly assigned to treatment and control groups.

(3) Control groups. (i) A concurrent (“sham” exposure or vehicle) control group is required. Subjects shall be treated in the same way as for an exposure group except that administration of the test substance is omitted.

(ii) Concurrent or historic data from the laboratory performing the testing shall provide evidence of the ability of the procedures used to detect major neurotoxic endpoints such as limb weakness or paralysis (e.g., acrylamide), CNS stimulation (e.g., β-β′-iminodipropionitrile) autonomic signs (e.g., physostigmine).

(iii) A satellite group may be treated with the high dose level for the duration of exposure and observed for reversibility, persistence, or delayed occurrence of toxic effects for a post-
treatment period of appropriate duration, normally not less than 28 days.

(4) Dose levels and dose selection. At least 3 doses, equally spaced on a log scale (e.g., \(\frac{1}{2} \) log units) over a range of at least 1 log unit shall be used in addition to a zero dose or vehicle administration. The data should be sufficient to produce a dose-effect curve.

(i) The highest dose shall produce (A) clear behavioral effects or (B) life-threatening toxicity.

(ii) The data from the lower doses must show either (A) graded dose-dependent effects at 2 dose levels or (B) no effects at 2 dose levels, respectively.

(5) Duration and frequency of exposure. The duration and frequency of exposure will be specified in the test rule.

(6) Route of exposure. The test substance shall be administered by the route specified in the test rule. This route will usually be the one most closely approximating the expected route of human exposure. The exposure protocol shall conform to that outlined in the appropriate acute or subchronic toxicity study guideline under subpart B or subpart C of this part.

(7) Combined protocol. Subjects used for other toxicity studies may be used if none of the requirements of either study are violated by the combination.

(8) Study conduct. (i) All animals in a given study should be observed carefully by trained technicians who are blind with respect to the animals’ treatments. Standard procedures to minimize observer variability shall be followed. Where possible, it is advisable that the same observer be used to evaluate the animals in a given study. If this is not possible, some demonstration of inter-observer reliability is required. All animals should be observed prior to initiation of exposure. Subsequent observations should be made with sufficient frequency to ensure the detection of behavioral and/or neurologic abnormalities, if present. At minimum, observations at 1 hour, 6 hours, 24 hours, 7 days, and 14 days and monthly thereafter are recommended. In a subchronic study, subsequent to the first exposure all observations should be made before the daily exposure. The animals should be removed from the home cages to a standard arena for observation. Effort should be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables that can affect behavior are sound level, temperature, humidity, lighting, odors, time of day, and environmental distractions. Explicit, operationally defined scales for each function should be used. The development of objective quantitative measures of the observational endpoints specified is encouraged.

(ii) The following is a minimal list of observations that shall be noted:

(A) Any unusual responses with respect to body position, activity level, coordination of movement, and gait.

(B) Any unusual or bizarre behavior including, but not limited to, headflicking, head searching, compulsive biting or licking, self-mutilation, circling, and walking backwards.

(C) The presence of:

(1) Convulsions.

(2) Tremors.

(3) Increased levels of lacrimation and/or red-colored tears.

(4) Increased levels of salivation.

(5) Piloerection.

(6) Pupillary dilation or constriction.

(7) Unusual respiration (shallow, labored, dyspneic, gasping, and retching) and/or mouth breathing.

(8) Diarrhea.

(9) Excessive or diminished urination.

(10) Vocalization.

(D) Forelimb/hindlimb grip strength.

The procedure described by Meyer et al. (1979), under paragraph (f)(9) of this section is recommended.

(E) Sensory function. A simple assessment of sensory function (vision, audition, pain perception) shall be made. Marshall et al. (1971) under paragraph (f)(8) of this section have described a neurologic exam for this purpose; these procedures are also discussed by Deuel (1977), under paragraph (f)(4) of this section. Irwin (1968) under paragraph (f)(7) of this section described a number of reflex tests intended to detect gross sensory deficits, including the visual placing response, Preyer reflex, and tail pinch. Many procedures have been developed for assessing pain perception (e.g., Ankier, 1974 under paragraph (f)(1) of this section; D’Amour and Smith 1941 under paragraph (f)(3) of this section; Evans...
§ 798.6200 Motor activity.

(a) Purpose—(1) General. In the assessment and evaluation of the toxic characteristics of a substance, determination of the effects of administration of the substance on motor activity is useful when neurotoxicity is suspected.

(2) Acute Motor Activity Test. The purpose of the acute motor activity test is to examine changes in motor activity.
occurring over a range of acute exposure levels. These changes may then be evaluated in the context of changes occurring in other organ systems. This test is an initial step in determining the potential of a substance to produce acute neurotoxicity and may be used to screen members of a class of substances for known neurotoxicity, and/or to establish a dosage regimen prior to the initiation of subchronic neurotoxicity testing.

(3) Subchronic Motor Activity Test. The purpose of the subchronic motor activity test is to determine whether the repeated administration of a suspected neurotoxicant results in changes in motor activity. These changes may be evaluated in the context of changes occurring in other organ systems. This test is an initial step in determining the potential of a substance to produce subchronic neurotoxicity.

(b) Definitions. (1) Neurotoxicity is the adverse effect on the structure or function of the central and/or peripheral nervous system related to exposure to a chemical substance.

(2) Motor activity is any movement of the experimental animal.

(3) A toxic effect is an adverse change in the structure or function of an experimental animal as a result of exposure to a chemical substance.

(c) Principle of the test method. The test substance is administered to several groups of experimental animals, one dose being used per group. Measurements of motor activity are made. The exposure levels at which significant changes in motor activity are produced are compared to those levels which produce toxic effects not originating in the central and/or peripheral nervous system.

(d) Test procedures—(1) Animal selection—(i) Species and strain. Testing shall be performed in a laboratory rat or mouse. The choice of species should take into consideration such factors as the comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as evidenced by the results of other studies, the potential for combined studies, and the availability of other toxicity data for the species.

(ii) Age. Young adult animals (at least 42 days old for rat or mouse) should be used.

(iii) Sex. (A) Equal numbers of animals of each sex are required for each dose level for the motor activity test. (B) The females shall be nulliparous and nonpregnant.

(2) Number of animals. Animals shall be randomly assigned to test and control groups. Each test or control group must be designed to contain a sufficient number of animals at the completion of the study to detect a 40 percent change in activity of the test groups relative to the control group with 90 percent power at the 5 percent level. For most designs, calculations can be made according to Dixon and Massey (1957) under paragraph (f)(1) of this section, Neter and Wasserman (1974) under paragraph (f)(5) of this section, Sokal and Rohlf (1969) under paragraph (f)(9) of this section, or Jensen (1972) under paragraph (f)(3) of this section.

(3) Control groups. (i) A concurrent control group is required. This group must be an untreated group, or, if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control group are required.

(ii) Positive control data are required to demonstrate the sensitivity and reliability of the activity measuring device and testing procedure. These data should demonstrate the ability to detect increases or decreases in activity and to generate a dose-effect curve or its equivalent using three values of the dose or equivalent independent variable. A single administration of the dose (or equivalent) is sufficient. It is recommended that chemical exposure be used to collect positive control data. Positive control data shall be collected at the time of the test study unless the laboratory can demonstrate the adequacy of historical data for this purpose.

(iii) A satellite group may be treated with the high dose level for 90 days and observed for reversibility, persistence or delayed occurrence of toxic effects for a post-treatment period of appropriate length, normally not less than 28 days.
§ 798.6200

(4) Dose levels and dose selection. At least 3 doses, equally spaced on a log scale (e.g., 1 log unit) over a range of at least 1 log unit shall be used in addition to a zero dose or vehicle administration. The data should be sufficient to produce a dose-effect curve.

(i) The highest dose shall produce (A) clear effects on motor activity or (B) life-threatening toxicity.

(ii) The data from the lower doses must show either (A) graded dose-dependent effects at 2 dose levels or (B) no effects at 2 dose levels, respectively.

(5) Duration of testing. The duration of exposure will be specified in the test rule.

(6) Route of administration. The test substance shall be administered by the method specified in the test rule. This will usually be the route most closely approximating the route of human exposure. The exposure protocol shall conform to that outlined in the appropriate acute or subchronic toxicity study guideline.

(7) Combined protocol. The tests described herein may be combined with any other toxicity study, as long as none of the requirements of either are violated by the combination.

(8) Study conduct—(i) General. Motor activity must be monitored by an automated activity recording apparatus. The device used must be capable of detecting both increases and decreases in activity, i.e. baseline activity as measured by the device must not be so low as to preclude decreases nor so high as to preclude increases. Each device shall be tested by standard procedure to ensure, to the extent possible, reliability of operation across devices and across days for any one device. In addition, treatment groups must be balanced across devices. Each animal shall be tested individually. The test session shall be long enough for motor activity to approach asymptotic levels by the last 20 percent of the session for most treatments and animals. All sessions should have the same duration. Treatment groups shall be counter-balanced across test times. Effort should be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of home cage or novel test cage and environmental distractions. Tests shall be executed by an appropriately trained individual.

(ii) Acute. Testing shall be timed to include the time of peak signs.

(iii) Subchronic. All animals shall be tested prior to initiation of exposure and at 30 ±2, 60 ±2 and 90 ±2 days during the exposure period. Testing shall occur prior to the daily exposure. Animals shall be weighed on each test day and at least once weekly during the exposure period.

(e) Data reporting and evaluation. In addition to the reporting requirements specified under 40 CFR part 792 subpart J the final test report must include the following information:

(1) Description of system and test methods. (i) Positive control data from the laboratory performing the test which demonstrate the sensitivity of the procedure being used.

(ii) Procedures for calibrating and assuring the equivalence of devices and balancing treatment groups.

(2) Results. The following information must be arranged by test group (dose level).

(i) In tabular form, data must be provided showing for each animal:
(A) Its identification number.
(B) Body weight, total session activity counts, and intrasession subtotals for each date measured.

(ii) Group summary data should also be reported.

(3) Evaluation of data. An evaluation of the test results (including statistical analysis comparing total activity counts at the end of exposure of treatment vs control animals) must be made and supplied. This submission must include dose-effect curves for motor activity expressed as activity counts.

(f) References. For additional background information on this test guideline the following references should be consulted:

Environmental Protection Agency § 798.6400

(a) Purpose. The techniques in this guideline are designed to develop data on morphologic changes in the nervous system of chemical substances and mixtures subject to such testing under the Toxic Substances Control Act. The data will detect and characterize morphologic changes, if and when they occur, and determine a no-effect level for such changes. Neuropathological evaluation should be complemented by other neurotoxicity studies, e.g., behavioral and neurophysiological studies. Neuropathological evaluation may be done following acute, subchronic or chronic exposure.

(b) Definition. Neurotoxicity or a neurotoxic effect is an adverse change in the structure or function of the nervous system following exposure to a chemical agent.

(c) Principle of the test method. The test substance is administered to several groups of experimental animals, one dose being used per group. The animals are sacrificed and tissues in the nervous system are examined grossly and prepared for microscopic examination. Starting with the highest dosage level, tissues are examined under the light microscope for morphologic changes, until a no effect level is determined. In cases where light microscopy has revealed neuropathology, the no-effect level may be confirmed by electron microscopy.

(d) Test procedure—(1) Animal selection—(i) Species and strain. Testing shall be performed in the species being used in other tests for neurotoxicity. This will generally be the laboratory rat. The choice of species shall take into consideration such factors as the comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as evidenced by the results of other studies, the potential for combined studies, and the availability of other toxicity data for the species.

(ii) Age. Animals shall be young adults (150-200 gm for rats) at the start of exposure.

(iii) Sex. Both sexes shall be used unless it is demonstrated that one sex is refractory to the effects.

(2) Number of animals. A minimum of six animals per group shall be used. The tissues from each animal shall be examined separately. It is recommended that ten animals per group be used.

(3) Control groups. (i) A concurrent control group(s) is (are) required. This group must be an untreated control group or, if a vehicle is used in administering the test substance, a vehicle control group. If the vehicle used has a known or potential toxic property, both untreated and vehicle control groups are required.

(ii) A satellite group of animals may be treated with the high level for 90 days and observed for reversibility, persistence, or delayed occurrence of toxic effects for a post-treatment period of appropriate length; normally not less than 28 days.

(4) Dose levels and dose selection. At least 3 doses, equally spaced on a log scale (e.g., ½ log units) over a range of...
at least 1 log unit shall be used in addition to a zero dose or vehicle administration. The data should be sufficient to produce a dose-effect curve.

(i) The highest dose shall produce (A) clear behavioral effects or (B) life-threatening toxicity.

(ii) The data from the lower doses must show either (A) graded dose-dependent effects at two dose levels or (B) no effects at two dose levels, respectively.

(5) Duration of testing. The exposure duration will be specified in the test rule. This will generally be 90 days exposure.

(6) Route of administration. The test substance shall be administered by a route specified in the test rule. This will generally be the route most closely approximating the route of human exposure. The exposure protocol shall conform to that outlined in the appropriate acute or subchronic toxicity guideline.

(7) Combined protocol. The tests described herein may be combined with any other toxicity study, as long as none of the requirements of either are violated by the combination.

(8) Study conduct—(i) Observation of animals. All toxicological (e.g., weight loss) and neurological signs (e.g., motor disturbance) shall be recorded frequently enough to observe any abnormality, and not less than weekly.

(ii) Sacrifice of animals—(A) General. The goal of the techniques outlined for sacrifice of animals and preparation of tissues is preservation of tissues morphology to simulate the living state of the cell.

(B) Perfusion technique. Animals shall be perfused in situ by a generally recognized technique. For fixation suitable for light or electronic microscopy, saline solution followed by buffered 2.5 percent glutaraldehyde or buffered 4.0 percent paraformaldehyde, is recommended. While some minor modifications or variations in procedures are used in different laboratories, a detailed and standard procedure for vascular perfusion may be found in the text by Zeman and Innes (1963) under paragraph (f)(7) of this section, Hayat (1970) under paragraph (f)(3) of this section, and by Spencer and Schaumburg (1980) under paragraph (f)(6) of this section. A more sophisticated technique is described by Palay and Chan-Palay (1974) under paragraph (f)(4) of this section.

(C) Removal of brain and cord. After perfusion, the bonystructure (cranium and vertebral column) shall be exposed. Animals shall then be stored in fixative-filled bags at 4°C for 8-12 hours. The cranium and vertebral column shall be removed carefully by trained technicians without physical damage of the brain and cord. Detailed dissection procedures may be found in the text by Palay and Chan-Palay (1974) under paragraph (f)(4) of this section. After removal, simple measurement of the size (length and width) and weight of the whole brain (cerebrum, cerebellum, pons-medulla) shall be made. Any abnormal coloration or discoloration of the brain and cord shall also be noted and recorded.

(D) Sampling. Unless a given test rule specifies otherwise, cross-sections of the following areas shall be examined: the forebrain, the center of the cerebrum, the midbrain, the cerebellum and pons, and the medulla oblongata; the spinal cord at cervical and lumbar swelling (C6-7 and L1-L2); Gasserian ganglia, dorsal root ganglia (C1-C8, L1-L4), dorsal and ventral root fibers (C6-C8, L1-L4), proximal sciatic nerve (midthigh and sciatic notch), sural nerve (at knee), and tibial nerve (at knee). Other sites and tissue elements (e.g., gastrocnemius muscle) should be examined if deemed necessary. Any observable gross changes shall be recorded.

(iii) Specimen storage. Tissue samples from both the central and peripheral nervous system shall be further immersed fixed and stored in appropriate fixative (e.g., 10 percent buffered formalin for light microscopy; 25 percent buffered gluteraldehyde or 4.0 percent buffered paraformaldehyde for electron microscopy) for future examination. The volume of fixative versus the volume of tissues in a specimen jar shall be no less than 25:1. All stored tissues shall be washed with buffer for at least 2 hours prior to further tissue processing.

(iv) Histopathology examination. (A) Fixation. Tissue specimens stored in 10 percent buffered formalin may be used for this purpose. All tissues must be
Environmental Protection Agency § 798.6400

Environmental Protection Agency § 798.6400

immersion fixed in fixative for at least 48 hours prior to further tissue processing.

(B) Dehydration. All tissue specimens shall be washed for at least 1 hour with water or buffer, prior to dehydration. (A longer washing time is needed if the specimens have been stored in fixative for a prolonged period of time.) Dehydration can be performed with increasing concentration of graded ethanols up to absolute alcohol.

(C) Clearing and embedding. After dehydration, tissue specimens shall be cleared with xylene and embedded in paraffin or paraplast. Multiple tissue specimens (e.g. brain, cord, ganglia) may be embedded together in one single block for sectioning. All tissue blocks shall be labeled showing at least the experiment number, animal number, and specimens embedded.

(D) Sectioning. Tissue sections, 5 to 6 microns in thickness, shall be prepared from the tissue blocks and mounted on standard glass slides. It is recommended that several additional sections be made from each block at this time for possible future needs for special stainings. All tissue blocks and slides shall be filed and stored in properly labeled files or boxes.

(E) Histopathological techniques. Although the information available for a given chemical substance may dictate test-rule specific changes, the following general testing sequence is proposed for gathering histopathological data:

(1) General staining. A general staining procedure shall be performed on all tissue specimens in the highest treatment group. Hematoxylin and eosin (H&E) shall be used for this purpose. The staining shall be differentiated properly to achieve bluish nuclei with pinkish background.

(2) Special stains. Based on the results of the general staining, selected sites and cellular components shall be further evaluated by the use of specific techniques. If H&E screening does not provide such information, a battery of special stains shall be used to assess the following components in all appropriate required samples: neuronal body (e.g., Einarson’s galloycyanin), axon (e.g., Bodian), myelin sheath (e.g., Kluver’s Luxol Fast Blue) and neurofibrils (e.g., Bielchowsky). In addition, peripheral nerve fiber teasing shall be used. Detailed staining methodology is available in standard histotechnological manuals such as AFIP (1968) under paragraph (f)(1) of this section, Ralis et al. (1973) under paragraph (f)(5) of this section, and Chang (1979) under paragraph (f)(2) of this section. The nerve fiber teasing technique is discussed in Spencer and Schaumberg (1980) under paragraph (f)(6) of this section. A section of normal tissue shall be included in each staining to assure that adequate staining has occurred. Any changes shall be noted and representative photographs shall be taken. If a lesion(s) is observed, the special techniques shall be repeated in the next lower treatment group until no further lesion is detectable.

(3) Alternative technique. If the anatomical locus of expected neuropathology is well-defined, epoxy-embedded sections stained with toluidine blue may be used for small sized tissue samples. This technique obviates the need for special stains for cellular components. Detailed methodology is available in Spencer and Schaumberg (1980) under paragraph (f)(6) of this section.

(4) Electron microscopy. Based on the results of light microscopic evaluation, specific tissue sites which reveal a lesion(s) shall be further evaluated by electron microscopy in the highest treatment group which does not reveal any light microscopic lesion. If a lesion is observed, the next lower treatment group shall be evaluated until no significant lesion is found. Detailed methodology is available in Hayat (1970) under paragraph (f)(3) of this section.

(F) Examination—(1) General. All stained microscopic slides shall be examined with a standard research microscope. Examples of cellular alterations (e.g., neuronal vacuolation, degeneration, and necrosis) and tissue changes (e.g., gliosis, leukocytic infiltration, and cystic formation) shall be recorded and photographed.

(2) Electron microscopy. Since the size of the tissue samples that can be examined is very small, at least 3 to 4 tissue blocks from each sampling site must be examined. Tissue sections must be examined with a transmission electron
microscope. Three main categories of structural changes must be considered:

(i) Neuronal body. The shape and position of the nucleus and nucleolus as well as any change in the chromatin patterns shall be noted. Within the neuronal cytoplasm, cytoplasmic organelles such as mitochondria, lysosomes, neurotubules, neurofilaments, microfilaments, endoplasmic reticulum and polyribosomes (Nissl substance), Golgi complex, and secretory granules shall be examined.

(ii) Neuronal processes. The structural integrity or alterations of dendrites, axons (myelinated and unmyelinated), myelin sheaths, and synapses shall be noted.

(iii) Supporting cells. Attention must also be paid to the number and structural integrity of the neuroglial elements (oligodendrocytes, astrocytes, and microglia) of the central nervous system, and the Schwann cells, satellite cells, and capsule cells of the peripheral nervous system. Any changes in the endothelial cells and ependymal lining cells shall also be noted whenever possible. The nature, severity, and frequency of each type of lesion in each specimen must be recorded. Representative lesions must be photographed and labeled appropriately.

(e) Data collection, reporting, and evaluation. In addition to information meeting the requirements stated under 40 CFR part 792 subpart J, the following specific information shall be reported:

(1) Description of test system and test methods. A description of the general design of the experiment shall be provided. This shall include a short justification explaining any decisions where professional judgment is involved such as fixation technique and choice of stains.

(2) Results. All observations shall be recorded and arranged by test groups. This data may be presented in the following recommended format:

(i) Description of signs and lesions for each animal. For each animal, data must be submitted showing its identification (animal number, treatment, dose, duration), neurologic signs, location(s) nature of, frequency, and severity of lesion(s). A commonly-used scale such as 1+, 2+, 3+, and 4+ for degree of severity ranging from very slight to extensive may be used. Any diagnoses derived from neurologic signs and lesions including naturally occurring diseases or conditions, should also be recorded. (ii) Counts and incidence of lesions, by test group. Data shall be tabulated to show:

(A) The number of animals used in each group, the number of animals displaying specific neurologic signs, and the number of animals in which any lesion was found;

(B) The number of animals affected by each different type of lesion, the average grade of each type of lesion, and the frequency of each different type and/or location of lesion.

(iii) Evaluation of data. (A) An evaluation of the data based on gross necropsy findings and microscopic pathology observations shall be made and supplied. The evaluation shall include the relationship, if any, between the animal’s exposure to the test substance and the frequency and severity of the lesions observed.

(B) The evaluation of dose-response, if existent, for various groups shall be given, and a description of statistical method must be presented. The evaluation of neuropathology data should include, where applicable, an assessment in conjunction with other neurotoxicity studies performed (e.g., electrophysiological, behavioral, neurochemical).

(f) References. For additional background information on this test guideline the following references should be consulted:

§ 798.6500 Schedule-controlled operant behavior.

(a) Purpose. (1) In the assessment and evaluation of the potential human health effects of substances, it may be necessary to test for functional neurotoxic effects. Substances that have been observed to produce neurotoxic signs in other toxicity studies (e.g. CNS depression or stimulation), as well as substances with a structural similarity to known neurotoxicants should be evaluated for these effects.

(2) This guideline defines procedures for conducting studies of schedule-controlled operant behavior, one way of evaluating functional neurotoxic effects (Dews, 1972 under paragraph (f)(1) of this section; NAS 1975, 1977, 1982 under paragraphs (f)(4), (5) and (6) of this section). Our purpose is to evaluate the effects of acute and repeated exposures on the rate and pattern of responding under schedules of reinforcement. Operant behavior tests may be used to evaluate many other aspects of behavior (Laties, 1978 under paragraph (f)(3) of this section). Additional tests may be necessary to completely assess the behavioral effects of any substance. Behavioral evaluation should be used in conjunction with neuropathologic evaluation and the evaluation of other toxic effects.

(b) Definitions—(1) Neurotoxicity. Neurotoxicity or a neurotoxic effect is an adverse change in the structure or function of the nervous system following exposure to a chemical agent. Behavioral toxicity is an adverse change in the functioning of the organism with respect to its environment following exposure to a chemical agent.

(2) Operant, operant behavior, operant conditioning. An operant is a class of behavioral responses which change or operates on the environment in the same way. Operant behavior is further distinguished as behavior which is modified by its consequences. Operant conditioning is the experimental procedure used to modify some class of behavior by reinforcement or punishment.

(3) Schedule of reinforcement. A schedule of reinforcement specifies the relation between behavioral responses and the delivery of reinforcers, such as food or water (Ferster and Skinner, 1957 under paragraph (f)(2) of this section). For example, a fixed ratio (FR) schedule requires a fixed number of responses to produce a reinforcer (e.g. FR 30). On a fixed interval (FI) schedule, the first response after a fixed period of time is reinforced (e.g. FI 5 minutes).

(c) Principle of the test method. Experimental animals are trained to perform under a schedule of reinforcement and measurements of their operant behavior are made. Several doses of the test substance are then administered according to the experimental design (between groups or within subjects) and the duration of exposure (acute or repeated). Measurements of the operant behavior are repeated. A descriptive and statistical evaluation of the data is made to evaluate the nature and extent of any changes in behavior in relation to exposures to the test substance. Comparisons are made between any exposures that influence the behavior and exposures that have neuropathological effects or effects on other targets of the chemical.

(d) Test procedures—(1) Experimental design. These test procedures may be used to evaluate the behavior of experimental animals receiving either acute or repeated exposures. For acute exposure studies, either within-subject or between groups, experimental designs may be used. For repeated exposure studies, between groups designs should be used, but within subject comparisons (pre-exposure and post-exposure) are recommended and encouraged.

(2) Animal selection—(i) Species. (A) For most studies, the laboratory mouse or rat is recommended. Standard strains should be used.

(B) Under some circumstances other species may be recommended.

(ii) Age. Experimental animals should be young adults. Rats or mice should
be at least 14 and 6 weeks old, respectively, prior to exposure.

(iii) Sex. (A) Approximately equal numbers of male and female animals are required for each dose level and control group.
(B) Virgin females should be used.

(iv) Experimental history. Animals should be experimentally and chemically naive.

(3) Number of animals. Six to twelve animals should be exposed to each level of the test substance and/or control procedure. If post exposure effects are examined, a separate group, 6 to 12 additional animals not sacrificed for pathology, will required in subchronic studies.

(4) Control groups—(i) Untreated controls. A concurrent "sham" exposure or vehicle control group or session (according to the design of the study) is required. The subjects should be treated similarly except that administration of the test substance is omitted.
(ii) Positive controls. Positive control data is required to demonstrate that the experimental procedures, under the specific conditions in the testing laboratory, are sensitive to substances known to affect operant behavior. Both increases and decreases in response rate should be demonstrated. Data based on acute exposures will be adequate. Data should be collected according to the same experimental design as that proposed for the test substance. Historical data on the procedure collected in the same species and under the same conditions in the testing laboratory may be acceptable, but the presentation of concurrent control data is strongly encouraged since it provides evidence that the test has remained sensitive.

(5) Dose levels and dose selection. At least 3 doses, equally spaced over a log scale (e.g., 10, 30, 100), over a range of at least 1 log unit shall be used in addition to a zero dose or vehicle administration. The data should be sufficient to produce a dose-effect curve.
(i) The highest dose shall produce:
(A) Clear behavioral effects; or
(B) Life-threatening toxicity.
(ii) The data from the lower doses must show either:
(A) Graded dose-dependent effects at 2 dose levels; or
(B) No effects at 2 dose levels, respectively.

(6) Duration of exposure. The duration and frequency of exposure will be specified in the test rule.

(7) Route of Administration. The route of administration will also be specified in the test rule and will usually be identical to one of the anticipated or actual routes of human exposure. For some chemicals, another route (e.g. parenteral) may be justified. The exposure protocol should conform to that outlined in the appropriate acute or subchronic toxicity study guideline under subpart B or subpart C of this part.

(B) Study conduct—(i) Apparatus. Behavioral responses and the delivery of reinforcers shall be controlled and monitored by automated equipment located so that its operation does not provide unintended cues or otherwise interfere with the ongoing behavior. Individual chambers should be sound attenuated to prevent disruptions of behavior by external noise. The response manipulanda, feeders, and any stimulus devices should be tested before each session; these devices should periodically be calibrated.

(ii) Chamber assignment. Concurrent treatment groups should be balanced across chambers. Each subject should be tested in the chamber to which it is initially assigned.

(iii) Deprivation and training. (A) If a nonpreferred positive reinforcer is used, all subjects should be deprived of food until they reach a fixed percentage (e.g. 80 to 90 percent, commonly) of their ad libitum body weight or for a fixed period (e.g., 18 hours) prior to training. Deprivation should be kept constant throughout the study.

(B) Subjects must be trained until they display demonstrable stability in performance across days prior to exposure. One simple and useful criterion is a minimum number of sessions on the schedule and no systematic trend during the 5 days before exposure.

(C) Cumulative records of cumulative responding over time for each animal should be presented to demonstrate that the pattern of responding is representative of that generated by the schedule of reinforcement.

(iv) Time, frequency, and duration of testing—(A) Time of testing. All experimental animals should be tested at the
same time of day and with respect to the time of exposure. For acute studies, testing should be performed when effects are estimated to peak, usually shortly after exposure. For subchronic studies, subjects should be tested prior to daily exposure in order to assess cumulative effects.

(B) Frequency of testing. The maintenance of stable operant behavior normally will require regular and frequent (e.g., 5 days a week) testing sessions. Animals should be weighed on each test day.

(C) Duration of testing. (1) Experimental sessions should be long enough to reasonably see the effects of exposure, but brief enough to be practical. Under most circumstances, a session length of 30-40 minutes should be adequate.

(2) If the nature or duration of effects following cessation of repeated exposure are a concern, animals from the high dose group should be tested following exposure for a suitable period of time.

(v) Schedule selection. The schedule of reinforcement chosen should generate response rates that may increase or decrease as a function of exposure. Many schedules of reinforcement can do this: a single schedule maintaining a moderate response rate; fixed-interval schedules, which engender a variety of response rates in each interval; or multiple schedules, where different components may maintain high and low response rates.

(e) Data reporting and evaluation. In addition to the reporting requirements specified under 40 CFR part 792, subpart J, the final test report should contain the following information:

(1) Description of system, test methods, experimental design, and control data. (i) A description of the experimental chamber, programming equipment, data collection devices, and environmental conditions.

(ii) A description of the experimental design including counterbalancing procedures, and the stability criterion.

(iii) A description and statistical evaluation of positive control and other control data, including standard measures of central tendency, variability, coefficient of variation of response rates, and the slope of the dose-effect curve.

(2) Results. (i) Data for each animal should be arranged by test group in tabular form including the animal identification number, body weight, pre-exposure rate of responding, changes in response rate produced by the chemical, and group data for the same variables, including standard measures of central tendency, variability and coefficient of variation.

(ii) A description and statistical evaluation of the test results: With particular reference to the overall statistical procedures (e.g., parametric or nonparametric) dose-effect curve, and calculation of slope. Presentation of calculations is encouraged.

(f) References. For additional background information on this test guideline the following references should be consulted:

neurotoxicity may be carried out, usually after initial information on delayed neurotoxicity has been obtained by acute testing or by the demonstration of inhibition and aging of neurotoxic esterase in hen neural tissue. The subchronic delayed neurotoxicity test provides information on possible health hazards likely to arise from repeated exposures over a limited period of time. It will provide information on dose response and can provide an estimate of a non-effect level which can be of use for establishing safety criteria for exposure.

(b) Definitions. Subchronic delayed neurotoxicity is a prolonged, delayed-onset locomotor ataxia resulting from repeated daily administration of the test substance.

(c) Principle of the test method. Multiple dose levels of the test substance are administered orally to domestic hens (Gallus gallus domesticus) for 90 days. The animals are observed at least daily for behavioral abnormalities, locomotor ataxia and paralysis. Histopathological examination of selected neural tissues is undertaken at the termination of the test period.

(d) Test procedures—(1) Animal selection. The adult domestic laying hen, aged 8 to 14 months, is recommended. Standard size breeds and strains should be employed.

(2) Number of animals. Ten hens should be used for each treatment and control group.

(3) Control group—(i) General. A concurrent control group should be used. This group should be treated in a manner identical to the treated group, except that administration of the test substance is omitted.

(ii) Reference substances. If a positive control is used, a substance which is known to produce delayed neurotoxicity should be employed. Examples of such substances are triorthocresyl phosphate (TOCP) and leptophos.

(4) Housing and feeding conditions. Cages or enclosures which are large enough to permit free mobility of the hens and easy observation of gait should be used. Where the lighting is artificial, the sequence should be 12 hours light, 12 hours dark. Appropriate diets should be administered as well as an unlimited supply of drinking water.

(5) Dose levels. At least three dose levels should be used in addition to the control group(s). The highest dose level should result in toxic effects, preferably delayed neurotoxicity, but not produce an incidence of fatalities which would prevent a meaningful evaluation. The lowest dose level should not produce any evidence of toxicity.

(6) Route of administration. Oral dosing each day for at least 5 days per week should be carried out, preferably by gavage or administration of gelatine capsules.

(7) Study conduct—(i) General. Healthy young adult hens free from interfering viral diseases and medication and without abnormalities of gait should be acclimatized to the laboratory conditions for at least 5 days prior to randomization and assignment to treatment and control groups. The test or control substance should be administered and observations begun. All hens should be carefully observed at least once daily throughout the test period. Signs of toxicity should be recorded, including the time of onset, degree and duration. Observations should include, but not be limited to, behavioral abnormality, locomotor ataxia and paralysis. At least once a week the hens should be taken outside the cages and subjected to a period of forced motor activity, such as ladder climbing, in order to enhance the observation of minimal responses. The hens should be weighed weekly. Any moribund hens should be removed and sacrificed.

(ii) Pathology—(A) Gross necropsy. In the presence of clinical signs of delayed neurotoxicity useful information may be provided by gross necropsy.

(B) Histopathology. Tissues from all animals should be fixed in situ, using perfusion techniques. Sections should include medulla oblongata, spinal cord and peripheral nerves. The spinal cord sections should be taken from the upper cervical bulb, the mid-thoracic and lumbosacral regions. Sections of the proximal region of the tibial nerve and its branches and of the sciatic nerve should be taken. Sections should be stained with appropriate myelin and axon-specific stains. Microscopic examination should be carried out on all
hens in the control and high-dose groups. Microscopic examination should also be carried out on hens in the low and intermediate dose groups when there is evidence of effects in the high-dose group.

(e) Data reporting and evaluation—(1) Test report. In addition to the reporting requirements specified under 40 CFR part 792, subpart J the final test report must include the following information:

(i) Toxic response data by group with a description of clinical manifestations of nervous system damage; where a grading system is used the criteria should be defined.

(ii) For each animal, time of death during the study or whether it survived to termination.

(iii) The day of observation of each abnormal sign and its subsequent course.

(iv) Body weight data.

(v) Necropsy findings for each animal, when performed.

(vi) A detailed description of all histopathological findings.

(vii) Statistical treatment of results, where appropriate.

(2) Treatment of results. (i) Data may be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions or effects, the types of lesions or effects and the percentage of animals displaying each type of lesion or effect.

(ii) All observed results should be evaluated by an appropriate statistical method. Any generally accepted statistical method may be used; the statistical methods should be selected during the design of the study.

(3) Evaluation of results. The findings of a subchronic delayed neurotoxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the incidence and severity of observed neurotoxic effects and any other observed effects and histopathological findings in the treated and control groups. A properly conducted subchronic test should provide a satisfactory estimation of a no-effect level based on lack of clinical signs and histopathological changes.

(f) References. For additional background information on this test guideline the following references should be consulted:

Subpart B—Specific Chemical Test Rules

799.1053 Trichlorobenzenes.
799.1560 Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
799.1575 Diethylenetriamine (DETA).
799.1645 2-Ethylhexanol.
799.1700 Fluoroalkenes.
799.2155 Commercial hexane.
799.2235 Isopropanol.
799.2475 2-Mercaptobenzothiazole.
799.2700 Methyl ethyl ketoxime.
799.3300 Unsubstituted phenylenediamines.
799.4440 Triethylene glycol monomethyl ether.

Subpart C—Testing Consent Orders

799.5000 Testing consent orders for substances and mixtures with Chemical Abstracts Service Registry Numbers.
799.5025 Testing consent orders for mixtures without Chemical Abstracts Service Registry Numbers.

Subpart D—Multichemical Test Rules

799.5055 Hazardous waste constituents subject to testing.
799.5075 Drinking water contaminants subject to testing.

Subparts E–G [Reserved]

Subpart H—Health Effects Test Guidelines

799.9135 TSCA acute inhalation toxicity with histopathology.
799.9346 TSCA 90-day inhalation toxicity.
799.9370 TSCA prenatal developmental toxicity.
799.9380 TSCA reproduction and fertility effects.
799.9420 TSCA carcinogenicity.
799.9510 TSCA bacterial reverse mutation test.
799.9530 TSCA in vitro mammalian cell gene mutation test.
799.9538 TSCA mammalian bone marrow chromosomal aberration test.
799.9539 TSCA mammalian erythrocyte micronucleus test.
799.9620 TSCA neurotoxicity screening battery.
799.9760 TSCA immunootoxicity.

§ 799.2 Applicability.

This part is applicable to each person who manufactures or intends to manufacture (including import) and/or to each person who processes or intends to process a chemical substance or mixture identified in subpart B for testing during the period commencing with the effective date of the specific chemical test rule until the end of the reimbursement period. Each set of testing requirements in subpart B specifies whether those requirements apply to manufacturers only, to processors only, or to both manufacturers and processors.

§ 799.3 Definitions.

The definitions in section 3 of the Toxic Substances Control Act (TSCA) and the definitions of §790.3 of this chapter apply to this part.
§ 799.5 Submission of information.

Information (letters, study plans, reports) submitted to EPA under this part must bear the Code of Federal Regulations section number of the subject chemical test rule (e.g., § 799.1285 for Cumene) and must be addressed to the Document Control Office (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room G-099, 401 M St., SW., Washington, DC 20460.

[60 FR 34467, July 3, 1995]

§ 799.10 Test standards.

Testing required under subpart B must be performed using a study plan prepared according to the requirements of parts 790 and 792 of this chapter unless modified in specific chemical test rules in subpart B. All raw data, documentation, records, protocols, specimens and reports generated as a result of a study under subpart B must be developed, reported, and retained in accordance with TSCA Good Laboratory Practice Standards (GLP's) in part 792 of this chapter. These items must be made available during an inspection or submitted to EPA upon request by EPA or its authorized representative. Laboratories conducting testing for submission to the Agency in response to a test rule promulgated under section 4 of TSCA must adhere to the TSCA GLP's. Sponsors must notify the laboratory that the study is being conducted pursuant to TSCA section 4. Sponsors are also responsible for ensuring that laboratories conducting the test abide by the TSCA GLP standards. In accordance with § 792.12 of this chapter, a certification concerning adherence to the TSCA GLP's must be submitted to EPA.

§ 799.11 Availability of test guidelines.

(a) The TSCA and FIFRA guidelines for the various study plans are available from the National Technical Information Service (NTIS). Address and telephone number: National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650).

(b) The OECD guidelines for the various study plans are available from the following address: OECD Publication and Information Center, 1750 Pennsylvania Ave., NW., Washington, DC 20006 (202-724-1857).

§ 799.12 Test results.

Except as set forth in specific chemical test rules in subpart B of this part, a positive or negative test result in any of the tests required under subpart B is defined in the TSCA test guidelines published by NTIS.

§ 799.17 Effects of non-compliance.

Any person who fails or refuses to comply with any aspect of this part or part 790 is in violation of section 15 of TSCA. EPA will treat violations of Good Laboratory Practice Standards as indicated in § 792.17 of this chapter.

§ 799.18 Chemicals subject of test rules or consent orders for which the testing reimbursement period has passed.

The following table lists substances and mixtures that have been the subjects of section 4 testing actions and for which the testing reimbursement period has terminated (sunset). The Federal Register citation in the table is for the final rule/consent order that includes the particular substance for which the sunset date listed in the table below applies. Section 12(b) export notification is no longer required for these substances and mixtures. Substances that are the subjects of two or more section 4 testing actions may have section 4 reimbursement or section 12(b) export notification requirements that have not sunset; see subparts B, C, and D of this part to determine if certain other section 4 testing requirements apply. Additionally, section 12(b) export notification may also be triggered by proposed or final action under TSCA section 5, 6, or 7 (in addition to final actions under section 4); see 40 CFR part 707, subpart D for further information regarding the TSCA section 12(b) export notification requirements.

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical Name</th>
<th>FR cite</th>
<th>Sunset dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-9</td>
<td>Aromatic Hydrocarbon Fraction¹</td>
<td>50 FR 20662, 5/17/85</td>
<td>Aug 13, 1994</td>
</tr>
</tbody>
</table>
§ 799.19 Chemical imports and exports.

Persons who export or who intend to export substances listed in subpart B or subpart C of this part are subject to the requirements of part 707 of this title.

[51 FR 23718, June 30, 1986]

§ 799.1053 Trichlorobenzenes. Subpart B—Specific Chemical Test Rules

(a) Identification of testing substance. (1) 1,2,3- and 1,2,4-trichlorobenzenes, CAS Numbers 87-61-6 and 120-82-1 respectively, shall be tested in accordance with this section.

(2) The substances identified in paragraph (a)(1) of this section shall be 99 percent pure and shall be used as the test substances in each of the tests specified.

[51 FR 23718, June 30, 1986]
Environmental Protection Agency

§ 799.1053

(3) For health effects testing required under paragraph (e) of this section, the test substance shall not contain more than 0.05 percent benzene and 0.05 percent hexachlorobenzene.

(b) Persons required to submit study plans, conduct tests, and submit data. (1) All persons who manufacture or process substances identified in paragraph (a)(1) of this section, other than an impurity, from May 21, 1986, to the end of the reimbursement period, shall submit a letter of intent to test or exemption applications and shall conduct tests, in accordance with part 792 of this chapter, and submit data as specified in this section, subpart A of this part and part 790 of this chapter for two-phase rulemaking.

(2) Persons subject to this section are not subject to the requirements of §790.50(a)(2), (5), (6) and (b) and §790.87(a)(1)(ii) of this chapter.

(3) Persons who notify EPA of their intent to conduct tests in compliance with the requirements of this section must submit plans for those tests no later than 30 days before the initiation of each of those tests.

(4) In addition to the requirements of §790.50(a)(2), (5), (6) and (b) and §790.87(a)(1)(ii) of this chapter, EPA will conditionally approve exemption applications for this rule if EPA has received a letter of intent to conduct the testing from which exemption is sought and EPA has adopted test standards and schedules in a final Phase II test rule.

(5) For health effects testing required under paragraph (e) of this section, all persons who manufacture (import) or process 1,2,4-trichlorobenzene, other than as an impurity, after the effective date of this rule (August 21, 1986) to the end of the reimbursement period shall submit letters of intent to conduct testing or exemption applications, submit study plans, conduct tests, and submit data as specified in this section, subpart A of this part and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) [Reserved]

(d) Environmental effects testing. 1,2,3- and 1,2,4-trichlorobenzene shall be tested in accordance with this section.

(1) Marine invertebrate acute toxicity testing—(i) Required testing. Testing using measured concentrations, flow through systems, and systems that control for evaporation of the test substance, shall be conducted for 1,2,3- and 1,2,4-trichlorobenzene. Testing shall be conducted with myisid shrimp (Mysidopsis bahia) to develop data on the acute toxicity of the above chlorobenzene isomers to marine invertebrates.

(ii) Test standards. The marine invertebrate (mysid shrimp, Mysidopsis bahia) acute toxicity testing for 1,2,3- and 1,2,4-trichlorobenzene shall be conducted in accordance with §797.1930 of this chapter.

(iii) Reporting requirements. (A) The acute toxicity tests on marine invertebrates shall be completed and the final report submitted to EPA within 1 year of the effective date of the final Phase II test rule.

(B) An interim progress report shall be submitted to the Agency within 6 months after the effective date of the final Phase II rule.

(2) Marine fish acute toxicity testing—(i) Required testing. Testing using measured concentrations, flow through systems, and systems that control for evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. Testing shall be conducted with Silversides (Menidia menidia) to develop data on the acute toxicity of 1,2,3-trichlorobenzene to saltwater fish.

(ii) Test standard. The marine fish (silverside minnow, Menida menidia) acute toxicity test shall be conducted for 1,2,3-trichlorobenzene in accordance with §797.1400 of this chapter.

(iii) Reporting requirements. (A) The marine fish (silversides minnow, Menida menidia) acute toxicity test shall be conducted for 1,2,3-trichlorobenzene in accordance with §797.1400 of this chapter.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final Phase II rule.

(3) Freshwater fish acute toxicity testing—(i) Required testing. Testing using measured concentrations, flow through systems, and systems that control evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. A 96-hour LC50 test shall be conducted with the fathead minnow (Pimephales promelas) to develop data on the acute toxicity.
§ 799.1053

40 CFR Ch. I (7–1–99 Edition)

toxicity of 1,2,3-trichlorobenzene to freshwater fish.

(ii) Test standard. The freshwater fish (fathead minnow, Pimephales promelas) acute toxicity test shall be conducted for 1,2,3-trichlorobenzene in accordance with §797.1400 of this chapter.

(iii) Reporting requirements. (A) The freshwater fish acute toxicity study shall be completed and the final report submitted to EPA within 1 year of the effective date of the final Phase II test rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final Phase II rule.

(4) Freshwater invertebrate acute toxicity testing—(i) Required testing. Testing using measured concentrations, flow through or static renewal systems, and systems that control for evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. A 96-hour EC50 shall be conducted for one species of Gammarus to develop data on the acute toxicity of 1,2,3-trichlorobenzene to aquatic freshwater invertebrates.

(ii) Test standard. The freshwater invertebrate (Gammarus sp.) acute toxicity test shall be conducted for 1,2,3-trichlorobenzene in accordance with §795.120 of this chapter.

(iii) Reporting requirements. (A) The freshwater invertebrate acute toxicity test shall be completed and the final report submitted to EPA within 411 days of the effective date of the final Phase II rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final Phase II rule.

(5) Mysid shrimp chronic toxicity testing—(i) Required testing. Testing using measured concentrations, flow through or static renewal systems, and systems that control for evaporation of the test substance shall be conducted for 1,2,4-trichlorobenzene. Testing shall be conducted with mysid shrimp (Mysisdopsis bahia) to develop data on the chronic toxicity of 1,2,3-trichlorobenzene, should the acute LC50 of this chemical to mysid shrimp be determined to be less than 1 ppm.

(ii) Test standards. The mysid shrimp (Mysisdopsis bahia) chronic toxicity test shall be conducted for 1,2,4-trichlorobenzene in accordance with §797.1950 of this chapter. Testing shall also be conducted according to §797.1950 for 1,2,3-trichlorobenzene should the results of testing required by (d)(1)(ii) of this section yield an acute LC50 for this chemical substance of less than 1 ppm.

(iii) Reporting requirements. (A) The mysid shrimp chronic toxicity test for 1,2,4-trichlorobenzene shall be completed and the final report submitted to EPA within 1 year of the effective date of the final Phase II rule. The mysid shrimp chronic toxicity test for 1,2,3-trichlorobenzene, (required if the LC50 is less than 1 ppm), shall be completed and final report submitted to EPA within 15 months of the effective date of the final Phase II rule.

(B) Progress reports shall be submitted to EPA at 6-month intervals, beginning 6 months after of the effective date of the final Phase II rule and until the final report is submitted to EPA.

(e) Health effects testing—(1) Oncogenicity—(i) Required testing. A test for oncogenic effects shall be conducted with 1,2,4-TCB in accordance with §798.3300 of this chapter.

(B) The route of administration for the oncogenicity testing for 1,2,4-TCB shall be via the animal feed.

(C) Two rodent species shall be used and one shall be the Fischer-344 rat.

(ii) Reporting requirements. (A) The oncogenic test shall be completed and the final results submitted to EPA by June 30, 1994.

(B) Progress reports shall be submitted to the Agency every 6 months after the effective date of the final rule.

(g) Effective date. (1) The effective date of the final phase II rule is August 14, 1987, except for paragraphs (d)(4)(iii)(A) and (e)(1)(ii)(A) of this section. The effective date for paragraph (d)(4)(iii)(A) of this section is March 1, 1990. The effective date for paragraph (e)(1)(ii)(A) of this section is June 12, 1992.
§ 799.1560 Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.

(a) Identification of test substances. (1) Diethylene glycol butyl ether (DGBE), CAS Number 112-34-5, and diethylene glycol butyl ether acetate (DGBA), CAS Number 124-17-4, shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import) or process or intend to manufacture or process DGBE and/or DGBA, other than as an impurity, after April 11, 1988, to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans and conduct tests, and submit data, or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking. Persons who manufacture or process DGBE are subject to the requirements to test DGBE in this section. Only persons who manufacture or process DGBA are subject to the requirements to test DGBA in this section.

(c) Health effects testing—(1) Subchronic toxicity—(i) Required testing. (A) A 90-day subchronic toxicity test of DGBE shall be conducted in rats by dermal application in accordance with §788.2250 of this part except for the provisions in paragraphs (e)(9)(iv), (10)(i)(A) and (ii)(B), (11)(ii) and (iii), and (12)(i) of §788.2250.

(B) For the purpose of this section, the following provisions also apply:

(1) A satellite group to evaluate fertility shall be established. Control males shall be cohabited with control females, and males and females administered the high dose shall be cohabited. Endpoints to be evaluated shall include percent mated; percent pregnant; length of gestation; litter size; viability at birth, on Day 4, and weaning, on Day 21; sex of the offspring; and litter weights at birth and Days 4, 7, 14, and 21. Litters shall be standardized on day 4 in accordance with the reproductive and fertility effects guidelines, §788.4700(c)(6)(iv) of this chapter. Gross examinations shall be made at least once each day and physical or behavioral anomalies in the dam or offspring shall be recorded. At weaning, dams shall be sacrificed and examined for resorption sites indicative of post-implantation loss. An additional 20 males and 40 females will have to be added to the subchronic study for this test. If the animals in the high dose group exhibit marked toxicity (e.g. greater than 20 percent weight loss), then the fertility tests shall be conducted in the next highest dose group.

(2) Cage-side observations shall include, but not be limited to, changes in skin and fur; eyes and mucous membranes; respiratory, circulatory autonomic, and central nervous systems; somatomotor activity; and behavior pattern. In addition a daily examination for hematuria shall be done.

(3) Certain hematological determinations shall be carried out at least three times during the test period: Just prior to initiation of dosing (baseline data), after approximately 30 days on test, and just prior to terminal sacrifice at the end of the test period. Hematology determinations which are appropriate to all studies: Hematocrit, hemoglobin concentration, erythrocyte count, total and differential leucocyte count, mean corpuscular volume, and a platelet count.

(4) Urinalyses shall be done at least three times during the test period: Just prior to initiation of dosing (baseline data), after approximately 30 days into the test, and just prior to terminal sacrifice at the end of the test period. The animals shall be kept in metabolism cages, and the urine shall be examined microscopically for the presence of erythrocytes and renal tubular cells, in addition to measurement of urine volume, specific gravity, glucose, protein/albumin, and blood.
(5) The liver, kidney, adrenals, brain, gonads, prostate gland, epididymides, seminal vesicles, and pituitary gland shall be weighed wet, as soon as possible after dissection, to avoid drying.

(6) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: All gross lesions; lungs—which should be removed intact, weighed, and treated with a suitable fixative to ensure that lung structure is maintained (perfusion with the fixative is considered to be an effective procedure); nasopharyngeal tissues; brain—including sections of medulla/pons, cerebellar cortex, and cerebral cortex; pituitary; thyroid/parathyroid; thymus; trachea; heart; sternum with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; pancreas; gonads; uterus; oviducts; vagina; vas deferens; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles); aorta; (skin); gall bladder (if present); esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph node; (mammary gland); (thigh musculature); peripheral nerve; (eyes); (femur—including articular surface); (spinal cord at three levels—cervical, midthoracic, and lumbar); and (zymbal and exorbital lachrymal glands).

(7) (i) Full histopathology on normal and treated skin and on organs and tissues listed in paragraph (c)(1)(i)(B)(6) of this section, as well as the accessory genital organs (epididymides, prostate, seminal vesicles) and the vagina, of all animals in the control and high dose groups.

(ii) The integrity of the various cell stages of spermatogenesis shall be determined, with particular attention directed toward achieving optimal quality in the fixation and embedding; preparations of testicular and associated reproductive organ samples for histology should follow the recommendations of Lamb and Chapin (1985) under paragraph (d)(1) of this section, or an equivalent procedure. Histological analyses shall include evaluations of the spermatogenic cycle, i.e., the presence and integrity of the 14 cell stages. These evaluations should follow the guidance provided by Clermont and Perey (1957) under paragraph (d)(2) of this section. Information shall also be provided regarding the nature and level of lesions observed in control animals for comparative purposes.

(iii) Data on female cyclicity shall be obtained by performing vaginal cytology over the last 2 weeks of dosing; the cell staging technique of Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and the cycle length.

(iv) The ovary shall be serially sectioned with a sufficient number of sections examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgersson (1979) and Pederson and Peters (1968) under paragraphs (d) (4) and (5) of this section may provide guidance. The strategy for sectioning and evaluation is left to the discretion of the investigator, but shall be described in detail in the study plan and final report. The nature and background level of lesions in control tissue shall also be noted.

(ii) Reporting requirements. (A) The subchronic test shall be completed and the final report submitted to EPA within 15 months of the effective date of the final test rule.

(B) Progress reports shall be submitted to EPA every 6 months, beginning 6 months from the effective date of the final rule until submission of the final report to EPA.

(2) Neurotoxicity/behavioral effects—(i) Required testing—(A) (1) Functional observational battery. A functional observational battery shall be performed in the rat by dermal application of DGBE for a period of 90 days according to §798.6050 of this chapter except for the provisions in paragraphs (b)(1), (d)(4)(ii), (5), and (8)(ii)(E) of §798.6050.

(2) For the purpose of this section, the following provisions also apply:

(i) Definition. Neurotoxicity is any adverse acute and/or lasting effect on the structure or function of the central and/or peripheral nervous system related to exposure to a chemical substance.

(ii) Lower doses. The data from the lower doses shall show either graded dose-dependent effects in at least two
of all the doses tested including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(iii) Duration and frequency of exposure. Animals shall be exposed for 6 hours/day, 5 days/week for a 90-day period.

(iv) Sensory function. A simple assessment of sensory function (vision, audition, pain perception) shall be made. Marshall et al. (1971) in §798.6050(f)(8) of this chapter have described a neurologic exam for this purpose; these procedures are also discussed by Deuel (1977), under §798.6050(f)(4) of this chapter. Irwin (1968) under §798.6050(f)(7) of this chapter described a number of reflex tests intended to detect gross sensory deficits. Many procedures have been developed for assessing pain perception (e.g., Ankier (1974) under §798.6050(f)(1); D’Amour and Smith (1941) under §798.6050(f)(3); and Evans (1971) under §798.6050(f)(6) of this chapter.

(B)(1) Motor activity. A motor activity test shall be conducted in the rat by dermal application of DGBE for a period of 90 days according to §798.6200 of this chapter except for the provisions in paragraphs (c), (d)(3)(ii), (4)(ii), (5), (9)(i), and (iii) of §798.6200.

(2) For the purpose of this section, the following provisions also apply:

(i) Principle of the test method. The test substance is administered to several groups of experimental animals, one dose being used per group. Measurements of motor activity are made. Where possible, the exposure levels at which significant changes in motor activity are produced are compared to those levels which produce toxic effects not originating in the central and/or peripheral nervous system.

(ii) Positive control data. Positive control data are required to document the sensitivity of the activity measuring device and testing procedure. These data should demonstrate the ability to detect increases or decreases in activity and to generate a dose–effect curve or its equivalent using three values of the dose or equivalent independent variable. A single administration of the dose (or equivalent) is sufficient. It is recommended that chemical exposure be used to collect positive control data. Positive control data shall be collected at the time of the test study unless the laboratory can demonstrate the adequacy of historical data for this purpose.

(iii) Lower doses. The data from the lower doses shall show either graded dose-dependent effects in at least two of all the doses tested including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(iv) Duration and frequency of exposure. Animals shall be exposed for 6 hours/day, 5 days/week for a 90-day period.

(v) General. Motor activity shall be monitored by an automated activity recording apparatus. The device used shall be capable of detecting both increases and decreases in activity, i.e., baseline activity as measured by the device shall not be so low as to preclude decreases nor so high as to preclude increases. Each device shall be tested by a standard procedure to ensure, to the extent possible, reliability of operation across devices and across days for any one device. In addition, treatment groups shall be balanced across devices. Each animal shall be tested individually. The test session shall be long enough for motor activity to approach asymptotic levels by the last 20 percent of the session for most treatments and for the session control animals. All sessions should be of the same duration. Treatment groups shall be counter-balanced across test times. Effort should be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of home cage or novel test cage, and environmental distractions. Tests shall be executed by an appropriately trained individual.

(vi) Subchronic. All animals shall be tested prior to initiation of exposure and at 30±4, 60±4, and 90±4 days during the exposure period. Testing shall occur prior to the daily exposure. Animals shall be weighed on each test day and at least once weekly during the exposure period.

(C)(1) Neuropathology. A neuropathology test shall be conducted
in the rat by dermal application of DGBE for a period of 90 days according to §798.6400 of this chapter except for the provisions in paragraphs (d)(4)(ii), (5), (b)(iv)(C), and (E)(2) of §798.6400.

(2) For the purpose of this section, the following provisions also apply:

(i) Lower doses. The data from the lower doses shall show either graded dose-dependent effects in at least two of all the doses tested including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(ii) Duration and frequency of exposure. Animals shall be exposed for 6 hours/day, 5 days/week for a 90-day period.

(iii) Clearing and embedding. After dehydration, tissue specimens shall be cleared with xylene and embedded in paraffin or paraplast except for the sural nerve which should be embedded in plastic. Multiple tissue specimens (e.g. brain, cord, ganglia) may be embedded together in one single block for sectioning. All tissue blocks shall be labeled to provide unequivocal identification. A method for plastic embedding is described by Spencer et al. in paragraph (d)(6) of this section.

(iv) Special stains. Based on the results of the general staining, selected sites and cellular components shall be further evaluated by the use of specific techniques. If hematoxylin and eosin screening does not provide such information, a battery of stains shall be used to assess the following components in all appropriate required samples: Neuronal body (e.g., Einarson's galloycyanin), axon (e.g., Bodian), myelin sheath (e.g., Kluver's Luxol Fast Blue), and neurofibrils (e.g., Bielchowsky). In addition, peripheral nerve fiber teasing may be used. Detailed staining methodology is available in standard histotechnological manuals such as Armed Forces Institute of Pathology (AFIP) (1968) under §798.6400(f)(1), Ralphs et al. (1973) under §798.6400(f)(5), and Chang (1979) under §798.6400(f)(2) of this chapter. The nerve fiber teasing technique is discussed in Spencer and Schaumberg (1980) under §798.6400(f)(6) of this chapter. A section of normal tissue shall be included in each staining to assure that adequate staining has occurred. Any changes shall be noted and representative photographs shall be taken. If a lesion(s) is observed, the special techniques shall be repeated in the next lower treatment group until no further lesion is detectable.

(ii) Reporting requirements. (A) The neurotoxicity/behavioral tests required under paragraph (c)(2) of this section shall be completed and the final reports submitted to EPA within 17 months of the effective date of the final rule.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals, beginning 6 months from the effective date of the final rule until submission of the applicable final report to EPA.

(3) Developmental neurotoxicity—(i) Required testing. A developmental neurotoxicity test of DGBE shall be conducted after a public program review of the Tier I data from the functional observational battery, motor activity, and neuropathology tests in paragraph (c)(2) of this section, and the reproductive tests in paragraph (c)(1) of this section, and if EPA issues a FEDERAL REGISTER notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated. The test shall be performed in rats in accordance with §795.250 of this chapter.

(ii) Reporting requirements. (A) The developmental neurotoxicity test shall be completed and the final report submitted to EPA within 15 months of EPA's notification of the test sponsor by certified letter or FEDERAL REGISTER notice under paragraph (c)(3)(i) of this section that the testing shall be initiated.

(B) Progress reports shall be submitted to EPA every 6 months, beginning 6 months after the date of notification that the testing shall be initiated, until submission of the final report to EPA.

(4) Pharmacokinetics—(i) Required testing. (A) Pharmacokinetics testing of DGBE and DGBA will be conducted in rats by the dermal route of administration in accordance with §795.225 of this chapter, except for the provisions in paragraphs (b)(1)(ii) and (3)(i) of §795.225.

(B) For the purpose of this section, the following provisions also apply:

(1) Animals. Adult male and female Sprague Dawley rats shall be used. The
rats shall be 7 to 8 weeks old and weigh 180 to 220 grams. Prior to testing, the animals shall be selected at random for each group. Animals showing signs of ill health shall not be used.

(2) Observation of animals—Urinary and fecal excretion. The quantities of 14C excreted in urine and feces by rats dosed as specified in paragraph (b)(2)(iv) of §795.225 shall be determined at 8, 24, 48, 72, and 96 hours after dosing, and if necessary, daily thereafter until at least 90 percent of the dose has been excreted or until 7 days after dosing (whichever occurs first). Four animals per sex per dose group shall be used for this purpose.

(ii) Reporting requirements. (A) The pharmacokinetics tests shall be completed and the final reports submitted to EPA within 8 months of the effective date of the final amendment.

(B) A progress report shall be submitted to EPA 6 months from the effective date of the final amendment.

(d) References. For additional background information the following references should be consulted:

(e) Effective date. (1) The effective date of the final rule is April 11, 1988, except for paragraph (c)(2)(ii)(A) of this section. The effective date for paragraph (c)(2)(ii)(A) of this section is March 1, 1990. The effective date for paragraphs (c)(4)(ii)(A) and (c)(4)(ii)(B) of this section is November 27, 1989.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§ 799.1575

shall be conducted in accordance with the following revised EPA-approved modified study plan (June 19, 1986) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "Sex-linked recessive lethal test in Drosophila melanogaster," with modifications as approved by EPA on March 9, 1987, and May 21, 1987.

(B) The testing for the mouse visible specific locus assay shall be conducted in accordance with the following revised EPA-approved modified study plan (June 19, 1986) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "Mouse specific locus test for visible markers."

(C) These revised EPA-approved modified study plans are available for inspection in the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B-607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays.

(iii) Reporting requirements. (A) The sex-linked recessive lethal test of DETA in Drosophila melanogaster shall be completed and a final report submitted to the Agency within 14 months from the effective date of the final Phase II rule. Two interim progress reports shall be submitted at 6-month intervals, the first of which is due within 6 months of the effective date of the final Phase II rule.

(B) If required pursuant to paragraph (c)(2)(i)(B) of this section, the mouse specific locus test of DETA for visible markers shall be completed and a final report submitted to the Agency within 48 months from the designated date contained in EPA's notification of the test sponsor by certified letter or FEDERAL REGISTER notice that testing should be initiated. Seven interim progress reports shall be submitted at 6-month intervals, the first of which is due within 6 months of EPA's designated date.

(2) Mutagenic effects—Chromosomal aberrations—(i) Required testing. (A) An in vitro cytogenetics test shall be conducted with DETA.

(B) An in vitro cytogenetics test shall be conducted with DETA, if the in vitro cytogenetics test conducted pursuant to paragraph (c)(2)(i)(A) of this section produces a negative result.

(C) A dominant lethal assay shall be conducted with DETA, if either the in vitro cytogenetics test conducted pursuant to paragraph (c)(2)(i)(A) of this section or the in vivo cytogenetics test conducted pursuant to paragraph (c)(2)(i)(B) of this section produces a positive result.

(D) A heritable translocation assay shall be conducted with DETA, if the dominant lethal assay conducted pursuant to paragraph (c)(2)(i)(C) of this section produces a positive result.

(ii) Test standards. (A) The testing for cytogenetic effects shall be conducted in accordance with the following revised EPA-approved modified study plan (June 19, 1986) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "In vitro cytogenetics test" and "In vivo cytogenetics test," with modifications as approved by EPA on March 9, 1987, and May 21, 1987.

(B) Other testing for cytogenetic effects shall be conducted in accordance with the following revised EPA-approved modified study plans (June 19, 1986) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "Dominant lethal assay of diethylenetriamine in CD rats," and "Heritable translocation of diethylenetriamine in CD±1 mice."

(C) These revised EPA-approved modified study plans are available for inspection in the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B-607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays.

(iii) Reporting requirements. (A) The in vitro cytogenetics testing of DETA shall be completed and a final report submitted to the Agency within 14 months of the effective date of the final Phase II rule.

(B) If required pursuant to paragraph (c)(2)(i)(B) of this section, the in vivo cytogenetics testing of DETA shall be completed and final report submitted...
Environmental Protection Agency § 799.1575

to the Agency within 14 months of the effective date of the final Phase II rule. One interim progress report shall be submitted within 12 months of the final rule's effective date.

(C) If required pursuant to paragraph (c)(2)(i)(C) of this section, the dominant lethal testing of DETA shall be completed and a final report submitted to the Agency within 20 months of the effective date of the final Phase II rule.

(D) If required pursuant to paragraph (c)(2)(i)(D) of this section, the heritable translocation testing of DETA shall be completed and a final report submitted to the Agency within 18 months of the designated date contained in EPA's notification of the test sponsor by certified letter or FEDERAL REGISTER notice that testing should be initiated. Two interim progress reports shall be submitted at 6-month intervals, the first of which is due within 6 months of EPA's designated date.

(3) Subchronic effects—(i) Required testing. A ninety-day oral subchronic toxicity test shall be conducted with DETA in at least one mammalian species.

(ii) Test standard. The testing shall be conducted in accordance with the following revised EPA-approved modified study plans (June 19, 1986) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "Ninety-Day (subchronic) dietary toxicity study with diethylenetriamine in albino rats," with modifications approved by EPA on March 9, 1987, and May 21, 1987. This revised EPA-approved modified study plans are available for inspection in the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B–607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays.

(iii) Reporting requirements. The testing shall be completed and a final report submitted to EPA within 15 months of the effective date of the final Phase II rule. Two interim progress reports shall be submitted at 6-month intervals, the first of which is due within 6 months of the effective date of the final Phase II rule.

(d) Chemical fate testing—(1) Required testing. Testing to assess N-nitrosamine formation, resulting from aerobic biological and/or chemical transformation, shall be conducted with DETA using environmental samples of lake water, sewage, and soil.

(2) Test standard. The testing shall be conducted in accordance with the following revised EPA-approved modified study plan (June 7, 1990) originally submitted by the Diethylenetriamine Producers/Importers Alliance (DPIA): "Modified Final Copy (04–17–90); Diethylenetriamine: Environmental Fate in Sewage, Lake Water and Soil". This revised EPA-approved modified study plans are available for inspection in the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B–607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays.

(3) Reporting requirements. The testing shall be completed and a final report submitted to EPA within 20 months of the effective date of the final Phase II rule. Interim progress reports shall be submitted at 6-month intervals, the first of which is due within 6 months of the effective date of the final Phase II rule.

(e) Modifications. Persons subject to this section are not subject to the requirements of §790.50(a)(2)(ii) of this chapter.

(f) Effective date. (1) The effective date of the final Phase II rule for diethylenetriamine is March 19, 1987, except for paragraphs (c)(4)(iii), (d)(2), and (d)(3) of this section. The effective date of paragraphs (c)(4)(iii), and (d)(3) of this section is March 1, 1990. The effective date for paragraph (d)(2) of this section is May 21, 1991.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§ 799.1645 2-Ethylhexanol.

(a) Identification of test substance. (1) 2-Ethylhexanol (CAS No. 104-76-7) shall be tested in accordance with this section.

(2) 2-Ethylhexanol of at least 99.0 percent purity shall be used as the test substance.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture or process, or intend to manufacture or process 2-ethylhexanol, other than as an impurity, from the effective date of this final rule to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests, and submit data or exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Health effects—(1) Oncogenic effects—(i) Required testing. (A) Oncogenicity tests shall be conducted in Fisher 344 rats and B6C3Fl mice by the oral route with 2-ethylhexanol in accordance with § 798.3300 of this chapter, except for the provisions in § 798.3300(b)(6).

(B) For the purposes of this section, the following provisions also apply to the oncogenicity tests: (i) Reference substances. No reference substance is required.

(ii) Test method—Type of cells used in the assay. Mutation induction at the HPRT locus shall be measured in Chinese hamster ovary (CHO) cells. Cells shall be checked for Mycoplasma contamination and may also be checked for karyotype stability.

(iii) Test method—Metabolic activation. Cells shall be exposed to the test substance only in the presence of a metabolic activation system for TFE and HFP. The metabolic activation system shall be administered either by microencapsulation or by gavage.

(ii) Reporting requirements. (A) The study plan for the oncogenicity test shall be submitted at least 45 days before the initiation of testing.

(B) The oncogenicity testing shall be completed and final report submitted to the Agency within 53 months of the effective date of this final rule if 2-ethylhexanol is administered by gavage or within 56 months of the effective date of this final rule if administered by microencapsulation.

(C) Interim progress reports shall be submitted to EPA at 6-month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(d) Effective date. The effective date of this final rule requiring oncogenicity testing of 2-ethylhexanol is September 16, 1987.

§ 799.1700 Fluoroalkenes.

(a) Identification of test substances. (1) Vinyl fluoride (VF; CAS No. 75-02-5), vinylidene fluoride (VDF; CAS No. 75-38-7), tetrafluoroethene (TFE; CAS No. 116-14-3), and hexafluoropropene (HFP; CAS No. 116-15-4) shall be tested in accordance with this section.

(2) VF, VDF, TFE, and HFP of at least 99 percent purity shall be used as the test substances.

(b) Persons required to submit study plans, conduct tests and submit data. All persons who manufacture VF, VDF, TFE, or HFP, other than as an impurity, from July 22, 1987 to the end of the reimbursement period shall submit letters of intent to conduct testing or exemption applications, submit study plans, conduct tests in accordance with the TSCA Good Laboratory Practice Standards (40 CFR part 792), and submit data as specified in this section, subpart A of this part, and part 790 of this chapter for single-phase rulemaking.

(c) Health effects testing—(1) Mutagenic effects—Gene mutation—(i) Required testing. (A) A detection of gene mutations in somatic cells in culture assay shall be conducted with TFE and HFP in accordance with § 798.5300 of this chapter, except for the provisions in paragraphs (c), (d)(3)(i), (4), (5) and (6) and (e).

(B) For the purposes of this section, the following provisions also apply: (i) Reference substances. No reference substance is required.

(ii) Test method—Type of cells used in the assay. Mutation induction at the HPRT locus shall be measured in Chinese hamster ovary (CHO) cells. Cells shall be checked for Mycoplasma contamination and may also be checked for karyotype stability.

(iii) Test method—Metabolic activation. Cells shall be exposed to the test substance only in the presence of a metabolic activation system for TFE and HFP. The metabolic activation system shall...
be derived from the post-mitochondrial fraction (S±9) of livers from rats pretreated with Aroclor 1254.

(iv) Test method—Control groups. Positive and negative controls shall be included in each experiment. In assays with metabolic activation, the positive control substance shall be known to require such activation. Nitrogen shall serve as the negative control and diluting gas.

(v) Test method—Test chemicals. The test should be designed to have a predetermined sensitivity and power. The number of cells, cultures, and concentrations of test substance used should reflect these defined parameters. The number of cells per culture is based on the expected background mutant frequency; a general guide is to use a number which is 10 times the inverse of this frequency. Several concentrations (usually at least four) of the test substance shall be used. These shall yield a concentration-related toxic effect. The highest concentration shall produce a low level of survival (approximately 10 percent), and the survival in the lowest concentration shall approximate that of the negative control. Cytotoxicity shall be determined after treatment with the test substance both in the presence and in the absence of the metabolic activation system.

(vi) Test performance. Cells in treatment medium with and without metabolic activation shall be exposed to varying concentrations of test gas-air mixtures by flushing treatment flasks (or chambers) with 10 volumes of test gas-air mixture at a rate of 500 mL/min or that rate which will allow complete flushing within 1 minute. In the case of a test chamber volume of 1.67 L, a flow rate of 10 L/min is appropriate. Each flask shall be closed with a cap with a rubber septum. Headspace samples shall be taken at the beginning and end of the exposure period and analyzed to determine the amount of test gas in each flask. Flasks shall be incubated in culture medium for 21 to 26 hours prior to subculturing the viability and expression of mutant phenotype. Cells treated without metabolic activation shall be washed and subcultured immediately to determine viability and to allow for expression of mutant phenotype. Appropriate subculture schedules (generally twice during the expression period) shall be used. At the end of the expression period, which shall be sufficient to allow near optimal phenotypic expression of induced mutants (generally 7 days for this cell system), cells shall be grown in medium with and without selective agent for determination of numbers of mutants and cloning efficiency, respectively. This last growth period is generally 7 days at 37 °C. Results of this test shall be confirmed in an independent experiment.

(B)(1) A sex-linked recessive lethal test in Drosophila melanogaster shall be conducted with VDF and VF in accordance with §798.5275 of this chapter except for the provisions in paragraph (d)(5). This test shall also be performed with TFE or HFP if the somatic cells in culture assay conducted pursuant to paragraph (c)(1)(i)(A) of this section produces a positive result.

(2) For the purposes of this section the following provisions also apply:

(i) Test chemicals. It is sufficient to test a single dose of the test substance. This dose shall be the maximum tolerated dose or that which produces some indication of toxicity. Exposure shall be by inhalation.

(ii) [Reserved]

(C)(1) A mouse visible specific locus assay (MVSL) shall be conducted with VF, VDF, TFE, and HFP in accordance with §798.5200 of this chapter, except for the provisions of paragraph (d)(5) of §798.5200, or a mouse biochemical-specific locus assay (MBSL) shall be conducted with VF, VDF, TFE, and HFP in accordance with §798.5195 of this chapter, except for the provisions of paragraph (d)(5) of §798.5195, for whichever of these substances produces a positive test result in the sex-linked recessive lethal test in Drosophila melanogaster conducted pursuant to paragraph (c)(3)(i)(B) of this section if, after a public program review, EPA issues a FEDERAL REGISTER notice or sends a
§ 799.1700

Certified letter to the test sponsor specifying that the testing shall be initiated.

(2) For the purposes of this section, the following provisions also apply:

(i) Test chemicals. A minimum of two dose levels shall be tested. The highest dose tested shall be the highest dose tolerated without toxic effects, provided that any temporary sterility induced due to elimination of spermatagonia is of only moderate duration, as determined by a return of males to fertility within 80 days after treatment, or shall be the highest dose attainable. Animals shall be exposed to the test substance by inhalation. Exposure shall be for 6 hours a day. Duration of exposure shall be dependent upon accumulated total dose desired for each group.

(ii) [Reserved]

(iii) Reporting requirements. (A) Mutagenic effects-gene mutation tests shall be completed and the final reports shall be submitted to EPA as follows: Somatic cells in culture assay, within 6 months after the effective date of the final rule; Drosophila sex-linked recessive lethal, within 9 months (for VF and VDF) and within 15 months (for TFE and HFP) after the effective date of the final rule; MVSL or MBSL, within 51 months after the date of EPA’s notification of the test sponsor by certified letter or FEDERAL REGISTER notice that testing shall be initiated.

(B) Progress reports shall be submitted to the Agency every 6 months beginning 6 months after the effective date of the final rule or receipt of notice that testing shall be initiated.

(C) Test chemicals. A heritable translocation assay conducted with VDF and TFE in accordance with § 798.5395 of this chapter except for the provisions in paragraphs (d)(2)(i), (4) (i), (5) and (e). This test shall also be performed with TFE or VDF if the mouse micronucleus cytogenetics test conducted pursuant to paragraph (c)(2)(i)(A) of this section produces a positive result.

(2) For the purposes of this section, the following provisions also apply:

(i) Test method—Description. For this assay, the test substance shall be administered by inhalation for 5 consecutive days for 6 hours per day.

(ii) Test method—Concurrent controls. Concurrent positive and negative (vehicle) controls shall be included in each experiment.

(iii) Test method—Test chemicals. Exposure shall be by inhalation for 5 consecutive days for 6 hours per day. Three dose levels shall be used. The highest dose shall produce signs of toxicity (e.g., slightly reduced fertility) or shall be the highest attainable.

(iv) Test performance. Individual males shall be mated sequentially to 1 or 2 virgin females. Females shall be left with the males for at least the duration of one estrus cycle or alternatively until mating has occurred as determined by the presence of sperm in the vagina or by the presence of a vaginal plug. In any event, females shall be left with the males for no longer than 7 days. The number of matings following treatment shall ensure that germ cell maturation is adequately covered. Mating shall continue for at least 6 weeks. Females shall be sacrificed in the second half of pregnancy, and uterine contents shall be examined to determine the number of implants and live and dead embryos. The examination of ovaries to determine the number of corpora lutea is left to the discretion of the investigator.

(C)(i) A heritable translocation assay shall be conducted with VF, VDF, TFE,
Environmental Protection Agency

§799.1700

or HFP in accordance with §798.5460 of this chapter except for the provisions of paragraphs (d)(3)(i), (5), and (e)(1), if the dominant lethal assay conducted for that substance pursuant to paragraph (c)(2)(i)(B) of this section produces a positive result and if, after a public program review or sends a public program review, EPA issues a Federal Register notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated.

(2) For the purposes of this section, the following provisions also apply:

(i) Test method—Animal selection. The mouse shall be used as the test species.

(ii) Test method. No vehicle is required. At least two dose levels shall be used. The highest dose level shall result in toxic effects (which shall not produce an incidence of fatalities which would preclude a meaningful evaluation) or shall be the highest dose attainable. Animals shall be exposed by inhalation.

(iii) Test performance—Treatment and mating. The animals shall be dosed with the test substance 6 hours per day, 7 days per week over a period of 35 days. After treatment, each male shall be caged with 2 untreated females for a period of 1 week. At the end of 1 week, females shall be separated from males and caged individually. When females give birth, the date of birth, litter size and sex of progeny shall be recorded. All male progeny shall be weaned and sex of progeny shall be recorded.

(iv) Reporting requirements. (A) Muta
genic effects-chromosomal aberration testing shall be completed and final results submitted to EPA after the effective date of the rule. Mouse micronucleus cytogenetics for VDF by November 22, 1988, and for TFE within 10 months after the effective date of the final rule; dominant lethal assay for VF and HFP by October 22, 1988, and for VDF and TFE within 19 months after the effective date of the rule; heritable translocation assay, within 25 months after the date of EPA’s notification of the test sponsor by certified letter or Federal Register notice that testing shall be initiated.

(B) Progress reports shall be submitted to the Agency every 6 months beginning 6 months after the effective date of the final rule or receipt of notice that testing shall be initiated.

(3) Subchronic toxicity—(i) Required Testing. (A) An inhalation subchronic toxicity test shall be conducted with HFP in accordance with the TSCA Test Guideline specified in §798.2450 of this chapter except for the provisions in paragraphs (d)(5), (10)(v), and (e)(3)(iv)(D).

(B) For the purpose of this section the following provisions also apply:

(1) Test procedures—Exposure conditions. The animals shall be exposed to the test substance 6 hours per day, 5 days per week for 90 days.

(2) Test procedures—Observation of animals. Animals shall be weighted weekly, and food and water consumption shall also be measured weekly.

(3) Test report—Individual animal data. Food and water consumption data shall be reported.

(ii) Reporting requirements. (A) The required subchronic toxicity test shall be completed and final results submitted to the Agency within 18 months after the effective date of the final rule.

(B) Progress reports shall be submitted to the Agency every 6 months beginning 6 months after the effective date of the final rule.

(4) Oncogenicity—(i) Required testing. (A) (1) Oncogenicity tests shall be conducted in both rats and mice by inhalation with VF in accordance with §798.3300 of this chapter, except for the provisions in paragraph (b)(7)(vi) of §798.3300.

(ii) For the purposes of this section, the following provisions also apply:

(i) Test procedures—observations of animals. All mice of test groups in which survival is approximately 25 percent of mice at risk (approximately 25 percent of 70, or approximately 18 mice) will be sacrificed near the time that 25 percent survival is achieved. All mice surviving the 18-month test period will be sacrificed and necropsied. The order of sacrifice for mice at all pathological evaluations will be random among all exposure groups within a sex. Moribund animals should be removed and sacrificed when noticed.

(ii) All rats of test groups in which survival is approximately 25 percent of rats at risk (approximately 25 percent of 60, or approximately 15 rats) will be
sacrificed near the time that 25 percent survival is achieved. All rats surviving the 24-month test period will be sacrificed and necropsied. The order of sacrifice for rats at all pathological evaluations will be random among all exposure groups within a sex. Moribund animals should be removed and sacrificed when noticed.

(B) Oncogenicity testing shall be conducted in mice with VDF in accordance with § 798.3300 of this chapter.

(C) [Reserved]

(D) Oncogenicity tests shall also be conducted by inhalation in both rats and mice with TFE in accordance with § 798.3300 of this chapter if TFE yields a positive test result in any one of the following mutagenicity tests: The in vitro cytogenetics assay conducted pursuant to paragraph (c)(2)(i)(A) of this section, the mouse micronuclear cytogenetics assay conducted pursuant to paragraph (c)(2)(i)(B) of this section, the mammalian cells in culture assay conducted pursuant to paragraph (c)(1)(i)(A) of this section or the sex-linked recessive lethal assay in Drosophila melanogaster conducted pursuant to paragraph (c)(1)(i)(B) of this section if, after a public program review, EPA issues a FEDERAL REGISTER notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated. Criteria for positive test results are established in 40 CFR 798.5375, 798.5385, 798.5300 and 798.5275 of this chapter, respectively.

(ii) Reporting requirements. (A) The oncogenicity testing for VDF shall be completed and the final results submitted to the Agency by March 23, 1992. The oncogenicity testing for VF shall be completed and the final results submitted to the Agency by July 22, 1992. For TFE and HFP, the oncogenicity testing shall be completed and the final results submitted to the Agency within 56 months after the date of EPA's notification of the test sponsor by a certified letter or FEDERAL REGISTER notice that testing is to begin for TFE and HFP.

(d) Effective date. (1) The effective date of the final rule is July 22, 1987, except for paragraphs (c)(1)(i)(C)(1) and (c)(1)(i)(B) of this section. The effective date of paragraphs (c)(1)(i)(C)(1) and (c)(1)(i)(B) of this section is May 21, 1990. The effective date of paragraphs (c)(4)(i)(A)(1) and (c)(4)(i)(B) of this section is May 21, 1991. The effective date for paragraphs (c)(4)(i)(A)(2)(ii), (c)(4)(i)(B) and (c)(4)(i)(D) of this section is June 12, 1992. The effective date of paragraph (c)(4)(ii)(A) of this section is May 28, 1993.

(ii) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§ 799.2155 Commercial hexane.

(a) Identification of test substance. (1) “Commercial hexane,” for purposes of this section, is a product obtained from crude oil, natural gas liquids, or petroleum refinery processing in accordance with the American Society for Testing and Materials Designation D 1836-83 (ASTM D 1836), consists primarily of six-carbon alkanes or cycloalkanes, and contains at least 40 liquid volume percent n-hexane (CAS No. 110-54-3) and at least 5 liquid volume percent methylcyclopentane (MCP; CAS No. 96-37-7). ASTM D 1836, formally entitled “Standard Specification for Commercial Hexanes,” is published in 1986 Annual Book of ASTM Standards: Petroleum Products and Lubricants, ASTM D 1836-83, pp. 966-967, 1986, is incorporated by reference, and is available for public inspection at the Office of the Federal Register, 800 North Capitol Street NW., suite 700, Washington, DC. This incorporation by reference was approved by the Director of the Office of the Federal Register in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. This material is incorporated as it exists on the date of approval, and a notice of any change in this material will be
Environmental Protection Agency

§ 799.2155

published in the FEDERAL REGISTER. Copies of the incorporated material may be obtained from the Non-Confidential Information Center (NCIC) (7407), Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Room B–607 NEM, 401 M St., SW., Washington, DC 20460, between the hours of 12 p.m. and 4 p.m. weekdays excluding legal holidays.

(2) The commercial hexane test substance, for purposes of this section, is a product which conforms to the specifications of ASTM D1836 and contains at least 40 liquid volume percent but no more than 55 liquid volume percent n-hexane and no less than 10 liquid volume percent MCP.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import) or process or intend to manufacture or process commercial hexane, as defined in paragraph (a)(1) of this section and other than as an impurity, from the effective date of the final rule to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests in accordance with part 792 of this chapter, and submit data, or submit exemption applications, as specified in this section, subpart A of this part, and part 790 of this chapter for single-phase rulemaking. Persons who manufacture commercial hexane as a byproduct are covered by the requirements of this section. Notwithstanding § 790.50(a)(1) of this chapter, persons who notify EPA of their intent to conduct neurotoxicity testing in compliance with paragraph (c)(7) of this section may submit study plans for those tests less than 45 days before beginning testing provided that EPA receives the study plans before this testing begins.

(c) Health effects testing—(1) Subchronic inhalation toxicity—(i) Required testing. (A) A subchronic inhalation toxicity test shall be conducted with commercial hexane in accordance with § 798.2450 of this chapter except for the provisions in paragraphs (d)(4)(ii) and (5) of § 798.2450. (B) For the purposes of this section, the following provisions also apply:

(1) High dose level. The high dose level should elicit signs of minimal toxicity without substantially altering the normal life span and should not exceed the lower explosive limit of commercial hexane.

(ii) Reporting requirements. (A) The subchronic inhalation toxicity test shall be completed and the final report submitted to EPA within 15 months of the effective date of the final rule. (B) Interim progress reports shall be submitted to EPA for the subchronic inhalation toxicity test at 6-month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(2) Oncogenicity—(i) Required testing. (A) An oncogenicity test shall be conducted with commercial hexane in accordance with § 798.3300 of this chapter except for the provisions in paragraphs (b)(3)(ii) and (6) of § 798.3300. (B) For the purposes of this section, the following provisions also apply:

(1) High dose level. The high dose level should elicit signs of minimal toxicity without substantially altering the normal life span and should not exceed the lower explosive limit of commercial hexane.

(ii) Reporting requirements. (A) The oncogenicity test shall be completed and the final report submitted to EPA within 53 months of the effective date of the final rule. The mouse portion of the oncogenicity study shall be submitted by June 5, 1993. (B) Interim progress reports shall be submitted to EPA for the oncogenicity test at 6-month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(3) Reproduction and fertility effects—(i) Required testing. (A) A reproduction and fertility effects test shall be conducted with commercial hexane in accordance with § 798.4700 of this chapter except for the provisions in paragraphs (c)(3)(ii) and (5) of § 798.4700. (B) For the purposes of this section, the following provisions also apply:

(1) High dose level. The highest dose level should induce toxicity but not high levels of mortality in the parental (P) animals. In addition, the highest dose level should not exceed the lower explosive limit of commercial hexane.

(2) Administration of test substance. Animals shall be exposed to commercial hexane by inhalation.

