§ 180.1 DEFINITIONS AND INTERPRETATIONS

(a) Administrator, without qualification, means the Administrator of the Environmental Protection Agency.

(b) Agency, without qualification, means the Environmental Protection Agency.

(d) Raw agricultural commodities include, among other things, fresh fruits, whether or not they have been washed and colored or otherwise treated in their unpeeled natural form; vegetables in their raw or natural state, whether or not they have been stripped of their outer leaves, waxed, prepared into fresh green salads, etc.; grains, nuts, eggs, raw milk, meats, and similar agricultural produce. It does not include foods that have been processed, fabricated, or manufactured by cooking, freezing, dehydrating, or milling.

(e) Where a raw agricultural commodity bearing a pesticide chemical residue that has been exempted from the requirement of a tolerance, or which is within a tolerance permitted under FFDCA section 408, is used in preparing a processed food, the processed food will not be considered unsafe within the meaning of FFDCA sections 402 and 408(a), despite the lack of a tolerance or exemption for the pesticide chemical residue in the processed food, if:

1. The pesticide chemical has been used in or on the raw agricultural commodity in conformity with a tolerance under this section;
2. The pesticide chemical residue has been removed to the extent possible in good manufacturing practice; and
3. The concentration of the pesticide chemical residue in the processed food is not greater than the tolerance prescribed for the pesticide chemical residue on the raw agricultural commodity.

