List of substances

Limitations (limits of addition expressed as percent by weight of finished resin)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene glycol 6000</td>
<td></td>
</tr>
<tr>
<td>Silicon dioxide</td>
<td></td>
</tr>
<tr>
<td>Wax, petroleum</td>
<td></td>
</tr>
</tbody>
</table>

Complying with §178.3710 of this chapter.

(c) The cross-linked polyester resins, with or without the optional substances described in paragraph (b) of this section, and in the finished form in which they are to contact food, when extracted with the solvent or solvents characterizing the type of food and under the conditions of time and temperature characterizing the conditions of their intended use, as determined from tables 1 and 2 of §176.170(c) of this chapter, shall meet the following extractives limitations:

1. Net chloroform-soluble extractives not to exceed 0.1 milligram per square inch of food-contact surface tested when the prescribed food-simulating solvent is water or 8 or 50 percent alcohol.
2. Total nonvolatile extractives not to exceed 0.1 milligram per square inch of food-contact surface tested when the prescribed food-simulating solvent is heptane.

(d) In accordance with good manufacturing practice, finished articles containing the cross-linked polyester resins shall be thoroughly cleansed prior to their first use in contact with food.

§ 177.2440 Polyethersulfone resins.

Polyethersulfone resins identified in paragraph (a) of this section may be safely used as articles or components of articles intended for repeated use in contact with food in accordance with the following prescribed conditions:

(a) For the purpose of this section, polyethersulfone resins are:

1. Poly(oxy-p-phenylene)sulfone-p-phenylene) resins (CAS Reg. No. 25667-42-9), which have a minimum number average molecular weight of 16,000.
2. 1,1′-sulfonylbis[4-chlorobenzene] polymer with 4,4′-(1-methylethyldiene)bis[phenol] (maximum 8 percent) and 4,4′-sulfonylbis[phenol] (minimum 92 percent) (CAS Reg. No. 88285-91-0), which have a minimum number average molecular weight of 26,000.

(b) In paragraphs (a)(1) and (a)(2) of this section, the minimum number average molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857–70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is incorporated by reference. Copies may be obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the Division of Petition Control (HFS–215), Center for Food Safety and Applied Nutrition, 1110 Vermont Ave. NW., suite 1200, Washington, DC, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(b) The basic resins identified in paragraphs (a)(1) and (a)(2) of this section may contain optional adjuvant substances described in §174.5(d) of this chapter and the following:
Food and Drug Administration, HHS § 177.2450

List of substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylsulfone</td>
<td>Not to exceed 0.2 percent as residual solvent in the finished basic resin described in paragraph (a)(1) of this section.</td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>Not to exceed 0.01 percent as residual solvent in the finished basic resin described in paragraph (a)(1) of this section.</td>
</tr>
<tr>
<td>N-methyl-2-pyrrolidone</td>
<td>Not to exceed 0.01 percent as residual solvent in the finished basic resin described in paragraph (a)(2) of this section.</td>
</tr>
</tbody>
</table>

(c) The finished food-contact article, when extracted at reflux temperatures for 2 hours with the following four solvents, yields net chloroform-soluble extractives in each extracting solvent not to exceed 0.02 milligram per square inch of food-contact surface: distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane. (Note: In testing the finished food-contact article, use a separate test sample for each required extracting solvent.)

(d) In accordance with good manufacturing practice, finished food-contact articles containing the polyethersulfone resins shall be thoroughly cleansed before their first use in contact with food.

§ 177.2450 Polyamide-imide resins.

Polyamide-imide resins identified in paragraph (a) of this section may be safely used as components of articles intended for repeated use in contact with food, in accordance with the following prescribed conditions:

(a) Identity. (1) For the purpose of this section the polyamide-imide resins are derived from the condensation reaction of substantially equimolar parts of trimellitic anhydride and p,p’-diphenylmethane diisocyanate.

(2) The polyamide-imide resins (CAS Reg. No. 31957–38–7) derived from the condensation reaction of equimolar parts of benzoyl chloride-3,4-dicarboxylic anhydride and 4,4’-diphenylmethanamine.

(b) Specifications. (1) Polyamide-imide resins identified in paragraph (a)(1) of this section shall have a nitrogen content of not less than 7.8 weight percent and not more than 8.2 weight percent. Polyamide-imide resins identified in paragraph (a)(2) of this section shall have a nitrogen content of not less than 7.5 weight percent and not more than 7.8 weight percent. Nitrogen content is determined by the Dumas Nitrogen Determination as set forth in the “Official Methods of Analysis of the Association of Official Analytical Chemists,” 13th Ed. (1980), sections 7.016–7.020, which is incorporated by reference in accordance with 5 U.S.C. 552(a). Copies may be obtained from the AOAC INTERNATIONAL, 401 North Frederick Ave., suite 500, Gaithersburg, MD 20877, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(2) Polyamide-imide resins identified in paragraph (a)(1) of this section shall have a solution viscosity of not less than 1.200. Polyamide-imide resins identified in paragraph (a)(2) of this section shall have a solution viscosity of not less than 1.190. Solution viscosity shall be determined by a method titled “Solution Viscosity” which is incorporated by reference in accordance with 5 U.S.C. 552(a). Copies are available from the Center for Food Safety and Applied Nutrition (HFS–200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(3) The polyamide-imide resins identified in paragraph (a)(1) of this section are heat cured at 600 °F for 15 minutes when prepared for extraction tests and the residual monomers: p,p’-diphenylmethane diisocyanate should not be present at greater than