(ii) Reporting requirements. (A) The reproduction and fertility effects test shall be completed and the final report submitted to EPA within 29 months of the effective date of the final rule.

(B) Interim progress reports shall be submitted to EPA for the reproduction and fertility effects test at 6-month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(4) Inhalation developmental toxicity—

(i) Required testing. (A) An inhalation developmental toxicity test shall be conducted with commercial hexane in accordance with § 795.4350 of this chapter except for the provisions in paragraph (e)(3)(iv) of § 798.4350.

(B) For the purposes of this section, the following provisions also apply:

(1) High dose level. Unless limited by the physical/chemical nature or biological properties of the test substance, the highest concentration level shall induce some overt maternal toxicity such as reduced body weight or body weight gain, but not more than 10 percent maternal deaths. In addition, the highest dose level should not exceed the lower explosive limit of commercial hexane.

(2) [Reserved]

(ii) Reporting requirements. (A) The inhalation developmental toxicity test shall be completed and the final report submitted to EPA within 12 months of the effective date of the final rule.

(B) Interim progress reports shall be submitted to EPA for the inhalation developmental toxicity test at 6-month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(5) Mutagenic effects—gene mutations—

(i) Required testing. (A)(1) A Salmonella typhimurium reverse mutation assay shall be conducted with commercial hexane in accordance with § 798.5300 of this chapter except for the provisions in paragraphs (d)(4) and (e) of § 798.5265.

(2) For the purposes of this section, the following provisions also apply:

(i) Metabolic activation. Bacteria shall be exposed to commercial hexane both in the presence and absence of an appropriate metabolic activation system.

(ii) Test performance. The assay shall be performed using the desiccator method described as follows: The agar overlay plates shall be placed uncovered in a 9-liter desiccator. A volume of the liquid test substance shall be added to the glass Petri dish suspended beneath the porcelain shelf of the desiccator. The highest exposure concentration should not result in a vapor concentration which exceeds the lower explosive limit of commercial hexane. A magnetic stirring bar to serve as a fan to assure rapid and even distribution of the vapor shall be placed on the bottom of the inside of the desiccator. The desiccator shall be placed on a magnetic stirrer within a 37° C room or chamber for 7 to 10 hours. The plates shall then be removed, their lids replaced, followed by incubation for an additional 40 hours at 37° C before counting. An appropriate selective medium with an adequate overlay agar shall be used. All plating should be done in at least triplicate.

(B)(1) A gene mutation test in mammalian cells shall be conducted with commercial hexane in accordance with § 798.5300 of this chapter except for the provisions in paragraphs (d)(3)(ii) and (4) of § 798.5300 if the results from the Salmonella typhimurium test conducted pursuant to paragraph (c)(5)(ii)(A) of this section are negative.

(2) For the purposes of this section, the following provisions also apply:

(i) Cell growth and maintenance. Appropriate culture media and incubation conditions (culture vessels, CO₂ concentrations, temperature, and humidity) shall be used. The cell culture shall be directly dosed by pipetting liquid commercial hexane mixed with liquid DMSO into the culture medium.

(C)(1) A sex-linked recessive lethal test in Drosophila melanogaster shall be conducted with commercial hexane in
accordance with §798.5275 of this chapter except for the provisions in paragraphs (d)(5) (ii) and (iii) of §798.5275, unless the results of both the Salmonella typhimurium test conducted pursuant to paragraph (c)(5)(i)(A) of this section and the mammalian cells in the culture gene mutation test conducted pursuant to paragraph (c)(5)(i)(B) of this section, if required, are negative.

(2) For the purposes of this section, the following provisions also apply:

(i) Dose levels. For the initial assessment of mutagenicity, it is sufficient to test a single dose of the test substance for screening purposes. This dose should be the maximum tolerated dose, or that which produces some indication of toxicity or shall be the highest dose attainable and should not exceed the lower explosive limit of commercial hexane. For dose-response purposes, at least three additional dose levels should be used.

(ii) Route of administration. The route of administration shall be by exposure to commercial hexane vapors.

(D)(1) Unless the results of the sex-linked recessive lethal test in Drosophila melanogaster conducted with commercial hexane pursuant to paragraph (c)(5)(ii)(C) of this section are negative, EPA shall conduct a public program review of all of the mutagenicity data available for this substance. If, after this review, EPA decides that testing of commercial hexane for causing heritable gene mutations in mammals is necessary, it shall notify the test sponsor by certified letter or Federal Register notice that testing shall be initiated in either the mouse visible specific locus test or the mouse biochemical specific locus test. The mouse visible specific locus test, if conducted, shall be performed for commercial hexane in accordance with §798.5200 of this chapter except for the provisions in paragraphs (d)(5)(ii) and (d)(5)(iii) of §798.5200. The mouse biochemical specific locus test, if conducted, shall be performed for commercial hexane in accordance with §798.5195 of this chapter except for the provisions in paragraphs (d)(5)(ii) and (d)(5)(iii) of §798.5195.

(2) For the purposes of this section, the following provisions also apply:

(i) Dose levels. A minimum of two dose levels shall be tested. The highest dose tested shall be the highest dose tolerated without toxic effects, provided that any temporary sterility induced due to elimination of spermatogonia is of only moderate duration, as determined by a return of males to fertility within 80 days of treatment, or shall be the highest dose attainable below the lower explosive limit concentration of commercial hexane. Exposure shall be for 6 hours a day. Duration of exposure shall be dependent upon the accumulated total dose desired for each group.

(ii) Route of administration. Animals shall be exposed to commercial hexane by inhalation.

(ii) Reporting requirements. (A) The gene mutation tests shall be completed and final reports submitted to EPA as follows:

(1) The Salmonella typhimurium reverse mutation assay within 8 months of the effective date of the final rule.

(2) The gene mutation in mammalian cells assay within 17 months of the effective date of the final rule.

(3) The sex-linked recessive lethal test in Drosophila melanogaster within 24 months of the effective date of the final rule.

(4) The mouse visible specific locus test or the mouse biochemical specific locus test shall be completed and a final report shall be submitted to EPA within 51 months of the date on which the test sponsor is notified by EPA by certified letter or Federal Register notice that testing shall be initiated.

(B) Interim progress reports for each test shall be submitted to EPA for the gene mutation in mammalian cells assay and Drosophila sex-linked recessive lethal test at 6-month intervals beginning 6 months after the effective date of the final rule, until the applicable final report is submitted to EPA.

(C) Interim progress reports for either the mouse visible specific locus test or the mouse biochemical specific locus test shall be submitted to EPA at 6-month intervals, beginning 6 months after EPA's notification of the test sponsor that testing should be initiated, until the applicable final report is submitted to EPA.

(6) Mutagenic effects—chromosomal aberrations—(i) Required testing. (A)(1) An in vitro cytogenetics test shall be conducted with commercial hexane in accordance with §798.5375 of this chapter except for the provisions in paragraph (e)(3) of §798.5375.

(2) For the purposes of this section, the following provisions also apply:

(i) Treatment with test substance. The test substance shall be added in liquid form mixed with DMSO to the treatment vessels.

(ii) [Reserved]

(B)(1) An in vivo cytogenetics test shall be conducted with commercial hexane in accordance with §798.5385 of this chapter except for the provisions in paragraphs (d)(5) (ii), (iii) and (iv) of §798.5385, if the in vitro test conducted pursuant to paragraph (c)(6)(i)(A) of this section is negative.

(2) For the purposes of this section, the following provisions also apply:

(i) Dose levels. For an initial assessment, one dose level of the test substance may be used, the dose being the maximum tolerated dose (to a maximum of 5,000 mg/kg), or that producing some indication of cytotoxicity (e.g., partial inhibition of mitosis), or shall be the highest dose attainable (to a maximum of 5,000 mg/kg) and should not exceed the lower explosive limit of commercial hexane. Additional dose levels may be used. For determination of dose-response, at least three dose levels should be used.

(ii) Route of administration. Animals shall be exposed to commercial hexane by inhalation.

(iii) Treatment schedule. The duration of exposure shall be for 6 hours per day for 5 consecutive days.

(D)(1) A heritable translocation test shall be conducted with commercial hexane in accordance with §798.5460 of this chapter except for the provisions in paragraphs (d)(5) (ii) and (iii) of §798.5460, if the results of the dominant lethal assay conducted pursuant to paragraph (c)(6)(i)(C) of this section are positive and if, after a public program review, EPA issues a Federal Register notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated.

(2) For the purposes of this section, the following provisions also apply:

(i) Dose levels. At least two dose levels shall be used. The highest dose level shall result in toxic effects (which shall not produce an incidence of fatalities which would prevent a meaningful evaluation) or shall be the highest dose attainable or 5 g/kg body weight and should not exceed the lower explosive limit of commercial hexane.

(ii) Route of administration. Animals shall be exposed to commercial hexane by inhalation.

(iii) Reporting requirements. (A) The chromosomal aberration tests shall be completed and the final reports submitted to EPA as follows:

(1) The in vitro cytogenetics test within 15 months of the effective date of the final rule.

(2) The in vivo cytogenetics test within 19 months of the effective date of the final rule.

(3) The dominant lethal assay within 28 months of the effective date of the final rule.

(4) The heritable translocation test within 25 months of the date of EPA's
Environmental Protection Agency

§799.2155

notification of the test sponsor by cert-
tified letter or Federal Register no-
tice that testing shall be initiated.

(B) Interim progress reports for each test shall be submitted to EPA for the in vivo cytogenetics and the dominant lethal assays at 6-month intervals beginning 6 months after the effective date of the final rule, until the applicable final report is submitted to EPA.

(C) Interim progress reports shall be submitted to EPA for the heritable translocation assay at 6-month intervals beginning 6 months after the date of EPA's notification of the test sponsor that testing shall be initiated, until the final report is submitted to EPA.

(7) Neutrotoxicity—(i) Required testing.

(A) Interim progress reports shall be submitted to EPA for the heritable translocation assay at 6-month intervals beginning 6 months after the date of EPA's notification of the test sponsor that testing shall be initiated, until the final report is submitted to EPA.

(B) Interim progress reports for each test shall be submitted to EPA for the in vivo cytogenetics and the dominant lethal assays at 6-month intervals beginning 6 months after the effective date of the final rule, until the applicable final report is submitted to EPA.

(C) Interim progress reports shall be submitted to EPA for the heritable translocation assay at 6-month intervals beginning 6 months after the date of EPA's notification of the test sponsor that testing shall be initiated, until the final report is submitted to EPA.

(8) A motor activity test shall be conducted with commercial hexane in accordance with §798.6200 of this chapter except for the provisions in paragraphs (d)(4)(i), (5), and (6) of §798.6200.

(2) For the purposes of this section, the following provisions also apply:

(i) High dose level. The highest dose shall produce clear effects on motor activity of life-threatening toxicity. In addition, the highest dose should not exceed the lower explosive limit of commercial hexane.

(ii) Duration and frequency of exposure. Animals shall be dosed for 6 hours/day, 5 days/week for 90 days.

(iii) Route of exposure. Animals shall be exposed to commercial hexane by inhalation.

(B)(1) A neuropathology test shall be conducted with commercial hexane in accordance with §798.6400 of this chapter except for the provisions in paragraphs (d)(4)(i), (5), and (6) of §798.6400.

(2) For the purposes of this section, the following provisions also apply:

(i) High dose level. The highest dose shall produce clear behavioral effects or life-threatening toxicity. In addition, the highest dose should not exceed the lower explosive limit of commercial hexane.

(ii) Duration and frequency of exposure. Animals shall be dosed for 6 hours/day, 5 days/week for 90 days.

(iii) Route of exposure. Animals shall be exposed to commercial hexane by inhalation.

(B) Interim progress reports for each test shall be submitted to EPA for the schedule-controlled operant behavior, functional observation battery, motor activity, and neuropathology tests at 6-month intervals beginning 6 months after the effective date of the applicable final rule, until the applicable final report is submitted to EPA.

(B) Pharmacokinetics—(i) Required testing.

(A) Pharmacokinetics testing shall be conducted in rats in accordance
Isopropanol.

(a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import or byproduct manufacture) or intend to manufacture or process isopropanol, from the effective date of this rule to the end of the reimbursement period, shall submit letters of intent to conduct testing, submit study plans, conduct tests, and submit data or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Health effects testing—(1) Subchronic inhalation toxicity—(i) Required testing. A subchronic inhalation toxicity test shall be conducted with isopropanol in accordance with §798.2450 of this chapter.

(ii) Reporting requirements. (A) The subchronic inhalation toxicity test shall be completed and the final report submitted to EPA within 15 months of the date specified in paragraph (d)(1) of this section, until the final report is submitted to EPA.

(d) Effective date. (1) The effective date of this final rule is November 17, 1988, except for the provisions of paragraphs (c)(2)(ii)(A), (c)(5)(i)(D), (c)(5)(ii)(A)(4), (c)(5)(ii)(C), (c)(8)(i) and (c)(8)(ii)(A) of this section. The effective date for paragraphs (c)(5)(i)(D) and (c)(5)(ii)(C) of this section is May 21, 1990. The effective date for paragraphs (c)(8)(i) and (c)(8)(ii)(A) of this section is June 12, 1992. The effective date of paragraph (c)(2)(ii)(A) is September 8, 1994.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§799.2325 Isopropanol.

(a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import or byproduct manufacture) or intend to manufacture or process isopropanol, from the effective date of this rule to the end of the reimbursement period, shall submit letters of intent to conduct testing, submit study plans, conduct tests, and submit data or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Health effects testing—(1) Subchronic inhalation toxicity—(i) Required testing. A subchronic inhalation toxicity test shall be conducted with isopropanol in accordance with §798.2450 of this chapter.

(ii) Reporting requirements. (A) The subchronic inhalation toxicity test shall be completed and the final report submitted to EPA within 15 months of the date specified in paragraph (d)(1) of this section, until the final report is submitted to EPA.

(d) Effective date. (1) The effective date of this final rule is November 17, 1988, except for the provisions of paragraphs (c)(2)(ii)(A), (c)(5)(i)(D), (c)(5)(ii)(A)(4), (c)(5)(ii)(C), (c)(8)(i) and (c)(8)(ii)(A) of this section. The effective date for paragraphs (c)(5)(i)(D) and (c)(5)(ii)(C) of this section is May 21, 1990. The effective date for paragraphs (c)(8)(i) and (c)(8)(ii)(A) of this section is June 12, 1992. The effective date of paragraph (c)(2)(ii)(A) is September 8, 1994.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

Environmental Protection Agency § 799.2325

(3) Developmental toxicity—(i) Required testing. A developmental toxicity test shall be conducted in two mammalian species by gavage with isopropanol in accordance with § 798.4900 of this chapter.

(ii) Reporting requirements. (A) The developmental toxicity test shall be completed and the final report submitted to EPA within 12 months of the date specified in paragraph (d)(1) of this section.

(B) A progress report shall be submitted 6 months after the date specified in paragraph (d)(1) of this section.

(4) Mutagenic effects—gene mutations—

(i) Required testing. (A) A gene mutation test in mammalian cells shall be conducted with isopropanol in accordance with § 798.5300 of this chapter.

(B)(1) A sex-linked recessive lethal test in Drosophila melanogaster shall be conducted with isopropanol in accordance with § 798.5275 of this chapter, except for the provisions in paragraphs (d)(5)(ii) and (iii) of § 798.5275, unless the results of the mammalian cells in the culture gene mutation test conducted pursuant to paragraph (c)(5)(i)(A) of this section are negative.

(B)(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. The route of administration shall be by exposure to isopropanol vapors or by injection of isopropanol.

(ii) [Reserved]

(C)(1) The mouse visible specific locus (MVSL) test shall be conducted with isopropanol by inhalation in accordance with § 798.5200, except for the provisions in paragraphs (d)(5)(ii) and (iii) of § 798.5200, if the results of the sex-linked recessive lethal test conducted pursuant to paragraph (c)(4)(ii)(B) of this section are positive and if, after a public program review, EPA issues a FEDERAL REGISTER notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated.

(2) For the purpose of this section, the following provisions also apply:

(i) Dose levels and duration of exposure. A minimum of 2 dose levels shall be tested. The duration of exposure shall be for 6 hours per day. Duration of exposure shall be dependent upon accumulated total dose desired for each group.

(ii) Route of administration. Animals shall be exposed to isopropanol by inhalation.

(ii) Reporting requirements. (A) The gene mutation tests shall be completed and final report submitted to EPA as follows:

(1) The gene mutation in mammalian cells assay within 6 months of the date specified in paragraph (d)(1) of this section.

(2) The sex-linked recessive-lethal test in Drosophila melanogaster within 18 months of the date specified in paragraph (d)(1) of this section.

(3) The mouse visible specific-locus test within 51 months of the date of EPA’s notification of the test sponsor by certified letter or FEDERAL REGISTER notice under paragraph (c)(4)(ii)(C) of this section that testing shall be initiated.

(B) Progress reports shall be submitted to EPA for the Drosophila sex-linked recessive lethal test at 6-month intervals beginning 6 months after the date specified in paragraph (d)(1) of this section until the submission of the final report.

(C) Progress reports shall be submitted to EPA for the mouse visible specific locus test at 6-month intervals beginning 6 months after the date of EPA’s notification of the test sponsor that testing shall be initiated until submission of the final report.

(5) Mutagenic effects—chromosomal aberrations—

(i) Required testing. (A)(1) The micronucleus test shall be conducted with isopropanol in accordance with § 798.5395 of this chapter.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed to isopropanol by either inhalation or oral gavage or inperitoneally (IP).

(ii) Duration of exposure. For inhalation, the duration of exposure shall be for 6 hours per day for 5 consecutive days with one sacrifice time or for 6 hours for 1 day with three sacrifice times.

(B)(1) A dominant lethal assay shall be conducted with isopropanol in accordance with § 798.5450 of this chapter, except for the provisions in paragraphs
(d)(5)(ii) and (iii) of §798.5450 unless the micronucleus test conducted pursuant to paragraphs (c)(5)(i)(A) of this section is negative.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed to isopropanol by inhalation.

(ii) Duration of exposure. The duration of exposure shall be for 6 hours per day for 5 consecutive days.

(C)(1) The mouse visible specific locus test (MVSL) shall be conducted with isopropanol by inhalation in accordance with §798.5200 of this chapter, except for the provisions in paragraph (d)(5)(ii) and (d)(5)(iii) of §798.5450, or a mouse biochemical specific locus test (MBSL) shall be conducted with isopropanol by inhalation in accordance with §798.5195 of this chapter, except for the provisions in paragraphs (d)(5)(ii) and (d)(5)(iii) of §798.5195, if the results of the sex-linked recessive lethal test conducted pursuant to paragraph (c)(4)(i)(B) of this section are positive and if, after a public program review, EPA issues a Federal Register notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed to isopropanol by inhalation.

(ii) Reporting requirements. (A) The chromosomal aberration tests shall be completed and the final reports submitted to EPA as follows:

1. The micronucleus test within 15 months of the date specified in paragraph (d)(1) of this section.

2. The dominant lethal assay within 27 months of the date specified in paragraph (d)(1) of this section.

3. The MVSL or MBSL test within 51 months of the date of EPA’s notification of the test sponsor by certified letter or Federal Register notice under paragraph (c)(4)(i)(C) of this section that testing shall be initiated.

(B) Progress reports shall be submitted to EPA for the the micronucleus and the dominant lethal assays at 6-month intervals beginning 6 months after the date specified in paragraph (d)(1) of this section until submission of the final report.

(C) Progress reports shall be submitted to EPA for the heritable translocation assay at 6-month intervals beginning 6 months after the date of EPA’s notification of the test sponsor that testing shall be initiated until submission of the final report.

(D) The developmental neurotoxicity test shall be conducted with isopropanol in accordance with §798.250 of this chapter, except for paragraph (c)(1)(iv).
(1) For purposes of this section, the following provisions also apply:

(i) Numbers of animals. The objective is for a sufficient number of pregnant rats to be exposed to ensure that an adequate number of offspring are produced for neurotoxicity evaluation. At least 24 litters shall be used at each dose level.

(ii) Reporting requirements. (A) The acute functional observation battery and motor activity tests shall be completed and the final report submitted to EPA within 15 months of the date specified in paragraph (d)(1) of this section. The subchronic functional observation battery, motor activity, and neuropathology tests shall be completed and the final reports submitted to EPA within 18 months of the date specified in paragraph (d)(1) of this section. The developmental neurotoxicity test shall be completed and the final report submitted to EPA within 21 months of the date specified in paragraph (d)(1) of this section.

(B) Progress reports shall be submitted to EPA for the functional observation battery, motor activity, and neuropathology tests at 6-month intervals beginning 6 months after the date specified in paragraph (d)(1) of this section until submission of the applicable final report.

(2) Pharmacokinetics studies—(i) Required testing. An oral and inhalation pharmacokinetics test shall be conducted with isopropanol in accordance with §795.231 of this chapter.

(ii) Reporting requirements. (A) The pharmacokinetic test shall be completed and the final report submitted to EPA within 15 months of the date specified in paragraph (d)(1) of this section.

(B) Progress reports shall be submitted to EPA for the pharmacokinetics test at 6-month intervals beginning 6 months after the date specified in paragraph (d)(1) of this section until submission of the final report.

(3) Oncogenicity—(i) Required testing. An oncogenicity test shall be conducted by inhalation with isopropanol in accordance with §798.3300 of this chapter.

(ii) Reporting requirements. (A) The oncogenicity test shall be completed and the final report submitted to EPA by July 5, 1994.

(B) Progress reports shall be submitted at 6-month intervals beginning 6 months after the date specified in paragraph (d)(1) of this section until submission of the final report.

(4) Effective date. (1) The effective date of this final rule is December 4, 1989, except for the provisions of paragraphs (c)(5)(i)(C)(1), (c)(5)(i)(A)(3), (c)(6)(i)(D), and (c)(8)(ii)(A), of this section. The effective date for paragraphs (c)(5)(i)(C)(1), and (c)(5)(iii)(A)(3) of this section is May 21, 1990. The effective date for paragraphs (c)(6)(i)(D) of this section is May 21, 1991. The effective date of paragraph (c)(8)(ii)(A) is September 29, 1995.

(2) The guidelines and other test methods cited in this rule are references as they exist on the effective date of the final rule.

§ 799.2475 2-Mercaptobenzothiazole.

(a) Identification of test substance. (1) 2-Mercaptobenzothiazole (MBT, CAS No. 149-30-4) shall be tested in accordance with this section.

(2) MBT of at least 97.6 percent purity (plus or minus 1.5 percent) shall be used as the test substance.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including byproduct manufacture, and import of MBT and MBT-containing articles) shall be tested in accordance with this section.

(c) Chemical fate—(1) Aerobic aquatic biodegradation—(i) Required testing. Aerobic aquatic biodegradation testing shall be conducted with MBT in accordance with §796.3100 of this chapter.
(ii) Reporting requirements. (A) The aerobic aquatic biodegradation test shall be completed and the final report submitted to EPA within 12 months of the effective date of the final rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final rule.

(2) Indirect photolysis-screening level test—(i) Required testing. Indirect photolysis testing shall be conducted with MBT in accordance with §795.70 of this chapter.

(ii) Reporting requirements. (A) The indirect photolysis test shall be completed and the final report submitted to EPA within 12 months of the effective date of the final rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final rule.

(3) Chemical mobility—(i) Required testing. Chemical mobility testing shall be conducted with MBT in accordance with §796.2750 of this chapter.

(ii) Reporting requirements. (A) The chemical mobility test shall be completed and the final report submitted to EPA within 12 months of the effective date of the final rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of this final rule.

(d) Environmental effects—(1) Fish chronic toxicity—(i) Required testing. (A) Chronic toxicity testing of MBT shall be conducted using rainbow trout (Salmo gairdneri) according to §797.1600 of this chapter, except for paragraphs (c)(4)(iv)(A), (c)(4)(x)(E) and (c)(4)(x)(F), (c)(6)(iv)(A), (d)(2)(vii)(A)(2), and (d)(3)(iv) of §797.1600.

(B) For the purpose of this section, the following provisions also apply:

(1) The first feeding for the fathead and sheepshead minnow fry shall begin shortly after transfer of the fry from the embryo cups to the test chambers. Silversides are fed the first day after hatch. Trout species initiate feeding at swim-up. The trout fry shall be fed trout starter mash or live newly-hatched brine shrimp nauplii (Artemia salina) three times a day ad libitum, with excess food siphoned off daily. The minnow fry shall be fed live newly-hatched brine shrimp nauplii (Artemia salina) at least three times a day.

(2) All physical abnormalities (e.g., stunted bodies, scoliosis, etc.) shall be photographed and preserved.

(3) At termination, all surviving fish shall be measured for growth. Total length measurements should be used except in cases where fin erosion occurs, then the use of standard length measurements shall be permitted. Standard length measurements should be made directly with a caliper, but may be measured photographically. Measurements shall be made to the nearest millimeter (0.1 mm is desirable). Weight measurements shall also be made for each fish alive at termination (wet, blotted dry, and to the nearest 0.01 g for the minnows and 0.1 g for the trout). If the fish exposed to the toxicant appear to be edematous compared to control fish, determination of dry, rather than wet, weight is recommended.

(4)(i) Test substance measurement. Prior to addition of the test substance to the dilution water, it is recommended that the test substance stock solution be analyzed to verify the concentration. After addition of the test substance, the concentration of test substance shall be measured in the test substance delivery chamber prior to beginning, and during, the test. The concentration of test substance should also be measured at the beginning of the test in each test concentration (including both replicates) and control(s), and at least once a week thereafter. Equal aliquots of test solution may be removed from each replicate chamber and pooled for analysis. If a malfunction in the delivery system is discovered, water samples shall be taken from the affected test chambers immediately and analyzed.

(ii) pH. It is recommended that a pH of 7 be maintained in the test chambers.

(iii) Reporting. An analysis of the stability of the stock solution for the duration of the test shall be reported.

(5) [Reserved]

(6) For brook and rainbow trout, a 16-hour light and 8-hour dark photoperiod shall be provided.

(ii) Reporting requirements. (A) The fish chronic toxicity test shall be completed and the final report submitted
to EPA within 12 months of the effective date of the final rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final rule.

(2) Daphnid chronic toxicity—(i) Required testing. (A) Daphnid chronic toxicity testing shall be conducted with MBT using *Daphnia magna* according to §797.1330 of this chapter.

(B) For the purposes of this section, the following provisions also apply:

(I) Test substance measurement. Test substance concentration shall be measured in the test substance delivery chamber prior to beginning, and during, the test.

(II) pH. It is recommended that a pH of 7 be maintained in the test chambers.

(III) Reporting. An analysis of the stability of the stock solution for the duration of the test shall be reported and data comparing trout starter mash with *A. salina* for supporting trout growth should be submitted with the final report.

(ii) Reporting requirements. (A) The daphnid chronic toxicity test shall be completed and the final report submitted to EPA within 12 months of the effective date of the final rule.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final rule.

(2) Reproductive toxicity—(i) Required testing. Reproductive toxicity testing shall be conducted with MBT in accordance with §797.1400 of this chapter, using the oral route of administration.

(i) Reporting requirements. (A) The reproductive toxicity test shall be completed and the final report submitted to EPA within 29 months of the effective date of the final rule.

(B) Progress reports shall be submitted to EPA at 6-month intervals beginning 6 months after the effective date of the final rule until submission of the final report.

(3) Neurotoxicity—(i) Required testing. (A) An acute and subchronic functional observation battery shall be conducted with MBT in accordance with §798.6050 of this chapter except for the provisions in paragraphs (d)(5) and (6) of §798.6050.

(ii) Reporting requirements. (A) The acute and subchronic functional observation battery test shall be conducted with MBT in accordance with §798.6050 of this chapter except for the provisions in paragraphs (d)(5) and (6) of §798.6050.

(ii) Neurotoxicity—(i) Reporting requirements. (A) The acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter.

(B) An acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter except for the provisions in paragraphs (d)(5) and (6) of §798.6200.

(iii) Reporting requirements. (A) The acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter except for the provisions in paragraphs (d)(5) and (6) of §798.6200.

(i) Reporting requirements. (A) The acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter.

(ii) Reporting requirements. (A) The acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter.

(i) Duration and frequency of exposure. For acute study, animals shall be administered MBT over a period not to exceed 24 hours. For subchronic study, animals shall be dosed daily for at least 90 days.

(ii) Route of exposure. Animals shall be exposed to MBT orally.

(B) An acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter.

(ii) Reporting requirements. (A) The acute and subchronic motor activity test shall be conducted with MBT in accordance with §798.6200 of this chapter.

(ii) Route of exposure. Animals shall be exposed to MBT orally.

(C) An acute and subchronic neuropathology test shall be conducted with MBT in accordance with §798.6400 of this chapter.

(ii) Reporting requirements. (A) The chronic neuropathology test shall be conducted with MBT in accordance with §798.6400 of this chapter.

(ii) Route of exposure. Animals shall be exposed to MBT orally.

(i) Duration and frequency of exposure. For acute study, animals shall be administered MBT over a period not to exceed 24 hours. For subchronic study, animals shall be dosed daily for at least 90 days.

(ii) Route of exposure. Animals shall be exposed to MBT orally.
§ 799.2700 Methyl ethyl ketoxime.

(a) Identification of test substance. (1) Methyl ethyl ketoxime (MEKO, CAS No. 96-29-7) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import), or process or intend to manufacture or process MEKO, including persons who manufacture or process or intend to manufacture or process MEKO as a byproduct, or who import or intend to import products which contain MEKO, after the date specified in paragraph (e) of this section to the end of the reimbursement period, shall submit letters of intent to conduct testing, submit study plans, conduct tests and submit data, or submit exemption applications, as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking. Persons who manufacture, import, or process MEKO only as an impurity are not subject to these requirements.

(c) Health effects testing—Pharmacokinetics testing—(i) Required testing. Pharmacokinetics testing shall be conducted with MEKO in accordance with paragraph (c)(1)(ii) of this section.

(ii) Route of administration. MEKO shall be administered either orally or by inhalation.

(iii) Reporting requirements. (A) Oncogenicity testing—(i) Required testing. Oncogenicity testing shall be conducted in accordance with § 798.3300 of this chapter.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals, beginning 6 months after the date specified in paragraph (e) of this section, until submission of the final report to EPA.

VerDate 23<SEP>99 14:59 Sep 24, 1999 Jkt 183160 PO 00000 Frm 00254 Fmt 8010 Sfmt 8010 Y:\SGML\183160T.XXX pfrm06 PsN: 183160T
(3) Developmental toxicity—(i) Required testing. Developmental toxicity testing shall be conducted in a rodent and a nonrodent mammalian species in accordance with §798.4900 of this chapter.

(ii) Route of administration. MEKO shall be administered orally.

(iii) Reporting requirements. (A) Developmental toxicity testing shall be completed and a final report submitted to EPA within 15 months of the date specified in paragraph (e) of this section.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals, beginning 6 months after the date specified in paragraph (e) of this section.

(4) Reproductive toxicity—(i) Required testing. (A) Reproductive toxicity testing shall be conducted orally in accordance with §798.4700 of this chapter except for the provisions in paragraphs (c)(8)(iii) and (9)(i) of §798.4700.

(B) For the purpose of this section, the following provisions also apply:

(1) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: Vagina, uterus, oviducts, ovaries, testes, epididymides, vas deferens, seminal vesicles, prostate, pituitary gland, and, target organ(s) of all P and F₁ animals selected for mating.

(ii) Full histopathology shall be conducted on the organs and tissues listed in paragraph (c)(4)(i)(B)(1) of this section for all high dose and control P and F₁ animals selected for mating.

(iii) The integrity of the various cell stages of spermatogenesis shall be determined, with particular attention directed toward achieving optimal quality in the fixation and embedding. Preparations of testicular and associated reproductive organ samples for histology should follow the recommendations of Lamb and Chapin (1985) under paragraph (d)(1) of this section, or an equivalent procedure. Histopathology of the testes shall be conducted on all P and F₁ adult males at the time of sacrifice, and histological analyses shall include evaluations of the spermatogenic cycle, i.e., the presence and integrity of the 14 cell stages. These evaluations should follow the guidance provided by Clermont and Percy (1957) under paragraph (d)(2) of this section. Information shall also be provided regarding the nature and level of lesions observed in control animals for comparative purposes.

(iv) Data on female cyclicity shall be obtained by conducting vaginal cytology in P and F₁ females over the last 3 weeks prior to mating; the cell staging technique of Sadleir (1978) and the vaginal smear method in Hafez (1978) under paragraphs (d)(3) and (d)(7) of this section, respectively, or equivalent methods should be used. Data shall be provided on whether the animal is cycling and the cycle length.

(v) P and F₁ females shall continue to be exposed to MEKO for at least an additional 2 weeks following weaning of offspring to permit them to begin cycling once again. They shall then be sacrificed and their ovaries shall be serially sectioned with a sufficient number of sections examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorngersson (1979) and Pederson and Peters (1968) under paragraphs (d)(4) and (5) of this section, respectively, may provide guidance. The strategy for sectioning and evaluation is left to the discretion of the investigators, but shall be described in detail in the study plan and final report. The nature and background level of lesions in control tissue shall also be noted.

(vi) Gross and histopathologic evaluations shall be conducted on the mammary glands in F₁ females and F₂ pups sacrificed at weaning and in adult F₁ females at the termination of the study. Any abnormalities shall be described in the final report.

(vii) Reporting requirements. (A) Reproductive toxicity testing shall be completed and a final report submitted to EPA within 29 months of the date specified in paragraph (e) of this section.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals, beginning six months after the date specified in paragraph (e) of this section until submission of the final report to EPA.

(5) Mutagenic effects—gene mutations—(i) Required testing. The sex-linked recessive lethal assay in Drosophila shall be conducted with MEKO in accordance with §798.5275 of this chapter.
(ii) Reporting requirements. (A) The sex-linked recessive lethal assay in Drosophila shall be completed and a final report submitted to EPA within 18 months of the date specified in paragraph (e) of this section.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals beginning 6 months after the date specified in paragraph (e) of this section.

(6) Mutagenic effects—chromosomal aberrations—(i) Required testing. (A) An in vivo mammalian bone marrow cytogenetics test shall be conducted with MEKO in accordance with either §798.5385 (chromosomal analysis) of this chapter, or §798.5395 (micronucleus assay) of this chapter except for the provisions in paragraphs (d)(5)(ii), (iii), and (iv) of §§798.5385 and 798.5395.

(B) For the purpose of this section, the following provisions also apply if §798.5385 of this chapter is used in conducting the test:

(1) Dose levels and duration of exposure. At least three dose levels shall be tested. The highest dose tested shall be the maximum tolerated dose or that dose producing some signs of cytotoxicity (e.g., partial inhibition of mitosis) or shall be the highest dose attainable. Under oral administration, animals shall be exposed once per day for 5 consecutive days. Under administration by inhalation, animals shall be exposed 6 hours per day for 5 consecutive days. Under oral administration acute testing, animals shall be exposed once. For the oral subchronic testing, animals shall be exposed once per day for 5 consecutive days. Under administration by inhalation, animals shall be exposed 6 hours per day for 5 consecutive days.

(2) Route of administration. Animals shall be exposed to MEKO either orally or by inhalation.

(2) Route of administration. Animals shall be exposed to MEKO either orally or by inhalation.

(i) Reporting requirements. (A) The oral in vivo mammalian cytogenetics test shall be completed and a final report submitted to EPA within 14 months of the date specified in paragraph (e) of this section. The inhalation in vivo mammalian cytogenetics test shall be completed and a final report submitted to EPA within 17 months of the date specified in paragraph (e) of this section.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals beginning 6 months after the date specified in paragraph (e) of this section.

(7) Neurotoxicity—(i) Required testing—(A) Functional observational battery. (1) A functional observational battery shall be conducted with MEKO in accordance with §798.6050 of this chapter except for the provisions in paragraphs (d)(4)(ii), (5), and (6) of §798.6050.

(B) Motor activity. (1) A motor activity test shall be conducted with MEKO in accordance with §798.6200 of this chapter except for provisions in paragraphs (d)(4)(ii), (5), and (6) of §798.6200.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of exposure. Animals shall be exposed either orally or by inhalation.

(ii) Lower doses. The data from the lower doses shall show either graded dose-dependent effects in at least two of all the doses tested, including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(iii) Duration and frequency of exposure. For the oral acute testing, animals shall be exposed once. For the oral subchronic testing, animals shall be exposed once per day for 5 days per week for a 90-day period. For the inhalation acute testing, animals shall be exposed for 6 hours for 1 day. For the inhalation subchronic testing, animals shall be exposed 6 hours per day 5 days per week for a 90-day period.

(B) Motor activity. (1) A motor activity test shall be conducted with MEKO in accordance with §798.6200 of this chapter except for provisions in paragraphs (d)(4)(ii), (5), and (6) of §798.6200.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of exposure. Animals shall be exposed either orally or by inhalation.

(ii) Lower doses. The data from the lower doses shall show either graded
Environmental Protection Agency § 799.2700

dose-dependent effects in at least two of all the doses tested including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(iii) Duration and frequency of exposure. For the acute oral testing, animals shall be exposed once. For the oral subchronic testing, animals shall be exposed once per day 5 days per week for a 90-day period. For the acute inhalation testing, animals shall be exposed for 6 hours for 1 day. For the inhalation subchronic testing, the animals shall be exposed for 6 hours per day 5 days per week for a 90-day period.

(C) Neuropathology. (1) A neuropathology test shall be conducted with MEKO in accordance with § 798.6400 of this chapter except for the provisions in paragraphs (d) (4)(ii), (5), (6), and (B)(iv)(C) of § 798.6400.

(2) For the purpose of this section, the following provisions also apply:

(ii) Route of exposure. Animals shall be exposed either orally or by inhalation.

(iii) Lower doses. The data from the lower doses shall show either graded dose-dependent effects in at least two of all the doses tested including the highest dose, or no neurotoxic (behavioral) effects at any dose tested.

(iii) Duration and frequency of exposure. Animals shall be exposed orally once per day 5 days per week for a 90-day period; or if exposed by inhalation, for 6 hours per day 5 days per week for a 90-day period.

(iv) Clearing and embedding. After dehydration, tissue specimens shall be cleared with xylene and embedded in paraffin or paraplast except for the sural nerve which should be embedded in plastic. Multiple tissue specimens (e.g., brain, cord, ganglia) may be embedded together in one single block for sectioning. All tissue blocks shall be labeled to provide unequivocal identification. A suggested method for plastic embedding is described by Spencer et al. in paragraph (d)(6) of this section.

(ii) Reporting requirements. (A) The neurotoxicity tests required under this paragraph (c)(7) and administered by inhalation shall be completed and the final results submitted to EPA within 21 months of the date specified in paragraph (e) of this section.

(B) Interim progress reports shall be submitted to EPA at 6-month intervals beginning 6 months after the date specified in paragraph (e) of this section until submission of the final report to EPA.

(d) References. For additional background information, the following references should be consulted.

(e) Effective dates. (1) The effective date of this final rule is October 27, 1989.
§ 799.3300 Unsubstituted phenylenediamines.

(a) Identification of test substance. (1) The unsubstituted phenylenediamines (pda's), para-phenylenediamine (p-pda, CAS No. 106–50–3), or its sulfate salt (p-pda H$_4$SO$_4$, CAS No. 1624–57–75), meta-phenylenediamine (m-pda, CAS No. 108–45–2), or its sulfate salt (m-pda H$_4$SO$_4$, CAS No. 54–17–08), and ortho-phenylenediamine (o-pda, CAS No. 95–54–5) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. (1) All persons who manufacture (including import or by-product manufacture) or process m-pda or m-pda H$_4$SO$_4$, or intend to manufacture or process m-pda or m-pda H$_4$SO$_4$, after the effective date of this rule to the end of the reimbursement period shall submit letters of intent to test, submit study plans, conduct tests, and submit data, or submit exemption applications as specified in paragraphs (c)(3), (d), and (e) of this section, subpart A of this part and parts 790 and 792 of this chapter for single-phase rulemaking.

(2) If the MBMC assay conducted pursuant to paragraph (c)(1)(i)(C) of this section is positive, either the mouse bone marrow cytogenetics: micronucleus (MBMC) assay shall be conducted, by injection, in Drosophila melanogaster with m-pda in accordance with § 798.5275 of this chapter.

(E) If the DL conducted pursuant to paragraph (c)(1)(i)(D) of this section is positive, heritable translocation (HT) testing in the mouse on m-pda shall be conducted on m-pda by gavage in accordance with §§ 798.5200 or 798.5195 of this chapter, if after public program review, EPA issues a FEDERAL REGISTER notice or sends a certified letter to the test sponsor(s) specifying that testing shall be initiated. The test sponsor shall notify EPA of its choice in writing in its first interim report.

(C) The sex-linked recessive lethal (SLRL) assay shall be conducted, by injection, in Drosophila melanogaster with m-pda after the effective date of this rule to the end of the reimbursement period shall submit letters of intent to test, submit study plans, conduct tests, and submit data, or submit exemption applications as specified in paragraphs (c)(3), (d), and (e) of this section, subpart A of this part and parts 790 and 792 of this chapter for single-phase rulemaking.

(D) If the SLRL assay conducted pursuant to paragraph (c)(1)(i)(A) of this section is positive, either the mouse visible specific locus test (MVSBL) or the mouse biochemical specific locus test (MBSBL) shall be conducted for m-pda by gavage in accordance with §§ 798.5200 or 798.5195 of this chapter.
conducted pursuant to § 798.5460 of this chapter, if after a public program review, EPA issues a Federal Register notice or sends a certified letter to the test sponsor(s) specifying that testing shall be initiated.

(ii) Reporting requirements. (A) The tests shall be completed and the final reports for the MBMC assay shall be submitted to the EPA no later than January 16, 1991. The final report for the SLRL in Drosophila melanogaster shall be submitted no later than April 15, 1991.

(B) If required, the DL test shall be completed and the final report shall be received by EPA no later than 24 months after the effective date of this final rule.

(C) If required, the MBSL or the MVSL shall be completed and the final report shall be received by EPA no later than 51 months after EPA issues a Federal Register Notice or sends a certified letter to the test sponsor(s) identified under paragraph (c)(1)(i)(B) of this section specifying that testing shall be initiated.

(D) If required, the HT test shall be completed and the final report shall be submitted to EPA not later than 36 months after the date on which EPA notifies the test sponsor under paragraph (c)(1)(i)(E) of this section to begin testing.

(E) Interim reports for the SLRL assay and MBMC are required at 6-month intervals beginning 6 months after the effective date of this section. If the DL is triggered, interim reports are required at 6 month intervals beginning with the date of initiation of the study.

(F) Interim reports for the HT and either the MBSL or MVSL are required at 6-month intervals beginning 6 months after the date of notification by EPA that testing shall be initiated, and ending when the final report is submitted.

(ii) Oncogenicity—(i) Required testing. A 2-year dermal oncogenicity bioassay shall be conducted with m-pda if, after public program review, EPA issues a Federal Register notice specifying that the testing shall be initiated.

(ii) [Reserved]

(iii) Reporting requirements. (A) The final results and final report for the oncogenicity bioassay shall be submitted to EPA no later than 53 months after EPA issues a Federal Register notice or sends a certified letter to the test sponsor under paragraph (c)(2)(i) of this section specifying that the testing shall be initiated.

(B) Interim reports for the oncogenicity study are required at 6-month intervals beginning 6 months after the date of notification by EPA that testing shall be initiated and ending when the final report is submitted.

(3) Neurotoxicity—(i) Required testing. (A) Acute neurotoxicity testing in the neurotoxicity functional observational battery (FOB) in accordance with § 798.6050 of this chapter, and the motor activity test (MAT) in accordance with § 798.6200 of this chapter, shall be conducted for o-, m-, and p-pda. The test chemicals shall be administered in a single oral dose. Clinical observations shall be made at a minimum of 1, 4, 24, and 48 hours and at 7 days after dosing.

(B) If neurotoxic effects are observed at 24 hours, or longer, during the testing conducted pursuant to paragraph (c)(3)(i)(A) of this section, then 90-day subchronic neurotoxic FOB and MAT tests shall be conducted in accordance with §§ 798.6050 and 798.6200 of this chapter, respectively, for each isomer showing such effects. At the end of these tests, the animals shall be sacrificed and the nervous tissue preserved and examined as described in the neuropathology test standard, § 798.6400 of this chapter.

(ii) Reporting requirements. (A) The acute neurotoxicity tests shall be completed and the final report submitted to EPA no later than September 15, 1990. If triggered, the final report of the subchronic neurotoxicity testing and the neuropathological examination shall be submitted to EPA on the following schedules. If one isomer is triggered, the reporting deadline is July 15, 1990. If two isomers are triggered, the reporting deadline is January 15, 1992. If three isomers are triggered, the reporting deadline is July 15, 1992.

(B) [Reserved]

(d) Chemical fate testing—(1) Indirect photolysis testing—(i) Required testing. Indirect photolysis studies shall be...
conducted with \(p \)-, \(m \)-, and \(o \)-pda to determine the half-life in water of each of the three unsubstituted pda's in accordance with § 795.70 of this chapter.

(ii) Reporting requirements. (A) The final report shall be submitted to EPA no later than 8 months after the effective date of this section. Indications of chronicity shall be the following: for fish or freshwater invertebrates, the ratio of 24 hour/96 hour LC

\[\text{PEC} \leq 1 \text{ mg/L} \]

shows indications of chronicity. Chronicity tests in the rainbow trout (\(\text{PEC} \leq 1 \text{ mg/L} \)) and \(\text{PEC} \leq 1 \text{ milligram/particle (mg/L)} \) for any study conducted pursuant to paragraph (e)(2) of this section is less than or equal to 100 \(\times \) PEC; or less than 100 mg/L with indications of chronicity. Chronicity indicators are defined in paragraph (e)(3)(ii)(C) of this section. Testing shall be conducted in accordance with § 797.1600 of this chapter.

(B) An invertebrate life-cycle flow-through toxicity test shall be conducted in Daphnia magna for \(o \)- and \(p \)-pda in accordance with § 797.1530 of this chapter.

(e) Environmental effects testing—(1) Acute toxicity testing—(i) Required testing. (A) Flow-through fish acute toxicity tests in the rainbow trout (\(\text{Salmo gairdneri} \)) shall be conducted with \(o \)-, \(m \)-, and \(p \)-pda in accordance with § 797.1400 of this chapter.

(B) Acute flow-through studies on the freshwater invertebrate Gammarus shall be conducted with \(o \)-, \(m \)-, and \(p \)-pda in accordance with § 795.120 of this chapter.

(C) If the concentration affecting 50 percent of the population (\(\text{LC}_{50} \) or \(\text{EC}_{50} \)) for any study conducted pursuant to paragraphs (e)(1)(i)(A) and (B) of this section is less than or equal to 100 \(\times \) PEC, less than or equal to 1 milligram/liter (mg/L), or less than or equal to 100 \(\times \) PEC, and shows indications of chronicity, chronic toxicity testing shall be conducted pursuant to paragraph (e)(2) of this section. Indications of chronicity shall be the following: for fish or aquatic invertebrates, the ratio of 24 hour/96 hour \(\text{LC}_{50} \) is greater than or equal to 2; for gammarids, the ratio of 24 hour/48 hour \(\text{EC}_{50} \) is greater than or equal to 2.

(ii) Reporting requirements. The final reports for acute toxicity testing shall be submitted as follows:

(A) Testing on the rainbow trout shall be completed and submitted to EPA 9 months after the effective date of the final rule for \(o \)-pda and \(p \)-pda. Testing for \(m \)-pda shall be completed and submitted by January 15, 1991.

(B) The acute toxicity testing in freshwater Gammarus shall be completed and submitted no later than January 15, 1991.

(2) Chronic toxicity testing—(i) Required testing. (A) A fish partial life-cycle flow-through test shall be conducted in the more sensitive fish species, either \(\text{Pimephales promelas} \) or \(\text{Salmo gairdneri} \), with each isomer, \(o \)-, \(m \)-, and \(p \)-pda, demonstrating an \(\text{LC}_{50} \) determined by testing of fish pursuant to paragraph (e)(1)(i)(A) of this section, equal to or less than 100 \(\times \) PEC; or less than 1 mg/L; or less than 100 mg/L with indications of chronicity. Chronicity indicators are defined in paragraph (e)(3)(ii)(C) of this section. Testing shall be conducted in accordance with § 797.1600 of this chapter.

(B) An invertebrate life-cycle flow-through toxicity test shall be conducted in Daphnia magna for \(o \)- and \(p \)-pda in accordance with § 797.1530 of this chapter.

(iii) Reporting requirements. (A) The fish partial life-cycle flow-through test shall be completed and final results shall be submitted to EPA no later than December 1, 1992.

(B) The invertebrate life-cycle flow-through toxicity test shall be completed and the final report submitted to EPA no later than January 15, 1993.

(C) Progress reports shall be submitted at 6 month intervals after the effective date of the final rule.

(f) Effective dates. (1) The effective date of this final rule is January 16, 1990, except for paragraphs (c)(1)(i)(B), (c)(3)(ii)(A), (c)(1)(ii)(C), (c)(1)(ii)(F), (c)(3)(ii)(A), (e)(1)(iii), (e)(2)(ii)(A), and (e)(2)(ii)(B) of this section. The effective date for paragraphs (c)(1)(i)(B), (c)(3)(ii)(C), and (c)(1)(ii)(F) of this section is May 21, 1990. The effective date for paragraphs (c)(3)(ii)(A), (c)(3)(ii)(A), and (e)(1)(ii), of this section is May 21, 1991. The effective date for paragraph (e)(2)(ii)(A) is June 12, 1992. The effective date for paragraph (e)(2)(ii)(B) is May 28, 1993.
§ 799.4360 Tributyl phosphate.

(a) Identification of test substance. (1) Tributyl phosphate (TBP, CAS No. 126-73-8) shall be tested in accordance with this section.

(2) TBP of at least 99 percent purity shall be used as the test substance.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import and byproduct manufacture) or process or intend to manufacture or process TBP, other than as an impurity, from the effective date of the final rule to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests, and submit data, or submit exemption applications as specified in this section, subpart A of this part, and part 790 of this chapter for single-phase rulemaking.

(c) Health effects testing—(1) Neurotoxicity—(i) Required testing. (A)(1) An acute and subchronic functional observational battery shall be conducted with TBP in accordance with §798.6500 of this chapter except for the provisions of paragraphs (d)(1)(5) and (6) of §798.6400.

(2) For the purpose of this section, the following provisions also apply:

(i) Animal selection. Testing shall be performed in laboratory rats.

(ii) Duration of testing. For the acute testing, the substance shall be administered over a period not to exceed 24 hours; for the subchronic testing, test species shall be exposed daily for at least 90 days.

(iii) Route of administration. Animals shall be exposed to TBP orally.

(C)(1) A neuropathology test shall be conducted with TBP in accordance with §798.6400 of this chapter except for the provision of paragraphs (d)(1)(i) (5) and (6) of §798.6400.

(2) For the purpose of this section, the following provisions also apply:

(i) Animal selection. Testing shall be performed in laboratory rats.

(ii) Duration of testing. Animals shall be exposed for at least a 90-day period.

(iii) Route of administration. Animals shall be exposed to TBP orally.

(ii) Reporting requirements—(A) The neurotoxicity tests required under paragraph (c)(1)(i) (A), (B), and (C) of this section shall be completed and final reports submitted to EPA within 18 months of the effective date of the final rule.

(B) An interim progress report for these neurotoxicity tests shall be submitted to EPA 6 months after the effective date of the final rule.

(2) Developmental toxicity—(i) Required testing. (A) A developmental toxicity study shall be conducted with TBP in accordance with §798.4900 of this chapter, except for the provisions of paragraph (e)(5) of §798.4900.

(B) For the purpose of this section, the following provision also applies:

(1) Route of administration. The animals shall be exposed to TBP by gavage.

(2) Reserved

(ii) Reporting requirements. (A) The developmental toxicity study required under paragraph (c)(2) of this section shall be completed and a final report submitted to EPA by January 27, 1991.

(B) An interim progress report shall be submitted to EPA 6 months after the effective date of the final rule.

(3) Reproductive and fertility—(i) Required testing. (A) A reproduction and fertility study shall be conducted with TBP in accordance with §798.4700 of...
this chapter, except for the provisions of paragraph (c)(5)(i)(A) of §798.4700.

(B) for the purpose of this section, the following provisions also apply:

(1) Route of administration. Animals should be exposed to TBP by gavage.

(2) [Reserved]

(i) Reporting requirements. (A) The reproduction and fertility effects study required under paragraph (c)(3) of this section shall be completed and a final report submitted to EPA by August 17, 1992.

(B) Interim progress reports shall be submitted to EPA at 6 month intervals, beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(4) Mutagenic effects—Gene mutation—(i) Required testing. (A) A detection of gene mutation in somatic cells in culture test shall be conducted with TBP in accordance with §798.5300 of this chapter.

(B) If TBP produces a positive result in the assay conducted pursuant to paragraph (c)(4)(i)(A) of this section, a sex-linked recessive lethal test in Drosophila melanogaster shall be conducted with TBP in accordance with §798.5275 of this chapter, except for the provisions of paragraph (d)(5)(iii) of §798.5450.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed orally to TBP.

(ii) [Reserved]

(C) If TBP produces a positive result in either the in vitro or the in vivo cytogenetics test conducted pursuant to paragraphs (c)(5)(i) (A) and (B) of this section, a rodent dominant-lethal assay shall be conducted with TBP in accordance with §798.5450 of this chapter, except for the provisions of paragraph (d)(5)(iii) of §798.5450.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed orally to TBP.

(ii) [Reserved]

(D) A rodent heritable translocation assay shall be conducted with TBP if the dominant-lethal assay conducted for TBP pursuant to paragraph (c)(5)(ii)(C) of this section produces a positive result, and if, after a public program review, EPA issues a FEDERAL REGISTER notice or sends a certified letter to the test sponsor specifying that the testing shall be initiated. This test shall be conducted in accordance with §798.5460 of this chapter except for the provisions of paragraph (d)(5)(iii) of §798.5460.

(2) For the purpose of this section, the following provisions also apply:

(i) Route of administration. Animals shall be exposed orally to TBP.

(ii) [Reserved]
(3) If required, the dominant lethal assay shall be completed and the final report submitted to EPA within 36 months after the effective date of the final rule.

(4) If required, the heritable translocation assay shall be completed and the final report submitted to EPA within 25 months after the date of EPA's notification of the test sponsor under paragraph (c)(5)(i)(D) of this section that testing shall be initiated.

(B) Interim progress reports shall be submitted to EPA at 6 month intervals beginning 6 months after initiation of the rodent dominant lethal assay and the rodent heritable translocation assay respectively, if required, until the applicable final reports are submitted to EPA.

(6) Oncogenicity—(i) Required testing. (A) An oncogenicity test shall be conducted with TBP in accordance with §798.3300 of this chapter except for the provisions of paragraphs (b)(1)(i), (b)(6)(i) and (b)(9), of §798.3300.

(B) For the purpose of this section, the following provisions also apply:

1. Animal selection. TBP shall be tested in Sprague-Dawley rats and in mice.
2. Route of administration. Animals shall be exposed to TBP orally.
3. Clinical examinations. At 12 months, 18 months and during month 24, a blood smear shall be obtained from all animals. A differential blood count shall be performed on blood smears from those animals in the highest dosage group and the controls. If these data, or data from the pathological examination indicate a need, then the 12- and 18-month blood smears from other dose levels shall also be examined. Differential blood counts shall be performed for the next lower group(s) if there is a major discrepancy between the highest group and the controls. If clinical observations suggest a deterioration in health of the animals during the study, a differential blood count of the affected animals shall be performed.

(ii) Reporting requirements. (A) The oncogenicity test required under paragraph (c)(6) of this section shall be completed and a final report submitted to EPA within 53 months of the effective date of the final rule. (B) Interim progress reports shall be submitted to EPA at 6 month intervals beginning 6 months after the effective date of the final rule, until the final report is submitted to EPA.

(7) Dermal sensitization—(i) Required testing. A dermal sensitization test shall be conducted with TBP in accordance with §795.228 of this chapter.

(ii) Reporting requirements. The dermal sensitization test shall be completed and the final report submitted to EPA within 6 months of the effective date of the final rule.

(8) Oral/Dermal Pharmacokinetics—(i) Required testing. (A) A pharmacokinetics test shall be conducted with TBP in accordance with §795.228 of this chapter, except for the provisions of paragraphs (c)(1)(iii)(B), (c)(2)(ii)(C)(1) and (c)(2)(ii)(C)(2) of §795.228.

(B) For the purposes of this section, the following provisions also apply:

1. Animal care. During the acclimatization period, the animals shall be housed in suitable cages. All animals shall be provided with certified feed and tap water ad libitum.
2. Dermal treatment. For dermal treatment, two doses, comparable to the low and high oral doses, shall be dissolved in a suitable vehicle and applied in volumes adequate to deliver comparable doses. The backs of the animals should be lightly clipped with an electric clipper 24 hours before treatment. The test substance shall be applied to the intact clipped skin (approximately 2 cm² for rats, 40 cm² for mini-pigs). The dosed areas shall be protected with a suitable porous covering which is secured in place, and the animals shall be housed separately.

(ii) Reporting requirements. (A) The pharmacokinetics test required in paragraph (c)(8)(i) of this section shall be completed and the final report submitted to EPA by December 26, 1992

(B) Interim 6 month progress reports shall be submitted to EPA beginning at 6 months after the effective date of the final rule and continuing until submission of the final report.

(d) Environmental effects testing—(1) Algal acute toxicity—(i) Required testing. (A) Algal acute toxicity testing shall be conducted with TBP using
Selenastrum capricornutum in accordance with §797.1050 of this chapter except for the provisions of paragraphs (c)(6)(i)(A), (B), and (ii) of §797.1050.

(B) For the purpose of this section, the following provisions also apply:

(i) Summary of the test. The algal cells at the end of 24, 48, and 72 hours shall be enumerated.

(ii) Chemical measurement. The separation of the algal cells from the test solution shall be done using an ultrafiltration (e.g., 0.45 micrometer pore size) technique. The total and dissolved (e.g., filtered) concentrations of the test substance shall be measured in each test chamber and the delivery chamber before the test and in each test chamber at 0 and 96 hours.

(iii) Reporting requirements. The daphnid acute toxicity test required in paragraph (d)(1) of this section shall be completed and the final report submitted to EPA within 9 months of effective date of the final rule.

(3) Daphnid acute toxicity—(i) Required testing. (A) Daphnia magna or D. pulex in accordance with §797.1300 of this chapter.

(B) For the purpose of this section, the following provisions also apply:

(1) Chemical measurement. The total and dissolved (e.g., filtered) concentrations of the test substance shall be measured in each test chamber and the delivery chamber before the test. If the dissolved test substance concentration is greater than 80 percent of total test substance concentration, then only total or dissolved test concentration shall be measured in each chamber at 0, 24, and 48 hours. If the dissolved test substance concentration is less than or equal to 80 percent of total test substance, then total and dissolved test substance concentration shall be measured at 0, 24, and 48 hours.

(2) Test procedures. The test shall be performed under flow-through conditions.

(iii) Reporting requirements. The daphnid acute toxicity test shall be completed and the final report submitted to EPA within 9 months of the effective date of the final rule.
Environmental Protection Agency

§ 799.4360

to EPA within 9 months of the effective date of the final rule.

(5) Daphnid chronic toxicity—(i) Required testing. (A) Daphnid chronic toxicity testing shall be conducted with TBP using Daphnia magna or D. pulex in accordance with §797.1330 of this chapter, if the algal EC50, the rainbow trout LC50, the daphnid EC50, or the gammarid LC50 determined in accordance with paragraphs (d)(1), (2), (3), and (4) of this section satisfy the following criteria: Any such value is ≤1 mg/L; or any fish or aquatic invertebrate EC50 or LC50 is ≤100 mg/L and either the rainbow trout or gammarid 24-hour to 96-hour LC50 ratio ≥2, or the daphnid 24-hour to 48-hour EC50 or LC50 ratio is ≥2.

(ii) Reporting requirements. (A) The daphnid chronic toxicity test, if required, shall be completed and the final report submitted to EPA before September 27, 1991.

(B) An interim progress report shall be submitted to EPA 6 months after the initiation of the test.

(6) Fish early-life stage toxicity—(i) Required testing. (A) A fish early-life stage toxicity test shall be conducted with TBP in accordance with §797.1600 of this chapter, using the fish with the lower LC50 value (either the rainbow trout (Salmo gairdneri) or the fathead minnow (Pimephales promelas)), if the algal EC50, the rainbow trout LC50, the gammarid LC50 or the daphnid EC50 determined in accordance with paragraphs (d)(1), (2), (3), and (4) of this section satisfy the following criteria: Any such value is ≤1 mg/L; or any fish or aquatic invertebrate EC50 or LC50 is ≤100 mg/L and either the rainbow trout or gammarid 24-hour to 96-hour LC50 ratio ≥2, or the daphnid 24-hour to 48-hour EC50 or LC50 ratio is ≥2.

(ii) Reporting requirements. (A) The fish early-life stage flow-through toxicity test shall be completed and the final report submitted to EPA by December 27, 1991.

(B) An interim progress report shall be submitted to EPA 6 months after the initiation of the test.

(7) Benthic sediment invertebrate bioassay—(i) Required testing. (A) A benthic sediment invertebrate bioassay shall be conducted on TBP with the midge (Chironomus tentans) if chronic toxicity testing is required pursuant to paragraph (d)(5) of this section and if the log Koc calculated according to paragraph (e)(2)(B)(1) of this section is greater than or equal to 3.5 but less than or equal to 6.5. The total aqueous sediment concentrations and interstitial water concentrations of the test substance shall be measured in each test chamber at 0, 4, 7, 10, and 14 days. The aqueous concentrations of the test substance in the delivery chamber shall be measured at 0, 4, 7, 10, and 14 days. TBP-spiked clean freshwater sediments containing low, medium, and high organic carbon content shall be used.

§ 799.4440 Triethylene glycol mono-methyl ether.

(a) Identification of test substance. Triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture or process TGME, other than as an impurity, after May 17, 1989, to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests and submit data, or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Developmental neurotoxicity— Required testing. Developmental neurotoxicity testing shall be performed in the Sprague-Dawley rat by gavage in the Sprague-Dawley rat by gavage in the Sprague-Dawley rat by gavage. Treatment groups shall include at least a low, intermediate, and high dose level. The low dose level shall be the oral no-effect level (NOEL) or the highest dose level without adverse effects. The high dose level shall be the level expected to result in a dose-response relationship. The intermediate dose level shall be midway between the low and high dose levels. The study shall be conducted for 14 days post-conception. The offspring shall be examined for effects on birth weight and survival, and for gross abnormalities. The offspring shall be sacrificed at 14 days post-conception and examined for effects on organ weight and histopathology.

(3) Hydrolysis as a function of pH at 25 °C. Required testing. Hydrolysis testing shall be conducted with TBP in accordance with § 796.3500 of this chapter.

(ii) Reporting requirements. The hydrolysis test required under paragraph (e)(3)(i) of this section shall be completed and the final report submitted to EPA by September 27, 1990.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§ 799.4440 Triethylene glycol mono-methyl ether.

(a) Identification of test substance. Triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) shall be tested in accordance with this section.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture or process TGME, other than as an impurity, after May 17, 1989, to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests and submit data, or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Developmental neurotoxicity—(1) Required testing. Developmental neurotoxicity testing shall be performed in the Sprague-Dawley rat by gavage in the Sprague-Dawley rat by gavage in the Sprague-Dawley rat by gavage.

(3) Hydrolysis as a function of pH at 25 °C. Required testing. Hydrolysis testing shall be conducted with TBP in accordance with § 796.3500 of this chapter.

(ii) Reporting requirements. The hydrolysis test required under paragraph (e)(3)(i) of this section shall be completed and the final report submitted to EPA by September 27, 1990.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

accordance with §795.250 of this chapter except for the provision in paragraph (c)(3)(iii) of §795.250.

(2) For the purpose of this section, the following provisions also apply:

(i) Number of animals. The objective is for a sufficient number of pregnant rats to be exposed to ensure that an adequate number of offspring are produced for neurotoxicity evaluation. At least 24 litters are recommended at each dose level.

(ii) Dose levels and dose selection. In the absence of developmental toxicity or maternal toxicity the maximum dose shall be 5 grams/kilogram.

(3) Reporting requirements—(i) The developmental neurotoxicity test shall be completed and the final report submitted to EPA within 21 months of the initiation of the test.

(ii) Progress reports shall be submitted to EPA at 6-month intervals, beginning six months after the initiation of the test.

(d) Effective date. (1) The effective date of this final rule is May 17, 1989, except for paragraph (c)(2)(i) and (c)(3)(i) of this section. The effective date for paragraph (c)(2)(ii) and (c)(3)(i) of this section is May 21, 1991.

(2) The guidelines and other test methods cited in this rule are referenced as they exist on the effective date of the final rule.

§799.5000 Testing consent orders for substances and mixtures with Chemical Abstract Service Registry Numbers.

Subpart C—Testing Consent Orders

§799.5000 Testing consent orders for substances and mixtures with Chemical Abstract Service Registry Numbers.

This section sets forth a list of substances and mixtures which are the subject of testing consent orders adopted under 40 CFR part 790. Listed below in Chemical Abstract Service (CAS) Registry Number order are the substances and mixtures which are the subject of these orders and the Federal Register citations providing public notice of such orders.

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Substance or mixture name</th>
<th>Testing</th>
<th>FR Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>Health effects</td>
<td>January 23, 1995.</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1-Trichloroethane</td>
<td>Health effects</td>
<td>August 23, 1989.</td>
</tr>
<tr>
<td>78-63-1</td>
<td>Isobutyl alcohol</td>
<td>Health effects</td>
<td>January 23, 1995.</td>
</tr>
<tr>
<td>79-10-7</td>
<td>Acrylic acid</td>
<td>Health effects</td>
<td>March 4, 1992.</td>
</tr>
<tr>
<td>84-74-2</td>
<td>Di-n-butyl phthalate</td>
<td>Environmental effects</td>
<td>January 9, 1989.</td>
</tr>
<tr>
<td>84-75-3</td>
<td>Di-n-hexyl phthalate</td>
<td>Environmental effects</td>
<td>January 9, 1989.</td>
</tr>
<tr>
<td>100-40-3</td>
<td>4-Vinylcyclohexene</td>
<td>Health effects</td>
<td>September 23, 1991.</td>
</tr>
<tr>
<td>112-35-6</td>
<td>Triethylene glycol monomethyl ether</td>
<td>Health effects</td>
<td>April 3, 1989.</td>
</tr>
<tr>
<td>112-50-5</td>
<td>Triethylene glycol monomethyl ether</td>
<td>Health effects</td>
<td>April 3, 1989.</td>
</tr>
<tr>
<td>117-81-7</td>
<td>Di-2-ethylhexyl phthalate</td>
<td>Chemical fate</td>
<td>January 9, 1989.</td>
</tr>
<tr>
<td>143-22-6</td>
<td>Triethylene glycol monobutyl ether</td>
<td>Health effects</td>
<td>January 9, 1989.</td>
</tr>
<tr>
<td>143-33-9</td>
<td>Sodium cyanide</td>
<td>Chemical fate</td>
<td>December 17, 1991.</td>
</tr>
</tbody>
</table>
§ 799.5025 Testing consent orders for mixtures without Chemical Abstracts Service Registry Numbers.

This section sets forth a list of mixtures (with no Chemical Abstracts Service Registry Numbers) which are the subject of testing consent orders adopted under 40 CFR part 790. Listed below are the mixtures which are the subject of these orders and the Federal Register citations providing public notice of such orders.

<table>
<thead>
<tr>
<th>Mixture/ substance (CAS No.)</th>
<th>Required test</th>
<th>FR citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di(heptyl, nonyl, undecyl) phthalate (D711P), as a mixture of the following six substances:</td>
<td>Environmental effects</td>
<td>January 9, 1989.</td>
</tr>
<tr>
<td>(1) diheptyl phthalate (branched and linear isomers), CAS No. 68515-44-6</td>
<td>do</td>
<td>Do.</td>
</tr>
<tr>
<td>(2) dinonyl phthalate (branched and linear isomers), CAS No. 68515-45-7</td>
<td>do</td>
<td>Do.</td>
</tr>
<tr>
<td>(3) di(heptyl, nonyl) phthalate (branched and linear isomers), CAS No. 111381-89-6</td>
<td>do</td>
<td>Do.</td>
</tr>
<tr>
<td>(4) diundecyl phthalate (branched and linear isomers), CAS No. 3648-20-2</td>
<td>do</td>
<td>Do.</td>
</tr>
<tr>
<td>(5) di(nonyl, undecyl) phthalate (branched and linear isomers), CAS No. 111381-90-9</td>
<td>do</td>
<td>Do.</td>
</tr>
<tr>
<td>(6) di(nonyl, undecyl) phthalate (branched and linear isomers), CAS No. 111381-91-0</td>
<td>do</td>
<td>Do.</td>
</tr>
</tbody>
</table>
Subpart D—Multichemical Test Rules

§ 799.5055 Hazardous waste constituents subject to testing.

(a) Identification of test substances. (1) The table in paragraph (c) of this section identifies those chemical substances that shall be tested in accordance with this section.

(2) Substances of at least 98-percent purity shall be used as the test substances.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import or manufacture as a byproduct) or process or intend to manufacture or process one or more of the substances in paragraph (c) of this section, other than as an impurity, after July 29, 1988, to the end of the reimbursement period shall submit letters of intent to conduct testing, submit study plans, conduct tests, and submit data, or submit exemption applications for those substances they manufacture or process, or intend to manufacture or process, as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking.

(c) Designation of testing. The substances identified in the following table by name and CAS number shall be tested in accordance with the designated requirements under paragraphs (d) and (e) of this section. The paragraph numbers listed for a substance refer to the specific testing and reporting requirements specified in paragraphs (d) and (e) of this section.

(d) Chemical fate testing—(1) Soil adsorption—(i) Required testing. A soil adsorption isotherm test shall be conducted with the substances designated in paragraph (c) of this section in accordance with §796.2750 of this chapter except that the provisions of §796.2750 (b)(3)(vii)(A) shall not apply to 1,3-Dichloropropanol.

(ii) Reporting requirements. The sediment and soil adsorption isotherm tests shall be completed and the final results submitted to EPA within 9 months of the effective date of the final rule except that final results for testing of 1,3-Dichloropropanol and Methanethiol shall be completed and submitted to EPA within 11 months and 15 months, respectively, of the effective date of the final rule.

(2) Hydrolysis—(i) Required testing. A test of hydrolysis as a function of pH at 25 °C shall be conducted with the substances designated in paragraph (c) of this section and submitted to EPA within 11 months and 15 months, respectively, of the effective date of the final rule.

(ii) Reporting requirements. The hydrolysis tests with the substances designated in paragraph (c) of this section shall be completed and the final results submitted to EPA within 6 months of the effective date of the final rule except that hydrolysis tests for Dibromomethane, Dihydrosafrole, Ethyl methacrylate, and Methyl chloride shall be completed and the final results submitted to EPA within 12 months of the effective date of the final rule; and hydrolysis tests for 1,2-Dichlorobenzene and 1,2,4,5-Tetrachlorobenzene shall be completed and final results submitted to EPA within 9 months of the effective date of the final rule.

The following table lists the required testing under paragraphs (d) and (e) of this section:

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS No.</th>
<th>Required testing under paragraphs (d) and (e) of this section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetamide, 2-fluoro</td>
<td>640–19–7</td>
<td>(d)(1)</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>111–91–1</td>
<td>(d)(2), (e)(1)</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl)ether</td>
<td>108–60–1</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>4-Bromobenzyl cyanide</td>
<td>16532–79–9</td>
<td>(d)(1), (2), (e)(1)</td>
</tr>
<tr>
<td>Bromofom</td>
<td>75–25–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>4-Chlorobenzene-tetrachloride</td>
<td>5216–25–1</td>
<td>(d)(1)</td>
</tr>
<tr>
<td>Dihydrosafrole</td>
<td>94–54–9</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>Endrin</td>
<td>95–70–7</td>
<td>(d)(1), (2), (e)(1)</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>123–33–1</td>
<td>(d)(1)</td>
</tr>
<tr>
<td>Maleic hydrazide</td>
<td>123–33–1</td>
<td>(d)(1)</td>
</tr>
<tr>
<td>Malonitrite</td>
<td>103–77–3</td>
<td>(d)(1), (2)</td>
</tr>
<tr>
<td>Methanethiol</td>
<td>74–95–3</td>
<td>(d)(1)</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>74–67–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>75–25–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>74–67–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,3-Dichloropropanol</td>
<td>74–67–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>2,4-Dichlorobenzene</td>
<td>86–53–1</td>
<td>(d)(1), (2)</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95–50–1</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>75–25–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,3-Dichloropropanol</td>
<td>75–25–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>2,4-Dichlorobenzene</td>
<td>95–50–1</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>75–25–2</td>
<td>(d)(2)</td>
</tr>
<tr>
<td>1,3-Dichloropropanol</td>
<td>96–53–1</td>
<td>(d)(1), (2)</td>
</tr>
</tbody>
</table>
§ 799.5075 Drinking water contaminants subject to testing.

(a) Identification of test substance. (1) 1,1,2,2-tetrachloroethane (CAS No. 79-34-5), and 1,3,5-trimethylbenzene (CAS No. 108-67-8) shall be tested as appropriate in accordance with this section.

(2) A test substance of at least 99 percent purity shall be used for Chloroethane, 1,1-dichloroethane, and 1,3,5-trimethylbenzene. A test substance of at least 98 percent purity shall be used for 1,1,2,2-tetrachloroethane.

(b) Persons required to submit study plans, conduct tests, and submit data. All persons who manufacture (including import and by-product manufacture) or process, or who intend to manufacture or process, the substances listed in paragraph (a) of this section after the
Environmental Protection Agency § 799.5075

effective date of this section to the end of the reimbursement period shall submit letters of intent to test, submit study plans, conduct tests, and submit data, or submit exemption applications as specified in this section, subpart A of this part, and parts 790 and 792 of this chapter for single-phase rulemaking, for the substances they manufacture subject to exclusions contained in §790.42(a)(2), (a)(4) and (a)(5). These sections provide that processors, persons who manufacture less than 500 kg (1,100 lbs) annually, or persons who manufacture small quantities of the chemical solely for research and development as defined in §790.42(a)(5) shall not be required to submit study plans, conduct tests and submit data, or submit exemption applications as specified in this section unless directed to do so in a subsequent notice as set forth in §790.48(b).

(c) Health effects testing—(1) Subacute toxicity—(i) Required testing. (A) An oral 14-day repeated dose toxicity test shall be conducted with 1,1,2,2-tetrachloroethane, and 1,3,5-trimethylbenzene in accordance with §798.2650 of this chapter except for the provisions in §798.2650 (a), (b)(1), (c), (e)(3), (e)(4)(i), (e)(5), (e)(6), (e)(7)(i), (e)(7)(iv), (e)(7)(v), (e)(8)(vii), (e)(9)(i)(A), (e)(9)(i)(B), (e)(11)(v), and (f)(2)(i). Each substance shall be tested in one mammalian species, preferably a rodent, but a non-rodent may be used. The species and strain of animals used in this test should be the same as those used in the 90-day subchronic test required in paragraph (c)(2)(i) of this section. The tests shall be performed using drinking water. However, if, due to poor stability or palatability, a drinking water test is not feasible for a given substance, that substance shall be administered either by oral gavage, in the diet, or in capsules.

(B) For the purpose of this section, the following provisions also apply:

(1) Purpose. To assess and evaluate the toxic characteristics of a substance, the determination of subacute toxicity should be carried out after initial information on toxicity has been obtained by acute testing. The 14-day repeated dose oral study provides information on the health hazard likely to arise from repeated short-term exposure by the oral route over a very limited period of time. It has been designed to permit the determination of the no-observed-adverse-effect level and toxic effects associated with continuous or repeated exposure to a test substance for 14 days and to evaluate reversibility, persistence, and delayed occurrence of toxic effects during a 14-day follow-up recovery period. The test is not capable of determining those effects that have a long latency period for development (e.g., carcinogenicity and life shortening). It will provide information on target organs and the possibility of accumulation, and can be used in selecting dose levels for subchronic studies and for establishing safety criteria for short-term human exposure.

(2) Definitions. Subacute oral toxicity is the manifestation of adverse effect(s) occurring as a result of the repeated daily exposure of experimental animals to a substance by the oral route for 14 days.

(3) Principle of the test method. The test substance is administered orally in graduated daily doses to several groups of experimental animals, one dose level per group, for a period of 14 days. During the period of administration the animals are observed daily to detect signs of toxicity. Animals which die during the period of administration are necropsied. At the conclusion of the test, all animals, except the satellite group, are necropsied and histopathological examinations are carried out. The satellite group is necropsied after the 14-day recovery period.

(4) Satellite group (Rodent only). A satellite group of 20 animals (10 animals per sex) shall be treated with the high dose level for 14 days and observed for reversibility, persistence, and delayed occurrence of toxic effects for a post-treatment recovery period of at least 14 days.

(5) Dose levels and dose selection. In subacute toxicity tests, it is desirable to have a dose response relationship as well as a NOAEL. Therefore, at least 3 dose levels with a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest exposure level)
shall be used. Doses shall be spaced appropriately to produce test groups with a range of toxic effects. The data should be sufficient to produce a dose-response curve.

(6) Exposure conditions. The animals are dosed with the test substance every day for 14 days.

(7) Observation period. All animals shall be observed daily during the 14-day exposure period.

(8) Observation period of satellite group. Animals in the satellite group scheduled for follow-up observations shall be kept for at least 14 days further without treatment to detect recovery from, or persistence of, and delayed onset of toxic effects and shall be observed daily.

(9) Administration of test substance. For substances of low toxicity, it is important to ensure that when administered in the drinking water, by gavage, in the diet, or in capsules, the quantities of the test substance involved do not interfere with normal nutrition. When the test substance is administered in the diet, either a constant dietary concentration (ppm) or a constant dose level in terms of the animals' body weight shall be used; the alternative used shall be specified in the final test report.

(10) Time of administration of test substance. For a substance administered by gavage or capsule, the dose shall be given at approximately the same time each day, and adjusted on day 7 to maintain a constant dose level in terms of animal body weight.

(11) Observation of animals. At the end of the 14-day exposure period, all survivors, except those in the satellite group, shall be necropsied. All survivors in the satellite group shall be necropsied after a recovery period of at least 14 days.

(12) Hematology determinations. Certain hematological determinations shall be carried out at least two times during the test period; just prior to initiation of dosing if adequate historical baseline data are not available (baseline data) and just prior to terminal sacrifice at the end of the test period. Hematology determinations which are appropriate to all studies are: Hematocrit, hemoglobin concentration, erythrocyte count, total and differential leucocyte count, and a measure of clotting potential such as clotting time, prothrombin time, thromboplastin time, or platelet count.

(13) Clinical biochemical determinations. Certain clinical biochemical determinations on blood should be carried out at least two times: just prior to initiation of dosing (if adequate historical baseline data are not available) and just prior to terminal sacrifice at the end of the test period. Test areas which are considered appropriate to all studies are: Electrolytes, blood glucose, ammonia, blood urea nitrogen, calcium, phosphorus, potassium, fasting glucose (with the period of fasting appropriate to the species), serum alanine aminotransferase, serum aspartate aminotransferase, gamma glutamyl transpeptidase, urea nitrogen, albumin, blood creatinine, and total serum protein measurements. Other determinations which may be necessary for an adequate toxicological evaluation include: analyses of lipids, hormones, acid/base balance, methemoglobin, and cholinesterase activity. Additional clinical biochemistry may be employed, where necessary, to extend the investigation of observed effects.

(14) Histopathology. Histopathology of the lungs of all animals shall be performed. Special attention to examination of the lungs of rodents shall be made for evidence of infection since this provides a convenient assessment of the state of health of the animals.

(15) Evaluation of the study results. The findings of a subacute oral toxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the toxic effects and the necropsy and histopathological findings. The evaluation will include the relationship between the dose of the test substance and the presence or absence, the incidence and severity, of abnormalities, including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects. A properly
conducted subacute test should provide a satisfactory estimation of a NOAEL.

(ii) Reporting requirements. (A) Each subacute test shall be completed and the final report submitted to EPA within 12 months of the date specified in paragraph (d)(1) of this section, except for 1,1,2,2-tetrachloroethane. The subacute testing for 1,1,2,2-tetrachloroethane. The subacute testing for 1,1,2,2-tetrachloroethane shall be completed and the final report submitted to EPA by February 15, 1996.

(B) Except for 1,3,5-trimethylbenzene, a progress report shall be submitted to EPA beginning 6 months after the date specified in paragraph (d)(1) of this section and at 6-month intervals thereafter until the final report is submitted to EPA. The progress report for 1,3,5-trimethylbenzene shall be submitted to EPA by April 10, 1995.

(2) Subchronic toxicity—(i) Required testing. (A) An oral 90-day subchronic toxicity test shall be conducted with 1,3,5-trimethylbenzene in accordance with §798.2650 of this chapter except for the provisions in §798.2650(e)(3), (e)(7)(i), and (e)(11)(v). The tests shall be performed using drinking water. However, if, due to poor stability or palatability, a drinking water test is not feasible for a given substance, that substance shall be administered either by oral gavage, in the diet, or in capsules.

(B) For the purpose of this section, the following provisions also apply:

(1) Satellite group (Rodent only). A satellite group of 20 animals (10 animals per sex) shall be treated with the high dose level for 90 days and observed for reversibility, persistence, and delayed occurrence of toxic effects for a post-treatment period of appropriate length, normally not less than 28 days.

(2) Histopathology. Histopathology of the lungs of all animals shall be performed. Special attention to examination of the lungs of rodents shall be made for evidence of infection since this provides a convenient assessment of the state of health of the animals.

(ii) Reporting requirements. (A) The subchronic testing for chloroethane shall be completed and the final report submitted to EPA by June 27, 1995. The subchronic testing for 1,1-dichloroethane and 1,1,2,2-tetrachloroethane shall be completed and the final report submitted to EPA by August 27, 1995. The subchronic testing for 1,3,5-trimethylbenzene shall be completed and the final report submitted to EPA by April 10, 1995.

(B) For each test, a progress report shall be submitted to EPA beginning 9 months after the date specified in paragraph (d)(1) of this section and at 6-month intervals thereafter until the final report is submitted to EPA.

(d) Effective date. (1) This section is effective on December 27, 1993, except for paragraphs (a)(1), (a)(2), (c)(1)(i)(A), (c)(1)(ii)(A), (c)(1)(ii)(B), (c)(2)(i)(A), and (c)(2)(ii)(A). The effective date for paragraphs (a)(2), (c)(3)(ii)(B), and (c)(2)(ii)(A) is September 29, 1995. The effective date for paragraphs (a)(1), (c)(1)(i)(A), and (c)(2)(i)(A) is February 27, 1996. The effective date for paragraph (c)(1)(ii)(A) is June 30, 1997.

(2) The guidelines and other test methods cited in this section are referenced as they exist on the effective date of the final rule.

Subparts E–G [Reserved]

Subpart H—Health Effects Test Guidelines

SOURCE: 62 FR 43824, Aug. 15, 1997, unless otherwise noted.

§799.9135 TSCA acute inhalation toxicity with histopathology.

(a) Scope. This section is intended to meet the testing requirements under section 4 of the Toxic Substances Control Act (TSCA). In the assessment and evaluation of the potential human health effects of chemical substances, it is appropriate to test for acute inhalation toxic effects. The goals of this test are to characterize the exposure-response relationship for sensitive endpoints following acute exposure and to characterize toxicologic response following acute high exposures. The
latter is of particular concern in relation to spills and other accidental releases. This testing is designed to determine the gross pathology and histopathology resulting from acute inhalation exposure to a substance. Because toxic effects on the respiratory tract are of particular concern following inhalation exposure, several indicators of respiratory toxicity consisting of histopathology on fixed tissue and evaluation of cellular and biochemical parameters in bronchoalveolar lavage fluid should be employed. The respiratory histopathology consists of specialized techniques to preserve tissues of the respiratory tract in order to allow detailed microscopic examination to identify adverse effects of chemical substances on this organ system. The bronchoalveolar lavage is designed to be a rapid screening test to provide an early indicator of pulmonary toxicity by examining biochemical and cytologic endpoints of material from the lungs of animals exposed to potentially toxic chemical substances. These acute tests are designed to assess the relationship, if any, between the animals' exposure to the test substance and to demonstrate relationship between the animals' exposure and the incidence and severity of observed abnormalities, including gross or histopathologic lesions, body weight changes, effects on mortality, and any other toxic effects. These acute tests are not intended to provide a complete evaluation of the toxicologic effects of a substance, and additional functional and morphological evaluations may be necessary to assess completely the potential effects produced by a chemical substance. Additional tests may include longer-term exposures, or more in-depth evaluation of specific organ systems as indicated by signs of toxicity following acute exposure.

(b) Source. This a new section developed by the United States Environmental Protection Agency.

(c) Definitions. The following definitions apply to this section.

Aerodynamic diameter (d_{ae}) refers to the size of particles. It is the diameter of a sphere of unit density that behaves aerodynamically (has the same settling velocity in air) as the particle of the test substance. It is used to compare particles of different size, shape, and density, and to predict where in the respiratory tract such particles may be primarily deposited.

Exposure response is the relationship between the exposure concentration and the measured toxic response, whether expressed as a group mean ± standard deviation) in the case of a continuous variable or as incidence in the case of a quantal variable. This definition should not preclude the exploration of other dose metrics in establishing this relationship.

Geometric standard deviation (GSD) is a dimensionless number equal to the ratio between the mass median aerodynamic diameter (MMAD) and either 84% or 16% of the diameter size distribution (e.g., MMAD = 2 µm; 84% = 4 µm; GSD = 4/2 = 2.0.) The MMAD, together with the GSD, describe the particle size distribution of an aerosol. Use of the GSD may not be valid for non-lognormally distributed aerosols. (If the size distribution deviates from the lognormal, it shall be noted).

Inhalability is the ratio of the number concentration of particles of a certain aerodynamic diameter, d_{in}, that are inspired through the nose or mouth to the number concentration of the same d_{in} present in the inspired volume of ambient air. In humans, inhalability can exceed 15 µm d_{in}, whereas inhalability dramatically decreases for particles above 4 µm d_{in} in small laboratory animals.