(f) For the purpose of computing fees as required by §180.33, each group of related crops listed in column A apply to the corresponding specific raw agricultural commodities listed in column B. However, a tolerance or exemption for a specific commodity in column B does not apply to the general category of raw agricultural commodities listed in column A.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Medicago sativa, (alfalfa, lucerne); Onobrychis vicicifolia (sainfoin, holy clover, espardel); and Lotus corniculatus (birdsfoot trefoil); and varieties and/or hybrids of these.</td>
</tr>
<tr>
<td>Bananas</td>
<td>Bananas, plantains.</td>
</tr>
<tr>
<td>Beans</td>
<td>Cicer arietinum (chick peas, garbanzo beans); Lupinus spp. (including sweet lupine, white sweet lupine, white lupine, and grain lupine); Phaseolus spp. (including kidney beans, lima beans, mung beans, navy beans, pinto beans, snap beans, and wax beans); Vicia faba (broad beans, fava beans); Vigna spp. (including asparagus beans, blackeyed peas and cowpeas).</td>
</tr>
<tr>
<td>Beans (dry)</td>
<td>All beans above in dry form only.</td>
</tr>
<tr>
<td>Beans (succulent)</td>
<td>All beans above in succulent form only.</td>
</tr>
<tr>
<td>Blackberries</td>
<td>Rubus eubatus (including bingeberrries, black satiny berries, boysenberries, Cherokee blackberries, Chesterberries, Cheyenne blackberries, coryberries, darrowberries, dewberries, Dirksen thornless berries, Himalayaberries, huckleberries, Lavacabberries, lowberries, Luzuletaberries, mammoth blackberries, maronberries, nectarberries, ooladieberries, Oregon evergreen berries, phenomelnaberries, rangerberries, ravenberries, rosberries, Shawnee blackberries, and varieties and/or hybrids of these).**</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Broccoli, chinese broccoli (ga bin, white flowering broccoli).</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Cabbage, Chinese cabbage (tight-heading varieties only).</td>
</tr>
<tr>
<td>Caneberries</td>
<td>Rubus spp. (including blackberries; Rubus castaneus (youngberry); Rubus loganbaccus (loganberry); Rubus occidentalis; idaeus, and strigosus (red and black raspberries); and varieties and/or hybrids of these).**</td>
</tr>
<tr>
<td>Celery</td>
<td>Celery, Florence fennel (sweet anise, sweet fennel, finochino) (fresh leaves and stalks only).</td>
</tr>
<tr>
<td>Cherries</td>
<td>Sour cherries, sweet cherries.</td>
</tr>
<tr>
<td>Citrus fruits</td>
<td>Grapefruit, lemons, limes, oranges, tangelos, tangerines, citrus citron, kumquats, and hybrids of these.</td>
</tr>
<tr>
<td>Endive</td>
<td>Endive, escarole.</td>
</tr>
</tbody>
</table>
Environmental Protection Agency § 180.1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettuce</td>
<td>Lettuce, head; and lettuce, leaf</td>
</tr>
<tr>
<td>Lettuce, head</td>
<td>Lettuce, head; crisphead varieties only</td>
</tr>
<tr>
<td>Lettuce, leaf</td>
<td>Lettuce, leaf; cos (romaines), butterhead varieties</td>
</tr>
<tr>
<td>Marjoram</td>
<td>Orgianum spp. (includes sweet or annual marjoram, wild marjoram or oregano, and pot marjoram).</td>
</tr>
<tr>
<td>Melons</td>
<td>Cucumis melo (includes true cantaloupe, cantaloupe, casaba, Santa Claus melon, crenshaw melon, honeydew melon, honey balls, Persian melon, golden pelsaw melon, mango melon, pineapple melon, snake melon); and watermelons, including hybrids and/or varieties of (Citrus spp.).</td>
</tr>
<tr>
<td>Muskemelons</td>
<td>Cucumis melo (includes true cantaloupe, cantaloupe, casaba, Santa Claus melon, crenshaw melon, honeydew melon, honey balls, Persian melon, golden pelsaw melon, mango melon, pineapple melon, snake melon, and other varieties and/or hybrids of these.)</td>
</tr>
<tr>
<td>Onions</td>
<td>Dry bulb onions, green onions, and garlic.</td>
</tr>
<tr>
<td>Onions (dry bulbs only)</td>
<td>Garlic, onions (dry bulbs only), shallots (dry bulbs only).</td>
</tr>
<tr>
<td>Oriental radish (root</td>
<td>Green onions, leaks, spring onions or scallions, Japanese bunching onions, green shallots, or green eschalots.</td>
</tr>
<tr>
<td>and tops)</td>
<td></td>
</tr>
<tr>
<td>Peaches</td>
<td>Peaches, nectarines</td>
</tr>
<tr>
<td>Peas</td>
<td>Cajanus caper (includes pigeon peas); Cicer spp. (includes chick peas and garbanzo beans); Lens culinants (lelits); Psium spp. (includes dwarf peas, garden peas, green peas, English peas, field peas, and edible pod peas). [Note: A variety of pesticide tolerances have been previously established for peas and/or beans. Chick peas/garbanzo beans are now classified in both the bean and the pea categories. For garbanzo beans/chick peas ONLY, the highest established peas or bean tolerance will apply to pesticide residues found in this commodity.)</td>
</tr>
<tr>
<td>Peas (dry)</td>
<td>All peas in dry form only.</td>
</tr>
<tr>
<td>Peas (succulent)</td>
<td>All peas in succulent form only.</td>
</tr>
<tr>
<td>Peppers</td>
<td>All varieties of peppers including pimentos and bell, hot, and sweet peppers.</td>
</tr>
<tr>
<td>Rapseed</td>
<td>Brassica napus, B. campestris, and Crambe abyssinica (oilseed-producing varieties only which include canola and crambe.)</td>
</tr>
<tr>
<td>Sorghum (grain)</td>
<td>Sorghum spp. [sorghum (grain), sudangrass (seed crop), and hybrids of these grown for its seed].</td>
</tr>
<tr>
<td>Sorghum (fodder, forage)</td>
<td>Sorghum spp. [sorghum (fodder, forage), sudangrass, and hybrids of these grown for fodder and/or forage].</td>
</tr>
<tr>
<td>Squash</td>
<td>Pumpkins, summer, and winter squash.</td>
</tr>
<tr>
<td>Summer squash</td>
<td>Fruits of the gourd (Cucurbitaceae) family that are consumed when immature, 100% of the fruit is edible either cooked or raw, once picked it cannot be stored, has a soft rind which is easily penetrated, and if seeds were harvested they would not germinate; e.g., Cucubita papo (i.e., crookneck squash, straightneck squash, scallop squash, and vegetable marrow); Lagenaria spp. (i.e., spaghetti squash, hyotan, cucuzza); Luffa spp. (i.e., hechima, Chinese okra); Momordica spp. (i.e., bitter melon, balsam pear, balsam apple, Chinese cucumber); Sechium edule (chayote); and other cultivars and/or hybrids of these.</td>
</tr>
<tr>
<td>Sweet potatoes</td>
<td>Sweet potatoes, yams.</td>
</tr>
<tr>
<td>Tangerines</td>
<td>Tangerines (mandarins or mandarin oranges); tangelos, tangors, and other hybrids of tangerine with other citrus.</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Tomatoes, tomatillos.</td>
</tr>
<tr>
<td>Turnip tops or turnip</td>
<td>Broccoli raab (raab, raab salad), hanover salad, turnip tops (turnip greens).</td>
</tr>
<tr>
<td>greens</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>Wheat, triticale.</td>
</tr>
</tbody>
</table>

(h) Unless otherwise specified, tolerances and exemptions established under the regulations in this part apply to residues from only preharvest application of the chemical.