Lower respiratory tract consists of those structures of the respiratory tract below the larynx.

Mass geometric mean aerodynamic diameter or the mass median aerodynamic diameter (MMAD) is the calculated aerodynamic diameter that divides the particles of an aerosol (a gaseous suspension of fine liquid or solid particles) in half, based on the weight of the particles. By weight, 50% of the particles will be larger than the MMAD and 50% of the particles will be smaller than the MMAD.

Particle regional deposition is the fraction of inhaled particles that deposits in the specific region of the respiratory tract. The major mechanisms of particle deposition in the respiratory tract...
include impaction, sedimentation, diffusion, interception, and electrostatic precipitation. The deposition mechanism that is dominant for a given region depends on the respiratory tract architecture and ventilation rate of the species and the aerosol particle size and distribution. The respiratory tract in both humans and various experimental mammals can be divided into three regions on the basis of structure, size, and function:

(1) The extrathoracic region or upper respiratory tract that includes the nose, mouth, nasopharynx, oropharynx, laryngopharynx, and larynx.

(2) The tracheobronchial region that includes the trachea, bronchi, and bronchioles (including the terminal bronchioles).

(3) The alveolar region that includes the respiratory bronchioles (if present in the species), alveolar ducts, alveolar sacs, and alveoli.

Respiratory effects are any adverse effects on the structure or functions of the respiratory system related to exposure to a chemical substance. Target organ is any organ found to be a target of toxicity in the 4-hour (hr) high concentration group as a result of:

(1) The initial histopathologic examination (respiratory tract, liver, kidney, gross lesions); or

(2) The retrospective histopathologic examination of archived organs triggered by their identification as targets of toxicity in a 90-day study.

Toxic effects are any adverse changes (a change that is statistically and biologically significant) in the structure or function of an experimental animal as a result of exposure to a chemical substance.

Upper respiratory tract consists of those structures of the respiratory tract above and including the larynx.

(d) Principle of the test method. The test substance shall be administered to several groups of experimental animals; one concentration level and duration being used per group. Bronchoalveolar lavage shall be used to evaluate early effects on the respiratory system by examining changes in the content of the lavage fluid of the lung. At 24 hrs following exposure, the animals shall be sacrificed and necropsied, and tissue samples from the respiratory tract and other major organs will be prepared for microscopic examination. The exposure levels at which significant toxic effects on the respiratory organ system are produced are compared to those levels that produce other toxic effects. As triggered by the results of the 4-hr test, additional exposure periods of 1 hr and 8 hrs will be required to determine the effect of exposure time on the toxicity observed. A 1-hr exposure study can be elected as an option to provide data suitable for risk assessment for very short duration exposures as may occur from chemical releases. In the absence of adequate toxicological data for 1-hr exposure, the Agency will extrapolate to shorter-term exposures from the 4-hr data on the basis of concentration alone. This is a conservative method of extrapolation, consistent with general Agency methods for deriving criteria for short-term exposure from longer-term studies (a concentration x time extrapolation would result in higher concentration for a shorter duration).

(e) Test procedures—(1) Animal selection—(i) Species. In general, the laboratory rat and mouse should be used. Under some circumstances, other species, such as the hamster or guinea pig, may be more appropriate, and if these or other species are used, justification should be provided.

(ii) Strain. If rats and mice are used, the use of the F344 rat and the B6C3F1 mouse is preferred to facilitate comparison with existing data.

(iii) Age. Young adults shall be used. The weight variation of animals used in a test should not exceed 61% 20% of the mean weight for each species.

(iv) Sex. Equal numbers of animals of each sex shall be used for each concentration level. The females shall be nulliparous and nonpregnant.

(v) Health status. Body weight and feed consumption are not sufficient indicators of the health status of animals prior to initiating an inhalation toxicity study. Prior to initiating the study, animals shall be monitored for known viral and bacterial respiratory pathogens determined by conventional microbiological assays (e.g., serology). The animals shall be free from pathogens at the start of exposure.
(2) Number of animals. At least five males and five females shall be used in each concentration/duration and control group. Animals shall be randomly assigned to treatment and control groups.

(3) Control groups. The control group shall be a sham-treated group. Except for treatment with the test substance, animals in the control group shall be handled in a manner identical to the test-group animals. Where a vehicle is used to help generate an appropriate concentration of the substance in the atmosphere, a vehicle control group shall be used. If the 4- and 8-hr exposure studies are conducted concurrently, a concurrent 8-hr sham-exposed control group may serve as the control group for both the 4-hr and the 8-hr exposure studies, provided there is adequate historical control data showing no changes in histopathology or bronchoalveolar lavage of controls exposed for 4 and 8 hrs. Similarly, if the optional 1-hr exposure study is conducted concurrently with the 4- and/or 8-hr study, the concurrent control group for those studies may also be used for the 1-hr study, provided adequate historical control data show no changes in histopathology or bronchoalveolar lavage between controls exposed for these time periods.

(4) Concentration level and concentration selection. For the 4-hr study, at least three concentrations shall be used in addition to the control group. Ideally, the data generated from the test should be sufficient to produce an exposure-response curve. A rationale for concentration selection should be provided to indicate that the selected concentrations will maximally support detection of concentration-response relationship. The high concentration should be clearly toxic or a limit concentration, but should not result in an incidence of fatalities that would preclude a meaningful evaluation of the data. The lowest concentration should define a no-observed-adverse-effects level (NOAEL).

(i) Limit concentration. For aerosols and particles, the high concentrations need not be greater than 2 mg/L, or concentrations that cannot maintain a particle size distribution having an MMAD between 1 and 4 µm (i.e., a particle size that permits inhalability and deposition throughout the respiratory tract). For fibers, the bivariate distribution of length and diameter must ensure inhalability. For gases and vapors, the concentrations need not be greater than 50,000 ppm or 50% of the lower explosive limit, whichever is lower. If a test at an aerosol or particulate exposure of 2 mg/L (actual concentration of respirable substance) for 4 hrs or, where this is not feasible, the maximum attainable concentration, using the procedures described for this study, produces no observable toxic effects, then a full study using three concentrations will not be necessary. Similarly, if a test at a gas or vapor exposure of 50,000 ppm or 50% of the lower explosive limit, whichever is lower, produces no observable toxic effects, then a full study using three concentrations will not be necessary.

(ii) 8-hr study and optional 1-hr study. If the 8-hr study is triggered, three concentrations shall be tested. These concentrations should allow for the determination of an effect level and a NOAEL. If the option to perform a 1-hr study is elected, three concentrations shall be selected and tested in a similar manner.

(5) Inhalation exposure. Animals can be exposed to the substance by either a nose-only procedure or in a whole-body exposure chamber.

(i) Inhalation chambers. The animals shall be tested in inhalation equipment designed to sustain a dynamic airflow for nose-only exposures of at least 300 ml/minute/animal or an airflow for whole-body exposures of at least 12 to 15 air changes per hr and ensure an adequate oxygen content of at least 19% and an evenly distributed exposure atmosphere. Where a whole-body chamber is used, its design shall minimize crowding by providing individual caging. As a general rule, to ensure stability of a chamber atmosphere, the total “volume” of the test animals should not exceed 5% of the volume of the test chamber.
(ii) Environmental conditions. The temperature at which the test is performed shall be maintained at 22 °C (±2 °C). Ideally, the relative humidity should be maintained between 40% and 60%, but in certain instances (e.g., tests using water as a vehicle), this may not be practical.

(iii) Exposure periodicity. For acute testing, the exposure design shall enable 4 hrs of exposure to the target concentrations, as defined by an average of ± 5% for gases and vapors and ± 15% for particles and aerosols. If triggered by the results of the 4-hr exposure, additional testing shall be conducted in a comparable manner using an 8-hr exposure period.

(6) Physical measurements. Measurements or monitoring shall be made of the following:

(i) Chemical purity of the test material shall be analyzed.

(ii) The rate of airflow shall be monitored continuously, but shall be recorded at least every 30 minutes.

(iii) The actual concentrations of the test substance shall be measured in the breathing zone. During the exposure period, the actual concentrations of the test substance shall be held as constant as practical, monitored continuously or intermittently depending on the method of analysis, and recorded at least at the beginning, at an intermediate time, and at the end of the exposure period. Well-established and published monitoring methods should be used where available. If no standard methods are available, then accuracy and precision information must be supplied.

(iv) During the development of the generating system, appropriate particle size analysis shall be performed to establish the stability of the aerosol. During exposure, analysis should be conducted as often as necessary to determine the consistency of particle size distribution. The particle size distribution shall have an MMAD between 1 and 4 µm. The particle size of hygroscopic materials shall be small enough when dry to assure that the size of the particle at saturation will still have an MMAD between 1 and 4 µm. Characterization for fibers shall include the bivariate distribution of length and diameter; this distribution must ensure inhalability.

(v) If the test substance is present in a mixture, the mass and composition of the entire mixture, as well as the principal compound, shall be measured.

(vi) Temperature and humidity shall be monitored continuously, but shall be recorded at least every 30 minutes.

(7) Food and water during exposure period. Food shall be withheld during exposure. Water may also be withheld in certain cases.

(8) Observation period. The bronchoalveolar lavage and respiratory pathology shall be conducted 24 hrs following exposure to allow expression of signs of toxicity. There is concern that some latency time will be required to allow migration of cells and macromolecules into the lungs following exposure, and that some pathology may require macromolecular synthesis or degradation before cell damage develops.

(9) Gross pathology. (i) All animals shall be subjected to a full gross necropsy which includes examination of orifices and the cranial, thoracic, and abdominal cavities and their contents.

(ii) At least the lungs, liver, kidneys, adrenals, brain, and gonads shall be weighed wet, as soon as possible after dissection to avoid drying.

(iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination: All gross lesions; brain-including sections of medulla/pons; cerebellar cortex and cerebral cortex; pituitary; thyroid/parathyroid; thymus; heart; sternum with bone marrow; salivary glands; liver; spleen; kidneys; adrenals; pancreas; gonads; accessory genital organs (epididymis, prostate, and, if present, seminal vesicles); aorta; skin; gall bladder (if present); esophagus; stomach; duodenum; jejunum; ileum; cecum; colon; rectum; urinary bladder; representative lymph nodes; thigh musculature; peripheral nerve; spinal cord at three levels cervical, midthoracic, and lumbar; and eyes. Respiratory tract tissues shall also be preserved in a suitable medium.

(10) Histopathology. The following histopathology shall be performed:
§ 799.9135

40 CFR Ch. I (7–1–99 Edition)

(i) Full histopathology shall be performed on the respiratory tract, liver and kidney of all animals in the control and high concentration groups. The histopathology of the respiratory tract is described under paragraph (e)(11) of this section.

(ii) All gross lesions which differ from controls in frequency, distribution, type, or severity in all concentration groups.

(iii) Target organs in all animals, as indicated by the observations in the high concentration group in this study. Histopathologic examination of target organs in animals at all concentration levels (rather than only to the extent necessary to define the NOAEL) can support the application of exposure-response analyses such as the benchmark concentration approach.

(iv) Archived organs identified as targets of toxicity from results of the 90-day study (if a 90-day study is required for this substance) should be elevated in the high concentration animals of the 4-hr acute study to determine if they are also targets of acute toxicity.

(11) Respiratory tract histopathology.

(i) Representative sections of the respiratory tract shall be examined histologically. These shall include the trachea, major conducting airways, alveolar region, terminal and respiratory bronchioles (if present), alveolar ducts and sacs, and interstitial tissues.

(ii) Care shall be taken that the method used to kill the animal does not result in damage to the tissues of the upper or lower respiratory tract. The lungs shall be infused with a fixative while in an inflated state of fixed pressure.

(iii) The upper respiratory tract shall be examined for histopathologic lesions. This examination shall use a minimum of four sections located as specified under paragraphs (e)(11)(iii)(A) through (e)(11)(iii)(D) of this section. An evaluation of the nasal vestibule shall be conducted. The method described by the reference under paragraph (h)(11) of this section should be given consideration. The use of additional sections shall be left to the discretion of the study pathologist, but consideration should be given to additional sections as recommended in the reference under paragraph (h)(8) of this section to ensure adequate evaluation of the entire upper respiratory tract, particularly the nasopharyngeal meatus. The following transverse sections shall be examined:

 (A) Immediately posterior to the upper incisor teeth.
 (B) At the incisor papilla.
 (C) At the level of the first upper molar teeth.
 (D) At the second palatal ridge.

(iv) The laryngeal mucosa shall be examined for histopathologic changes. Sections of the larynx to be examined include the epithelium covering the base of the epiglottis, the ventral pouch, and the medial surfaces of the vocal processes of the arytenoid cartilages.

(12) Bronchoalveolar lavage. (i) Animals can be exposed to the substance by either a nose-only procedure or in a whole-body exposure chamber.

(ii) Care should be taken that the method used to kill the animal results in minimum changes in the fluid of the lungs of the test animals.

(iii) At the appropriate time, the test animals shall be killed and the heart-lung including trachea removed in bloc. Alternatively, lungs can be lavaged in situ. If the study will not be compromised, one lobe of the lungs may be used for lung lavage while the other is fixed for histologic evaluation. The lungs should be lavaged using physiological saline. The lavages shall consist of two washes, each of which consists of approximately 80% (e.g., 5 ml in rats and 1 ml in mice) of the total lung volume. Additional washes merely tend to reduce the concentrations of the material collected. The lung lavage fluid shall be stored on ice at 5°C until assayed.

(iv) The following parameters shall be determined in the lavage fluid as indicators of cellular damage in the lungs: total protein, cell count, and percent leukocytes. In addition, a phagocytosis assay shall be performed to determine macrophage activity. Assay methods described in the references under paragraphs (h)(1) and (h)(3) of this section may be used.

(13) Combined protocol. The tests described may be combined with any other toxicity study, as long as none of
the requirements of either are violated by the combination.

(f) Triggered testing. If no adverse effects are seen in the 4-hr study as compared with controls, no further testing is necessary. If the 4-hr study shows positive effects in histopathology or the bronchoalveolar lavage, an 8-hr study shall be conducted. Only those tissues showing positive results in the 4-hr study must be pursued in the follow-up 8-hr study. Similarly, if the option to perform a 1-hr study is exercised only those tissues showing positive results in the 4-hr study shall be pursued.

(g) Data reporting and evaluation. The final test report shall include the following information:

(1) Description of equipment and test methods. A description of the general design of the experiment and any equipment used shall be provided.

(i) Description of exposure apparatus, including design, type, dimensions, source of air, system for generating particles, aerosols, gasses, and vapors, method of conditioning air, treatment of exhaust air, and the method of housing animals in a test chamber.

(ii) Description of the equipment for measuring temperature, humidity, and particulate aerosol concentration and size.

(iii) Exposure data shall be tabulated and presented with mean values and measure of variability (e.g., standard deviation) and should include:

(A) Chemical purity of the test material.

(B) Airflow rates through the inhalation equipment.

(C) Temperature and humidity of air.

(D) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by the volume of air).

(E) Actual concentration in test breathing zone.

(F) Particle size distribution (e.g., MMAD with GSD) and the bivariate distribution of fiber length and diameter, where appropriate.

(2) Results—(i) General group animal data. The following information shall be arranged by test group exposure level:

(A) Number of animals exposed.

(B) Number of animals dying.

(C) Number of animals showing overt signs of toxicity.

(D) Pre- and post-exposure body weight change in animals, and weight change during the observation period.

(ii) Counts and incidence of gross alterations observed at necropsy in the test and control groups. Data shall be tabulated to show:

(A) The number of animals used in each group and the number of animals in which any gross lesions were found.

(B) The number of animals affected by each different type of lesion, and the locations and frequency of each type of lesion.

(iii) Counts and incidence of general histologic alterations in the test group. Data shall be tabulated to show:

(A) The number of animals used in each group and the number of animals in which any histopathologic lesions were found.

(B) The number of animals affected by each different type of lesion, and the locations, frequency, and average grade of each type of lesion.

(iv) Counts and incidence of respiratory histopathologic alterations by the test group. Data shall be tabulated to show:

(A) The number of animals used in each group and the number of animals in which any histopathologic lesions were found.

(B) The number of animals affected by each different type of lesion, and the locations, frequency, and average grade of each type of lesion.

(v) Results of the bronchoalveolar lavage study. Data shall be tabulated to show:

(A) The amount of administered lavage fluid and recovered lavage fluid for each test animal.

(B) The magnitude of change of biochemical and cytologic indices in lavage fluids at each test concentration for each animal.

(C) Results shall be quantified as amount of constituent/mL of lavage fluid. This assumes that the amount of lavage fluid recovered is a representative sample of the total lavage fluid.

(3) Evaluation of data. The findings from this acute study should be evaluated in the context of preceding and/or concurrent toxicity studies and any correlated functional findings. The
evaluation shall include the relationship between the concentrations of the test substance and the presence or absence, incidence, and severity of any effects. The evaluation should include appropriate statistical analyses, for example, parametric tests for continuous data and non-parametric tests for the remainder. Choice of analyses should consider tests appropriate to the experimental design, including repeated measures. The report must include concentration-response curves for the bronchoalveolar lavage and tables reporting observations at each concentration level for necropsy findings and gross, general, and respiratory system histopathology.

(h) Reference. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

health hazards likely to arise from repeated exposures by the inhalation route over a limited period of time. It will provide information on target organs and the possibilities of accumulation, and can be of use in selecting concentration levels for chronic studies and establishing safety criteria for human exposure. Hazards of inhaled substances are influenced by the inherent toxicity and by physical factors such as volatility and particle size.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.3465 (June 1996 Public Draft). This source is available at the address in paragraph (h) of this section.

(c) Definitions. The following definitions apply to this section.

Aerodynamic equivalent diameter is defined as the diameter of a unit density sphere having the same terminal settling velocity as the particle in question, whatever its size, shape, and density. It is used to predict where in the respiratory tract such particles may be deposited.

Concentration in a subchronic inhalation study is the amount of test substance administered via inhalation for a period of 90-days. Concentration is expressed as weight of the test substance per unit volume of air (milligrams per liter or parts per million).

Cumulative toxicity is the adverse effects of repeated exposures occurring as a result of prolonged action on, or increased concentration of the administered test substance or its metabolites in susceptible tissues.

Inhalable diameter refers to that aerodynamic diameter of a particle which is considered to be inhalable for the organism. It is used to refer to particles which are capable of being inhaled and may be deposited anywhere within the respiratory tract.

Mass median aerodynamic diameter (MMAD) is the median aerodynamic diameter and along with the geometric standard deviation (GSD) is used to describe the particle size distribution of any aerosol statistically based on the weight and size of the particles. Fifty percent of the particles by weight will be smaller than the median diameter and 50% of the particles will be larger.

No-observed-effect-level (NOEL) is the maximum concentration used in a study which produces no adverse effects.

Subchronic inhalation toxicity is the adverse effects occurring as a result of the repeated daily exposure of experimental animals to a chemical by inhalation for part (approximately 10%) of a life span.

(d) Limit test. If exposure at a concentration of 1 mg/L (expected human exposure may indicate the need for a higher concentration), or where this is not possible due to physical or chemical properties of the test substance, the maximum attainable concentration produces no observable toxic effects, then a full study using three concentrations might not be necessary.

(e) Test procedures—(1) Animal selection—(i) Species and strain. A mammalian species shall be used for testing. A variety of rodent species may be used, although the rat is the preferred species. Commonly used laboratory strains should be employed. If another mammalian species is used, the tester shall provide justification/reasoning for its selection. (ii) Age/weight. Testing should be started with young healthy animals as soon as possible after weaning and acclimatization. (B) Dosing of rodents should generally begin no later than 8 weeks of age. (C) At the commencement of the study the weight variation of animals used shall not exceed ±20% of the mean weight for each sex. (iii) Sex. (A) Equal numbers of animals of each sex shall be used at each concentration. (B) Females shall be nulliparous and nonpregnant. (iv) Numbers. (A) At least 20 animals (10 females and 10 males) should be used for each test group. (B) If interim sacrifices are planned, the number of animals shall be increased by the number of animals scheduled to be sacrificed before the completion of the study. (C) To avoid bias, the use of adequate randomization procedures for the proper allocation of animals to test and control groups is required.
§ 799.9346

(D) Each animal shall be assigned a unique identification number. Dead animals, their preserved organs and tissues, and microscopic slides shall be identified by reference to the animal's unique number.

(v) Husbandry. (A) Animals may be group-caged by sex, but the number of animals per cage must not interfere with clear observation of each animal. The biological properties of the test substance or toxic effects (e.g., morbidity, excitability) may indicate a need for individual caging. Animals must be housed individually in inhalation chambers during exposure to aerosols.

(B) The temperature of the experimental animal rooms should be at 22 ±3 °C.

(C) The relative humidity of the experimental animal rooms should be 30-70%.

(D) Where lighting is artificial, the sequence should be 12 h light/12 h dark.

(E) Control and test animals should be fed from the same batch and lot. The feed should be analyzed to assure adequacy of nutritional requirements of the species tested and for impurities that might influence the outcome of the test. For feeding, conventional laboratory diets may be used with an unlimited supply of drinking water.

(F) The study should not be initiated until animals have been allowed a period of acclimatization/quarantine to environmental conditions, nor should animals from outside sources be placed on test without an adequate period of quarantine. An acclimatization period of at least 5 days is recommended.

(2) Control and test substances. (i) Whenever it is necessary to formulate the test substance with a vehicle for aerosol generation, the vehicle ideally should not elicit toxic effects or substantially alter the chemical or toxicological properties of the test substance.

(ii) One lot of the test substance should be used, if possible throughout the duration of the study, and the research sample should be stored under conditions that maintain its purity and stability. Prior to the initiation of the study, there should be a characterization of the test substance, including the purity of the test substance and, if technically feasible, the name and quantities of unknown contaminants and impurities.

(iii) Control groups. A concurrent control group is required. This group shall be an untreated or sham-treated control group. Except for treatment with the test substance, animals in the control group shall be handled in a manner identical to the test group animals. Where a vehicle other than water is used to generate a substance, a vehicle control group should be used. If the toxic properties of the vehicle are not known or cannot be made available, both untreated and vehicle control groups are required.

(iv) Satellite group. A satellite group of 20 animals (10 animals per sex) may be treated with the high concentration level for 90 days and observed for reversibility, persistence, or delayed occurrence of toxic effects for a post-treatment period of appropriate length, normally not less than 28 days. In addition, a control group of 20 animals (10 animals of each sex) should be added to the satellite study.

(v) Concentration levels and concentration selection. (i) In subchronic toxicity tests, it is desirable to have a concentration-response relationship as well as a NOEL. Therefore, at least three concentration levels plus a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest exposure level) shall be used. Concentrations should be spaced appropriately to produce test groups with a range of toxic effects. The data should be sufficient to produce a concentration-response curve.

(ii) The highest concentration should result in toxic effects but not produce an incidence of fatalities which would prevent a meaningful evaluation.

(iii) The intermediate concentrations should be spaced to produce a gradation of toxic effects.

(iv) The lowest concentration should produce no evidence of toxicity.

(v) In the case of potentially explosive test substances, care should be taken to avoid generating explosive concentrations.

(6) Administration of the test substance. Animals should be exposed to the test substance for 6 h per day on a 7-day per
week basis for a period of at least 90 days. Based primarily on practical considerations, exposure for 6 h per day on a 5-day per week basis is acceptable.

(7) Observation period. The animals should be observed for a period of 90 days. Animals in the satellite group (if used) scheduled for follow-up observations should be kept for at least 28 days further without treatment to assess reversibility.

(8) Exposure specifications. (i) The animals shall be tested in dynamic inhalation equipment designed to sustain a minimum airflow of 10 air changes per hr, an adequate oxygen content of at least 19%, and uniform conditions throughout the exposure chamber. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into the surrounding areas. It is not normally necessary to measure chamber oxygen concentration if airflow is adequate.

(ii) The selection of a dynamic inhalation chamber should be appropriate for the test substance and test system. Where a whole body chamber is used to expose animals to an aerosol, individual housing must be used to minimize crowding of the test animals and maximize their exposure to the test substance. To ensure stability of a chamber atmosphere, the total volume occupied by the test animals shall not exceed 5% of the volume of the test chamber. It is recommended, but not required, that nose-only or head-only exposure be used for aerosol studies in order to minimize oral exposures due to animals licking compound off their fur. Heat stress should be minimized.

(iii) The temperature at which the test is performed should be maintained at 22±2 °C. The relative humidity should be maintained between 40 and 60%, but in certain instances (e.g., use of water vehicle) this may not be practicable.

(9) Physical measurements. Measurements or monitoring shall be made of the following:

(i) The rate of airflow shall be monitored continuously but recorded at least three times during the exposure.

(ii) The actual concentrations of the test substance shall be measured in the animal's breathing zone. During the exposure period, the actual concentrations of the test substance shall be held as constant as practicable and monitored continuously or intermittently depending on the method of analysis. Chamber concentration may be measured using gravimetric or analytical methods as appropriate. If trial run measurements are reasonably consistent ±10% for liquid, aerosol, gas, or vapor; ±20% for dry aerosol), then two measurements should be sufficient. If measurements are not consistent, three to four measurements should be taken. Whenever the test substance is a formulation, or it is necessary to formulate the test substance with a vehicle for aerosol generation, the analytical concentration must be reported for the total formulation, and not just for the active ingredient (AI). If, for example, a formulation contains 10% AI and 90% inerts, a chamber analytical limit concentration of 2 mg/L would consist of 0.2 mg/L of the AI. It is not necessary to analyze inert ingredients provided the mixture at the animal's breathing zone is analogous to the formulation; the grounds for this conclusion must be provided in the study report. If there is some difficulty in measuring chamber analytical concentration due to precipitation, non-homogeneous mixtures, volatile components, or other factors, additional analyses of inert components may be necessary.

(iii) During the development of the generating system, particle size analysis shall be performed to establish the stability of aerosol concentrations with respect to particle size. The MMAD particle size range should be between 1-3 µm. The particle size of hygroscopic materials should be small enough when dry to assure that the size of the swollen particle will still be within the 1-3 µm range. Measurements of aerodynamic particle size in the animal's breathing zone should be sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be taken.
(iv) Temperature and humidity shall be monitored continuously and recorded at least three times during an exposure.

(10) Feed and water during exposure period. Feed shall be withheld during exposure. Water may also be withheld during exposure.

(11) Observation of animals. (i) During and following exposure, observations are made and recorded systematically; individual records should be maintained for each animal. It is not always possible to observe animals during exposure in a whole-body chamber.

(ii) Observations shall be made at least once each day for morbidity and mortality. Appropriate actions should be taken to minimize loss of animals to the study (e.g., Necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(iii) A careful clinical examination shall be made at least once weekly. Observations should be detailed and carefully recorded, preferably using explicitly defined scales. Observations should include, but not be limited to, evaluation of skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects such as salivation, central nervous system effects, including tremors and convulsions, changes in the level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or bizarre behavior (e.g., self-mutilation, walking backwards).

(iv) Signs of toxicity should be recorded as they are observed including the time of onset, degree and duration.

(v) Individual weights of animals shall be determined shortly before the test substance is administered, and weekly thereafter.

(vi) Food consumption shall also be determined weekly if abnormal body weight changes are observed.

(vii) Moribund animals should be removed and sacrificed when noticed and the time of death should be recorded as precisely as possible.

(viii) At termination, all survivors in the treatment groups shall be sacrificed.

(12) Clinical pathology. Hematology and clinical chemistry examinations shall be made on all animals, including controls, of each sex in each group. The hematology and clinical chemistry parameters should be examined at terminal sacrifice at the end of the study. Overnight fasting of the animals prior to blood sampling is recommended. Overall, there is a need for a flexible approach in the measures examined, depending on the observed or expected effects from a chemical, and in the frequency of measures, depending on the duration of potential chemical exposures.

(i) Hematology. The recommended parameters are red blood cell count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, white blood cell count, differential leukocyte count, platelet count, and a measure of clotting potential, such as prothrombin time or activated partial thromboplastin time.

(ii) Clinical chemistry. (A) Parameters which are considered appropriate to all studies are electrolyte balance, carbohydrate metabolism, and liver and kidney function. The selection of specific tests will be influenced by observations on the mode of action of the substance and signs of clinical toxicity.

(B) The recommended clinical chemistry determinations are potassium, sodium, glucose, total cholesterol, urea nitrogen, creatinine, total protein and albumin. More than 2 hepatic enzymes, (such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, sorbitol dehydrogenase, or gamma glutamyl transpeptidase) should also be measured. Measurements of additional enzymes (of hepatic or other origin) and bile acids, may also be useful.

(C) If a test chemical has an effect on the hematopoietic system, reticulocyte counts and bone marrow cytology may be indicated.

(D) Other determinations that should be carried out if the test chemical is known or suspected of affecting related measures include calcium, phosphorus, fasting triglycerides, hormones, methemoglobin, and cholinesterases.

(iii) Optionally, the following urinalysis determinations could be performed during the last week of the study using...
timed urine volume collection: appearance, volume, osmolality or specific gravity, pH, protein, glucose, and blood/blood cells.

(13) Ophthalmological examination. Ophthalmological examinations shall be made on all animals prior to the administration of the test substance and on all high concentration and control groups at termination. If changes in the eyes are detected, all animals in the other concentration groups shall be examined.

(14) Gross pathology. (i) All animals shall be subjected to a full gross necropsy which includes examination of the external surface of the body, all orifices and the cranial, thoracic, and abdominal cavities and their contents. (ii) At least the liver, kidneys, brain, and gonads shall be trimmed and weighed wet, as soon as possible after dissection to avoid drying. (iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination:

(A) Digestive system.
(1) Salivary glands.
(2) Esophagus.
(3) Stomach.
(4) Duodenum.
(5) Jejunum.
(6) Ileum.
(7) Cecum.
(8) Colon.
(9) Rectum.
(10) Liver.
(11) Pancreas.
(12) Gallbladder (dogs).

(B) Nervous system.
(1) Brain (multiple sections).
(2) Pituitary.
(3) Peripheral nerve(s).
(4) Spinal cord (three levels).
(5) Eyes (retina, optic nerve).

(C) Glandular system.
(1) Adrenals.
(2) Parathyroids.
(3) Thyroids.

(D) Respiratory system.
(1) Trachea.
(2) Lung.
(3) Pharynx.
(4) Larynx.
(5) Nose.

(E) Cardiovascular/hematopoietic system.
(1) Aorta (thoracic).
(2) Heart.
(3) Bone marrow.
(4) Lymph nodes.
(5) Spleen.
(6) Thymus.

(F) Urinary system.
(1) Kidneys.

(2) Urinary bladder.
(3) Prostate.

(4) Testes.

(5) Epididymides.

(G) Reproductive system.
(1) Lacrimal gland.
(2) Mammary gland.
(3) Skin.

(H) Skeletal muscle.

(5) All gross lesions and masses.
(6) Sternum and/or femur.

(15) Histopathology. (i) The following histopathology shall be performed:

(A) Full histopathology on the respiratory tract and other organs and tissues, listed under paragraph (e)(15)(iii) of this section, of all animals in the control and high exposure groups and all animals that died or were killed during the study.

(B) All gross lesions in all animals.

(C) Target organs in all animals.

(D) Lungs of all animals. Special attention to examination of the respiratory tract should be made for evidence of infection as this provides a convenient assessment of the state of health of the animals.

(E) When a satellite group is used, histopathology shall be performed on tissues and organs identified as showing effects in the treated groups.

(ii) If excessive early deaths or other problems occur in the high exposure group compromising the significance of the data, the next concentration should be examined for complete histopathology.

(iii) An attempt should be made to correlate gross observations with microscopic findings.

(iv) Tissues and organs designated for microscopic examination should be fixed in 10% buffered formalin or a recognized suitable fixative as soon as necropsy is performed and no less than 48 hrs prior to trimming. Tissues should
be trimmed to a maximum thickness of 0.4 cm for processing.

(f) Data and reporting—(1) Treatment of results. (i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions, and the percentage of animals displaying each type of lesion.

(ii) All observed results (quantitative and qualitative) should be evaluated by an appropriate statistical method. Any generally accepted statistical method may be used; the statistical methods including significance criteria should be selected during the design of the study.

(2) Evaluation of study results. The findings of the subchronic inhalation toxicity study should be evaluated in conjunction with the findings of preceding studies and considered in terms of the observed toxic effects and the necropsy and histopathological findings. The evaluation will include the relationship between the concentration of the test substance and duration of exposure, and the presence or absence, the incidence and severity, of abnormalities, including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects. A properly conducted subchronic test should provide a satisfactory estimation of a no-effect level. It also can indicate the need for an additional longer-term study and provide information on the selection of concentrations.

(3) Test report. In addition to reporting requirements specified under 40 CFR part 792, subpart J, the following specific information shall be reported. Both individual and summary data should be presented.

(i) Test substance characterization shall include:
(A) Chemical identification.
(B) Lot or batch number.
(C) Physical properties.
(D) Purity/impurities.
(E) Identification and composition of any vehicle used.

(ii) Test system information shall include:
(A) Species and strain of animals used and rationale for selection if other than that recommended.
(B) Age, sex, and body weight.
(C) Test environment including cage conditions, ambient temperature, humidity, and light/dark periods.
(D) Identification of animal diet.
(E) Acclimation period.

(iii) Test procedure information shall include:
(A) Method of randomization used.
(B) Full description of experimental design and procedure.
(C) Exposure regimen including concentration levels, methods, and volume.

(D) Description of test conditions; the following exposure conditions shall be reported:
(1) Description of exposure apparatus including design, type, volume, source of air, system for generating aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.
(2) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size should be described.

(E) Exposure data shall be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and include:
(1) Airflow rates through the inhalation equipment.
(2) Temperature and humidity of air.
(3) Actual (analytical or gravimetric) concentration in the breathing zone.
(4) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).
(5) Particle size distribution, calculated mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD).
(6) Explanation as to why the desired chamber concentration and/or particle size could not be achieved (if applicable) and the efforts taken to comply with this aspect of the section.

(iv) Test results information shall include:
(A) Group animal data. Tabulation of toxic response data by species, strain, sex and exposure level for:
(1) Number of animals exposed.
§ 799.9370 TSCA prenatal developmental toxicity.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. This guideline for developmental toxicity testing is designed to provide general information concerning the effects of exposure on the pregnant test animal and on the developing organism; this may include death, structural abnormalities, or altered growth and an assessment of maternal effects. For information on testing for functional deficiencies and other postnatal effects, the guidelines for the two-generation reproductive toxicity study and the developmental neurotoxicity study should be consulted.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.3700 (February 1996 Public Draft). This source is available at the address in paragraph (h) of this section.

(c) Good laboratory practice standards. The study shall be conducted in compliance with 40 CFR part 792—Good Laboratory Practice Standards.

(d) Principle of the test method. The test substance is administered to pregnant animals at least from implantation to one day prior to the expected day of parturition. Shortly before the expected date of delivery, the pregnant females are terminated, the uterine contents are examined, and the fetuses are processed for visceral and skeletal evaluation.

(e) Test procedures—(1) Animal selection—(i) Species and strain. It is recommended that testing be performed in the most relevant species, and that laboratory species and strains which are

(2) Number of animals showing signs of toxicity.
(3) Number of animals dying.
(B) Individual animal data. Data should be presented as summary (group mean) as well as for individual animals.
(1) Time of death during the study or whether animals survived to termination.
(2) Time of observation of each abnormal sign and its subsequent course.
(3) Body weight data.
(4) Feed consumption data, when collected.
(5) Results of ophthalmological examination, when performed.
(6) Results of hematological tests performed.
(7) Results of clinical chemistry tests performed.
(8) Results of urinalysis tests performed.
(9) Necropsy findings, including absolute and relative organ weight data.
(10) Detailed description of all histopathological findings.
(11) Statistical treatment of results, where appropriate.

(g) Quality control. A system shall be developed and maintained to assure and document adequate performance of laboratory staff and equipment. The study shall be conducted in compliance with 40 CFR part 792—Good Laboratory Practice Standards.

(h) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE–B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

(3) U.S. Environmental Protection Agency. Office of Pesticide Programs, Health Effects Division, Interim policy for particle size and limit concentration issues in inhalation toxicity studies (February 1, 1994).

commonly used in prenatal developmental toxicity testing be employed. The preferred rodent species is the rat and the preferred non-rodent species is the rabbit.

(ii) Age. Young adult animals shall be used.

(iii) Sex. Nulliparous female animals shall be used at each dose level. Animals should be mated with males of the same species and strain, avoiding the mating of siblings, if parentage is known. Day 0 in the test is the day on which a vaginal plug and/or sperm are observed in the rodent or that insemination is performed or observed in the rabbit.

(iv) Number of animals. Each test and control group shall contain a sufficient number of animals to yield approximately 20 animals with implantation sites at necropsy.

(2) Administration of test and control substances—(i) Dose levels and dose selection. (A) At least three-dose levels and a concurrent control shall be used. Healthy animals shall be randomly assigned to the control and treatment groups, in a manner which results in comparable mean body weight values among all groups. The dose levels should be spaced to produce a gradation of toxic effects. Unless limited by the physical/chemical nature or biological properties of the test substance, the highest dose shall be chosen with the aim to induce some developmental and/or maternal toxicity but not death or severe suffering. In the case of maternal mortality, this should not be more than approximately 10%. The intermediate dose levels should produce minimal observable toxic effects. The lowest dose level should not produce any evidence of either maternal or developmental toxicity (i.e., the no-observed-adverse-effect level, NOAEL) or should be at or near the limit of detection for the most sensitive endpoint. Two- or four-fold intervals are frequently optimal for spacing the dose levels, and the addition of a fourth test group is often preferable to using very large intervals (e.g., more than a factor of 10) between dosages.

(B) It is desirable that additional information on metabolism and pharmacokinetics of the test substance be available to demonstrate the adequacy of the dosing regimen. This information should be available prior to testing.

(C) The highest dose tested need not exceed 1,000 mg/kg/day by oral or dermal administration, or 2 mg/L (or the maximum attainable concentration) by inhalation, unless potential human exposure data indicate the need for higher doses. If a test performed at the limit dose level, using the procedures described for this study, produces no observable toxicity and if an effect would not be expected based upon data from structurally related compounds, then a full study using three-dose levels may not be considered necessary.

(ii) Control group. (A) A concurrent control group shall be used. This group shall be a sham-treated control group or a vehicle-control group if a vehicle is used in administering the test substance.

(B) The vehicle control group should receive the vehicle in the highest volume used.

(C) If a vehicle or other additive is used to facilitate dosing, consideration should be given to the following characteristics: Effects on the absorption, distribution, metabolism, or retention of the test substance; effects on the chemical properties of the test substance which may alter its toxic characteristics; and effects on the food or water consumption or the nutritional status of the animals.

(iii) Route of administration. (A) The test substance or vehicle is usually administered orally by intubation.

(B) If another route of administration is used, for example, when the route of administration is based upon the principal route of potential human exposure, the tester shall provide justification and reasoning for its selection, and appropriate modifications may be necessary. Care should be taken to minimize stress on the maternal animals. For materials administered by inhalation, whole-body exposure is preferable to nose-only exposure due to the stress of restraint required for nose-only exposure.

(C) The test substance shall be administered at approximately the same time each day.

(D) When administered by gavage or dermal application, the dose to each
animal shall be based on the most recent individual body weight determination.

(iv) Dosing schedule. At minimum, the test substance shall be administered daily from implantation to the day before cesarean section on the day prior to the expected day of parturition. Alternatively, if preliminary studies do not indicate a high potential for preimplantation loss, treatment may be extended to include the entire period of gestation, from fertilization to approximately 1 day prior to the expected day of termination.

(f) Observation of animals—(1) Maternal. (i) Each animal shall be observed at least once daily, considering the peak period of anticipated effects after dosing. Mortality, moribundity, pertinent behavioral changes, and all signs of overt toxicity shall be recorded at this cageside observation. In addition, thorough physical examinations shall be conducted at the same time maternal body weights are recorded.

(ii) Animals shall be weighed on day 0, at termination, and at least at 3-day intervals during the dosing period.

(iii) Food consumption shall be recorded on at least 3-day intervals, preferably on days when body weights are recorded.

(iv) (A) Females shall be terminated immediately prior to the expected day of delivery.

(B) Females showing signs of abortion or premature delivery prior to scheduled termination shall be killed and subjected to a thorough macroscopic examination.

(v) At the time of termination or death during the study, the dam shall be examined macroscopically for any structural abnormalities or pathological changes which may have influenced the pregnancy. Evaluation of the dams during cesarean section and subsequent fetal analyses should be conducted without knowledge of treatment group in order to minimize bias.

(vi) (A) Immediately after termination or as soon as possible after death, the uteri shall be removed and the pregnancy status of the animals ascertained. Uteri that appear non-gravid shall be further examined (e.g. by ammonium sulfide staining) to confirm the nonpregnant status.

(B) Each gravid uterus (with cervix) shall be weighed. Gravid uterine weights should not be obtained from dead animals if autolysis or decomposition has occurred.

(C) The number of corpora lutea shall be determined for pregnant animals.

(D) The uterine contents shall be examined for embryonic or fetal deaths and the number of viable fetuses. The degree of resorption shall be described in order to help estimate the relative time of death of the conceptus.

(2) Fetal. (i) The sex and body weight of each fetus shall be determined.

(ii) Each fetus shall be examined for external anomalies.

(iii) Fetuses shall be examined for skeletal and soft tissue anomalies (e.g., variations and malformations or other categories of anomalies as defined by the performing laboratory).

(A) For rodents, approximately one-half of each litter shall be prepared by standard techniques and examined for skeletal alterations, preferably bone and cartilage. The remainder shall be prepared and examined for soft tissue anomalies, using appropriate serial sectioning or gross dissection techniques. It is also acceptable to examine all fetuses by careful dissection for soft tissue anomalies followed by an examination for skeletal anomalies.

(B) For rabbits, all fetuses shall be examined for both soft tissue and skeletal alterations. The bodies of these fetuses should be evaluated by careful dissection for soft-tissue anomalies, followed by preparation and examination for skeletal anomalies. An adequate evaluation of the internal structures of the head, including the eyes, brain, nasal passages, and tongue, should be conducted for at least half of the fetuses.

(g) Data and reporting—(1) Treatment of results. Data shall be reported individually and summarized in tabular form, showing for each test group the types of change and the number of dams, fetuses, and litters displaying each type of change.

(2) Evaluation of study results. The following shall be provided:
§ 799.9370 40 CFR Ch. I (7−1−99 Edition)

(i) Maternal and fetal test results, including an evaluation of the relationship, or lack thereof, between the exposure of the animals to the test substance and the incidence and severity of all findings.

(ii) Criteria used for categorizing fetal external, soft tissue, and skeletal anomalies.

(iii) When appropriate, historical control data to enhance interpretation of study results. Historical data on litter incidence and fetal incidence within litter, when used, should be compiled, presented, and analyzed in an appropriate and relevant manner. In order to justify its use as an analytical tool, information such as the dates of study conduct, the strain and source of the animals, and the vehicle and route of administration should be included.

(iv) Statistical analysis of the study findings should include sufficient information on the method of analysis, so that an independent reviewer/statistician can reevaluate and reconstruct the analysis. In the evaluation of study data, the litter should be considered the basic unit of analysis.

(v) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported. Both individual and summary data should be presented.

(i) Species and strain.

(ii) Maternal toxic response data by dose, including but not limited to:

(A) The number of animals at the start of the test, the number of animals surviving, the number pregnant, and the number aborting.

(B) Day of death during the study or whether animals survived to termination.

(C) Day of observation of each abnormal clinical sign and its subsequent course.

(D) Body weight and body weight change data, including body weight change adjusted for gravid uterine weight.

(E) Food consumption and, if applicable, water consumption data.

(F) Necropsy findings, including gravid uterine weight.

(iii) Developmental endpoints by dose for litters with implants, including:

(A) Corpora lutea counts.

(B) Implantation data, number and percent of live and dead fetuses, and resorptions (early and late).

(C) Pre- and postimplantation loss calculations.

(iv) Developmental endpoints by dose for litters with live fetuses, including:

(A) Number and percent of live offspring used.

(B) Sex ratio.

(C) Fetal body weight data, preferably by sex and with sexes combined.

(D) External, soft tissue, and skeletal malformation and variation data. The total number and percent of fetuses and litters with any external, soft tissue, or skeletal alteration, as well as the types and incidences of individual anomalies, should be reported.

(v) The numbers used in calculating all percentages or indices.

(vi) Adequate statistical treatment of results.

(vii) A copy of the study protocol and any amendments should be included.

(h) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE–B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

§ 799.9380 TSCA reproduction and fertility effects.
(a) Scope. This section is intended to meet the testing requirements under section 4 of the TSCA. This section is for two-generation reproduction testing and is designed to provide general information concerning the effects of a test substance on the integrity and
performance of the male and female reproductive systems, including gonadal function, the estrous cycle, mating behavior, conception, gestation, parturition, lactation, and weaning, and on the growth and development of the offspring. The study may also provide information about the effects of the test substance on neonatal morbidity, mortality, target organs in the offspring, and preliminary data on prenatal and postnatal developmental toxicity and serve as a guide for subsequent tests. Additionally, since the study design includes in utero as well as postnatal exposure, this study provides the opportunity to examine the susceptibility of the immature/neonatal animal.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.3800 (February 1996 Public Draft). This source is available at the address in paragraph (g) of this section.

(c) Good laboratory practice standards. The study shall be conducted in compliance with 40 CFR part 792—Good Laboratory Practice Standards.

(d) Principle of the test method. The test substance is administered to parental (P) animals prior to and during their mating, during the resultant pregnancies, and through the weaning of their F1 offspring. The substance is then administered to selected F1 offspring during their growth into adulthood, mating, and production of an F2 generation, until the F2 generation is weaned.

(e) Test procedures—(1) Animal selection—(i) Species and strain. The rat is the most commonly used species for testing. If another mammalian species is used, the tester shall provide justification/reasoning for its selection, and appropriate modifications will be necessary. Healthy parental animals, which have been acclimated to laboratory conditions for at least 5 days and have not been subjected to previous experimental procedures, should be used. Strains of low fecundity shall not be used.

(ii) Age. Parental (P) animals shall be 5 to 9 weeks old at the start of dosing. The animals of all test groups should be of uniform weight, age, and parity as nearly as practicable, and should be representative of the species and strain under study.

(iii) Sex. (A) For an adequate assessment of fertility, both males and females shall be studied. (B) The females shall be nulliparous and nonpregnant.

(iv) Number of animals. Each control group shall contain a sufficient number of mating pairs to yield approximately 20 pregnant females. Each test group shall contain a similar number of mating pairs.

(v) Identification of animals. Each animal shall be assigned a unique identification number. For the P generation, this should be done before dosing starts. For the F1 generation, this should be done for animals selected for mating; in addition, records indicating the litter of origin shall be maintained for all selected F1 animals.

(2) Administration of test and control substances—(i) Dose levels and dose selection. (A) At least three-dose levels and a concurrent control shall be used. Healthy animals should be randomly assigned to the control and treatment groups, in a manner which results in comparable mean body weight values among all groups. The dose levels should be spaced to produce a gradation of toxic effects. Unless limited by the physical/chemical nature or biological properties of the test substance, the highest dose should be chosen with the aim to induce some reproductive and/or systemic toxicity but not death or severe suffering. In the case of parental mortality, this should not be more than approximately 10%. The intermediate dose levels should produce minimal observable toxic effects. The lowest dose level should not produce any evidence of either systemic or reproductive toxicity (i.e., the no-observed-adverse-effect level, NOAEL) or should be at or near the limit of detection for the most sensitive endpoint. Two- or four-fold intervals are frequently optimal for spacing the dose levels, and the addition of a fourth test group is often preferable to using very large intervals (e.g., more than a factor of 10) between dosages.

(B) It is desirable that additional information on metabolism and pharmacokinetics of the test substance be available to demonstrate the adequacy.
of the dosing regimen. This information should be available prior to testing.

(C) The highest dose tested should not exceed 1,000 mg/kg/day (or 20,000 ppm in the diet), unless potential human exposure data indicate the need for higher doses. If a test performed at the limit dose level, using the procedures described for this study, produces no observable toxicity and if an effect would not be expected based upon data from structurally related compounds, then a full study using three dose levels may not be considered necessary.

(ii) Control group. (A) A concurrent control group shall be used. This group shall be an untreated or sham treated group or a vehicle-control group if a vehicle is used in administering the test substance.

(B) If a vehicle is used in administering the test substance, the control group shall receive the vehicle in the highest volume used.

(C) If a vehicle or other additive is used to facilitate dosing, consideration should be given to the following characteristics: Effects on the absorption, distribution, metabolism, or retention of the test substance; effects on the chemical properties of the test substance which may alter its toxic characteristics; and effects on the food or water consumption or the nutritional status of the animals.

(D) If a test substance is administered in the diet and causes reduced dietary intake or utilization, the use of a pair-fed control group may be considered necessary.

(iii) Route of administration. (A) The test substance is usually administered by the oral route (diet, drinking water, or gavage).

(B) If administered by gavage or dermal application, the dosage administered to each animal prior to mating and during gestation and lactation shall be based on the individual animal body weight and adjusted weekly at a minimum.

(C) If another route of administration is used, for example, when the route of administration is based upon the principal route of potential human exposure, the tester should provide justification and reasoning for its selection, and appropriate modifications may be necessary. Care should be taken to minimize stress on the maternal animals and their litters during gestation and lactation.

(D) All animals should be dosed by the same method during the appropriate experimental period.

(iv) Dosing schedule. (A) The animals should be dosed with the test substance on a 7-days-a-week basis.

(B) Daily dosing of the parental (P) males and females shall begin when they are 5 to 9 weeks old. Daily dosing of the F1 males and females shall begin at weaning. For both sexes (P and F1), dosing shall be continued for at least 10 weeks before the mating period.

(C) Daily dosing of the P and F1 males and females shall continue until termination.

(3) Mating procedure—(i) Parental. (A) For each mating, each female shall be placed with a single randomly selected male from the same dose level (1:1 mating) until evidence of copulation is observed or either 3 estrous periods or 2 weeks has elapsed. Animals should be separated as soon as possible after evidence of copulation is observed. If mating has not occurred after 2 weeks or 3 estrous periods, the animals should be separated without further opportunity for mating. Mating pairs should be clearly identified in the data.

(B) Vaginal smears shall be collected daily and examined for all females during mating, until evidence of copulation is observed.

(C) Each day, the females shall be examined for presence of sperm or vaginal plugs. Day 0 of pregnancy is defined as the day a vaginal plug or sperm are found.

(ii) F1 mating. For mating the F1 offspring, at least one male and one female should be randomly selected from each litter for mating with another pup of the same dose level but different litter, to produce the F2 generation.

(iii) Second mating. In certain instances, such as poor reproductive performance in the controls, or in the event of treatment-related alterations in litter size, the adults may be remated to produce an F1b or F2b litter. If production of a second litter is deemed necessary in either generation,
the dams should be remated approximately 1-2 weeks following weaning of the last F1a or F2a litter.

(iv) Special housing. After evidence of copulation, animals that are presumed to be pregnant shall be caged separately in delivery or maternity cages. Pregnant animals shall be provided with nesting materials when parturition is near.

(v) Standardization of litter sizes. (A) Animals should be allowed to litter normally and rear their offspring to weaning. Standardization of litter sizes is optional.

(B) If standardization is performed, the following procedure should be used. On day 4 after birth, the size of each litter may be adjusted by eliminating extra pups by random selection to yield, as nearly as possible, four males and four females per litter or five males and five females per litter. Selective elimination of pups, i.e. based upon body weight, is not appropriate. Whenever the number of male or female pups prevents having four (or five) of each sex per litter, partial adjustment (for example, five males and three females, or four males and six females) is acceptable. Adjustments are not appropriate for litters of eight pups or less.

(4) Observation of animals—(i) Parental. (A) Throughout the test period, each animal shall be observed at least once daily, considering the peak period of anticipated effects after dosing. Mortality, moribundity, pertinent behavioral changes, signs of difficult or prolonged parturition, and all signs of overt toxicity shall be recorded at this cageside examination. In addition, thorough physical examinations should be conducted weekly on each animal.

(B) Parental animals (P and F1) shall be weighed on the first day of dosing and weekly thereafter. Parental females (P and F1) should be weighed at a minimum on approximately gestation days 0, 7, 14, and 21, and during lactation on the same days as the weighing of litters.

(C) During the premating and gestation periods, food consumption shall be measured weekly at a minimum. Water consumption should be measured weekly at a minimum if the test substance is administered in the water.

(D) Estrous cycle length and pattern should be evaluated by vaginal smears for all P and F1 females during a minimum of 3 weeks prior to mating and throughout cohabitation; care should be taken to prevent the induction of pseudopregnancy.

(E) For all P and F1 males at termination, sperm from one testis and one epididymis shall be collected for enumeration of homogenization-resistant spermatids and cauda epididymal sperm reserves, respectively. In addition, sperm from the cauda epididymis (or vas deferens) should be collected for evaluation of sperm motility and sperm morphology.

(1) The total number of homogenization-resistant testicular sperm and cauda epididymal sperm should be enumerated. The method described in the reference under paragraph (g)(8) of this section may be used. Cauda sperm reserves can be derived from the concentration and volume of sperm in the suspension used to complete the qualitative evaluations, and the number of sperm recovered by subsequent mincing and/or homogenizing of the remaining cauda tissue. Enumeration in only control and high-dose P and F1 males may be performed unless treatment-related effects are observed; in that case, the lower dose groups should also be evaluated.

(2) An evaluation of epididymal (or vas deferens) sperm motility should be performed. Sperm should be recovered while minimizing damage (the evaluation techniques as described in the reference under paragraph (g)(8) of this section may be used), and the percentage of progressively motile sperm should be determined either subjectively or objectively. For objective evaluations, an acceptable counting chamber of sufficient depth can be used to effectively combine the assessment of motility with sperm count and sperm morphology. When computer-assisted motion analysis is performed, the derivation of progressive motility relies on user-defined thresholds for average path velocity and straightness or linear index. If samples are videotaped, or images otherwise recorded, at the time of necropsy, subsequent analysis of only control and high-dose P and F1
males may be performed unless treatment-related effects are observed; in that case, the lower dose groups should also be evaluated. In the absence of a video or digital image, all samples in all treatment groups should be analyzed at necropsy.

(3) A morphological evaluation of an epididymal (or vas deferens) sperm sample shall be performed. Sperm (at least 200 per sample) should be examined as fixed, wet preparations (the techniques for such examinations is described in the references under paragraphs (g)(4) and (g)(8) of this section may be used) and classified as either normal (both head and midpiece/tail appear normal) or abnormal. Examples of morphologic sperm abnormalities would include fusion, isolated heads, and misshapen heads and/or tails. Evaluation of only control and high-dose P and F1 males may be performed unless treatment-related effects are observed; in that case, the lower dose groups should also be evaluated.

(ii) Offspring. (A) Each litter should be examined as soon as possible after delivery (lactation day 0) to establish the number and sex of pups, stillbirths, live births, and the presence of gross anomalies. Pups found dead on day 0 should be examined for possible defects and cause of death.

(B) Live pups should be counted, sexed, and weighed individually at birth, or soon thereafter, at least on days 4, 7, 14, and 21 of lactation, at the time of vaginal patency or balanopreputial separation, and at termination.

(C) The age of vaginal opening and preputial separation should be determined for F1 weanlings selected for mating. If there is a treatment-related effect in F1 sex ratio or sexual maturation, anogenital distance should be measured on day 0 for all F2 pups.

(5) Termination schedule. (i) All P and F1 adult males and females should be terminated when they are no longer needed for assessment of reproductive effects.

(ii) F1 offspring not selected for mating and all F2 offspring should be terminated at comparable ages after weaning.

(G) Gross necropsy. (i) At the time of termination or death during the study, all parental animals (P and F1) and when litter size permits at least three pups per sex per litter from the unselected F1 weanlings and the F2 weanlings shall be examined macroscopically for any structural abnormalities or pathological changes. Special attention shall be paid to the organs of the reproductive system.

(ii) Dead pups or pups that are terminated in a moribund condition should be examined for possible defects and/or cause of death.

(iii) At the time of necropsy, a vaginal smear should be examined to determine the stage of the estrous cycle. The uteri of all cohabited females should be examined, in a manner which does not compromise histopathological evaluation, for the presence and number of implantation sites.

(7) Organ weights. (i) At the time of termination, the following organs of all P and F1 parental animals shall be weighed:

(A) Uterus (with oviducts and cervix), ovaries.

(B) Testes, epididymides (total weights for both and cauda weight for either one or both), seminal vesicles (with coagulating glands and their fluids), and prostate.

(C) Brain, pituitary, liver, kidneys, adrenal glands, spleen, and known target organs.

(ii) For F1 and F2 weanlings that are examined macroscopically, the following organs shall be weighed for one randomly selected pup per sex per litter.

(A) Brain.

(B) Spleen and thymus.

(B) Tissue preservation. The following organs and tissues, or representative samples thereof, shall be fixed and stored in a suitable medium for histopathological examination.

(i) For the parental (P and F1) animals:

(A) Vagina, uterus with oviducts, cervix, and ovaries.

(B) One testis (preserved in Bouins fixative or comparable preservative), one epididymis, seminal vesicles, prostate, and coagulating gland.

(C) Pituitary and adrenal glands.

(D) Target organs, when previously identified, from all P and F1 animals selected for mating.
(E) Grossly abnormal tissue.

(ii) For F1 and F2 weanlings selected for macroscopic examination: Grossly abnormal tissue and target organs, when known.

(9) Histopathology—(i) Parental animals. Full histopathology of the organs listed in paragraph (e)(8)(i) of this section shall be performed for ten randomly chosen high dose and control P and F1 animals per sex, for those animals that were selected for mating. Organs demonstrating treatment-related changes shall also be examined for the remainder of the high-dose and control animals and for all parental animals in the low- and mid-dose groups. Additionally, reproductive organs of the low- and mid-dose animals suspected of reduced fertility, e.g., those that failed to mate, conceive, sire, or deliver healthy offspring, or for which estrous cyclicity or sperm number, motility, or morphology were affected, shall be subjected to histopathological evaluation. Besides gross lesions such as atrophy or tumors, testicular histopathological examination should be conducted in order to identify treatment-related effects such as retained spermatids, missing germ cell layers or types, multinucleated giant cells, or sloughing of spermatogenic cells into the lumen. Examination of the intact epididymis should include the caput, corpus, and cauda, which can be accomplished by evaluation of a longitudinal section, and should be conducted in order to identify such lesions as sperm granulomas, leukocytic infiltration (inflammation), aberrant cell types within the lumen, or the absence of clear cells in the cauda epididymal epithelium. The postlactational ovary should contain primordial and growing follicles as well as the large corpora lutea of lactation. Histopathological examination should detect qualitative depletion of the primordial follicle population. A quantitative evaluation of primordial follicles should be conducted for all F1 females; the number of animals, ovarian section selection, and section sample size should be statistically appropriate for the evaluation procedure used. Examination should include enumeration of the number of primordial follicles, which can be combined with small growing follicles (see paragraphs (g)(1) and (g)(2) of this section), for comparison of treated and control ovaries.

(ii) Weanling. For F1 and F2 weanlings, histopathological examination of treatment-related abnormalities noted in macroscopic examination should be considered, if such evaluation were deemed appropriate and would contribute to the interpretation of the study data.

(f) Data and reporting—(1) Treatment of results. Data shall be reported individually and summarized in tabular form, showing for each test group the types of change and the number of animals displaying each type of change.

(2) Evaluation of study results. (i) An evaluation of test results, including the statistical analysis, shall be provided. This should include an evaluation of the relationship, or lack thereof, between the exposure of the animals to the test substance and the incidence and severity of all abnormalities.

(ii) When appropriate, historical control data should be used to enhance interpretation of study results. Historical data, when used, should be compiled, presented, and analyzed in an appropriate and relevant manner. In order to justify its use as an analytical tool, information such as the dates of study conduct, the strain and source of the animals, and the vehicle and route of administration should be included.

(iii) Statistical analysis of the study findings should include sufficient information on the method of analysis, so that an independent reviewer/statistician can reevaluate and reconstruct the analysis.

(iv) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported. Both individual and summary data should be presented.

(i) Species and strain.

(ii) Toxic response data by sex and dose, including indices of mating, fertility, gestation, birth, viability, and lactation; offspring sex ratio; precoital interval, including the number of days
until mating and the number of estrous periods until mating; and duration of gestation calculated from day 0 of pregnancy. The report should provide the numbers used in calculating all indices.

(iii) Day (week) of death during the study or whether animals survived to termination; date (age) of litter termination.

(iv) Toxic or other effects on reproduction, offspring, or postnatal growth.

(v) Developmental milestone data (mean age of vaginal opening and preputial separation, and mean anogenital distance, when measured).

(vi) Number of P and F1 females cycling pattern and mean estrous cycle length.

(vii) Day (week) of observation of each abnormal sign and its subsequent course.

(viii) Body weight and body weight change data by sex for P, F1, and F2 animals.

(ix) Food (and water, if applicable) consumption, food efficiency (body weight gain per gram of food consumed), and test material consumption for P and F1 animals, except for the period of cohabitation.

(x) Total cauda epididymal sperm number, homogenization-resistant testis spermatid number, number and percent of progressively motile sperm, number and percent of morphologically normal sperm, and number and percent of sperm with each identified anomaly.

(xi) Stage of the estrous cycle at the time of termination for P and F1 parental females.

(xii) Necropsy findings.

(xiii) Implantation data and postimplantation loss calculations for P and F1 parental females.

(xiv) Absolute and adjusted organ weight data.

(xv) Detailed description of all histopathological findings.

(xvi) Adequate statistical treatment of results.

(xvii) A copy of the study protocol and any amendments should be included.

(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Nonconfidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

§ 799.9420 TSCA carcinogenicity.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. The objective of a long-term carcinogenicity study is to observe test animals for a major portion of their life span for development of neoplastic lesions during or after exposure to various doses of a test substance by an appropriate route of administration.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.4200 (June 1996 Public Draft). This source is available at the address in paragraph (g) of this section.

(c) Definitions. The following definitions apply to this section.

Carcinogenicity is the development of neoplastic lesions as a result of the repeated daily exposure of experimental animals to a chemical by the oral, dermal, or inhalation routes of exposure.

Cumulative toxicity is the adverse effects of repeated dose occurring as a result of prolonged action on, or increased concentration of, the administered test substance or its metabolites in susceptible tissues.

Dose in a carcinogenicity study is the amount of test substance administered via the oral, dermal or inhalation routes for a period of up to 24 months. Dose is expressed as weight of the test substance (grams, milligrams) per unit body weight of test animal (milligram per kilogram), or as weight of the test substance in parts per million (ppm) in food or drinking water. When exposed via inhalation, dose is expressed as weight of the test substance per unit volume of air (milligrams per liter) or as parts per million.

Target organ is any organ of a test animal showing evidence of an effect induced by a test substance.

(d) Test procedures—(1) Animal selection—(i) Species and strain. Testing shall be performed on two mammalian species. Rats and mice are the species of choice because of their relatively short life spans, limited cost of maintenance, widespread use in pharmacological and toxicological studies, susceptibility to tumor induction, and the availability of inbred or sufficiently characterized strains. Commonly used laboratory strains shall be used. If other mammalian species are used, the tester shall provide justification/reasoning for their selection.

(ii) Age/weight. (A) Testing shall be started with young healthy animals as soon as possible after weaning and acclimatization.

(B) Dosing should generally begin no later than 8 weeks of age.

(C) At commencement of the study, the weight variation of animals used shall not exceed ±20% of the mean weight for each sex.

(ii) Dosing. Studies using prenatal or neonatal animals may be recommended under special conditions.

(iii) Sex. (A) Equal numbers of animals of each sex shall be used at each dose level.

(B) Females shall be nulliparous and nonpregnant.

(iv) Numbers. (A) At least 100 rodents (50 males and 50 females) shall be used at each dose level and concurrent control group.

(B) If interim sacrifices are planned, the number shall be increased by the number of animals scheduled to be sacrificed during the course of the study.

(C) For a meaningful and valid statistical evaluation of long-term exposure and for a valid interpretation of negative results, the number of animals in any group should not fall below 50% at 15 months in mice and 18 months in rats. Survival in any group should not fall below 25% at 18 months in mice and 24 months in rats.

(D) The use of adequate randomization procedures for the proper allocation of animals to test and control groups is required to avoid bias.

(E) Each animal shall be assigned a unique identification number. Dead
animals, their preserved organs and tissues, and microscopic slides shall be identified by reference to the unique numbers assigned.

(v) Husbandry. (A) Animals may be group-caged by sex, but the number of animals per cage must not interfere with clear observation of each animal. The biological properties of the test substance or toxic effects (e.g., morbidity, excitability) may indicate a need for individual caging. Animals should be housed individually in dermal studies and during exposure in inhalation studies.

(B) The temperature of the experimental animal rooms should be 22±3 °C.

(C) The relative humidity of the experimental animal rooms should be 30 to 70%.

(D) Where lighting is artificial, the sequence should be 12 h light/12 h dark.

(E) Control and test animals should be fed from the same batch and lot. The feed should be analyzed to assure uniform distribution and adequacy of nutritional requirements of the species tested and for impurities that might influence the outcome of the test. Animals should be fed and watered ad libitum with food replaced at least weekly.

(F) The study should not be initiated until animals have been allowed a period of acclimatization/quarantine to environmental conditions, nor should animals from outside sources be placed on test without an adequate period of quarantine.

(2) Control and test substances. (i) Where necessary, the test substance is dissolved or suspended in a suitable vehicle. If a vehicle or diluent is needed, it should not elicit toxic effects itself. It is recommended that wherever possible the use of an aqueous solution be considered first, followed by consideration of solution in oil, and finally solution in other vehicles.

(ii) One lot of the test substance should be used, if possible, throughout the duration of the study, and the research sample should be stored under conditions that maintain its purity and stability. Prior to the initiation of the study, there should be a characterization of the test substance, including the purity of the test compound, and, if possible, the name and quantities of contaminants and impurities.

(iii) If the test or control substance is to be incorporated into feed or another vehicle, the period during which the test substance is stable in such a mixture should be determined prior to the initiation of the study. Its homogeneity and concentration should be determined prior to the initiation of the study and periodically during the study. Statistically randomized samples of the mixture should be analyzed to ensure that proper mixing, formulation, and storage procedures are being followed, and that the appropriate concentration of the test or control substance is contained in the mixture.

(3) Control groups. A concurrent control group (50 males and 50 females) is required. This group shall be untreated or if a vehicle is used in administering the test substance, a vehicle control group. If the toxic properties of the vehicle are not known, both untreated and vehicle control groups are required.

(4) Dose levels and dose selection. (i) For risk assessment purposes, at least three dose levels shall be used, in addition to the concurrent control group. Dose levels should be spaced to produce a gradation of effects. A rationale for the doses selected must be provided.

(ii) The highest dose level should elicit signs of toxicity without substantially altering the normal life span due to effects other than tumors. The highest dose should be determined based on the findings from a 90-day study to ensure that the dose used is adequate to assess the carcinogenic potential of the test substance. Thus, the selection of the highest dose to be tested is dependent upon changes observed in several toxicological parameters in subchronic studies. The highest dose tested need not exceed 1,000 mg/kg/day.

(iii) The intermediate-dose level should be spaced to produce a gradation of toxic effects.

(iv) The lowest dose level should produce no evidence of toxicity.
(v) For skin carcinogenicity studies, when toxicity to the skin is a determining factor, the highest dose selected should not destroy the functional integrity of the skin, the intermediate dose should be a minimally irritating dose, and the low dose should be the highest nonirritating dose.

(vi) The criteria for selecting the dose levels for skin carcinogenicity studies, based on gross and histopathologic dermal lesions, are as follows:

(A) Gross criteria for reaching the high dose:
 (1) Erythema (moderate).
 (2) Scaling.
 (3) Edema (mild).
 (4) Alopecia.
 (5) Thickening.

(B) Histologic criteria for reaching the high dose:
 (1) Epidermal hyperplasia.
 (2) Epidermal hyperkeratosis.
 (3) Epidermal parakeratosis.
 (4) Adnexal atrophy/hyperplasia.
 (5) Fibrosis.
 (6) Spongiosis (minimal-mild).
 (7) Epidermal edema (minimal-mild).
 (8) Dermal edema (minimal-moderate).
 (9) Inflammation (moderate).

(C) Gross criteria for exceeding the high dose:
 (1) Ulcers, fissures.
 (2) Exudate/crust (eschar).
 (3) Nonviable (dead) tissues.
 (4) Anything leading to destruction of the functional integrity of the epidermis (e.g., caking, fissuring, open sores, eschar).

(D) Histologic criteria for exceeding the high dose:
 (1) Crust (interfollicular and follicular).
 (2) Microulcer.
 (3) Degeneration/necrosis (mild to moderate).
 (4) Epidermal edema (moderate to marked).
 (5) Dermal edema (marked).
 (6) Inflammation (marked).

(5) Administration of the test substance. The three main routes of administration are oral, dermal, and inhalation. The choice of the route of administration depends upon the physical and chemical characteristics of the test substance and the form typifying exposure in humans.

(i) Oral studies. If the test substance is administered by gavage, the animals are dosed with the test substance on a 7-day per week basis for a period of at least 18 months for mice and hamsters and 24 months for rats. However, based primarily on practical considerations, dosing by gavage or via a capsule on a 5-day per week basis is acceptable. If the test substance is administered in the drinking water or mixed in the diet, then exposure should be on a 7-day per week basis.

(ii) Dermal studies. (A) The animals should be treated with the test substance for at least 6 h/day on a 7-day per week basis for a period of at least 18 months for mice and hamsters and 24 months for rats. However, based primarily on practical considerations, application on a 5-day per week basis is acceptable. Dosing should be conducted at approximately the same time each day.

(B) Fur should be clipped weekly from the dorsal area of the trunk of the test animals. Care should be taken to avoid abrading the skin which could alter its permeability. A minimum of 24 hrs should be allowed for the skin to recover before the next dosing of the animal.

(C) Preparation of test substance. Liquid test substances are generally used undiluted, except as indicated in paragraph (e)(4)(vi) of this section. Solids should be pulverized when possible. The substance should be moistened sufficiently with water or, when necessary, with a suitable vehicle to ensure good contact with the skin. When a vehicle is used, the influence of the vehicle on toxicity of, and penetration of the skin by, the test substance should be taken into account. The volume of application should be kept constant, e.g., less than 100 uL for the mouse and less than 300 uL for the rat. Different concentrations of test solution should be prepared for different dose levels.

(D) The test substance shall be applied uniformly over a shaved area which is approximately 10 percent of the total body surface area. In order to dose approximately 10 percent of the body surface, the area starting at the
scapulae (shoulders) to the wing of the ileum (hipbone) and half way down the flank on each side of the animal should be shaved. With highly toxic substances, the surface area covered may be less, but as much of the area as possible should be covered with as thin and uniform a film as practical.

(iii) Inhalation studies. (A) The animals should be exposed to the test substance for 6 h/day on a 7-day per week basis, for a period of at least 18 months in mice and 24 months in rats. However, based primarily on practical considerations, exposure for 6 h/day on a 5-day per week basis is acceptable.

(B) The animals shall be tested in dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen content of at least 19%, and uniform conditions throughout the exposure chamber. Maintenance of slight negative pressure inside the chamber will prevent leakage of the test substance into surrounding areas.

(C) The selection of a dynamic inhalation chamber should be appropriate for the test substance and test system. Where a whole body chamber is used to expose animals to an aerosol, individual housing must be used to minimize crowding of the test animals and maximize their exposure to the test substance. To ensure stability of a chamber atmosphere, the total volume occupied by the test animals shall not exceed 5% of the volume of the test chamber. It is recommended, but not required, that nose-only or head-only exposure be used for aerosol studies in order to minimize oral exposures due to animals licking compound off their fur. Heat stress to the animals should be minimized.

(D) The temperature at which the test is performed should be maintained at 22±2 °C. The relative humidity should be maintained between 40 to 60%, but in certain instances (e.g., tests of aerosols, use of water vehicle) this may not be practicable.

(E) The rate of air flow shall be monitored continuously but recorded at least three times during exposure.

(F) Temperature and humidity shall be monitored continuously but should be recorded at least every 30 minutes.

(G) The actual concentration of the test substance shall be measured in the breathing zone. During the exposure period, the actual concentrations of the test substance should be held as constant as practicable, monitored continuously or intermittently depending on the method of analysis. Chamber concentrations may be measured using gravimetric or analytical methods as appropriate. If trial run measurements are reasonably consistent (plus or minus 10 percent for liquid aerosol, gas, or vapor; plus or minus 20 percent for dry aerosol), the two measurements should be sufficient. If measurements are not consistent, then three to four measurements should be taken.

(H) During the development of the generating system, particle size analysis shall be performed to establish the stability of aerosol concentrations with respect to particle size. Measurement of aerodynamic particle size in the animals' breathing zone should be measured during a trial run. If median aerodynamic diameter (MMAD) values for each exposure level are within 10% of each other, then two measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be taken. The MMAD particle size range should be between 1-3 μm. The particle size of hygroscopic materials should be small enough to allow pulmonary deposition once the particles swell in the moist environment of the respiratory tract.

(1) Feed shall be withheld during exposure. Water may also be withheld during exposure.

(6) Observation period. It is necessary that the duration of the carcinogenicity study comprise the majority of the normal life span of the strain of animals used. This time period shall not be less than 24 months for rats and 18 months for mice, and ordinarily not longer than 30 months for rats and 24 months for mice. For longer time periods, and where any other species are used, consultation with the Agency in regard to the duration of the study is advised.

(7) Observation of animals. (i) Observations shall be made at least once each
day for morbidity and mortality. Appropriate actions should be taken to minimize loss of animals from the study (e.g., necropsy or refrigeration of those animals found dead and isolation or sacrifice of weak or moribund animals).

(ii) A careful clinical examination shall be made at least once weekly. Observations should be detailed and carefully recorded, preferably using explicitly defined scales. Observations should include, but not be limited to, evaluation of skin and fur, eyes and mucous membranes, respiratory and circulatory effects, autonomic effects such as salivation, central nervous system effects, including tremors and convulsions, changes in the level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength and stereotypes or bizarre behavior (e.g., self-mutilation, walking backwards).

(iii) Body weights shall be recorded individually for all animals; once a week during the first 13 weeks of the study and at least once every 4 weeks, thereafter, unless signs of clinical toxicity suggest more frequent weighing to facilitate monitoring of health status.

(iv) Measurements of feed consumption should be determined weekly during the first 13 weeks of the study and at approximately monthly intervals thereafter unless health status or body weight changes dictate otherwise. Measurement of water consumption should be determined at the same intervals if the test substance is administered by the inhalation route. The organs should be weighed from interim sacrifice animals as well as from at least 10 animals per sex per group at terminal sacrifice.

(iii) The following organs and tissues, or representative samples thereof, shall be preserved in a suitable medium for possible future histopathological examination.

(A) Digestive system.
 (1) Salivary glands.
 (2) Esophagus.
 (3) Stomach.
 (4) Duodenum.
 (5) Jejunum.
 (6) Ileum.
 (7) Cecum.
 (8) Colon.
 (9) Rectum.

(B) Nervous system.
 (1) Brain (multiple sections).
 (2) Pituitary.
 (3) Peripheral nerves.
 (4) Spinal cord (three levels).
 (5) Eyes (retina, optic nerve).

(C) Glandular system.
 (1) Adrenals.
 (2) Parathyroids.
 (3) Thyroids.

(D) Respiratory system.
 (1) Trachea.
 (2) Lung.
 (3) Pharynx.
 (4) Larynx.
 (5) Nose.
(E) Cardiovascular/hematopoietic system.
(1) Aorta (thoracic).
(2) Heart.
(3) Bone marrow.
(4) Lymph nodes.
(5) Spleen.
(F) Urogenital system.
(1) Kidneys.
(2) Urinary bladder.
(3) Prostate.
(4) Testes/epididymides.
(5) Seminal vesicles.
(6) Uterus.
(7) Ovaries.
(8) Female mammary gland.
(G) Other.
(1) Skin.
(2) All gross lesions and masses.
(iv) In inhalation studies, the entire respiratory tract, including nose, pharynx, larynx, and paranasal sinuses should be examined and preserved. In dermal studies, skin from treated and adjacent control skin sites should be examined and preserved.
(v) Inflation of lungs and urinary bladder with a fixative is the optimal method for preservation of these tissues. The proper inflation and fixation of the lungs in inhalation studies is essential for appropriate and valid histopathological examination.
(vi) Information from clinical pathology, and other in-life data should be considered before microscopic examination, since they may provide significant guidance to the pathologist.
(10) Histopathology. (i) The following histopathology shall be performed:
(A) Full histopathology on the organs and tissues under paragraph (d)(9) (iii) of this section of all animals in the control and high dose groups and all animals that died or were killed during the study.
(B) All gross lesions in all animals.
(C) Target organs in all animals.
(ii) If the results show substantial alteration of the animal's normal life span, the induction of effects that might affect a neoplastic response, or other effects that might compromise the significance of the data, the next lower dose levels shall be examined as described in paragraph (d)(10)(i) of this section.
(iii) An attempt should be made to correlate gross observations with microscopic findings.
(iv) Tissues and organs designated for microscopic examination should be fixed in 10 percent buffered formalin or a recognized suitable fixative as soon as necropsy is performed and no less than 48 hours prior to trimming.
(e) Data and reporting—(1) Treatment of results. (i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing lesions, the types of lesions, and the percentage of animals displaying each type of lesion.
(ii) All observed results (quantitative and qualitative) shall be evaluated by an appropriate statistical method. Any generally accepted statistical methods may be used; the statistical methods including significance criteria shall be selected during the design of the study.
(2) Evaluation of study results. (i) The findings of a carcinogenicity study should be evaluated in conjunction with the findings of previous studies and considered in terms of the toxic effects, the necropsy and histopathological findings. The evaluation shall include the relationship between the dose of the test substance and the presence, incidence, and severity of abnormalities (including behavioral and clinical abnormalities), gross lesions, identified target organs, body weight changes, effects on mortality, and any other general or specific toxic effects.
(ii) In any study which demonstrates an absence of toxic effects, further investigation to establish absorption and bioavailability of the test substance should be considered.
(iii) In order for a negative test to be acceptable, it must meet the following criteria: No more than 10% of any group is lost due to autolysis, cannibalism, or management problems; and survival in each group is no less than 50% at 15 months for mice and 18 months for rats. Survival should not fall below 25% at 18 months for mice and 24 months for rats.
(iv) The use of historical control data from an appropriate time period from the same testing laboratory (i.e., the incidence of tumors and other suspect
lesions normally occurring under the same laboratory conditions and in the same strain of animals employed in the test) is helpful for assessing the significance of changes observed in the current study.

(3) Test report. (i) In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported. Both individual and summary data should be presented.

(A) Test substance characterization should include:

(1) Chemical identification.
(2) Lot or batch number.
(3) Physical properties.
(4) Purity/impurities.
(5) Identification and composition of any vehicle used.

(B) Test system should contain data on:

(1) Species and strain of animals used and rationale for selection if other than that recommended.
(2) Age including body weight data and sex.
(3) Test environment including cage conditions, ambient temperature, humidity, and light/dark periods.
(4) Identification of animal diet.
(5) Acclimation period.

(C) Test procedure should include the following data:

(1) Method of randomization used.
(2) Full description of experimental design and procedure.
(3) Dose regimen including levels, methods, and volume.

(4) Test results—(i) Group animal data. Tabulation of toxic response data by species, strain, sex, and exposure level for:

(A) Number of animals exposed.
(B) Number of animals showing signs of toxicity.
(C) Number of animals dying.

(ii) Individual animal data. Data should be presented as summary (group mean) as well as for individual animals.

(A) Time of death during the study or whether animals survived to termination.
(B) Time of observation of each abnormal sign and its subsequent course.
(C) Body weight data.
(D) Feed and water consumption data, when collected.

(E) Results of clinical pathology and immunotoxicity screen when performed.

(F) Necropsy findings including absolute/relative organ weight data.

(G) Detailed description of all histopathological findings.

(H) Statistical treatment of results where appropriate.

(i) Historical control data.

(j) Achieved dose (mg/kg/day) as a time-weighted average if the test substance is administered in the diet or drinking water.

(iii) Inhalation studies. In addition, for inhalation studies the following shall be reported:

(A) Test conditions. The following exposure conditions shall be reported.

(1) Description of exposure apparatus including design, type, dimensions, source of air, system for generating particulate and aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.

(2) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size should be described.

(B) Exposure data. These shall be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and should include:

(1) Airflow rates through the inhalation equipment.

(2) Temperature and humidity of air.

(3) Actual (analytical or gravimetric) concentration in the breathing zone.

(4) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).

(5) Particle size distribution, calculated MMAD and geometric standard deviation (GSD).

(6) Explanation as to why the desired chamber concentration and/or particle size could not be achieved (if applicable) and the efforts taken to comply with this aspect of the sections.

(f) Quality assurance. A system shall be developed and maintained to assure and document adequate performance of laboratory staff and equipment. The study shall be conducted in compliance with 40 CFR part 792—Good Laboratory Practice Standards.
(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE–B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

DNA. In a reversion test this change may occur at the site of the original mutation, or at a second site in the bacterial genome.

Frameshift mutagens are agents that cause the addition or deletion of one or more base pairs in the DNA, thus changing the reading frame in the RNA.

(d) Initial considerations. (1) The bacterial reverse mutation test utilizes prokaryotic cells, which differ from mammalian cells in such factors as uptake, metabolism, chromosome structure and DNA repair processes. Tests conducted in vitro generally require the use of an exogenous source of metabolic activation. In vitro metabolic activation systems cannot mimic entirely the mammalian in vivo conditions. The test therefore does not provide direct information on the mutagenic and carcinogenic potency of a substance in mammals.

(2) The bacterial reverse mutation test is commonly employed as an initial screen for genotoxic activity and, in particular, for point mutation-inducing activity. An extensive data base has demonstrated that many chemicals that are positive in this test also exhibit mutagenic activity in other tests. There are examples of mutagenic agents which are not detected by this test; reasons for these shortcomings can be ascribed to the specific nature of the endpoint detected, differences in metabolic activation, or differences in bioavailability. On the other hand, factors which enhance the sensitivity of the bacterial reverse mutation test can lead to an overestimation of mutagenic activity.

(3) The bacterial reverse mutation test may not be appropriate for the evaluation of certain classes of chemicals, for example highly bactericidal compounds (e.g. certain antibiotics) and those which are thought (or known) to interfere specifically with the mammalian cell replication system (e.g. some topoisomerase inhibitors and some nucleotide analogues). In such cases, mammalian mutation tests may be more appropriate.

(4) Although many compounds that are positive in this test are mammalian carcinogens, the correlation is not absolute. It is dependent on chemical class and there are carcinogens that are not detected by this test because they act through other, non-genotoxic mechanisms or mechanisms absent in bacterial cells.

(e) Test method—(1) Principle. (i) Suspensions of bacterial cells are exposed to the test substance in the presence and in the absence of an exogenous metabolic activation system. In the plate incorporation method, these suspensions are mixed with an overlay agar and plated immediately onto minimal medium. In the preincubation method, the treatment mixture is incubated and then mixed with an overlay agar before plating onto minimal medium. For both techniques, after 2 or 3 days of incubation, revertant colonies are counted and compared to the number of spontaneous revertant colonies on solvent control plates.

(ii) Several procedures for performing the bacterial reverse mutation test have been described. Among those commonly used are the plate incorporation method, the preincubation method, the fluctuation method, and the suspension method. Suggestions for modifications for the testing of gases or vapors are described in the reference in paragraph (g)(12) of this section.

(iii) The procedures described in this section pertain primarily to the plate incorporation and preincubation methods. Either of them is acceptable for conducting experiments both with and without metabolic activation. Some compounds may be detected more efficiently using the preincubation method. These compounds belong to chemical classes that include short chain aliphatic nitrosamines, divalent metals, aldehydes, azo-dyes and diazo compounds, pyrrolizidine alkaloids, allyl compounds and nitro compounds. It is also recognized that certain classes of mutagens are not always detected using standard procedures such as the plate incorporation method or preincubation method. These should be regarded as “special cases” and it is strongly recommended that alternative procedures should be used for their detection. The following “special cases” could be identified (together with examples of procedures that could be used for their detection): azo-dyes and diazo compounds (alternative procedures...
are described in the references in paragraphs (g)(3), (g)(5), (g)(6), and (g)(13) of this section), gases and volatile chemicals (alternative procedures are described in the references in paragraphs (g)(12), (g)(14), (g)(15), and (g)(16) of this section), and glycosides (alternative procedures are described in the references in paragraphs (g)(17) and (g)(18) of this section). A deviation from the standard procedure needs to be scientifically justified.

(2) Description—(i) Preparations—(A) Bacteria. (1) Fresh cultures of bacteria should be grown up to the late exponential or early stationary phase of growth (approximately 10^9 cells per ml). Cultures in late stationary phase should not be used. The cultures used in the experiment shall contain a high titre of viable bacteria. The titre may be demonstrated either from historical control data on growth curves, or in each assay through the determination of viable cell numbers by a plating experiment.

(2) The culture temperature shall be $37 \pm ^{\circ}$C.

(3) At least five strains of bacteria should be used. These should include four strains of S. typhimurium TA 1535; TA 1537 or TA 97a or TA 97; TA 98; and TA 100 that have been shown to be reliable and reproducibly responsive between laboratories. These four S. typhimurium strains have GC base pairs from the primary reversion site and it is known that they may not detect certain oxidizing mutagens, cross-linking agents, and hydrazines. Such substances may be detected by E. coli WP 2 strains or S. typhimurium TA 102 (see reference in paragraph (g)(19) of this section) which have an AT base pair at the primary reversion site. Therefore the recommended combination of strains is:

(i) S. typhimurium TA 1535.
(ii) S. typhimurium TA 1537 or TA 97 or TA 97a.
(iii) S. typhimurium TA 98.
(iv) S. typhimurium TA 100.
(v) E. coli WP 2 uvrA, or E. coli WP 2 uvrA (pK M101), or S. typhimurium TA 102. In order to detect cross-linking mutagens it may be preferable to include TA 102 or to add a DNA repair-proficient strain of E. coli (e.g. E. coli WP 2 or E. coli WP 2 (pK M101)).

(4) Established procedures for stock culture preparation, marker verification and storage should be used. The amino-acid requirement for growth should be demonstrated for each frozen stock culture preparation (histidine for S. typhimurium strains, and tryptophan for E. coli strains). Other phenotypic characteristics should be similarly checked, namely: the presence or absence of R-factor plasmids where appropriate [i.e. ampicillin resistance in strains TA 98, TA 100 and TA 97a or TA 97, WP 2 uvrA and WP 2 uvrA (pK M101), and ampicillin = tetracycline resistance in strain TA 102]; the presence of characteristic mutations (i.e. rfa mutation in S. typhimurium through sensitivity to crystal violet, and uvrA mutation in E. coli or uvrB mutation in S. typhimurium, through sensitivity to ultra-violet light). The strains should also yield spontaneous revertant colony plate counts within the frequency ranges expected from the laboratory's historical control data and preferably within the range reported in the literature.

(B) Medium. An appropriate minimal agar (e.g. containing Vogel-Bonner minimal medium E and glucose) and an overlay agar containing histidine and biotin or tryptophan, to allow for a few cell divisions, shall be used. The procedures described in the references under paragraphs (g)(1), (g)(2), and (g)(9) of this section may be used for this analysis.

(C) Metabolic activation. Bacteria shall be exposed to the test substance both in the presence and absence of an appropriate metabolic activation system. The most commonly used system is a cofactor-supplemented post-mitochondrial fraction (S9) prepared from the livers of rodents treated with enzyme-inducing agents such as Aroclor 1254 (the system described in the references under paragraphs (g)(1) and (g)(2) of this section may be used) or a combination of phenobarbitone and β-naphthoflavone (the system described in the references under paragraphs (g)(18), (g)(20), and (g)(21) of this section may be used). The post-mitochondrial fraction is usually used at concentrations in the range from 5 to 30% v/v in the S9-mix. The choice and condition of a metabolic activation
system may depend upon the class of chemical being tested. In some cases it may be appropriate to utilize more than one concentration of post-mitochondrial fraction. For azo-dyes and diazo-compounds, using a reductive metabolic activation system may be more appropriate (the system described in the references under paragraphs (g)(6) and (g)(13) of this section may be used).

(D) Test substance/preparation. Solid test substances should be dissolved or suspended in appropriate solvents or vehicles and diluted if appropriate prior to treatment of the bacteria. Liquid test substances may be added directly to the test systems and/or diluted prior to treatment. Fresh preparations should be employed unless stability data demonstrate the acceptability of storage.

(ii) Test conditions—(A) Solvent/vehicle. The solvent/vehicle should not be suspected of chemical reaction with the test substance and shall be compatible with the survival of the bacteria and the S9 activity (for further information see the reference in paragraph (g)(22) of this section). If other than well-known solvent/vehicles are used, their inclusion should be supported by data indicating their compatibility. It is recommended that wherever possible, the use of an aqueous solvent/vehicle be considered first. When testing water-unstable substances, the organic solvents used be free of water.

(B) Exposure concentrations. (1) Amongst the criteria to be taken into consideration when determining the highest amount of test substance to be used are cytotoxicity and solubility in the final treatment mixture. It may be useful to determine toxicity and insolubility in a preliminary experiment. Cytotoxicity may be detected by a reduction in the number of revertant colonies, a clearing or diminution of the background lawn, or the degree of survival of treated cultures. The cytotoxicity of a substance may be altered in the presence of metabolic activation systems. Insolubility should be assessed as precipitation in the final mixture under the actual test conditions and evident to the unaided eye. The recommended maximum test concentration for soluble non-cytotoxic substances is 5 mg/plate or 5 µl/plate. For non-cytotoxic substances that are not soluble at 5mg/plate or 5µl/plate, one or more concentrations tested should be insoluble in the final treatment mixture. Test substances that are cytotoxic already below 5mg/plate or 5µl/plate should be tested up to a cytotoxic concentration. The precipitate should not interfere with the scoring.

(2) At least five different analyzable concentrations of the test substance shall be used with approximately half log (i.e.,√10) intervals between test points for an initial experiment. Smaller intervals may be appropriate when a concentration-response is being investigated.

(3) Testing above the concentration of 5 mg/plate or 5 µl/plate may be considered when evaluating substances containing substantial amounts of potentially mutagenic impurities.

(C) Controls. (1) Concurrent strain-specific positive and negative (solvent or vehicle) controls, both with and without metabolic activation, shall be included in each assay. Positive control concentrations that demonstrate the effective performance of each assay should be selected.

(2)(i) For assays employing a metabolic activation system, the positive control reference substance(s) should be selected on the basis of the type of bacteria strains used. The following chemicals are examples of suitable positive controls for assays with metabolic activation:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,10-Dimethylanthracene</td>
<td>[CAS no. 781-43-1]</td>
</tr>
<tr>
<td>7,12-Dimethylbenzanthracene</td>
<td>[CAS no. 57-97-6]</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>[CAS no. 50-32-8]</td>
</tr>
<tr>
<td>Cyclophosphamide (monohydrate)</td>
<td>[CAS no. 50-18-6]</td>
</tr>
<tr>
<td>2-Aminoanthracene</td>
<td>[CAS no. 613-13-8]</td>
</tr>
</tbody>
</table>

(ii) 2-Aminoanthracene should not be used as the sole indicator of the efficacy of the S9-mix. If 2-aminoanthracene is used, each batch of S9 should also be characterized with a mutagen that requires metabolic activation by microsomal enzymes, e.g., benzo[a]pyrene, dimethylbenzanthracene.
(3) For assays performed without metabolic activation system, examples of strain-specific positive controls are:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Sodium azide</td>
<td>[CAS no. 26628-22-8]</td>
<td>TA1535 and TA100</td>
</tr>
<tr>
<td>(b) 2-Nitrofluorene</td>
<td>[CAS no. 607-57-8]</td>
<td>TA 98</td>
</tr>
<tr>
<td>(c) 9-Aminoacridine or ICR 191</td>
<td>[CAS no. 90-45-9] or [CAS no. 17070-45-0]</td>
<td>TA98</td>
</tr>
<tr>
<td>(d) Cumene hydroperoxide</td>
<td>[CAS no. 80-15-9]</td>
<td>TA102</td>
</tr>
<tr>
<td>(e) Mitomycin C</td>
<td>[CAS no. 50-07-7]</td>
<td>WP2 uvrA and TA102</td>
</tr>
<tr>
<td>(f) N-Ethyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide</td>
<td>[CAS no. 70-25-7] or [CAS no. 56-57-5]</td>
<td>WP2, WP2 uvrA and WP2 uvrA (pKM101)</td>
</tr>
<tr>
<td>(g) Furylfuramide (AF-2)</td>
<td>[CAS no. 3688-53-7]</td>
<td>Plasmid-containing strains</td>
</tr>
</tbody>
</table>

(4) Other appropriate positive control reference substances may be used. The use of chemical class-related positive control chemicals may be considered, when available.

(5) Negative controls, consisting of solvent or vehicle alone, without test substance, and otherwise treated in the same way as the treatment groups, shall be included. In addition, untreated controls should also be used unless there are historical control data demonstrating that no deleterious or mutagenic effects are induced by the chosen solvent.

(3) Procedure—(i) Treatment with test substance. (A) For the plate incorporation method, without metabolic activation, usually 0.05 ml or 0.1 ml of the test solutions, 0.1 ml of fresh bacterial culture (containing approximately 10^8 viable cells) and 0.5 ml of sterile buffer are mixed with 2.0 ml of overlay agar. For the assay with metabolic activation, usually 0.5 ml of metabolic activation mixture containing an adequate amount of post-mitochondrial fraction (in the range from 5 to 30% v/v in the metabolic activation mixture) are mixed with the overlay agar (2.0 ml), together with the bacteria and test substance/test solution. The contents of each tube are mixed and poured over the surface of a minimal agar plate. The overlay agar is allowed to solidify before incubation.

(B) For the preincubation method the test substance/test solution is preincubated with the test strain (containing approximately 10^8 viable cells) and sterile buffer or the metabolic activation system (0.5 ml) usually for 20 min, or more at 30-37 °C prior to mixing with the overlay agar and pouring onto the surface of a minimal agar plate. Usually, 0.05 or 0.1 ml of test substance/test solution, 0.1 ml of bacteria, and 0.5 ml of S9-mix or sterile buffer, are mixed with 2.0 ml of overlay agar. Tubes should be aerated during preincubation by using a shaker.

(C) For an adequate estimate of variation, triplicate plating should be used at each dose level. The use of duplicate plating is acceptable when scientifically justified. The occasional loss of a plate does not necessarily invalidate the assay.

(D) Gaseous or volatile substances should be tested by appropriate methods, such as in sealed vessels (methods described in the references under paragraphs (g)(12), (g)(14), (g)(15), and (g)(16) of this section may be used).

(ii) Incubation: All plates in a given assay shall be incubated at 37 °C for 48-72 hrs. After the incubation period, the number of revertant colonies per plate is counted.

(f) Data and reporting—(i) Treatment of results. (i) Data shall be presented as the number of revertant colonies per plate. The number of revertant colonies on both negative (solvent control, and untreated control if used) and positive control plates shall also be given.

(ii) Individual plate counts, the mean number of revertant colonies per plate and the standard deviation shall be presented for the test substance and positive and negative (untreated and/or solvent) controls.

(iii) There is no requirement for verification of a clear positive response. Equivocal results shall be clarified by further testing preferably using
§ 799.9510 40 CFR Ch. I (7–1–99 Edition)

a modification of experimental conditions. Negative results need to be confirmed on a case-by-case basis. In those cases where confirmation of negative results is not considered necessary, justification should be provided. Modification of study parameters to extend the range of conditions assessed should be considered in follow-up experiments. Study parameters that might be modified include the concentration spacing, the method of treatment (plate incorporation or liquid preincubation), and metabolic activation conditions.

(2) Evaluation and interpretation of results. (i) There are several criteria for determining a positive result, such as a concentration-related increase over the range tested and/or a reproducible increase at one or more concentrations in the number of revertant colonies per plate in at least one strain with or without metabolic activation system. Biological relevance of the results should be considered first. Statistical methods may be used as an aid in evaluating the test results. However, statistical significance should not be the only determining factor for a positive response.

(ii) A test substance for which the results do not meet the criteria described under paragraph (f)(2)(i) of this section is considered non-mutagenic in this test

(iii) Although most experiments will give clearly positive or negative results, in rare cases the data set will preclude making a definite judgement about the activity of the test substance. Results may remain equivocal or questionable regardless of the number of times the experiment is repeated.

(iv) Positive results from the bacterial reverse mutation test indicate that a substance induces point mutations by base substitutions or frameshifts in the genome of either Salmonella typhimurium and/or Escherichia coli. Negative results indicate that under the test conditions, the test substance is not mutagenic in the tested species.

(3) Test report. The test report shall include the following information:

(i) Test substance:

(A) Identification data and CAS no., if known.

(B) Physical nature and purity.

(C) Physicochemical properties relevant to the conduct of the study.

(D) Stability of the test substance, if known.

(ii) Solvent/vehicle:

(A) Justification for choice of solvent/vehicle.

(B) Solubility and stability of the test substance in solvent/vehicle, if known.

(iii) Strains:

(A) Strains used.

(B) Number of cells per culture.

(C) Strain characteristics.

(iv) Test conditions:

(A) Amount of test substance per plate (mg/plate or ml/plate) with rationale for selection of dose and number of plates per concentration.

(B) Media used.

(C) Type and composition of metabolic activation system, including acceptability criteria.

(D) Treatment procedures.

(v) Results:

(A) Signs of toxicity.

(B) Signs of precipitation.

(C) Individual plate counts.

(D) The mean number of revertant colonies per plate and standard deviation.

(E) Dose-response relationship, where possible.

(F) Statistical analyses, if any.

(G) Concurrent negative (solvent/vehicle) and positive control data, with ranges, means and standard deviations.

(H) Historical negative (solvent/vehicle) and positive control data, with e.g. ranges, means and standard deviations.

(vi) Discussion of the results.

(vii) Conclusion.

(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

311
§ 799.9530 TSCA in vitro mammalian cell gene mutation test.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced by chemical substances. Suitable cell lines include L5178Y mouse lymphoma cells, the CHO, AS52 and V79 lines of Chinese hamster cells, and TK6 human lymphoblastoid cells under paragraph (g)(1) of this section. In these cell lines the most commonly-used genetic endpoints measure mutagenic mutation at thymidine kinase (TK) and hypoxanthine-guanine phosphoribosyl transferase (HPRT), and a transgene of xanthine-guanine phosphoribosyl transferase (Xprt). The TK, HPRT and Xprt mutation tests detect different spectra of genetic events. The autosomal location of TK and Xprt may allow the detection of genetic events (e.g., large deletions) not detected at the HPRT locus on X-chromosomes (For a discussion see the references in paragraphs (g)(2), (g)(3), (g)(4), (g)(5), and (g)(6) of this section).

(b) Source. The source material used in developing this TSCA test guideline is the OECD guideline 476 (February 1997). This source is available at the address in paragraph (g) of this section.

(c) Definitions. The following definitions apply to this section:

Base pair substitution mutagens are substances which cause substitution of one or several base pairs in the DNA.

Forward mutation is a gene mutation from the parental type to the mutant form which gives rise to an alteration or a loss of the enzymatic activity or the function of the encoded protein.

Frameshift mutagens are substances which cause the addition or deletion of single or multiple base pairs in the DNA molecule.

Mutant frequency is the number of mutant cells observed divided by the number of viable cells.

Phenotypic expression time is a period during which unaltered gene products are depleted from newly mutated cells.

Relative suspension growth is an increase in cell number over the expression period relative to the negative control.

Relative total growth is an increase in cell number over time compared to a control population of cells; calculated as the product of suspension growth relative to the negative control times cloning efficiency relative to negative control.

Survival is the cloning efficiency of the treated cells when plated at the end of the treatment period; survival is usually expressed in relation to the survival of the control cell population.

Viability is the cloning efficiency of the treated cells at the time of plating in selective conditions after the expression period.

(d) Initial considerations. (1) In the in vitro mammalian cell gene mutation test, cultures of established cell lines or cell strains can be used. The cells used are selected on the basis of growth ability in culture and stability of the spontaneous mutation frequency. Tests
conducted in vitro generally require the use of an exogenous source of metabolic activation. This metabolic activation system cannot mimic entirely the mammalian in vivo conditions. Care should be taken to avoid conditions which would lead to results not reflecting intrinsic mutagenicity. Positive results which do not reflect intrinsic mutagenicity may arise from changes in pH, osmolality or high levels of cytotoxicity.

(2) This test is used to screen for possible mammalian mutagens and carcinogens. Many compounds that are positive in this test are mammalian carcinogens; however, there is not a perfect correlation between this test and carcinogenicity. Correlation is dependent on chemical class and there is increasing evidence that there are carcinogens that are not detected by this test because they appear to act through other, non-genotoxic mechanisms or mechanisms absent in bacterial cells.

e) Test method—(1) Principle. (i) Cells deficient in thymidine kinase (TK) due to the mutation TK\(-/-\) are resistant to the cytotoxic effects of the pyrimidine analogue trifluorothymidine (TFT). Thymidine kinase proficient cells are sensitive to TFT, which causes the inhibition of cellular metabolism and halts further cell division. Thus mutant cells are able to proliferate in the presence of TFT, whereas normal cells, which contain thymidine kinase, are not. Similarly, cells deficient in HPRT or XPRT are selected by resistance to 6-thioguanine (TG) or 8-azaguanine (AG). The properties of the test substance should be considered carefully if a base analogue or a compound related to the selective agent is tested in any of the mammalian cell gene mutation tests. For example, any suspected selective toxicity by the test substance for mutant and non-mutant cells should be investigated. Thus, performance of the selection system/agent shall be confirmed when testing chemicals structurally related to the selective agent.

(ii) Cells in suspension or monolayer culture shall be exposed to the test substance, both with and without metabolic activation, for a suitable period of time and subcultured to determine cytotoxicity and to allow phenotypic expression prior to mutant selection. Cytotoxicity is usually determined by measuring the relative cloning efficiency (survival) or relative total growth of the cultures after the treatment period. The treated cultures shall be maintained in growth medium for a sufficient period of time, characteristic of each selected locus and cell type, to allow near-optimal phenotypic expression of induced mutations. Mutant frequency is determined by seeding known numbers of cells in medium containing the selective agent to detect mutant cells, and in medium without selective agent to determine the cloning efficiency (viability). After a suitable incubation time, colonies shall be counted. The mutant frequency is derived from the number of mutant colonies in selective medium and the number of colonies in non-selective medium.

(2) Description—(1) Preparations—(A) Cells. (1) A variety of cell types are available for use in this test including subclones of L5178Y, CHO, CHO-AS52, V79, or TK6 cells. Cell types used in this test should have a demonstrated sensitivity to chemical mutagens, a high cloning efficiency and a stable spontaneous mutant frequency. Cells should be checked for mycoplasma contamination and should not be used if contaminated.

(B) Media and culture conditions. Appropriate culture media and incubation conditions (culture vessels, temperature, CO\(_2\) concentration and humidity)
shall be used. Media should be chosen according to the selective systems and cell type used in the test. It is particularly important that culture conditions should be chosen that ensure optimal growth of cells during the expression period and colony forming ability of both mutant and non-mutant cells.

(C) Preparation of cultures. Cells are propagated from stock cultures, seeded in culture medium and incubated at 37 °C. Prior to use in this test, cultures may need to be cleansed of pre-existing mutant cells.

(D) Metabolic activation. Cells shall be exposed to the test substance both in the presence and absence of an appropriate metabolic activation system. The most commonly used system is a co-factor-supplemented post-mitochondrial fraction (S9) prepared from the livers of rodents treated with enzyme-inducing agents such as Aroclor 1254 or a combination of phenobarbitone and β-naphthoflavone. The post-mitochondrial fraction is usually used at concentrations in the range from 1-10% v/v in the final test medium. The choice and condition of a metabolic activation system may depend upon the class of chemical being tested. In some cases it may be appropriate to utilize more than one concentration of post-mitochondrial fraction. A number of developments, including the construction of genetically engineered cell lines expressing specific activating enzymes, may provide the potential for endogenous activation. The choice of the cell lines used should be scientifically justified (e.g. by the relevance of the cytochrome P450 isoenzyme to the metabolism of the test substance).

(E) Test substance/preparations. Solid test substances should be dissolved or suspended in appropriate solvents or vehicles and diluted if appropriate prior to treatment of the cells. Liquid test substances may be added directly to the test systems and/or diluted prior to treatment. Fresh preparations should be employed unless stability data demonstrate the acceptability of storage.

(ii) Test conditions—(A) Solvent/Vehicle. The solvent/vehicle shall not be suspected of chemical reaction with the test substance and shall be compatible with the survival of the cells and the S9 activity. If other than well-known solvent/vehicles are used, their inclusion should be supported by data indicating their compatibility. It is recommended that wherever possible, the use of an aqueous solvent/vehicle be considered first. When testing water-unstable substances, the organic solvents used should be free of water. Water can be removed by adding a molecular sieve.

(B) Exposure concentrations. (1) Among the criteria to be considered when determining the highest concentration are cytotoxicity and solubility in the test system and changes in pH or osmolality.

(2) Cytotoxicity should be determined with and without metabolic activation in the main experiment using an appropriate indicator of cell integrity and growth, such as relative cloning efficiency (survival) or relative total growth. It may be useful to determine cytotoxicity and solubility in a preliminary experiment.

(3) At least four analyzable concentrations shall be used. Where there is cytotoxicity, these concentrations shall cover a range from the maximum to little or no toxicity; this will usually mean that the concentration levels should be separated by no more than a factor between 2 and √10. If the maximum concentration is based on cytotoxicity then it shall result in approximately 10-20% but not less than 10% relative survival (relative cloning efficiency) or relative total growth. For relatively non-cytotoxic compounds the maximum concentration should be 5 mg/ml, 5 µl/ml, or 0.01 M, whichever is the lowest.

(4) Relatively insoluble substances should be tested up to or beyond their limit of solubility under culture conditions. Evidence of insolubility should be determined in the final treatment medium to which cells are exposed. It may be useful to assess solubility at the beginning and end of the treatment, as solubility can change during the course of exposure in the test system due to presence of cells, S9, serum etc. Insolubility can be detected by using the unaided eye. The precipitate should not interfere with the scoring.
(C) Controls. (1) Concurrent positive and negative (solvent or vehicle) controls both with and without metabolic activation shall be included in each experiment. When metabolic activation is used the positive control chemical shall be one that requires activation to give a mutagenic response.

(2) Examples of positive control substances include:

<table>
<thead>
<tr>
<th>Metabolic Activation condition</th>
<th>Locus</th>
<th>Chemical</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence of exogenous metabolic activation</td>
<td>HPRT</td>
<td>Ethylmethanesulfonate</td>
<td>[CAS no. 62–50–0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylnitrosourea</td>
<td>[CAS no. 759–73–9]</td>
</tr>
<tr>
<td></td>
<td>TK (small and large colonies)</td>
<td>Methylmethanesulfonate</td>
<td>[CAS no. 66–27–3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylmethanesulfonate</td>
<td>[CAS no. 62–50–0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylnitrosourea</td>
<td>[CAS no. 759–73–9]</td>
</tr>
</tbody>
</table>

Presence of exogenous metabolic activation	HPRT	3-Methylcholanthrene	[CAS no. 56–49–5]
	N-Nitrosodimethylamine	[CAS no. 62–75–9]	
	7,12-Dimethylbenzanthracene	[CAS no. 57–97–6]	
	Cyclophosphamide (monohydrate)	[CAS no. 50–18–0]	
	Benzo(a)pyrene	[CAS no. 6055–19–2]	
	3-Methylcholanthrene	[CAS no. 50–32–8]	
	N-Nitrosodimethylamine (for high levels of S-9)	[CAS no. 50–32–8]	

(3) Other appropriate positive control reference substances may be used, e.g., if a laboratory has a historical data base on 5-Bromo 2′-deoxyuridine [CAS No. 59–14–3], this reference substance could be used as well. The use of chemical class-related positive control chemicals may be considered, when available.

(4) Negative controls, consisting of solvent or vehicle alone in the treatment medium, and treated in the same way as the treatment groups shall be included. In addition, untreated controls should also be used unless there are historical control data demonstrating that no deleterious or mutagenic effects are induced by the chosen solvent.

(3) Procedure—(i) Treatment with test substance. (A) Proliferating cells shall be exposed to the test substance both with and without metabolic activation. Exposure shall be for a suitable period of time (usually 3 to 6 hrs is effective). Exposure time may be extended over one or more cell cycles.

(B) Either duplicate or single treated cultures may be used at each concentration tested. When single cultures are used, the number of concentrations should be increased to ensure an adequate number of cultures for analysis (e.g., at least eight analyzable concentrations). Duplicate negative (solvent) control cultures should be used.

(C) Gaseous or volatile substances should be tested by appropriate methods, such as in sealed culture vessels. Methods described in the references under paragraphs (g)(20) and (g)(21) of this section may be used.

(ii) Measurement of survival, viability, and mutant frequency. (A) At the end of the exposure period, cells shall be washed and cultured to determine survival and to allow for expression of the mutant phenotype. Measurement of cytotoxicity by determining the relative cloning efficiency (survival) or relative total growth of the cultures is usually initiated after the treatment period.

(B) Each locus has a defined minimum time requirement to allow near optimal phenotypic expression of newly induced mutants (HPRT and XPRT require at least 6–8 days, and TK at least 2 days). Cells are grown in medium with and without selective agent(s) for determination of numbers of mutants and cloning efficiency, respectively. The measurement of viability (used to calculate mutant frequency) is initiated at the end of the expression time by plating in non-selective medium.
§ 799.9530

(C) If the test substance is positive in the L5178Y TK−/− test, colony sizing should be performed on at least one of the test cultures (the highest positive concentration) and on the negative and positive controls. If the test substance is negative in the L5178Y TK−/− test, colony sizing should also be performed on the negative and positive controls. In studies using TK6TK−/−, colony sizing may also be performed.

(f) Data and reporting—(1) Treatment of results. (i) Data shall include cytotoxicity and viability determination, colony counts and mutant frequencies for the treated and control cultures. In the case of a positive response in the L5178Y TK−/− test, colonies are scored using the criteria of small and large colonies on at least one concentration of the test substance (highest positive concentration) and on the negative and positive control. The molecular and cytogenetic nature of both large and small colony mutants has been explored in detail and is discussed in the references under paragraphs (g)(22) and (g)(23) of this section. In the TK−/− test, colonies are scored using the criteria of normal growth (large) and slow growth (small) colonies (a scoring system similar to the one described in the reference under paragraph (g)(24) of this section may be used). Mutant cells that have suffered the most extensive genetic damage have prolonged doubling times and thus form small colonies. This damage typically ranges in scale from the losses of the entire gene to karyotypically visible chromosome aberrations. The induction of small colony mutants has been associated with chemicals that induce gross chromosome aberrations. Less seriously affected mutant cells grow at rates similar to the parental cells and form large colonies.

(ii) Survival (relative cloning efficiencies) or relative total growth shall be given. Mutant frequency shall be expressed as number of mutant cells per number of surviving cells.

(iii) Individual culture data shall be provided. Additionally, all data shall be summarized in tabular form.

(iv) There is no requirement for verification of a clear positive response. Equivocal results shall be clarified by further testing preferably using a modification of experimental conditions. Negative results need to be confirmed on a case-by-case basis. In those cases where confirmation of negative results is not considered necessary, justification should be provided. Modification of study parameters to extend the range of conditions assessed should be considered in follow-up experiments for either equivocal or negative results. Study parameters that might be modified include the concentration spacing, and the metabolic activation conditions.

(2) Evaluation and interpretation of results. (i) There are several criteria for determining a positive result, such as a concentration-related, or a reproducible increase in mutant frequency. Biological relevance of the results should be considered first. Statistical methods may be used as an aid in evaluating the test results. Statistical significance should not be the only determining factor for a positive response.

(ii) A test substance, for which the results do not meet the criteria described in paragraph (f)(2)(i) of this section is considered non-mutagenic in this system.

(iii) Although most studies will give clearly positive or negative results, in rare cases the data set will preclude making a definite judgement about the activity of the test substance. Results may remain equivocal or questionable regardless of the number of times the experiment is repeated.

(iv) Positive results for an in vitro mammalian cell gene mutation test indicate that the test substance induces gene mutations in the cultured mammalian cells used. A positive concentration-response that is reproducible is most meaningful. Negative results indicate that, under the test conditions, the test substance does not induce gene mutations in the cultured mammalian cells used.

(3) Test report. The test report shall include the following information:

(i) Test substance:

(A) Identification data and CAS no., if known.

(B) Physical nature and purity.

(C) Physicochemical properties relevant to the conduct of the study.

(D) Stability of the test substance.
Environmental Protection Agency § 799.9530

(ii) Solvent/vehicle:
(A) Justification for choice of vehicle/solvent.
(B) Solubility and stability of the test substance in solvent/vehicle, if known.

(iii) Cells:
(A) Type and source of cells.
(B) Number of cell cultures.
(C) Number of cell passages, if applicable.

(D) Methods for maintenance of cell cultures, if applicable.

(iv) Test conditions:
(A) Rationale for selection of concentrations and number of cell cultures including e.g., cytotoxicity data and solubility limitations, if available.
(B) Composition of media, CO₂ concentration.
(C) Concentration of test substance.
(D) Volume of vehicle and test substance added.
(E) Incubation temperature.
(F) Incubation time.
(G) Duration of treatment.
(H) Cell density during treatment.
(I) Type and composition of metabolic activation system including acceptability criteria.
(J) Positive and negative controls.
(K) Length of expression period (including number of cells seeded, and subcultures and feeding schedules, if appropriate).

(L) Selective agent(s).

(M) Criteria for considering tests as positive, negative or equivocal.

(N) Methods used to enumerate numbers of viable and mutant cells.

(O) Definition of colonies of which size and type are considered (including criteria for “small” and “large” colonies, as appropriate).

(v) Results:
(A) Signs of toxicity.
(B) Signs of precipitation.

(C) Data on pH and osmolality during the exposure to the test substance, if determined.

(D) Colony size if scored for at least negative and positive controls.

(E) Laboratory’s adequacy to detect small colony mutants with the L5178Y TK⁻ system, where appropriate.

(F) Dose-response relationship, where possible.

(G) Statistical analyses, if any.

(H) Concurrent negative (solvent/vehicle) and positive control data.

(I) Historical negative (solvent/vehicle) and positive control data with ranges, means, and standard deviations.

(J) Mutant frequency.

(vi) Discussion of the results.

(vii) Conclusion.

(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

(10) Liber, H.L., Yandell, D.W., and Little, J.B. A Comparison of Mutation Induction at the tk and hprt Loci in Human Lymphoblastoid Cells; Quantitative Differences are Due to an Additional Class of Mutations at the Autosomal TK Locus. Mutation Research. 216, 9-17 (1989).

(23) Moore, M.M., Clive, D., Hozier, J.C., Howard, B.E., Batson, A.G., Turner, N.T., and Sawyer, J. Analysis of Trifluorothymidine-Resistant (TFT^r) Mutants of L5178Y/TK[−] Mouse
§ 799.9538 TSCA mammalian bone marrow chromosomal aberration test.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. The mammalian bone marrow chromosomal aberration test is used for the detection of structural chromosome aberrations induced by test compounds in bone marrow cells of animals, usually rodents. Structural chromosome aberrations may be of two types, chromosome or chromatid. An increase in polyploidy may indicate that a chemical has the potential to induce numerical aberrations. With the majority of chemical mutagens, induced aberrations are of the chromatid-type, but chromosome-type aberrations also occur. Chromosome mutations and related events are the cause of many human genetic diseases and there is substantial evidence that chromosome mutations and related events causing alterations in oncogenes and tumor suppressor genes are involved in cancer in humans and experimental systems.

(b) Source. The source material used in developing this TSCA test guideline is the OECD guideline 475 (February 1997). This source is available at the address in paragraph (g) of this section.

(c) Definitions. The following definitions apply to this section:

Chromatid-type aberration is structural chromosome damage expressed as breakage of single chromatids or breakage and reunion between chromatids.

Chromosome-type aberration is structural chromosome damage expressed as breakage, or breakage and reunion, of both chromatids at an identical site.

Endoreduplication is a process in which after an S period of DNA replication, the nucleus does not go into mitosis but starts another S period. The result is chromosomes with 2,4,8,...chromatids.

Gap is an achromatic lesion smaller than the width of one chromatid, and with minimum misalignment of the chromatids.

Numerical aberration is a change in the number of chromosomes from the normal number characteristic of the animals utilized.

Polyploidy is a multiple of the haploid chromosome number (n) other than the diploid number (i.e., 3n, 4n and so on).

Structural aberration is a change in chromosome structure detectable by microscopic examination of the metaphase stage of cell division, observed as deletions and fragments, intrachanges or interchanges.

(d) Initial considerations. (1) Rodents are routinely used in this test. Bone marrow is the target tissue in this test, since it is a highly vascularised tissue, and it contains a population of rapidly cycling cells that can be readily isolated and processed. Other species and target tissues are not the subject of this section.

(2) This chromosome aberration test is especially relevant to assessing mutagenic hazard in that it allows consideration of factors of in vivo metabolism, pharmacokinetics and DNA-repair processes although these may vary among species and among tissues. An in vivo test is also useful for further investigation of a mutagenic effect detected by an in vitro test.

(3) If there is evidence that the test substance, or a reactive metabolite, will not reach the target tissue, it is not appropriate to use this test.

(e) Test method—(1) Principle. Animals are exposed to the test substance by an appropriate route of exposure and are sacrificed at appropriate times after treatment. Prior to sacrifice, animals are treated with a metaphase-arresting agent (e.g., colchicine or Colcemid®). Chromosome preparations are then made from the bone marrow cells and stained, and metaphase cells are analyzed for chromosome aberrations.
§ 799.9538 40 CFR Ch. I (7–1–99 Edition)

(2) Description—(i) Preparations—(A) Selection of animal species. Rats, mice and Chinese hamsters are commonly used, although any appropriate mammalian species may be used. Commonly used laboratory strains of young healthy adult animals should be employed. At the commencement of the study, the weight variation of animals should be minimal and not exceed ± 20% of the mean weight of each sex.

(B) Housing and feeding conditions. The temperature in the experimental animal room should be 22°C ± 3°C. Although the relative humidity should be at least 30% and preferably not exceed 70% other than during room cleaning, the aim should be 50–60%. Lighting should be artificial, the sequence being 12 hrs light, 12 hrs dark. For feeding, conventional laboratory diets may be used with an unlimited supply of drinking water. The choice of diet may be influenced by the need to ensure a suitable admixture of a test substance when administered by this method. Animals may be housed individually, or be caged in small groups of the same sex.

(C) Preparation of the animals. Healthy young adult animals shall be randomly assigned to the control and treatment groups. Cages should be arranged in such a way that possible effects due to cage placement are minimized. The animals are identified uniquely. The animals are acclimated to the laboratory conditions for at least 5 days.

(D) Preparation of doses. Solid test substances shall be dissolved or suspended in appropriate solvents or vehicles and diluted, as appropriate, prior to dosing of the animals. Liquid test substances may be dosed directly or diluted prior to dosing. Fresh preparations of the test substance should be employed unless stability data demonstrate the acceptability of storage.

(ii) Test conditions—(A) Solvent/vehicle. The solvent/vehicle shall not produce toxic effects at the dose levels used, and shall not be suspected of chemical reaction with the test substance. If other than well-known solvents/vehicles are used, their inclusion should be supported with data indicating their compatibility. It is recommended that wherever possible, the use of an aqueous solvent/vehicle should be considered first.

(B) Controls. (1) Concurrent positive and negative (solvent/vehicle) controls shall be included for each sex in each test. Except for treatment with the test substance, animals in the control groups should be handled in an identical manner to the animals in the treated groups.

(2) Positive controls shall produce structural chromosome aberrations in vivo at exposure levels expected to give a detectable increase over background. Positive control doses should be chosen so that the effects are clear but do not immediately reveal the identity of the coded slides to the reader. It is acceptable that the positive control be administered by a route different from the test substance and sampled at only a single time. The use of chemical class related positive control chemicals may be considered, when available. Examples of positive control substances include:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylenemelamine</td>
<td>[CAS no. 51–18–3]</td>
</tr>
<tr>
<td>Ethyl methanesulphonate</td>
<td>[CAS no. 62–50–0]</td>
</tr>
<tr>
<td>Ethyl nitrosourea</td>
<td>[CAS no. 759–73–9]</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>[CAS no. 50–07–7]</td>
</tr>
<tr>
<td>Cyclophosphamide (monohydrate)</td>
<td>[CAS no. 50–18–6]</td>
</tr>
<tr>
<td></td>
<td>[CAS no. 6055–19–2]</td>
</tr>
</tbody>
</table>
differences in toxicity between sexes, then testing in a single sex will be sufficient. Where human exposure to chemicals may be sex-specific, as for example with some pharmaceutical agents, the test should be performed with animals of the appropriate sex.

(ii) Treatment schedule. (A) Test substances are preferably administered as a single treatment. Test substances may also be administered as a split dose, i.e. two treatments on the same day separated by no more than a few hrs, to facilitate administering a large volume of material. Other dose regimens should be scientifically justified.

(B) Samples shall be taken at two separate times following treatment on one day. For rodents, the first sampling interval is 1.5 normal cell cycle length (the latter being normally 12±18 hr) following treatment. Since the time required for uptake and metabolism of the test substance as well as its effect on cell cycle kinetics can affect the optimum time for chromosome aberration detection, a later sample collection 24 hr after the first sample time is recommended. If dose regimens of more than one day are used, one sampling time at 1.5 normal cell cycle lengths after the final treatment should be used.

(C) Prior to sacrifice, animals shall be injected intraperitoneally with an appropriate dose of a metaphase arresting agent (e.g. Colcemid® or colchicine). Animals are sampled at an appropriate interval thereafter. For mice this interval is approximately 3-5 hrs; for Chinese hamsters this interval is approximately 4-5 hrs. Cells shall be harvested from the bone marrow and analyzed from chromosome aberrations.

(iii) Dose levels. If a range finding study is performed because there are no suitable data available, it shall be performed in the same laboratory, using the same species, strain, sex, and treatment regimen to be used in the main study (an approach to dose selection is presented in the reference under paragraph (g)(5) of this section). If there is toxicity, three dose levels shall be used for the first sampling time. These dose levels shall cover a range from the maximum to little or no toxicity. At the later sampling time only the highest dose needs to be used. The highest dose is defined as the dose producing signs of toxicity such that higher dose levels, based on the same dosing regimen, would be expected to produce lethality. Substances with specific biological activities at low nontoxic doses (such as hormones and mitogens) may be exceptions to the dose-setting criteria and should be evaluated on a case-by-case basis. The highest dose may also be defined as a dose that produces some indication of toxicity in the bone marrow (e.g. greater than 50% reduction in mitotic index).

(iv) Limit test. If a test at one dose level of at least 2,000 mg/kg body weight using a single treatment, or as two treatments on the same day, produces no observable toxic effects, and if genotoxicity would not be expected based on data from structurally related compounds, then a full study using three dose levels may not be considered necessary. For studies of a longer duration, the limit dose is 2,000 mg/kg/body weight/day for treatment up to 14 days, and 1,000 mg/kg/body weight/day for treatment longer than 14 days. Expected human exposure may indicate the need for a higher dose level to be used in the limit test.

(v) Administration of doses. The test substance is usually administered by gavage using a stomach tube or a suitable intubation cannula, or by intraperitoneal injection. Other routes of exposure may be acceptable where they can be justified. The maximum volume of liquid that can be administered by gavage or injection at one time depends on the size of the test animal. The volume should not exceed 2 ml/100g body weight. The use of volumes higher than these must be justified. Except for irritating or corrosive substances which will normally reveal exacerbated effects with higher concentrations, variability in test volume should be minimized by adjusting the concentration to ensure a constant volume at all dose levels.

(vi) Chromosome preparation. Immediately after sacrifice, bone marrow shall be obtained, exposed to hypotonic solution and fixed. The cells shall be then spread on slides and stained.
(vii) Analysis. (A) The mitotic index should be determined as a measure of cytotoxicity in at least 1,000 cells per animal for all treated animals (including positive controls) and untreated negative control animals.

(B) At least 100 cells should be analyzed for each animal. This number could be reduced when high numbers of aberrations are observed. All slides, including those of positive and negative controls, shall be independently coded before microscopic analysis. Since slide preparation procedures often result in the breakage of a proportion of metaphases with loss of chromosomes, the cells scored should therefore contain a number of centromeres equal to the number $2n \pm 2$.

(f) Data and reporting—(1) Treatment of results. Individual animal data shall be presented in tabular form. The experimental unit is the animal. For each animal the number of cells scored, the number of aberrations per cell and the percentage of cells with structural chromosome aberration(s) shall be evaluated. Different types of structural chromosome aberrations shall be listed with their numbers and frequencies for treated and control groups. Gaps shall be recorded separately and reported but generally not included in the total aberration frequency. If there is no evidence for a difference in response between the sexes, the data may be combined for statistical analysis.

(2) Evaluation and interpretation of results. (i) There are several criteria for determining a positive result, such as a dose-related increase in the relative number of cells with chromosome aberrations or a clear increase in the number of cells with aberrations in a single dose group at a single sampling time. Biological relevance of the results should be considered first. Statistical methods may be used as an aid in evaluating the test results (some statistical methods are described in the reference under paragraph (g)(6) of this section). Statistical significance should not be the only determining factor for a positive response. Equivocal results should be clarified by further testing preferably using a modification of experimental conditions.

(ii) An increase in polyploidy may indicate that the test substance has the potential to induce numerical chromosome aberrations. An increase in endoreduplication may indicate that the test substance has the potential to inhibit cell cycle progression. This phenomenon is described in the references under paragraphs (g)(7) and (g)(8) of this section.

(iii) A test substance for which the results do not meet the criteria described in paragraph (f)(2)(i) of this section is considered non-mutagenic in this test.

(iv) Although most experiments will give clearly positive or negative results, in rare cases the data set will preclude making a definite judgment about the activity of the test substance. Results may remain equivocal or questionable regardless of the number of experiments performed.

(v) Positive results from the in vivo chromosome aberration test indicate that a substance induces chromosome aberrations in the bone marrow of the species tested. Negative results indicate that, under the test conditions, the test substance does not induce chromosome aberrations in the bone marrow of the species tested.

(vi) The likelihood that the test substance or its metabolites reach the general circulation or specifically the target tissue (e.g., systemic toxicity) should be discussed.

(3) Test report. The test report shall include the following information:

(i) Test substance:
(A) Identification data and CAS No., if known.
(B) Physical nature and purity.
(C) Physicochemical properties relevant to the conduct of the study.
(D) Stability of the test substance, if known.

(ii) Solvent/vehicle:
(A) Justification for choice of vehicle.
(B) Solubility and stability of the test substance in solvent/vehicle, if known.

(iii) Test animals:
(A) Species/strain used.
(B) Number, age and sex of animals.
(C) Source, housing conditions, diet, etc.

(D) Individual weight of the animals at the start of the test, including body
Environmental Protection Agency § 799.9538

weight range, mean and standard deviation for each group.

(iv) Test conditions:
(A) Positive and negative (vehicle/solvent) controls.
(B) Data from range-finding study, if conducted.
(C) Rationale for dose level selection.
(D) Details of test substance preparation.
(E) Details of the administration of the test substance.
(F) Rationale for route of administration.
(G) Methods for verifying that the test substance reached the general circulation or target tissue, if applicable.
(H) Conversion from diet/drinking water test substance concentration parts per million (ppm) to the actual dose (mg/kg body weight/day), if applicable.
(I) Details of food and water quality.
(J) Detailed description of treatment and sampling schedules.
(K) Methods for measurement of toxicity.
(L) Identity of metaphase arresting substance, its concentration and duration of treatment.
(M) Methods of slide preparation.
(N) Criteria for scoring aberrations.
(O) Number of cells analyzed per animal.
(P) Criteria for considering studies as positive, negative or equivocal.

(v) Results:
(A) Signs of toxicity.
(B) Mitotic index.
(C) Type and number of aberrations, given separately for each animal.
(D) Total number of aberrations per group with means and standard deviations.
(E) Number of cells with aberrations per group with means and standard deviations.
(F) Changes in ploidy, if seen.
(G) Dose-response relationship, where possible.
(H) Statistical analyses, if any.
(I) Concurrent negative control data with ranges, means and standard deviations.
(J) Concurrent positive control data.
(K) Discussion of the results.
(L) Conclusion.
(M) References. For additional background information on this test guide-
§ 799.9539 TSCA mammalian erythrocyte micronucleus test.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA.

(1) The mammalian erythrocyte micronucleus test is used for the detection of damage induced by the test substance to the chromosomes or the mitotic apparatus of erythroblasts by analysis of erythrocytes as sampled in bone marrow and/or peripheral blood cells of animals, usually rodents.

(2) The purpose of the micronucleus test is to identify substances that cause cytogenetic damage which results in the formation of micronuclei in bone marrow containing lagging chromosome fragments or whole chromosomes.

(3) When bone marrow erythroblasts develop into polychromatic erythrocytes, the main nucleus is extruded; any micronucleus that has been formed may remain behind in the anucleated cytoplasm. Visualization of micronuclei is facilitated in these cells because they lack a main nucleus. An increase in the frequency of micronucleated polychromatic erythrocytes in treated animals is an indication of induced chromosome damage.

(b) Source. The source material used in developing this TSCA test guideline is the OECD guideline 474 (February 1997). This source is available at the address in paragraph (g) of this section.

(c) Definitions. The following definitions apply to this section:

Centromere (kinetochore) is a region of a chromosome with which spindle fibers are associated during cell division, allowing orderly movement of daughter chromosomes to the poles of the daughter cells.

Micronuclei are small nuclei, separate from and additional to the main nuclei of cells, produced during telophase of mitosis (meiosis) by lagging chromosome fragments or whole chromosomes.

Normochromatic erythrocyte is a mature erythrocyte that lacks ribosomes and can be distinguished from immature, polychromatic erythrocytes by stains selective for ribosomes.

Polychromatic erythrocyte is an immature erythrocyte, an intermediate stage of development, that still contains ribosomes and can be distinguished from mature, normochromatic erythrocytes by stains selective for ribosomes.

(d) Initial considerations. (1) The bone marrow of rodents is routinely used in this test since polychromatic erythrocytes are produced in that tissue. The measurement of micronucleated immature (polychromatic) erythrocytes in peripheral blood is equally acceptable in any species in which the inability of the spleen to remove micronucleated erythrocytes has been demonstrated, or which has shown an adequate sensitivity to detect agents that cause structural or numerical chromosome aberrations. Micronuclei can be distinguished by a number of criteria. These include identification of the presence or absence of a kinetochore or centromeric DNA in the micronuclei.

The frequency of micronucleated immature (polychromatic) erythrocytes is the principal endpoint. The number of mature (normochromatic) erythrocytes in peripheral blood that contain micronuclei among a given number of mature erythrocytes can also be used as the endpoint of the assay when animals are treated continuously for 4 weeks or more. This mammalian in vivo micronucleus test is especially relevant to assessing mutagenic hazard in that it allows consideration of factors in vivo metabolism, pharmacokinetics and DNA-repair processes although these may vary among species, among tissues and among genetic endpoints. An in vivo...
Environmental Protection Agency § 799.9539

assay is also useful for further investigation of a mutagenic effect detected by an in vitro system.

(2) If there is evidence that the test substance, or a reactive metabolite, will not reach the target tissue, it is not appropriate to use this test.

c) Test method—(1) Principle. Animals are exposed to the test substance by an appropriate route. If bone marrow is used, the animals are sacrificed at appropriate times after treatment, the bone marrow extracted, and preparations made and stained (test techniques described in the references under paragraphs (g)(1), (g)(2), and (g)(3) of this section may be used). When peripheral blood is used, the blood is collected at appropriate times after treatment and smear preparations are made and stained (the test techniques described in the references under paragraphs (g)(3), (g)(4), (g)(5), and (g)(6) of this section may be used). For studies with peripheral blood, as little time as possible should elapse between the last exposure and cell harvest. Preparations are analyzed for the presence of micronuclei.

(2) Description—(i) Preparations—(A) Selection of animal species. Mice or rats are recommended if bone marrow is used, although any appropriate mammalian species may be used. When peripheral blood is used, mice are recommended. However, any appropriate mammalian species may be used provided it is a species in which the spleen does not remove micronucleated erythrocytes or a species which has shown an adequate sensitivity to detect agents that cause structural or numerical chromosome aberrations. Commonly used laboratory strains of young healthy animals should be employed. At the commencement of the study, the weight variation of animals should be minimal and not exceed ± 20% of the mean weight of each sex.

(B) Housing and feeding conditions. The temperature in the experimental animal room should be 22 °C ± 3 °C. Although the relative humidity should be at least 30% and preferably not exceed 70% other than during room cleaning, the aim should be 50-60%. Lighting should be artificial, the sequence being 12 hrs light, 12 hrs dark. For feeding, conventional laboratory diets may be used with an unlimited supply of drinking water. The choice of diet may be influenced by the need to ensure a suitable admixture of a test substance when administered by this route. Animals may be housed individually, or caged in small groups of the same sex.

(C) Preparation of the animals. Healthy young adult animals shall be randomly assigned to the control and treatment groups. The animals are identified uniquely. The animals are acclimated to the laboratory conditions for at least 5 days. Cages should be arranged in such a way that possible effects due to cage placement are minimized.

(D) Preparation of doses. Solid test substances shall be dissolved or suspended in appropriate solvents or vehicles and diluted, if appropriate, prior to dosing of the animals. Liquid test substances may be dosed directly or diluted prior to dosing. Fresh preparations of the test substance should be employed unless stability data demonstrate the acceptability of storage.

(ii) Test conditions—(A) Solvent/vehicle. The solvent/vehicle shall not produce toxic effects at the dose levels used, and shall not be suspected of chemical reaction with the test substance. If other than well-known solvents/vehicles are used, their inclusion should be supported with reference data indicating their compatibility. It is recommended that wherever possible, the use of an aqueous solvent/vehicle should be considered first.

(B) Controls. (1) Concurrent positive and negative (solvent/vehicle) controls shall be included for each sex in each test. Except for treatment with the test substance, animals in the control groups should be handled in an identical manner to animals of the treatment groups.

(2) Positive controls shall produce micronuclei in vivo at exposure levels expected to give a detectable increase over background. Positive control doses should be chosen so that the effects are clear but do not immediately reveal the identity of the coded slides to the reader. It is acceptable that the positive control be administered by a route different from the test substance and sampled at only a single time. In
addition, the use of chemical class-related positive control chemicals may be considered, when available. Examples of positive control substances include:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl methanesulphonate</td>
<td>[CAS no. 62-50-0]</td>
</tr>
<tr>
<td>Ethyl nitrosourea</td>
<td>[CAS no. 759-73-9]</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>[CAS no. 50-07-7]</td>
</tr>
<tr>
<td>Cyclophosphamide (monohydrate)</td>
<td>[CAS no. 50-18-0]</td>
</tr>
<tr>
<td>Triethylenemelamine</td>
<td>[CAS no. 51-18-3]</td>
</tr>
</tbody>
</table>

(3) Negative controls, treated with solvent or vehicle alone, and otherwise treated in the same way as the treatment groups shall be included for every sampling time, unless acceptable inter-animal variability and frequencies of cells with micronuclei are demonstrated by historical control data. If single sampling is applied for negative controls, the most appropriate time is the first sampling time. In addition, untreated controls should also be used unless there are historical or published control data demonstrating that no deleterious or mutagenic effects are induced by the chosen solvent/vehicle.

(4) If peripheral blood is used, a pretreatment sample may also be acceptable as a concurrent negative control, but only in the short peripheral blood studies (e.g., one to three treatment(s)) when the resulting data are in the expected range for the historical control.

(3) Procedure—(i) Number and sex of animals. Each treated and control group shall include at least 5 analyzable animals per sex (techniques described in the reference under paragraph (g)(7) of this section may be used). If at the time of the study there are data available from studies in the same species and using the same route of exposure that demonstrate that there are no substantial differences between sexes in toxicity, then testing in a single sex will be sufficient. Where human exposure to chemicals may be sex-specific, as for example with some pharmaceutical agents, the test should be performed with animals of the appropriate sex.

(ii) Treatment schedule. (A) No standard treatment schedule (i.e. one, two, or more treatments at 24 h intervals) can be recommended. The samples from extended dose regimens are acceptable as long as a positive effect has been demonstrated for this study or, for a negative study, as long as toxicity has been demonstrated or the limit dose has been used, and dosing continued until the time of sampling. Test substances may also be administered as a split dose, i.e., two treatments on the same day separated by no more than a few hrs, to facilitate administering a large volume of material.

(B) The test may be performed in two ways:

(1) Animals shall be treated with the test substance once. Samples of bone marrow shall be taken at least twice, starting not earlier than 24 hrs after treatment, but not extending beyond 48 hrs after treatment with appropriate interval(s) between samples. The use of sampling times earlier than 24 hrs after treatment should be justified. Samples of peripheral blood shall be taken at least twice, starting not earlier than 36 hrs after treatment, with appropriate intervals following the first sample, but not extending beyond 72 hrs. When a positive response is recognized at one sampling time, additional sampling is not required.

(2) If two or more daily treatments are used (e.g. two or more treatments at 24 hr intervals), samples shall be collected once between 18 and 24 hrs following the final treatment for the bone marrow and once between 36 and 48 hrs following the final treatment for the peripheral blood (techniques described in the reference under paragraph (g)(8) of this section may be used).

(C) Other sampling times may be used in addition, when relevant.

(iii) Dose levels. If a range finding study is performed because there are no suitable data available, it shall be performed in the same laboratory, using the same species, strain, sex, and treatment regimen to be used in the main study (guidance on dose setting is provided in the reference in paragraph (g)(9) of this section). If there is toxicity, three dose levels shall be used for the first sampling time. These dose levels shall cover a range from the maximum to little or no toxicity. At the later sampling time only the highest dose needs to be used. The highest dose is defined as the dose producing signs of toxicity such that higher dose levels,
based on the same dosing regimen, would be expected to produce lethality. Substances with specific biological activities at low non-toxic doses (such as hormones and mitogens) may be exceptions to the dose-setting criteria and should be evaluated on a case-by-case basis. The highest dose may also be defined as a dose that produces some indication of toxicity in the bone marrow (e.g. a reduction in the proportion of immature erythrocytes among total erythrocytes in the bone marrow or peripheral blood).

(iv) Limit test. If a test at one dose level of at least 2,000 mg/kg body weight using a single treatment, or as two treatments on the same day, produces no observable toxic effects, and if genotoxicity would not be expected based upon data from structurally related substances, then a full study using three dose levels may not be considered necessary. For studies of a longer duration, the limit dose is 2,000 mg/kg body weight/day for treatment up to 14 days, and 1,000 mg/kg/body weight/day for treatment longer than 14 days. Expected human exposure may indicate the need for a higher dose level to be used in the limit test.

(v) Administration of doses. The test substance is usually administered by gavage using a stomach tube or a suitable intubation cannula, or by intraperitoneal injection. Other routes of exposure may be acceptable where they can be justified. The maximum volume of liquid that can be administered by gavage or injection at one time depends on the size of the test animal. The volume should not exceed 2 ml/100g body weight. The use of volumes higher than these must be justified. Except for irritating or corrosive substances which will normally reveal exacerbated effects with higher concentrations, variability in test volume should be minimized by adjusting the concentration to ensure a constant volume at all dose levels.

(vi) Bone marrow/blood preparation. Bone marrow cells shall be obtained from the femurs or tibias immediately following sacrifice. Cells shall be removed from femurs or tibias, prepared and stained using established methods. Peripheral blood is obtained from the tail vein or other appropriate blood vessel. Blood cells are immediately stained supravitally (the test techniques described in the references under paragraphs (g)(4), (g)(5), and (g)(6) of this section may be used) or smear preparations are made and then stained. The use of a DNA specific stain (e.g. acridine orange (techniques described in the reference under paragraph (g)(10) of this section may be used) or Hoechst 33258 plus pyronin-Y) can eliminate some of the artifacts associated with using a non-DNA specific stain. This advantage does not preclude the use of conventional stains (e.g., Giemsa). Additional systems (e.g. cellulose columns to remove nucleated cells (the test techniques described in the references under paragraph (g)(12) of this section may be used)) can also be used provided that these systems have been shown to adequately work for micronucleus preparation in the laboratory.

(vii) Analysis. The proportion of immature among total (immature = mature) erythrocytes is determined for each animal by counting a total of at least 200 erythrocytes for bone marrow and 1,000 erythrocytes for peripheral blood (techniques described in the reference under paragraph (g)(13) of this section maybe used). All slides, including those of positive and negative controls, shall be independently coded before microscopic analysis. At least 2,000 immature erythrocytes per animal shall be scored for the incidence of micronucleated immature erythrocytes. Additional information may be obtained by scoring mature erythrocytes for micronuclei. When analyzing slides, the proportion of immature erythrocytes among total erythrocytes should not be less than 20% of the control value. When animals are treated continuously for 4 weeks or more, at least 2,000 mature erythrocytes per animal can also be scored for the incidence of micronuclei. Systems for automated analysis (image analysis) and cell suspensions (flow cytometry) are acceptable alternatives to manual evaluation if appropriately justified and validated.

(f) Data and reporting—(1) Treatment of results. Individual animal data shall be presented in tabular form. The experimental unit is the animal.
number of immature erythrocytes scored, the number of micronucleated immature erythrocytes, and the number of immature among total erythrocytes shall be listed separately for each animal analyzed. When animals are treated continuously for 4 weeks or more, the data on mature erythrocytes should also be given if it is collected. The proportion of immature among total erythrocytes and, if considered applicable, the percentage of micronucleated erythrocytes shall be given for each animal. If there is no evidence for a difference in response between the sexes, the data from both sexes may be combined for statistical analysis.

(2) Evaluation and interpretation of results. (i) There are several criteria for determining a positive result, such as a dose-related increase in the number of micronucleated cells or a clear increase in the number of micronucleated cells in a single dose group at a single sampling time. Biological relevance of the results should be considered first. Statistical methods may be used as an aid in evaluating the test results (the test techniques described in the references paragraphs (g)(14) and (g)(15) of this section may be used). Statistical significance should not be the only determining factor for a positive response. Equivocal results should be clarified by further testing preferably using a modification of experimental conditions.

(ii) A test substance for which the results do not meet the criteria in paragraph (f)(2)(i) of this section is considered non-mutagenic in this test.

(iii) Although most experiments will give clearly positive or negative results, in rare cases the data set will preclude making a definite judgement about the activity of the test substance. Results, may remain equivocal or questionable regardless of the number of times the experiment is repeated. Positive results in the micronucleus test indicate that a substance induces micronuclei which are the result of chromosomal damage or damage to the mitotic apparatus in the erythroblasts of the test species. Negative results indicate that, under the test conditions, the test substance does not produce micronuclei in the immature erythrocytes of the test species.

(iv) The likelihood that the test substance or its metabolites reach the general circulation or specifically the target tissue (e.g. systemic toxicity) should be discussed.

(3) Test report. The test report shall include the following information:

(i) Test substance:
(A) Identification data and CAS no., if known.
(B) Physical nature and purity.
(C) Physiochemical properties relevant to the conduct of the study.
(D) Stability of the test substance, if known.

(ii) Solvent/Vehicle:
(A) Justification for choice of vehicle.
(B) Solubility and stability of the test substance in the solvent/vehicle, if known.

(iii) Test animals:
(A) Species/strain used.
(B) Number, age, and sex of animals.
(C) Source, housing conditions, diet, etc.
(D) Individual weight of the animals at the start of the test, including body weight range, mean and standard deviation for each group.

(iv) Test conditions:
(A) Positive and negative (vehicle/solvent) control data.
(B) Data from range-finding study, if conducted.
(C) Rationale for dose level selection.
(D) Details of test substance preparation.
(E) Details of the administration of the test substance.
(F) Rationale for route of administration.
(G) Methods for verifying that the test substance reached the general circulation or target tissue, if applicable.
(H) Conversion from diet/drinking water test substance concentration parts per million (ppm) to the actual dose (mg/kg body weight/day), if applicable.

(i) Details of food and water quality.
(j) Detailed description of treatment and sampling schedules.
(k) Methods of slide preparation.
(l) Methods for measurement of toxicity.
(M) Criteria for scoring micronucleated immature erythrocytes.
(N) Number of cells analyzed per animal.
(O) Criteria for considering studies as positive, negative or equivocal.
(v) Results:
(A) Signs of toxicity.
(B) Proportion of immature erythrocytes among total erythrocytes.
(C) Number of micronucleated immature erythrocytes, given separately for each animal.
(D) Mean ± standard deviation of micronucleated immature erythrocytes per group.
(E) Dose-response relationship, where possible.
(F) Statistical analyses and method applied.
(G) Concurrent and historical negative control data.
(H) Concurrent positive control data.
(i) Discussion of the results.
(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.
(9) Richold, M., Ashby, J., Bootman, J., Chandley, A., Gatehouse, D.G., and

§ 799.9620 TSCA neurotoxicity screening battery.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. This neurotoxicity screening battery consists of a functional observational battery, motor activity, and neuropathology. The functional observational battery consists of noninvasive procedures designed to detect gross functional deficits in animals and to better quantify behavioral or neurological effects detected in other studies. The motor activity test uses an automated device that measures the level of activity of an individual animal. The neuropathological techniques are designed to provide data to detect and characterize histopathological changes in the central and peripheral nervous system. This battery is designed to be used in conjunction with general toxicity studies and changes should be evaluated in the context of both the concordance between functional neurological and neuropathological effects, and with respect to any other toxicological effects seen. This test battery is not intended to provide a complete evaluation of neurotoxicity, and additional functional and morphological evaluation may be necessary to assess completely the neurotoxic potential of a chemical.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.6200 (June 1996 Public Draft). This source is available at the address in paragraph (g) of this section.

(c) Definitions. The following definitions apply to this section.

ED is effective dose.

Motor activity is any movement of the experimental animal.

Neurotoxicity is any adverse effect on the structure or function of the nervous system related to exposure to a chemical substance.

Toxic effect is any adverse change in the structure or function of an experimental animal as a result of exposure to a chemical substance.

(d) Principle of the test method. The test substance is administered to several groups of experimental animals, one dose being used per group. The animals are observed under carefully standardized conditions with sufficient frequency to ensure the detection and quantification of behavioral and/or neurologic abnormalities, if present. Various functions that could be affected by neurotoxicants are assessed.
Environmental Protection Agency § 799.9620

during each observation period. Measurements of motor activity of individual animals are made in an automated device. The animals are perfused and tissue samples from the nervous system are prepared for microscopic examination. The exposure levels at which significant neurotoxic effects are produced are compared to one another and to those levels that produce other toxic effects.

(e) Test procedures—(1) Animal selection—(i) Species. In general, the laboratory rat should be used. Under some circumstances, other species, such as the mouse or the dog, may be more appropriate, although not all of the battery may be adaptable to other species.

(ii) Age. Young adults (at least 42 days old for rats) shall be used.

(iii) Sex. Both males and females shall be used. Females shall be nulliparous and nonpregnant.

(2) Number of animals. At least 10 males and 10 females should be used in each dose and control group for behavioral testing. At least five males and five females should be used in each dose and control group for terminal neuropathology. If interim neuropathological evaluations are planned, the number should be increased by the number of animals scheduled to be perfused before the end of the study. Animals shall be randomly assigned to treatment and control groups.

(3) Control groups. (i) A concurrent (vehicle) control group is required. Subjects shall be treated in the same way as for an exposure group except that administration of the test substance is omitted. If the vehicle used has known or potential toxic properties, both untreated or saline treated and vehicle control groups are required.

(ii) Positive control data from the laboratory performing the testing shall provide evidence of the ability of the observational methods used to detect major neurotoxic endpoints including limb weakness or paralysis, tremor, and autonomic signs. Positive control data are also required to demonstrate the sensitivity and reliability of the activity-measuring device and testing procedure. These data should demonstrate the ability to detect chemically induced increases and decreases in activity. Positive control groups exhibiting central nervous system pathology and peripheral nervous system pathology are also required. Separate groups for peripheral and central neuropathology are acceptable (e.g. acrylamide and trimethyl tin). Permanently injurious substances need not be used for the behavioral tests. Historical data may be used if the essential aspects of the experimental procedure remain the same. Periodic updating of positive control data is recommended. New positive control data should also be collected when personnel or some other critical element in the testing laboratory has changed.

(4) Dose level and dose selection. At least three doses shall be used in addition to the vehicle control group. The data should be sufficient to produce a dose-effect curve. The Agency strongly encourage the use of equally spaced doses and a rationale for dose selection that will maximally support detection of dose-effect relations. For acute studies, dose selection may be made relative to the establishment of a benchmark dose (BD). That is, doses may be specified as successive fractions, e.g. 0.5, 0.25, ...,n of the BD. The BD itself may be estimated as the highest nonlethal dose as determined in a preliminary range-finding lethality study. A variety of test methodologies may be used for this purpose, and the method chosen may influence subsequent dose selection. The goal is to use a dose level that is sufficient to be judged a limit dose, or clearly toxic.

(i) Acute studies. The high dose need not be greater than 2 g/kg. Otherwise, the high dose should result in significant neurotoxic effects or other clearly toxic effects, but not result in an incidence of fatalities that would preclude a meaningful evaluation of the data. This dose may be estimated by a BD procedure as described under paragraph (e)(4) of this section, with the middle and low dose levels chosen as fractions of the BD dose. The lowest dose should produce minimal effect, e.g. an ED10, or alternatively, no effects.

(ii) Subchronic and chronic studies. The high dose need not be greater than 1 g/kg. Otherwise, the high dose level should result in significant neurotoxic
effects or other clearly toxic effects, but not produce an incidence of fatalities that would prevent a meaningful evaluation of the data. The middle and low doses should be fractions of the high dose. The lowest dose should produce minimal effects, e.g. an ED10, or alternatively, no effects.

(5) Route of exposure. Selection of route may be based on several criteria including, the most likely route of human exposure, bioavailability, the likelihood of observing effects, practical difficulties, and the likelihood of producing nonspecific effects. For many materials, it should be recognized that more than one route of exposure may be important and that these criteria may conflict with one another. Initially only one route is required for screening for neurotoxicity. The route that best meets these criteria should be selected. Dietary feeding will generally be acceptable for repeated exposures studies.

(6) Combined protocol. The tests described in this screening battery may be combined with any other toxicity study, as long as none of the requirements of either are violated by the combination.

(7) Study conduct—(i) Time of testing. All animals shall be weighed on each test day and at least weekly during the exposure period.

(A) Acute studies. At a minimum, for acute studies observations and activity testing shall be made before the initiation of exposure, at the estimated time of peak effect within 8 hrs of dosing, and at 7 and 14 days after dosing. Estimation of times of peak effect may be made by dosing pairs of rats across a range of doses and making regular observations of gait and arousal.

(B) Subchronic and chronic studies. In a subchronic study, at a minimum, observations and activity measurements shall be made before the initiation of exposure and before the daily exposure, or for feeding studies at the same time of day, during the 4th, 8th, and 13th weeks of exposure. In chronic studies, at a minimum, observations and activity measurements shall be made before the initiation of exposure and before the daily exposure, or for feeding studies at the same time of day, every 3 months.

(ii) Functional observational battery—

(A) General conduct. All animals in a given study shall be observed carefully by trained observers who are unaware of the animals’ treatment, using standardized procedures to minimize observer variability. Where possible, it is advisable that the same observer be used to evaluate the animals in a given study. If this is not possible, some demonstration of interobserver reliability is required. The animals shall be removed from the home cage to a standard arena for observation. Effort should be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables that can affect behavior are sound level, temperature, humidity, lighting, odors, time of day, and environmental distractions. Explicit, operationally defined scales for each measure of the battery are to be used. The development of objective quantitative measures of the observational end-points specified is encouraged. Examples of observational procedures using defined protocols may be found in the references under paragraphs (g)(5), (g)(6), and (g)(9) of this section. The functional observational battery shall include a thorough description of the subject’s appearance, behavior, and functional integrity. This shall be assessed through observations in the home cage and while the rat is moving freely in an open field, and through manipulative tests. Testing should proceed from the least to the most interactive with the subject. Scoring criteria, or explicitly defined scales, should be developed for those measures which involve subjective ranking.

(B) List of measures. The functional observational battery shall include the following list of measures:

(1) Assessment of signs of autonomic function, including but not limited to:

(i) Ranking of the degree of lacrimation and salivation, with a range of severity scores from none to severe.

(ii) Presence or absence of piloerection and exophthalmus.

(iii) Ranking or count of urination and defecation, including polyuria and diarrhea. This is most easily conducted during the open field assessment.

332
(iv) Pupillary function such as constriction of the pupil in response to light or a measure of pupil size.
(v) Degree of palpebral closure, e.g., ptosis.
(2) Description, incidence, and severity of any convulsions, tremors, or abnormal motor movements, both in the home cage and the open field.
(3) Ranking of the subject’s reactivity to general stimuli such as removal from the cage or handling, with a range of severity scores from no reaction to hyperreactivity.
(4) Ranking of the subject’s general level of activity during observations of the unperturbed subject in the open field, with a range of severity scores from unresponsive to hyperactive.
(5) Descriptions and incidence of posture and gait abnormalities observed in the home cage and open field.
(6) Ranking of any gait abnormalities, with a range of severity scores from none to severe.
(7) Forelimb and hindlimb grip strength measured using an objective procedure (the procedure described in the reference under paragraph (g)(8) of this section may be used).
(8) Quantitative measure of landing foot splay (the procedure described in the reference under paragraph (g)(3) of this section may be used).
(9) Sensorimotor responses to stimuli of different modalities will be used to detect gross sensory deficits. Pain perception may be assessed by a ranking or measure of the reaction to a tail-pinch, tail-flick, or hot-plate. The response to a sudden sound, e.g., click or snap, may be used to assess audition.
(10) Body weight.
(11) Description and incidence of any unusual or abnormal behaviors, excessive or repetitive actions (stereotypies), emaciation, dehydration, hypotonia or hypertonia, altered fur appearance, red or crusty deposits around the eyes, nose, or mouth, and any other observations that may facilitate interpretation of the data.
(C) Additional measures. Other measures may also be included and the development and validation of new tests is encouraged. Further information on the neurobehavioral integrity of the subject may be provided by:

(1) Count of rearing activity on the open field.
(2) Ranking of righting ability.
(3) Body temperature.
(4) Excessive or spontaneous vocalizations.
(5) Alterations in rate and ease of respiration, e.g., rales or dyspnea.
(6) Sensorimotor responses to visual or proprioceptive stimuli.

(iii) Motor activity. Motor activity shall be monitored by an automated activity recording apparatus. The device used must be capable of detecting both increases and decreases in activity, i.e., baseline activity as measured by the device must not be so low as to preclude detection of decreases nor so high as to preclude detection of increases in activity. Each device shall be tested by standard procedures to ensure, to the extent possible, reliability of operation across devices and across days for any one device. In addition, treatment groups must be balanced across devices. Each animal shall be tested individually. The test session shall be long enough for motor activity to approach asymptotic levels by the last 20% of the session for nontreated control animals. All sessions shall have the same duration. Treatment groups shall be counterbalanced across test times. Effort should be made to ensure that variations in the test conditions are minimal and are not systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of the home cage or a novel test cage, and environmental distractions.

(iv) Neuropathology: Collection, processing and examination of tissue samples. To provide for adequate sampling as well as optimal preservation of cellular integrity for the detection of neuropathological alterations, tissue shall be prepared for histological analysis using in situ perfusion and paraffin or plastic embedding procedures. Paraffin embedding is acceptable for tissue samples from the central nervous system. Plastic embedding of tissue samples from the peripheral nervous system is encouraged, when feasible. Plastic embedding is required for tissue samples from the peripheral nervous system.
nervous system. Subject to professional judgment and the type of neuropathological alterations observed, it is recommended that additional methods, such as glial fibrillary acidic protein (GFAP) immunohistochemistry and/or methods known as Bodian's or Bielchowsky's silver methods be used in conjunction with more standard stains to determine the lowest dose level at which neuropathological alterations are observed. When new or existing data provide evidence of structural alterations it is recommended that the GFAP immunohistochemistry also be considered. A description of this technique can be found in the reference under paragraph (g)(10) of this section.

(A) Fixation and processing of tissue. The nervous system shall be fixed by in situ perfusion with an appropriate aldehyde fixative. Any gross abnormalities should be noted. Tissue samples taken should adequately represent all major regions of the nervous system. The tissue samples should be postfixed and processed according to standardized published histological protocols (protocols described in the references under paragraphs (g)(1), (g)(2), or (g)(11) of this section may be used). Tissue blocks and slides should be appropriately identified when stored. Histological sections should be stained for hematoxylin and eosin (H&E), or a comparable stain according to standard published protocols (some of these protocols are described in the references under paragraphs (g)(1) and (g)(11) of this section).

(B) Qualitative examination. Representative histological sections from the tissue samples should be examined microscopically by an appropriately trained pathologist for evidence of neuropathological alterations. The nervous system shall be thoroughly examined for evidence of any treatment-related neuropathological alterations. Particular attention should be paid to regions known to be sensitive to neurotoxic insult or those regions likely to be affected based on the results of functional tests. Such treatment-related neuropathological alterations should be clearly distinguished from artifacts resulting from influences other than exposure to the test substance. A stepwise examination of tissue samples is recommended. In such a stepwise examination, sections from the high dose group are first compared with those of the control group. If no neuropathological alterations are observed in samples from the high dose group, subsequent analysis is not required. If neuropathological alterations are observed in samples from the high dose group, samples from the intermediate and low dose groups are then examined sequentially.

(C) Subjective diagnosis. If any evidence of neuropathological alterations is found in the qualitative examination, then a subjective diagnosis shall be performed for the purpose of evaluating dose-response relationships. All regions of the nervous system exhibiting any evidence of neuropathological changes should be included in this analysis. Sections from all dose groups from each region will be coded and examined in randomized order without knowledge of the code. The frequency of each type and severity of each lesion will be recorded. After all samples from all dose groups including all regions have been rated, the code will be broken and statistical analysis performed to evaluate dose-response relationships. For each type of dose-related lesion observed, examples of different degrees of severity should be described. Photomicrographs of typical examples of treatment-related regions are recommended to augment these descriptions. These examples will also serve to illustrate a rating scale, such as 1=, 2=, and 3= for the degree of severity ranging from very slight to very extensive.

(f) Data reporting and evaluation. The final test report shall include the following information:

(1) Description of equipment and test methods. A description of the general design of the experiment and any equipment used shall be provided. This shall include a short justification explaining any decisions involving professional judgment.

(i) A detailed description of the procedures used to standardize observations, including the arena and scoring criteria.

(ii) Positive control data from the laboratory performing the test that
demonstrate the sensitivity of the procedures being used. Historical data may be used if all essential aspects of the experimental protocol are the same. Historical control data can be critical in the interpretation of study findings. The Agency encourages submission of such data to facilitate the rapid and complete review of the significance of effects seen.

(2) Results. The following information shall be arranged by test group dose level:

(i) In tabular form, data for each animal shall be provided showing:
 (A) Its identification number.
 (B) Its body weight and score on each sign at each observation time, the time and cause of death (if appropriate), total session activity counts, and intrasession subtotals for each day measured.

(ii) Summary data for each group must include:
 (A) The number of animals at the start of the test.
 (B) The number of animals showing each observation score at each observation time.
 (C) The mean and standard deviation for each continuous endpoint at each observation time.
 (D) Results of statistical analyses for each measure, where appropriate.

(iii) All neuropathological observations shall be recorded and arranged by test groups. This data may be presented in the following recommended format:
 (A) Description of lesions for each animal. For each animal, data must be submitted showing its identification (animal number, sex, treatment, dose, and duration), a list of structures examined as well as the locations, nature, frequency, and severity of lesions. Inclusion of photomicrographs is strongly recommended for demonstrating typical examples of the type and severity of the neuropathological alterations observed. Any diagnoses derived from neurological signs and lesions including naturally occurring diseases or conditions, should be recorded.
 (B) Counts and incidence of neuropathological alterations by test group. Data should be tabulated to show:

1. The number of animals used in each group and the number of animals in which any lesion was found.
2. The number of animals affected by each different type of lesion, the locations, frequency, and average grade of each type of lesion.
3. Evaluation of data. The findings from the screening battery should be evaluated in the context of preceding and/or concurrent toxicity studies and any correlated functional and histopathological findings. The evaluation shall include the relationship between the doses of the test substance and the presence or absence, incidence and severity, of any neurotoxic effects. The evaluation shall include appropriate statistical analyses, for example, parametric tests for continuous data and nonparametric tests for the remainder. Choice of analyses should consider tests appropriate to the experimental design, including repeated measures. There may be many acceptable ways to analyze data.

(g) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, except legal holidays.

5. Gad, S. A neuromuscular screen for use in industrial toxicology. Journal...

§ 799.9780 TSCA immunotoxicity.

(a) Scope. This section is intended to meet the testing requirements under section 4 of TSCA. This section is intended to provide information on suppression of the immune system which might occur as a result of repeated exposure to a test chemical. While some information on potential immunotoxic effects may be obtained from hematology, lymphoid organ weights and histopathology (usually done as part of routine toxicity testing), there are data which demonstrate that these endpoints alone are not sufficient to predict immunotoxicity (Luster et al., 1992, 1993 see paragraphs (j)(8) and (j)(9) of this section). Therefore, the tests described in this section are intended to be used along with data from routine toxicity testing, to provide more accurate information on risk to the immune system. The tests in this section do not represent a comprehensive assessment of immune function.

(b) Source. The source material used in developing this TSCA test guideline is the OPPTS harmonized test guideline 870.7800 (June 1996 Public Draft). This source is available at the address in paragraph (j) of this section.

(c) Definitions. The following definitions apply to this section.

Antibodies or immunoglobulins (Ig) are part of a large family of glycoprotein molecules. They are produced by B cells in response to antigens, and bind specifically to the eliciting antigen. The different classes of immunoglobulins involved in immunity are IgG, IgA, IgM, IgD, and IgE. Antibodies are found in extracellular fluids, such as serum, saliva, milk, and lymph. Most antibody responses are T cell-dependent, that is, functional T and B lymphocytes, as well as antigen-presenting cells (usually macrophages), are required for the production of antibodies.

Cluster of differentiation (CD) refers to molecules expressed on the cell surface. These molecules are useful as distinct CD molecules are found on different populations of cells of the immune system. Antibodies against these cell surface markers (e.g., CD4, CD8) are used to identify and quantitate different cell populations.

Immunotoxicity refers to the ability of a test substance to suppress immune responses that could enhance the risk of infectious or neoplastic disease, or to induce inappropriate stimulation of the immune system, thus contributing to allergic or autoimmune disease.
If absorption/distribution/metabolism/excretion (ADME) data are similar between species, then either rats or mice may be used for the test compound in question. If such data are lacking, both species should be used.

Because there is a fairly rapid turnover of many of the cells in the immune system, 28 days is considered sufficient for the purposes of the anti-SRBC tests.

When these optional tests are included, the phenotypic or NK cell analyses may be performed at 28 days of exposure, or at a later timepoint if ADME data suggest that a longer exposure is more appropriate.
strains shall be employed. All test animals shall be free of pathogens, internal and external parasites. Females shall be nulliparous and nonpregnant. The species, strain, and source of the animals shall be identified.

(ii) Age/weight. (A) Young, healthy animals shall be employed. At the commencement of the study, the weight variation of the animals used shall not exceed ± 20% of the mean weight for each sex.

(B) Dosing shall begin when the test animals are between 6 and 8 weeks old.

(iii) Sex. Either sex may be used in the study; if one sex is known or believed to be more sensitive to the test compound, then that sex shall be used.

(iv) Numbers. (A) At least eight animals shall be included in each dose and control group. The number of animals tested shall yield sufficient statistical power to detect a 20% change based upon the interanimal variation which may be encountered in these assays.

(B) To avoid bias, the use of adequate randomization procedures for the proper allocation of animals to test and control groups is required.

(C) Each animal shall be assigned a unique identification number. Dead animals, their preserved organs and tissues, and microscopic slides shall be identified by reference to the animal’s unique number.

(v) Husbandry. (A) Animals may be group-caged by sex, but the number of animals per cage shall not interfere with clear observation of each animal. The biological properties of the test substance or toxic effects (e.g., morbidity, excitability) may indicate a need for individual caging.

(B) The temperature of the experimental animal rooms shall be at 22 ± 3 °C.

(C) The relative humidity of the experimental animal rooms shall be between 30 and 70%.

(D) Where lighting is artificial, the sequence shall be 12 hrs light, 12 hrs dark.

4 The study director shall be aware of strain differences in response to SRBC. For example, if the B6C3F1 hybrid mouse is used in the PFC assay, a response of 800-1,000 PFC/10⁶ spleen cells in control mice should be the minimally acceptable PFC response.
(3) Control groups. (i) A concurrent, vehicle-treated control group is required.
(ii) A separate untreated control group is required if the toxicity of the vehicle is unknown.
(iii) A positive control group with a known immunosuppressant (e.g., cyclophosphamide) shall be included in the study. A group of at least eight animals shall be given the immunosuppressive chemical.

(4) Dose levels. (i) In repeated-dose toxicity tests, it is desirable to have a dose-response relationship and a no observed immunotoxic effect level. Therefore, at least three dose levels and a negative control shall be used, unless a limit test is performed as specified under paragraph (e) of this section.
(ii) The highest dose level shall not produce significant stress, malnutrition, or fatalities, but ideally should produce some measurable sign of general toxicity (e.g., a 10% loss of body weight).
(iii) The lowest dose level ideally shall not produce any evidence of immunotoxicity.

(5) Administration of the test substance. (i) The test substance, vehicle, or positive control substance shall be administered for at least 28 days for the anti-SRBC assay. The route of administration of the test material will usually be oral; however, this shall be determined by the likely route of occupational or indoor exposure. Therefore, under certain conditions, the dermal or inhalation route of exposure may be more relevant for the study. All animals shall be dosed by the same method during the entire experimental period.
(ii) If the test substance is administered by gavage, the animals are dosed with the test substance ideally on a 7-days-per-week basis. However, based primarily on practical considerations, dosing by gavage on a 5-days-per-week basis shall be acceptable. If the test substance is administered in the drinking water, or mixed directly into the diet, then exposure shall be on a 7-days-per-week basis.

(A) For substances of low toxicity, it is important to ensure that when administered in the diet, the quantities of the test substance involved do not interfere with normal nutrition. When the test substance is administered in the diet, either a constant dietary concentration in parts per million (ppm) or a constant dose level in terms of the animal’s body weight shall be used; the alternative used should be specified.
(B) If a substance administered by gavage, the dose shall be given at approximately the same time each day, and adjusted at intervals (weekly for mice, twice per week for rats) to maintain a constant dose level in terms of the animal’s body weight.
(iii) If the test substance is administered dermally, use paragraphs (f)(3)(iii)(A) through (f)(3)(iii)(D) of this section.
(A) Dose levels and dose selection. (1) In this test, it is desirable to determine a dose-response relationship as well as a NOEL. Therefore, at least three dose levels plus a control and, where appropriate, a vehicle control (corresponding to the concentration of vehicle at the highest dose level) group should be used. Doses should be spaced appropriately to produce test groups with a range of toxic effects. The data should be sufficient to produce a dose-response curve.
(2) The highest dose level should elicit signs of toxicity but not produce severe skin irritation or an incidence of fatality which would prevent a meaningful evaluation. If application of the test substance produces severe skin irritation, the concentration may be reduced, although this may result in a reduction in, or absence of, other toxic effects at the high dose level. If the skin has been badly damaged early in the study, it may be necessary to terminate the study and undertake a new one at lower concentrations.
(3) The intermediate dose levels should be spaced to produce a gradation of toxic effects.
(4) The lowest dose level should not produce any evidence of toxic effects.
(B) Preparation of animal skin. Shortly before testing, fur should be clipped from not less than 10% of the body surface area for application of the test substance. In order to dose approximately 10% of the body surface, the area starting at the scapulae (shoulders) to the wing of the ileum (hipbone) and half-way down the flank on each
§ 799.9780

Side of the animal should be shaved. Shaving should be carried out approximately 24 hrs before dosing. Repeated clipping or shaving is usually needed at approximately weekly intervals. When clipping or shaving the fur, care should be taken to avoid abrading the skin which could alter its permeability.

(C) Preparation of test substance. (1) Liquid test substances are generally used undiluted, except as indicated in paragraph (f)(5)(iii)(A) of this section.

(2) Solids should be pulverized when possible. The substance should be moistened sufficiently with water or, when necessary, a suitable vehicle to ensure good contact with the skin. When a vehicle is used, the influence of the vehicle on toxicity of, and penetration of the skin by, the test substance should be taken into account.

(3) The volume of application should be kept constant, e.g. less than 300 \(\mu \text{L} \) for the rat; different concentrations of test solution should be prepared for different dose levels.

(D) Administration of test substance. (1) The duration of exposure should be at least for 90 days.

(2) The animals should be treated with test substance for at least 6 hrs/day on a 7-day per week basis. However, based on practical considerations, application on a 5-day per week basis is acceptable. Dosing should be conducted at approximately the same time each day.

(3) The test substance should be applied uniformly over the treatment site.

(4) The surface area covered may be less for highly toxic substances. As much of the area should be covered with as thin and uniform a film as possible.

(5) During the exposure period, the test substance should be held in contact with the skin with a porous gauze dressing. The test site should be further covered with nonirritating tape to retain the gauze dressing and the test substance and to ensure that the animals cannot ingest the test substance. Restrainers may be used to prevent the ingestion of the test substance, but complete immobilization is not recommended.

(iv) If the test substance is administered by the inhalation route, use the procedures under paragraphs (e)(2), (e)(3), (e)(6), (e)(8), (e)(9), and (e)(10) of 40 CFR 799.9346. The exposure time for the anti-SRBC test shall be at least 28 days.

(6) Observation period. Duration of the observation period shall be at least 28 days.

(7) Observation of animals. (i) Observations shall be made at least once each day for morbidity and mortality. Appropriate actions shall be taken to minimize loss of animals to the study (e.g., necropsy of those animals found dead and isolation or euthanasia of weak or moribund animals).

(ii) A careful clinical examination shall be made at least once a week. Observations shall be detailed and carefully recorded, preferably using explicitly defined scales. Observations shall include, but not be limited to: evaluation of skin and fur, eyes and mucous membranes; respiratory and circulatory effects; autonomic effects, such as salivation; central nervous system effects, including tremors and convulsions, changes in the level of motor activity, gait and posture, reactivity to handling or sensory stimuli, grip strength, and stereotypes or bizarre behavior (e.g., self-mutilation, walking backwards).

(iii) Signs of toxicity shall be recorded as they are observed, including the time of onset, degree and duration.

(iv) Food and water consumption shall be determined weekly.

(v) Animals shall be weighed immediately prior to dosing, weekly (twice per week for rats) thereafter, and just prior to euthanasia.

(vi) Any moribund animals shall be removed and euthanized when first noticed. Necropsies shall be conducted on all moribund animals, and on all animals that die during the study.

(vii) The spleen and thymus shall be weighed in all animals at the end of the study.

(g) Immunotoxicity tests—(1) Functional tests. Either a splenic PFC assay or an ELISA shall be used to determine the response to antigen administration.
Environmental Protection Agency § 799.9780

(i) Antibody plaque-forming cell (PFC) assay. If the antibody PFC assay is performed, the criteria listed under paragraphs (g)(1)(i)(A) through (g)(1)(i)(F) of this section shall be adhered to. Assays described in the references under paragraphs (j)(2) and (j)(4) of this section may be used.

(A) The T cell-dependent antigen, SRBC, shall be injected intravenously or intraperitoneally, usually at 24 days after the first dosing with the test substance. Although the optimum response time is usually 4 days after immunization, some strains of test animal may deviate from this time point. The strain to be used shall be evaluated for the optimum day for PFC formation after immunization.

(B) The activity of each new batch of complement shall be determined. For any given study, the SRBCs shall be from a single sheep, or pool of sheep, for which the shelf life and dose for optimum response has been determined.