(1) Unless otherwise specified in this paragraph or in tolerance regulations prescribed in this part for specific pesticide chemicals, the raw agricultural commodity or processed food to be examined for pesticide residues, shall consist of the whole raw agricultural commodity or processed food.

(1) The raw agricultural commodity bananas, when examined for pesticide residues, shall not include any crown tissue or stalk.

(2) Shell shall be removed and discarded from nuts before examination for pesticide residues.

(3) Caps (hulls) shall be removed and discarded from melons before examination for pesticide residues.

(4) Stems shall be removed and discarded from melons before examination for pesticide residues.

(5) Roots, stems, and outer sheaths (or husks) shall be removed and discarded from garlic bulbs and dry bulb onions, and only the garlic cloves and onion bulbs shall be examined for pesticide residues.
(6) Where a tolerance is established on a root vegetable including tops and/or with tops, and the tops and the roots are marketed together, they shall be analyzed separately and neither the pesticide residue on the roots nor the pesticide residue on the tops shall exceed the tolerance level, except that in the case of carrots, parsnips, and rutabagas, the tops shall be removed and discarded before analyzing roots for pesticide residues.

(7) The crowns (leaves at the top of the fruit) shall be removed and discarded from pineapples before examination for pesticide residues.

(8) The term \textit{lima beans} means the beans and the pod.

(9) The term \textit{peanuts} means the peanut meat after removal of the hulls.

(10) For processed foods consisting primarily of one ingredient and sold in a form requiring further preparation prior to consumption (e.g., fruit juice concentrates, dehydrated vegetables, and powdered potatoes), the processed food to be examined for residues shall be the whole processed commodity after compensating for or reconstituting to the commodity's normal moisture content, unless a tolerance for the concentrated or dehydrated food form is included in this part. If there exists a tolerance for a specific pesticide on the processed food in its concentrated or dehydrated food form, for the purpose of determining whether the food is in compliance with that tolerance, the processed food to be examined for residues shall be the whole processed commodity on an “as is” basis.

(j) The term \textit{pesticide chemical} shall have the meaning specified in FFDCA section 201(q)(1), as amended, except as provided in §180.4.

(k) The term \textit{negligible residue} means any amount of a pesticide chemical remaining in or on a raw agricultural commodity or group of raw agricultural commodities that would result in a daily intake regarded as toxicologically insignificant on the basis of scientific judgment of adequate safety data. Ordinarily this will add to the diet an amount which will be less than 1/2,000th of the amount that has been demonstrated to have no effect from feeding studies on the most sensitive animal species tested. Such toxicity studies shall usually include at least 90-day feeding studies in two species of mammals.

(l) The term \textit{nonperishable raw agricultural commodity} means any raw agricultural commodity not subject to rapid decay or deterioration that would render it unfit for consumption. Examples are cocoa beans, coffee beans, field-dried beans, field-dried peas, grains, and nuts. Not included are eggs, milk, meat, poultry, fresh fruits, and vegetables such as onions, parsnips, potatoes, and carrots.

(m) The term \textit{tolerance with regional registration} means any tolerance which is established for pesticide residues resulting from the use of the pesticide pursuant to a regional registration. Such a tolerance is supported by residue data from specific growing regions for a raw agricultural commodity. Individual tolerances with regional registration are designated in separate subsections in 40 CFR 180.101 through 180.999, as appropriate. Additional residue data which are representative of the proposed use area are required to expand the geographical area of usage of a pesticide on a raw agricultural commodity having an established “tolerance with regional registration.” Persons seeking geographically broader registration of a crop having a “tolerance with regional registration” should contact the appropriate EPA product manager concerning additional residue data required to expand the use area.

(n) The term \textit{pesticide chemical residue} shall have the meaning specified in FFDCA section 201(q)(2), as amended, except as provided in §180.4.

(o) The term \textit{food commodity} means:

(1) Any raw agricultural commodity (food or feed) as defined in section 201(r) of the Federal Food, Drug, and Cosmetic Act (FFDCA); and

(2) Any processed food or feed as defined in section 201(gg) of the FFDCA.