(C) Modifications of the PFC assay described in paragraph (g)(1)(i) of this section exist and may prove useful; however, the complete citation shall be made for the method used, any modifications to the method shall be reported, and the source and, where appropriate, the activity or purity of important reagents shall be given. Justification or rationale shall be provided for each protocol modification. Discussions of modifications of the PFC assay are available in the references under paragraphs (j)(5), (j)(6), and (j)(10) of this section.

(D) Samples shall be randomized and shall be coded for PFC analysis, so that the analyst is unaware of the treatment group of each sample examined.

(E) Spleen cell viability shall be determined.

(F) The numbers of IgM PFC per spleen, and the number of IgM PFC per 10⁶ spleen cells shall be reported.

(ii) Immunoglobulin quantification. As an alternative to a PFC assay, the effects of the test substance on the antibody response to antigen may be determined by an Enzyme-Linked Immunosorbent Assay (ELISA). Comparison between the PFC and ELISA assays for immunotoxicity assessment are discussed in the references under paragraphs (j)(5), (j)(6), and (j)(10) of this section. Test animals shall be immunized with SRBCs as for the PFC assay. IgM titers in the serum of each test animal shall be determined (usually 4 days after immunization). As with the PFC assay, the optimum dose of SRBCs and optimum time for collection of the sera shall be determined for the species and strain of animal to be tested. Several methods are described in the reference under paragraph (j)(11) of this section.

(iii) Natural killer (NK) cell activity. The methods described in the reference under paragraph (j)(3) of this section may be used to demonstrate the effects of at least 28 days of exposure to a test substance on spontaneous cytotoxic activity. In this assay, splenocytes from treated and untreated test animals are incubated with ⁵¹Cr-labeled YAC-1 lymphoma cells. The amount of radiolabel released from the target cells after incubation with the effector cells for four hrs is used as a measure of NK cytolysis. The following points shall be adhered to when using the NK cell assay:

(A) Assay controls shall be included to account for spontaneous release of radiolabel from target cells in the absence of effector cells, and also for the determination of total release of radiolabel.

(B) Target cells other than YAC-1 lymphoma cells may be appropriate for use in the assay. In all cases, target cell viability shall be determined.

(C) Modifications of the protocol exist that may prove useful. However, complete citation shall be made to the method used. Modifications shall be reported, and where appropriate, the source, activity, and/or purity of the reagents shall be given. Justification or rationale shall be provided for each protocol modification.

(2) Enumeration of splenic or peripheral blood total B cells, total T cells, and T cell subpopulations. The phenotypic analysis of total B cell, total T cell, and T cell subpopulations from the spleen or peripheral blood by flow cytometry.
§ 799.9780

should be performed after at least 28 days of dosing; this may be performed at a later timepoint, if ADME data suggest that a longer exposure is more appropriate. If an exposure period longer than 28 days is used, then these tests may be performed in conjunction with subchronic (ninety day oral, dermal, or inhalation) toxicity studies, when these studies are required. Methods described in the references under paragraphs (j)(1) and (j)(5) of this section may be used.

(h) Data and reporting—(1) Treatment of results—(i) Data shall be summarized in tabular form, showing for each test group the number of animals at the start of the test, the number of animals showing effects, the types of effects and the percentage of animals displaying each type of effect.

(ii) All observed results, quantitative and incidental, shall be evaluated by an appropriate statistical method. Any generally accepted statistical methods may be used; the statistical methods including significance criteria shall be selected during the design of the study.

(2) Evaluation of study results. The findings of an immunotoxicity study shall be evaluated in conjunction with the findings of preceding studies and considered in terms of other toxic effects. The evaluation shall include the relationship between the dose of the test substance and the presence or absence, and the incidence and severity of abnormalities, including behavioral and clinical abnormalities, gross lesions, identified target organs, body weight changes, effects on mortality and any other general or specific toxic effects. A properly conducted test shall provide a satisfactory estimation of a no-observed-effect level. It may indicate the need for an additional study and provide information on the selection of dose levels.

(3) Test report. In addition to the reporting requirements as specified under 40 CFR part 792, subpart J, the following specific information shall be reported. Both individual and summary data should be presented.

(i) The test substance characterization shall include:
(A) Chemical identification.
(B) Lot or batch number.
(C) Physical properties.
(D) Purity/impurities.
(E) Identification and composition of any vehicle used.

(ii) The test system shall contain data on:
(A) Species, strain, and rationale for selection of animal species, if other than that recommended.
(B) Age, body weight data, and sex.
(C) Test environment including cage conditions, ambient temperature, humidity, and light/dark periods.

(D) When inhalation is the route of exposure, a description of the exposure equipment and data shall be included as follows:

(1) Description of test conditions; the following exposure conditions shall be reported:

(i) Description of exposure apparatus including design, type, volume, source of air, system for generating aerosols, method of conditioning air, treatment of exhaust air and the method of housing the animals in a test chamber.

(ii) The equipment for measuring temperature, humidity, and particulate aerosol concentrations and size should be described.

(2) Exposure data shall be tabulated and presented with mean values and a measure of variability (e.g., standard deviation) and include:

(i) Airflow rates through the inhalation equipment.

(ii) Temperature and humidity of air.

(iii) Actual (analytical or gravimetric) concentration in the breathing zone.

(iv) Nominal concentration (total amount of test substance fed into the inhalation equipment divided by volume of air).

(v) Particle size distribution, calculated mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD).

(vi) Explanation as to why the desired chamber concentration and/or particle size could not be achieved (if applicable) and the efforts taken to comply with this aspect of the section.

(E) Identification of animal diet.

(iii) The test procedure shall include the following data:

(A) Method of randomization used.

(B) Full description of experimental design and procedure.
(C) Dose regimen including levels, methods, and volume.

(iv) Test results should include the following data:

(A) Group animal toxic response data shall be tabulated by species, strain, sex, and exposure level for:

(1) Number of animals exposed.
(2) Number of animals showing signs of toxicity.
(3) Number of animals dying.

(B) Individual animal data shall be presented, as well as summary (group mean data).

(C) Date of death during the study or whether animals survived to termination.

(D) Date of observation of each abnormal sign and its subsequent course.

(E) Absolute and relative spleen and thymus weight data.

(F) Food and water consumption data, when collected.

(G) Results of immunotoxicity tests.

(H) Necropsy findings of animals that were found moribund and euthanized or died during the study.

(I) Statistical treatment of results, where appropriate.

(i) Quality control. A system shall be developed and maintained to assure and document adequate performance of laboratory staff and equipment. The study shall be conducted in compliance with the 40 CFR Part 792—Good Laboratory Practice.

(j) References. For additional background information on this test guideline, the following references should be consulted. These references are available for inspection at the TSCA Non-confidential Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M St., S.W., Washington, D.C., 12 noon to 4 p.m., Monday through Friday, except legal holidays.

(11) Temple, L., Butterworth, L., Kawabata, T.T., Munson, A.E., and
CHAPTER V—COUNCIL ON ENVIRONMENTAL QUALITY

Part	Page
1500 | Purpose, policy, and mandate 347
1501 | NEPA and agency planning 349
1502 | Environmental impact statement 353
1503 | Commenting 360
1504 | Predecision referrals to the Council of proposed Federal actions determined to be environmentally unsatisfactory 361
1505 | NEPA and agency decisionmaking 363
1506 | Other requirements of NEPA 364
1507 | Agency compliance 369
1508 | Terminology and index 371
1515 | Freedom of Information Act procedures 376
1516 | Privacy Act implementation 380
1517 | Public meeting procedures of the Council on Environmental Quality 381
Index to parts 1500 through 1508 387

345
PART 1500—PURPOSE, POLICY, AND MANDATE

Sec. 1500.1 Purpose.
1500.2 Policy.
1500.3 Mandate.
1500.4 Reducing paperwork.
1500.5 Reducing delay.
1500.6 Agency authority.

S O U R C E: 43 FR 55990, Nov. 28, 1978, unless otherwise noted.

§ 1500.1 Purpose.

(a) The National Environmental Policy Act (NEPA) is our basic national charter for protection of the environment. It establishes policy, sets goals (section 101), and provides means (section 102) for carrying out the policy. Section 102(2) contains “action-forcing” provisions to make sure that federal agencies act according to the letter and spirit of the Act. The regulations that follow implement section 102(2). Their purpose is to tell federal agencies what they must do to comply with the procedures and achieve the goals of the Act. The President, the federal agencies, and the courts share responsibility for enforcing the Act so as to achieve the substantive requirements of section 101.

(b) NEPA procedures must insure that environmental information is available to public officials and citizens before decisions are made and before actions are taken. The information must be of high quality. Accurate scientific analysis, expert agency comments, and public scrutiny are essential to implementing NEPA. Most important, NEPA documents must concentrate on the issues that are truly significant to the action in question, rather than amassing needless detail.

(c) Ultimately, of course, it is not better documents but better decisions that count. NEPA’s purpose is not to generate paperwork—even excellent paperwork—but to foster excellent action. The NEPA process is intended to help public officials make decisions that are based on understanding of environmental consequences, and take actions that protect, restore, and enhance the environment. These regulations provide the direction to achieve this purpose.

§ 1500.2 Policy.

Federal agencies shall to the fullest extent possible:

(a) Interpret and administer the policies, regulations, and public laws of the United States in accordance with the policies set forth in the Act and in these regulations.

(b) Implement procedures to make the NEPA process more useful to decisionmakers and the public; to reduce paperwork and the accumulation of extraneous background data; and to emphasize real environmental issues and alternatives. Environmental impact statements shall be concise, clear, and to the point, and shall be supported by evidence that agencies have made the necessary environmental analyses.

(c) Integrate the requirements of NEPA with other planning and environmental review procedures required by law or by agency practice so that all such procedures run concurrently rather than consecutively.

(d) Encourage and facilitate public involvement in decisions which affect the quality of the human environment.

(e) Use the NEPA process to identify and assess the reasonable alternatives to proposed actions that will avoid or minimize adverse effects of these actions upon the quality of the human environment.

(f) Use all practicable means, consistent with the requirements of the Act and other essential considerations of national policy, to restore and enhance the quality of the human environment and avoid or minimize any possible adverse effects of their actions upon the quality of the human environment.

§ 1500.3 Mandate.

Parts 1500 through 1508 of this title provide regulations applicable to and binding on all Federal agencies for implementing the procedural provisions of the National Environmental Policy Act of 1969, as amended (Pub. L. 91-190, 42 U.S.C. 4321 et seq.) (NEPA or the Act).
§ 1500.4 Reducing paperwork.

Agencies shall reduce excessive paperwork by:

(a) Reducing the length of environmental impact statements (§ 1502.2(c)), by means such as setting appropriate page limits (§§ 1501.7(b)(1) and 1502.7).

(b) Preparing analytic rather than encyclopedic environmental impact statements (§ 1502.2(a)).

(c) Discussing only briefly issues other than significant ones (§ 1502.2(b)).

(d) Writing environmental impact statements in plain language (§ 1502.8).

(e) Following a clear format for environmental impact statements (§ 1502.10).

(f) Emphasizing the portions of the environmental impact statement that are useful to decisionmakers and the public (§§ 1502.14 and 1502.15) and reducing emphasis on background material (§ 1502.16).

(g) Using the scoping process, not only to identify significant environmental issues deserving of study, but also to deemphasize insignificant issues, narrowing the scope of the environmental impact statement process accordingly (§ 1501.7).

(h) Summarizing the environmental impact statement (§ 1502.12) and circulating the summary instead of the entire environmental impact statement if the latter is unusually long (§ 1502.19).

(i) Using program, policy, or plan environmental impact statements and tiering from statements of broad scope to those of narrower scope, to eliminate repetitive discussions of the same issues (§§ 1502.4 and 1502.20).

(j) Incorporating by reference (§ 1502.21).

(k) Integrating NEPA requirements with other environmental review and consultation requirements (§ 1502.25).

(l) Requiring comments to be as specific as possible (§ 1503.3).

(m) Attaching and circulating only changes to the draft environmental impact statement, rather than rewriting and circulating the entire statement when changes are minor (§ 1503.4(c)).

(n) Eliminating duplication with State and local procedures, by providing for joint preparation (§ 1506.2), and with other Federal procedures, by providing that an agency may adopt appropriate environmental documents prepared by another agency (§ 1506.3).

(o) Combining environmental documents with other documents (§ 1506.4).

(p) Using categorical exclusions to define categories of actions which do not individually or cumulatively have a significant effect on the human environment and which are therefore exempt from requirements to prepare an environmental impact statement (§ 1508.4).

(q) Using a finding of no significant impact when an action not otherwise excluded will not have a significant effect on the human environment and is therefore exempt from requirements to prepare an environmental impact statement (§ 1508.13).

§ 1500.5 Reducing delay.

Agencies shall reduce delay by:
(a) Integrating the NEPA process into early planning (§ 1501.2).

(b) Emphasizing interagency cooperation before the environmental impact statement is prepared, rather than submission of adversary comments on a completed document (§ 1501.6).

(c) Insuring the swift and fair resolution of lead agency disputes (§ 1501.5).

(d) Using the scoping process for an early identification of what are and what are not the real issues (§ 1501.7).

(e) Establishing appropriate time limits for the environmental impact statement process (§§ 1501.7(b)(2) and 1501.8).

(f) Preparing environmental impact statements early in the process (§ 1502.5).

(g) Integrating NEPA requirements with other environmental review and consultation requirements (§ 1502.25).

(h) Eliminating duplication with State and local procedures by providing for joint preparation (§ 1506.2) and with other Federal procedures by providing that an agency may adopt appropriate environmental documents prepared by another agency (§ 1506.3).

(i) Combining environmental documents with other documents (§ 1506.4).

(j) Using accelerated procedures for proposals for legislation (§ 1506.8).

(k) Using categorical exclusions to define categories of actions which do not individually or cumulatively have a significant effect on the human environment (§ 1508.4) and which are therefore exempt from requirements to prepare an environmental impact statement.

(l) Using a finding of no significant impact when an action not otherwise excluded will not have a significant effect on the human environment (§ 1508.13) and is therefore exempt from requirements to prepare an environmental impact statement.

§ 1500.6 Agency authority.

Each agency shall interpret the provisions of the Act as a supplement to its existing authority and as a mandate to view traditional policies and missions in the light of the Act’s national environmental objectives. Agencies shall review their policies, procedures, and regulations accordingly and revise them as necessary to insure full compliance with the purposes and provisions of the Act. The phrase “to the fullest extent possible” in section 102 means that each agency of the Federal Government shall comply with that section unless existing law applicable to the agency’s operations expressly prohibits or makes compliance impossible.

PART 1501—NEPA AND AGENCY PLANNING

Sec. 1501.1 Purpose.
1501.2 Apply NEPA early in the process.
1501.3 When to prepare an environmental assessment.
1501.4 Whether to prepare an environmental impact statement.
1501.5 Lead agencies.
1501.6 Cooperating agencies.
1501.7 Scoping.
1501.8 Time limits.

SOURCE: 43 FR 55992, Nov. 29, 1978, unless otherwise noted.

§ 1501.1 Purpose.

The purposes of this part include:

(a) Integrating the NEPA process into early planning to insure appropriate consideration of NEPA’s policies and to eliminate delay.

(b) Emphasizing cooperative consultation among agencies before the environmental impact statement is prepared rather than submission of adversary comments on a completed document.

(c) Providing for the swift and fair resolution of lead agency disputes.

(d) Identifying at an early stage the significant environmental issues deserving of study and deemphasizing insignificant issues, narrowing the scope of the environmental impact statement accordingly.

(e) Providing a mechanism for putting appropriate time limits on the environmental impact statement process.
§ 1501.2 Apply NEPA early in the process.

Agencies shall integrate the NEPA process with other planning at the earliest possible time to insure that planning and decisions reflect environmental values, to avoid delays later in the process, and to head off potential conflicts. Each agency shall:

(a) Comply with the mandate of section 102(2)(A) to “utilize a systematic, interdisciplinary approach which will insure the integrated use of the natural and social sciences and the environmental design arts in planning and in decisionmaking which may have an impact on man’s environment,” as specified by §1507.2.

(b) Identify environmental effects and values in adequate detail so they can be compared to economic and technical analyses. Environmental documents and appropriate analyses shall be circulated and reviewed at the same time as other planning documents.

(c) Study, develop, and describe appropriate alternatives to recommended courses of action in any proposal which involves unresolved conflicts concerning alternative uses of available resources as provided by section 102(2)(E) of the Act.

(d) Provide for cases where actions are planned by private applicants or other non-Federal entities before Federal involvement so that:

(1) Policies or designated staff are available to advise potential applicants of studies or other information foreseeably required for later Federal action.

(2) The Federal agency consults early with appropriate State and local agencies and Indian tribes and with interested private persons and organizations when its own involvement is reasonably foreseeable.

(3) The Federal agency commences its NEPA process at the earliest possible time.

§ 1501.3 When to prepare an environmental assessment.

(a) Agencies shall prepare an environmental assessment (§1508.9) when necessary under the procedures adopted by individual agencies to supplement these regulations as described in §1507.3. An assessment is not necessary if the agency has decided to prepare an environmental impact statement.

(b) Agencies may prepare an environmental assessment on any action at any time in order to assist agency planning and decisionmaking.

§ 1501.4 Whether to prepare an environmental impact statement.

In determining whether to prepare an environmental impact statement the Federal agency shall:

(a) Determine under its procedures supplementing these regulations (described in §1507.3) whether the proposal is one which:

(1) Normally requires an environmental impact statement, or

(2) Normally does not require either an environmental impact statement or an environmental assessment (categorical exclusion).

(b) If the proposed action is not covered by paragraph (a) of this section, prepare an environmental assessment (§1508.9). The agency shall involve environmental agencies, applicants, and the public, to the extent practicable, in preparing assessments required by §1508.9(a)(1).

(c) Based on the environmental assessment make its determination whether to prepare an environmental impact statement.

(d) Commence the scoping process (§1501.7), if the agency will prepare an environmental impact statement.

(e) Prepare a finding of no significant impact (§1508.13), if the agency determines on the basis of the environmental assessment not to prepare a statement.

(1) The agency shall make the finding of no significant impact available to the affected public as specified in §1506.6.

(2) In certain limited circumstances, which the agency may cover in its procedures under §1507.3, the agency shall make the finding of no significant impact available for public review (including State and areawide clearinghouses) for 30 days before the agency makes its final determination whether to prepare an environmental impact statement and before the action may begin. The circumstances are:
 § 1501.6 Cooperating agencies.

The purpose of this section is to emphasize agency cooperation early in the NEPA process. Upon request of the lead agency, any other Federal agency which has jurisdiction by law shall be a cooperating agency. In addition any other Federal agency which has special expertise with respect to any environmental issue, which should be addressed in the statement may be a cooperating agency upon request of the lead agency. An agency may request the lead agency to designate it a cooperating agency.

(a) The lead agency shall:
(1) Request the participation of each cooperating agency in the NEPA process at the earliest possible time.
(2) Use the environmental analysis and proposals of cooperating agencies with jurisdiction by law or special expertise, to the maximum extent possible consistent with its responsibility as lead agency.
(3) Meet with a cooperating agency at the latter’s request.
(b) Each cooperating agency shall:
(1) Participate in the NEPA process at the earliest possible time.
§ 1501.7

(2) Participate in the scoping process (described below in §1501.7).

(3) Assume on request of the lead agency responsibility for developing information and preparing environmental analyses including portions of the environmental impact statement concerning which the cooperating agency has special expertise.

(4) Make available staff support at the lead agency's request to enhance the latter's interdisciplinary capability.

(5) Normally use its own funds. The lead agency shall, to the extent available funds permit, fund those major activities or analyses it requests from cooperating agencies. Potential lead agencies shall include such funding requirements in their budget requests.

(c) A cooperating agency may in response to a lead agency's request for assistance in preparing the environmental impact statement (described in paragraph (b)(3), (4), or (5) of this section) reply that other program commitments preclude any involvement or the degree of involvement requested in the action that is the subject of the environmental impact statement. A copy of this reply shall be submitted to the Council.

§ 1501.7 Scoping.

There shall be an early and open process for determining the scope of issues to be addressed and for identifying the significant issues related to a proposed action. This process shall be termed scoping. As soon as practicable after its decision to prepare an environmental impact statement and before the scoping process the lead agency shall publish a notice of intent (§1508.22) in the FEDERAL REGISTER except as provided in §1507.3(e).

(a) As part of the scoping process the lead agency shall:

(1) Invite the participation of affected Federal, State, and local agencies, any affected Indian tribe, the proponent of the action, and other interested persons (including those who might not be in accord with the action on environmental grounds), unless there is a limited exception under §1507.3(c). An agency may give notice in accordance with §1506.6.

(b) As part of the scoping process the lead agency may:

(1) Set page limits on environmental documents (§1502.7).

(2) Determine the scope (§1508.25) and the significant issues to be analyzed in depth in the environmental impact statement.

(3) Identify and eliminate from detailed study the issues which are not significant or which have been covered by prior environmental review (§1506.3), narrowing the discussion of these issues in the statement to a brief presentation of why they will not have a significant effect on the human environment or providing a reference to their coverage elsewhere.

(4) Allocate assignments for preparation of the environmental impact statement among the lead and cooperating agencies, with the lead agency retaining responsibility for the statement.

(5) Indicate any public environmental assessments and other environmental impact statements which are being or will be prepared that are related to but are not part of the scope of the impact statement under consideration.

(6) Identify other environmental review and consultation requirements so the lead and cooperating agencies may prepare other required analyses and studies concurrently with, and integrated with, the environmental impact statement as provided in §1502.25.

(7) Indicate the relationship between the timing of the preparation of environmental analyses and the agency's tentative planning and decisionmaking schedule.

(b) As part of the scoping process the lead agency may:

(1) Set page limits on environmental documents (§1502.7).

(2) Set time limits (§1501.8).

(3) Adopt procedures under §1507.3 to combine its environmental assessment process with its scoping process.

(4) Hold an early scoping meeting or meetings which may be integrated with any other early planning meeting the agency has. Such a scoping meeting will often be appropriate when the impacts of a particular action are confined to specific sites.

(c) An agency shall revise the determinations made under paragraphs (a) and (b) of this section if substantial changes are made later in the proposed
action, or if significant new circumstances or information arise which bear on the proposal or its impacts.

§ 1501.8 Time limits.

Although the Council has decided that prescribed universal time limits for the entire NEPA process are too inflexible, Federal agencies are encouraged to set time limits appropriate to individual actions (consistent with the time intervals required by §1506.10). When multiple agencies are involved the reference to agency below means lead agency.

(a) The agency shall set time limits if an applicant for the proposed action requests them: Provided, That the limits are consistent with the purposes of NEPA and other essential considerations of national policy.

(b) The agency may:

(1) Consider the following factors in determining time limits:
 (i) Potential for environmental harm.
 (ii) Size of the proposed action.
 (iii) State of the art of analytic techniques.
 (iv) Degree of public need for the proposed action, including the consequences of delay.
 (v) Number of persons and agencies affected.
 (vi) Degree to which relevant information is known and if not known the time required for obtaining it.
 (vii) Degree to which the action is controversial.
 (viii) Other time limits imposed on the agency by law, regulations, or executive order.

(2) Set overall time limits or limits for each constituent part of the NEPA process, which may include:
 (i) Decision on whether to prepare an environmental impact statement (if not already decided).
 (ii) Determination of the scope of the environmental impact statement.
 (iii) Preparation of the draft environmental impact statement.
 (iv) Review of any comments on the draft environmental impact statement from the public and agencies.
 (v) Preparation of the final environmental impact statement.
 (vi) Review of any comments on the final environmental impact statement.
 (vii) Decision on the action based in part on the environmental impact statement.

(3) Designate a person (such as the project manager or a person in the agency's office with NEPA responsibilities) to expedite the NEPA process.

(c) State or local agencies or members of the public may request a Federal Agency to set time limits.
§ 1502.2 Implementation.

To achieve the purposes set forth in §1502.1 agencies shall prepare environmental impact statements in the following manner:

(a) Environmental impact statements shall be analytic rather than encyclopedic.

(b) Impacts shall be discussed in proportion to their significance. There shall be only brief discussion of other than significant issues. As in a finding of no significant impact, there should be only enough discussion to show why more study is not warranted.

(c) Environmental impact statements shall be kept concise and shall be no longer than absolutely necessary to comply with NEPA and with these regulations. Length should vary first with potential environmental problems and then with project size.

(d) Environmental impact statements shall state how alternatives considered in it and decisions based on it will or will not achieve the requirements of sections 101 and 102(1) of the Act and other environmental laws and policies.

(e) The range of alternatives discussed in environmental impact statements shall encompass those to be considered by the ultimate agency decisionmaker.

(f) Agencies shall not commit resources prejudicing selection of alternatives before making a final decision (§1506.1).

(g) Environmental impact statements shall serve as the means of assessing the environmental impact of proposed agency actions, rather than justifying decisions already made.

§ 1502.3 Statutory requirements for statements.

As required by sec. 102(2)(C) of NEPA environmental impact statements (§1508.11) are to be included in every recommendation or report.

On proposals (§1508.23).

For legislation and (§1508.17).

Other major Federal actions (§1508.18).

Significantly (§1508.27).

Affecting (§§ 1508.3, 1508.8).

The quality of the human environment (§1508.14).

§ 1502.4 Major Federal actions requiring the preparation of environmental impact statements.

(a) Agencies shall make sure the proposal which is the subject of an environmental impact statement is properly defined. Agencies shall use the criteria for scope (§1508.25) to determine which proposal(s) shall be the subject of a particular statement. Proposals or parts of proposals which are related to each other closely enough to be, in effect, a single course of action shall be evaluated in a single impact statement.

(b) Environmental impact statements may be prepared, and are sometimes required, for broad Federal actions such as the adoption of new agency programs or regulations (§1508.18).

Agencies shall prepare statements on broad actions so that they are relevant to policy and are timed to coincide with meaningful points in agency planning and decisionmaking.

(c) When preparing statements on broad actions (including proposals by more than one agency), agencies may find it useful to evaluate the proposal(s) in one of the following ways:

1. Geographically, including actions occurring in the same general location, such as body of water, region, or metropolitan area.

2. Generically, including actions which have relevant similarities, such
as common timing, impacts, alternatives, methods of implementation, media, or subject matter.

(3) By stage of technological development including federal or federally assisted research, development or demonstration programs for new technologies which, if applied, could significantly affect the quality of the human environment. Statements shall be prepared on such programs and shall be available before the program has reached a stage of investment or commitment to implementation likely to determine subsequent development or restrict later alternatives.

(d) Agencies shall as appropriate employ scoping (§ 1501.7), tiering (§ 1502.20), and other methods listed in §§ 1500.4 and 1500.5 to relate broad and narrow actions and to avoid duplication and delay.

§ 1502.5 Timing.

An agency shall commence preparation of an environmental impact statement as close as possible to the time the agency is developing or is presented with a proposal (§ 1508.23) so that preparation can be completed in time for the final statement to be included in any recommendation or report on the proposal. The statement shall be prepared early enough so that it can serve practically as an important contribution to the decision-making process and will not be used to rationalize or justify decisions already made (§§ 1500.2(c), 1501.2, and 1502.2). For instance:

(a) For projects directly undertaken by Federal agencies the environmental impact statement shall be prepared at the feasibility analysis (go-no go) stage and may be supplemented at a later stage if necessary.

(b) For applications to the agency appropriate environmental assessments or statements shall be commenced no later than immediately after the application is received. Federal agencies are encouraged to begin preparation of such assessments or statements earlier, preferably jointly with applicable State or local agencies.

(c) For adjudication, the final environmental impact statement shall normally precede the final staff recommendation and that portion of the public hearing related to the impact study. In appropriate circumstances the statement may follow preliminary hearings designed to gather information for use in the statements.

(d) For informal rulemaking the draft environmental impact statement shall normally accompany the proposed rule.

§ 1502.6 Interdisciplinary preparation.

Environmental impact statements shall be prepared using an interdisciplinary approach which will insure the integrated use of the natural and social sciences and the environmental design arts (section 102(2)(A) of the Act). The disciplines of the preparers shall be appropriate to the scope and issues identified in the scoping process (§ 1501.7).

§ 1502.7 Page limits.

The text of final environmental impact statements (e.g., paragraphs (d) through (g) of § 1502.10) shall normally be less than 150 pages and for proposals of unusual scope or complexity shall normally be less than 300 pages.

§ 1502.8 Writing.

Environmental impact statements shall be written in plain language and may use appropriate graphics so that decisionmakers and the public can readily understand them. Agencies should employ writers of clear prose or editors to write, review, or edit statements, which will be based upon the analysis and supporting data from the natural and social sciences and the environmental design arts.

§ 1502.9 Draft, final, and supplemental statements.

Except for proposals for legislation as provided in §1506.8 environmental impact statements shall be prepared in two stages and may be supplemented.

(a) Draft environmental impact statements shall be prepared in accordance with the scope decided upon in the scoping process. The lead agency shall work with the cooperating agencies and shall obtain comments as required in part 1503 of this chapter. The draft statement must fulfill and satisfy to the fullest extent possible the requirements established for final statements.
in section 102(2)(C) of the Act. If a draft statement is so inadequate as to preclude meaningful analysis, the agency shall prepare and circulate a revised draft of the appropriate portion. The agency shall make every effort to disclose and discuss at appropriate points in the draft statement all major points of view on the environmental impacts of the alternatives including the proposed action.

(b) Final environmental impact statements shall respond to comments as required in part 1503 of this chapter. The agency shall discuss at appropriate points in the final statement any responsible opposing view which was not adequately discussed in the draft statement and shall indicate the agency’s response to the issues raised.

(c) Agencies:

(1) Shall prepare supplements to either draft or final environmental impact statements if:

(i) The agency makes substantial changes in the proposed action that are relevant to environmental concerns; or

(ii) There are significant new circumstances or information relevant to environmental concerns and bearing on the proposed action or its impacts.

(2) May also prepare supplements when the agency determines that the purposes of the Act will be furthered by doing so.

(3) Shall adopt procedures for introducing a supplement into its formal administrative record, if such a record exists.

(4) Shall prepare, circulate, and file a supplement to a statement in the same fashion (exclusive of scoping) as a draft and final statement unless alternative procedures are approved by the Council.

§ 1502.10 Recommended format.

Agencies shall use a format for environmental impact statements which will encourage good analysis and clear presentation of the alternatives including the proposed action. The following standard format for environmental impact statements should be followed unless the agency determines that there is a compelling reason to do otherwise:

(a) Cover sheet.
(b) Summary.
(c) Table of contents.
(d) Purpose of and need for action.
(e) Alternatives including proposed action (sections 102(2)(C)(iii) and 102(2)(E) of the Act).
(f) Affected environment.
(g) Environmental consequences (especially sections 102(2)(C)(i), (ii), (iv), and (v) of the Act).
(h) List of preparers.
(i) List of agencies, organizations, and persons to whom copies of the statement are sent.
(j) Index.
(k) Appendices (if any).

If a different format is used, it shall include paragraphs (a), (b), (c), (h), (i), and (j), of this section and shall include the substance of paragraphs (d), (e), (f), (g), and (k) of this section, as further described in §§ 1502.11 through 1502.18, in any appropriate format.

§ 1502.11 Cover sheet.

The cover sheet shall not exceed one page. It shall include:

(a) A list of the responsible agencies including the lead agency and any cooperating agencies.
(b) The title of the proposed action that is the subject of the statement (and if appropriate the titles of related cooperating agency actions), together with the State(s) and county(ies) (or other jurisdiction if applicable) where the action is located.
(c) The name, address, and telephone number of the person at the agency who can supply further information.
(d) A designation of the statement as a draft, final, or draft or final supplement.
(e) A one paragraph abstract of the statement.
(f) The date by which comments must be received (computed in cooperation with EPA under § 1506.10).

The information required by this section may be entered on Standard Form 424 (in items 4, 6, 7, 10, and 18).

§ 1502.12 Summary.

Each environmental impact statement shall contain a summary which adequately and accurately summarizes the statement. The summary shall stress the major conclusions, areas of controversy (including issues raised by agencies and the public), and the issues to be resolved (including the choice
§ 1502.13 Purpose and need.

The statement shall briefly specify the underlying purpose and need to which the agency is responding in proposing the alternatives including the proposed action.

§ 1502.14 Alternatives including the proposed action.

This section is the heart of the environmental impact statement. Based on the information and analysis presented in the sections on the Affected Environment (§ 1502.15) and the Environmental Consequences (§ 1502.16), it shall present the environmental impacts of the proposal and the alternatives in comparative form, thus sharply defining the issues and providing a clear basis for choice among options by the decisionmaker and the public. In this section agencies shall:

(a) Rigorously explore and objectively evaluate all reasonable alternatives, and for alternatives which were eliminated from detailed study, briefly discuss the reasons for their having been eliminated.

(b) Devote substantial treatment to each alternative considered in detail including the proposed action so that reviewers may evaluate their comparative merits.

(c) Include reasonable alternatives not within the jurisdiction of the lead agency.

(d) Include the alternative of no action.

(e) Identify the agency's preferred alternative or alternatives, if one or more exists, in the draft statement and identify such alternative in the final statement unless another law prohibits the expression of such a preference.

(f) Include appropriate mitigation measures not already included in the proposed action or alternatives.

§ 1502.15 Affected environment.

The environmental impact statement shall succinctly describe the environment of the area(s) to be affected or created by the alternatives under consideration. The descriptions shall be no longer than is necessary to understand the effects of the alternatives. Data and analyses in a statement shall be commensurate with the importance of the impact, with less important material summarized, consolidated, or simply referenced. Agencies shall avoid useless bulk in statements and shall concentrate effort and attention on important issues. Verbose descriptions of the affected environment are themselves no measure of the adequacy of an environmental impact statement.

§ 1502.16 Environmental consequences.

This section forms the scientific and analytic basis for the comparisons under § 1502.14. It shall consolidate the discussions of those elements required by sections 102(2)(C)(i), (ii), (iv), and (v) of NEPA which are within the scope of the statement and as much of section 102(2)(C)(iii) as is necessary to support the comparisons. The discussion will include the environmental impacts of the alternatives including the proposed action, any adverse environmental effects which cannot be avoided should the proposal be implemented, the relationship between short-term uses of man's environment and the maintenance and enhancement of long-term productivity, and any irreversible or irretrievable commitments of resources which would be involved in the proposal should it be implemented. This section should not duplicate discussions in § 1502.14. It shall include discussions of:

(a) Direct effects and their significance (§ 1508.8).

(b) Indirect effects and their significance (§ 1508.8).

(c) Possible conflicts between the proposed action and the objectives of Federal, regional, State, and local (and in the case of a reservation, Indian tribe) land use plans, policies and controls for the area concerned. (See § 1506.2(d).)

(d) The environmental effects of alternatives including the proposed action. The comparisons under § 1502.14 will be based on this discussion.

(e) Energy requirements and conservation potential of various alternatives and mitigation measures.

(f) Natural or depletable resource requirements and conservation potential of various alternatives and mitigation measures.
§ 1502.17

(g) Urban quality, historic and cultural resources, and the design of the built environment, including the reuse and conservation potential of various alternatives and mitigation measures.

(h) Means to mitigate adverse environmental impacts (if not fully covered under §1502.14(f)).

§ 1502.17 List of preparers.

The environmental impact statement shall list the names, together with their qualifications (expertise, experience, professional disciplines), of the persons who were primarily responsible for preparing the environmental impact statement or significant background papers, including basic components of the statement (§§ 1502.6 and 1502.8). Where possible the persons who are responsible for a particular analysis, including analyses in background papers, shall be identified. Normally the list will not exceed two pages.

§ 1502.18 Appendix.

If an agency prepares an appendix to an environmental impact statement the appendix shall:

(a) Consist of material prepared in connection with an environmental impact statement (as distinct from material which is not so prepared and which is incorporated by reference (§1502.21)).

(b) Normally consist of material which substantiates any analysis fundamental to the impact statement.

(c) Normally be analytic and relevant to the decision to be made.

(d) Be circulated with the environmental impact statement or be readily available on request.

§ 1502.19 Circulation of the environmental impact statement.

Agencies shall circulate the entire draft and final environmental impact statements except for certain appendices as provided in §1502.18(d) and unchanged statements as provided in §1503.4(c). However, if the statement is unusually long, the agency may circulate the summary instead, except that the entire statement shall be furnished to:

(a) Any Federal agency which has jurisdiction by law or special expertise with respect to any environmental impact involved and any appropriate Federal, State or local agency authorized to develop and enforce environmental standards.

(b) The applicant, if any.

(c) Any person, organization, or agency requesting the entire environmental impact statement.

(d) In the case of a final environmental impact statement any person, organization, or agency which submitted substantive comments on the draft.

If the agency circulates the summary and thereafter receives a timely request for the entire statement and for additional time to comment, the time for that requestor only shall be extended by at least 15 days beyond the minimum period.

§ 1502.20 Tiering.

Agencies are encouraged to tier their environmental impact statements to eliminate repetitive discussions of the same issues and to focus on the actual issues ripe for decision at each level of environmental review (§1508.28). Whenever a broad environmental impact statement has been prepared (such as a program or policy statement) and a subsequent statement or environmental assessment is then prepared on an action included within the entire program or policy (such as a site specific action) the subsequent statement or environmental assessment need only summarize the issues discussed in the broader statement and incorporate discussions from the broader statement by reference and shall concentrate on the issues specific to the subsequent action. The subsequent document shall state where the earlier document is available. Tiering may also be appropriate for different stages of actions. (Section 1508.28).

§ 1502.21 Incorporation by reference.

Agencies shall incorporate material into an environmental impact statement by reference when the effect will be to cut down on bulk without impeding agency and public review of the action. The incorporated material shall be cited in the statement and its content briefly described. No material
may be incorporated by reference unless it is reasonably available for inspection by potentially interested persons within the time allowed for comment. Material based on proprietary data which is itself not available for review and comment shall not be incorporated by reference.

§ 1502.22 Incomplete or unavailable information.

When an agency is evaluating reasonably foreseeable significant adverse effects on the human environment in an environmental impact statement and there is incomplete or unavailable information, the agency shall always make clear that such information is lacking.

(a) If the incomplete information relevant to reasonably foreseeable significant adverse impacts is essential to a reasoned choice among alternatives and the overall costs of obtaining it are not exorbitant, the agency shall include the information in the environmental impact statement.

(b) If the information relevant to reasonably foreseeable significant adverse impacts cannot be obtained because the overall costs of obtaining it are exorbitant or the means to obtain it are not known, the agency shall include within the environmental impact statement:

(1) A statement that such information is incomplete or unavailable; (2) a statement of the relevance of the incomplete or unavailable information to evaluating reasonably foreseeable significant adverse impacts on the human environment; (3) a summary of existing credible scientific evidence which is relevant to evaluating the reasonably foreseeable significant adverse impacts on the human environment, and (4) the agency’s evaluation of such impacts based upon theoretical approaches or research methods generally accepted in the scientific community. For the purposes of this section, “reasonably foreseeable” includes impacts which have catastrophic consequences, even if their probability of occurrence is low, provided that the analysis of the impacts is supported by credible scientific evidence, is not based on pure conjecture, and is within the rule of reason.

(c) The amended regulation will be applicable to all environmental impact statements for which a Notice of Intent (40 CFR 1508.22) is published in the Federal Register on or after May 27, 1986. For environmental impact statements in progress, agencies may choose to comply with the requirements of either the original or amended regulation.

[51 FR 15625, Apr. 25, 1986]

§ 1502.23 Cost-benefit analysis.

If a cost-benefit analysis relevant to the choice among environmentally different alternatives is being considered for the proposed action, it shall be incorporated by reference or appended to the statement as an aid in evaluating the environmental consequences. To assess the adequacy of compliance with section 102(2)(B) of the Act the statement shall, when a cost-benefit analysis is prepared, discuss the relationship between that analysis and any analyses of unquantified environmental impacts, values, and amenities. For purposes of complying with the Act, the weighing of the merits and drawbacks of the various alternatives need not be displayed in a monetary cost-benefit analysis and should not be when there are important qualitative considerations. In any event, an environmental impact statement should at least indicate those considerations, including factors not related to environmental quality, which are likely to be relevant and important to a decision.

§ 1502.24 Methodology and scientific accuracy.

Agencies shall insure the professional integrity, including scientific integrity, of the discussions and analyses in environmental impact statements. They shall identify any methodologies used and shall make explicit reference by footnote to the scientific and other sources relied upon for conclusions in the statement. An agency may place discussion of methodology in an appendix.
§ 1502.25 Environmental review and consultation requirements.

(b) The draft environmental impact statement shall list all Federal permits, licenses, and other entitlements which must be obtained in implementing the proposal. If it is uncertain whether a Federal permit, license, or other entitlement is necessary, the draft environmental impact statement shall so indicate.

PART 1503—COMMENTING

§ 1503.1 Inviting comments.

(a) After preparing a draft environmental impact statement and before preparing a final environmental impact statement the agency shall:

(1) Obtain the comments of any Federal agency which has jurisdiction by law or special expertise with respect to any environmental impact involved or which is authorized to develop and enforce environmental standards.

(2) Request the comments of:

(i) Appropriate State and local agencies which are authorized to develop and enforce environmental standards;

(ii) Indian tribes, when the effects may be on a reservation; and

(iii) Any agency which has requested that it receive statements on actions of the kind proposed.

Office of Management and Budget Circular A-95 (Revised), through its system of clearinghouses, provides a means of securing the views of State and local environmental agencies. The clearinghouses may be used, by mutual agreement of the lead agency and the clearinghouse, for securing State and local reviews of the draft environmental impact statements.

(3) Request comments from the applicant, if any.

(4) Request comments from the public, affirmatively soliciting comments from those persons or organizations who may be interested or affected.

(b) An agency may request comments on a final environmental impact statement before the decision is finally made. In any case other agencies or persons may make comments before the final decision unless a different time is provided under §1506.10.

§ 1503.2 Duty to comment.

Federal agencies with jurisdiction by law or special expertise with respect to any environmental impact involved and agencies which are authorized to develop and enforce environmental standards shall comment on statements within their jurisdiction, expertise, or authority. Agencies shall comment within the time period specified for comment in §1506.10. A Federal agency may reply that it has no comment. If a cooperating agency is satisfied that its views are adequately reflected in the environmental impact statement, it should reply that it has no comment.

§ 1503.3 Specificity of comments.

(a) Comments on an environmental impact statement or on a proposed action shall be as specific as possible and may address either the adequacy of the statement or the merits of the alternatives discussed or both.

(b) When a commenting agency criticizes a lead agency’s predictive methodology, the commenting agency should describe the alternative methodology which it prefers and why.
Council on Environmental Quality § 1504.1

(c) A cooperating agency shall specify in its comments whether it needs additional information to fulfill other applicable environmental reviews or consultation requirements and what information it needs. In particular, it shall specify any additional information it needs to comment adequately on the draft statement’s analysis of significant site-specific effects associated with the granting or approving by that cooperating agency of necessary Federal permits, licenses, or entitlements.

(d) When a cooperating agency with jurisdiction by law objects to or expresses reservations about the proposal on grounds of environmental impacts, the agency expressing the objection or reservation shall specify the mitigation measures it considers necessary to allow the agency to grant or approve applicable permit, license, or related requirements or concurrences.

§ 1503.4 Response to comments.

(a) An agency preparing a final environmental impact statement shall assess and consider comments both individually and collectively, and shall respond by one or more of the means listed below, stating its response in the final statement. Possible responses are to:

(1) Modify alternatives including the proposed action.
(2) Develop and evaluate alternatives not previously given serious consideration by the agency.
(3) Supplement, improve, or modify its analyses.
(4) Make factual corrections.
(5) Explain why the comments do not warrant further agency response, citing the sources, authorities, or reasons which support the agency’s position and, if appropriate, indicate those circumstances which would trigger agency reappraisal or further response.

(b) All substantive comments received on the draft statement (or summaries thereof where the response has been exceptionally voluminous), should be attached to the final statement whether or not the comment is thought to merit individual discussion by the agency in the text of the statement.

(c) If changes in response to comments are minor and are confined to the responses described in paragraphs (a)(4) and (5) of this section, agencies may write them on errata sheets and attach them to the statement instead of rewriting the draft statement. In such cases only the comments, the responses, and the changes and not the final statement need be circulated (§ 1502.19). The entire document with a new cover sheet shall be filed as the final statement (§ 1506.9).

PART 1504—PREDECISION REFERRALS TO THE COUNCIL OF PROPOSED FEDERAL ACTIONS DETERMINED TO BE ENVIRONMENTALLY UNSATISFACTORY

Sec. 1504.1 Purpose.

(a) This part establishes procedures for referring to the Council Federal interagency disagreements concerning proposed major Federal actions that might cause unsatisfactory environmental effects. It provides means for early resolution of such disagreements.

(b) Under section 309 of the Clean Air Act (42 U.S.C. 7609), the Administrator of the Environmental Protection Agency is directed to review and comment publicly on the environmental impacts of Federal activities, including actions for which environmental impact statements are prepared. If after this review the Administrator determines that the matter is “unsatisfactory from the standpoint of public health or welfare or environmental quality,” section 309 directs that the matter be referred to the Council (hereafter “environmental referrals”).

(c) Under section 102(2)(C) of the Act other Federal agencies may make similar reviews of environmental impact statements, including judgments on the acceptability of anticipated environmental impacts. These reviews
§ 1504.2 Criteria for referral.

Environmental referrals should be made to the Council only after concerted, timely (as early as possible in the process), but unsuccessful attempts to resolve differences with the lead agency. In determining what environmental objections to the matter are appropriate to refer to the Council, an agency should weigh potential adverse environmental impacts, considering:

(a) Possible violation of national environmental standards or policies.
(b) Severity.
(c) Geographical scope.
(d) Duration.
(e) Importance as precedents.
(f) Availability of environmentally preferable alternatives.

§ 1504.3 Procedure for referrals and response.

(a) A Federal agency making the referral to the Council shall:

(1) Advise the lead agency at the earliest possible time that it intends to refer a matter to the Council unless a satisfactory agreement is reached.

(2) Include such advice in the referring agency’s comments on the draft environmental impact statement, except when the statement does not contain adequate information to permit an assessment of the matter’s environmental acceptability.

(3) Identify any essential information that is lacking and request that it be made available at the earliest possible time.

(4) Send copies of such advice to the Council.

(b) The referring agency shall deliver its referral to the Council not later than twenty-five (25) days after the final environmental impact statement has been made available to the Environmental Protection Agency, commenting agencies, and the public. Except when an extension of this period has been granted by the lead agency, the Council will not accept a referral after that date.

(c) The referral shall consist of:

(1) A copy of the letter signed by the head of the referring agency and delivered to the lead agency informing the lead agency of the referral and the reasons for it, and requesting that no action be taken to implement the matter until the Council acts upon the referral. The letter shall include a copy of the statement referred to in (c)(2) of this section.

(2) A statement supported by factual evidence leading to the conclusion that the matter is unsatisfactory from the standpoint of public health or welfare or environmental quality. The statement shall:

(i) Identify any material facts in controversy and incorporate (by reference if appropriate) agreed upon facts,

(ii) Identify any existing environmental requirements or policies which would be violated by the matter,

(iii) Present the reasons why the referring agency believes the matter is environmentally unsatisfactory,

(iv) Contain a finding by the agency whether the issue raised is of national importance because of the threat to national environmental resources or policies or for some other reason,

(v) Review the steps taken by the referring agency to bring its concerns to the attention of the lead agency at the earliest possible time, and

(vi) Give the referring agency’s recommendations as to what mitigation alternative, further study, or other course of action (including abandonment of the matter) are necessary to remedy the situation.

(d) Not later than twenty-five (25) days after the referral to the Council the lead agency may deliver a response to the Council, and the referring agency. If the lead agency requests more time and gives assurance that the matter will not go forward in the interim, the Council may grant an extension. The response shall:

(1) Address fully the issues raised in the referral.

(2) Be supported by evidence.

(3) Give the lead agency’s response to the referring agency’s recommendations.

(e) Interested persons (including the applicant) may deliver their views in writing to the Council. Views in support of the referral should be delivered.
Council on Environmental Quality

not later than the referral. Views in support of the response shall be delivered not later than the response.

(f) Not later than twenty-five (25) days after receipt of both the referral and any response or upon being informed that there will be no response (unless the lead agency agrees to a longer time), the Council may take one or more of the following actions:

1. Conclude that the process of referral and response has successfully resolved the problem.
2. Initiate discussions with the agencies with the objective of mediation with referring and lead agencies.
3. Hold public meetings or hearings to obtain additional views and information.
4. Determine that the issue is not one of national importance and request the referring and lead agencies to pursue their decision process.
5. Determine that the issue should be further negotiated by the referring and lead agencies and is not appropriate for Council consideration until one or more heads of agencies report to the Council that the agencies’ disagreements are irreconcilable.
6. Publish its findings and recommendations (including where appropriate a finding that the submitted evidence does not support the position of an agency).
7. When appropriate, submit the referral and the response together with the Council’s recommendation to the President for action.

(g) The Council shall take no longer than 60 days to complete the actions specified in paragraph (f)(2), (3), or (5) of this section.

(h) When the referral involves an action required by statute to be determined on the record after opportunity for agency hearing, the referral shall be conducted in a manner consistent with 5 U.S.C. 557(d) (Administrative Procedure Act).

§ 1505.1 Agency decisionmaking procedures.

Agencies shall adopt procedures (§ 1507.3) to ensure that decisions are made in accordance with the policies and purposes of the Act. Such procedures shall include but not be limited to:

(a) Implementing procedures under section 102(2) to achieve the requirements of sections 101 and 102(1).
(b) Designating the major decision points for the agency’s principal programs likely to have a significant effect on the human environment and assuring that the NEPA process corresponds with them.
(c) Requiring that relevant environmental documents, comments, and responses be part of the record in formal rulemaking or adjudicatory proceedings.
(d) Requiring that relevant environmental documents, comments, and responses accompany the proposal through existing agency review processes so that agency officials use the statement in making decisions.
(e) Requiring that the alternatives considered by the decisionmaker are encompassed by the range of alternatives discussed in the relevant environmental documents and that the decisionmaker consider the alternatives described in the environmental impact statement. If another decision document accompanies the relevant environmental documents to the decisionmaker, agencies are encouraged to make available to the public before the decision is made any part of that document that relates to the comparison of alternatives.

PART 1505—NEPA AND AGENCY DECISIONMAKING

§ 1505.2 Record of decision in cases requiring environmental impact statements.

§ 1505.3 Implementing the decision.

SOURCE: 43 FR 55999, Nov. 29, 1978, unless otherwise noted.
§ 1505.2 Record of decision in cases requiring environmental impact statements.

At the time of its decision (§1506.10) or, if appropriate, its recommendation to Congress, each agency shall prepare a concise public record of decision. The record, which may be integrated into any other record prepared by the agency, including that required by OMB Circular A-95 (Revised), part I, sections 6(c) and (d), and part II, section 5(b)(4), shall:

(a) State what the decision was.
(b) Identify all alternatives considered by the agency in reaching its decision, specifying the alternative or alternatives which were considered to be environmentally preferable. An agency may discuss preferences among alternatives based on relevant factors including economic and technical considerations and agency statutory missions. An agency shall identify and discuss all such factors including any essential considerations of national policy which were balanced by the agency in making its decision and state how those considerations entered into its decision.
(c) State whether all practicable means to avoid or minimize environmental harm from the alternative selected have been adopted, and if not, why they were not. A monitoring and enforcement program shall be adopted and summarized where applicable for any mitigation.

§ 1505.3 Implementing the decision.

Agencies may provide for monitoring to assure that their decisions are carried out and should do so in important cases. Mitigation (§1505.2(c)) and other conditions established in the environmental impact statement or during its review and committed as part of the decision shall be implemented by the lead agency or other appropriate consenting agency. The lead agency shall:

(a) Include appropriate conditions in grants, permits or other approvals.
(b) Condition funding of actions on mitigation.
(c) Upon request, inform cooperating or commenting agencies on progress in carrying out mitigation measures which they have proposed and which were adopted by the agency making the decision.
(d) Upon request, make available to the public the results of relevant monitoring.

PART 1506—OTHER REQUIREMENTS OF NEPA

Sec.

1506.1 Limitations on actions during NEPA process.
1506.2 Elimination of duplication with State and local procedures.
1506.3 Adoption.
1506.4 Combining documents.
1506.5 Agency responsibility.
1506.6 Public involvement.
1506.7 Further guidance.
1506.8 Proposals for legislation.
1506.9 Filing requirements.
1506.10 Timing of agency action.
1506.11 Emergencies.
1506.12 Effective date.

SOURCE: 43 FR 56000, Nov. 29, 1978, unless otherwise noted.

§ 1506.1 Limitations on actions during NEPA process.

(a) Until an agency issues a record of decision as provided in §1505.2 (except as provided in paragraph (c) of this section), no action concerning the proposal shall be taken which would:

(1) Have an adverse environmental impact; or
(2) Limit the choice of reasonable alternatives.

(b) If any agency is considering an application from a non-Federal entity, and is aware that the applicant is about to take an action within the agency’s jurisdiction that would meet either of the criteria in paragraph (a) of this section, then the agency shall promptly notify the applicant that the agency will take appropriate action to insure that the objectives and procedures of NEPA are achieved.

(c) While work on a required program environmental impact statement is in progress and the action is not covered by an existing program statement,
agencies shall not undertake in the interim any major Federal action covered by the program which may significantly affect the quality of the human environment unless such action:

(1) Is justified independently of the program;

(2) Is itself accompanied by an adequate environmental impact statement; and

(3) Will not prejudice the ultimate decision on the program. Interim action prejudices the ultimate decision on the program when it tends to determine subsequent development or limit alternatives.

d) This section does not preclude development by applicants of plans or designs or performance of other work necessary to support an application for Federal, State or local permits or assistance. Nothing in this section shall preclude Rural Electrification Administration approval of minimal expenditures not affecting the environment (e.g., long leadtime equipment and purchase options) made by non-governmental entities seeking loan guarantees from the Administration.

§1506.2 Elimination of duplication with State and local procedures.

(a) Agencies authorized by law to cooperate with State agencies of statewide jurisdiction pursuant to section 102(2)(D) of the Act may do so.

(b) Agencies shall cooperate with State and local agencies to the fullest extent possible to reduce duplication between NEPA and State and local requirements, unless the agencies are specifically barred from doing so by some other law. Except for cases covered by paragraph (a) of this section, such cooperation shall to the fullest extent possible include joint environmental impact statements.

(c) Agencies shall cooperate with State and local agencies to the fullest extent possible to reduce duplication between NEPA and comparable State and local requirements, unless the agencies are specifically barred from doing so by some other law. Except for

§1506.3 Adoption.

(a) An agency may adopt a Federal draft or final environmental impact statement or portion thereof provided that the statement or portion thereof meets the standards for an adequate statement under these regulations.

(b) If the actions covered by the original environmental impact statement and the proposed action are substantially the same, the agency adopting another agency’s statement is not required to recirculate it except as a final statement. Otherwise the adopting agency shall treat the statement as a draft and recirculate it (except as provided in paragraph (c) of this section).

(c) A cooperating agency may adopt without recirculating the environmental impact statement of a lead agency when, after an independent review of the statement, the cooperating agency concludes that its comments and suggestions have been satisfied.

(d) When an agency adopts a statement which is not final within the agency that prepared it, or when the action it assesses is the subject of a referral under part 1504, or when the statement’s adequacy is the subject of
§ 1506.4 Combining documents.

Any environmental document in compliance with NEPA may be combined with any other agency document to reduce duplication and paperwork.

§ 1506.5 Agency responsibility.

(a) Information. If an agency requires an applicant to submit environmental information for possible use by the agency in preparing an environmental impact statement, then the agency should assist the applicant by outlining the types of information required. The agency shall independently evaluate the information submitted and shall be responsible for its accuracy. If the agency chooses to use the information submitted by the applicant in the environmental impact statement, either directly or by reference, then the names of the persons responsible for the independent evaluation shall be included in the list of preparers (§ 1502.17). It is the intent of this paragraph that acceptable work not be redone, but that it be verified by the agency.

(b) Environmental assessments. If an agency permits an applicant to prepare an environmental assessment, the agency, besides fulfilling the requirements of paragraph (a) of this section, shall make its own evaluation of the environmental issues and take responsibility for the scope and content of the environmental assessment.

(c) Environmental impact statements. Except as provided in §§ 1506.2 and 1506.3 any environmental impact statement prepared pursuant to the requirements of NEPA shall be prepared directly by or by a contractor selected by the lead agency or where appropriate under § 1501.6(b), a cooperating agency. It is the intent of these regulations that the contractor be chosen solely by the lead agency, or by the lead agency in cooperation with cooperating agencies, or where appropriate by a cooperating agency to avoid any conflict of interest. Contractors shall execute a disclosure statement prepared by the lead agency, or where appropriate the cooperating agency, specifying that they have no financial or other interest in the outcome of the project. If the document is prepared by contract, the responsible Federal official shall furnish guidance and participate in the preparation and shall independently evaluate the statement prior to its approval and take responsibility for its scope and contents. Nothing in this section is intended to prohibit any agency from requesting any person to submit information to or to prohibit any person from submitting information to any agency.

§ 1506.6 Public involvement.

Agencies shall:

(a) Make diligent efforts to involve the public in preparing and implementing their NEPA procedures.

(b) Provide public notice of NEPA-related hearings, public meetings, and the availability of environmental documents so as to inform those persons and agencies who may be interested or affected.

1. In all cases the agency shall mail notice to those who have requested it on an individual action.

2. In the case of an action with effects of national concern notice shall include publication in the FEDERAL REGISTER and notice by mail to national organizations reasonably expected to be interested in the matter and may include listing in the 102 Monitor. An agency engaged in rulemaking may provide notice by mail to national organizations who have requested that notice regularly be provided. Agencies shall maintain a list of such organizations.

3. In the case of an action with effects primarily of local concern the notice may include:

 (i) Notice to State and areawide clearinghouses pursuant to OMB Circular A-95 (Revised).

 (ii) Notice to Indian tribes when effects may occur on reservations.

 (iii) Following the affected State's public notice procedures for comparable actions.

 (iv) Publication in local newspapers (in papers of general circulation rather than legal papers).

 (v) Notice through other local media.

 (vi) Notice to potentially interested community organizations including small business associations.
(vii) Publication in newsletters that may be expected to reach potentially interested persons.
(viii) Direct mailing to owners and occupants of nearby or affected property.
(ix) Posting of notice on and off site in the area where the action is to be located.
(c) Hold or sponsor public hearings or public meetings whenever appropriate or in accordance with statutory requirements applicable to the agency. Criteria shall include whether there is:
(1) Substantial environmental controversy concerning the proposed action or substantial interest in holding the hearing.
(2) A request for a hearing by another agency with jurisdiction over the action supported by reasons why a hearing will be helpful. If a draft environmental impact statement is to be considered at a public hearing, the agency should make the statement available to the public at least 15 days in advance (unless the purpose of the hearing is to provide information for the draft environmental impact statement).
(d) Solicit appropriate information from the public.
(e) Explain in its procedures where interested persons can get information or status reports on environmental impact statements and other elements of the NEPA process.
(f) Make environmental impact statements, the comments received, and any underlying documents available to the public pursuant to the provisions of the Freedom of Information Act (5 U.S.C. 552), without regard to the exclusion for interagency memoranda where such memoranda transmit comments of Federal agencies on the environmental impact of the proposed action. Materials to be made available to the public shall be provided to the public without charge to the extent practicable, or at a fee which is not more than the actual costs of reproducing copies required to be sent to other Federal agencies, including the Council.
§ 1506.7 Further guidance.
The Council may provide further guidance concerning NEPA and its procedures including:
(a) A handbook which the Council may supplement from time to time, which shall in plain language provide guidance and instructions concerning the application of NEPA and these regulations.
(b) Publication of the Council’s Memoranda to Heads of Agencies.
(c) In conjunction with the Environmental Protection Agency and the publication of the 102 Monitor, notice of:
(1) Research activities;
(2) Meetings and conferences related to NEPA; and
(3) Successful and innovative procedures used by agencies to implement NEPA.
§ 1506.8 Proposals for legislation.
(a) The NEPA process for proposals for legislation (§1508.17) significantly affecting the quality of the human environment shall be integrated with the legislative process of the Congress. A legislative environmental impact statement is the detailed statement required by law to be included in a recommendation or report on a legislative proposal to Congress. A legislative environmental impact statement shall be considered part of the formal transmittal of a legislative proposal to Congress; however, it may be transmitted to Congress up to 30 days later in order to allow time for completion of an accurate statement which can serve as the basis for public and Congressional debate. The statement must be available in time for Congressional hearings and deliberations.
(b) Preparation of a legislative environmental impact statement shall conform to the requirements of these regulations except as follows:
(1) There need not be a scoping process.
(2) The legislative statement shall be prepared in the same manner as a draft statement, but shall be considered the “detailed statement” required by statute; Provided, That when any of the following conditions exist both the draft and final environmental impact statement on the legislative proposal shall be prepared and circulated as provided by §§1503.1 and 1506.10.
(i) A Congressional Committee with jurisdiction over the proposal has a
§ 1506.9 Filing requirements.

Environmental impact statements together with comments and responses shall be filed with the Environmental Protection Agency, attention Office of Federal Activities (A–104), 401 M Street SW, Washington, DC 20460. Statements shall be filed with EPA no earlier than they are also transmitted to commenting agencies and made available to the public. EPA shall deliver one copy of each statement to the Council, which shall satisfy the requirement of availability to the President. EPA may issue guidelines to agencies to implement its responsibilities under this section and §1506.10.

§ 1506.10 Timing of agency action.

(a) The Environmental Protection Agency shall publish a notice in the Federal Register each week of the environmental impact statements filed during the preceding week. The minimum time periods set forth in this section shall be calculated from the date of publication of this notice.

(b) No decision on the proposed action shall be made or recorded under §1505.2 by a Federal agency until the later of the following dates:

(1) Ninety (90) days after publication of the notice described above in paragraph (a) of this section for a draft environmental impact statement.

(2) Thirty (30) days after publication of the notice described above in paragraph (a) of this section for a final environmental impact statement.

An exception to the rules on timing may be made in the case of an agency decision which is subject to a formal internal appeal. Some agencies have a formally established appeal process which allows other agencies or the public to take appeals on a decision and make their views known, after publication of the final environmental impact statement. In such cases, where a real opportunity exists to alter the decision, the decision may be made and recorded at the same time the environmental impact statement is published. This means that the period for appeal of the decision and the 30-day period prescribed in paragraph (b)(2) of this section may run concurrently. In such cases the environmental impact statement shall explain the timing and the public's right of appeal. An agency engaged in rulemaking under the Administrative Procedure Act or other statute for the purpose of protecting the public health or safety, may waive the time period in paragraph (b)(2) of this section and publish a decision on the final rule simultaneously with publication of the notice of the availability of the final environmental impact statement as described in paragraph (a) of this section.

(c) If the final environmental impact statement is filed within ninety (90) days after a draft environmental impact statement is filed with the Environmental Protection Agency, the minimum thirty (30) day period and the minimum ninety (90) day period may run concurrently. However, subject to paragraph (d) of this section agencies shall allow not less than 45 days for comments on draft statements.

(d) The lead agency may extend prescribed periods. The Environmental Protection Agency may upon a showing by the lead agency of compelling reasons of national policy reduce the prescribed periods and may upon a
Council on Environmental Quality § 1507.2

showing by any other Federal agency of compelling reasons of national policy also extend prescribed periods, but only after consultation with the lead agency. (Also see § 1507.3(d).) Failure to file timely comments shall not be a sufficient reason for extending a period. If the lead agency does not concur with the extension of time, EPA may not extend it for more than 30 days. When the Environmental Protection Agency reduces or extends any period of time it shall notify the Council.

§ 1506.11 Emergencies.

Where emergency circumstances make it necessary to take an action with significant environmental impact without observing the provisions of these regulations, the Federal agency taking the action should consult with the Council about alternative arrangements. Agencies and the Council will limit such arrangements to actions necessary to control the immediate impacts of the emergency. Other actions remain subject to NEPA review.

§ 1506.12 Effective date.

The effective date of these regulations is July 30, 1979, except that for agencies that administer programs that qualify under section 102(2)(D) of the Act or under section 104(h) of the Housing and Community Development Act of 1974 an additional four months shall be allowed for the State or local agencies to adopt their implementing procedures.

(a) These regulations shall apply to the fullest extent practicable to ongoing activities and environmental documents begun before the effective date. These regulations do not apply to an environmental impact statement or supplement if the draft statement was filed before the effective date of these regulations. No completed environmental documents need be redone by reason of these regulations. Until these regulations are applicable, the Council's guidelines published in the Federal Register of August 1, 1973, shall continue to be applicable. In cases where these regulations are applicable, the guidelines are superseded. However, nothing shall prevent an agency from proceeding under these regulations at an earlier time.

(b) NEPA shall continue to be applicable to actions begun before January 1, 1970, to the fullest extent possible.

PART 1507—AGENCY COMPLIANCE

Sec.

1507.1 Compliance.

1507.2 Agency capability to comply.

1507.3 Agency procedures.

SOURCE: 43 FR 56002, Nov. 29, 1978, unless otherwise noted.

§ 1507.1 Compliance.

All agencies of the Federal Government shall comply with these regulations. It is the intent of these regulations to allow each agency flexibility in adapting its implementing procedures authorized by § 1507.3 to the requirements of other applicable laws.

§ 1507.2 Agency capability to comply.

Each agency shall be capable (in terms of personnel and other resources) of complying with the requirements enumerated below. Such compliance may include use of other's resources, but the using agency shall itself have sufficient capability to evaluate what others do for it. Agencies shall:

(a) Fulfill the requirements of section 102(2)(A) of the Act to utilize a systematic, interdisciplinary approach which will insure the integrated use of the natural and social sciences and the environmental design arts in planning and in decisionmaking which may have an impact on the human environment. Agencies shall designate a person to be responsible for overall review of agency NEPA compliance.

(b) Identify methods and procedures required by section 102(2)(B) to insure that presently unquantified environmental amenities and values may be given appropriate consideration.

(c) Prepare adequate environmental impact statements pursuant to section 102(2)(C) and comment on statements.
§ 1507.3 Agency procedures.

(a) Not later than eight months after publication of these regulations as finally adopted in the Federal Register, or five months after the establishment of an agency, whichever shall come later, each agency shall as necessary adopt procedures to supplement these regulations. When the agency is a department, major subunits are encouraged (with the consent of the department) to adopt their own procedures. Each agency shall consult with the Council while developing its procedures and before publishing them in the Federal Register for comment. Agencies with similar programs should consult with each other and the Council to coordinate their procedures, especially for programs requesting similar information from applicants. The procedures shall be adopted only after an opportunity for public review and after review by the Council for conformity with the Act and these regulations. The Council shall complete its review within 30 days. Once in effect they shall be filed with the Council and made readily available to the public. Agencies are encouraged to publish explanatory guidance for these regulations and their own procedures. Agencies shall continue to review their policies and procedures and in consultation with the Council to revise them as necessary to ensure full compliance with the purposes and provisions of the Act.

(b) Agency procedures shall comply with these regulations except where compliance would be inconsistent with statutory requirements and shall include:

(1) Those procedures required by §§ 1501.2(d), 1502.9(c)(3), 1505.1, 1506.6(e), and 1508.4.

(2) Specific criteria for and identification of those typical classes of action:

(i) Which normally do require environmental impact statements.

(ii) Which normally do not require either an environmental impact statement or an environmental assessment (categorical exclusions (§ 1508.4)).

(iii) Which normally require environmental assessments but not necessarily environmental impact statements.

(c) Agency procedures may include specific criteria for providing limited exceptions to the provisions of these regulations for classified proposals. They are proposed actions which are specifically authorized under criteria established by an Executive Order or statute to be kept secret in the interest of national defense or foreign policy and are in fact properly classified pursuant to such Executive Order or statute. Environmental assessments and environmental impact statements which address classified proposals may be safeguarded and restricted from public dissemination in accordance with agencies’ own regulations applicable to classified information. These documents may be organized so that classified portions can be included as annexes, in order that the unclassified portions can be made available to the public.

(d) Agency procedures may provide for periods of time other than those presented in §1506.10 when necessary to comply with other specific statutory requirements.

(e) Agency procedures may provide that where there is a lengthy period between the agency’s decision to prepare an environmental impact statement
and the time of actual preparation, the notice of intent required by § 1501.7 may be published at a reasonable time in advance of preparation of the draft statement.

PART 1508—TERMINOLOGY AND INDEX

§ 1508.1 Terminology.
The terminology of this part shall be uniform throughout the Federal Government.

§ 1508.2 Act.
Act means the National Environmental Policy Act, as amended (42 U.S.C. 4321 et seq.), which is also referred to as “NEPA.”

§ 1508.3 Affecting.
Affecting means will or may have an effect on.

§ 1508.4 Categorical exclusion.
Categorical exclusion means a category of actions which do not individually or cumulatively have a significant effect on the human environment and which have been found to have no such effect in procedures adopted by a Federal agency in implementation of these regulations (§ 1507.3) and for which, therefore, neither an environmental assessment nor an environmental impact statement is required. An agency may decide in its procedures or otherwise, to prepare environmental assessments for the reasons stated in § 1508.9 even though it is not required to do so. Any procedures under this section shall provide for extraordinary circumstances in which a normally excluded action may have a significant environmental effect.

§ 1508.5 Cooperating agency.
Cooperating agency means any Federal agency other than a lead agency which has jurisdiction by law or special expertise with respect to any environmental impact involved in a proposal (or a reasonable alternative) for legislation or other major Federal action significantly affecting the quality of the human environment. The selection and responsibilities of a cooperating agency are described in § 1501.6. A State or local agency of similar qualifications or, when the effects are on a reservation, an Indian Tribe, may by agreement with the lead agency become a cooperating agency.

§ 1508.6 Council.
Council means the Council on Environmental Quality established by title II of the Act.

§ 1508.7 Cumulative impact.
Cumulative impact is the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.
§ 1508.8 Effects.

Effects include:
(a) Direct effects, which are caused by the action and occur at the same time and place.
(b) Indirect effects, which are caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate, and related effects on air and water and other natural systems, including ecosystems.

Effects and impacts as used in these regulations are synonymous. Effects includes ecological (such as the effects on natural resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic, cultural, economic, social, or health, whether direct, indirect, or cumulative. Effects may also include those resulting from actions which may have both beneficial and detrimental effects, even if on balance the agency believes that the effect will be beneficial.

§ 1508.9 Environmental assessment.

Environmental assessment:
(a) Means a concise public document for which a Federal agency is responsible that serves to:
(1) Briefly provide sufficient evidence and analysis for determining whether to prepare an environmental impact statement or a finding of no significant impact.
(2) Aid an agency’s compliance with the Act when no environmental impact statement is necessary.
(3) Facilitate preparation of a statement when one is necessary.
(b) Shall include brief discussions of the need for the proposal, of alternatives as required by section 102(2)(E), of the environmental impacts of the proposed action and alternatives, and a listing of agencies and persons consulted.

§ 1508.10 Environmental document.

Environmental document includes the documents specified in §1508.9 (environmental assessment), §1508.11 (environmental impact statement), §1508.13 (finding of no significant impact), and §1508.22 (notice of intent).

§ 1508.11 Environmental impact statement.

Environmental impact statement means a detailed written statement as required by section 102(2)(C) of the Act.

§ 1508.12 Federal agency.

Federal agency means all agencies of the Federal Government. It does not mean the Congress, the Judiciary, or the President, including the performance of staff functions for the President in his Executive Office. It also includes for purposes of these regulations States and units of general local government and Indian tribes assuming NEPA responsibilities under section 104(h) of the Housing and Community Development Act of 1974.

§ 1508.13 Finding of no significant impact.

Finding of no significant impact means a document by a Federal agency briefly presenting the reasons why an action, not otherwise excluded (§1508.4), will not have a significant effect on the human environment and for which an environmental impact statement therefore will not be prepared. It shall include the environmental assessment or a summary of it and shall note any other environmental documents related to it (§1501.7(a)(5)). If the assessment is included, the finding need not repeat any of the discussion in the assessment but may incorporate it by reference.

§ 1508.14 Human environment.

Human environment shall be interpreted comprehensively to include the natural and physical environment and the relationship of people with that environment. (See the definition of "effects" (§1508.8.) This means that economic or social effects are not intended by themselves to require preparation of an environmental impact statement. When an environmental impact statement is prepared and economic or social and natural or physical environmental effects are interrelated, then the environmental impact statement
will discuss all of these effects on the human environment.

§ 1508.15 Jurisdiction by law.
Jurisdiction by law means agency authority to approve, veto, or finance all or part of the proposal.

§ 1508.16 Lead agency.
Lead agency means the agency or agencies preparing or having taken primary responsibility for preparing the environmental impact statement.

§ 1508.17 Legislation.
Legislation includes a bill or legislative proposal to Congress developed by or with the significant cooperation and support of a Federal agency, but does not include requests for appropriations. The test for significant cooperation is whether the proposal is in fact predominantly that of the agency rather than another source. Drafting does not by itself constitute significant cooperation. Proposals for legislation include requests for ratification of treaties. Only the agency which has primary responsibility for the subject matter involved will prepare a legislative environmental impact statement.

§ 1508.18 Major Federal action.
Major Federal action includes actions with effects that may be major and which are potentially subject to Federal control and responsibility. Major reinforces but does not have a meaning independent of significantly (§ 1508.27). Actions include the circumstance where the responsible officials fail to act and that failure to act is reviewable by courts or administrative tribunals under the Administrative Procedure Act or other applicable law as agency action.

(a) Actions include new and continuing activities, including projects and programs entirely or partly financed, assisted, conducted, regulated, or approved by federal agencies; new or revised agency rules, regulations, plans, policies, or procedures; and legislative proposals (§§ 1506.8, 1508.17). Actions do not include funding assistance solely in the form of general revenue sharing funds, distributed under the State and Local Fiscal Assistance Act of 1972, 31 U.S.C. 1221 et seq., with no Federal agency control over the subsequent use of such funds. Actions do not include bringing judicial or administrative civil or criminal enforcement actions.

(b) Federal actions tend to fall within one of the following categories:
(1) Adoption of official policy, such as rules, regulations, and interpretations adopted pursuant to the Administrative Procedure Act, 5 U.S.C. 551 et seq.; treaties and international conventions or agreements; formal documents establishing an agency’s policies which will result in or substantially alter agency programs.
(2) Adoption of formal plans, such as official documents prepared or approved by federal agencies which guide or prescribe alternative uses of Federal resources, upon which future agency actions will be based.
(3) Adoption of programs, such as a group of concerted actions to implement a specific policy or plan; systematic and connected agency decisions allocating agency resources to implement a specific statutory program or executive directive.
(4) Approval of specific projects, such as construction or management activities located in a defined geographic area. Projects include actions approved by permit or other regulatory decision as well as federal and federally assisted activities.

§ 1508.19 Matter.
Matter includes for purposes of part 1504:
(a) With respect to the Environmental Protection Agency, any proposed legislation, project, action or regulation as those terms are used in section 309(a) of the Clean Air Act (42 U.S.C. 7609).
(b) With respect to all other agencies, any proposed major federal action to which section 102(2)(C) of NEPA applies.

§ 1508.20 Mitigation.
Mitigation includes:
(a) Avoiding the impact altogether by not taking a certain action or parts of an action.
(b) Minimizing impacts by limiting the degree or magnitude of the action and its implementation.
(c) Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
(d) Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
(e) Compensating for the impact by replacing or providing substitute resources or environments.

§ 1508.21 NEPA process.
NEPA process means all measures necessary for compliance with the requirements of section 2 and title I of NEPA.

§ 1508.22 Notice of intent.
Notice of intent means a notice that an environmental impact statement will be prepared and considered. The notice shall briefly:
(a) Describe the proposed action and possible alternatives.
(b) Describe the agency's proposed scoping process including whether, when, and where any scoping meeting will be held.
(c) State the name and address of a person within the agency who can answer questions about the proposed action and the environmental impact statement.

§ 1508.23 Proposal.
Proposal exists at that stage in the development of an action when an agency subject to the Act has a goal and is actively preparing to make a decision on one or more alternative means of accomplishing that goal and the effects can be meaningfully evaluated. Preparation of an environmental impact statement on a proposal should be timed (§1502.5) so that the final statement may be completed in time for the statement to be included in any recommendation or report on the proposal. A proposal may exist in fact as well as by agency declaration that one exists.

§ 1508.24 Referring agency.
Referring agency means the federal agency which has referred any matter to the Council after a determination that the matter is unsatisfactory from the standpoint of public health or welfare or environmental quality.

§ 1508.25 Scope.
Scope consists of the range of actions, alternatives, and impacts to be considered in an environmental impact statement. The scope of an individual statement may depend on its relationships to other statements (§§1502.20 and 1508.28). To determine the scope of environmental impact statements, agencies shall consider 3 types of actions, 3 types of alternatives, and 3 types of impacts. They include:
(a) Actions (other than unconnected single actions) which may be:
 (1) Connected actions, which means that they are closely related and therefore should be discussed in the same impact statement. Actions are connected if they:
 (i) Automatically trigger other actions which may require environmental impact statements.
 (ii) Cannot or will not proceed unless other actions are taken previously or simultaneously.
 (iii) Are interdependent parts of a larger action and depend on the larger action for their justification.
 (2) Cumulative actions, which when viewed with other proposed actions have cumulatively significant impacts and should therefore be discussed in the same impact statement.
 (3) Similar actions, which when viewed with other reasonably foreseeable or proposed agency actions, have similarities that provide a basis for evaluating their environmental consequences together, such as common timing or geography. An agency may wish to analyze these actions in the same impact statement. It should do so when the best way to assess adequately the combined impacts of similar actions or reasonable alternatives to such actions is to treat them in a single impact statement.
 (b) Alternatives, which include:
 (1) No action alternative.
 (2) Other reasonable courses of actions.
 (3) Mitigation measures (not in the proposed action).
 (c) Impacts, which may be: (1) Direct; (2) indirect; (3) cumulative.
§ 1508.26 Special expertise.

Special expertise means statutory responsibility, agency mission, or related program experience.

§ 1508.27 Significantly.

Significantly as used in NEPA requires considerations of both context and intensity:

(a) Context. This means that the significance of an action must be analyzed in several contexts such as society as a whole (human, national), the affected region, the affected interests, and the locality. Significance varies with the setting of the proposed action. For instance, in the case of a site-specific action, significance would usually depend upon the effects in the locale rather than in the world as a whole. Both short- and long-term effects are relevant.

(b) Intensity. This refers to the severity of impact. Responsible officials must bear in mind that more than one agency may make decisions about partial aspects of a major action. The following should be considered in evaluating intensity:

(1) Impacts that may be both beneficial and adverse. A significant effect may exist even if the Federal agency believes that on balance the effect will be beneficial.

(2) The degree to which the proposed action affects public health or safety.

(3) Unique characteristics of the geographic area such as proximity to historic or cultural resources, park lands, prime farmlands, wetlands, wild and scenic rivers, or ecologically critical areas.

(4) The degree to which the effects on the quality of the human environment are likely to be highly controversial.

(5) The degree to which the possible effects on the human environment are highly uncertain or involve unique or unknown risks.

(6) The degree to which the action may establish a precedent for future actions with significant effects or represents a decision in principle about a future consideration.

(7) Whether the action is related to other actions with individually insignificant but cumulatively significant impact on the environment. Significance cannot be avoided by terming an action temporary or by breaking it down into small component parts.

(b) The degree to which the action may adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places or may cause loss or destruction of significant scientific, cultural, or historical resources.

(9) The degree to which the action may adversely affect an endangered or threatened species or its habitat that has been determined to be critical under the Endangered Species Act of 1973.

(10) Whether the action threatens a violation of Federal, State, or local law or requirements imposed for the protection of the environment.

[43 FR 56003, Nov. 29, 1978; 44 FR 874, Jan. 3, 1979]

§ 1508.28 Tiering.

Tiering refers to the coverage of general matters in broader environmental impact statements (such as national program or policy statements) with subsequent narrower statements or environmental analyses (such as regional or basinwide program statements or ultimately site-specific statements) incorporating by reference the general discussions and concentrating solely on the issues specific to the statement subsequently prepared. Tiering is appropriate when the sequence of statements or analyses is:

(a) From a program, plan, or policy environmental impact statement to a program, plan, or policy statement or analysis of lesser scope or to a site-specific statement or analysis.

(b) From an environmental impact statement on a specific action at an early stage (such as need and site selection) to a supplement (which is preferred) or a subsequent statement or analysis at a later stage (such as environmental mitigation). Tiering in such cases is appropriate when it helps the lead agency to focus on the issues which are ripe for decision and exclude from consideration issues already decided or not yet ripe.
PART 1515—FREEDOM OF INFORMATION ACT PROCEDURES

PURPOSE

Sec.
1515.1 What are these procedures?

ORGANIZATION OF CEQ

1515.2 What is the Council on Environmental Quality (CEQ)?

1515.3 How is CEQ organized?

PROCEDURES FOR REQUESTING RECORDS

1515.5 How to make a Freedom of Information Act request.

AVAILABILITY OF INFORMATION

1515.10 What information is available, and how can it be obtained?

COSTS

1515.15 What fees may be charged, and how should they be paid?

SOURCE: 42 FR 65158, Dec. 30, 1977, unless otherwise noted.

PURPOSE

§ 1515.1 What are these procedures?

The Freedom of Information Act (5 U.S.C. 552, commonly known as FOIA) is a law which creates a procedure for any person to request official documents and other records from United States Government agencies. The law requires every Federal agency to make available to the public the material requested, unless the material falls under one of the limited exceptions stated in section 552(b)(5) of the Act, and the agency has good reason to refuse the request. These procedures explain how the Council on Environmental Quality—one of several offices in the Executive Office of the President—will carry out the Freedom of Information Act. They are written from the standpoint of a member of the public requesting material from the Council.

ORGANIZATION OF CEQ

§ 1515.2 What is the Council on Environmental Quality (CEQ)?

(b) The Council's primary responsibilities include the following:

(1) To review and evaluate the programs and activities of the Federal Government to determine how they are contributing to the attainment of the national environmental policy;

(2) To assist Federal agencies and departments in appraising the effectiveness of their existing and proposed facilities, programs, policies, and activities affecting environmental quality;

(3) To develop and recommend to the President policies to improve environmental quality to meet the conservation, social, economic, health, and other requirements and goals of the Nation;

(4) To advise and assist the President in achieving international cooperation for dealing with environmental problems;

(5) To assist in coordinating among Federal agencies and departments those programs which affect, protect, and improve environmental quality, including Federal compliance with the environmental impact statement process, and to seek resolution of significant environmental issues;

(6) To foster research relating to environmental quality and the impacts of new or changing technologies; and

(7) To analyze long and short term environmental problems and trends and assist in preparing an annual Environmental Quality Report to the President and the Congress.

(c) The Council maintains a "Quarterly Index" which lists its current policies and procedures, as required by section 552(a)(2) of the Freedom of Information Act. This index is updated and published in the Federal Register quarterly, starting in 1976. The Quarterly Index—and the specific items listed in the index—are available on request from the Freedom of Information Officer. You may also inspect or copy
any of these materials at the Council’s office during the hours stated below in § 1515.3(f).

§ 1515.3 How is CEQ organized?
(a) The Council is made up of three members appointed by the President and subject to approval by the Senate. One member is designated as chairman by the President. All three serve in a full-time capacity.
(b) The National Environmental Policy Act and the Environmental Quality Improvement Act give the Council the authority to hire any officers and staff that may be necessary to carry out responsibilities and functions specified in these two Acts. Also, the use of consultants and experts is permitted.
(c) In addition to the three members, the Council has program and legal staff.
(d) The Council has no field or regional offices.
(e) The Council has a public affairs office which is responsible for providing information to the general public, the Congress, and the press. If you are interested in general information about the Council or have questions about the Council’s recent activities or policy positions, you should call this office at (202) 633-7005 or write to the “Public Affairs Office” of the Council at the address given in the next paragraph.

NOTE: The CEQ public affairs office can respond fully and promptly to most questions you may have; the Council suggests that the Freedom of Information Act procedures be used when you are seeking a specific document and have had difficulty obtaining it.
(f) The Council is located at 722 Jackson Place NW., Washington, DC 20006. Office hours are 9-5:30, Monday through Friday, except legal holidays. If you wish to meet with any of the staff, please write or phone ahead for an appointment. The main number is 202-633-7027.

PROCEDURES FOR REQUESTING RECORDS

§ 1515.5 How to make a Freedom of Information Act request.
(a) The Chairman has appointed a Freedom of Information Officer who will be responsible for overseeing the processing of all Freedom of Information requests. The Chairman has also appointed an Appeals Officer who is responsible for processing any appeals.
(b) Requesting information from the Council. (1) When you make a Freedom of Information Act request to the Council, the Freedom of Information Officer shall decide how to respond—or “make an initial determination on”—your request within 10 working days from the date the Officer receives the request. The Freedom of Information Officer will then provide you with written notification of the determination.
(2) You can make a Freedom of Information Act request by writing a letter which states that you are making a Freedom of Information Act request. Address your letter to:

(3) In your request you should identify the desired record or reasonably describe it. The request should be as specific as possible so that the item can be readily found. You should not make blanket requests, such as requests for “the entire file of” or “all materials relating to” a specified subject.
(4) The Council will make a reasonable effort to assist you in defining the request to eliminate extraneous and unwanted materials and to keep search and copying fees to a minimum. If you have budgetary constraints and anticipate that your request might be costly you may wish to indicate the maximum fee you are prepared to pay for acquiring the information. (See §1515.15(c) also.)
(5) The 10 day period for making a determination on a request will begin when the records requested are specified or reasonably identifiable.
(6) Despite its name, the Freedom of Information Act does not require a government agency to create or research information that you would like or that you may think the agency should have. The Act only requires that existing records be made available to the public.
§ 1515.10 What information is available, and how can it be obtained?

(a) When a request for information has been approved, in whole or in part, you may make an appointment to inspect or copy the materials requested during regular business hours by writing or telephoning the Freedom of Information Officer at the address or phone number given in §1515.3(f). You may be charged reasonable fees for copying materials, as explained by §1515.15. The Council on Environmental Quality will permit copying of any available material but will reserve the right to limit the number of copies made with the Council’s copying facilities.

(b) In general, all records of the Council are available to the public, as
required by the Freedom of Information Act. The Council claims the right, where it is applicable, to withhold material under the provisions specified in the Freedom of Information Act as amended (5 U.S.C. 552(b)).