[36 FR 22540, Nov. 25, 1971]

Editorial Note: For Federal Register citations affecting §180.1, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on GPO Access.
Environmental Protection Agency

§ 180.3 Tolerances for related pesticide chemicals.

(a) Pesticide chemicals that cause related pharmacological effects will be regarded, in the absence of evidence to the contrary, as having an additive deleterious action. (For example, many pesticide chemicals within each of the following groups have related pharmacological effects: Chlorinated organic pesticides, arsenic-containing chemicals, metal-dithiocarbamates, cholinesterase-inhibiting pesticides.)

(b) Tolerances established for such related pesticide chemicals may limit the amount of a common component (such as As$_2$O$_3$) that may be present, or may limit the amount of biological activity (such as cholinesterase inhibition) that may be present, or may limit the total amount of related pesticide chemicals (such as chlorinated organic pesticides) that may be present.

(c)(1) Where tolerances for inorganic bromide in or on the same raw agricultural commodity are set in two or more sections in this part (example: §§180.123 and 180.199), the overall quantity of inorganic bromide to be tolerated from use of the same pesticide in different modes of application or from two or more pesticide chemicals for which tolerances are established is the highest of the separate applicable tolerances. For example, where the bromide tolerance on asparagus from methyl bromide commodity fumigation is 100 parts per million (40 CFR 180.123) and on asparagus from methyl bromide soil treatment is 300 parts per million (40 CFR 180.199), the overall inorganic bromide tolerance for asparagus grown on methyl bromide-treated soil and also fumigated with methyl bromide after harvest is 300 parts per million.

(2) Where tolerances are established in terms of inorganic bromide residues only from use of organic bromide fumigants on raw agricultural commodities, such tolerances are sufficient to protect the public health, and no additional concurrent tolerances for the organic pesticide chemicals from such use are necessary. This conclusion is based on evidence of the dissipation of the organic pesticide or its conversion to inorganic bromide residues in the food when ready to eat.

(d)(1) Where tolerances are established for both calcium cyanide and hydrogen cyanide on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as hydrogen cyanide.

(2) Where tolerances are established for residues of both O,O-diethyl S-[2-(ethylthio)ethyl] phosphorodithioate and demeton (a mixture of O,O-diethyl O-(and S-) [2-(ethylthio)ethyl] phosphorothioates) on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as demeton.

(3) Where tolerances are established for both terpene polychlorinates (chlorinated mixture of camphene, pinene, and related terpenes, containing 65–66 percent chlorine) and toxaphene (chlorinated camphene containing 67–69 percent chlorine) on the same raw agricultural commodities, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as a chlorinated terpene of molecular weight 396.6 containing 67 percent chlorine.

(4) Where a tolerance is established for more than one pesticide containing arsenic found in, or on a raw agricultural commodity, the total amount of such pesticide shall not exceed the highest established tolerance calculated as As$_2$O$_3$.

(5) Where tolerances are established for more than one member of the class of dithiocarbamates listed in paragraph (e)(3) of this section on the same raw agricultural commodity, the total residue of such pesticides shall not exceed that permitted by the highest tolerance established for any one member of the class, calculated as zinc ethylenebisdithiocarbamate.

(6) Where tolerances are established for residues of both S,S,S-tributyl phosphorotrithioate and tributyl phosphorotrithioate in or on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the higher of the two tolerances.

349
§ 180.3 40 CFR Ch. I (7–1–07 Edition)

calculated as S,S,S-tributyl phosphorotrithioate.

(7) Where tolerances are established for residues of \(\alpha \)-naphthaleneacetamide and/or \(\alpha \)-naphthaleneacetic acid in or on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the higher of the two tolerances, calculated as \(\alpha \)-naphthaleneacetic acid.

(8) Where tolerances are established for residues of \(O,S \)-dimethyl phosphoramidothioate, resulting from the use of acephate (\(O,S \)-dimethyl acetylphosphoramoithioate) and/or \(O,S \)-dimethylphosphoramidothioate on the same agricultural commodity, the total amount of \(O,S \)-dimethylphosphoramidothioate shall not yield more residue than that permitted by the higher of the two tolerances.

(9) Where a tolerance is established for more than one pesticide having the metabolites 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and 3,4-dichlorophenylurea (DCPU) found in or on a raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for a pesticide having these metabolites.

(10) Where a tolerance is established for more than one pesticide having as metabolites compounds containing the benzimidazole moiety found in or on a raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for a pesticide having these metabolites.

(11) Where a tolerance is established for triclopyr, chlorpyrifos, and chlorpyrifos-methyl having the common metabolite 3,5,6-trichloro-2-pyridinol on the same raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for any of the pesticides having the metabolites.

(12) Where tolerances are established for more than one pesticide having the metabolite 3,5,6-trichloro-2-pyridinol found in or on the raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for a pesticide having this metabolite.

(13) Where tolerances are established for residues of both 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone (triadimefon) and \(\beta \)-(4-chlorophenoxy)-\(\alpha \)-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (triadimenol) including its butanediol metabolite, 4-(4-chlorophenoxy)-2,2-dimethyl-4-(1H-1,2,4-triazol-1-yl)-1,3-butanediol, in or on the same raw agricultural commodity and its products thereof, the total amount of such residues shall not yield more residue than that permitted by the higher of the two tolerances.

(14) Where tolerances are established for residues of methomyl, resulting from the use of thiodicarb and/or methomyl on the same raw agricultural commodity, the total amount of methomyl shall not yield more residue than that permitted by the higher of the two tolerances.

(e) Except as noted in paragraphs (e)(1) and (2) of this section, where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity the tolerance for the total of such residues shall be the same as that for the chemical having the lowest numerical tolerance in this class, unless a higher tolerance level is specifically provided for the combined residues by a regulation in this part.

(1) Where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity and there are available methods that permit quantitative determination of each residue, the quantity of combined residues that are within the tolerance may be determined as follows:

(i) Determine the quantity of each residue present.

(ii) Divide the quantity of each residue by the tolerance that would apply if it occurred alone, and multiply by 100 to determine the percentage of the permitted amount of residue present.

(iii) Add the percentages so obtained for all residues present.

(iv) The sum of the percentages shall not exceed 100 percent.

(2) Where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity and there are available methods that
permit quantitative determinations of one or more, but not all, of the residues, the amounts of such residues as may be determinable shall be deducted from the total amount of residues present and the remainder shall have the same tolerance as that for the chemical having the lowest numerical tolerance in that class. The quantity of combined residues that are within the tolerance may be determined as follows:

(i) Determine the quantity of each determinable residue present.

(ii) Deduct the amounts of such residues from the total amount of residues present and consider the remainder to have the same tolerance as that for the chemical having the lowest numerical tolerance in that class.

(iii) Divide the quantity of each determinable residue by the tolerance that would apply if it occurred alone and the quantity of the remaining residue by the tolerance for the chemical having the lowest numerical tolerance and multiply by 100 to determine the percentage of the permitted amount of residue present.

(iv) Add the percentages so obtained for all residues present.

(v) The sum of the percentages shall not exceed 100 percent.

(3) The following pesticides are members of the class of dithiocarbamates:

A mixture of 5.2 parts by weight of ammoniates of (ethylenebis (dithiocarbamato) zinc with 1 part by weight ethylenebis [dithiocarbamic acid] bimolecular and trimolecular cyclic anhydrosulfides and disulfides.

2-Chloroallyl diethylidithiocarbamate. Coordination product of zinc ion and maneb containing 20 percent manganese, 2.5 percent zinc, and 77.5 percent ethylenebisidithiocarbamate.

Ferbam.

Maneb.

Manganese dimethylidithiocarbamate.

Sodium dimethylidithiocarbamate.

Thiram.

Zineb.

Ziram.

(4) The following are members of the class of chlorinated organic pesticides:

Aldrin.

BHC (benzene hexachloride).

1,1-Bis(p-chlorophenyl)-2,2,2-trichloroethanol.

Chlorbenside (p-chlorobenzyl p-chlorophenyl sulhide).

Chlor dane.

Chlorobenzilate (ethyl 4,4'-dichlorobenzilate).

p-Chlorophenoxyacetic acid.

p-Chlorophenyl-2,4,5-trichlorophenyl sulfide.

2,4-D (2,4-dichlorophenoxyacetic acid).

DDD (TDE).

1,1-Dichloro-2,2-bis(p-ethylphenyl) ethane.

2,6-Dichloro-4-nitroaniline.

2,4-Dichlorophenyl p-nitrophenyl ether.

Diethyl.

Dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta(c)pentane.