(c) The legislative history of the establishment of the Council states that the Congress intended the Council to be a confidential advisor to the President on matters of environmental policy. Therefore, members of the public should presume that communications between the Council and the President (and their staffs) are confidential and ordinarily will not be released; they will usually fall, at a minimum, within Exemption 5 of the Act. The Freedom of Information Officer shall review each request, however, to determine whether the record is exclusively factual or may have factual portions which may be reasonably segregated and made available to the requester. Furthermore, on the recommendation of the FOIA Officer or Appeals Officer, the Council will consider the release of an entire record, even if it comes within an exemption or contains policy advice, if its disclosure would not impair Executive policymaking processes or the Council’s participation in decision-making.

COSTS

§ 1515.15 What fees may be charged, and how should they be paid?

(a) Following is the schedule of fees you may be charged for the search and reproduction of information available under the Freedom of Information Act, 5 U.S.C. 552, as amended.

(1) Search for records. Five dollars per hour when the search is conducted by a clerical employee. Eight dollars per hour when the search is conducted by a professional employee. There will be no charge for searches of less than one hour.

(2) Duplication of records. Records will be duplicated at a rate of $0.10 per page for copying of 10 pages or more. There will be no charge for duplicating 9 pages or less.

(3) Other. When no specific fee has been established for a service, or the request for a service does not fall under categories (1) and (2), the Administrative Officer is authorized to establish an appropriate fee based on “direct costs” as provided in the Freedom of Information Act. Examples of services covered by this provision include searches involving computer time or special travel, transportation, or communication costs.

(b) If the Council anticipates that the fees chargeable under this section will amount to more than $25, or the maximum amount specified in your request, you shall be promptly notified of the amount of the anticipated fee or the closest estimate of the amount. In such instances you will be advised of your option to consult with Council personnel in order to reformulate the request in a manner which will reduce the fees, yet still meet your needs. A reformulated request shall be considered a new request, thus beginning a new 10 working day period for processing.

(c) Fees must be paid in full prior to issuance of the requested copies. In the event you owe money for previous request, copies of records will not be provided for any subsequent request until the debt has been paid in full.

(d) Search costs are due and payable even if the record which was requested cannot be located after all reasonable efforts have been made, or if the FOI Officer determines that a record which has been requested is exempt under the Freedom of Information Act as amended and is to be withheld.

(e) Payment shall be in the form either of a personal check or bank draft drawn on a bank in the United States, or a postal money order. Checks shall be made payable to General Services Administration. You should mail or deliver any payment for services to the Administrative Office, Council on Environmental Quality, 722 Jackson Place NW., Washington, DC 20006.

(f) A receipt for fees paid will be given upon request. Refunds of fees paid for services actually rendered will not be made.

(g) The Council may waive all or part of any fee provided for in this section when the Freedom of Information Officer (or designee) deems it to be in either the Council’s interest or in the general public’s interest.
PART 1516—PRIVACY ACT IMPLEMENTATION

Sec. 1516.1 Purpose and scope.
1516.2 Definitions.
1516.3 Procedures for requests pertaining to individual records in a record system.
1516.4 Times, places, and requirements for the identification of the individual making a request.
1516.5 Disclosure of requested information to the individual.
1516.6 Request for correction or amendment to the record.
1516.7 Agency review of request for correction or amendment of the record.
1516.8 Appeal of an initial adverse agency determination on correction or amendment of the record.
1516.9 Disclosure of a record to a person other than the individual to whom the record pertains.
1516.10 Fees.

SOURCE: 42 FR 32537, June 27, 1977, unless otherwise noted.

§ 1516.1 Purpose and scope.

The purposes of these regulations are to:
(a) Establish a procedure by which an individual can determine if the Council on Environmental Quality (hereafter known as the Council) maintains a system of records which includes a record pertaining to the individual; and
(b) Establish a procedure by which an individual can gain access to a record pertaining to him or her for the purpose of review, amendment and/or correction.

§ 1516.2 Definitions.

For the purpose of these regulations:
(a) The term individual means a citizen of the United States or an alien lawfully admitted for permanent residence;
(b) The term maintain means maintain, collect, use or disseminate;
(c) The term record means any item or collection or grouping of information about an individual that is maintained by the Council (including, but not limited to, his or her employment history, payroll information, and financial transactions), and that contains his or her name, or an identifying number, symbol, or other identifying particular assigned to the individual such as a social security number;
(d) The term system of records means a group of any records under the control of the Council from which information is retrieved by the name of the individual or by some identifying number, symbol, or other identifying particular assigned to the individual; and
(e) The term routine use means with respect to the disclosure of a record, the use of such record for a purpose which is compatible with the purpose for which it was collected.

§ 1516.3 Procedures for requests pertaining to individual records in a record system.

An individual shall submit a written request to the Administrative Officer of the Council to determine if a system of records named by the individual contains a record pertaining to the individual. The individual shall submit a written request to the Administrative Officer of the Council which states the individual's desire to review his or her record. The Administrative Officer of the Council is available to answer questions regarding these regulations and to provide assistance in locating records in the Council's system of records.

[42 FR 32537, June 27, 1977; 42 FR 35960, July 13, 1977]

§ 1516.4 Times, places, and requirements for the identification of the individual making a request.

An individual making a request to the Administrative Officer of the Council pursuant to §1516.3 shall present the request at the Council’s office, 722 Jackson Place NW., Washington, DC 20006, on any business day between the hours of 9 a.m. and 5 p.m. and should be prepared to identify himself by signature. Requests will also be accepted in writing if mailed to the Council's offices and signed by the requester.

§ 1516.5 Disclosure of requested information to the individual.

Upon verification of identity, the Council shall disclose to the individual the information contained in the record which pertains to that individual.
(a) The individual may be accompanied for this purpose by a person of his choosing.

(b) Upon request of the individual to whom the record pertains, all information in the accounting of disclosures will be made available.

[42 FR 35960, July 13, 1977]

§ 1516.6 Request for correction or amendment to the record.

The individual may submit a request to the Administrative Officer of the Council which states the individual’s desire to correct or to amend his or her record. This request must be made in accordance with the procedures of § 1516.4 and shall describe in detail the change which is requested.

§ 1516.7 Agency review of request for correction or amendment of the record.

Within ten working days of the receipt of a request to correct or to amend a record, the Administrative Officer of the Council will acknowledge in writing such receipt and promptly either:

(a) Make any correction or amendment of any portion thereof which the individual believes is not accurate, relevant, timely, or complete; or

(b) Inform the individual of his or her refusal to correct or amend the record in accordance with the request, the reason for the refusal, and the procedure established by the Council for the individual to request a review of that refusal.

§ 1516.8 Appeal of an initial adverse agency determination on correction or amendment of the record.

An individual may appeal refusal by the Administrative Officer of the Council to correct or to amend his or her record by submitting a request for a review of such refusal to the General Counsel, Council on Environmental Quality, 722 Jackson Place NW., Washington, DC 20006. The General Counsel shall, not later than thirty working days from the date on which the individual requests such a review, complete such review and make a final determination unless, for good cause shown, the General Counsel extends such thirty day period. If, after his or her review, the General Counsel also refuses to correct or to amend the record in accordance with the request, the individual may file with the Council a concise statement setting forth the reasons for his or her disagreement with the General Counsel’s decision and may seek judicial relief under 5 U.S.C. 552a(g)(1)(A).

§ 1516.9 Disclosure of a record to a person other than the individual to whom the record pertains.

The Council will not disclose a record to any individual other than to the individual to whom the record pertains without receiving the prior written consent of the individual to whom the record pertains, unless the disclosure either has been listed as a “routine use” in the Council’s notices of its systems of records or falls within the special conditions of disclosure set forth in section 3 of the Privacy Act of 1974.

§ 1516.10 Fees.

If an individual requests copies of his or her record, he or she shall be charged ten cents per page, excluding the cost of any search for the record, in advance of receipt of the pages.

PART 1517—PUBLIC MEETING PROCEDURES OF THE COUNCIL ON ENVIRONMENTAL QUALITY

Sec.
1517.1 Policy and scope.
1517.2 Definitions.
1517.3 Open meeting requirement.
1517.4 Exceptions.
1517.5 Procedure for closing meetings.
1517.6 Notice of meetings.
1517.7 Records of closed meetings.

Authority: 5 U.S.C. 552(b); Pub. L. 94-409.

Source: 42 FR 20818, Apr. 22, 1977, unless otherwise noted.

§ 1517.1 Policy and scope.

Consistent with the policy that the public is entitled to the fullest information regarding the decisionmaking processes of the Federal Government, it is the purpose of this part to open
the meetings of the Council on Environmental Quality to public observation while protecting the rights of individuals and the ability of the Council to carry out its primary responsibility of providing advice to the President. Actions taken by the Chairman acting as Director of the Office of Environmental Quality and Council actions involving advice to the President when such advice is not formulated collegially during a meeting are outside the scope of this part. In addition to conducting the meetings required by this part, it is the Council’s policy to conduct, open to public observation, periodic meetings involving Council discussions of Council business, including where appropriate, matters outside the scope of this part. This part does not affect the procedures set forth in part 1515 pursuant to which records of the Council are made available to the public for inspection and copying, except that the exemptions set forth in §1517.4(a) shall govern in the case of any request made to copy or inspect the transcripts, recording or minutes described in §1517.7.

[47 FR 6277, Feb. 11, 1982]

§ 1517.3 Open meeting requirement.

(a) Every portion of every meeting of the Council is open to public observation subject to the exemptions provided in §1517.4. Members of the Council may not jointly conduct or dispose of the business of the Council other than in accordance with this part.

(b) The Council will conduct open to public observation periodic meetings involving Council discussions of Council business including where appropriate matters outside the scope of this part. Such meetings will be noticed pursuant to §1517.6.

(c) Members of the public may attend open meetings of the Council for the sole purpose of observation and may not participate in or photograph any meeting without prior permission of the Council. Members of the public who desire to participate in or photograph an open meeting of the Council may request permission to do so from the General Counsel of the Council before such meeting. Members of the public may record open meetings of the Council by means of any mechanical or electronic device unless the Council determines such recording would disrupt the orderly conduct of such meeting.

[44 FR 36046, June 18, 1979, as amended at 47 FR 6277, Feb. 11, 1982]

§ 1517.4 Exceptions.

(a) A meeting or portion thereof may be closed to public observation, and information pertaining to such meeting or portion thereof may be withheld from the public, if the Council determines that such meeting or portion thereof or disclosure of such information is likely to:

1. Disclose matters that are (i) specifically authorized under criteria established by an Executive order to be kept secret in the interest of national defense or foreign policy and (ii) in fact properly classified pursuant to that Executive order;

2. Relate solely to the internal personnel rules and practices of the Council;
(3) Disclose matters specifically exempted from disclosure by statute (other than the Freedom of Information Act, 5 U.S.C. 552), provided that the statute: (i) Requires that the matters be withheld from the public in such a manner as to leave no discretion on the issue, or (ii) establishes particular criteria for withholding or refers to particular types of matters to be withheld;
(4) Disclose the trade secrets and commercial or financial information obtained from a person and privileged or confidential;
(5) Involve accusing any person of a crime, or formally censuring any person;
(6) Disclose information of a personal nature if disclosure would constitute a clearly unwarranted invasion of personal privacy;
(7) Disclose investigatory records compiled for law enforcement purposes, or information which if written would be contained in such records, but only to the extent that the production of those records or information would:
 (i) Interfere with enforcement proceedings,
 (ii) Deprive a person of a right to a fair trial or an impartial adjudication,
 (iii) Constitute an unwarranted invasion of personal privacy,
 (iv) Disclose the identity of a confidential source and, in the case of a record compiled by a criminal law enforcement authority in the course of a criminal investigation, or by an agency conducting a lawful national security intelligence investigation, confidential information furnished only by the confidential source,
 (v) Disclose investigative techniques and procedures,
 (vi) Endanger the life or physical safety of law enforcement personnel;
(8) Disclose information contained in or related to examination, operating, or condition reports prepared by, on behalf of, or for the use of an agency responsible for the regulation or supervision of financial institutions;
(9) Disclose information the premature disclosure of which would be likely to significantly frustrate implementation of a proposed action of the Council. This exception shall not apply in any instance where the Council has already disclosed to the public the content or nature of the proposed action, or where the Council is required by law to make such disclosure on its own initiative prior to taking final action on the proposal; or
(10) Specifically concern the issuance of a subpoena by the Council, or the participation of the Council in a civil action or proceeding, an action in a foreign court or international tribunal, or an arbitration, or the initiation, conduct, or disposition by the Council of a particular case of formal adjudication pursuant to the procedures in 5 U.S.C. 554 or otherwise involving a determination on the record after opportunity for a hearing.

(b) Before a meeting is closed to public observation the Council shall determine whether or not the public interest requires that the meeting be open. The Council may open a meeting to public observation which could be closed under paragraph (a) of this section, if the Council finds it to be in the public interest to do so.

§ 1517.5 Procedure for closing meetings.

(a) A majority of the entire membership of the Council may vote to close to public observation a meeting or a portion or portions thereof, or to withhold information pertaining to such meeting. A separate vote of the members of the Council shall be taken with respect to each meeting of the Council, a portion or portions of which are proposed to be closed to the observation of the public or with respect to any information concerning such meetings or portion thereof. A single vote may be taken with respect to a series of meetings, a portion or portions of which are proposed to be closed to the public, or with respect to information concerning such series of meetings, so long as each meeting in such series involves the same particular matters and is scheduled to be held no more than thirty days after the initial meeting in such series. The vote of each member of the Council participating in a vote shall be recorded and no proxies shall be allowed.

(b) Whenever any person whose interest may be directly affected by a portion of a meeting requests that the
Council close that portion to public observation for any of the reasons referred to in §1517.4(a) the Council, upon request of any of the members of the Council, shall decide by recorded vote whether to close that portion of the meeting.

(c) For every meeting or portion thereof closed under this part, the General Counsel of the Council before such meeting is closed shall publicly certify that, in his or her opinion, the meeting may properly be closed to the public stating each relevant exemptive provision. The Council shall retain a copy of the General Counsel’s certification, together with a statement from the presiding officer of the meeting setting forth the time and place of the meeting and listing the persons present.

(d) Within one day of any vote taken on a proposal to close a meeting, the Council shall make publicly available a record reflecting the vote of each member on the question. In addition, within one day of any vote which closes a portion or portions of a meeting to the public, the Council shall make publicly available a full written explanation of its closure action together with a list naming all persons expected to attend and identifying their affiliation, unless such disclosure would reveal the information that the meeting itself was closed to protect.

(e) Following any announcement that the Council intends to close a meeting or portion thereof, any person may make a request that the meeting or portion thereof be opened. Such request shall be made of the Chairman of the Council who shall ensure that the request is circulated to all members of the Council on the same business day on which it is received. The request shall set forth the reasons why the requestor believes the meeting should be open. The Council upon the request of any member or its General Counsel, shall vote on the request.

§ 1517.6 Notice of meetings.

(a) Except as otherwise provided in this section, the Council shall make a public announcement at least one week before a meeting, to include the following:

(1) Time, place, and subject matter of the meeting;

(2) Whether the meeting is to be open or closed; and

(3) Name and telephone number of the official who will respond to requests for information about the meeting.

(b) A majority of the members of the Council may determine by recorded vote that the business of the Council requires a meeting to be called with less than one week’s notice. At the earliest practicable time, the Council shall publicly announce the time, place and subject matter of the meeting, and whether or not it is to be open or closed to the public.

(c) If announcement of the subject matter of a closed meeting would reveal the information that the meeting itself was closed to protect, the subject matter shall not be announced.

(d) Following the public announcement required by paragraph (a) or (b) of this section:

(1) A majority of the members of the Council may change the time or place of a meeting. At the earliest practicable time, the Council shall publicly announce the change.

(2) A majority of the entire membership of the Council may change the subject matter of a meeting, or the determination to open or close a meeting to the public, if it determines by a recorded vote that the change is required by the business of the Council and that no earlier announcement of the change was possible. At the earliest practicable time, the Council shall publicly announce the change, and the vote of each member upon the change.

(e) Individuals or organizations having a special interest in activities of the Council may request the Council to place them on a mailing list for receipt of information available under this section.

(f) Following public announcement of a meeting, the time or place of a meeting may be changed only if the change is announced publicly at the earliest practicable time. The subject matter of a meeting or the determination to open or close a meeting may be changed following public announcement of a meeting only if both of the following conditions are met:

§ 1517.6 Notice of meetings.

(a) Except as otherwise provided in this section, the Council shall make a public announcement at least one week before a meeting, to include the following:

(1) Time, place, and subject matter of the meeting;

(2) Whether the meeting is to be open or closed; and

(3) Name and telephone number of the official who will respond to requests for information about the meeting.

(b) A majority of the members of the Council may determine by recorded vote that the business of the Council requires a meeting to be called with less than one week’s notice. At the earliest practicable time, the Council shall publicly announce the time, place and subject matter of the meeting, and whether or not it is to be open or closed to the public.

(c) If announcement of the subject matter of a closed meeting would reveal the information that the meeting itself was closed to protect, the subject matter shall not be announced.

(d) Following the public announcement required by paragraph (a) or (b) of this section:

(1) A majority of the members of the Council may change the time or place of a meeting. At the earliest practicable time, the Council shall publicly announce the change.

(2) A majority of the entire membership of the Council may change the subject matter of a meeting, or the determination to open or close a meeting to the public, if it determines by a recorded vote that the change is required by the business of the Council and that no earlier announcement of the change was possible. At the earliest practicable time, the Council shall publicly announce the change, and the vote of each member upon the change.

(e) Individuals or organizations having a special interest in activities of the Council may request the Council to place them on a mailing list for receipt of information available under this section.

(f) Following public announcement of a meeting, the time or place of a meeting may be changed only if the change is announced publicly at the earliest practicable time. The subject matter of a meeting or the determination to open or close a meeting may be changed following public announcement of a meeting only if both of the following conditions are met:
(1) There must be a recorded vote of a majority of the Council that the business of the Council requires the change and that no earlier announcement of such change was possible; and

(2) There must be a public announcement of the change and of the individual Council members’ votes at the earliest practicable time.

(g) Immediately following each public announcement required by this section, the following information, as applicable, shall be submitted for publication in the Federal Register:

(1) Notice of the time, place, and subject matter of a meeting;

(2) Whether the meeting is open or closed;

(3) Any change in one of the preceding; and

(4) The name and telephone number of the official who will respond to requests for information about the meeting.

§ 1517.7 Records of closed meetings.

(a) A record of each meeting or portion thereof which is closed to the public shall be made and retained for two years or for one year after the conclusion of any Council proceeding involved in the meeting whichever occurs later. The record of any portion of a meeting closed to the public shall be a verbatim transcript or electronic recording. In lieu of a transcript or recording, a comprehensive set of minutes may be produced if the closure decision was made pursuant to § 1517.4(a)(8) or (10).

(b) If minutes are produced, such minutes shall fully and clearly describe all matters discussed, provide a full and accurate summary of any actions taken and the reasons expressed therefor, and include a description of each of the views expressed on any item. The minutes shall also reflect the vote of each member of the Council on any roll call vote taken during the proceedings and identify all documents produced at the meeting.

(c) The following documents shall be retained by the Council as part of the transcript, recording, or minutes of the meeting:

(1) Certification by the General Counsel that the meeting may properly be closed; and

(2) Statement from the presiding officer of the meeting setting forth the date, time, and place of the meeting and listing the persons present.

(d) The Council shall make promptly available to the public at its offices at 722 Jackson Place, NW., Washington, DC the transcript, electronic recording, or minutes maintained as a record of a closed meeting, except for such information as may be withheld under one of the provisions of § 1517.5. Copies of such transcript, minutes, or transcription of an electronic recording, disclosing the identity of each speaker, shall be furnished to any person at the actual cost of duplication or transcription.

(e) [Reserved]

(f) Requests to review or obtain copies of records other than transcripts, electronic recordings or minutes of a meeting will be processed under the Freedom of Information Act (5 U.S.C. 552) or, where applicable, the Privacy Act of 1974 (5 U.S.C. 552a). Nothing in these regulations authorizes the Council to withhold from any individual any record, including the transcripts or electronic recordings described in § 1517.8, to which the individual may have access under the Privacy Act of 1974 (5 U.S.C. 552a).
Index to Parts 1500 Through 1508

EDITORIAL NOTE: This listing is provided for information purposes only. It is compiled and kept up-to-date by the Council on Environmental Quality.

INDEX

<table>
<thead>
<tr>
<th>Part</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1502</td>
<td>1502.2, 1508.18, 1508.25.</td>
</tr>
<tr>
<td>1503</td>
<td>1508.2, 1504.1(b), 1501.4(c), 1501.7(b)(3), 1506.20(b)(4), 1506.5(b), 1508.4, 1508.9, 1508.10, 1508.13.</td>
</tr>
<tr>
<td>1504</td>
<td>1506.7(a), 1506.7(b), 1506.7(c), 1506.7(d), 1506.8(a), 1506.8(b)(5).</td>
</tr>
<tr>
<td>1505</td>
<td>1506.8(b)(5), 1506.9, 1506.10, 1506.12, 1506.19(a).</td>
</tr>
<tr>
<td>1506</td>
<td>1506.9(a), 1506.9(b), 1506.9(c), 1506.9(d), 1506.9(e).</td>
</tr>
<tr>
<td>1507</td>
<td>1506.9(f), 1506.9(g).</td>
</tr>
<tr>
<td>1508</td>
<td>1506.9(h), 1506.9(i), 1506.9(j), 1506.9(k).</td>
</tr>
</tbody>
</table>

INDEX—Continued

<table>
<thead>
<tr>
<th>Part</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1502</td>
<td>1501.2, 1501.2(a), 1501.2(b), 1501.2(c), 1502.2, 1502.3, 1502.4, 1502.5, 1502.6, 1502.7, 1502.8, 1502.9, 1502.10.</td>
</tr>
<tr>
<td>1503</td>
<td>1501.2.</td>
</tr>
<tr>
<td>1504</td>
<td>1501.4, 1501.7, 1501.8(b)(2), 1506.7(a), 1506.8(b)(5).</td>
</tr>
<tr>
<td>1505</td>
<td>1506.8(b)(5), 1506.9, 1506.10.</td>
</tr>
<tr>
<td>1506</td>
<td>1506.9, 1506.10, 1506.12.</td>
</tr>
<tr>
<td>1507</td>
<td>1506.12, 1506.19(a).</td>
</tr>
<tr>
<td>1508</td>
<td>1506.19(a), 1506.19(b), 1506.19(c), 1506.19(d), 1506.19(e).</td>
</tr>
</tbody>
</table>

387
INDEX—Continued

Lead Agency 1500.5(c), 1501.1(c), 1501.5, 1501.6, 1501.7, 1501.8, 1504.3, 1506.2(b)(4), 1506.8(a), 1506.10(e), 1508.16.

Legislation 1500.5(i), 1502.3, 1506.8, 1508.17, 1508.18(a). 1508.1.

Limitation on Action During NEPA Process. List of Preparers 1502.10(h), 1502.17. 1502.10(h), 1502.17.

Major Federal Action 1502.14(h), 1502.16(h), 1503.3(d), 1505.2(c), 1505.3, 1508.20. 1505.2(c), 1505.3, 1508.25.

NEPA Process 1501.2(d). 1501.7, 1507.3(e), 1508.22. 1503.1(a)(2)(ii), 1505.2.

Non-Federal Sponsor 1506.6(b)(2), 1506.7(c). 1506.12.

OMB Circular A-95 1504.4(a), 1504.6(b)(2), 1508.7(c). 1506.6(b)(2), 1508.7(c).

Page Limits 1505.4(1), 1503.3. 1508.25.

Policy 1502.4, 1502.5, 1506.8(b)(ii). 1508.18(a).

Planning 1501.3. 1504.1.

Program Environmental Impact Statement. Programs Proposal 1500.4(i), 1502.4, 1502.20, 1508.18. 1502.4, 1508.18(b).

Projects 1500.4(i), 1502.4, 1502.20, 1508.18. 1502.4, 1508.18(b).

Purpose 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Public Involvement 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Purpose of Action 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Record of Decision 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Referrals 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Referring Agency 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Response to Comments 1501.4(e), 1503.1(a)(3), 1505.2, 1506.1. 1500.1, 1501.1, 1502.1, 1504.1, 1502.10(d), 1502.13.

Scoping 1502.4(a), 1502.9(a), 1508.25.

Scoping Scientific Accuracy 1502.4(a), 1502.9(a), 1508.25.

Significantly 1500.4(i), 1502.4(d), 1502.20, 1508.18. 1502.3, 1508.27.

Similar 1500.4(i), 1502.4(d), 1502.20, 1508.18. 1502.3, 1508.27.

Small Business Associations 1502.24.

Social Effects 1502.4(a), 1502.9(a), 1508.25.

Special Expertise 1502.4(a), 1502.9(a), 1508.25.

Specificity of Comments 1502.4(a), 1502.9(a), 1508.25.

Table of Contents 1502.4(a), 1502.9(a), 1508.25.

Terror 1502.4(a), 1502.9(a), 1508.25.

Terror of Environmental Impact Statement. Treaties 1502.4(a), 1502.9(a), 1508.25.

Time Limits 1502.4(a), 1502.9(a), 1508.25.

Timing 1502.4(a), 1502.9(a), 1508.25.

Treaties 1502.4(a), 1502.9(a), 1508.25.

Writing 1502.4(a), 1502.9(a), 1508.25.
CHAPTER VII—ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES

Part 1700 Uniform National Discharge Standards for vessels of the Armed Forces .. 391
PART 1700—UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES

Subpart A—Scope

Sec.
1700.1 Applicability.
1700.2 Effect.
1700.3 Definitions.

Subpart B—Discharge Determinations

1700.4 Discharges requiring control.
1700.5 Discharges not requiring control.

Subpart C—Effect on States

1700.6 Effect on State and local statutes and regulations.

NO-DISCHARGE ZONES

1700.7 No-discharge zones.
1700.8 Discharges for which no-discharge zones can be established.
1700.9 No-discharge zones by State prohibition.
1700.10 No-discharge zones by EPA prohibition.

STATE PETITION FOR REVIEW

1700.11 State petition for review of determinations or standards.
1700.12 Petition requirements.
1700.13 Petition decisions.

Subpart D—Marine Pollution Control Device (MPCD) Performance Standards

1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved]

SOURCE: 64 FR 25134, May 10, 1999, unless otherwise noted.

Subpart A—Scope

§ 1700.1 Applicability.

(a) This part applies to the owners and operators of Armed Forces vessels, except where the Secretary of Defense finds that compliance with this part is not in the interest of the national security of the United States. This part does not apply to vessels while they are under construction, vessels in drydock, amphibious vehicles, or vessels under the jurisdiction of the Department of Transportation other than those of the Coast Guard.

(b) This part also applies to States and political subdivisions of States.

§ 1700.2 Effect.

(a) This part identifies those discharges, other than sewage, incidental to the normal operation of Armed Forces vessels that require control within the navigable waters of the United States and the waters of the contiguous zone, and those discharges that do not require control. Discharges requiring control are identified in §1700.4. Discharges not requiring control are identified in §1700.5. Federal standards of performance for each required Marine Pollution Control Device are listed in §1700.14. This part is not applicable beyond the contiguous zone.

(b) This part prohibits States and their political subdivisions from adopting or enforcing State or local statutes or regulations controlling the discharges from Armed Forces vessels listed in §§1700.4 and 1700.5 according to the timing provisions in §1700.6, except to establish a no-discharge zone by State prohibition in accordance with §1700.9, or to apply for a no-discharge zone by EPA prohibition in accordance with §1700.10. This part also provides a mechanism for States to petition the Administrator and the Secretary to review a determination of whether a discharge requires control, or to review a Federal standard of performance for a Marine Pollution Control Device, in accordance with §§1700.11 through 1700.13.

§ 1700.3 Definitions.

Administrator means the Administrator of the United States Environmental Protection Agency or that person's authorized representative.

Armed Forces vessel means a vessel owned or operated by the United States Department of Defense or the United States Coast Guard, other than vessels that are time or voyage chartered by the Armed Forces, vessels of the U.S. Army Corps of Engineers, or vessels that are memorials or museums.

Discharge incidental to the normal operation of a vessel means a discharge, including, but not limited to: graywater, bilgewater, cooling water, weather deck runoff, ballast water, oil water
§ 1700.4 Discharges requiring control.

For the following discharges incidental to the normal operation of Armed Forces vessels, the Administrator and the Secretary have determined that it is reasonable and practicable to require use of a Marine Pollution Control Device for at least one class of vessel to mitigate adverse impacts on the marine environment:

(a) Aqueous Film-Forming Foam: the firefighting foam and seawater mixture discharged during training, testing, or maintenance operations.

(b) Catapult Water Brake Tank & Post-Launch Retraction Exhaust: the oily water skimmed from the water tank used to stop the forward motion of an aircraft carrier catapult, and the condensed steam discharged when the catapult is retracted.

(c) Chain Locker Effluent: the accumulated precipitation and seawater that is emptied from the compartment used to store the vessel’s anchor chain.

(d) Clean Ballast: the seawater taken into, and discharged from, dedicated ballast tanks to maintain the stability of the vessel and to adjust the buoyancy of submarines.

(e) Compensated Fuel Ballast: the seawater taken into, and discharged from, ballast tanks designed to hold both ballast water and fuel to maintain the stability of the vessel.

(f) Controllable Pitch Propeller Hydraulic Fluid: the hydraulic fluid that discharges into the surrounding seawater from propeller seals as part of normal operation, and the hydraulic fluid released during routine maintenance of the propellers.
EPA and DOD § 1700.5

(g) Deck Runoff: the precipitation, washdowns, and seawater falling on the weather deck of a vessel and discharged overboard through deck openings.

(h) Dirty Ballast: the seawater taken into, and discharged from, empty fuel tanks to maintain the stability of the vessel.

(i) Distillation and Reverse Osmosis Brine: the concentrated seawater (brine) produced as a byproduct of the processes used to generate freshwater from seawater.

(j) Elevator Pit Effluent: the liquid that accumulates in, and is discharged from, the sumps of elevator wells on vessels.

(k) Firemain Systems: the seawater pumped through the firemain system for firemain testing, maintenance, and training, and to supply water for the operation of certain vessel systems.

(l) Gas Turbine Water Wash: the water released from washing gas turbine components.

(m) Graywater: galley, bath, and shower water, as well as wastewater from lavatory sinks, laundry, interior deck drains, water fountains, and shop sinks.

(n) Hull Coating Leachate: the constituents that leach, dissolve, ablate, or erode from the paint on the hull into the surrounding seawater.

(o) Motor Gasoline and Compensating Discharge: the seawater taken into, and discharged from, motor gasoline tanks to eliminate free space where vapors could accumulate.

(p) Non-Oily machinery wastewater: the combined wastewater from the operation of distilling plants, water chillers, valve packings, water piping, low- and high-pressure air compressors, and propulsion engine jacket coolers.

(q) Photographic Laboratory Drains: the laboratory wastewater resulting from processing of photographic film.

(r) Seawater Cooling Overboard Discharge: the discharge of seawater from a dedicated system that provides non-contact cooling water for other vessel systems.

(s) Seawater Piping Biofouling Prevention: the discharge of seawater containing additives used to prevent the growth and attachment of biofouling organisms in dedicated seawater cooling systems on selected vessels.

(t) Small Boat Engine Wet Exhaust: the seawater that is mixed and discharged with small boat propulsion engine exhaust to cool the exhaust and quiet the engine.

(u) Sonar Dome Discharge: the leaching of antifoulant materials into the surrounding seawater and the release of seawater or freshwater retained within the sonar dome.

(v) Submarine Bilgewater: the wastewater from a variety of sources that accumulates in the lowest part of the submarine (i.e., bilge).

(w) Surface Vessel Bilgewater/Oil-Water Separator Effluent: the wastewater from a variety of sources that accumulates in the lowest part of the vessel (the bilge), and the effluent produced when the wastewater is processed by an oil water separator.

(x) Underwater Ship Husbandry: the materials discharged during the inspection, maintenance, cleaning, and repair of hulls performed while the vessel is waterborne.

(y) Welldeck Discharges: the water that accumulates from seawater flooding of the docking well (welldeck) of a vessel used to transport, load, and unload amphibious vessels, and from maintenance and freshwater washings of the welldeck and equipment and vessels stored in the welldeck.

§ 1700.5 Discharges not requiring control.

For the following discharges incidental to the normal operation of Armed Forces vessels, the Administrator and the Secretary have determined that it is not reasonable or practicable to require use of a Marine Pollution Control Device to mitigate adverse impacts on the marine environment:

(a) Boiler Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested.

(b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier.

(c) Cathodic Protection: the constituents released into surrounding water from sacrificial anode or impressed
§ 1700.6

40 CFR Ch. VII (7–1–99 Edition)

Subpart C—Effect on States

§ 1700.6 Effect on State and local statutes and regulations.

(a) After the effective date of a final rule determining that it is not reasonable and practicable to require use of a Marine Pollution Control Device regarding a particular discharge incidental to the normal operation of an Armed Forces vessel, States or political subdivisions of States may not adopt or enforce any State or local statute or regulation, including issuance or enforcement of permits under the National Pollutant Discharge Elimination System, controlling that discharge, except that States may establish a no-discharge zone by State prohibition (as provided in §1700.9), or apply for a no-discharge zone by EPA prohibition (as provided in §1700.10).

(b)(1) After the effective date of a final rule determining that it is reasonable and practicable to require use of a Marine Pollution Control Device regarding a particular discharge incidental to the normal operation of an Armed Forces vessel, States may apply for a no-discharge zone by EPA prohibition (as provided in §1700.10).

(2) After the effective date of a final rule promulgated by the Secretary governing the design, construction, installation, and use of a Marine Pollution Control Device for a discharge listed in §1700.4, States or political subdivisions of States may not adopt or enforce any State or local statute or regulation, including issuance or enforcement of permits under the National Pollutant Discharge Elimination System, controlling that discharge except that States may establish a no-discharge zone by State prohibition (as provided in §1700.9), or apply for a no-discharge zone by EPA prohibition (as provided in §1700.10).

(c) The Governor of any State may submit a petition requesting that the
Administrator and Secretary review a determination of whether a Marine Pollution Control Device is required for any discharge listed in §1700.4 or §1700.5, or review a Federal standard of performance for a Marine Pollution Control Device.

NO-DISCHARGE ZONES

§1700.7 No-discharge zones.

For this part, a no-discharge zone is a waterbody, or portion thereof, where one or more discharges incidental to the normal operation of Armed Forces vessels, whether treated or not, are prohibited. A no-discharge zone is established either by State prohibition using the procedures in §1700.9, or by EPA prohibition, upon application of a State, using the procedures in §1700.10.

§1700.8 Discharges for which no-discharge zones can be established.

(a) A no-discharge zone may be established by State prohibition for any discharge listed in §1700.4 or §1700.5 following the procedures in §1700.9. A no-discharge zone established by a State using these procedures may apply only to those discharges that have been preempted from other State or local regulation pursuant to §1700.6.

(b) A no-discharge zone may be established by EPA prohibition for any discharge listed in §1700.4 or §1700.5 following the procedures in §1700.10.

§1700.9 No-discharge zones by State prohibition.

(a) A State seeking to establish a no-discharge zone by State prohibition must send to the Administrator the following information:

(1) The discharge from §1700.4 or §1700.5 to be prohibited within the no-discharge zone.

(2) A detailed description of the waterbody, or portions thereof, to be included in the prohibition. The description must include a map, preferably a USGS topographic quadrant map, clearly marking the zone boundaries by latitude and longitude.

(3) A determination that the protection and enhancement of the waters described in paragraph (a)(2) of this section require greater environmental protection than provided by existing Federal standards.

(4) A complete description of the facilities reasonably available for collecting the discharge including:

(i) A map showing their location(s) and a written location description.

(ii) A demonstration that the facilities have the capacity and capability to provide safe and sanitary removal of the volume of discharge being prohibited in terms of both vessel berthing and discharge reception.

(iii) The schedule of operating hours of the facilities.

(iv) The draft requirements of the vessel(s) that will be required to use the facilities and the available water depth at the facilities.

(v) Information showing that handling of the discharge at the facilities is in conformance with Federal law.

(b) The information provided under paragraph (a) of this section must be sufficient to enable EPA to make the two determinations listed below. Prior to making these determinations, EPA will consult with the Secretary on the adequacy of the facilities and the operational impact of any prohibition on Armed Forces vessels.

(1) Adequate facilities for the safe and sanitary removal of the discharge from Armed Forces and non-Armed Forces vessels.

(2) The prohibition will not have the effect of discriminating against vessels of the Armed Forces by reason of the ownership or operation by the Federal
§ 1700.10 No-discharge zones by EPA prohibition.

(a) A State requesting EPA to establish a no-discharge zone must send to the Administrator an application containing the following information:

1. The discharge from §1700.4 or §1700.5 to be prohibited within the no-discharge zone.

2. A detailed description of the waterbody, or portions thereof, to be included in the prohibition. The description must include a map, preferably a USGS topographic quadrant map, clearly marking the zone boundaries by latitude and longitude.

3. A technical analysis showing why protection and enhancement of the waters described in paragraph (a)(2) of this section require a prohibition of the discharge. The analysis must provide specific information on why the discharge adversely impacts the zone and how prohibition will protect the zone. In addition, the analysis should characterize any sensitive areas, such as aquatic sanctuaries, fish-spawning and nursery areas, pristine areas, areas not meeting water quality standards, drinking water intakes, and recreational areas.

4. A complete description of the facilities reasonably available for collecting the discharge including:

 i. A map showing their location(s) and a written location description.

 ii. A demonstration that the facilities have the capacity and capability to provide safe and sanitary removal of the volume of discharge being prohibited in terms of both vessel berthing and discharge reception.

 iii. The schedule of operating hours of the facilities.

 iv. The draft requirements of the vessel(s) that will be required to use the facilities and the available water depth at the facilities.

 v. Information showing that handling of the discharge at the facilities is in conformance with Federal law.

 (v) Information on whether vessels other than those of the Armed Forces are subject to the same type of prohibition. If the State is not applying a prohibition to other vessels in the area, the State must demonstrate the technical or environmental basis for applying a prohibition only to Armed Forces vessels. The following information must be included in the technical or environmental basis for treating Armed Forces vessels differently:

 (i) An analysis showing the relative contributions of the discharge from Armed Forces and non-Armed Forces vessels.

 (ii) A description of State efforts to control the discharge from non-Armed Forces vessels.

(b) The information provided under paragraph (a) of this section must be sufficient to enable EPA to make the three determinations listed below. Prior to making these determinations, EPA will consult with the Secretary on the adequacy of the facilities and the operational impact of the prohibition on Armed Forces vessels.

1. The protection and enhancement of the specified waters require a prohibition of the discharge.

2. Adequate facilities for the safe and sanitary removal of the discharge are reasonably available for the specified waters.

3. The prohibition will not have the effect of discriminating against vessels of the Armed Forces by reason of the ownership or operation by the Federal Government, or the military function, or the vessels.

(c) If the three conditions in paragraph (b) of this section are met, EPA will by regulation establish the no-discharge zone. If the conditions in paragraphs (b)(1) and (3) of this section are met, but the condition in paragraph (b)(2) of this section is not met, EPA may establish the no-discharge zone if it determines that the significance of the waters and the potential impact of the discharge are of sufficient magnitude to warrant any resulting constraints on Armed Forces vessels.
(d) EPA will notify the State of its decision on the no-discharge zone application in writing. If EPA approves the no-discharge zone application, EPA will by regulation establish the no-discharge zone by modification to this part. A no-discharge zone established by EPA prohibition will not go into effect until the effective date of the regulation.

STATE PETITION FOR REVIEW

§ 1700.11 State petition for review of determinations or standards.

The Governor of any State may submit a petition requesting that the Administrator and Secretary review a determination of whether a Marine Pollution Control Device is required for any discharge listed in §1700.4 or §1700.5, or review a Federal standard of performance for a Marine Pollution Control Device. A State may submit a petition only where there is new, significant information not considered previously by the Administrator and Secretary.

§ 1700.12 Petition requirements.

A petition for review of a determination or standard must include:

(a) The discharge from §1700.4 or §1700.5 for which a change in determination is requested, or the performance standard from §1700.14 for which review is requested.

(b) The scientific and technical information on which the petition is based.

(c) A detailed explanation of why the State believes that consideration of the new information should result in a change to the determination or the standard on a nationwide basis, and an explanation of how the new information is relevant to one or more of the following factors:

(1) The nature of the discharge.

(2) The environmental effects of the discharge.

(3) The practicability of using a Marine Pollution Control Device.

(4) The effect that installation or use of the Marine Pollution Control Device would have on the operation or operational capability of the vessel.

(5) Applicable United States law.

(6) Applicable international standards.

(7) The economic costs of the installation and use of the Marine Pollution Control Device.

§ 1700.13 Petition decisions.

The Administrator and the Secretary will evaluate the petition and grant or deny the petition no later than two years after the date of receipt of the petition. If the Administrator and Secretary grant the petition, they will undertake rulemaking to amend this part. If the Administrator and Secretary deny the petition, they will provide the State with a written explanation of why they denied it.

Subpart D—Marine Pollution Control Device (MPCD) Performance Standards

§ 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved]
FINDING AIDS

A list of CFR titles, subtitles, chapters, subchapters and parts and an alphabetical list of agencies publishing in the CFR are included in the CFR Index and Finding Aids volume to the Code of Federal Regulations which is published separately and revised annually.

Material Approved for Incorporation by Reference
Table of CFR Titles and Chapters
Alphabetical List of Agencies Appearing in the CFR
Toxic Substances CAS Number—Chemical Index
List of CFR Sections Affected
Material Approved for Incorporation by Reference

(Revised as of July 1, 1999)

The Director of the Federal Register has approved under 5 U.S.C. 552(a) and 1 CFR Part 51 the incorporation by reference of the following publications. This list contains only those incorporations by reference effective as of the revision date of this volume. Incorporations by reference found within a regulation are effective upon the effective date of that regulation. For more information on incorporation by reference, see the preliminary pages of this volume.

40 CFR (PARTS 790 TO END): TOXIC SUBSTANCES CONTROL ACT
ENVIRONMENTAL PROTECTION AGENCY

American Chemical Society
Copies available from: EPA TSCA Document Processing Center, Rm. G–004 Northeast Mall, 401 M Street, SW., Washington, DC 20460
ASTM D 1193–77 (R 83) Standard Specification for Reagent Water, Environmental Science and Technology, Vol. 14, No. 11, Prediction of the Volatilization Rates of High-Volatility Chemicals from Natural Water Bodies, Smith, et al., 796.1550(b)(1)(iii); 796.1570(b)(1)(ii); 796.1720(b)(1)(ii) and (2)(i); 796.1840(b)(1)(ii); 796.1860(b)(1)(ii); 796.3500(b)(1)(ii); 796.3700(b)(2)(i)(B); 796.37800(b)(1)(iv)A
EPA TSCA Document Processing Center
Rm. G–004 Northeast Mall, 401 M Street, SW., Washington, DC 20460
Halogenated Solvents Industry Alliance
1612 K Street, NW., Suite 300, Washington, DC 20006
Protocol, 1,1,1- Trichloroethane (TCEA): Inhalation Developmental Toxicity Probe Study in Rats, 799.4400
Title 40—Protection of Environment

40 CFR (PARTS 790 TO END): TOXIC SUBSTANCES CONTROL ACT—Continued
ENVIRONMENTAL PROTECTION AGENCY—Continued

40 CFR

Protocol 1,1,1-Trichloroethane (TCEA): Inhalation Developmental Toxicity in Rats. 799.4400
Protocol 1,1,1-Trichloroethane (TCEA): Inhalation Developmental Toxicity Probe Study in Rabbits. 799.4400
Protocol 1,1,1-Trichloroethane (TCEA): Inhalation Developmental Toxicity Study in Rabbits. 799.4400

Organization for Economic Co-operation and Development
OECD Publication and Information Center, Room Number 1207, 1750 Pennsylvania Avenue, NW. Washington, DC
“Teratogenicity”, Number 414, adopted May 12, 1981 799.1650(c)

Society for Industrial Microbiology
POB 12538, Arlington, VA 22209–8534
Table of CFR Titles and Chapters
(Revised as of July 1, 1999)

Title 1—General Provisions

I Administrative Committee of the Federal Register (Parts 1–49)
II Office of the Federal Register (Parts 50–299)
IV Miscellaneous Agencies (Parts 400–500)

Title 2—[Reserved]

Title 3—The President

I Executive Office of the President (Parts 100–199)

Title 4—Accounts

I General Accounting Office (Parts 1–99)
II Federal Claims Collection Standards (General Accounting Office—Department of Justice) (Parts 100–299)

Title 5—Administrative Personnel

I Office of Personnel Management (Parts 1–1199)
II Merit Systems Protection Board (Parts 1200–1299)
III Office of Management and Budget (Parts 1300–1399)
IV Advisory Committee on Federal Pay (Parts 1400–1499)
V The International Organizations Employees Loyalty Board (Parts 1500–1599)
VI Federal Retirement Thrift Investment Board (Parts 1600–1699)
VII Advisory Commission on Intergovernmental Relations (Parts 1700–1799)
VIII Office of Special Counsel (Parts 1800–1899)
IX Appalachian Regional Commission (Parts 1900–1999)
XI Armed Forces Retirement Home (Part 2100)
XIV Federal Labor Relations Authority, General Counsel of the Federal Labor Relations Authority and Federal Service Impasses Panel (Parts 2400–2499)
XV Office of Administration, Executive Office of the President (Parts 2500–2599)
XVI Office of Government Ethics (Parts 2600–2699)
XXI Department of the Treasury (Parts 3100–3199)
Title 5—Administrative Personnel—Continued

XXII Federal Deposit Insurance Corporation (Part 3201)
XXIII Department of Energy (Part 3301)
XXIV Federal Energy Regulatory Commission (Part 3401)
XXV Department of the Interior (Part 3501)
XXVI Department of Defense (Part 3601)
XXVII Department of Justice (Part 3801)
XXIX Federal Communications Commission (Parts 3900–3999)
XXX Farm Credit System Insurance Corporation (Parts 4000–4099)
XXXI Farm Credit Administration (Parts 4100–4199)
XXXIII Overseas Private Investment Corporation (Part 4301)
XXXV Office of Personnel Management (Part 4501)
XL Interstate Commerce Commission (Part 5001)
XLI Commodity Futures Trading Commission (Part 5101)
XLII Department of Labor (Part 5201)
XLIII National Science Foundation (Part 5301)
XLIV Department of Health and Human Services (Part 5501)
XLV Postal Rate Commission (Part 5601)
XLVI Federal Trade Commission (Part 5701)
XLVII Nuclear Regulatory Commission (Part 5801)
XL Department of Transportation (Part 6001)
L Export-Import Bank of the United States (Part 6201)
LI Department of Education (Parts 6300–6399)
LII Environmental Protection Agency (Part 6401)
LIII General Services Administration (Part 6701)
LVII Board of Governors of the Federal Reserve System (Part 6801)
LIX National Aeronautics and Space Administration (Part 6901)
LX United States Postal Service (Part 7001)
LXI National Labor Relations Board (Part 7101)
LXII Equal Employment Opportunity Commission (Part 7201)
LXIII Inter-American Foundation (Part 7301)
LXIV Department of Housing and Urban Development (Part 7501)
LXVI National Archives and Records Administration (Part 7601)
LXIX Tennessee Valley Authority (Part 7901)
LXI Consumer Product Safety Commission (Part 8101)
LXXIV Federal Mine Safety and Health Review Commission (Part 8401)
LXXVI Federal Retirement Thrift Investment Board (Part 8601)
LXXVII Office of Management and Budget (Part 8701)

Title 6—[Reserved]

Title 7—Agriculture

Subtitle A—Office of the Secretary of Agriculture (Parts 0–26)
Subtitle B—Regulations of the Department of Agriculture
Title 7—Agriculture—Continued

I Agricultural Marketing Service (Standards, Inspections, Marketing Practices), Department of Agriculture (Parts 27—209)
II Food and Nutrition Service, Department of Agriculture (Parts 210—299)
III Animal and Plant Health Inspection Service, Department of Agriculture (Parts 300—399)
IV Federal Crop Insurance Corporation, Department of Agriculture (Parts 400—499)
V Agricultural Research Service, Department of Agriculture (Parts 500—599)
VI Natural Resources Conservation Service, Department of Agriculture (Parts 600—699)
VII Farm Service Agency, Department of Agriculture (Parts 700—799)
VIII Grain Inspection, Packers and Stockyards Administration (Federal Grain Inspection Service), Department of Agriculture (Parts 800—899)
IX Agricultural Marketing Service (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), Department of Agriculture (Parts 900—999)
X Agricultural Marketing Service (Marketing Agreements and Orders; Milk), Department of Agriculture (Parts 1000—1199)
XI Agricultural Marketing Service (Marketing Agreements and Orders; Miscellaneous Commodities), Department of Agriculture (Parts 1200—1299)
XII Northeast Dairy Compact Commission (Parts 1300—1399)
XIV Commodity Credit Corporation, Department of Agriculture (Parts 1400—1499)
XV Foreign Agricultural Service, Department of Agriculture (Parts 1500—1599)
XVI Rural Telephone Bank, Department of Agriculture (Parts 1600—1699)
XVII Rural Utilities Service, Department of Agriculture (Parts 1700—1799)
XVIII Rural Housing Service, Rural Business-Cooperative Service, Rural Utilities Service, and Farm Service Agency, Department of Agriculture (Parts 1800—2099)
XXVI Office of Inspector General, Department of Agriculture (Parts 2600—2699)
XXVII Office of Information Resources Management, Department of Agriculture (Parts 2700—2799)
XXVIII Office of Operations, Department of Agriculture (Parts 2800—2899)
XXIX Office of Energy, Department of Agriculture (Parts 2900—2999)
XXX Office of the Chief Financial Officer, Department of Agriculture (Parts 3000—3099)
XXXI Office of Environmental Quality, Department of Agriculture (Parts 3100—3199)
XXXII Office of Procurement and Property Management, Department of Agriculture (Parts 3200—3299)
Title 7—Agriculture—Continued

XXXIII Office of Transportation, Department of Agriculture (Parts 3300—3399)

XXXIV Cooperative State Research, Education, and Extension Service, Department of Agriculture (Parts 3400—3499)

XXXV Rural Housing Service, Department of Agriculture (Parts 3500—3599)

XXXVI National Agricultural Statistics Service, Department of Agriculture (Parts 3600—3699)

XXXVII Economic Research Service, Department of Agriculture (Parts 3700—3799)

XXXVIII World Agricultural Outlook Board, Department of Agriculture (Parts 3800—3899)

XLI [Reserved]

XLII Rural Business-Cooperative Service and Rural Utilities Service, Department of Agriculture (Parts 4200—4299)

Title 8—Aliens and Nationality

I Immigration and Naturalization Service, Department of Justice (Parts 1—499)

Title 9—Animals and Animal Products

I Animal and Plant Health Inspection Service, Department of Agriculture (Parts 1—199)

II Grain Inspection, Packers and Stockyards Administration (Packers and Stockyards Programs), Department of Agriculture (Parts 200—299)

III Food Safety and Inspection Service, Department of Agriculture (Parts 300—599)

Title 10—Energy

I Nuclear Regulatory Commission (Parts 0—199)

II Department of Energy (Parts 200—699)

III Department of Energy (Parts 700—999)

X Department of Energy (General Provisions) (Parts 1000—1099)

XVII Defense Nuclear Facilities Safety Board (Parts 1700—1799)

Title 11—Federal Elections

I Federal Election Commission (Parts 1—9099)

Title 12—Banks and Banking

I Comptroller of the Currency, Department of the Treasury (Parts 1—199)

II Federal Reserve System (Parts 200—299)

III Federal Deposit Insurance Corporation (Parts 300—399)
Title 12—Banks and Banking—Continued

IV Export-Import Bank of the United States (Parts 400—499)
V Office of Thrift Supervision, Department of the Treasury (Parts 500—599)
VI Farm Credit Administration (Parts 600—699)
VII National Credit Union Administration (Parts 700—799)
VIII Federal Financing Bank (Parts 800—899)
IX Federal Housing Finance Board (Parts 900—999)
XI Federal Financial Institutions Examination Council (Parts 1100—1199)
XIV Farm Credit System Insurance Corporation (Parts 1400—1499)
XV Department of the Treasury (Parts 1500—1599)
XVII Office of Federal Housing Enterprise Oversight, Department of Housing and Urban Development (Parts 1700—1799)
XVIII Community Development Financial Institutions Fund, Department of the Treasury (Parts 1800—1899)

Title 13—Business Credit and Assistance

I Small Business Administration (Parts 1—199)
III Economic Development Administration, Department of Commerce (Parts 300—399)

Title 14—Aeronautics and Space

I Federal Aviation Administration, Department of Transportation (Parts 1—199)
II Office of the Secretary, Department of Transportation (Aviation Proceedings) (Parts 200—399)
III Commercial Space Transportation, Federal Aviation Administration, Department of Transportation (Parts 400—499)
V National Aeronautics and Space Administration (Parts 1200—1299)

Title 15—Commerce and Foreign Trade

SUBTITLE A—Office of the Secretary of Commerce (Parts 0—29)
SUBTITLE B—Regulations Relating to Commerce and Foreign Trade
I Bureau of the Census, Department of Commerce (Parts 30—199)
II National Institute of Standards and Technology, Department of Commerce (Parts 200—299)
III International Trade Administration, Department of Commerce (Parts 300—399)
IV Foreign-Trade Zones Board, Department of Commerce (Parts 400—499)
VII Bureau of Export Administration, Department of Commerce (Parts 700—799)
Title 15—Commerce and Foreign Trade—Continued

Chap.
VIII Bureau of Economic Analysis, Department of Commerce (Parts 800—899)
IX National Oceanic and Atmospheric Administration, Department of Commerce (Parts 900—999)
XI Technology Administration, Department of Commerce (Parts 1100—1199)
XIII East-West Foreign Trade Board (Parts 1300—1399)
XIV Minority Business Development Agency (Parts 1400—1499)

SUBTITLE C—REGULATIONS RELATING TO FOREIGN TRADE AGREEMENTS

XX Office of the United States Trade Representative (Parts 2000—2099)

SUBTITLE D—REGULATIONS RELATING TO TELECOMMUNICATIONS AND INFORMATION

XXIII National Telecommunications and Information Administration, Department of Commerce (Parts 2300—2399)

Title 16—Commercial Practices

I Federal Trade Commission (Parts 0—999)
II Consumer Product Safety Commission (Parts 1000—1799)

Title 17—Commodity and Securities Exchanges

I Commodity Futures Trading Commission (Parts 1—199)
II Securities and Exchange Commission (Parts 200—399)
IV Department of the Treasury (Parts 400—499)

Title 18—Conservation of Power and Water Resources

I Federal Energy Regulatory Commission, Department of Energy (Parts 1—399)
III Delaware River Basin Commission (Parts 400—499)
VI Water Resources Council (Parts 700—799)
VIII Susquehanna River Basin Commission (Parts 800—899)
XIII Tennessee Valley Authority (Parts 1300—1399)

Title 19—Customs Duties

I United States Customs Service, Department of the Treasury (Parts 1—199)
II United States International Trade Commission (Parts 200—299)
III International Trade Administration, Department of Commerce (Parts 300—399)
Title 20—Employees’ Benefits

I Office of Workers’ Compensation Programs, Department of Labor (Parts 1—199)
II Railroad Retirement Board (Parts 200—399)
III Social Security Administration (Parts 400—499)
IV Employees’ Compensation Appeals Board, Department of Labor (Parts 500—599)
V Employment and Training Administration, Department of Labor (Parts 600—699)
VI Employment Standards Administration, Department of Labor (Parts 700—799)
VII Benefits Review Board, Department of Labor (Parts 800—899)
VIII Joint Board for the Enrollment of Actuaries (Parts 900—999)
IX Office of the Assistant Secretary for Veterans’ Employment and Training, Department of Labor (Parts 1000—1099)

Title 21—Food and Drugs

I Food and Drug Administration, Department of Health and Human Services (Parts 1—1299)
II Drug Enforcement Administration, Department of Justice (Parts 1300—1399)
III Office of National Drug Control Policy (Parts 1400—1499)

Title 22—Foreign Relations

I Department of State (Parts 1—199)
II Agency for International Development (Parts 200—299)
III Peace Corps (Parts 300—399)
IV International Joint Commission, United States and Canada (Parts 400—499)
V United States Information Agency (Parts 500—599)
VII Overseas Private Investment Corporation (Parts 700—799)
IX Foreign Service Grievance Board Regulations (Parts 900—999)
X Inter-American Foundation (Parts 1000—1099)
XI International Boundary and Water Commission, United States and Mexico, United States Section (Parts 1100—1199)
XII United States International Development Cooperation Agency (Parts 1200—1299)
XIII Board for International Broadcasting (Parts 1300—1399)
XIV Foreign Service Labor Relations Board; Federal Labor Relations Authority; General Counsel of the Federal Labor Relations Authority; and the Foreign Service Impasse Disputes Panel (Parts 1400—1499)
XV African Development Foundation (Parts 1500—1599)
XVI Japan-United States Friendship Commission (Parts 1600—1699)
XVII United States Institute of Peace (Parts 1700—1799)
Title 23—Highways

I Federal Highway Administration, Department of Transportation (Parts 1—999)

II National Highway Traffic Safety Administration and Federal Highway Administration, Department of Transportation (Parts 1200—1299)

III National Highway Traffic Safety Administration, Department of Transportation (Parts 1300—1399)

Title 24—Housing and Urban Development

SUBTITLE A—Office of the Secretary, Department of Housing and Urban Development (Parts 0—99)

SUBTITLE B—Regulations Relating to Housing and Urban Development

I Office of Assistant Secretary for Equal Opportunity, Department of Housing and Urban Development (Parts 100—199)

II Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Parts 200—299)

III Government National Mortgage Association, Department of Housing and Urban Development (Parts 300—399)

IV Office of Multifamily Housing Assistance Restructuring, Department of Housing and Urban Development (Parts 400—499)

V Office of Assistant Secretary for Community Planning and Development, Department of Housing and Urban Development (Parts 500—599)

VI Office of Assistant Secretary for Community Planning and Development, Department of Housing and Urban Development (Parts 600—699) [Reserved]

VII Office of the Secretary, Department of Housing and Urban Development (Housing Assistance Programs and Public and Indian Housing Programs) (Parts 700—799)

VIII Office of the Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Section 8 Housing Assistance Programs, Section 202 Direct Loan Program, Section 202 Supportive Housing for the Elderly Program and Section 811 Supportive Housing for Persons With Disabilities Program) (Parts 800—899)

IX Office of Assistant Secretary for Public and Indian Housing, Department of Housing and Urban Development (Parts 900—999)

X Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Interstate Land Sales Registration Program) (Parts 1700—1799)

XI Office of Inspector General, Department of Housing and Urban Development (Parts 2000—2099)

XX Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Parts 3200—3899)

XXV Neighborhood Reinvestment Corporation (Parts 4100—4199)
Title 25—Indians

I Bureau of Indian Affairs, Department of the Interior (Parts 1—299)
II Indian Arts and Crafts Board, Department of the Interior (Parts 300—399)
III National Indian Gaming Commission, Department of the Interior (Parts 500—599)
IV Office of Navajo and Hopi Indian Relocation (Parts 700—799)
V Bureau of Indian Affairs, Department of the Interior, and Indian Health Service, Department of Health and Human Services (Part 900)
VI Office of the Assistant Secretary-Indian Affairs, Department of the Interior (Part 1001)
VII Office of the Special Trustee for American Indians, Department of the Interior (Part 1200)

Title 26—Internal Revenue

I Internal Revenue Service, Department of the Treasury (Parts 1—799)

Title 27—Alcohol, Tobacco Products and Firearms

I Bureau of Alcohol, Tobacco and Firearms, Department of the Treasury (Parts 1—299)

Title 28—Judicial Administration

I Department of Justice (Parts 0—199)
III Federal Prison Industries, Inc., Department of Justice (Parts 300—399)
V Bureau of Prisons, Department of Justice (Parts 500—599)
VI Offices of Independent Counsel, Department of Justice (Parts 600—699)
VII Office of Independent Counsel (Parts 700—799)

Title 29—Labor

Subtitle A—Office of the Secretary of Labor (Parts 0—99)
Subtitle B—Regulations Relating to Labor
I National Labor Relations Board (Parts 100—199)
II Office of Labor-Management Standards, Department of Labor (Parts 200—299)
III National Railroad Adjustment Board (Parts 300—399)
IV Office of Labor-Management Standards, Department of Labor (Parts 400—499)
V Wage and Hour Division, Department of Labor (Parts 500—899)
IX Construction Industry Collective Bargaining Commission (Parts 900—999)
X National Mediation Board (Parts 1200—1299)
Title 29—Labor—Continued

XII Federal Mediation and Conciliation Service (Parts 1400—1499)
XIV Equal Employment Opportunity Commission (Parts 1600—1699)
XVII Occupational Safety and Health Administration, Department of Labor (Parts 1900—1999)
XX Occupational Safety and Health Review Commission (Parts 2200—2499)
XXV Pension and Welfare Benefits Administration, Department of Labor (Parts 2500—2599)
XXVII Federal Mine Safety and Health Review Commission (Parts 2700—2799)
XL Pension Benefit Guaranty Corporation (Parts 4000—4999)

Title 30—Mineral Resources

I Mine Safety and Health Administration, Department of Labor (Parts 1—199)
II Minerals Management Service, Department of the Interior (Parts 200—299)
III Board of Surface Mining and Reclamation Appeals, Department of the Interior (Parts 300—399)
IV Geological Survey, Department of the Interior (Parts 400—499)
VI Bureau of Mines, Department of the Interior (Parts 600—699)
VII Office of Surface Mining Reclamation and Enforcement, Department of the Interior (Parts 700—799)

Title 31—Money and Finance: Treasury

SUBTITLE A—Office of the Secretary of the Treasury (Parts 0—50)
SUBTITLE B—Regulations Relating to Money and Finance
I Monetary Offices, Department of the Treasury (Parts 51—199)
II Fiscal Service, Department of the Treasury (Parts 200—299)
IV Secret Service, Department of the Treasury (Parts 400—499)
V Office of Foreign Assets Control, Department of the Treasury (Parts 500—599)
VI Bureau of Engraving and Printing, Department of the Treasury (Parts 600—699)
VII Federal Law Enforcement Training Center, Department of the Treasury (Parts 700—799)
VIII Office of International Investment, Department of the Treasury (Parts 800—899)

Title 32—National Defense

SUBTITLE A—Department of Defense
I Office of the Secretary of Defense (Parts 1—399)
V Department of the Army (Parts 400—699)
VI Department of the Navy (Parts 700—799)
Title 32—National Defense—Continued

VII Department of the Air Force (Parts 800—1099)
 SUBTITLE B—OTHER REGULATIONS RELATING TO NATIONAL DEFENSE

XII Defense Logistics Agency (Parts 1200—1299)

XVI Selective Service System (Parts 1600—1699)

XIX Central Intelligence Agency (Parts 1900—1999)

XX Information Security Oversight Office, National Archives and Records Administration (Parts 2000—2099)

XXI National Security Council (Parts 2100—2199)

XXIV Office of Science and Technology Policy (Parts 2400—2499)

XXVII Office for Micronesian Status Negotiations (Parts 2700—2799)

XXVIII Office of the Vice President of the United States (Parts 2800—2899)

XXIX Presidential Commission on the Assignment of Women in the Armed Forces (Part 2900)

Title 33—Navigation and Navigable Waters

I Coast Guard, Department of Transportation (Parts 1—199)

II Corps of Engineers, Department of the Army (Parts 200—399)

IV Saint Lawrence Seaway Development Corporation, Department of Transportation (Parts 400—499)

Title 34—Education

SUBTITLE A—OFFICE OF THE SECRETARY, DEPARTMENT OF EDUCATION (PARTS 1—99)

SUBTITLE B—REGULATIONS OF THE OFFICES OF THE DEPARTMENT OF EDUCATION

I Office for Civil Rights, Department of Education (Parts 100—199)

II Office of Elementary and Secondary Education, Department of Education (Parts 200—299)

III Office of Special Education and Rehabilitative Services, Department of Education (Parts 300—399)

IV Office of Vocational and Adult Education, Department of Education (Parts 400—499)

V Office of Bilingual Education and Minority Languages Affairs, Department of Education (Parts 500—599)

VI Office of Postsecondary Education, Department of Education (Parts 600—699)

VII Office of Educational Research and Improvement, Department of Education (Parts 700—799)

XI National Institute for Literacy (Parts 1100—1199)

SUBTITLE C—REGULATIONS RELATING TO EDUCATION

XII National Council on Disability (Parts 1200—1299)
Title 35—Panama Canal

I Panama Canal Regulations (Parts 1—299)

Title 36—Parks, Forests, and Public Property

I National Park Service, Department of the Interior (Parts 1—199)
II Forest Service, Department of Agriculture (Parts 200—299)
III Corps of Engineers, Department of the Army (Parts 300—399)
IV American Battle Monuments Commission (Parts 400—499)
V Smithsonian Institution (Parts 500—599)
VII Library of Congress (Parts 700—799)
VIII Advisory Council on Historic Preservation (Parts 800—899)
IX Pennsylvania Avenue Development Corporation (Parts 900—999)
X Presidio Trust (Parts 1000—1099)
XI Architectural and Transportation Barriers Compliance Board (Parts 1100—1199)
XII National Archives and Records Administration (Parts 1200—1299)
XIV Assassination Records Review Board (Parts 1400—1499)

Title 37—Patents, Trademarks, and Copyrights

I Patent and Trademark Office, Department of Commerce (Parts 1—199)
II Copyright Office, Library of Congress (Parts 200—299)
IV Assistant Secretary for Technology Policy, Department of Commerce (Parts 400—499)
V Under Secretary for Technology, Department of Commerce (Parts 500—599)

Title 38—Pensions, Bonuses, and Veterans’ Relief

I Department of Veterans Affairs (Parts 0—99)

Title 39—Postal Service

I United States Postal Service (Parts 1—999)
III Postal Rate Commission (Parts 3000—3099)

Title 40—Protection of Environment

I Environmental Protection Agency (Parts 1—799)
V Council on Environmental Quality (Parts 1500—1599)
VII Environmental Protection Agency and Department of Defense; Uniform National Discharge Standards for Vessels of the Armed Forces (Parts 1700—1799)

Title 41—Public Contracts and Property Management

Subtitle B—Other Provisions Relating to Public Contracts
Title 41—Public Contracts and Property Management—Continued

50 Public Contracts, Department of Labor (Parts 50-1—50-999)
51 Committee for Purchase From People Who Are Blind or Severely Disabled (Parts 51-1—51-99)
60 Office of Federal Contract Compliance Programs, Equal Employment Opportunity, Department of Labor (Parts 60-1—60-999)
61 Office of the Assistant Secretary for Veterans Employment and Training, Department of Labor (Parts 61-1—61-999)

Subtitle C—Federal Property Management Regulations System

101 Federal Property Management Regulations (Parts 101-1—101-99)
105 General Services Administration (Parts 105-1—105-999)
109 Department of Energy Property Management Regulations (Parts 109-1—109-99)
114 Department of the Interior (Parts 114-1—114-99)
115 Environmental Protection Agency (Parts 115-1—115-99)
128 Department of Justice (Parts 128-1—128-99)

Subtitle D—Other Provisions Relating to Property Management [Reserved]

Subtitle E—Federal Information Resources Management Regulations System

201 Federal Information Resources Management Regulation (Parts 201-1—201-99) [Reserved]

Subtitle F—Federal Travel Regulation System

300 General (Parts 300-1—300.99)
301 Temporary Duty (TDY) Travel Allowances (Parts 301-1—301-99)
302 Relocation Allowances (Parts 302-1—302-99)
303 Payment of Expenses Connected with the Death of Certain Employees (Parts 303-1—303-2)
304 Payment from a Non-Federal Source for Travel Expenses (Parts 304-1—304-99)

Title 42—Public Health

I Public Health Service, Department of Health and Human Services (Parts 1—199)
IV Health Care Financing Administration, Department of Health and Human Services (Parts 400—499)
V Office of Inspector General—Health Care, Department of Health and Human Services (Parts 1000—1999)

Title 43—Public Lands: Interior

Subtitle A—Office of the Secretary of the Interior (Parts 1—199)
Subtitle B—Regulations Relating to Public Lands
I Bureau of Reclamation, Department of the Interior (Parts 200—499)
II Bureau of Land Management, Department of the Interior (Parts 1000—9999)
Title 43—Public Lands: Interior—Continued

III Utah Reclamation Mitigation and Conservation Commission
 (Parts 10000—10005)

Title 44—Emergency Management and Assistance

I Federal Emergency Management Agency (Parts 0—399)
IV Department of Commerce and Department of Transportation
 (Parts 400—499)

Title 45—Public Welfare

SUBTITLE A—DEPARTMENT OF HEALTH AND HUMAN SERVICES
 (Parts 1—199)
SUBTITLE B—REGULATIONS RELATING TO PUBLIC WELFARE
II Office of Family Assistance (Assistance Programs), Administra-
 tion for Children and Families, Department of Health and
 Human Services (Parts 200—299)
III Office of Child Support Enforcement (Child Support Enforce-
 ment Program), Administration for Children and Families,
 Department of Health and Human Services (Parts 300—399)
IV Office of Refugee Resettlement, Administration for Children and
 Families, Department of Health and Human Services (Parts
 400—499)
V Foreign Claims Settlement Commission of the United States,
 Department of Justice (Parts 500—599)
VI National Science Foundation (Parts 600—699)
VII Commission on Civil Rights (Parts 700—799)
VIII Office of Personnel Management (Parts 800—899)
IX Office of Community Services, Administration for Children and
 Families, Department of Health and Human Services (Parts
 1000—1099)
XI National Foundation on the Arts and the Humanities (Parts
 1100—1199)
XII Corporation for National and Community Service (Parts 1200—
 1299)
XIII Office of Human Development Services, Department of Health
 and Human Services (Parts 1300—1399)
XVI Legal Services Corporation (Parts 1600—1699)
XVII National Commission on Libraries and Information Science
 (Parts 1700—1799)
XVIII Harry S. Truman Scholarship Foundation (Parts 1800—1899)
XXI Commission on Fine Arts (Parts 2100—2199)
XXII Christopher Columbus Quincentenary Jubilee Commission
 (Parts 2200—2299)
XXIV James Madison Memorial Fellowship Foundation (Parts 2400—
 2499)
XXV Corporation for National and Community Service (Parts 2500—
 2599)
Title 46—Shipping

I Coast Guard, Department of Transportation (Parts 1—199)
II Maritime Administration, Department of Transportation (Parts 200—399)
III Coast Guard (Great Lakes Pilotage), Department of Transportation (Parts 400—499)
IV Federal Maritime Commission (Parts 500—599)

Title 47—Telecommunication

I Federal Communications Commission (Parts 0—199)
II Office of Science and Technology Policy and National Security Council (Parts 200—299)
III National Telecommunications and Information Administration, Department of Commerce (Parts 300—399)

Title 48—Federal Acquisition Regulations System

1 Federal Acquisition Regulation (Parts 1—99)
2 Department of Defense (Parts 200—299)
3 Department of Health and Human Services (Parts 300—399)
4 Department of Agriculture (Parts 400—499)
5 General Services Administration (Parts 500—599)
6 Department of State (Parts 600—699)
7 United States Agency for International Development (Parts 700—799)
8 Department of Veterans Affairs (Parts 800—899)
9 Department of Energy (Parts 900—999)
10 Department of the Treasury (Parts 1000—1099)
11 Department of Transportation (Parts 1200—1299)
12 Department of Commerce (Parts 1300—1399)
13 Department of the Interior (Parts 1400—1499)
14 Environmental Protection Agency (Parts 1500—1599)
15 Office of Personnel Management Federal Employees Health Benefits Acquisition Regulation (Parts 1600—1699)
16 Office of Personnel Management (Parts 1700—1799)
17 National Aeronautics and Space Administration (Parts 1800—1899)
18 United States Information Agency (Parts 1900—1999)
19 Nuclear Regulatory Commission (Parts 2000—2099)
20 Office of Personnel Management, Federal Employees Group Life Insurance Federal Acquisition Regulation (Parts 2100—2199)
21 Social Security Administration (Parts 2300—2399)
22 Department of Housing and Urban Development (Parts 2400—2499)
23 National Science Foundation (Parts 2500—2599)
24 Department of Justice (Parts 2800—2899)
25 Department of Labor (Parts 2900—2999)
Title 48—Federal Acquisition Regulations System—Continued

34 Department of Education Acquisition Regulation (Parts 3400—3499)
35 Panama Canal Commission (Parts 3500—3599)
44 Federal Emergency Management Agency (Parts 4400—4499)
51 Department of the Army Acquisition Regulations (Parts 5100—5199)
52 Department of the Navy Acquisition Regulations (Parts 5200—5299)
53 Department of the Air Force Federal Acquisition Regulation Supplement (Parts 5300—5399)
54 Defense Logistics Agency, Department of Defense (Part 5452)
57 African Development Agency (Parts 5700—5799)
61 General Services Administration Board of Contract Appeals (Parts 6100—6199)
63 Department of Transportation Board of Contract Appeals (Parts 6300—6399)
99 Cost Accounting Standards Board, Office of Federal Procurement Policy, Office of Management and Budget (Parts 9900—9999)

Title 49—Transportation

Subtitle A—Office of the Secretary of Transportation (Parts 1—99)
Subtitle B—Other Regulations Relating to Transportation
I Research and Special Programs Administration, Department of Transportation (Parts 100—199)
II Federal Railroad Administration, Department of Transportation (Parts 200—299)
III Federal Highway Administration, Department of Transportation (Parts 300—399)
IV Coast Guard, Department of Transportation (Parts 400—499)
V National Highway Traffic Safety Administration, Department of Transportation (Parts 500—599)
VI Federal Transit Administration, Department of Transportation (Parts 600—699)
VII National Railroad Passenger Corporation (AMTRAK) (Parts 700—799)
VIII National Transportation Safety Board (Parts 800—999)
X Surface Transportation Board, Department of Transportation (Parts 1000—1399)
XI Bureau of Transportation Statistics, Department of Transportation (Parts 1400—1499)

Title 50—Wildlife and Fisheries
I United States Fish and Wildlife Service, Department of the Interior (Parts 1—199)
Title 50—Wildlife and Fisheries—Continued

Chap.
II National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 200—299)
III International Fishing and Related Activities (Parts 300—399)
IV Joint Regulations (United States Fish and Wildlife Service, Department of the Interior and National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce); Endangered Species Committee Regulations (Parts 400—499)
V Marine Mammal Commission (Parts 500—599)
VI Fishery Conservation and Management, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 600—699)

CFR Index and Finding Aids

Subject/Agency Index
List of Agency Prepared Indexes
Parallel Tables of Statutory Authorities and Rules
List of CFR Titles, Chapters, Subchapters, and Parts
Alphabetical List of Agencies Appearing in the CFR
Alphabetical List of Agencies Appearing in the CFR
(Revised as of July 1, 1999)