Endosulfan (6,7,8,9,10-hexachloro-1,5,5a, 6,9,9a-hexahydro-6,9-methano-2,3-benzodioxathiepin-3-oxide).

Endosulfan sulfate (6,7,8,9,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3-benzodioxathiepin-3,3-dioxide).

Heptachlor epoxide (1,4,5,6,7,8,8-heptachloro-3a,4, 7a-tetrahydro-4,7-methanoindene).

Heptachlor (1,4,5,6,7,8-heptachloro-3a,4, 7a-tetrahydro-4,7-methanoindene).

Hexachlorophene (2,2'-methylenebis(3,4,6-trichlorophenol) and its monosodium salt.

Isopropyl 4,4'-dichlorobenzilate.

Lindane.

Methoxychlor.

Ovex (p-chlorophenyl p-chlorobenzensulphonate).

Seso (sodium 2,4-dichlorophenoxethyl sulfate, SES).

Sodium 2,4-dichlorophenoxyacetate.

Sodium trichloroacetate.

Sulphone (p-chlorophenyl phenyl sulphone).

Terpenene polychlorinates (chlorinated mixture of camphene, pinene, and related terpenes 65-66 percent chlorine).

2,3,5,6-Tetrachloronitrobenzene.

Tetradifon (2,4,5,4'-tetrachlorodiphenyl sulfone).

Toxaphene (chlorinated camphene).

Trichlorobenzoic acid.

Trichlorobenzyl chloride.

(5) The following are members of the class of cholinesterase-inhibiting pesticides:

Acephate (O,S-dimethyl acetylphosphoramidothioate) and its cholinesterase-inhibiting metabolite O,S-dimethyl phosphoramidothioate.

Aldicarb (2-methyl-2-(methylthio) propionaldehyde O-(methylcarbamoyl)oxime) and its cholinesterase-inhibiting metabolites 2-methyl-2-(methylsulfinyl)propionaldehyde O-(methylcarbamoyl) oxime and 2-methyl-2-(methylsulfonyl)propionaldehyde O-(methylcarbamoyl)oxime.

4-tert-Butyl-2-chlorophenyl methyl methyl phosphoramidate.

\(\text{§ 180.3} 40 \text{ CFR Ch. 1 (7–1–07 Edition)}\)

Carbaryl (1-naphthyl \(N\)-methylcarbamate).
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N'-methylcarbamate).
Carbofuran metabolite (2,3-dihydro-2,2-dimethyl-3-hydroxy-7-benzofuranyl \(N\)-methylcarbamate).
Carbophenothion \((S\)-(\(p\)-chlorophenyl) thiomethyl) \(O\)-\(O\)-diethyl phosphorodithioate) and its cholinesterase-inhibiting metabolites.
2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate.
2-Chloro-1-(2,4-dichlorophenyl) vinyl diethyl phosphate.
Coumaphos \((O\)-\(O\)-diethyl \(O\)-3-chloro-4-methyl-2-oxo-2\(H\)-1-benzopyran-7-yl) phosphan-7-yl phosphate.
Coumaphos oxygen analog \((O\)-\(O\)-diethyl \(O\)-3-chloro-4-methyl-2-oxo-2\(H\)-1-benzopyrrolophosphate).
Dialifor \((S\)-(2-chloro-1-phthalimidoethyl) \(O\)-\(O\)-diethyl phosphorodithioate).
Dialifor oxygen analog \((S\)-(2-chloro-1-phthalimidoethyl) \(O\)-\(O\)-diethyl phosphorothioate).
Demeton \((a\) mixture of \(O\)-\(O\)-diethyl \(O\)-(and \(S\)-[2-ethylthiophenyl]) phosphorothioates).
Ethiolate \((S\)-ethyl diethylthiocarbamate).
2,2-Dichlorovinyl dimethyl phosphate.
\(O\)-\(O\)-Diethyl \(S\)-[2-(ethylthio)ethyl] phosphorodithioate and its cholinesterase-inhibiting metabolites.
\(O\)-\(O\)-Diethyl \(O\)-2-diethylamino-6-methyl-4-pyrimidinyl phosphorothioate and its oxygen analog diethyl 2-diethylamino-6-methyl-4-pyrimidinyl phosphate.
\(O\)-\(O\)-Diethyl \(O\)-2-(diethylamino-4-methyl-6-pyrimidinyl) phosphorothioate.
\(O\)-\(O\)-Diethyl \(O\)-[\(p\)-(methylsulfanyl)phenyl] phosphorothioate and its cholinesterase-inhibiting metabolites.
Diethyl 2-pyrazinyl phosphate.
\(O\)-\(O\)-Diethyl \(O\)-2-pyrazinyl phosphorothioate.
\(S\)-(\(O\),\(O\)-Disopropyl phosphorodithioate) of \(N\)-(2-mercaptoproethyl) benzylsulfonylamine.
\(S\)-(\(O\),\(O\)-Disopropyl phosphorodithioate) of \(N\)-(2-mercaptoproethyl) benzylsulfonylamine.
2-(Dimethylamino)-5,6-dimethyl-4-pyrimidinyl dimethylcarbamate and its metabolites 5,6-dimethyl-2-(formylamino)-4-pyrimidinyl dimethylcarbamate and 5,6-dimethyl-2-(methylamino)-4-pyrimidinyl dimethylcarbamate (both calculated as parent).
Dimethoate \((O\)-\(O\)-dimethyl \(S\)-(\(N\)-methylcarbamoylmethyl) phosphorodithioate).
Dimethoate oxygen analog \((O\)-\(O\)-dimethyl \(S\)-(\(N\)-methylcarbamoylmethyl) phosphorothioate).
\(O\)-\(O\)-Dimethyl \(O\)-p-(dimethylsulfamoyl) phenyl phosphate.

\(O\)-\(O\)-Dimethyl \(O\)-p-(dimethylsulfamoyl) phenyl phosphorothioate.
3,5-Dimethyl-4-(methylthio) phenyl methylcarbamate.
\(O\)-\(O\)-Dimethyl \(S\)-(4-oxo-1,2,3-benzotriazin-3-(\(4\)H)-ylmethyl) phosphorodithioate.
Dimethyl phosphate of 3-hydroxy-N,N-diethyl-cis-crotonamide.
Dimethyl phosphate of 3-hydroxy-N-methyl-cis-crotonamide.
Dimethyl phosphate of \(\alpha\)-methylbenzyl 3-hydroxy-cis-crotonate.
\(O\)-\(O\)-Dimethyl phosphorodithioate, \(S\)-ester with 4-(mercaptoethyl)-2-methoxy-\(A\)2,1,3,4-thiadiazolin-5-one.
Dioxathion \((2,3\)-p-dioxanedithio \(S\),\(S\)-bis \((O\)-\(O\)-diethylphosphorodithioate)) containing approximately 70 percent cis and trans isomers and approximately 50 percent related compounds.

EPN. Ethephon \((2\)- chloroethyl) phosphonic acid.
\(O\)-Ethyl \(O\)-[4-(methylthio) phenyl] \(S\)-propyl phosphorodithioate and its cholinesterase-inhibiting metabolites.
\(O\)-Ethyl \(S\),\(S\)-diisopropylphosphorodithioate.
Ethyl 3-methyl-4-(methylthio)phenyl \(1\)-methylthyl phosphoramidate and its cholinesterase-inhibiting metabolites.
\(O\)-Ethyl \(S\)-phenyl ethylphosphonodithioate.
\(O\)-Ethyl \(S\)-phenyl ethylphosphonothioate.
\(m\)-\(1\)-Ethylpropyl\(p\)-phenyl methylcarbamate.
\(S\)-\(2\)-(Ethylsulfinyl)ethyl \(O\)-\(O\)-dimethyl phosphorothioate and its cholinesterase-inhibiting metabolites, \(S\)-[\(2\)-(ethyl-sulfonyl)ethyl] \(O\)-\(O\)-dimethyl phosphorothioate).
Fenthion \((O\)-\(O\)-dimethyl \(O\)-[3-methyl-4-(methylthio)phenyl] phosphorothioate and its cholinesterase-inhibiting metabolites.
Malathion. \(N\)-(Mercaptomethyl)phthalimide \(S\)-(\(O\)-\(O\)-dimethyl phosphorodithioate).
\(N\)-(Mercaptomethyl)phthalimide \(S\)-(\(O\)-\(O\)-dimethyl phosphorothioate).
\(S\)-methyl \(N\)-[\(m\)-methylcarbamoyl]oxy]thioacetimidate).
1-Methoxy carbonyl-1-propen-2-\(\alpha\) dimethyl phosphate and its molecular isomer.
\(m\)-\(1\)-Methylbutyl\(p\)-phenyl methylcarbamate.
Methyl parathion.
Naled \((1,2\)-dibromo-2,2-dichloroethyl \(d\)-methyl phosphate).
Oxamyl \((\text{methyl} \(N\)\(N\)-dimethyl-N-\([\text{methylcarbamoyl}] \text{oxy}\)-1-thiocarbamimidate).
Parathion.
Phorate \((O\)-\(O\)-diethyl \(S\)-ethylthio)methyl phosphorodithioate and its cholinesterase-inhibiting metabolites.
§ 180.6 Pesticide tolerances regarding milk, eggs, meat, and/or poultry; statement of policy.