<table>
<thead>
<tr>
<th>Agency</th>
<th>CFR Title, Subtitle or Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Committee of the Federal Register</td>
<td>1, I</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Advisory Commission on Intergovernmental Relations</td>
<td>5, VII</td>
</tr>
<tr>
<td>Advisory Committee on Federal Pay</td>
<td>5, IV</td>
</tr>
<tr>
<td>Advisory Council on Historic Preservation</td>
<td>36, VIII</td>
</tr>
<tr>
<td>African Development Foundation</td>
<td>22, XV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 57</td>
</tr>
<tr>
<td>Agency for International Development, United States</td>
<td>22, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 7</td>
</tr>
<tr>
<td>Agricultural Marketing Service</td>
<td>7, I, IX, X, XI</td>
</tr>
<tr>
<td>Agricultural Research Service</td>
<td>7, V</td>
</tr>
<tr>
<td>Agriculture Department</td>
<td></td>
</tr>
<tr>
<td>Agricultural Marketing Service</td>
<td>7, I, IX, X, XI</td>
</tr>
<tr>
<td>Agricultural Research Service</td>
<td>7, V</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Cooperative State Research, Education, and Extension Service</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Energy, Office of</td>
<td>7, XXIX</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Farm Service Agency</td>
<td>7, VII, XVIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 4</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>7, IV</td>
</tr>
<tr>
<td>Food and Nutrition Service</td>
<td>7, II</td>
</tr>
<tr>
<td>Food Safety and Inspection Service</td>
<td>9, III</td>
</tr>
<tr>
<td>Foreign Agricultural Service</td>
<td>7, XV</td>
</tr>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Inspector General, Office of</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XLI</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Operations, Office of</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Procurement and Property Management, Office of</td>
<td>7, XXXII</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLI</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVII, XVIII, XLII</td>
</tr>
<tr>
<td>Secretary of Agriculture, Office of</td>
<td>7, Subtitle A</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>7, XXXVIII</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation Supplement</td>
<td>48, 53</td>
</tr>
<tr>
<td>Alcohol, Tobacco and Firearms, Bureau of</td>
<td>27, I</td>
</tr>
<tr>
<td>AMTRAK</td>
<td>49, VII</td>
</tr>
<tr>
<td>American Battle Monuments Commission</td>
<td>36, IV</td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Appalachian Regional Commission</td>
<td>5, IX</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Architectural and Transportation Barriers Compliance Board</td>
<td>36, XI</td>
</tr>
<tr>
<td>Arctic Research Commission</td>
<td>45, XXIII</td>
</tr>
<tr>
<td>Armed Forces Retirement Home</td>
<td>5, XI</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V</td>
</tr>
<tr>
<td>Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 51</td>
</tr>
<tr>
<td>Assassination Records Review Board</td>
<td>36, XIV</td>
</tr>
<tr>
<td>Benefits Review Board</td>
<td>20, VII</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of People Who Are Board for International Broadcasting</td>
<td>34, V</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Central Intelligence Agency</td>
<td>32, XIX</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for</td>
<td>45, II, III, IV, X</td>
</tr>
<tr>
<td>Christopher Columbus Quincentenary Jubilee Commission</td>
<td>45, XXII</td>
</tr>
<tr>
<td>Civil Rights, Commission on</td>
<td>45, VII</td>
</tr>
<tr>
<td>Civil Rights, Office for</td>
<td>34, I</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, I; 46, I; 49, IV</td>
</tr>
<tr>
<td>Coast Guard (Great Lakes Pilotage)</td>
<td>46, III</td>
</tr>
<tr>
<td>Commerce Department</td>
<td>44, IV</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Economic Affairs, Under Secretary</td>
<td>37, V</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, IV</td>
</tr>
<tr>
<td>Export Administration, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 13</td>
</tr>
<tr>
<td>Fishery Conservation and Management</td>
<td>50, VI</td>
</tr>
<tr>
<td>Foreign-Trade Zones Board</td>
<td>15, IV</td>
</tr>
<tr>
<td>International Trade Administration</td>
<td>15, III; 19, III</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>15, II</td>
</tr>
<tr>
<td>National Marine Fisheries Service</td>
<td>50, II, IV, VI</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>15, IX; 50, II, III, IV, VI</td>
</tr>
<tr>
<td>National Telecommunications and Information</td>
<td>15, XXIII; 47, III</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>National Weather Service</td>
<td>15, IX</td>
</tr>
<tr>
<td>Patent and Trademark Office</td>
<td>37, I</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant</td>
<td>37, IV</td>
</tr>
<tr>
<td>Secretary for</td>
<td></td>
</tr>
<tr>
<td>Secretary of Commerce, Office of Technology, Under Secretary for</td>
<td>15, Subtitle A</td>
</tr>
<tr>
<td>Technology Administration</td>
<td>37, V</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>15, XI</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Commodity Futures Trading Commission</td>
<td>5, XLI; 17, I</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant Secretary for</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Community Services, Office of</td>
<td>45, X</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Construction Industry Collective Bargaining Commission</td>
<td>29, IX</td>
</tr>
<tr>
<td>Consumer Product Safety Commission</td>
<td>5, LXXI; 16, II</td>
</tr>
<tr>
<td>Cooperative State Research, Education, and Extension Service</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Corporation for National and Community Service</td>
<td>45, XII, XXV</td>
</tr>
<tr>
<td>Cost Accounting Standards Board</td>
<td>48, 99</td>
</tr>
<tr>
<td>Council on Environmental Quality</td>
<td>40, V</td>
</tr>
<tr>
<td>Customs Service, United States</td>
<td>19, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Department</td>
<td>5, XXVI; 32, Subtitle A; 40, VII</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V; 33, II; 36, III, 48, 51</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, I; XII; 48, 54</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 2</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI; 48, 52</td>
</tr>
<tr>
<td>Secretary of Defense, Office of</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, XII; 48, 54</td>
</tr>
<tr>
<td>Defense Nuclear Facilities Safety Board</td>
<td>10, XVII</td>
</tr>
<tr>
<td>Delaware River Basin Commission</td>
<td>18, III</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>East-West Foreign Trade Board</td>
<td>15, XIII</td>
</tr>
<tr>
<td>Economic Affairs, Under Secretary</td>
<td>37, V</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Education, Department of</td>
<td>5, LIII</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of</td>
<td>34, V</td>
</tr>
<tr>
<td>Civil Rights, Office for</td>
<td>34, I</td>
</tr>
<tr>
<td>Educational Research and Improvement, Office of</td>
<td>34, VII</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 34</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>Secretary of Education, Office of</td>
<td>34, Subtitle A</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of</td>
<td>34, III</td>
</tr>
<tr>
<td>Vocational and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Educational Research and Improvement, Office of</td>
<td>34, VII</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, II</td>
</tr>
<tr>
<td>Employees' Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, IV</td>
</tr>
<tr>
<td>Energy, Department of</td>
<td>5, XXIII; 10, II, III, X</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 9</td>
</tr>
<tr>
<td>Federal Energy Regulatory Commission</td>
<td>5, XXIV; 18, I</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 109</td>
</tr>
<tr>
<td>Energy, Office of</td>
<td>7, XXIX</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>5, LIV; 40, I, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 15</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 115</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Equal Employment Opportunity Commission</td>
<td>5, L XIII; 29, XIV</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Executive Office of the President</td>
<td>3, I</td>
</tr>
<tr>
<td>Administration, Office of</td>
<td>5, XV</td>
</tr>
<tr>
<td>Environmental Quality, Council on</td>
<td>40, V</td>
</tr>
<tr>
<td>Management and Budget, Office of</td>
<td>25, III, LXXVII; 48, 99</td>
</tr>
<tr>
<td>National Drug Control Policy, Office of</td>
<td>21, II</td>
</tr>
<tr>
<td>National Security Council</td>
<td>32, XXI; 47, 2</td>
</tr>
<tr>
<td>Presidential Documents</td>
<td>3</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of</td>
<td>32, XXIV; 47, II</td>
</tr>
<tr>
<td>Trade Representative, Office of the United States</td>
<td>15, LII; 12, IV</td>
</tr>
<tr>
<td>Export Administration, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>Export-Import Bank of the United States</td>
<td>5, LII; 12, IV</td>
</tr>
<tr>
<td>Family Assistance, Office of</td>
<td>45, II</td>
</tr>
<tr>
<td>Farm Credit Administration</td>
<td>5, XXXI; 12, VI</td>
</tr>
<tr>
<td>Farm Credit System Insurance Corporation</td>
<td>5, XXX; 12, XIV</td>
</tr>
<tr>
<td>Farm Service Agency</td>
<td>7, VII, XVIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 1</td>
</tr>
<tr>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>14, 1</td>
</tr>
<tr>
<td>Federal Communications Commission</td>
<td>41, 6</td>
</tr>
<tr>
<td>Federal Contract Compliance Programs, Office of</td>
<td>41, 60</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>7, IV</td>
</tr>
<tr>
<td>Federal Deposit Insurance Corporation</td>
<td>5, XXII; 12, III</td>
</tr>
<tr>
<td>Federal Election Commission</td>
<td>11, I</td>
</tr>
<tr>
<td>Federal Emergency Management Agency</td>
<td>44, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 44</td>
</tr>
<tr>
<td>Federal Employees Group Life Insurance Federal Acquisition Regulation</td>
<td>48, 23</td>
</tr>
<tr>
<td>Federal Employees Health Benefits Acquisition Regulation</td>
<td>48, 16</td>
</tr>
<tr>
<td>Federal Energy Regulatory Commission</td>
<td>5, XXIV; 18, I</td>
</tr>
<tr>
<td>Federal Financial Institutions Examination Council</td>
<td>12, XI</td>
</tr>
<tr>
<td>Federal Financing Bank</td>
<td>12, VIII</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>23, I, II; 49, III</td>
</tr>
<tr>
<td>Federal Home Loan Mortgage Corporation</td>
<td>1, IV</td>
</tr>
<tr>
<td>Federal Housing Enterprise Oversight Office</td>
<td>12, XVII</td>
</tr>
<tr>
<td>Federal Housing Finance Board</td>
<td>12, IX</td>
</tr>
<tr>
<td>Federal Labor Relations Authority, and General Counsel of the Federal Labor Relations Authority</td>
<td>5, XIV; 22, XIV</td>
</tr>
<tr>
<td>Federal Law Enforcement Training Center</td>
<td>31, VII</td>
</tr>
<tr>
<td>Federal Maritime Commission</td>
<td>46, I</td>
</tr>
<tr>
<td>Federal Mediation and Conciliation Service</td>
<td>29, XII</td>
</tr>
<tr>
<td>Federal Mine Safety and Health Review Commission</td>
<td>5, LXXIV; 29, XXVII</td>
</tr>
<tr>
<td>Federal Pay, Advisory Committee on</td>
<td>5, IV</td>
</tr>
<tr>
<td>Federal Prison Industries, Inc.</td>
<td>29, III</td>
</tr>
<tr>
<td>Federal Procurement Policy Office</td>
<td>48, 99</td>
</tr>
<tr>
<td>Federal Property Management Regulations</td>
<td>41, 101</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, Subtitle C</td>
</tr>
<tr>
<td>Federal Railroad Administration</td>
<td>49, II</td>
</tr>
<tr>
<td>Federal Register, Administrative Committee of</td>
<td>1, I</td>
</tr>
<tr>
<td>Federal Register, Office of</td>
<td>1, II</td>
</tr>
<tr>
<td>Federal Reserve System</td>
<td>12, II</td>
</tr>
<tr>
<td>Board of Governors</td>
<td>5, LVIII</td>
</tr>
<tr>
<td>Federal Retirement Thrift Investment Board</td>
<td>5, VI, LXXVI</td>
</tr>
<tr>
<td>Federal Service Impasses Panel</td>
<td>5, XIV</td>
</tr>
<tr>
<td>Federal Trade Commission</td>
<td>5, XLVII; 16, I</td>
</tr>
<tr>
<td>Federal Transit Administration</td>
<td>49, VI</td>
</tr>
<tr>
<td>Federal Travel Regulation System</td>
<td>41, Subtitle F</td>
</tr>
<tr>
<td>Fine Arts, Commission on</td>
<td>45, XXI</td>
</tr>
<tr>
<td>Fiscal Service</td>
<td>31, II</td>
</tr>
<tr>
<td>Fish and Wildlife Service, United States</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Fishery Conservation and Management</td>
<td>50, VI</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
<td>21, I</td>
</tr>
<tr>
<td>Food and Nutrition Service</td>
<td>7, II</td>
</tr>
<tr>
<td>Food Safety and Inspection Service</td>
<td>9, III</td>
</tr>
<tr>
<td>Foreign Agricultural Service</td>
<td>7, XV</td>
</tr>
<tr>
<td>Foreign Assets Control, Office of</td>
<td>31, V</td>
</tr>
<tr>
<td>Foreign Claims Settlement Commission of the United States</td>
<td>45, V</td>
</tr>
<tr>
<td>Foreign Service Grievance Board</td>
<td>22, I</td>
</tr>
<tr>
<td>Foreign Service Impasse Disputes Panel</td>
<td>22, XIV</td>
</tr>
<tr>
<td>Foreign Service Labor Relations Board</td>
<td>22, XIV</td>
</tr>
<tr>
<td>Foreign-Trade Zones Board</td>
<td>15, IV</td>
</tr>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>General Accounting Office</td>
<td>4, I, II</td>
</tr>
<tr>
<td>General Services Administration</td>
<td>5, LVII</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>48, 61</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 5</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, 101, 105</td>
</tr>
<tr>
<td>Federal Travel Regulation System</td>
<td>41, Subtitle F</td>
</tr>
<tr>
<td>General Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 303</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>424</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Temporary Duty (TDY) Travel Allowances</td>
<td>41, 301</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, IV</td>
</tr>
<tr>
<td>Government Ethics, Office of</td>
<td>5, XVI</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Harry S. Truman Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>Health and Human Services, Department of</td>
<td>5, XLI; 45, Subtitle A</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for</td>
<td>45, III, IV, X</td>
</tr>
<tr>
<td>Community Services, Office of</td>
<td>45, X</td>
</tr>
<tr>
<td>Family Assistance, Office of</td>
<td>45, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 3</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
<td>21, I</td>
</tr>
<tr>
<td>Health Care Financing Administration</td>
<td>42, XIV</td>
</tr>
<tr>
<td>Human Development Services, Office of</td>
<td>45, XII</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Inspector General (Health Care), Office of</td>
<td>42, V</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Health Care Financing Administration</td>
<td>42, IV</td>
</tr>
<tr>
<td>Housing and Urban Development, Department of</td>
<td>5, LXV; 24, Subtitle B</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant Secretary for</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 24</td>
</tr>
<tr>
<td>Federal Housing Enterprise Oversight, Office of</td>
<td>12, XVII</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of Assistant Secretary for</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Inspector General, Office of</td>
<td>24, XII</td>
</tr>
<tr>
<td>Multifamily Housing Assistance Restructuring, Office of</td>
<td>24, XIV</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for</td>
<td>24, IX</td>
</tr>
<tr>
<td>Secretary, Office of</td>
<td>24, Subtitle A, VII</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of Assistant Secretary for</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Secretary for</td>
<td></td>
</tr>
<tr>
<td>Human Development Services, Office of</td>
<td>45, XIII</td>
</tr>
<tr>
<td>Immigration and Naturalization Service</td>
<td>48, I</td>
</tr>
<tr>
<td>Independent Counsel, Office of</td>
<td>28, VII</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Information Agency, United States</td>
<td>22, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 19</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Information Security Oversight Office, National Archives and Records Administration</td>
<td>32, XX</td>
</tr>
<tr>
<td>Inspector General</td>
<td></td>
</tr>
<tr>
<td>Agriculture Department</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>Health and Human Services Department</td>
<td>42, V</td>
</tr>
<tr>
<td>Housing and Urban Development Department</td>
<td>24, XII</td>
</tr>
<tr>
<td>Institute of Peace, United States</td>
<td>22, XVII</td>
</tr>
<tr>
<td>Inter-American Foundation</td>
<td>5, LXIII; 22, X</td>
</tr>
<tr>
<td>Intergovernmental Relations, Advisory Commission on</td>
<td>5, VII</td>
</tr>
<tr>
<td>Interior Department</td>
<td></td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 14</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, 114</td>
</tr>
<tr>
<td>Fish and Wildlife Service, United States</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, IV</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, II</td>
</tr>
<tr>
<td>Minerals Management Service</td>
<td>30, II</td>
</tr>
<tr>
<td>Mines, Bureau of</td>
<td>30, VI</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Secretary of the Interior, Office of</td>
<td>43, Subtitle A</td>
</tr>
<tr>
<td>Surface Mining and Reclamation Appeals, Board of</td>
<td>30, III</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>International Boundary and Water Commission, United States and Mexico, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>International Development, United States Agency for</td>
<td>22, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 7</td>
</tr>
<tr>
<td>International Development Cooperation Agency, United States</td>
<td>22, XII</td>
</tr>
<tr>
<td>International Development, United States Agency for</td>
<td>22, II; 48, 7</td>
</tr>
<tr>
<td>Overseas Private Investment Corporation</td>
<td>5, XXXIII; 22, VII</td>
</tr>
<tr>
<td>International Fishing and Related Activities</td>
<td>50, III</td>
</tr>
<tr>
<td>International Investment, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>International Joint Commission, United States and Canada</td>
<td>22, IV</td>
</tr>
<tr>
<td>International Organizations Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>International Trade Administration</td>
<td>15, 11; 19, III</td>
</tr>
<tr>
<td>International Trade Commission, United States</td>
<td>19, II</td>
</tr>
<tr>
<td>Interstate Commerce Commission</td>
<td>5, XL</td>
</tr>
<tr>
<td>James Madison Memorial Fellowship Foundation</td>
<td>45, XXIV</td>
</tr>
<tr>
<td>Japan-United States Friendship Commission</td>
<td>22, XVI</td>
</tr>
<tr>
<td>Joint Board for the Enrollment of Actuaries</td>
<td>20, VIII</td>
</tr>
<tr>
<td>Justice Department</td>
<td>5, XXXVIII; 28, I</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 28</td>
</tr>
<tr>
<td>Federal Claims Collection Standards</td>
<td>4, II</td>
</tr>
<tr>
<td>Federal Prison Industries, Inc.</td>
<td>28, III</td>
</tr>
<tr>
<td>Foreign Claims Settlement Commission of the United States</td>
<td>45, V</td>
</tr>
<tr>
<td>Immigration and Naturalization Service</td>
<td>8, I</td>
</tr>
<tr>
<td>Offices of Independent Counsel</td>
<td>28, VI</td>
</tr>
<tr>
<td>Prisons, Bureau of</td>
<td>28, V</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 129</td>
</tr>
<tr>
<td>Labor Department</td>
<td>5, XLII</td>
</tr>
<tr>
<td>Benefits Review Board</td>
<td>20, VII</td>
</tr>
<tr>
<td>Employees' Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 29</td>
</tr>
<tr>
<td>Federal Contract Compliance Programs, Office of</td>
<td>41, 60</td>
</tr>
<tr>
<td>Federal Procurement Regulations System</td>
<td>41, 50</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II; 14, IV</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Pension and Welfare Benefits Administration</td>
<td>29, XIV</td>
</tr>
<tr>
<td>Public Contracts</td>
<td>41, 50</td>
</tr>
<tr>
<td>Secretary of Labor, Office of</td>
<td>29, Subtitle A</td>
</tr>
<tr>
<td>Veterans' Employment and Training, Office of the Assistant Secretary for</td>
<td>41, 61; 20, I X</td>
</tr>
<tr>
<td>Wage and Hour Division</td>
<td>29, V</td>
</tr>
<tr>
<td>Workers' Compensation Programs, Office of</td>
<td>20, I</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II; 14, IV</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, II</td>
</tr>
<tr>
<td>Legal Services Corporation</td>
<td>45, XVI</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>36, VII</td>
</tr>
<tr>
<td>Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Management and Budget, Office of</td>
<td>5, III; LXXVII; 48, 99</td>
</tr>
<tr>
<td>Marine Mammal Commission</td>
<td>50, V</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>Merit Systems Protection Board</td>
<td>5, II</td>
</tr>
<tr>
<td>Micronesian Status Negotiations, Office for</td>
<td>32, XXVII</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Minerals Management Service</td>
<td>30, II</td>
</tr>
<tr>
<td>Mines, Bureau of</td>
<td>30, VI</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Minority Business Development Agency</td>
<td>15, XIV</td>
</tr>
<tr>
<td>Miscellaneous Agencies</td>
<td>1, IV</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>Multifamily Housing Assistance Restructuring, Office of</td>
<td>24, IV</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>5, LIX; 14, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 18</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XL</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>National Archives and Records Administration</td>
<td>5, LXVI; 36, XII</td>
</tr>
<tr>
<td>Information Security Oversight Office</td>
<td>32, XX</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td>15, II</td>
</tr>
<tr>
<td>National Capital Planning Commission</td>
<td>1, IV</td>
</tr>
<tr>
<td>National Commission for Employment Policy</td>
<td>1, IV</td>
</tr>
<tr>
<td>National Commission on Libraries and Information Science</td>
<td>45, XVII</td>
</tr>
<tr>
<td>National Community Service, Corporation for</td>
<td>45, XII, XXV</td>
</tr>
<tr>
<td>National Council on Disability</td>
<td>34, XII</td>
</tr>
<tr>
<td>National Credit Union Administration</td>
<td>12, VII</td>
</tr>
<tr>
<td>National Drug Control Policy, Office of</td>
<td>21, III</td>
</tr>
<tr>
<td>National Foundation on the Arts and the Humanities</td>
<td>45, XI</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, II, III; 49, V</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, 1</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Institute for Literacy</td>
<td>34, XI</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>15, II</td>
</tr>
<tr>
<td>National Labor Relations Board</td>
<td>5, LIX; 29, I</td>
</tr>
<tr>
<td>National Marine Fisheries Service</td>
<td>50, II, IV, VI</td>
</tr>
<tr>
<td>National Mediation Board</td>
<td>29, X</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>15, IX; 50, II, III, IV, VI</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>National Railroad Adjustment Board</td>
<td>29, III</td>
</tr>
<tr>
<td>National Railroad Passenger Corporation (AMTRAK)</td>
<td>49, VII</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>5, LIII; 45, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 25</td>
</tr>
<tr>
<td>National Security Council</td>
<td>39, XXI</td>
</tr>
<tr>
<td>National Security Council and Office of Science and Technology Policy</td>
<td>47, II</td>
</tr>
<tr>
<td>National Telecommunications and Information Administration</td>
<td>15, XXIII; 47, III</td>
</tr>
<tr>
<td>National Transportation Safety Board</td>
<td>49, VIII</td>
</tr>
<tr>
<td>National Weather Service</td>
<td>15, IX</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Navajo and Hopi Indian Relocation, Office of</td>
<td>25, IV</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 52</td>
</tr>
<tr>
<td>Neighborhood Reinvestment Corporation</td>
<td>24, XXV</td>
</tr>
<tr>
<td>Northeast Dairy Compact Commission</td>
<td>7, XIII</td>
</tr>
<tr>
<td>Nuclear Regulatory Commission</td>
<td>5, XLVIII; 10, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 20</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Occupational Safety and Health Review Commission</td>
<td>29, XX</td>
</tr>
<tr>
<td>Offices of Independent Counsel</td>
<td>28, VI</td>
</tr>
<tr>
<td>Operations Office</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Overseas Private Investment Corporation</td>
<td>5, XXXIII; 22, VII</td>
</tr>
<tr>
<td>Panama Canal Commission</td>
<td>48, 35</td>
</tr>
<tr>
<td>Panama Canal Regulations</td>
<td>35, I</td>
</tr>
<tr>
<td>Patent and Trademark Office</td>
<td>37, 1</td>
</tr>
<tr>
<td>Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 304</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Peace Corps</td>
<td>22, III</td>
</tr>
<tr>
<td>Pennsylvania Avenue Development Corporation</td>
<td>36, 1X</td>
</tr>
<tr>
<td>Pension and Welfare Benefits Administration</td>
<td>29, XXV</td>
</tr>
<tr>
<td>Pension Benefit Guaranty Corporation</td>
<td>29, XL</td>
</tr>
<tr>
<td>Personnel Management, Office of</td>
<td>5, 1; XXXV; 45, VIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 17</td>
</tr>
<tr>
<td>Federal Employees Group Life Insurance Federal Acquisition Regulation</td>
<td>48, 21</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Federal Employees Health Benefits Acquisition Regulation</td>
<td>48, 16</td>
</tr>
<tr>
<td>Postal Rate Commission</td>
<td>5, XLVI; 39, III</td>
</tr>
<tr>
<td>Postal Service, United States</td>
<td>5, LX; 39, I</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>President’s Commission on White House Fellowships</td>
<td>1, IV</td>
</tr>
<tr>
<td>Presidential Commission on the Assignment of Women in the Armed Forces</td>
<td>32, XXIX</td>
</tr>
<tr>
<td>Presidential Documents</td>
<td>3</td>
</tr>
<tr>
<td>Presidio Trust</td>
<td>36, X</td>
</tr>
<tr>
<td>Prisons, Bureau of</td>
<td>28, V</td>
</tr>
<tr>
<td>Procurement and Property Management, Office of</td>
<td>7, XXXII</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant Secretary</td>
<td>37, IV</td>
</tr>
<tr>
<td>Public Contracts, Department of Labor</td>
<td>41, 50</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for</td>
<td>24, IX</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Railroad Retirement Board</td>
<td>20, II</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Regional Action Planning Commissions</td>
<td>13, V</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>41, 302</td>
</tr>
<tr>
<td>Research and Special Programs Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLII</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVII, XVIII, XLII</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of</td>
<td>32, XXIV</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of, and National Security Council</td>
<td>47, II</td>
</tr>
<tr>
<td>Secret Service</td>
<td>31, IV</td>
</tr>
<tr>
<td>Securities and Exchange Commission</td>
<td>17, II</td>
</tr>
<tr>
<td>Selective Service System</td>
<td>32, XVI</td>
</tr>
<tr>
<td>Small Business Administration</td>
<td>13, I</td>
</tr>
<tr>
<td>Smithsonian Institution</td>
<td>36, V</td>
</tr>
<tr>
<td>Social Security Administration</td>
<td>20, III; 48, 23</td>
</tr>
<tr>
<td>Soldiers’ and Airmen’s Home, United States</td>
<td>5, XI</td>
</tr>
<tr>
<td>Special Counsel, Office of</td>
<td>5, VIII</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of</td>
<td>34, III</td>
</tr>
<tr>
<td>State Department</td>
<td>22, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 6</td>
</tr>
<tr>
<td>Surface Mining and Reclamation Appeals, Board of</td>
<td>30, III</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Surface Transportation Board</td>
<td>49, X</td>
</tr>
<tr>
<td>Susquehanna River Basin Commission</td>
<td>18, VIII</td>
</tr>
<tr>
<td>Technology Administration</td>
<td>15, XI</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Technology, Under Secretary for</td>
<td>37, V</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>5, L, XIX; 18, XIII</td>
</tr>
<tr>
<td>Thrift Supervision Office, Department of the Treasury</td>
<td>12, V</td>
</tr>
<tr>
<td>Trade Representative, United States, Office of</td>
<td>15, XX</td>
</tr>
<tr>
<td>Transportation, Department of</td>
<td>5, L</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, I; 46, I; 49, IV</td>
</tr>
<tr>
<td>Coast Guard (Great Lakes Pilotage)</td>
<td>46, III</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>48, 63</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 12</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>34, I</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>23, I, II; 49, III</td>
</tr>
<tr>
<td>Federal Railroad Administration</td>
<td>49, II</td>
</tr>
<tr>
<td>Federal Transit Administration</td>
<td>49, VI</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, II, III; 49, V</td>
</tr>
<tr>
<td>Research and Special Programs Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Secretary of Transportation, Office of</td>
<td>14, II; 49, Subtitle A</td>
</tr>
<tr>
<td>Surface Transportation Board</td>
<td>49, X</td>
</tr>
<tr>
<td>Transportation Statistics Bureau</td>
<td>49, XI</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>Transportation Statistics Bureau</td>
<td>49, XI</td>
</tr>
<tr>
<td>Travel Allowances, Temporary Duty (TDY)</td>
<td>41, 301</td>
</tr>
<tr>
<td>Treasury Department</td>
<td>5, XXXI; 12, XV; 17, IV</td>
</tr>
<tr>
<td>Alcohol, Tobacco and Firearms, Bureau of</td>
<td>27, I</td>
</tr>
<tr>
<td>Community Development Financial Institutions Fund</td>
<td>12, XVIII</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Customs Service, United States</td>
<td>19, I</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 10</td>
</tr>
<tr>
<td>Federal Law Enforcement Training Center</td>
<td>31, VII</td>
</tr>
<tr>
<td>Fiscal Service</td>
<td>31, II</td>
</tr>
<tr>
<td>Foreign Assets Control, Office of</td>
<td>31, V</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>International Investment, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>Secret Service</td>
<td>31, IV</td>
</tr>
<tr>
<td>Secretary of the Treasury, Office of</td>
<td>31, Subtitle A</td>
</tr>
<tr>
<td>Thrift Supervision, Office of</td>
<td>12, V</td>
</tr>
<tr>
<td>Truman, Harry S. Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>United States and Canada, International Joint Commission</td>
<td>22, IV</td>
</tr>
<tr>
<td>United States and Mexico, International Boundary and Water Commission, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>Utah Reclamation Mitigation and Conservation Commission</td>
<td>43, III</td>
</tr>
<tr>
<td>Veterans Affairs Department</td>
<td>38, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 8</td>
</tr>
<tr>
<td>Veterans' Employment and Training, Office of the Assistant Secretary for</td>
<td>41, 61; 20, IX</td>
</tr>
<tr>
<td>Vice President of the United States, Office of</td>
<td>32, XXVIII</td>
</tr>
<tr>
<td>Vocational and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Wage and Hour Division</td>
<td>29, V</td>
</tr>
<tr>
<td>Water Resources Council</td>
<td>18, VI</td>
</tr>
<tr>
<td>Workers' Compensation Programs, Office of</td>
<td>20, I</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>7, XXXVIII</td>
</tr>
</tbody>
</table>
For the convenience of the user, The Office of Prevention, Pesticides and Toxic Substances, Environmental Protection Agency, has developed the following Toxic Substances CAS Number/Chemical Index, arranged in CAS Number order. This index is limited to 40 CFR Parts 700-799. Publication of this index corresponds to the information given in the CFR. For further information regarding these indices, inquiries may be made to Elizabeth N. Thomas, Federal Register Staff, Office of Prevention, Pesticides and Toxic Substances, Environmental Protection Agency (7104), 401 M St., SW., Washington, DC 20460 (202-260-9896).

EDITORIAL NOTE: This listing is provided for information purposes only.

CHEMICALS IN CAS NUMBER ORDER

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Name(s) Used in Regulations</th>
<th>40 CFR Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-29-3</td>
<td>DDT</td>
<td>721.2287</td>
</tr>
<tr>
<td>50-55-5</td>
<td>Reserpine</td>
<td>721.9470</td>
</tr>
<tr>
<td>51-28-5</td>
<td>2,4-Dinitrophenol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>51-79-6</td>
<td>Urethane</td>
<td>721.9330</td>
</tr>
<tr>
<td>54-17-8</td>
<td>m-Phenylenediamine, sulfate salt</td>
<td>799.3300</td>
</tr>
<tr>
<td>56-04-2</td>
<td>Methylthiourea</td>
<td>721.9660</td>
</tr>
<tr>
<td>56-48-5</td>
<td>3-Methylcholanthrene</td>
<td>799.9530 (e)(2)(ii)(C)(2)</td>
</tr>
<tr>
<td>56-53-1</td>
<td>Diethylstibesterol</td>
<td>721.2355</td>
</tr>
<tr>
<td>56-57-5</td>
<td>N-Ethyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide</td>
<td>799.9510 (e)(2)(ii)(C)(3)</td>
</tr>
<tr>
<td>56-81-5</td>
<td>1,2,3-Propanetriol</td>
<td>723.250</td>
</tr>
<tr>
<td>56-94-5</td>
<td>Methylcholanthrene</td>
<td>721.2092</td>
</tr>
<tr>
<td>57-55-6</td>
<td>1,2-Propanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>57-56-7</td>
<td>Hydrazine carboxamide</td>
<td>704.225(a)</td>
</tr>
<tr>
<td>60-29-7</td>
<td>Ethyl ether</td>
<td>712.30(e), 716.20(b)(3), 716.120(d), 799.5050</td>
</tr>
<tr>
<td>60-35-5</td>
<td>Acetamide (Ethanamide)</td>
<td>704.225(a)</td>
</tr>
<tr>
<td>61-82-5</td>
<td>Aminole</td>
<td>721.9660</td>
</tr>
<tr>
<td>62-50-0</td>
<td>Ethyl methanesulfate</td>
<td>721.9580</td>
</tr>
<tr>
<td>62-53-3</td>
<td>Benzenamine (Aniline)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>62-74-8</td>
<td>Acetic acid, duro-, sodium salt</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>62-75-9</td>
<td>N-Nitrosodimethylamine</td>
<td>799.9530 (e)(2)(ii)(C)(2)</td>
</tr>
<tr>
<td>62-75-9</td>
<td>N-Nitrosodimethylamine (for high levels of S-9)</td>
<td>799.9530 (e)(2)(ii)(C)(2)</td>
</tr>
<tr>
<td>65-85-0</td>
<td>Benzoic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>66-27-3</td>
<td>Methylmethanesulfonate</td>
<td>799.9530 (e)(2)(ii)(C)(2)</td>
</tr>
<tr>
<td>66-77-3</td>
<td>1-Naphthalenecarboxaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (Isopropanol)</td>
<td>716.120(a), 799.2325</td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>799.5050</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Methane, trichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>67-71-0</td>
<td>Dimethylsulfone</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>67-72-1</td>
<td>Ethane, hexachloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>70-25-7</td>
<td>N-Methyl-N-nitro-N-nitrosoguanidine</td>
<td>721.4080</td>
</tr>
<tr>
<td>70-25-7</td>
<td>N-Ethyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide</td>
<td>799.9510 (e)(2)(ii)(C)(3)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>71-36-3</td>
<td>1-Butanol</td>
<td>723.250, 799.5050</td>
</tr>
<tr>
<td>71-60-3</td>
<td>Ethane, 1,1,1-trichloro- (Methyl chloroform)</td>
<td>716.120(a), 799.4400, 799.5000</td>
</tr>
<tr>
<td>72-20-8</td>
<td>Endrin</td>
<td>704.102, 799.5055(c), (d)(2)</td>
</tr>
<tr>
<td>72-57-1</td>
<td>2,7-Naphthalenedisulfonic acid, 3,3′-[(3,3′-dimethyl-[1,1′-diphenyl]-4,4′-diylbis(azo)]bis[5-amino-4-hydroxy-], tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methane, bromo-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methane, chloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methanol</td>
<td>799.5055(c), (d)(1)</td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methane, dibromo-</td>
<td>799.5055(e), (d)(2)</td>
</tr>
<tr>
<td>74-96-4</td>
<td>Ethylene, 1,1,1-trichloro- (Methyl chloroform)</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Methane, bromochloro-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Ethene, chloro-</td>
<td>712.30(e), 716.120(a), 799.5075</td>
</tr>
<tr>
<td>75-02-5</td>
<td>Ethene, fluoro- (Vinyl fluoride)</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-05-8</td>
<td>Acetone</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>75-07-0</td>
<td>Acetylene</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methane, dichloro-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>75-12-7</td>
<td>Formamide</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon disulfide</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-21-8</td>
<td>Oxirane</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-35-4</td>
<td>Ethene, 1,1,2-tetrachloro-</td>
<td>799.5075</td>
</tr>
<tr>
<td>75-36-8</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>75-38-7</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-40-6</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>75-42-2</td>
<td>Phosphoric acid, triethyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>75-51-3</td>
<td>Ethanediene chloride</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>75-58-7</td>
<td>Ethanediene chloride</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>75-62-2</td>
<td>Ethanediene chloride</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>77-74-7</td>
<td>1,3-Cyclopentadiene</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>77-75-6</td>
<td>Dicyclopentadiene</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>77-76-1</td>
<td>Sulfuric acid, dimethyl ester (Dimethyl sulfate)</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>77-77-2</td>
<td>3-Sulfone</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>77-83-6</td>
<td>Oxiranecarboxylic acid, 3-methyl-3-phenyl- ethyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>77-85-0</td>
<td>1,3-Propanediol, 2-(hydroxymethyl)-2-methyl-</td>
<td>723.250</td>
</tr>
<tr>
<td>77-99-1</td>
<td>1,3-Propanediol, 2-ethyl-2-(hydroxyethyl)</td>
<td>723.250</td>
</tr>
<tr>
<td>78-30-8</td>
<td>Phosphoric acid, tris(2-methylphenyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>78-32-0</td>
<td>Phosphoric acid, tris(4-methylphenyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>78-33-1</td>
<td>Phenol, (4,1,1-dimethylethyl)-, phosphate (3:1)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>78-40-4</td>
<td>Phosphoric acid, triethyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>78-41-2</td>
<td>Phosphoric acid, tri(ethylhexyl) ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>78-51-3</td>
<td>Ethanediene chloride</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>78-59-1</td>
<td>2-Cyclohexene-1-one, 3,5,5-trimethyl- (Isophorone)</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>78-63-1</td>
<td>1-Propanediol, 2-(hydroxymethyl) alcohol</td>
<td>716.120(c), 799.5050</td>
</tr>
<tr>
<td>78-84-2</td>
<td>Propylene, 1,2-dichloro- (Propylene dichloride)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>78-85-3</td>
<td>2-Propanediol, 2-methyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>78-87-5</td>
<td>Propane, 1,2-dichloro- (Propylene dichloride)</td>
<td>712.30(e), 716.120(a), 799.1550</td>
</tr>
<tr>
<td>78-92-2</td>
<td>sec-Butyl alcohol</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (Methyl ethyl ketone)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>78-95-5</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>78-96-1</td>
<td>2-Propanenamide (Acrylamide)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>79-10-7</td>
<td>Acrylic acid</td>
<td>799.5000</td>
</tr>
<tr>
<td>79-20-9</td>
<td>Methyl acetate</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>79-27-6</td>
<td>Ethanediene chloride</td>
<td>704.225(a)</td>
</tr>
<tr>
<td>79-34-5</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>79-46-9</td>
<td>Ethanediene chloride</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>79-49-7</td>
<td>Tetrabromobisphenol A</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>80-04-6</td>
<td>Cyclohexanol, 4,4′-(1-methylethylidene)bis-</td>
<td>723.250</td>
</tr>
<tr>
<td>80-05-7</td>
<td>Phenol, 4,4′-(1-methylethylidene)bis-</td>
<td>716.120(a), 799.940</td>
</tr>
<tr>
<td>80-07-9</td>
<td>Sulfonfonyl bis-[4-chlorobenzene]</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>80-08-0</td>
<td>4,4′-Diaminodiphenyl sulfoxide</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>80-09-1</td>
<td>Phenol, 4,4′-sulfonylbis- (Bisphenol S)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>80-46-6</td>
<td>4-Tert-Butylphenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>80-51-3</td>
<td>p,p′-Oxybis(benzenesulfonyl)hydrazide</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>80-54-6</td>
<td>Benzene; propanal,4-(1,1-dimethyl-β)-α-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>80-62-6</td>
<td>2-Propanoic acid, 2-methyl-β, methyl ester (Methyl methacrylate)</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>81-84-5</td>
<td>Naphthalenedicarboxylic anhydride</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>84-51-5</td>
<td>2-Ethenanthraquinone</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>84-61-7</td>
<td>1,2-Benzenedicarboxylic acid, bicyclohexyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>84-64-0</td>
<td>1,2-Benzenedicarboxylic acid, butyl cyclohexyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>84-65-1</td>
<td>9,10-Anthraquinone</td>
<td>712.30(e), 716.120(a), 799.500</td>
</tr>
<tr>
<td>84-66-2</td>
<td>1,2-Benzenedicarboxylic acid, diethyl ester (Diethyl phthalate)</td>
<td>712.30(e), 716.20(b)(3), 716.120(c), (d)</td>
</tr>
<tr>
<td>84-69-5</td>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td>712.30(e), 716.120(c), 799.500</td>
</tr>
<tr>
<td>84-67-2</td>
<td>1,2-Benzenedicarboxylic acid, dicyclohexyl ester</td>
<td>712.30(e), 716.120(c), 799.500</td>
</tr>
<tr>
<td>84-74-2</td>
<td>1,2-Benzenedicarboxylic acid, dithyl ester (Di-n-hexyl phthalate)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>84-78-6</td>
<td>1,2-Benzenedicarboxylic acid, butyl octyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>84-83-3</td>
<td>Acetaldehyde, (1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>85-01-8</td>
<td>Phenanthrene</td>
<td>704.225(a)</td>
</tr>
<tr>
<td>85-22-3</td>
<td>Benzene, penta bromoethyl</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>85-23-7</td>
<td>1,2-Benzenedicarboxylic acid, butyl phenylmethyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>85-68-7</td>
<td>1,2-Benzenedicarboxylic acid, 2-ethylhexyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>85-69-8</td>
<td>1,2-Benzenedicarboxylic acid, 2-ethylhexyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>85-74-2</td>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>87-02-5</td>
<td>7-Amino-4-hydroxy-2-naphthalenesulfonic acid</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>87-10-5</td>
<td>Benzamide, 3,5-dibromo-α-(4-bromophenyl)-2-hydroxy-</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>87-61-6</td>
<td>Benzene, 1,2,3-trichloro-</td>
<td>704.225(a), 716.120(a), 799.1053</td>
</tr>
<tr>
<td>87-63-8</td>
<td>Benzenamine, 4-chloro-2-nitro-</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>87-67-3</td>
<td>1,3,Butadiene, 1,1,2,3,4,4-hexachloro-</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>87-83-2</td>
<td>Benzene, pentabromomethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>87-84-3</td>
<td>Cyclohexane, 1,2,3,4,5-pentabromo-6-chloro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>87-85-7</td>
<td>2,3-Dimethoxy-1,4-benzoquinone</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>90-02-8</td>
<td>Benzaldehyde, 2-hydroxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>90-04-0</td>
<td>o-Anisidine</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>90-13-1</td>
<td>Naphthalene, 1-chloro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>90-15-3</td>
<td>1-Naphthol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>90-17-2</td>
<td>Naphthalene, 1-choro-, 2-nitro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>92-52-4</td>
<td>1,1′-Biphenyl</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>92-66-0</td>
<td>3-Hydroxy-2-naphthoic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>92-70-6</td>
<td>3-Hydroxy-2-naphthoic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>92-84-2</td>
<td>10H-Phenothiazine</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>92-87-5</td>
<td>1,1′-Biphenyl-4,4′-diamine</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>93-00-5</td>
<td>2-Naphthalenesulfonic acid, 6-amino- (Bronner’s acid)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>93-53-8</td>
<td>Benzene; acetalddehyde, 1,1-dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>94-06-4</td>
<td>4,1′-Biphenyl</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>94-28-0</td>
<td>Triethylene glycol bis(2-ethylhexanoate)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>94-58-6</td>
<td>Dihydrosalol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>94-75-7</td>
<td>Acetic acid, (2,4-dichlorophenoxycarbonyl) (2,4-D)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>95-01-2</td>
<td>Benzaldehyde, 2,4-dihydroxy-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>95-13-6</td>
<td>Indene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>95-32-9</td>
<td>2,3-Dimethoxy-1,4-benzoquinone</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>95-35-2</td>
<td>Benzene, 1,2-dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>95-49-8</td>
<td>Benzene, 1-chloro-2-methyl- (o-Chlorotoluene)</td>
<td>712.30(e), 716.20(b)(3), 716.120(a), (d)</td>
</tr>
<tr>
<td>95-50-1</td>
<td>Benzene, 1,2-dichloro- (o-Dichlorobenzene)</td>
<td>712.30(e), 716.120(c), 799.1052</td>
</tr>
<tr>
<td>95-51-2</td>
<td>Benzenamine, 2-chloro-</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>95-54-5</td>
<td>1,2-Benzenediamine</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>95-63-6</td>
<td>Benzene, 1,2,4-trimethyl-</td>
<td>712.30(e), 716.20(b), 799.2175</td>
</tr>
<tr>
<td>95-65-8</td>
<td>5,4-Dimethylphenol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>95-69-2</td>
<td>Benzenamine, 4-chloro-2-methyl-</td>
<td>721.1025</td>
</tr>
<tr>
<td>95-70-5</td>
<td>1,4-Benzenediamine, 2-methyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>95-76-1</td>
<td>Benzenamine, 3,4-dichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>95-80-7</td>
<td>1,3-Benzenediamine, 4-methyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>95-82-9</td>
<td>Benzenamine, 2,5-dichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>95-83-0</td>
<td>1,2-Benzenediamine, 4-chloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>95-94-3</td>
<td>Benzenes, 1,2,4,5-tetrachloro-</td>
<td>716.120(a), 721.1435, 799.1054</td>
</tr>
<tr>
<td>96-13-9</td>
<td>1-Propanol, 2,3-dibromo-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>96-18-4</td>
<td>Propane, 1,2,3-trichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>96-23-1</td>
<td>1,3-Dichloropropanol</td>
<td>799.2070</td>
</tr>
<tr>
<td>96-29-7</td>
<td>2-Butanone, oxime (Methyl ethyl ketoxime)</td>
<td>716.120(a), 799.2155</td>
</tr>
<tr>
<td>96-37-7</td>
<td>Methylcyclopentane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>97-02-9</td>
<td>Benzenamine, 2,4-dinitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>97-51-8</td>
<td>Benzaldehyde, 2-hydroxy-5-nitro-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>97-63-2</td>
<td>2-Propenoic acid, 2-methyl-, ethyl ester (n-Butyl methacrylate)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>97-77-8</td>
<td>Disulfiram</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>97-88-1</td>
<td>2-Propenoic acid, 2-methyl-, butyl ester (n-Butyl methacrylate)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>97-90-5</td>
<td>Benzene, (1-methylethenyl)-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>98-01-1</td>
<td>2-Furancarboxaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>98-03-3</td>
<td>2-Thiophenecarboxaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>98-29-3</td>
<td>tert-Butylcatechol</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>98-30-6</td>
<td>2-Amino-4-(methylsulfonyl)phenol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>98-32-9</td>
<td>Benzeneacetaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>98-35-2</td>
<td>p-Nitrotoluene</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>99-05-3</td>
<td>p-Nitrochlorobenzene</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>99-10-8</td>
<td>p-Nitrochlorobenzene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-12-2</td>
<td>Benzenes, 1,2-dichloro-4-isocyanato</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-30-9</td>
<td>Benzenes, 2,6-dichloro-4-nitro-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-34-5</td>
<td>Trinitrobenzene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-41-1</td>
<td>2,4-Dichloronitrobenzene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-46-7</td>
<td>1,4-Benzenedicarboxylic acid</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-47-0</td>
<td>Benzaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-54-9</td>
<td>3-Pyridinecarbonitrile</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-63-8</td>
<td>Benzenes, 1,1'-oxybis</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-66-4</td>
<td>Octanal, 2-(phenylmethylene)-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-70-9</td>
<td>Oxirane, 2,2'-(1,3-phenylenebis(oxyethylene))bis-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-71-8</td>
<td>2-Pyridinecarboxaldehyde</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>99-72-9</td>
<td>Benzene, 1,2-dichloro-4-isocyanato</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>103-11-7</td>
<td>2-Propenoic acid, 2-ethylhexyl ester</td>
<td>799.5075</td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>799.5075</td>
</tr>
<tr>
<td>103-89-9</td>
<td>Benzene, isocyano-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>103-95-7</td>
<td>Benzene propanol, α,α,α-trimethyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>104-09-6</td>
<td>Benzenecisocyanate, 4-methyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>104-12-1</td>
<td>Benzene, 1-chloro-4-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>104-40-5</td>
<td>4-Nonylphenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>104-43-8</td>
<td>4-Dodecylphenol, 716.120(d)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>104-49-4</td>
<td>Benzene, 1,4-disiocyanato-(a)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>104-55-2</td>
<td>2-Propenal, 3-phenyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>104-76-7</td>
<td>1-Hexanol, 2-ethyl-</td>
<td>799.1645</td>
</tr>
<tr>
<td>104-87-0</td>
<td>Benzaldehyde, 4-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>104-88-1</td>
<td>Benzaldehyde, 4-chloro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>105-08-8</td>
<td>1,4-Cyclohexanedicarboxylic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>105-46-4</td>
<td>sec-Butyl acetate</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>105-60-2</td>
<td>2H-Azepin-2-one, hexahydro-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>106-40-1</td>
<td>Benzenamine, 4-bromom-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>106-44-5</td>
<td>Phenol, 4-methyl- (p-Cresol)</td>
<td>716.120(a), 799.1250</td>
</tr>
<tr>
<td>106-46-7</td>
<td>Benzene, 1,4-dichloro- (p-Dichlorobenzene)</td>
<td>712.30(e), 716.120(c), 799.1052</td>
</tr>
<tr>
<td>106-47-8</td>
<td>Benzenamine, 4-chloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>106-49-0</td>
<td>Benzene, 1,4-dichloro- (p-Toluidine)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>106-50-3</td>
<td>1,4-Benzenediamine (p-Phenylenediamine)</td>
<td>716.120(a), 799.3300</td>
</tr>
<tr>
<td>106-51-4</td>
<td>2,5-Cyclohexadiene-1,4-dione (Quinone)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>106-91-2</td>
<td>2-Propenoic acid, oxiranylmethyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>106-92-3</td>
<td>Oxirane, [(2-propenyloxy)methyl]-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>107-02-8</td>
<td>1,2-Ethanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>107-20-0</td>
<td>Acetaldehyde, chloro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>107-51-1</td>
<td>1,2-Ethanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>107-53-9</td>
<td>Tetracosamethylundecasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>107-65-0</td>
<td>Butanedioic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>107-67-8</td>
<td>Oxirane, ethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>107-69-9</td>
<td>Oxirane, chloromethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>107-70-9</td>
<td>5-Heptenal, 2,6-dimethyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>107-75-5</td>
<td>Octan-1, 7-hydroxy-3,7-dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>107-76-7</td>
<td>Methylcyclohexane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>107-77-0</td>
<td>1,3-Butadiene</td>
<td>723.250</td>
</tr>
<tr>
<td>107-88-2</td>
<td>1-Methoxy-2-propanol</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-03-2</td>
<td>1-Nitropropane</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl acrylate (Acetic acid ethyl ester)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>108-10-1</td>
<td>2-Pentanone, 4-methyl- (Methyl isobutyl ketone)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-31-6</td>
<td>2,5-Furandione (Maleic anhydride)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>108-38-3</td>
<td>Benzene, 1,3-dimethyl- (m-Xylene)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-39-4</td>
<td>Phenol, 3-methyl- (m-Cresol)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-42-9</td>
<td>Benzeneamine, 3-chloro-</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-44-1</td>
<td>m-Toluidine</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-45-2</td>
<td>1,3-Benzenediamine</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-50-1</td>
<td>Propane, 2-‘oxybis(1-chloro-</td>
<td>799.5055(c), (d)(2)</td>
</tr>
<tr>
<td>108-65-6</td>
<td>Propylene glycol monomethyl ether acetate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>108-67-8</td>
<td>Benzene, 1,3,5-trimethyl-</td>
<td>716.120(a), (b), 799.2175, 799.5075</td>
</tr>
<tr>
<td>108-70-3</td>
<td>Benzene, 1,3,5-trichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-71-4</td>
<td>1,3-Benzenediamine, 5-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-87-2</td>
<td>Methylcyclohexane</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Benzene, methyl- (Toluene)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-89-4</td>
<td>Pyridine, 4-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Benzene, chloro-</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d), 723.250</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>108-94-1</td>
<td>Cyclohexanone</td>
<td>716.120</td>
</tr>
<tr>
<td>108-95-2</td>
<td>Phenol</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>108-95-5</td>
<td>Thiophenol</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>108-96-5</td>
<td>Benzenethiol</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>109-99-6</td>
<td>Pyridine, 3-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>109-96-8</td>
<td>Pyridine, 2-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>109-66-0</td>
<td>Pentane</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>109-77-3</td>
<td>Propanenitrile</td>
<td>799.5005(c), (d)(1), (e)(1)</td>
</tr>
<tr>
<td>109-90-0</td>
<td>Ethane, isocyanato-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran</td>
<td>712.30(e), 716.20(b)(3), 716.120(d), 799.5050</td>
</tr>
<tr>
<td>110-12-3</td>
<td>Methyl isopropyl ketone</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>110-15-6</td>
<td>Butanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>110-17-8</td>
<td>2-Butanediol (E)-</td>
<td>723.250</td>
</tr>
<tr>
<td>110-40-7</td>
<td>Decanediol, diethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>110-41-8</td>
<td>Undecanal, 2-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>799.2155</td>
</tr>
<tr>
<td>110-62-3</td>
<td>Pentanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>110-63-4</td>
<td>1,4-Butanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>110-78-1</td>
<td>Propene, 1-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>110-80-5</td>
<td>2-Butoxyethanol</td>
<td>799.5050</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>799.5000</td>
</tr>
<tr>
<td>110-83-8</td>
<td>Cyclohexene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>110-86-1</td>
<td>Pyridine</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>110-94-1</td>
<td>Pentanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>110-95-5</td>
<td>Dibutyl glycol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>110-99-6</td>
<td>Acetic acid, 2,2'-oxybis-</td>
<td>723.250</td>
</tr>
<tr>
<td>111-14-8</td>
<td>Heptanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>111-16-0</td>
<td>Heptanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>111-21-7</td>
<td>Ethylene bisoxyethylenediacate (Ethanol, 2,2'-[1,2-ethanediylbis(oxy)] bis- diacetate)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>111-27-3</td>
<td>1-Hexanol</td>
<td>723.250</td>
</tr>
<tr>
<td>111-30-8</td>
<td>Pentane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>111-38-4</td>
<td>Butane, 1-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>111-40-0</td>
<td>1,2-Ethanediamine, N-(2-aminoethyl)-(Diethylketeneamine)</td>
<td>716.120(a), 799.1575</td>
</tr>
<tr>
<td>111-42-2</td>
<td>Diethylenediamine (Ethanol, 2,2'-iminobis-)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>111-46-6</td>
<td>Ethanol, 2,2'-oxybis-</td>
<td>723.250</td>
</tr>
<tr>
<td>111-71-7</td>
<td>Heptanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>111-76-2</td>
<td>Ethanol, 2-butoxy-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>111-84-2</td>
<td>Nonane</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>111-96-6</td>
<td>Diethylene glycol dimethyl ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-05-0</td>
<td>Nonanediol</td>
<td>723.250</td>
</tr>
<tr>
<td>112-15-2</td>
<td>Ethanol, 2-(2-ethoxyethoxyl), acetate ("Carbitol" acetate)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-31-2</td>
<td>Decanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-34-5</td>
<td>Diethylene glycol butyl ether (Ethanol, 2-(2-butoxyethoxyl))</td>
<td>723.250, 799.1560</td>
</tr>
<tr>
<td>112-35-6</td>
<td>Triethylene glycol monoethyl ether (Ethanol, 2-(2-methoxyethoxy)ethoxyl)</td>
<td>716.120(a), 799.4440, 799.5000</td>
</tr>
<tr>
<td>112-44-7</td>
<td>Undecanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-45-8</td>
<td>10-Undecane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-50-5</td>
<td>Triethylene glycol monoethyl ether (Ethanol, 2-(2-ethoxyethoxy)ethoxy)</td>
<td>716.120(a), 799.4440, 799.5000</td>
</tr>
<tr>
<td>112-54-9</td>
<td>Dodecanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>112-90-3</td>
<td>Oleylamine (Z-9-Octadecen-1-amine)</td>
<td>716.120(a), 799.3175</td>
</tr>
<tr>
<td>112-96-9</td>
<td>Octadecane, 1-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>115-28-6</td>
<td>Bicyclo[2.2.1]hept-5-one-2,3-dicarboxylic acid, 1,4,5,6,7,7-hexachloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>115-77-5</td>
<td>1,3-Propanediol, 2,2-bis(hydroxyethyl)-</td>
<td>723.250</td>
</tr>
<tr>
<td>115-86-6</td>
<td>Phosphoric acid, triphenyl ester</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>115-96-8</td>
<td>Ethanol, 2-chloro-, phosphate (3:1) (Tris[2-chloroethylphosphate])</td>
<td>704.225(a), 716.120(a)</td>
</tr>
<tr>
<td>116-14-3</td>
<td>Ethene, tetrafluoro-</td>
<td>716.120(c), 799.1700(a)(1)</td>
</tr>
<tr>
<td>116-15-4</td>
<td>1-Propane, 1,1,2,3,3,3-hexafluoro-</td>
<td>716.120(c), 799.1700(a)(1)</td>
</tr>
<tr>
<td>116-81-4</td>
<td>Bromamine acid</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>117-81-7</td>
<td>1,2-Benzene di carboxylic acid, bis(2-ethylhexyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>117-84-0</td>
<td>1,2-Benzene di carboxylic acid, dioctyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>118-75-2</td>
<td>2,3,5,6-Tetrahydroxy-2,5-cyclohexadiene-1,4-dione</td>
<td>721.2220</td>
</tr>
<tr>
<td>118-79-6</td>
<td>Phenol, 2,4,6-tribromo-</td>
<td>712.30(d), 716.120(a), 766.35</td>
</tr>
<tr>
<td>119-06-2</td>
<td>1,2-Benzene di carboxylic acid, didecyl ester (Didecyl phthalate)</td>
<td>716.120(c), 799.5000</td>
</tr>
<tr>
<td>119-07-3</td>
<td>1,2-Benzene di carboxylic acid, decyl ocyt ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>119-33-5</td>
<td>4-Methyl-2-nitrophenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>120-12-7</td>
<td>Anthracone</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>120-14-9</td>
<td>Benzaldehyde, 3,4-dimethoxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>120-21-8</td>
<td>Benzaldehyde, 4-(diethylamino)-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>120-57-0</td>
<td>1,3-Benzooxazole-5-carboxaldehyde</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>120-61-6</td>
<td>1,4-Benzenedicarboxylic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>120-80-9</td>
<td>Catechol</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>120-82-1</td>
<td>Benzene, 1,2,4-trichloro-</td>
<td>716.120(c), 799.1053</td>
</tr>
<tr>
<td>121-14-2</td>
<td>2,4-Dinitrotoluene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>121-32-4</td>
<td>Benzaldehyde, 3-ethoxy-4-hydroxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>121-33-5</td>
<td>Benzaldehyde, 4-hydroxy-3-methoxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>121-39-1</td>
<td>Oxiranecarboxylic acid, 3-phenyl-, ethyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>121-44-8</td>
<td>Ethanamine, N,N′-diethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>121-60-8</td>
<td>4-(Acetylamino)benzenesulfonyl chloride</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>121-69-7</td>
<td>Dimethylaniline</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>121-71-6</td>
<td>Phosphoric acid, tris(2-methylpropyl) ester</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>121-87-9</td>
<td>Benzenamine, 2-chloro-4-nitro-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>121-91-5</td>
<td>1,3-Benzenedicarboxylic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>122-39-4</td>
<td>Diphenylamine</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>122-60-1</td>
<td>Oxirane, (phenoxymethyl)-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>122-66-7</td>
<td>Hydrazine, 1,2-diphenyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>122-78-1</td>
<td>Benzeneacetaldehyde</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>122-99-6</td>
<td>2-Phenyloxethanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-08-0</td>
<td>Benzaldehyde, 4-hydroxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-11-5</td>
<td>Benzaldehyde, 4-methoxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-25-1</td>
<td>Butanedioic acid, diethyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-31-9</td>
<td>Maleic hydratide</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-38-6</td>
<td>Propanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-42-2</td>
<td>Diaceton alcohol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>123-54-6</td>
<td>2,4-Paratoluene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>123-61-5</td>
<td>Benzene, 1,3-diisocyanato-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>123-62-6</td>
<td>Propanoic anhydride</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>123-86-4</td>
<td>n-Butyl acetate</td>
<td>799.5000, 799.5050</td>
</tr>
<tr>
<td>123-92-2</td>
<td>Isocyanate</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>123-99-9</td>
<td>Nonanedioic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>124-04-9</td>
<td>Hexanedioc acid</td>
<td>723.250</td>
</tr>
<tr>
<td>124-12-0</td>
<td>Octanal</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>124-17-4</td>
<td>2-(2-Butoxyethoxy)ethyl acetate</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>124-19-6</td>
<td>Nonanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Methane, dibromochloro-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>126-15-8</td>
<td>1,5a,6,9,9a,9b-hexahydro-1,3-dibenzofurancarboxaldehyde, 1,5a,6,9,9a,9b-hexahydro-1,3-dibenzofurancarboxaldehyde</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>126-30-7</td>
<td>1,3-Propanediol, 2,2-dimethyl-</td>
<td>723.250</td>
</tr>
<tr>
<td>126-33-0</td>
<td>Sulfolane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>126-72-7</td>
<td>Tris(2,3-dibromopropyl) phosphate</td>
<td>704.205, 721.6000</td>
</tr>
<tr>
<td>126-79-8</td>
<td>Phosphoric acid, tributyl ester</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>126-80-7</td>
<td>Disiloxane, 1,1,3,3-tetramethyldisiloxane, 1,3-bis[(3-oxiranylmethoxy)propyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>126-98-1</td>
<td>Nonanedioic acid, diethyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Ethene, tetrachloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>127-19-5</td>
<td>Dimethyl acetamide</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>127-63-9</td>
<td>Diphenylsulfone</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>128-39-2</td>
<td>2,6-Dinitrobenzyl phenol</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>128-86-9</td>
<td>2,6-Anthracenecarboxylic acid, 4,8-diamino-9,10-dihydro-1,5-dihydroxy-9,10-dioxo-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>129-00-0</td>
<td>Pyrene</td>
<td>716.120(a), 704.225(a)</td>
</tr>
<tr>
<td>130-54-9</td>
<td>1,2-Benzenedicarboxylic acid, dimethyl ester (Dimethyl phthalate)</td>
<td>716.120(c), 799.5000</td>
</tr>
<tr>
<td>130-57-3</td>
<td>1,2-Benzenedicarboxylic acid, bis(1-methylethyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>130-60-9</td>
<td>Benzaldehyde, 5-methoxy-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>131-03-1</td>
<td>Propenononic acid, 2-cyano-, methyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>131-07-0</td>
<td>Phenol, 2,4-diamino-, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>131-08-8</td>
<td>M-Nonyl-N-nonylsulfonic acid, sodium salt</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>139-25-3</td>
<td>Benzene, 1,1’-methylenebis[4-isocyanato-3-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>140-66-9</td>
<td>Phenol, 4-(1,3,3-trimethylbutyl)-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>140-88-5</td>
<td>2-Propenoic acid, ethyl ester</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>141-27-5</td>
<td>2,6-Octadienal, 3,7-dimethyl, (E)-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>141-28-6</td>
<td>Hexanedioic acid, diethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>141-62-8</td>
<td>Decamethyltetrasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>141-63-9</td>
<td>Dodecamethylpentasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>141-76-6</td>
<td>Ethyl acetate</td>
<td>799.5050</td>
</tr>
<tr>
<td>141-78-7</td>
<td>Mesityl oxide</td>
<td>716.120(a), 799.2500, 799.5000</td>
</tr>
<tr>
<td>141-85-5</td>
<td>Benzenamine, 3-chloro-, hydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>142-16-5</td>
<td>Bis(2-ethylhexyl)-2-butenediocarbonate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>142-62-1</td>
<td>Hexanoic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>142-82-5</td>
<td>Heptane (n-Heptane)</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>142-84-7</td>
<td>1-Propanamine, N-propyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>143-07-7</td>
<td>Dodecanic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>143-14-6</td>
<td>9-Undecenal</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>143-22-6</td>
<td>Triethylenglycol monobutyl ether (Ethanol, 2-[2-(2-butoxymethyl)ethoxy]-)</td>
<td>716.120(a), 799.5000</td>
</tr>
<tr>
<td>143-33-9</td>
<td>Sodium cyanide</td>
<td>712.30(d), 799.5000</td>
</tr>
<tr>
<td>144-19-4</td>
<td>1,3-Pentanediol, 2,2,4-trimethyl-</td>
<td>723.250</td>
</tr>
<tr>
<td>147-82-0</td>
<td>Benzenamine, 2,4,6-tri-bromo-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>149-30-4</td>
<td>Mercaptobenzothiazole</td>
<td>716.120(a), 799.2475</td>
</tr>
<tr>
<td>149-57-5</td>
<td>Hexanoic acid, 2-ethyl-</td>
<td>716.120(a), 799.1650</td>
</tr>
<tr>
<td>150-76-5</td>
<td>p-Methoxyphenol</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>287-92-3</td>
<td>Cyclopentane</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>298-07-7</td>
<td>Phosphoric acid, bis(2-ethylhexyl) ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>306-83-2</td>
<td>Ethane, 2,2-dichloro-1,1,1-trifluoro-</td>
<td>716.120</td>
</tr>
<tr>
<td>311-89-7</td>
<td>Perfluorotributylamine</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>328-84-7</td>
<td>Benzene, 1,2-dichloro-4-(trifluoromethyl)-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>329-01-1</td>
<td>Benzene, 1-isocyanato-3-(trifluoromethyl)-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>353-50-4</td>
<td>Carbon oxyfluoride</td>
<td>721.2084</td>
</tr>
<tr>
<td>354-21-2</td>
<td>Ethane, 1,2,2-trichloro-difluoro-</td>
<td>721.3248</td>
</tr>
<tr>
<td>354-33-6</td>
<td>Ethene, pentafluoro-</td>
<td>712.120, 721.3240</td>
</tr>
<tr>
<td>355-42-0</td>
<td>Perfluoro-n-hexane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>359-11-5</td>
<td>Ethene, trifluoro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>428-25-8</td>
<td>Hapalylk epoxide</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>428-59-1</td>
<td>Oxirane, trifluoromethyl-</td>
<td>704.102, 716.120(a), 721.4160</td>
</tr>
<tr>
<td>455-19-6</td>
<td>Benzaldehyde, 4-(trifluoromethyl)-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>472-41-3</td>
<td>Phenol, 4-(3,4-dihydro-2,2,4-trimethyl-2H-1-benzopyran-4-yl)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>496-72-0</td>
<td>1,2-Benzenediamine, 4-methyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>505-48-6</td>
<td>Octanedioic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>505-57-7</td>
<td>2-Hexenal</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>526-73-8</td>
<td>Benzene, 1,2,3-trimethyl-</td>
<td>712.120(a), 799.2175</td>
</tr>
<tr>
<td>528-29-0</td>
<td>p-Dinitrobenzene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>528-44-9</td>
<td>1,2,4-Benzinetriacarbonylic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>531-85-1</td>
<td>[1,1′-Biphenyl]-4,4′-diamine, dihydrochloride</td>
<td>712.1660</td>
</tr>
<tr>
<td>532-27-4</td>
<td>a-Chloracetophenone</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>540-59-0</td>
<td>1,2-Dichloroethylene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>540-88-5</td>
<td>tet-Butyl acetate</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>540-97-6</td>
<td>Dodecamethylcyclohexasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>541-01-5</td>
<td>Hexadecamethylcyclopentasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>541-02-6</td>
<td>Decamethylcyclopentasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>541-05-9</td>
<td>Hexamethylcyclotrisiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>541-69-5</td>
<td>1,3-Benzenediamine, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>541-70-8</td>
<td>1,3-Benzenediamine, sulfate (1:1)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>541-71-1</td>
<td>Benzene, 1,3-dichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>542-75-6</td>
<td>1-Propene, 1,3-dichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>542-92-7</td>
<td>Cyclopentadiene</td>
<td>712.30(e), 716.20(b)(3) and (b)(4), 716.120(d)</td>
</tr>
<tr>
<td>546-56-5</td>
<td>Octaphenylcyclotetrasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>552-89-6</td>
<td>Benzaldehyde, 2-nitro-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>554-00-7</td>
<td>Benzenamine, 2,4-dichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>556-52-5</td>
<td>Oxiranemethanol (Glycidol)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>556-67-2</td>
<td>Octamethylcyclotetrasiloxane</td>
<td>712.30(e), 716.120(a), (c), 799.5000</td>
</tr>
<tr>
<td>556-68-3</td>
<td>Hexadecamethylcyclooctasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>556-69-4</td>
<td>Octadecamethylcyclotetrasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>556-70-7</td>
<td>Docosamethyldecasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>556-71-8</td>
<td>Octadecamethylcyclononasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>558-30-5</td>
<td>Oxirane, 2,2-dimethyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>563-04-2</td>
<td>Phosphoric acid, trio(3-methylphenyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>563-41-7</td>
<td>Semicarbazide hydrochloride (Hydrazinecarboxamide monohydrochloride)</td>
<td>704.225(a)</td>
</tr>
<tr>
<td>563-54-2</td>
<td>1-Propene, 1,2-dichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1-Propene, 1,1-dichloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>573-58-0</td>
<td>1-Naphthalenesulfonic acid, 3,3'-[[1,1'-biphenyl]-4,4'-diylbis(azo)]bis[4-amino-, disodium salt]</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>580-51-8</td>
<td>[1,1'-Biphenyl]-3-ol</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>584-84-9</td>
<td>Benzene, 2,4-disiocyanato-1-methyl-</td>
<td>704.225(a), 716.120(a)</td>
</tr>
<tr>
<td>585-07-9</td>
<td>2-Propenionic acid, 2-methyl-, 1,1-dimethylethyl ester</td>
<td>721.8500</td>
</tr>
<tr>
<td>590-86-3</td>
<td>Butanil, 3-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>591-78-6</td>
<td>Methyl n-butyl ketone (2-Hexanone)</td>
<td>721.4925</td>
</tr>
<tr>
<td>593-60-2</td>
<td>Ethene, bromo-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>594-42-3</td>
<td>Methanesulfenyl chloride, trichloro-</td>
<td>712.30(e), 799.5055(c), (d)(1), (2), (e)(1)</td>
</tr>
<tr>
<td>597-31-9</td>
<td>Propanal, 3-hydroxy-2,2-dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>607-57-8</td>
<td>2-Nitrofluorene</td>
<td>799.9510 (e)(2)(ii)(C)(2)</td>
</tr>
<tr>
<td>611-14-3</td>
<td>Benzene, 1-ethyl-2-methyl- (o-Ethyltoluene)</td>
<td>716.120(b)</td>
</tr>
<tr>
<td>613-13-8</td>
<td>2-Aminanthracene</td>
<td>799.9510 (e)(2)(ii)(C)(2)(i)</td>
</tr>
<tr>
<td>614-68-6</td>
<td>Benzene, 1-isocyanato-2-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>614-94-8</td>
<td>1,3-Benzenediamine, 4-methoxy-, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-05-4</td>
<td>1,3-Benzenediamine, 4-methoxy-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-28-1</td>
<td>1,2-Benzenediamine dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-45-2</td>
<td>1,4-Benzenediamine, 2-methyl-, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-46-3</td>
<td>1,4-Benzenediamine, 2-chloro-, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-50-9</td>
<td>1,4-Benzenediamine, 2-methyl-, sulfate (1:1)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>615-52-9</td>
<td>N-Nitroso-N-methylurethane</td>
<td>721.9957</td>
</tr>
<tr>
<td>615-58-7</td>
<td>Phenol, 2,4-dibromo-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>616-21-7</td>
<td>1,2-Dichlorobutane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>620-14-4</td>
<td>m-Ethyltoluene (Benzene, 1-ethyl-3-methyl-)</td>
<td>716.120(a),(b), 716.1203</td>
</tr>
<tr>
<td>622-58-2</td>
<td>Benzene, 1-isocyanato-4-methyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>622-86-6</td>
<td>Benzene, 2-(chloroethoxy)-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>622-96-6</td>
<td>1,3-Dicyanobenzene (m-Phthalodinitrile)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>626-43-7</td>
<td>Benzenamine, 3,5-dichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>627-93-0</td>
<td>Hexanedioic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>628-63-7</td>
<td>n-Amyl acetate</td>
<td>712.30(e), 716.20(b)(3), 716.120(d), 799.5050</td>
</tr>
<tr>
<td>632-79-1</td>
<td>Tetrabromophthalic anhydride</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>634-66-2</td>
<td>Benzene, 1,2,3,4-tetrachloro-</td>
<td>716.120(c), 721.1435</td>
</tr>
<tr>
<td>634-90-2</td>
<td>Benzene, 1,2,3,5-tetrachloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>635-90-9</td>
<td>1,4-Benzenediacarbonylic acid, diethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>637-92-3</td>
<td>Ethyl tert-butyl ether</td>
<td>712.30(d), 716.120(a)</td>
</tr>
<tr>
<td>640-19-7</td>
<td>Acetamide, 2-fluoro-</td>
<td>799.5055(c), (e)(1)</td>
</tr>
<tr>
<td>646-06-0</td>
<td>1,3-Dioxolane</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>677-21-4</td>
<td>1-Propene, 3,3,3-trifluoro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>680-31-9</td>
<td>Hexamethylenephosphoramide</td>
<td>721.4180</td>
</tr>
<tr>
<td>685-91-6</td>
<td>Acetamide, N,N-dimethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>693-23-2</td>
<td>Dodecanedioic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>693-38-9</td>
<td>Hexadecanoic acid, ethyl ester</td>
<td>721.4158</td>
</tr>
<tr>
<td>762-27-1</td>
<td>Acetamide, 2-fluoro-</td>
<td>799.5055(c), (e)(1)</td>
</tr>
<tr>
<td>762-33-4</td>
<td>Benzene, 1-ethyl-2-methyl- (o-Ethyltoluene)</td>
<td>716.120(b)</td>
</tr>
<tr>
<td>763-79-1</td>
<td>Benzene, 1,2,3,4-tetrachloro-</td>
<td>716.120(c), 721.1435</td>
</tr>
<tr>
<td>764-90-2</td>
<td>Benzene, 1,2,3,5-tetrachloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>765-93-5</td>
<td>Benzene, 2,4,6-trichloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>765-97-3</td>
<td>Benzene, 4-chloro-3-nitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>766-09-9</td>
<td>1,4-Benzenediacarbonylic acid, diethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>767-21-4</td>
<td>1-Propene, 3,3,3-trifluoro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>768-31-9</td>
<td>Hexamethylenephosphoramide</td>
<td>721.4180</td>
</tr>
<tr>
<td>765-91-6</td>
<td>Acetamide, N,N-dimethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>790-23-3</td>
<td>Oxirane, ethenyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>790-39-0</td>
<td>Oxirane, ethenyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>790-87-0</td>
<td>Nitrosopyrrolidine</td>
<td>721.9000</td>
</tr>
<tr>
<td>791-35-1</td>
<td>1H-Iminazolo, 2-ethyl-4,5-dihydro-4-methyl-</td>
<td>721.4468</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>939-97-9</td>
<td>Benzaldehyde, 4-(1,1-dimethylethyl)- (p-tert-butylbenzaldehyde (p-TBB))</td>
<td>704.33, 712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>949-13-3</td>
<td>2-Octylphenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>992-59-6</td>
<td>1-Naphthalenesulfonic acid, 3,3′-[[3,3′-dimethyl [1,1′-biphenyl]-4,4′-diyl][bis[az]]bis[4-amino-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>994-13-3</td>
<td>2-Octylphenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>1000-80-4</td>
<td>Methylglyoxal (Hydroxymethyl urea)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1047-16-1</td>
<td>Quinazolone</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1069-55-2</td>
<td>2-Propenoic acid, 2-cyano-, isobutyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>1111-78-0</td>
<td>Ammonium carbamate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1116-54-7</td>
<td>N-Nitrosodiethanolamine</td>
<td>721.9928</td>
</tr>
<tr>
<td>1121-60-4</td>
<td>2-Pyridinecarboxaldehyde</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>1130-78-5</td>
<td>Urea, (hexahydro-6-methyl-2-oxo-4-pyrimidinyl)-</td>
<td>721.3350</td>
</tr>
<tr>
<td>1131-92-6</td>
<td>2-Propenal, 3-phenyl-,monopentyl derivative</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>1133-41-1</td>
<td>Pyridine, methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1133-83-0</td>
<td>Chromium trioxide</td>
<td>749.68</td>
</tr>
<tr>
<td>1134-78-7</td>
<td>Benzaldehyde, 4-buty-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1200-14-2</td>
<td>Benzaldehyde, 4-butyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1241-94-7</td>
<td>Phosphoric acid, 2-ethylhexyl diphenyl ester</td>
<td>712.30(e), 716.120(c)</td>
</tr>
<tr>
<td>1299-05-8</td>
<td>tert-Amyl methyl ether</td>
<td>712.30(d), 716.120(a), 799.5000</td>
</tr>
<tr>
<td>1429-02-6</td>
<td>Urea, (hexahydro-6-methyl-2-oxo-4-pyrimidinyl)-</td>
<td>721.9920</td>
</tr>
<tr>
<td>1459-93-4</td>
<td>1,3-Benzenedicarboxylic acid, dimethyl ester</td>
<td>721.6175</td>
</tr>
<tr>
<td>1464-53-5</td>
<td>2,2'-Bisoxirane</td>
<td>723.250</td>
</tr>
<tr>
<td>1476-23-9</td>
<td>Propene, 3-isocyano-</td>
<td>723.250</td>
</tr>
<tr>
<td>1489-51-7</td>
<td>Phosphoro dichloridic acid, ethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1504-74-1</td>
<td>1,2-Propanal, 3-[(2-methoxyphenyl)</td>
<td>723.250</td>
</tr>
<tr>
<td>1511-62-2</td>
<td>Methane, bromodifluoro-</td>
<td>723.250</td>
</tr>
<tr>
<td>1512-10-5</td>
<td>Phosphoric acid, mono(2-methoxyphenyl)</td>
<td>723.250</td>
</tr>
<tr>
<td>1513-09-5</td>
<td>Phosphoric acid, mono(1-methylethyl)</td>
<td>723.250</td>
</tr>
<tr>
<td>1543-04-4</td>
<td>Ammonium trioxide</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1572-87-7</td>
<td>Benzaldehyde, methyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1573-81-7</td>
<td>Naphthalene, hexachloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>1575-88-2</td>
<td>Naphthalene, tetrachloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1638-22-8</td>
<td>4-n-Butylphenol</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1675-54-3</td>
<td>Oxirane, 2,2′-[(1,1-dimethylethylidene)bis[4,1-phenyleneoxymethylen</td>
<td>716.120(c), 799.5000</td>
</tr>
<tr>
<td>1732-08-2</td>
<td>Octanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1732-10-1</td>
<td>Nonanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1732-10-1</td>
<td>Nonanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1717-00-6</td>
<td>Ethanone, 1,1-dichloro-1-fluoro-</td>
<td>723.250</td>
</tr>
<tr>
<td>1723-08-7</td>
<td>Heptanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1732-09-8</td>
<td>Octanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1732-09-8</td>
<td>Octanedic acid, dimethyl ester</td>
<td>723.250</td>
</tr>
<tr>
<td>1782-04-6</td>
<td>Undecanedic acid</td>
<td>723.250</td>
</tr>
<tr>
<td>1817-73-8</td>
<td>Benzaldehyde, 2-bromo-4,6-dinitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>1937-37-7</td>
<td>2,7-Naphthalenedisulfonic acid, 4-amino-3-[[2,4-diaminophenyl][aza][1,1′-biphenyl]-4-yl][aza][5-hydroxy-6-(phenylazo)]- disodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>2050-69-3</td>
<td>Naphthalene, 1,2-dichloro-</td>
<td>704.83, 716.120(a)</td>
</tr>
<tr>
<td>2050-72-8</td>
<td>Naphthalene, 1,6-dichloro-</td>
<td>704.83, 716.120(a)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>Toxic Substances CAS Number-Chemical Index</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2610-05-1</td>
<td>2,7-Naphthalenedisulfonylic acid, 3,3′-[3,3′-dimethyl[1,1′-biphenyl]-4,4′-diy[bis(azo)]bis[4,5-dihydroxy]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2613-42-0</td>
<td>1-Propanediol, 2-methyl</td>
<td>723.250</td>
</tr>
<tr>
<td>2190-75-6</td>
<td>Naphthalene, 1,3-dichloro</td>
<td>704.83, 716.120(a)</td>
</tr>
<tr>
<td>2190-77-8</td>
<td>Naphthalene, 2,7-dichloro</td>
<td>704.83, 716.120(a)</td>
</tr>
<tr>
<td>2210-79-9</td>
<td>Oxirane, [2-methylphenoxymethyl]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2224-15-9</td>
<td>Oxirane, [2,2′-ethanediylbis(oxy)]benzylethylene]bis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2234-13-1</td>
<td>Naphthalene, octachloro-</td>
<td>704.83, 716.120(a)</td>
</tr>
<tr>
<td>2238-07-5</td>
<td>Oxirane, 2,2′-oxybis(methylene)bis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2302-97-8</td>
<td>1-Naphthalenesulfonic acid, 8,8′-[1,1′-biphenyl]-4,4′-diy[azo][azo][7-hydroxy]-, disodium salt</td>
<td>721.1660</td>
</tr>
<tr>
<td>2315-66-4</td>
<td>Decahydrone glycol 4-isooctylphenyl ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2369-80-1</td>
<td>Hydrazine, [2-fluorophenyl]</td>
<td>721.4257</td>
</tr>
<tr>
<td>2370-88-9</td>
<td>Tetramethylcyclotetrasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2389-22-9</td>
<td>2,6-Diamino-3-[3,3′-dimethyl[1,1′-biphenyl]-4,4′-diy[azo][azo][7-hydroxy]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2404-44-6</td>
<td>Oxirane, octyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2422-27-4</td>
<td>2-Propanenyl acid, 2-hydroxybutyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2425-01-6</td>
<td>Oxirane, [2,2′-oxybis(methylene)]benzylethylene]bis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2425-79-8</td>
<td>Oxirane, [2,2′-butanediylbis(oxy)]benzylethylene]bis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2426-08-6</td>
<td>Oxirane, butoxymethyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-71-2</td>
<td>1-Naphthalenesulfonic acid, 3,3′-[3,3′-dimethyl][1,1′-biphenyl]-4,4′-diy[azo][azo][7-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-72-5</td>
<td>2,7-Naphthalenedisulfonylic acid, 5-amino-3-[4-[7-amino-1-hydroxy-3-sulfo-2-naphthalenyl][azo][1,1′-biphenyl]-4-yl][azo][4-hydroxy]-, tetrasodium salt</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2429-73-4</td>
<td>2,7-Naphthalenedisulfonylic acid, 5-amino-3-[4-[7-amino-1-hydroxy-3-sulfo-2-naphthalenyl][azo][1,1′-biphenyl]-4-yl][azo][4-hydroxy]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-79-0</td>
<td>Benzoic acid, 5-[4-[4-[1-amino-4-sulfo-2-naphthalenyl][azo][1,1′-biphenyl]-4-yl][azo][2-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-81-4</td>
<td>Benzoic acid, 5-[4-[2,6-diamino-3-[8-hydroxy-3,6-disulfo-7-[4-sulfo-1-naphthaleny][azo][2-2-naphthalenyl][azo][5-methylphenyl][azo]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-82-5</td>
<td>Benzoic acid, 5-[4-[(7-amino-1-hydroxy-3-sulfo-2-naphthalenyl)[azo][1,1′-biphenyl]-4-yl][azo][2-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-83-6</td>
<td>Benzoic acid, 5-amino-3-[4-[7-amino-1-hydroxy-3-sulfo-2-naphthalenyl][azo][1,1′-biphenyl]-4-yl][azo][5-hydroxy-6-phenylazo]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2429-84-7</td>
<td>Benzoic acid, 5-[4-[(7-amino-1-hydroxy-6-sulfo-1-naphthalenyl)[azo][1,1′-biphenyl]-4-yl][azo][2-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2432-99-7</td>
<td>11-Aminoundecanecarboxylic acid</td>
<td>704.25, 721.650</td>
</tr>
<tr>
<td>2461-15-6</td>
<td>Oxirane, [[2-ethylhexyl]oxymethylene]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2461-18-9</td>
<td>Oxirane, [dodecylcarboxylic acid]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2471-08-1</td>
<td>Hexacosamethyloleic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2471-09-2</td>
<td>Octacosamethyloleic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2471-10-5</td>
<td>Tetracontamethyloleic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2471-11-6</td>
<td>Ditetracontamethyloleic acid</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2493-02-9</td>
<td>Benzene, 1-bromom-4-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2497-58-7</td>
<td>Hexahydrone glycol 4-isocyanophenyl ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2509-36-1</td>
<td>Phosphonic acid, dibutyl phenyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2530-83-8</td>
<td>Silane, trimethyl[3-(oxiranemethoxy)propyl]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2536-05-2</td>
<td>Benzene, 1,1′-methylenebis[2-isocyanatobiphenyl]</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>2554-06-5</td>
<td>Methylvinylcyclopropane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2556-36-7</td>
<td>Cyclohexas, 1,4-diisocyanatobiphenyl</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>2580-77-0</td>
<td>2,2′-Sulfonyl bisbenzenthio</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>2586-57-4</td>
<td>1,3-Naphthalenedisulfonylic acid, 4-amino-5-hydroxy-6-[4-[2-hydroxy-1-naphthalenyl][azo][3,3′-dimethyl[1,1′-biphenyl]-4-yl][azo][7-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2586-58-5</td>
<td>Benzoic acid, 5-[4-[2,6-diamino-3-methyl-5-sulfo-phenylazo][azo][1,1′-biphenyl]-4-yl][azo][7-hydroxy]-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2591-86-8</td>
<td>1-Pipendinecarboxaldehyde</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2602-46-2</td>
<td>2,7-Naphthalenedisulfonylic acid, 3,3′-[1,1′-biphenyl]-4,4′-diy[azo][azo][5-amino-4-hydroxy]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2610-05-1</td>
<td>1,3-Naphthalenedisulfonylic acid, 6,6′-[3,3′-dimethyl[1,1′-biphenyl]-4,4′-diy[azo][azo][4-amino-5-hydroxy]-, tetrasodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2615-25-0</td>
<td>trans-1,4-Cyclohexanediamine</td>
<td>721.2250</td>
</tr>
<tr>
<td>2637-95-4</td>
<td>Tetramethyldivinyldisiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2652-13-3</td>
<td>Eicosamethylnonasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2687-25-4</td>
<td>1,2-Benzenediamine, 3-methyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2716-10-1</td>
<td>Benzenamine, 4,4'-(1,4-phenylene(1-methylethylidene))bis(2,6-dimethyl)-</td>
<td>721.1120</td>
</tr>
<tr>
<td>2716-12-3</td>
<td>Benzenediamine, 4,4'-(1,3-phenylene(1-methylethyliden)(bis(2,6-dimethyl)-</td>
<td>721.805</td>
</tr>
<tr>
<td>2778-42-9</td>
<td>Ethene, 2-chloro-1,1,1,2-tetrafluoro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>2837-89-0</td>
<td>Ethane, 2-chloro-1,1,1,2-tetrafluoro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2855-19-8</td>
<td>Oxirane, decyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2873-89-0</td>
<td>Oxirane, 2,2,2-trichloroethyl-</td>
<td>716.120(c), 721.2725</td>
</tr>
<tr>
<td>2893-80-3</td>
<td>Benzoic acid, 5-[[4'-[[4-[[2,4-dihydroxy-3-[[4-sulfophenyl]]azo][azo][1,1'-biphenyl][4-yl][azo]]-2-hydroxy-</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>2897-60-1</td>
<td>Silane, diethoxymethyl[3-(oxiranylmethoxy)propyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>2909-38-8</td>
<td>Benzene, 1-chloro-3-isocyanato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2949-22-6</td>
<td>Acetic acid, isocyanato-, ethyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>2958-09-0</td>
<td>Phosphoric acid, monooctadecyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3061-36-7</td>
<td>1,4-Diphenoxybenzene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>3083-25-8</td>
<td>Oxirane, (2,3-dimethyl)-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>3097-60-1</td>
<td>Silane, diethoxymethyl[[3-(oxiranylmethoxy)propyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>3101-60-8</td>
<td>Oxirane, [4-(1,1-dimethylethyl)phenoxy]methyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>3132-64-7</td>
<td>Oxirane, bromomethyl- (Epibromohydrin)</td>
<td>716.120(c), 721.2600</td>
</tr>
<tr>
<td>3132-99-8</td>
<td>Benzaldehyde, 3-bromo-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3165-93-3</td>
<td>Benzenamine, 4-chloro-2-methyl-, hydrochloride</td>
<td>721.1025</td>
</tr>
<tr>
<td>3173-53-3</td>
<td>Cyclohexane, isocyanato-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>1,2,4-Benzenetricarboxylic acid, tris(2-ethylhexyl)ester [Tris(2-ethylhexyl) trimellitate]</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>3322-93-8</td>
<td>Cyclohexane, 1,2-dibromo-4-(1,2-dibromoethyl)-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>3389-71-7</td>
<td>1,2,3,4,7,7-Hexachloronorbornadiene</td>
<td>704.102, 716.120(a), 721.4140</td>
</tr>
<tr>
<td>3530-19-6</td>
<td>1,3-Naphthalenedisulfonic acid, 8-[[4'-[[4-ethoxyphenyl]azo][1,1'-biphenyl][4-yl][azo]]-7-hydroxy-, disodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>3551-19-9</td>
<td>Benzenamine, 2-chloro-4,6-dinitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>3567-65-5</td>
<td>1,3-Naphthalenedisulfonic acid, 7-hydroxy-8-[[4'-[[4-methylphenyl]sulfonfyl]oxy]phenyl][azo][1,1'-biphenyl][4-yl][azo]-7-hydroxy-, disodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>3586-14-9</td>
<td>Benzene, 1-methyl-3-phenoxo-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3613-30-7</td>
<td>Octan-7-methoxy-3,7-dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3618-72-2</td>
<td>Acetamide,N-[5-[bis[2-(acetyloxy)ethy]lamino]-2-(2-bromo-4,6-dinitrophenyl) [azo]-4-methoxyphenyl]- (C.I. Disperse Blue, 79:1)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>3626-25-6</td>
<td>N-Acetamide,N-[5-[bis[2-(acetyloxy)ethyl]amino]-2-[2-chloro-4,6-dinitrophenyl][azo]-4-methoxyphenyl]-</td>
<td>799.9500</td>
</tr>
<tr>
<td>3663-23-8</td>
<td>1,2-Benzenediamine, 4-buty-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>3688-53-7</td>
<td>Furfuryluracil (AF-2)</td>
<td>799.9510 (e)(2)(ii)(C)(3)</td>
</tr>
<tr>
<td>3811-71-0</td>
<td>Benzoic acid, 5-[[4'-[[2,4-diamino-5-[[4-sulfophenyl]]azo][azo][1,1'-biphenyl][4-yl][azo]]-2-hydroxy-, disodium salt</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>3884-95-5</td>
<td>2-(1,1,3,3-Tetramethyldibutyl)phenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3900-54-7</td>
<td>Phosphoric acid, monooctyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>3956-55-6</td>
<td>Acetamide, N-[5-[bis[2-(acetyloxy)ethyl]amino]-2-[2-bromo-4,6-dinitrophenyl] [azo]-4-ethoxyphenyl]-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>3984-22-3</td>
<td>1,3-Dioxolane, 2-ethyl-</td>
<td>721.2485</td>
</tr>
<tr>
<td>3991-73-9</td>
<td>Phosphoric acid, monooctyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>4016-14-2</td>
<td>Oxirane, [1-(methylthio)ethoxymethyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>4035-89-6</td>
<td>Imidodicarbonic diamide, N,N'-2-[(1-isocyanoanatothethyl]-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>4099-71-9</td>
<td>Cyclohexane, 5-isocyanato-1-(isocyananatomethyl)-1,3,3-trimethyl-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>4151-51-3</td>
<td>Phenol, 4-isocyanato-, phosphorothioate (3:1) (ester)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>Toxic Substances CAS Number-Chemical Index</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4162-45-2</td>
<td>Ethanol, 2,2’-[1-methylthylidene]bis[2,6-dibromo-4,1-phenyleneoxy]bis-</td>
<td>712.30(e), 766.25, 766.35(a)(2)</td>
</tr>
<tr>
<td>4170-30-3</td>
<td>2-Butenal (Crotonaldehyde)</td>
<td>799.5000</td>
</tr>
<tr>
<td>4335-09-5</td>
<td>2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-6-[4’-(4-hydroxyphenyl)azo]-, 1,1’-biphenyl]-4-yl[azo]-3-[4-(nitrophenyl)azo]-, dihydrochloride</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>4501-58-0</td>
<td>3-Cyclopentene-1-acetaldehyde, 2,2,3-trimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>4675-54-3</td>
<td>Bisphenol A diglycidyl ether (DGEBA)</td>
<td>799.5000</td>
</tr>
<tr>
<td>5028-74-4</td>
<td>Oxiranemethanamine, N-[4-((oxiranylmethoxy)phenyl)-N-(oxiranylmethyl)-</td>
<td>716.120</td>
</tr>
<tr>
<td>5024-55-7</td>
<td>1,3-Benzenediamine, 5-nitro-</td>
<td>716.120</td>
</tr>
<tr>
<td>5124-30-1</td>
<td>Cyclohexane, 1,1'-methylenebis[4-isocyanato-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>5131-58-8</td>
<td>1,3-Benzenediamine, 4-nitro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>5131-60-2</td>
<td>1,3-Benzenediamine, 4-chloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5216-25-1</td>
<td>Benzene, 1-chloro-4-(trichloromethyl)-</td>
<td>799.5055(c), (e)(1)</td>
</tr>
<tr>
<td>5246-57-1</td>
<td>2-[3-Amino[phenyl)sulfanyl]ethanol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>5255-76-4</td>
<td>Oxirane, [4-(oxiranylmethylene)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5307-02-8</td>
<td>1,4-Benzenediamine, 2-methoxy- (p-Diaminoanisole)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5307-14-2</td>
<td>1,4-Benzenediamine, 2-nitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5384-21-4</td>
<td>Phenol, 4,4'-methylenebis(3,6-dimethyl-</td>
<td>721.5740(a)</td>
</tr>
<tr>
<td>5388-62-5</td>
<td>Benzenamine, 4-chloro-2,6-dinitro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5435-64-3</td>
<td>Hexanal, 3,5,5-trimethyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>5470-11-1</td>
<td>Hydroxylamine hydrochloride (Hydroxylammonium chloride)</td>
<td>704.225</td>
</tr>
<tr>
<td>5493-45-8</td>
<td>1,2-Cyclohexanedicarboxylic acid, bis(oxiranylmethyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>5780-07-4</td>
<td>1-Benzoxazole-5-carboxylic acid, 7-methoxy-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>5873-54-1</td>
<td>Benzene, 1-isocyanato-2-(4-isocyanato phenylmethyl)-</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>5949-05-3</td>
<td>6-Octanal, 3,7-dimethyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>5989-91-0</td>
<td>Octanal, 3,7-dimethyl-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>6055-19-2</td>
<td>Cyclophosphamide (monohydrate)</td>
<td>799.9510 (e)(2)(i)(C)(2), 799.9530</td>
</tr>
<tr>
<td>6145-73-9</td>
<td>1-Propanol, 2-chloro-, phosphate (3:1)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>6178-32-1</td>
<td>Propane, 1,2-epoxy-3-(p-(phenoxy)phenyl)-</td>
<td>716.120</td>
</tr>
<tr>
<td>6197-30-4</td>
<td>2-Propenonic acid, 2-cyano-3,3-diphenyl-, 2-ethylhexyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>6219-67-6</td>
<td>1,3-Benzenediamine, 4-methoxy-, sulfite</td>
<td>716.120</td>
</tr>
<tr>
<td>6219-71-2</td>
<td>1,4-Benzenediamine, 2-chloro-, sulfite</td>
<td>716.120</td>
</tr>
<tr>
<td>6219-77-8</td>
<td>1,2-Benzenediamine 4-nitro-, dihydrochloride</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6247-34-3</td>
<td>2-Anthracenecarboxylic acid, 4-[4-(acetyl)amino]phenoxy)aminol][1-amino-9,10-dihydro-9,10-dioxo-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>6283-28-6</td>
<td>Benzenamine, 2-chloro-5-nitro-</td>
<td>716.120</td>
</tr>
<tr>
<td>6304-39-8</td>
<td>Octanoic acid, hydrazide</td>
<td>721.5385</td>
</tr>
<tr>
<td>6315-52-2</td>
<td>1,2-Ethanedioibis[4-methylbenzenesulfonate]</td>
<td>721.1630</td>
</tr>
<tr>
<td>6358-28-9</td>
<td>1,3-Naphthalenesulfonic acid, 8-[4’-[4-[4-ethoxyphenyl]azo]-3,3’-diaminophenyl]-4’-[4-hydroxy-2’-[(methylene)amino]phenyl]azo]-1,1’-biphenyl]-4-yl[azo]-6-[4-(sulfophenyl)azo]-, trisodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6358-80-1</td>
<td>2,7-Naphthalenesulfonic acid, 4-amino-5-hydroxy-3-[4’-[4-hydroxy-2’-[(methylene)amino]phenyl]azo]-1,1’-biphenyl]-4-yl[azo]-7-hydroxy-, trisodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6360-29-8</td>
<td>Benzonic acid 5-[4’-[4’-[4-amino-7-sulfo-1-naphthalenyl]azo]-6-sulfo-1-naphthalenyl]azo]-[1,1’-biphenyl]-4-yl[azo]-7-hydroxy-, trisodium salt</td>
<td>712.1660</td>
</tr>
<tr>
<td>6360-54-9</td>
<td>Benzonic acid 5-[4’-[4’-[4,6-diamino-3-methyl-5-[4-(sulfophenyl)azo]phenyl]azo]-1,1’-biphenyl]-4-yl[azo]-2-hydroxy-3-methyl-, disodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>6369-59-1</td>
<td>1,4-Benzenediamine, 2-methyl-, sulfite</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6422-86-2</td>
<td>1,4-Benzenediacarboxylic acid, bis(2-ethylhexyl) ester</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>6424-23-4</td>
<td>Propylene glycol dintrate</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>6449-35-0</td>
<td>1-Naphthalenesulfonic acid, 3-[3’-[6-amino-1-hydroxy-3-sulfo-2-naphthalenyl][azo]-3,3’-diaminophenyl][1,1’-biphenyl]-4-yl[azo]-4-hydroxy-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6606-65-1</td>
<td>2-Propenonic acid, 2-cyano-, butyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>6637-86-3</td>
<td>Benzonic acid 5-[4’-[4,6-diamino-3-methyl-5-sulfophenyl]azo]-3,3’-diaminophenyl]-1,1’-biphenyl]-4-yl[azo]-2-hydroxy-, disodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6656-03-7</td>
<td>Cuprate(3-), [μ-[7,7,3]-di[3-hydroxy-4’-[1-hydroxy-6-(phenylamino)-3-sulfo-2-naphthalenyl]azo]-[1,1’-biphenyl]-4-yl[azo]-6-hydroxy-1,6-naphthalene disulfonate]-[μ]-, trisodium</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6739-62-4</td>
<td>Benzonic acid 2-[2-amino-6-[4’-[4-carboxy-4-hydroxyphenyl]azo]-3,3’-diamino[1,1’-biphenyl]-4-yl[azo]-5-hydroxy-7-sulfo-1-naphthalenyl][azo]-5-nitro-, trisodium salt</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>6752-33-6</td>
<td>Ethanol, 2,2’-(hexylamino)bis-</td>
<td>721.3340</td>
</tr>
<tr>
<td>7013-67-8</td>
<td>Non-end-blocked siloxanes</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>7057-92-3</td>
<td>Phosphoric acid, didodecyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7085-85-0</td>
<td>2-Propenoic acid, 2-cyano-, ethyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>7195-45-1</td>
<td>1,2-Benzenedicarboxylic acid, bis(oxiranylmethyl) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>7311-27-5</td>
<td>Ethanol, 2-[2-(2-(2-nonylphenoxy)ethoxy)ethoxy]ethoxy-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>7320-37-8</td>
<td>Oxirane, tetradeckyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>7324-02-9</td>
<td>2-Propenoic acid, 2-cyano-, 2-propenyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>7328-97-4</td>
<td>Oxirane,2,2′,2″- [1,2-ethanediyldienetetrakis-[4,1-phenyleneoxy]methylene]tetraakis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>7332-46-9</td>
<td>Ethanol, 2-[2-[2-[2-(p-nonylphenoxy)ethoxy]ethoxyl]-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>7320-37-8</td>
<td>Oxirane, tetradeckyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>7324-02-9</td>
<td>2-Propenoic acid, 2-cyano-, 2-propenyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>7328-97-4</td>
<td>Oxirane,2,2′,2″- [1,2-ethanediyldienetetrakis-[4,1-phenyleneoxy]methylene]tetraakis-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>7332-46-9</td>
<td>Ethanol, 2-(2-butoxyethoxy)-, phosphate (3:1)</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>7390-81-0</td>
<td>Oxirane, hexadecyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>7422-52-8</td>
<td>Trisiloxane, 1,1,1,3,5,5,5-heptamethyl-3-[3-(oxiranylmethoxy)propyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>7440-28-0</td>
<td>Thallium</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>7440-36-0</td>
<td>Antimony</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>7440-48-4</td>
<td>Cobalt</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>7460-82-4</td>
<td>2,2-Oxybisethanebis[4-methylbenzenesulfonate]</td>
<td>721.1630</td>
</tr>
<tr>
<td>7631-90-5</td>
<td>Sodium bisulfite</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>7681-57-4</td>
<td>Sodium metabisulfite</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>7738-94-5</td>
<td>Chromic acid</td>
<td>749.68</td>
</tr>
<tr>
<td>7775-11-3</td>
<td>Sodium chromate</td>
<td>749.68</td>
</tr>
<tr>
<td>7778-59-9</td>
<td>Potassium chromate</td>
<td>749.68</td>
</tr>
<tr>
<td>7782-50-5</td>
<td>Chlorine</td>
<td>749.68</td>
</tr>
<tr>
<td>7789-06-6</td>
<td>Potassium chromate</td>
<td>749.68</td>
</tr>
<tr>
<td>7803-49-8</td>
<td>Sodium metabisulfite</td>
<td>749.68</td>
</tr>
<tr>
<td>7738-94-5</td>
<td>Chromic acid</td>
<td>749.68</td>
</tr>
<tr>
<td>8001-21-6</td>
<td>Sunflower oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-22-7</td>
<td>Linseed oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-23-8</td>
<td>Safflower oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-26-1</td>
<td>Linseed oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-29-4</td>
<td>Cottonseed oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-30-7</td>
<td>Corn oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-31-8</td>
<td>Coconut oil</td>
<td>723.250</td>
</tr>
<tr>
<td>8001-32-9</td>
<td>Fats and glyceridic oils, menhaden</td>
<td>723.250</td>
</tr>
<tr>
<td>8014-91-3</td>
<td>Benzic acid, 3,3′-[3,7-disulfo-1,5-naphthalenediyl)bis[azo(6-hydroxy-3,1-phenylene)azo[6(or 7)-sulfo-4,1-naphthalenediyl)azo[1,1′-biphenyl)]-4,4′-diylazo]bis[6-hydroxy-, hexasodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>8016-35-1</td>
<td>Fats and glyceridic oils, oilolica</td>
<td>723.250</td>
</tr>
<tr>
<td>8023-79-8</td>
<td>Oils, palm kernel</td>
<td>723.250</td>
</tr>
<tr>
<td>8024-09-7</td>
<td>Oils, walnut</td>
<td>723.250</td>
</tr>
<tr>
<td>8068-03-9</td>
<td>Organosolv lignin</td>
<td>721.5460</td>
</tr>
<tr>
<td>9002-93-1</td>
<td>Polyethylene glycol 4-(tert-octylphenyl) ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>9004-73-3</td>
<td>Methylnonylsiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>9006-65-5</td>
<td>Dimethicone</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>9011-05-6</td>
<td>Urea, polymer with formaldehyde</td>
<td>716.20(b)(11), 716.120(a)</td>
</tr>
<tr>
<td>9016-46-9</td>
<td>Nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>9036-19-5</td>
<td>Polychloroethylene glycol mono(chloroethyl) ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>10031-75-1</td>
<td>Benzene, 1,1′-(dioscyanatooctamethylene)bis-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>10031-80-2</td>
<td>Benzaldehyde, 4-ethoxy-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>10038-54-0</td>
<td>Hydroxylamine sulfate (2:1)</td>
<td>704.225</td>
</tr>
<tr>
<td>10046-00-1</td>
<td>Hydroxylamine sulfate (1:1)</td>
<td>704.225</td>
</tr>
<tr>
<td>10192-46-8</td>
<td>Boric acid (H3BO3, zinc salt (2=3)</td>
<td>721.3031</td>
</tr>
<tr>
<td>1023-77-1</td>
<td>1-Propanol, 2-(2-(2-methoxypropoxy)propoxy)-</td>
<td>712.30, 716.120(c)</td>
</tr>
<tr>
<td>1034-54-1</td>
<td>Cyclohexanone, 1,4-bis(isocyanatooctahydropyridinylmethyl)tetrahexahydro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>1040-50-0</td>
<td>C.I. Direct Blue 218</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>1058-17-1</td>
<td>2-Propenoic acid, 2-cyano-, 1-methyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>1058-01-9</td>
<td>Sodium dichromate</td>
<td>749.68</td>
</tr>
<tr>
<td>1106-49-2</td>
<td>Isobutyronitrile (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>1110-86-9</td>
<td>Zinc potassium chromate</td>
<td>749.68</td>
</tr>
<tr>
<td>12001-29-5</td>
<td>Asbestosform mineral(s)</td>
<td>763, 716.120(c)</td>
</tr>
<tr>
<td>12031-65-1</td>
<td>Lithiated metal oxide</td>
<td>721.5469</td>
</tr>
<tr>
<td>12056-51-8</td>
<td>Titanate, (TiO2, (2+), potassium</td>
<td>716.9675</td>
</tr>
<tr>
<td>12141-67-2</td>
<td>Tungstate (W12(OH)2O386-) hexasodium (9CI)</td>
<td>721.9840</td>
</tr>
<tr>
<td>12172-73-5</td>
<td>Asbestosform mineral(s)</td>
<td>763, 716.120</td>
</tr>
<tr>
<td>12195-10-3</td>
<td>White phosphorus</td>
<td>712.30(d), 716.120(a)</td>
</tr>
<tr>
<td>12217-79-7</td>
<td>9,10-Anthracenedione, 1,5-diaminochloro-4,8-dihydroxy-3,3′-phenyleneazo][[6,6-dihydroxy-4,4′-bipyphenyl][4,4′-diylazo]bis[6-hydroxy-, hexasodium salt</td>
<td>716.120(c), 721.1660</td>
</tr>
<tr>
<td>12510-42-8</td>
<td>Erionite fiber</td>
<td>721.2800</td>
</tr>
<tr>
<td>12645-31-7</td>
<td>Phosphoric acid, 2-ethylhexyl ester</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>13393-93-6</td>
<td>1-Phenanthrenemethanol, 2,3-dihydro-1,4-dimethyl-7-(1-methylthyl)-</td>
<td>723.250</td>
</tr>
<tr>
<td>13414-54-5</td>
<td>Benzene, 1-(2-methyl-2-propenyl)oxy)-2-nitro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>13414-55-6</td>
<td>Benzofuran, 2,3-dihydro-2,2-dimethyl-7-nitro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>13439-89-9</td>
<td>Guanidine, pentaethyli-</td>
<td></td>
</tr>
<tr>
<td>13530-65-9</td>
<td>Zinc chromate</td>
<td></td>
</tr>
<tr>
<td>13530-68-2</td>
<td>Dichromic acid</td>
<td></td>
</tr>
<tr>
<td>13561-08-5</td>
<td>Oxirane, 2,2-[(oxiranylmethoxy)-1-phenylen]bis(methylene)bis-</td>
<td></td>
</tr>
<tr>
<td>13586-68-0</td>
<td>2-Propanal, 3-[(1-dimethylthio)phenyl]-2-methyl-</td>
<td></td>
</tr>
<tr>
<td>13654-09-6</td>
<td>1,1'-[Phenyl], 2,2',3,5',4,4,5,6'-decabromo-</td>
<td></td>
</tr>
<tr>
<td>13674-87-8</td>
<td>2-Propanol, 1,3-dichloro-, phosphate (3:1)</td>
<td></td>
</tr>
<tr>
<td>13826-35-2</td>
<td>Benzenemethanol, 3-phenoxy-</td>
<td></td>
</tr>
<tr>
<td>14018-95-2</td>
<td>Zinc dichromate</td>
<td></td>
</tr>
<tr>
<td>14228-73-0</td>
<td>Cyclohexane, 1,4-bis[(2,3-epoxypropoxy)methyl]-</td>
<td></td>
</tr>
<tr>
<td>14720-55-9</td>
<td>Boric acid (H3BO3), zinc salt</td>
<td></td>
</tr>
<tr>
<td>14938-35-3</td>
<td>4-Pentylphenol</td>
<td></td>
</tr>
<tr>
<td>15142-96-8</td>
<td>Phosphonic acid, 1,2-ethanedi</td>
<td>l bis[nitrobis(methylene)]tetrasil, hexadiazonium salt</td>
</tr>
<tr>
<td>15646-96-5</td>
<td>Hexane, 1,6-dicynanyano-2,4,4-trimethyl-</td>
<td></td>
</tr>
<tr>
<td>15827-56-2</td>
<td>cis-1,4-Cyclohexanediamine</td>
<td></td>
</tr>
<tr>
<td>15956-99-8</td>
<td>Oxirane, [(hexadecyloxy)methyl]-</td>
<td></td>
</tr>
<tr>
<td>16068-37-4</td>
<td>3,8-Dioxa-4,7-dioladecane, 4,4,7,7-tetraethoxy-</td>
<td></td>
</tr>
<tr>
<td>16071-86-6</td>
<td>Cuprate(2)-[5-[6-[4-[2,6-dihydroxy-3-[2-hydroxy-5-sulfophenyl]]azo][phen][1,1'-biphenyl]-4-yl][azo]-2-hydroxybenzoate (4-4), disodium</td>
<td></td>
</tr>
<tr>
<td>16086-31-4</td>
<td>Oxirane, 2,2-[(1,6-hexanediylbis(oxymethylene)]bis-</td>
<td></td>
</tr>
<tr>
<td>16143-79-6</td>
<td>Cuprate(4)-[μ-[6,6'-[3,3'-dihydroxy][1,1'-biphenyl]-4,4'-dial][bis(4-amino-5-hydroxy-1,3-naphtalenedisulfonato)[6]]di-, tetrasodium</td>
<td></td>
</tr>
<tr>
<td>16245-77-5</td>
<td>1,4-Benzenediamine, sulfate (1:1) (p-Phenylenediamine, sulfate salt)</td>
<td></td>
</tr>
<tr>
<td>16245-97-9</td>
<td>Oxirane, [(octadecyloxy)methyl]-</td>
<td></td>
</tr>
<tr>
<td>16298-38-7</td>
<td>Benzenamine, 4,4'-methylenebis(2-methyl-6-(1-methylthio))-</td>
<td></td>
</tr>
<tr>
<td>16532-79-9</td>
<td>Benzene acetonitrile, 4-bromo- (4-Bromobenzyl) cyanide</td>
<td></td>
</tr>
<tr>
<td>16588-67-3</td>
<td>3-[N-ethyl-4-[[[(methylsulfonyl)]]-2-benzothiazolyl]]azo]-m-toluidino- propionitrile</td>
<td></td>
</tr>
<tr>
<td>16938-22-0</td>
<td>Hexane, 1,6-dicynanyano-2,2,4-trimethyl-</td>
<td></td>
</tr>
<tr>
<td>17068-76-9</td>
<td>Asphaltiform mineral(s)</td>
<td></td>
</tr>
<tr>
<td>17070-45-0</td>
<td>9-Aminoacridine or ICN 191</td>
<td></td>
</tr>
<tr>
<td>17577-23-2</td>
<td>Oxirane, 2,2'-((2,2-dimethyl-1,3-propanylidene)bis(oxymethylene))bis-</td>
<td></td>
</tr>
<tr>
<td>17577-67-4</td>
<td>6,6'-[[Methylsulfonyl]-2-benzothiazolamine</td>
<td></td>
</tr>
<tr>
<td>17601-96-2</td>
<td>2-Amino-4-(2-hydroxyethoxy) sulfonil(phenyl)</td>
<td></td>
</tr>
<tr>
<td>17688-68-1</td>
<td>4-Phenylthiomorpholine, 1,1-dioxide</td>
<td></td>
</tr>
<tr>
<td>17741-62-7</td>
<td>4-(4-[2,6-Dichloro-4-nitrophenyl]azo)benzenesulfonic acid, 1,1-dioxide</td>
<td></td>
</tr>
<tr>
<td>17754-90-4</td>
<td>Benzaldehyde, 4-(diethylaminio)-2-hydroxy-</td>
<td></td>
</tr>
<tr>
<td>17982-64-7</td>
<td>4-(1-methylethyl)phenol</td>
<td></td>
</tr>
<tr>
<td>17963-04-1</td>
<td>Silane, ethoxydimethyl[3-(oxiranylmethoxy)propyl]</td>
<td></td>
</tr>
<tr>
<td>18266-52-9</td>
<td>1,4-Benzenediamine, 2-nitro-, dichloroiodide</td>
<td></td>
</tr>
<tr>
<td>18495-30-2</td>
<td>Propene, 1,1,2,3,3-tetrachloro-</td>
<td></td>
</tr>
<tr>
<td>18633-25-5</td>
<td>Oxirane, tridecyl-</td>
<td></td>
</tr>
<tr>
<td>18700-44-6</td>
<td>3-(2,2-Dicyclohexyl-2,4-dihydroxybenzophene) 1,1-dioxide</td>
<td></td>
</tr>
<tr>
<td>18966-38-6</td>
<td>Dicostremyilsulfonyl(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td>18722-36-6</td>
<td>Eicosamethylcyclodecasiloxane</td>
<td></td>
</tr>
<tr>
<td>18844-94-7</td>
<td>Hexafluoromethylheptadecafluoroxy</td>
<td></td>
</tr>
<tr>
<td>18891-94-3</td>
<td>Tetracosamethylcyclodecasiloxane</td>
<td></td>
</tr>
<tr>
<td>19249-03-7</td>
<td>Ethanol, 2,2'[pybox][2,1-ethanediol][oxo]-, bis(4-methylbenzenesulfonylate)</td>
<td></td>
</tr>
<tr>
<td>19372-44-2</td>
<td>Calcium, bis[2,4-pentanedionato-O,O'-]</td>
<td></td>
</tr>
<tr>
<td>19540-16-3</td>
<td>2-Propanoic acid, 2,3-dibromopropyl ester</td>
<td></td>
</tr>
<tr>
<td>20018-09-1</td>
<td>1,4-Dioxido-2,4,6-trimethyl benzene</td>
<td></td>
</tr>
<tr>
<td>20103-09-7</td>
<td>1,4-Benzenediamine, 2,5-dichloro-</td>
<td></td>
</tr>
<tr>
<td>20217-01-0</td>
<td>Oxirane, 2,2'-(2,4-dibromophenoxymethyl)-</td>
<td></td>
</tr>
<tr>
<td>20264-20-6</td>
<td>1,1'-[Biphenyl]-4,4'-bis(diazonium), 3,5-dimethoxy-</td>
<td></td>
</tr>
<tr>
<td>20324-32-7</td>
<td>1-(2-Methoxy-1-methylethoxy)-2-propanol</td>
<td></td>
</tr>
<tr>
<td>20324-33-8</td>
<td>Tripropenylene glycol methyl ether</td>
<td></td>
</tr>
<tr>
<td>20427-84-3</td>
<td>Ethanol, 2,2-[2-propenyl(xylylethoxy)</td>
<td></td>
</tr>
<tr>
<td>20636-48-0</td>
<td>Nonylphenol polyethylene glycol ether</td>
<td></td>
</tr>
<tr>
<td>21429-43-6</td>
<td>Acetamide, N-[5-[bis-(2-acetoxyethyl)aminio]-2-[2-chloro-4,5-]</td>
<td>dinitrophenyl]azo]-4-ethoxy-phenyl]</td>
</tr>
<tr>
<td>21982-43-4</td>
<td>2-Propanoic acid, 2-cyano-, ethoxymethyl ester</td>
<td></td>
</tr>
<tr>
<td>22092-38-2</td>
<td>Oxirane, pentadecy-</td>
<td></td>
</tr>
<tr>
<td>23023-91-8</td>
<td>2-Propanoic acid, 2-cyano-, 2,2,2-trifluoroethyl ester</td>
<td></td>
</tr>
<tr>
<td>23532-12-8</td>
<td>Hexafluoromethylcyclopentadecafluoroxy</td>
<td></td>
</tr>
<tr>
<td>23523-14-0</td>
<td>Trichlorofluoromethylcyclopentadecafluoroxy</td>
<td></td>
</tr>
<tr>
<td>23732-94-7</td>
<td>Hexacarboxymethylcyclotridecafluoroxy</td>
<td></td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>23783-42-8</td>
<td>Tetraethylene glycol monomethyl ether</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>25013-15-4</td>
<td>Vinyl toluene</td>
<td>712.30(e), 716.20(b)(3), 716.120(d)</td>
</tr>
<tr>
<td>25036-25-3</td>
<td>Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2,2'-[[1-methylethylidene]bis[4,1-phenyleneoxymethylene]] bis[oxytane]</td>
<td>723.250</td>
</tr>
<tr>
<td>25085-99-8</td>
<td>Oxirane, 2,2'-(1-methylethylidene)bis[4,1-phenyleneoxymethylene]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>25119-62-4</td>
<td>2-Propen-ol, polymer with ethenylbenzene</td>
<td>723.250</td>
</tr>
<tr>
<td>25154-52-3</td>
<td>Nonylphenol (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>25155-23-1</td>
<td>Phenol, dimethyl-, phosphate (3:1)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>25168-06-3</td>
<td>Isopropyl phenol (Phenol, 1-methylethyl-)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25168-21-2</td>
<td>Dibutyltin bis(isooctyl maleate) [2-Butenoic acid, 4,4'-(dibutylstannylene)bis(oxy)bis[4-oxo-, diisoctyl ester, (Z,Z)-]]</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25168-24-5</td>
<td>Dibutyltin S,S'-bis(isooctyl) mercaptoacetate [Acetic acid, 2,2'-(dibutylstannylene)bis(thio)bis-, diisooctyl ester]</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25245-34-5</td>
<td>Benzene, 2-bromo-1,4-dimethoxy-</td>
<td>721.1193</td>
</tr>
<tr>
<td>25327-89-3</td>
<td>Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2-propenyloxy)-]</td>
<td>712.30(e), 716.120(d), 766.35</td>
</tr>
<tr>
<td>25376-45-8</td>
<td>Benzenediamine, ar-methyl</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25550-14-5</td>
<td>Benzene, ethylmethyl- (mixed isomers)</td>
<td>716.120(a), (b), 799.2175</td>
</tr>
<tr>
<td>25551-13-7</td>
<td>Phenol, trimethyl- (mixed isomers)</td>
<td>716.120(a), (b)</td>
</tr>
<tr>
<td>25586-43-0</td>
<td>Naphthalene, chloro-</td>
<td>704.83, 716.120(c)</td>
</tr>
<tr>
<td>25608-40-6</td>
<td>l-Aspartic acid, homopolymer and ammonium and potassium salts</td>
<td>721.979</td>
</tr>
<tr>
<td>25618-55-7</td>
<td>1,2,3-Propanetriol, homopolymer</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>25640-78-2</td>
<td>Isopropyl biphenyl</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25724-58-7</td>
<td>1,2-Benzenedicarboxylic acid, decyl hexyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>25852-70-4</td>
<td>Monobutyltin triisooctyl mercaptocacetate</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>25854-16-4</td>
<td>Benzene, bis(isocyanatomethyl)</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>26027-38-3</td>
<td>p-Nonylphenol polyethylene glycol ether, nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26064-02-8</td>
<td>p-Nonylphenol ployethylene glycol ether, nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26266-68-2</td>
<td>Hexenal, 2-ethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26444-49-5</td>
<td>Phosphoric acid, methylphenyl diphenyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>26447-14-3</td>
<td>Oxirane, [(methylphenoxy)methyl]-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>26447-40-5</td>
<td>Benzene, 1,1'-methylenebis[isocyanato-]</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>26530-20-1</td>
<td>3(2 H)-Isothiazolone, 2-octyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>26571-11-9</td>
<td>Nonylphenol octa(oxyethylene)ethanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26603-40-7</td>
<td>1,3,5-Triazine-2,4,6(1 H ,3 H ,5 H -trione, 1,3,5-tris(isocyanatomethyl)phenyl)-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26628-22-8</td>
<td>Sodium azide</td>
<td>799.9510 (e)(2)(ii)(C)(3)</td>
</tr>
<tr>
<td>26636-01-1</td>
<td>Dimethylthyl S,S'-bis(isoctyl) mercaptocacetate [Acetic acid, 2,2'-(dimethylstannylene)bis(thio)bis-, diisoctyl ester]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>26747-90-0</td>
<td>1,3-Diamidinodicyclohexylamine</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26750-55-5</td>
<td>1,1'-Oxybis(methylenesulfonyl)] bisethene</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>26751-11-9</td>
<td>Nonylphenol octa(oxyethylene)ethanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>26803-20-1</td>
<td>3(2 H)-Isothiazolone, 2-octyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>27178-07-8</td>
<td>Nonylphenol(phenylethyl)hept(oxyethylene)ethanol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>27218-34-3</td>
<td>tert-Butylphenol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>27219-34-3</td>
<td>tert-Butylphenol, mixed isomers</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>27219-38-8</td>
<td>1,1,3,3-Tetramethylbutylphenol (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>27271-10-7</td>
<td>Phosphoric acid, diisooctyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>27273-52-2</td>
<td>Nonabromobiphenyl</td>
<td>721.1790</td>
</tr>
<tr>
<td>27938-60-2</td>
<td>3-Cyclohexene-1-carboxaldehyde, dimethyl-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>28010-93-3</td>
<td>Nonylphenoxycarboxylic acid, nonylphenoxycarboxylic acid, nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>28178-12-9</td>
<td>Benzenediacidcarboxylic acid, dimethyl ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>28299-41-4</td>
<td>Benzene, 1,1'-oxybis[methyl]</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>28552-12-0</td>
<td>Benzene, bis(isocyanatomethyl)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>29387-86-8</td>
<td>Phenol, dimethyl-, phosphate (3:1)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>29911-28-2</td>
<td>Dipropylene glycol butyl ether</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>29932-98-3</td>
<td>1,1,3,3-Tetramethylbutyl/phenol (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>30015-54-5</td>
<td>1,1,3,3-Tetramethylbutyl/phenol (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>30554-72-4</td>
<td>Cyclohexane, tetrabromodichloro</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>30554-73-5</td>
<td>Cyclohexane, tribromochloro</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>30678-90-7</td>
<td>2-Propanonic acid, 2-methyl, 2-isocyanatoethyl ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>30813-81-1</td>
<td>Phenol, 4-(1,1-dimethylthyl)-, homopolymer</td>
<td>721.538</td>
</tr>
<tr>
<td>31195-96-6</td>
<td>Isobutylphenol (mixed isomers)</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>31206-94-7</td>
<td>2,5,8,10,13-Pentaxaxahexadec-15-enoic acid, 9,14-dioic-2,1-[1-oxo-2-propenyl]oxy]ethyl ether</td>
<td>721.5705</td>
</tr>
<tr>
<td>31906-04-1</td>
<td>3-Cyclohexene-1-carboxaldehyde 4-(4-hydroxy-4-methylpentyl)-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>32002-51-0</td>
<td>Isocyanic acid, trimethylcyclohexyl ester</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>32241-08-0</td>
<td>Naphthalene, heptachloro-</td>
<td>704.83, 716.120(c)</td>
</tr>
<tr>
<td>32315-10-9</td>
<td>Methanol, trichloro-, carbonate (2:1)</td>
<td>721.4880</td>
</tr>
<tr>
<td>32534-81-9</td>
<td>Pentabromodiphenyl ether</td>
<td>712.30(d), 716.120(a), 766.35</td>
</tr>
<tr>
<td>32536-52-0</td>
<td>Octabromobiphenyl ether</td>
<td>712.30(d), 716.120(a), 766.35</td>
</tr>
<tr>
<td>32568-89-1</td>
<td>2,4-Iodozidolondione, 5,5-dimethyl-3-[2-(oxiranylmethoxy)propyl]-1-(oxiranylmethyl)-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>32588-76-4</td>
<td>Ethylene bis[tetraethrothalimide]</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>34274-30-1</td>
<td>Phosphoric acid, [1,2-ethanediylbis(nitrobis[methylene])]tetrakis-, potassium salt</td>
<td>704.95</td>
</tr>
<tr>
<td>34364-43-0</td>
<td>Phosphoric acid, (1-methyl-1-phenylethyl)phenyl diphenyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>34599-49-8</td>
<td>Dipropylene glycol monomethyl ether</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>34621-98-3</td>
<td>1,2-Ethanediytltriaxys [2-chloro-1-methyl]lylethene] phosphate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>34893-92-0</td>
<td>Benzene, 1,3-chloro-5-isoxynato-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>35243-89-1</td>
<td>Oxirane, [[1,2-dibromoproxy]methyl]-</td>
<td>716.120</td>
</tr>
<tr>
<td>36355-01-8</td>
<td>Hexabromodiphenyl</td>
<td>721.1790</td>
</tr>
<tr>
<td>36483-97-3</td>
<td>1-Propanol, 2,2-dimethyl-, tribromo derivative</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>36724-43-3</td>
<td>2,2'-[Oxybis(methylene)sulfonate)]bisethanol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>36938-50-8</td>
<td>Tetratriacontamethyl hexadecasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>36938-52-0</td>
<td>Octacontanatomethyl octadecasiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>37205-87-1</td>
<td>Poly(oxyl-1,2-ethanediyl), alpha (isonylphenyl/-phenyl)omega-hydroxy, p-nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>37677-14-8</td>
<td>3-Cyclohexene-1-carboxaldehyde, 4-(4-methyl-3-pentenyl)-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>37852-59-1</td>
<td>Benzene, 1,1'-[2-ethanediylbis(oxo)]bis[2,4,6-tribromophenol)bis-(4-methylbenzenesulfonate</td>
<td>712.30(d), 716.120(a), 766.35</td>
</tr>
<tr>
<td>37860-51-8</td>
<td>Ethanol, 2,2'-[oxybis(2,1-ethanediol)]bis-[3-(oxiranylmethoxy)-1,3-propenyl]oxy]bis[2-chloroethane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>38051-10-4</td>
<td>Benzaldehyde, 3-phenoxyc</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>38917-09-5</td>
<td>(2-Methylenebisphenyleoxymethyl)bisoxirane</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>41024-91-3</td>
<td>3,6,9,12-Tetraoxatetradecane-1,14-diol, bis(4-methylbenzenesulfonate</td>
<td>721.1640</td>
</tr>
<tr>
<td>41123-59-9</td>
<td>1,1'-[Methylenebis(sulfonyl)]bis[2-chloroethane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>41187-18-8</td>
<td>2,2'-[Methylenebis(sulfonyl)]bisethanol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>41291-34-3</td>
<td>Ethylene(5,6-dibromonorbornane-2,3-dicarboximide)</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>41607-30-3</td>
<td>2-(3-Nitrophenoxy)sulfonylethanol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>42088-30-0</td>
<td>1,2-Benzenediamine, 5-chloro-3-nitro</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>42874-96-6</td>
<td>2-Chloro-1-(3-methylphenoxyc)-4-(3-fluoromethyl)benzene</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>42978-66-5</td>
<td>Tripropylene glycol dicylate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>50594-77-9</td>
<td>Phenol, 3-[2-chloro-4-(2,4,6-trifluoromethyl)phenyl]oxy]</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>50789-44-1</td>
<td>Benzene, 3-phenoxyc, acetate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>51240-95-0</td>
<td>Neodecaneperoxoc acid, 1,1,3,3-tetramethylbutyl ester</td>
<td>721.5300</td>
</tr>
<tr>
<td>51363-64-5</td>
<td>Phosphoric acid, diisocyanatoethyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>51632-16-7</td>
<td>Benzene, 1-(bromomethyl)-3-phenoxyc</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>51938-25-1</td>
<td>Poly(oxyl-1,2-ethanediyl, alpha-2-nonylphenyl-omega-hydroxy, p-nonylphenol polyethylene glycol ether</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>52218-35-6</td>
<td>2-[(6-Amino-2-naphthalenyl)sulfonylethanol</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>52277-33-5</td>
<td>Poly(oxyl-1,4-butanediyl), alpha-(1-oxo-2-hydroxyethyl)lactone oxime, antioxidant</td>
<td>721.7640</td>
</tr>
<tr>
<td>52475-86-2</td>
<td>3-Cyclohexene-1-carboxaldehyde, 1-methyl-4-(4-methyl-3-pentenyl)-</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>52495-71-3</td>
<td>Poly(oxyl-1,2-ethanediyl), alpha-hydroxy-3-(oxiranylmethoxy)-, ether with 2-ethyl-2-(hydroxyethyl)ethyl</td>
<td>712.7700</td>
</tr>
<tr>
<td>52907-07-0</td>
<td>Ethylene bis[5,6-dibromonorbornane-2,3-dicarboximide]</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>53061-10-2</td>
<td>1,1'-[Oxybis(2,1-ethanediol)]bis[2-chloroethane</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>53461-82-8</td>
<td>2,2'-[ethanediyltriaxys [2-chloroethyl] phosphate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>53856-17-0</td>
<td>Butanoic acid, anthimony (3+) salt</td>
<td>721.1930</td>
</tr>
<tr>
<td>54140-64-6</td>
<td>Poly(oxyl-1,2-ethanediyl), alpha-(1-methylphenylidene)di-4,1-phenylenebis(3-(oxiranylmethoxy)-</td>
<td>712.7720</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>54208-63-8</td>
<td>Oxirane, 2,2'-[(methylenebis(2,1-phenylenoxy)methylene)]bis-</td>
<td>716.120</td>
</tr>
<tr>
<td>54849-38-6</td>
<td>Monomethyltin tris(isocynyl) mercaptoacetate [Acetic acid, 2,2',5'-[[methylisocyanyldiene]tris[thio]], tris(isocynyl ester]</td>
<td>716.120</td>
</tr>
<tr>
<td>54932-78-4</td>
<td>4-(2,2,3,3-Tetramethybutyl)phenol</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>55205-38-4</td>
<td>2-Propenoic acid, (1-methylethyldiene)(bis[2,6-dibromo-4,1-phenylene] ester</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>55205-38-7</td>
<td>2-Propenoic acid, (1-methylethyldiene)(bis[2,6-dibromo-4,1-phenylene] ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>56803-37-3</td>
<td>Phosphoric acid, (1,1-dimethylethyl)(phenyl diphenyl) ester</td>
<td>716.120</td>
</tr>
<tr>
<td>57011-27-5</td>
<td>Phosphoric acid, [1,2-ethanediylbis[nitrobis(methylene)]tetrakis-, ammonium salt</td>
<td>704.95</td>
</tr>
<tr>
<td>57018-52-7</td>
<td>Propylene glycol mono-tert-butyl ether</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>57137-10-7</td>
<td>Tribrominated polyisoprene</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>59789-51-4</td>
<td>1,4-Pyrole-2,5-dione, 1-(2,4,6-tribromophenyl)</td>
<td>721.8965</td>
</tr>
<tr>
<td>60501-41-9</td>
<td>Oxirane, (9-octadeceneoxy)(methyl)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>60857-97-8</td>
<td>Reaction product of hydroxylethyl acrylate and methyl oxirane</td>
<td>721.9520</td>
</tr>
<tr>
<td>61202-53-1</td>
<td>Ethylene bis(pentabromophenoxy)</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>61386-02-5</td>
<td>Benzoc acid, 3,3'-methylenebis[6-amino-, di-2-propenyl] ester</td>
<td>721.1725</td>
</tr>
<tr>
<td>61578-08-4</td>
<td>Oxirane, (4-[1-methyl-1-phenylethyl]phenoxo)[methyl]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>61702-81-6</td>
<td>1,2-Benzenedicarboxylic acid, (hexyl isocyanat) ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>61702-88-3</td>
<td>Benzene, 1,1'-oxybis[1,1,3,3-tetramethylbutyl]-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>61788-33-8</td>
<td>Polychlorinated terphenyl</td>
<td>704.45, 716.120(a)</td>
</tr>
<tr>
<td>61788-47-4</td>
<td>Fatty acids, coco</td>
<td>723.250</td>
</tr>
<tr>
<td>61788-66-7</td>
<td>Fatty acids, vegetable oil</td>
<td>723.250</td>
</tr>
<tr>
<td>61788-76-9</td>
<td>Alkanes, chloro-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>61788-89-4</td>
<td>Fatty acids, C₁₈ unsaturated, dimers</td>
<td>723.250</td>
</tr>
<tr>
<td>61789-36-4</td>
<td>Calcium naphthenate</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>61789-44-4</td>
<td>Fatty acids, castor-oil</td>
<td>723.250</td>
</tr>
<tr>
<td>61789-45-5</td>
<td>Fatty acids, dehydrated castor-oil</td>
<td>723.250</td>
</tr>
<tr>
<td>61789-51-3</td>
<td>Cobalt naphthenate</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>61790-13-3</td>
<td>Fatty acids, tall-oil</td>
<td>723.250</td>
</tr>
<tr>
<td>61790-14-5</td>
<td>Lead naphthenate</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>61886-60-0</td>
<td>1,2-Benzenedicarboxylic acid, isodecyl tridecyl ester</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>62064-17-5</td>
<td>1,4-Benzenediamine, ethanedioate (1:1)</td>
<td>716.120</td>
</tr>
<tr>
<td>62744-41-6</td>
<td>(1,1,3,3-Tetramethylbutyl)phenol (mixed isomers)</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>63134-33-8</td>
<td>4-[4-(Phenylmethoxy)phenyl]sulfonic acid, (methylstannylidyne)tris(thio)tris-, triisooctyl ester</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>63148-62-9</td>
<td>Dimethyl silicones and siloxanes</td>
<td>716.120</td>
</tr>
<tr>
<td>63449-39-8</td>
<td>Paraffin waxes and hydrocarbon waxes, chlorinated</td>
<td>716.120</td>
</tr>
<tr>
<td>63449-95-3</td>
<td>Benzoc acid, 3-[2-chloro-4-(trifluoromethyl)phenoxo][methyl]</td>
<td>712.30(d)</td>
</tr>
<tr>
<td>64630-63-3</td>
<td>2-Propenoic acid, 7-oxabicyclo[4.1.0]hept-3-ylmethyl ester</td>
<td>721.8350</td>
</tr>
<tr>
<td>65455-72-3</td>
<td>Decachloroethylene, isononylphenyl ether</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>66327-54-6</td>
<td>Polyethylene glycol mono-tert-butyl ether</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>66378-95-5</td>
<td>Ethanol, 2-(2,6-diaminophenyl)</td>
<td>716.120</td>
</tr>
<tr>
<td>66422-95-5</td>
<td>Ethanol, 2-(2,6-diamino-4,4-methylphenyl)</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>66704-21-9</td>
<td>Enolite fiber</td>
<td>721.2800</td>
</tr>
<tr>
<td>66701-08-0</td>
<td>Fatty acids, C₁₈ unsaturated</td>
<td>723.250</td>
</tr>
<tr>
<td>66701-30-8</td>
<td>Glycerides, C₁₆ and C₁₈ unsatd.</td>
<td>723.250</td>
</tr>
<tr>
<td>66724-94-1</td>
<td>Dimethyl(methylnitrovinyl)siloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>67866-03-2</td>
<td>Oxirane, 2,2'-[(methyleneoxy)methyl]benzene, (4,4'-phenylazoxy)methyl]bis(4,1-phenylenoxy)methylene)bis-</td>
<td>716.120</td>
</tr>
<tr>
<td>67866-04-2</td>
<td>Oxirane, heptadecyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>67866-08-2</td>
<td>Oxirane, heptadecyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>67924-23-6</td>
<td>Cobaltate (6-), [1,2-ethanediylbis[nitrobis(methylene)]tetrakis[phosphonato]]⁻, N,N,N,N,N,N-pentapotassium hydrogen, (OC-6:21)</td>
<td>704.95</td>
</tr>
<tr>
<td>67969-67-9</td>
<td>Cobaltate (6-), [1,2-ethanediylbis[nitrobis(methylene)]tetrakis[phosphonato]]⁻, N,N,O,O',O''-pentapotassium hydrogen, (OC-6:21)</td>
<td>704.95</td>
</tr>
<tr>
<td>67989-89-3</td>
<td>Cuprate (6-), [1,2-ethanediylbis[nitrobis(methylene)]tetrakis[phosphonato]]⁻, N,N,N,N,N,N-pentapotassium hydrogen, (OC-6:21)</td>
<td>704.95</td>
</tr>
<tr>
<td>68015-98-2</td>
<td>1,3-Benzenediamine, 4-ethoxy-, sulfate (1:1)</td>
<td>716.120</td>
</tr>
<tr>
<td>68025-39-8</td>
<td>Cobaltate (6-), [1,2-ethanediylbis[nitrobis(methylene)]tetrakis[phosphonato]]⁻, N,N,O,O',O''-pentapotassium hydrogen, (OC-6:21)</td>
<td>704.95</td>
</tr>
<tr>
<td>68037-59-2</td>
<td>Dimethylhydroxypolysiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>68037-74-1</td>
<td>Dimethylpolysiloxanes</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>68037-90-1</td>
<td>Silsesquioxanes, phenylpropyl</td>
<td>723.250</td>
</tr>
<tr>
<td>68081-84-5</td>
<td>Oxirane, mono[(C(10-16)-alkoxy)methyl] derivatives</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68083-14-7</td>
<td>Dimethyldiphenylsiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>68132-21-8</td>
<td>Oils, perilla</td>
<td>723.250</td>
</tr>
<tr>
<td>68153-06-0</td>
<td>Fats and glyceric oils, herring</td>
<td>723.250</td>
</tr>
<tr>
<td>68153-35-5</td>
<td>Ethanolamine, 2-amino-N-(2-aminoethyl)-N-(2-hydroxyethyl)-N'-methylyl, N,N-di-tallow acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68188-96-5</td>
<td>Phosphonic acid, [1,2-ethanediylbis[nitrilobis(methylene)]tetrakis-(octaammonium salt]</td>
<td>704.95</td>
</tr>
<tr>
<td>68239-06-5</td>
<td>Cyclohexane, 2-heptyl-3,4-bis(3-isocyanatopropyl)-1-pentyl</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>68239-80-5</td>
<td>1,3-Benzenediamine, 4-chloro-, sulfate</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68239-82-7</td>
<td>1,2-Benzenediamine, 4-nitro-, sulfmate</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68239-83-8</td>
<td>1,4-Benzenediamine, 2-nitro-, sulfmate</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68296-44-4</td>
<td>7-Benzoturaraniline, 2,3-dihydro-2,2-dimethyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68308-53-2</td>
<td>Fatty acids, soya</td>
<td>723.250</td>
</tr>
<tr>
<td>68309-98-9</td>
<td>Cadmate (6), [1,2-ethanediylbis[nitrilobis (methylene)]tetrakig(phosphonato)], pentapotassium hydrogen, (OC-6-21)-</td>
<td>704.95</td>
</tr>
<tr>
<td>68389-88-8</td>
<td>Poly(oxy-1,2-ethanediyl), α-[2-[bis(2-aminoethyl)methylammonio]ethyl]-ω-hydroxy-, N,N-di-tallow acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68389-89-9</td>
<td>Poly(oxy-1,2-ethanediyl), α-[2-[bis(2-aminoethyl)methylammonio]ethyl]-ω-hydroxy-, N,N-di-tallow acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68412-54-4</td>
<td>Nonylphenoxypolyoxyethyol</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>68413-04-7</td>
<td>Poly(oxy[methyl-1,2-ethanediyl], N,N-dicoco acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68424-45-3</td>
<td>Fatty acids, linseed oil</td>
<td>723.250</td>
</tr>
<tr>
<td>68440-85-3</td>
<td>Siloxanes and silicones, dimethyl, diphenyl, polymers with phenyl silsesquioxanes, methoxy-terminated</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68459-98-3</td>
<td>1,2-Benzenediamine, 4-chloro-, sulfmate</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68497-56-7</td>
<td>Benzene, ethenyl-, homopolymer, brominated</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>68514-46-6</td>
<td>Diheptyl phthalate (branched and linear isomers)</td>
<td>799.5000</td>
</tr>
<tr>
<td>68515-45-7</td>
<td>Dibutyln phthalate (branched and linear isomers)</td>
<td>799.5025</td>
</tr>
<tr>
<td>68515-47-9</td>
<td>1,2-Benzene-carboxylic acid, di(C(11-14)-branched alkyl esters, C(13)-rich (Diradyl) phthalate (mixed isomers))</td>
<td>799.5000</td>
</tr>
<tr>
<td>68515-49-1</td>
<td>1,2-Benzene-carboxylic acid, di(C(9-11)-branched alkyl esters, C(10)-rich (Disodecyl) phthalate (mixed isomers))</td>
<td>799.5000</td>
</tr>
<tr>
<td>68515-50-4</td>
<td>1,2-Benzene-carboxylic acid, dihexyl ester, branched and linear (Dihexyll phthalate (mixed isomers))</td>
<td>799.5000</td>
</tr>
<tr>
<td>68517-02-2</td>
<td>Oxirane, 2,2′-di[2-[(bis(2-aminoethyl)methylammonio)methylethyl]-ω-hydroxy-, N,N-di-tallow acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68554-06-3</td>
<td>Poly(oxy-1,2-ethanediyl), α-[3-[bis(2-aminoethyl)methylammonio]-2-hydroxypropyl]-ω-hydroxy-, N-coo acyl derivatives, methyl sulfates (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>68609-96-1</td>
<td>Oxirane, mono[(C(8-10)-alkoxy)methyl] derivatives</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68609-97-2</td>
<td>Oxirane, mono[(C(12-14)-alkoxy)methyl] derivatives</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>68611-64-3</td>
<td>Urea, reaction product with formaldehyde</td>
<td>716.20(b)(1), 716.120(a)</td>
</tr>
<tr>
<td>68649-95-6</td>
<td>Linseed oil, oxidized</td>
<td>723.250</td>
</tr>
<tr>
<td>69011-17-7</td>
<td>Phosphonic acid, [1,2-ethanediylbis[nitrilobis(methylene)]tetrakis-(octadecanium salt)</td>
<td>74.095</td>
</tr>
<tr>
<td>69020-70-7</td>
<td>Alkanes, C(6-18)-chloro-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>69053-27-5</td>
<td>Fatty acids, sunflower-oil, conjugated</td>
<td>723.250</td>
</tr>
<tr>
<td>69055-41-9</td>
<td>Alkanes, (C(10-18)-bromochloro-</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>69057-04-0</td>
<td>Siloxanes and silicones, dimethyl, methoxyphenyl, polymers with phenyl silsesquioxanes, methoxy-terminated</td>
<td>723.250</td>
</tr>
<tr>
<td>69057-06-2</td>
<td>Siloxanes and silicones, methylphenyl, methoxyphenyl, polymers with phenyl silsesquioxanes, methoxy- and phenylterminated</td>
<td>723.250</td>
</tr>
<tr>
<td>69585-86-1</td>
<td>Nickelate (6), [1,2-ethanediylbis[nitrilobis(methylene)]tetrakis [phosphonato]], pentapotassium hydrogen, (OC-6-21)-</td>
<td>704.95</td>
</tr>
<tr>
<td>69585-87-2</td>
<td>Nickelate (6), [1,2-ethanediylbis[nitrilobis(methylene)]tetrakis [phosphonato]], pentapotassium hydrogen, (OC-6-21)-</td>
<td>704.95</td>
</tr>
<tr>
<td>69585-88-3</td>
<td>Nickelate (6), [1,2-ethanediylbis[nitrilobis(methylene)]tetrakis [phosphonato]], pentapotassium hydrogen, (OC-6-21)-</td>
<td>704.95</td>
</tr>
<tr>
<td>69593-23-9</td>
<td>Oxirane, 2,2′-di[1,2,6-hexanetriyl tris(oxymethylene)]tris-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>69696-84-7</td>
<td>1,3-Benzenediamine, ar-ethyl-ar-methyl-</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>69877-90-6</td>
<td>Oxirane, mono[(C(16-12)-alkoxy)methyl] derivatives</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>69900-90-1</td>
<td>Diisopropyl biphenyl</td>
<td>716.120(d)</td>
</tr>
</tbody>
</table>
| 69155-42-6 | Tetrasiloxane, 1,1,1,3,5,7,7,7-octamethyl-3,5-bis-(3-oxytranylmethoxy) propyl | 716.120(a) }
<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Name(s) Used in Regulations</th>
<th>40 CFR Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>69340-24-6</td>
<td>Cyclopolydimethylsiloxane</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>69834-18-1</td>
<td>Benzene, 1,1'-oxybis(dodecyl)</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>69892-11-7</td>
<td>Phenol, 2,4(or 2,6)-dibromo, homopolymer</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>69943-75-5</td>
<td>Poly(oxy-1,2-ethanediyl), α-[4-oxiranylmethoxy]benzyl]-ω-[4-oxiranylmethoxy]benzoyl], hydroxy-terminated</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>70131-67-8</td>
<td>Siloxanes and silicones, dimethyl-, hydroxy-terminated</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>70776-03-3</td>
<td>Naphthalene, chloro derivatives</td>
<td>704.83, 716.120(c)</td>
</tr>
<tr>
<td>70914-09-9</td>
<td>Poly(oxy-1,2-ethanediyl), α-[2-(bis(2-aminoethyl)amino)ethyl]-ω-hydroxy-, N,N-di-C(14-18)-acyl derivatives, methyl (salts)</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>71033-08-4</td>
<td>Oxirane, 2,2'-[(methyleneethylidene) bis[4,1-phenylene]oxy]-2,1-phenyleneoxymethylene]bis</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>71526-07-3</td>
<td>1-Oxa-4-azaspiro[4,5]decane, 4-dichloroacetyl</td>
<td>721.5475</td>
</tr>
<tr>
<td>71808-64-5</td>
<td>Silane, [3-[3-chloropropyl]imidazole [3-(oxiranylmethoxy)]propyl]</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>72252-48-3</td>
<td>Benzyl alcohol, 3-(2-chloro-4-trifluoromethyl)phenoxyl, potassium salt</td>
<td>712.30(e), 716.120(a)</td>
</tr>
<tr>
<td>72318-84-4</td>
<td>Methanol, hydrolysis products with trichloroethylenesilane and trichlorophenylsilane</td>
<td>723.250</td>
</tr>
<tr>
<td>72319-24-5</td>
<td>Oxirane, 2,2'-[1-(methyleneethylidene) bis[4,1-phenylene]oxy-3,1-propenediyl]oxymethylene]bis</td>
<td>716.120(c)</td>
</tr>
<tr>
<td>72604-49-0</td>
<td>2-Pentene, 1,1,2,3,4,4,5,5,5-decafluoro-</td>
<td>721.5708</td>
</tr>
<tr>
<td>73897-28-9</td>
<td>2-Propanoic acid, 2-methyl-, 2-[[5-isocyanato-1,3,3-trimethylcyclohexyl]methyl]aminocarbonyloxyl]ester</td>
<td>712.30(e), 716.120(d)</td>
</tr>
<tr>
<td>7405-06-0</td>
<td>Pentane-1, 3-aminoo</td>
<td>721.5700</td>
</tr>
<tr>
<td>75790-84-0</td>
<td>Benzene, 2-isocyanato-4-[[4-isocyanato phenyl]methyl]-1-methyl-</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>75790-87-1</td>
<td>Benzene, 1,1'-isocyanato-2-[[4-isocyanatophenyl]thio]</td>
<td>716.120(a)</td>
</tr>
<tr>
<td>76435-19-5</td>
<td>2-Chloro-1-methylthiobis[2-chloropropyl]phosphate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>77631-17-3</td>
<td>Benzene, 1-(methylthio)bis[2-phenylethyl]</td>
<td>721.1350</td>
</tr>
<tr>
<td>79637-74-4</td>
<td>2-Propanoic acid, octahydro-4, 7-methano-1-Hindenyl ester</td>
<td>721.8600</td>
</tr>
<tr>
<td>79771-08-7</td>
<td>Isopyrrolamine, distillation residues</td>
<td>721.4500</td>
</tr>
<tr>
<td>79781-09-8</td>
<td>Ethylamine, distillation residues</td>
<td>721.4500</td>
</tr>
<tr>
<td>80428-30-6</td>
<td>2-Propanoic acid, 2-methyl, 7-oxabicyclo[4.1.0]hept-3-ylmethyl ester</td>
<td>721.8500</td>
</tr>
<tr>
<td>82708-44-8</td>
<td>9H-Thioxanthen-9-one,2,4-diethyl</td>
<td>712.9503</td>
</tr>
<tr>
<td>82804-99-0</td>
<td>Fatty acids, sunflower oil</td>
<td>723.250</td>
</tr>
<tr>
<td>85015-61-0</td>
<td>Hydrazinecarboxamide, N,N-(methylene-4,1-phenylene)bis[2,2-dimethyl-</td>
<td>721.4320</td>
</tr>
<tr>
<td>85712-26-1</td>
<td>Potassium A,N,N'-bis(hydroxyethyl)cocoamine oxide, phosphate</td>
<td>721.8100</td>
</tr>
<tr>
<td>85712-27-2</td>
<td>Potassium A,N,N'-bis(hydroxyethyl)stearoamine oxide, phosphate</td>
<td>721.8100</td>
</tr>
<tr>
<td>86917-58-0</td>
<td>2-Piperidinone, 1,5-dimethyl-</td>
<td>721.6176</td>
</tr>
<tr>
<td>86917-92-0</td>
<td>Dipropylene glycol monomethyl ether acetate</td>
<td>712.30(e)</td>
</tr>
<tr>
<td>86910-30-2</td>
<td>Ethanaminium, (bisdimethyl)amino]-N-ethyl-, bromide</td>
<td>721.4090</td>
</tr>
<tr>
<td>90864-29-0</td>
<td>Phenol, 4,4'-oxbis(2,1-ethanedithio)bis</td>
<td>721.5780</td>
</tr>
<tr>
<td>91078-92-8</td>
<td>Fats and glycidic oils, babassu</td>
<td>723.250</td>
</tr>
<tr>
<td>93344-41-9</td>
<td>Fats and glycidic oils, sardine</td>
<td>723.250</td>
</tr>
<tr>
<td>93589-69-6</td>
<td>Phenol, 4,4'(-methylenebisoxycarbonyl)-1,2-ethanediylbis</td>
<td>721.1540</td>
</tr>
<tr>
<td>93705-66-9</td>
<td>Oxirane, 2,2'-[methylenebis(2,6-diethyl-1-phenylene]oxymethylene]bis</td>
<td>721.5580</td>
</tr>
<tr>
<td>94148-67-1</td>
<td>Aromatic ether dimines</td>
<td>721.825</td>
</tr>
<tr>
<td>94213-53-3</td>
<td>2-Naphthalenesulfonic acid, 3-[4-[2,4-dimethyl-6-sulfophenyl]azo]-2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2',2'-nitrilotris [ethanol] (9CI) (9CI)</td>
<td>721.5281</td>
</tr>
<tr>
<td>96478-09-0</td>
<td>2-Propanoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ester</td>
<td>721.8450</td>
</tr>
<tr>
<td>98113-10-1</td>
<td>n-Porphophenylene glycol ester</td>
<td>716.120(d)</td>
</tr>
<tr>
<td>100912-15-0</td>
<td>1,1-Benzamidino-3-ol, 3-methyl</td>
<td>721.9630</td>
</tr>
<tr>
<td>102093-68-5</td>
<td>Mixture of 1,3-benzenediamine, 2-methyl-4,6-bis(methylthio) and benzeneamine, 4-methyl-2,6-bis(methylthio)</td>
<td>721.1525</td>
</tr>
<tr>
<td>103500-64-9</td>
<td>2,7-Naphthalenedisulfonic acid, 4-amino-3-[4-[2-amino-4-[[3-butoxy-2-hydroxypropyl]aminophenyl]azo]-3,3'-dimethyl[1,1''-biphenyl]-4-yl]azo]-5-hydroxy-6-(phenylazo)-, disodium salt</td>
<td>721.5279</td>
</tr>
<tr>
<td>104500-68-6</td>
<td>3,3',9,12,15,18,21 Heptaoxatetraacontanoic acid, sodium salt</td>
<td>721.5400</td>
</tr>
<tr>
<td>10493-85-9</td>
<td>1,3-Benzenediamine, 2-methyl-4,6-bis(methylthio)</td>
<td>721.1525</td>
</tr>
<tr>
<td>106158-22-9</td>
<td>Poly(oxy-1,2-ethanediyl), α-[hydroxy-], ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) di-2-propanoate, methyl ether</td>
<td>721.7680</td>
</tr>
<tr>
<td>106790-31-2</td>
<td>Benzeneamine, 4-oxo-4-isocyanato-N,N-bis(4-isocyanatophenyl)-2,5-dimethoxy-</td>
<td>721.1068</td>
</tr>
<tr>
<td>111109-77-4</td>
<td>Dipropylene glycol dimethyl ether</td>
<td>721.3550</td>
</tr>
<tr>
<td>111381-89-6</td>
<td>Di(hexyl, nonyl) phthalate (branched and linear isomers)</td>
<td>799.5025</td>
</tr>
<tr>
<td>111381-90-9</td>
<td>Di(hexyl, undecyl) phthalate (branched and linear isomers)</td>
<td>799.5025</td>
</tr>
<tr>
<td>111381-91-0</td>
<td>Di(nonyl, undecyl) phthalate (branched and linear isomers)</td>
<td>799.5025</td>
</tr>
<tr>
<td>CAS Number</td>
<td>Name(s) Used in Regulations</td>
<td>40 CFR Cites</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>114719-15-2</td>
<td>Ethanol, 2,2′-[1-(2-propanoyloxy)ethyl]-1,2-ethanediylbis(oxy)bis-[4-methylbenzenesulfonate]</td>
<td>721.1630</td>
</tr>
<tr>
<td>114719-16-6</td>
<td>1,2-Propanediol, 3-(2-propenoyloxy)-, bis[4-methylbenzenesulfonate]</td>
<td>721.1637</td>
</tr>
<tr>
<td>115361-68-7</td>
<td>Dimethallyl dimethallyl sulfoxide</td>
<td>721.8375</td>
</tr>
<tr>
<td>115965-75-8</td>
<td>2-Propenoic acid, 2(2-oxo-3-oxazolidinyl)ethyl ester</td>
<td>721.9577</td>
</tr>
<tr>
<td>118716-61-3</td>
<td>Chromate(3-), bis[7-(aminohydroxyphenylazo)-3-[5-(aminosulfonyl)-2-hydroxyphenylazo]-4-hydroxy-7-[2-hydroxy-1(phenylamino)carbonyl]-1-propanoyl-2-naphthalenesulfonato(3-)], trisodium (9CI)</td>
<td>721.9576</td>
</tr>
<tr>
<td>118716-62-4</td>
<td>Chromate(3-), bis[7-(aminohydroxyphenylazo)-3-[5-(aminosulfonyl)-2-hydroxyphenylazo]-4-hydroxy-2-naphthalene sulfonato (3-)], trisodium (9CI)</td>
<td>721.9575</td>
</tr>
<tr>
<td>119535-63-6</td>
<td>Chromate(3-), bis[3-[5-(aminosulfonyl)-2-hydroxyphenylazo]-4-hydroxy-7-[2-oxo-1(phenylamino)carbonyl]-1-propenylazo]-2-naphthalenesulfonato(3-)], trisodium (9CI)</td>
<td>721.9574</td>
</tr>
<tr>
<td>120547-52-6</td>
<td>Alkyl (12-13) glycidyl ether</td>
<td>799.5000</td>
</tr>
<tr>
<td>120962-03-0</td>
<td>Canola oil</td>
<td>723.2500</td>
</tr>
<tr>
<td>121776-57-6</td>
<td>3-(Dichloroacetyl)-5-(2-furanyl)-2,2-dimethyl-oxazolidine</td>
<td>721.5545</td>
</tr>
<tr>
<td>124028-99-5</td>
<td>2-Propanol, 1-[2-[2-[(4-methylphenyl)sulfonyl]oxy]ethoxy]-3-[2-propenyloxy]-, 4-methylbenzenesulfonate</td>
<td>721.1637</td>
</tr>
<tr>
<td>124213-39-4</td>
<td>2-Propanol, 1-[2-[(4-methylphenyl)sulfonyl]oxy]ethoxy]-3-[2-propenyloxy]-, 4-methylbenzenesulfonate</td>
<td>721.1637</td>
</tr>
<tr>
<td>124737-31-1</td>
<td>Benzenediazonium, 4-(dimethylamino)-, salt with 2-hydroxy-5-sulfobenzoic acid (1:1)</td>
<td>721.5550</td>
</tr>
<tr>
<td>124993-63-1</td>
<td>Hydrazine, [4-(1-methylbutoxy)phenyl]-, monohydrochloride)</td>
<td>721.4260</td>
</tr>
<tr>
<td>125304-11-2</td>
<td>Poly(oxy-1,2-ethanediyl), α--(1-oxo-2-propenyl)--ω-hydroxy-, C(10-16)-alkyl ether</td>
<td>721.7760</td>
</tr>
<tr>
<td>126213-50-1</td>
<td>Thieno[3,4-b]-1,4-dioxin, 2,3-dihydro- (9CI)</td>
<td>721.9662</td>
</tr>
<tr>
<td>126505-35-9</td>
<td>2,4,8-Tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-bis[2,4,6-tris(1,1-dimethylethyl)phenoxy]-</td>
<td>721.9850</td>
</tr>
<tr>
<td>127087-87-0</td>
<td>Nonylphenol polyethylene glycol ether</td>
<td>721.1630</td>
</tr>
<tr>
<td>127933-59-1</td>
<td>Phosphoric acid, C(6-12)-alkyl esters, compound with 2-(dibutylamino)ethanol</td>
<td>721.5550</td>
</tr>
<tr>
<td>130097-33-5</td>
<td>Aromatic ether diamines</td>
<td>721.8250</td>
</tr>
<tr>
<td>130169-66-3</td>
<td>Benzenamine, 2,5-dibutoxy-4-(4-morpholinyl)-, sulfate</td>
<td>721.1050</td>
</tr>
<tr>
<td>130277-45-1</td>
<td>Piperazinone, 1,1′,1′′-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl]-</td>
<td>721.6160</td>
</tr>
<tr>
<td>130728-76-6</td>
<td>Oxiranemethanamine, N, N′-[methylenebis(2-ethyl-4,1-phenylene)]bis[N-oxiranylmethyl]-</td>
<td>756.5250</td>
</tr>
<tr>
<td>132707-86-3</td>
<td>Phosphinothioic acid, bis[2,4,6-tris(1,1,3,3-tetramethylbutyl)phenyl]phosphonic acid and diazotized 2,5-diethoxybenzenamine</td>
<td>721.6045</td>
</tr>
<tr>
<td>133145-29-6</td>
<td>1 H -Benzotriazole, 5-(pentyloxy)-</td>
<td>721.1750</td>
</tr>
<tr>
<td>134701-20-5</td>
<td>Phenol, 2,4-dimethyl-6-(1-methylpentadecyl)-</td>
<td>721.5725</td>
</tr>
<tr>
<td>138495-42-8</td>
<td>Pentane 1,1,1,2,3,4,4,5,5,5-decafluoro</td>
<td>721.9575</td>
</tr>
<tr>
<td>142844-00-6</td>
<td>Refractory ceramic fiber</td>
<td>721.2090, 799.5000</td>
</tr>
<tr>
<td>147730-36-1</td>
<td>Benzene, 1,2-alkyl esters, compound with 2-(dibutylamino)ethanol</td>
<td>721.6100</td>
</tr>
<tr>
<td>162245-07-0</td>
<td>Methanone, [5-[3-(2H-benzotriazol-2-yl)-2-hydroxy-5-(1,1,3,3-tetramethylbutyl)phenoxy]phenyl]methoxy-4-hydroxy-2-naphthalene sulfonato(3-)], trisodium (9CI)</td>
<td>721.4865</td>
</tr>
<tr>
<td>163879-69-4</td>
<td>Benzoic acid, 3-amino-, diazotized, coupled with 1,2-dihydrox-2-naphthalenesulfonato, diazotized, (3-amino)phenyl(phosphonic acid and diazotized 2,5-dihydroxybenzenamine</td>
<td>721.1705</td>
</tr>
<tr>
<td>164383-18-0</td>
<td>Cycloloxanamine, N,N-dimethyl, compd. with alpha-isotridecyl-2-hydroxy(poly(oxy-1,2-ethanediyl)ester)</td>
<td>721.2222</td>
</tr>
</tbody>
</table>
40 CFR (7–1–99 Edition)
CHEMICALS IN CAS NUMBER ORDER—CONTINUED