(a) When establishing tolerances for pesticide residues in or on raw agricultural commodities, consideration is always given to possible residues of those pesticide chemicals or their conversion products entering the diet of man through the ingestion of milk, eggs, meat, and/or poultry produced by animals fed agricultural products bearing such pesticide residues. In each instance an evaluation of all available data will result in a conclusion either:

1. That finite residues will actually be incurred in these foods from feed use of the raw agricultural commodity including its byproducts; or

2. That it is not possible to establish with certainty whether finite residues will be incurred, but there is a reasonable expectation of finite residues; or

3. That it is not possible to establish with certainty whether finite residues will be incurred, but there is no reasonable expectation of finite residues.
(b) When the data show that finite residues will actually be incurred in milk, eggs, meat, and/or poultry, a tolerance will be established on the raw agricultural commodity used as feed provided that tolerances can be established at the same time, on the basis of the toxicological and other data available, for the finite residues incurred in milk, eggs, meat, and/or poultry. When it is not possible to determine with certainty whether finite residues will be incurred in milk, eggs, meat, and/or poultry but there is a reasonable expectation of finite residues in light of data reflecting exaggerated pesticide levels in feeding studies, a tolerance will be established on the raw agricultural commodity provided that appropriate tolerances can be established at the same time, on the basis of the toxicological and other data available, for the finite residues likely to be incurred in these foods through the feed use of the raw agricultural commodity or its byproducts. When it is not possible to determine with certainty whether finite residues will be incurred in milk, eggs, meat, and/or poultry but there is no reasonable expectation of finite residues in light of data such as those reflecting exaggerated pesticide levels in feeding studies and those elucidating the biochemistry of the pesticide chemical in the animal, a tolerance may be established on the raw agricultural commodity without the necessity of a tolerance on food products derived from the animal.

(c) The principles outlined in paragraphs (a) and (b) of this section will also be followed with respect to tolerances for residues which will actually be incurred or are reasonably to be expected in milk, eggs, meat, and/or poultry by the use of pesticides directly on the animal or administered purposely in the feed or drinking water.

(d) Tolerances contemplated by paragraphs (a) and (b) of this section will in addition to toxicological considerations be conditioned on the availability of a practicable analytical method to determine the pesticide residue; that is, the method must be sensitive and reliable at the tolerance level or in special cases at a higher level where such level is deemed satisfactory and safe in light of the toxicity of the pesticide residue and of the unlikelihood of such residue exceeding the tolerance. The analytical methods to be used for enforcement purposes will be those set forth in the “Pesticide Analytical Manual” (see §180.101(c)). The sensitivities of these methods are expressed in that manual.

Subpart B—Procedural Regulations

§180.7 Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed foods.

(a) Petitions to be filed with the Agency under the provisions of FFDCA section 408(d) shall be submitted in duplicate. If any part of the material submitted is in a foreign language, it shall be accompanied by an accurate and complete English translation. The petition shall be accompanied by an advance deposit for fees described in §180.33. The petition shall state the petitioner’s mail address to which notice of objection under FFDCA section 408(g)(2) may be sent. The petition must be signed by the petitioner or by his attorney or agent, or (if a corporation) by an authorized official.

(b) Petitions shall include the following information:

(1) An informative summary of the petition and of the data, information, and arguments submitted or cited in support of the petition. Both a paper and electronic copy of the summary should be submitted. The electronic copy should be formatted according to the Office of Pesticide Programs’ current standard for electronic data submission as specified at http://www.epa.gov/opps/edjudges/edsgoals.htm.

(2) A statement that the petitioner agrees that such summary or any information it contains may be published as a part of the notice of objection under FFDCA section 408(g)(2) or as a part of a proposed or final regulation issued under FFDCA section 408.