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Name(s) Used in Regulations</th>
<th>40 CFR Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>174254-18-3</td>
<td>Poly(oxy-1,2-ethanediyl), alpha, alpha'-[thiobis(1-oxo-3,1-propanediyl)]bis(ω-hydroxy-, bis(C₁₁±15 and C₁₁±15±isoalkyl) ethers)</td>
<td>721.9663</td>
</tr>
<tr>
<td>17433-80-3</td>
<td>Benzaldehyde, 2-hydroxy-5-nonyl-, oxime, branched</td>
<td>721.528</td>
</tr>
<tr>
<td>177771-31-2</td>
<td>Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H₄SiO₄)</td>
<td>721.3635</td>
</tr>
<tr>
<td>182238-09-1</td>
<td>2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-, coupled with diazotized 4-butylbenzenamine, diazotized 4,4'-cyclohexyldenedi[b]enamine and m-phenylenediamine, sodium salt</td>
<td>721.5280</td>
</tr>
<tr>
<td>182635-99-0</td>
<td>Siloxanes and silicones, Me hydrogen, reaction products with 2,2,6,6-tetramethyl-4-(2-propenyloxy)piperidine</td>
<td>721.6170</td>
</tr>
<tr>
<td>184719-88-8</td>
<td>Poly(oxy-1,2-ethanediyl), α-sulfos-[1-[4-nonylphenoxy(2-)]-2-(2-propenyloxy)ethoxy], branched, ammonium salts</td>
<td>721.539</td>
</tr>
<tr>
<td>186321-96-2</td>
<td>Benzene, 1,1'-methylenebis(4-isocyanato-), homopolymer, Bu alcoholic blocked</td>
<td>721.2535</td>
</tr>
<tr>
<td>189120-62-5</td>
<td>Amines, N-tallowalkyltripropyleneetra-, citrates</td>
<td>721.7286</td>
</tr>
<tr>
<td>189120-63-6</td>
<td>Amines, N-cocasyalkytrimethylene-, citrates</td>
<td>721.7285</td>
</tr>
<tr>
<td>189354-73-2</td>
<td>Siloxanes and silicones, 3-(2-aminomethyl) amino)propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal ether</td>
<td>721.9516</td>
</tr>
</tbody>
</table>
List of CFR Sections Affected

All changes in this volume of the Code of Federal Regulations which were made by documents published in the Federal Register since January 1, 1986 are enumerated in the following list. Entries indicate the nature of the changes effected. Page numbers refer to Federal Register pages. The user should consult the entries for chapters and parts as well as sections for revisions.

Title 40 was established at 36 FR 12213, June 29, 1971. For the period before January 1, 1986, see the “List of CFR Sections Affected, 1964-1972 and 1973-1985”, published in six separate volumes.

<table>
<thead>
<tr>
<th>1986</th>
<th>40 CFR—Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>790.32</td>
<td>Redesignated as 790.52 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.35</td>
<td>Redesignated as 790.55 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.39</td>
<td>Redesignated as 790.59 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.20—790.28 (Subpart B)</td>
<td>Added; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.40—790.59 (Subpart C)</td>
<td>Redesignated from 790.20—790.39 (Subpart B and heading revised; interim eff. 7-30-86)</td>
</tr>
<tr>
<td>790.40</td>
<td>Redesignated from 790.20 and (a) revised and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.42</td>
<td>Redesignated from 790.22 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.45</td>
<td>Redesignated from 790.25 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.48</td>
<td>Redesignated from 790.28 and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.50</td>
<td>Redesignated from 790.30 and (a) (1) and (2) revised and nomenclature change; interim eff. 7-30-86</td>
</tr>
<tr>
<td>790.52</td>
<td>Redesignated from 790.32 and nomenclature change; interim eff. 7-30-86</td>
</tr>
</tbody>
</table>
40 CFR (7–1–99 Edition)

40 CFR—Continued

Chapter I—Continued
790.55 Redesignated from 790.35 and nomenclature change; interim eff. 7–30–86 23713
790.59 Redesignated from 790.39 and nomenclature change; interim eff. 7–30–86 23713
790.60—790.68 (Subpart D) Added; interim eff. 7–30–86 23715
790.80—790.99 (Subpart E) Heading revised; interim eff. 7–30–86 23717
Appendix A added; interim eff. 7–30–86 23717
791 Authority citation revised 6414
792 Authority citation revised 6414
795 Added 40327
799 Petition denied 30216
799.19 Added; interim eff. 7–30–86 23718
Meetings 41331
799.940 Added 33052
799.1051 Added 24666
799.1052 Added 11736
(a)(3), (b)(5), and (d) added; OMB number 24667
799.1053 Added 11737
(d)(5)(i) corrected 18444
(a)(3), (b)(5), and (e) added 24667
799.1054 Added 24667
799.1250 Added 15782
799.1550 Added 32087
799.1575 (c)(2)(i)(C) corrected 3468
(c)(2)(II)(D) corrected 4736
799.1650 Added 40330
799.2200 Technical correction 3048
799.2500 (a) corrected 1793
799 (Subpart C) Heading added; interim eff. 7–30–86 23718
Meetings 41331
Chapter V
1502.22 Revised 15625
Technical correction 16846

1987

40 CFR

Chapter I
790.50 (a)(2)(ii) removed; interim 36569
790.52 (c) revised; interim 36569
790.55 (b) revised; (c) added; interim 36571
790.68 (b) (2) and (3) revised; interim 36571
795 Authority citation revised 37143

40 CFR—Continued

Chapter I—Continued
795.45 (Subpart B) Added; eff. 7–20–87 21026
(b)(1)(ii) Table 1 corrected 32990
795.120 Added; eff. 8–14–87 24462
795.223 (c)(2)(ii)(C) revised 24157
795.230 Added 37143
795.235 Added; eff. 7–13–87 19068
795.285 Added; eff. 7–6–87 19068
795.1590 (b)(1) (ii), (iii), (iv), (vi), (ix)(A), and (xi), (2)(i) (A) and (C), and (3)(vi) amended; (b)(1) (vii), (viii), (x)(D) and (3) (iv) and (ix) revised 19057
(b)(3)(ix) corrected 26150
795.1940 (b)(1) (ii), (v), (vi)(A), (vii), and (ix), (2)(ii), and (3)(i)(B) and (ii)(B) amended; (b)(1)(vi)(B) and (3)(i)(A) revised 19057
(b)(1)(vi)(A) corrected 26150
795.1960 (b)(1)(i)(A), (ii) and (iv) and (2)(ii) amended; (b)(1) (iii) and (v) revised 19058
795.2750 (b)(1)(i)(B), (ii), (iii), (iv), (v) introductory text, and (vii) amended; (b)(1) (vi) and (x) revised 19058
795.3100 (a) (4) and (6), (b)(1)(iii) and (2)(ii) and (c)(1) (iv) and (v) and (2)(ii) amended; (b)(2)(vi) revised 19058
795.3140 (a) (3) and (5), (b)(1)(i)(C), (2)(ii)(B) and (G) and (3)(i) amended; (c)(2) introductory text added 19058
797.1050 (c)(4) (iii) and (v), (6)(i)(A), (d) (1), (2) (iii) and (vi), and (3) (ii) and (v), and (e) introductory text amended 19058
(c)(4) (ii), (iv), and (v)(B) introductory text, (d)(2)(v)(A), (3) (i), (iii), and (iv) and (e) (4) and (5) revised 19058
797.1300 (c)(4) (iii) and (v), (d)(1)(i)(C) and (iv), (2)(i) (A) and (C), (iii) (B) and (C) and (3), and (e) introductory text amended 19059
(c)(4) (ii), (iv), (v), (vii), and (viii) and (6) (i) and (ii), (d)(1)(i)(B), (ii)(A), (iii)(A), (2) (iv) and (v), (3) (i), (iii), (iv) and (e)(4) revised 19059

454
40 CFR—Continued

Chapter I—Continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Amended/Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>797.1330</td>
<td>Heading corrected</td>
</tr>
<tr>
<td>797.1400</td>
<td>(c)(4)(iii) and (5) and (d)(1)(iii)(A) and (C) and (3)(ii) amended; (c)(4)(ii), (iv), and (v), (6)(i) (B) and (C) and (iii) (A), (C), (G), and (H) and (d)(2)(i), (3) (i) and (iv), and (e)(7) revised</td>
</tr>
<tr>
<td>797.1520</td>
<td>(c)(4)(i), (ii)(B), (iii)(C), (v)(B), (vi), (vii)(C), and (5) (i) and (ii)(i), (d)(1)(i) (A), (C) and (D) and (iv), (2)(i)(A), and (3)(i) and (e) amended</td>
</tr>
<tr>
<td>797.1600</td>
<td>(c)(3)(iii) introductory text and (A), (4)(i)(A), (iii)(iv), (vii), (ix) and (x) (D), (E) and (G), (5) (i), introductory text and (ii)(D) and (6)(iii), (d)(1)(i) introductory text and (B), (2)(ii)(C) and (iii)(A), (iv)(C) and (vii)(C) and (3) (i) and (iv) (A), (B) and (C) amended</td>
</tr>
<tr>
<td>797.1800</td>
<td>(c)(4)(iv)(B), (iii)(D), (E), (ii)(B), (vi)(A), (vii), (x) (A), (B), and (F) and (6) (i)(ii), (iii)(A), and (v)(B) and (C), (d)(1)(i)(A), (2)(iv)(A), (vii)(A) (3), (2) and (3) and (3)(ii)(B), (iii)(B), and (iv)(E) and (e) introductory text revised</td>
</tr>
<tr>
<td>797.1830</td>
<td>(c)(4) (i), (vii), (x), (4)(i)(A), (iii)(B), (vii), and (viii), (6)(i)(A), (ii)(ii), and (10) (i) and (v) and (3)(i), and (e)(8) revised</td>
</tr>
<tr>
<td>797.1930</td>
<td>(c)(3)(iii), (4)(i) (D) and (E), (vi), (vii), (ix), and (x), (6) (i) and (ii), (d)(1)(i)(B), (2)(iv) and (3)(i) and (iii), and (e)(7) revised</td>
</tr>
<tr>
<td>797.1950</td>
<td>(c)(6)(i) and (ii) corrected</td>
</tr>
<tr>
<td>798.2250</td>
<td>(e)(1) (ii), (iii), and (v), (2), (6)(i), (8), (9)(ii), (iii)(v), (v), and (vi), (10)(i) introductory text and (ii)(A), (11), and (12) and (f)(1)(i) and (3) introductory text and (A) and (B) amended</td>
</tr>
</tbody>
</table>
List of CFR Sections Affected

40 CFR—Continued

Chapter I—Continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>798.5450 (d)(3)(ii) and (iv) and (4) and (f)(2) and (5) amended; (d)(3)(iii) and (5)(i) and (ii) and (f)(l)(i) revised; (f)(5)(vi) removed; (f)(5)(vii) and (viii) redesignated as (f)(5)(vi) and (vii); new (f)(5)(vi) revised</td>
<td>19881</td>
</tr>
<tr>
<td>798.5460 (d)(3)(ii) and (iv) and (4), (e)(2) introductory text, and (f)(1), (2), and (5) amended; (d)(5)(i) and (ii) and (e)(1) revised</td>
<td>19882</td>
</tr>
<tr>
<td>798.6050 (d)(1)(ii) and (iii)(B), (3), and (8)(ii) amended; (d)(2) and (8)(i) and (e)(3) revised</td>
<td>20713</td>
</tr>
<tr>
<td>798.6200 (d)(1)(iii)(B) amended</td>
<td>26477</td>
</tr>
<tr>
<td>798.6400 (d)(1)(i) and (iii) and (8)(ii)(C), (iii), and (iv)(B) and (e) introductory text and (1) amended</td>
<td>31969</td>
</tr>
<tr>
<td>799 Petition denied</td>
<td>3238</td>
</tr>
<tr>
<td>799.500 Added; eff. 7-20-87</td>
<td>37144</td>
</tr>
<tr>
<td>799.925 (c)(1)(ii), (2)(ii), (3)(ii), and (4)(ii), (d)(1)(ii) and (2)(ii), and (e) revised; (c)(1)(ii), (2)(ii), (3)(ii) and (4)(ii) and (d)(1)(ii), (2)(ii), (3)(ii) and (4)(ii) and (d)(2) and (3); eff. 7-17-87</td>
<td>32990</td>
</tr>
<tr>
<td>799.940 (a)(3) and (c)(1)(ii)(K)(1)(ii) and (L)(1) revised</td>
<td>37246</td>
</tr>
<tr>
<td>799.1052 (d)(1)(ii)(C) added</td>
<td>41038</td>
</tr>
<tr>
<td>799.1053 (c) removed; (d)(1)(ii), (iii), (2)(ii), (iii), (3)(ii), (iii), (4)(ii), (iii), (5)(ii), (iii) and (g) added; eff. 8-14-87</td>
<td>44665</td>
</tr>
<tr>
<td>799.1054 (c)(2)(ii)(A) revised</td>
<td>47393</td>
</tr>
<tr>
<td>799.1250 (c)(1)(ii) and (iii), (2)(ii) and (iii), (3)(ii) and (iii), (4)(ii) and (iii) and (d)(5)(i) and (ii) and (e)(1) revised</td>
<td>45739</td>
</tr>
<tr>
<td>799.1550 (b)(1) revised; (b)(5), (c)(1)(i) and (ii), (2)(i) and (ii), (3)(ii) and (iii), (4)(ii) and (iii) and (5), (d)(1)(i) and (ii), (2)(i) and (iii), (3)(i) and (ii) and (4)(i) and (iii) and (e) added</td>
<td>47393</td>
</tr>
<tr>
<td>799.1575 (c)(1)(ii), (2)(ii), (3)(ii), and (4)(ii), (d) and (e) revised; (c)(3)(iii), (2)(iii), (3)(iii), and (4)(iii) and (f) added</td>
<td>50109</td>
</tr>
<tr>
<td>799.1645 A added</td>
<td>51240</td>
</tr>
<tr>
<td>799.1700 (c)(2)(ii)(C) and (3) revised</td>
<td>53326</td>
</tr>
</tbody>
</table>

1988

40 CFR

Chapter I

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>790.5 (b) revised; (c) removed</td>
<td>10391, 12525</td>
</tr>
<tr>
<td>795.54 Added; eff. 7-29-88</td>
<td>22320</td>
</tr>
<tr>
<td>795.70 Added</td>
<td>35709</td>
</tr>
<tr>
<td>795.1550 (b)(1)(iii) amended; 10391, 12525</td>
<td></td>
</tr>
<tr>
<td>795.1570 (b)(1)(ii) amended</td>
<td>12525</td>
</tr>
<tr>
<td>796.1550 (b)(1)(iii) amended</td>
<td>12525</td>
</tr>
<tr>
<td>796.1570 (b)(1)(ii) amended</td>
<td>12525</td>
</tr>
<tr>
<td>796.1950 (b)(1)(iii) amended</td>
<td>12525</td>
</tr>
<tr>
<td>796.3140 (b)(2)(i)(B) introductory text, (C), (G), (I), (L) and (J) corrected</td>
<td>26477</td>
</tr>
<tr>
<td>796.3260 (b)(2)(i)(B) introductory text, (C), (G), (I), (L) and (J) corrected</td>
<td>37144</td>
</tr>
<tr>
<td>796.3450 (b)(2)(i)(B) introductory text, (C), (G), (I), (L) and (J) corrected</td>
<td>49149</td>
</tr>
</tbody>
</table>

457
List of CFR Sections Affected

40 CFR—Continued

Chapter I—Continued

798.2450 (d)(9), (10)(v), (11)(ii)(B), and (e)(3)(iv)(D) amended 21064
798.2450 (e)(8)(v), (10)(iii), and (f)(3)(ii)(D) amended .. 21064
798.2650 (b)(6)(iii)(C), (7)(vi), and (c)(3)(i)(B)(4) amended .. 21064
798.3260 (b)(6)(iii)(A), and (C), (b)(7)(v), and (c)(3)(i)(B)(4) amended 21064
798.3260 (f)(3)(iii)(E) amended ... 21064
798.3300 (b)(6)(iii)(A), and (C), (b)(7)(v), and (c)(3)(i)(B)(4) amended 21064
798.3300 (f)(3)(iii)(E) amended ... 21064
798.7100 (c)(2)(i), (2)(ii), (2)(iv), (3), (5), (ii)(A), (5)(iv)(A), and (e) amended 21064
799.2700 Added .. 37808
799.2325 (c)(1)(ii), (2)(ii), (3)(ii), (4)(ii) and (iii)(A) revised ... 27358
799.2325 (c)(5)(i)(D), (ii)(A)(1), (ii)(A)(2)(iv), (ii)(A)(2)(iii), and (ii)(A) revised 27357
799.2450 (a)(4) through (b) added ... 18884
799.500 Second (d) redesignated as (e); (c)(2)(iii)(A)(2)(ii)(A), (ii)(A), (3)(ii)(A), (5)(ii)(A), and new (e) revised; (c)(2)(i)(B)(4) added ... 7324
799.925 (c)(3)(ii) and (e) revised ... 7325
799.1053 (d)(4)(iii)(A) and (g) revised .. 7325
799.1285 (d)(1)(i), (ii)(A), (e)(1)(ii)(A) and (g) revised ... 7325
799.1550 (c)(4)(ii), (d)(4)(iii)(A) and (e) revised ... 7325
799.1560 (c)(2)(ii)(A) and (e) revised .. 7325
799.1805 (c)(4) removed; (d)(3) and (f) revised .. 3408
799.1975 (c)(4)(iii), (d)(2), (3) and (f) revised .. 7326
799.2175 (c)(8) added; (d) revised ... 634
799.2200 (c)(2)(ii), (3)(ii), (4)(i) and (iv)(A) revised .. 27358
799.2255 A added ... 43161
799.2270 A added ... 37808
799.2325 Technical correction ... 49844
799.2325 A added ... 49294
799.2675 (b)(6)(iii)(C), (7)(vi), and (c)(3)(i)(B)(4) amended ... 21064
799.4000 (c)(1)(i)(B), (2)(ii)(A), (d)(2)(ii)(A), (2)(ii)(A), and (e)(3)(iv)(D) revised 27358
799.4360 A added ... 33413
799.4440 A added ... 13477
799.5000 Table amended .. 620
799.5055 (c) table amended ... 821,
40 CFR (7–1–99 Edition)

4 CFR—Continued

Chapter I—Continued

4 CFR—Continued

Chapter I—Continued

1991

40 CFR

Chapter I

1992

40 CFR

Chapter I

1993

40 CFR

Chapter I

1994

40 CFR

Chapter I

Clarification

(7–1–99 Edition)
40 CFR (7–1–99 Edition)

1996

<table>
<thead>
<tr>
<th>40 CFR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799.1285 Corrected</td>
<td>33044</td>
</tr>
<tr>
<td>799.2500 Removed</td>
<td>33376</td>
</tr>
<tr>
<td>799.5000 Table amended</td>
<td>11742, 29487</td>
</tr>
<tr>
<td>799.5075 (a)(1), (c)(1)(i)(A), (2)(i)(A) and (d)(1) revised</td>
<td>7223</td>
</tr>
<tr>
<td>(c)(1)(ii)(A) and (d) revised</td>
<td>37686</td>
</tr>
</tbody>
</table>

1997

<table>
<thead>
<tr>
<th>40 CFR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799.1 (d) added</td>
<td>43824</td>
</tr>
<tr>
<td>799.5000 Table amended</td>
<td>2611, 28368</td>
</tr>
<tr>
<td>799.5075 (c)(1)(i)(A) and (d) revised</td>
<td>35105</td>
</tr>
<tr>
<td>799.9135–799.9780 (Subpart H) Added</td>
<td>43824</td>
</tr>
</tbody>
</table>

1998

<table>
<thead>
<tr>
<th>40 CFR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799.9346 Heading, (d), (e)(1)(i)(B), (iv)(A), (v)(E), (v)(F), (12) and (15)(l)(D) revised; (f)(3)(i)(D) and (E) added</td>
<td>35077</td>
</tr>
<tr>
<td>799.9380 (e)(4)(i)(D), (9) and (f)(3)(vi) revised</td>
<td>35078</td>
</tr>
<tr>
<td>799.9420 (d)(5)(ii)(C), (D), (iii)(G), (7)(iv), (9)(i), (iii)(D)(5), (10)(ii) and (iv) revised; (d)(9)(iii)(F)(8), (e)(3)(i)(B)(4), (5) and (4)(ii)(J) added; (d)(9)(iii)(A)(13), (iii)(E)(6), (G)(1), (2), (4), (6) and (10)(i)(D) removed; (d)(9)(iii)(G)(3) and (5) redesignated as (d)(9)(iii)(G)(1) and (2)</td>
<td>35078</td>
</tr>
<tr>
<td>799.9510 (e)(2)(ii)(B) introductory text, (ii)(A) and (f)(3) introductory text revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9538 (e)(2)(ii)(B) revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9539 (e)(2)(ii)(A), (3)(iii), (f)(2)(ii) and (3) introductory text revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9620 (e)(3)(i) revised</td>
<td>35080</td>
</tr>
</tbody>
</table>

1999

<table>
<thead>
<tr>
<th>40 CFR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799.9346 (Regulations published from January 1, 1999 through July 1, 1999)</td>
<td>25134</td>
</tr>
</tbody>
</table>

40 CFR

1998

<table>
<thead>
<tr>
<th>40 CFR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799.9346 Heading, (d), (e)(1)(ii)(B), (iv)(A), (v)(E), (v)(F), (12) and (15)(l)(D) revised; (f)(3)(i)(D) and (E) added</td>
<td>35077</td>
</tr>
<tr>
<td>799.9380 (e)(4)(i)(D), (9) and (f)(3)(vi) revised</td>
<td>35078</td>
</tr>
<tr>
<td>799.9420 (d)(5)(ii)(C), (D), (iii)(G), (7)(iv), (9)(i), (iii)(D)(5), (10)(ii) and (iv) revised; (d)(9)(iii)(F)(8), (e)(3)(i)(B)(4), (5) and (4)(ii)(J) added; (d)(9)(iii)(A)(13), (iii)(E)(6), (G)(1), (2), (4), (6) and (10)(i)(D) removed; (d)(9)(iii)(G)(3) and (5) redesignated as (d)(9)(iii)(G)(1) and (2)</td>
<td>35078</td>
</tr>
<tr>
<td>799.9510 (e)(2)(ii)(B) introductory text, (ii)(A) and (f)(3) introductory text revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9538 (e)(2)(ii)(B) revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9539 (e)(2)(ii)(A), (3)(iii), (f)(2)(ii) and (3) introductory text revised</td>
<td>35079</td>
</tr>
<tr>
<td>799.9620 (e)(3)(i) revised</td>
<td>35080</td>
</tr>
</tbody>
</table>

Chapter VII Established | 25134