Environmental Protection Agency § 230.30

extent of mixing of dissolved and suspended components of the water body; and water stratification.

§ 230.24 Normal water fluctuations.

(a) Normal water fluctuations in a natural aquatic system consist of daily, seasonal, and annual tidal and flood fluctuations in water level. Biological and physical components of such a system are either attuned to or characterized by these periodic water fluctuations.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can alter the normal water-level fluctuation pattern of an area, resulting in prolonged periods of inundation, exaggerated extremes of high and low water, or a static, nonfluctuating water level. Such water level modifications may change salinity patterns, alter erosion or sedimentation rates, aggravate water temperature extremes, and upset the nutrient and dissolved oxygen balance of the aquatic ecosystem. In addition, these modifications can alter or destroy communities and populations of aquatic animals and vegetation, induce populations of nuisance organisms, modify habitat, reduce food supplies, restrict movement of aquatic fauna, destroy spawning areas, and change adjacent, upstream, and downstream areas.

§ 230.25 Salinity gradients.

(a) Salinity gradients form where salt water from the ocean meets and mixes with fresh water from land.

(b) Possible loss of environmental characteristics and values: Obstructions which divert or restrict flow of either fresh or salt water may change existing salinity gradients. For example, partial blocking of the entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and out of that area can effectively lower the volume of salt water available for mixing within that estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation zone and requiring salinity-dependent aquatic biota to adjust to the new conditions, move to new locations if possible, or perish. In the freshwater zone, discharge operations in the upstream regions can have equally adverse impacts. A significant reduction in the volume of fresh water moving into an estuary below that which is considered normal can affect the location and type of mixing thereby changing the characteristic salinity patterns. The resulting changed circulation pattern can cause the upstream migration of the salinity gradient displacing the maximum sedimentation zone. This migration may affect those organisms that are adapted to freshwater environments. It may also affect municipal water supplies.

Note: Possible actions to minimize adverse impacts regarding site characteristics can be found in subpart H.

Subpart D—Potential Impacts on Biological Characteristics of the Aquatic Ecosystem

Note: The impacts described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B.

§ 230.30 Threatened and endangered species.

(a) An endangered species is a plant or animal in danger of extinction throughout all or a significant portion of its range. A threatened species is one in danger of becoming an endangered species in the foreseeable future throughout all or a significant portion of its range. Listings of threatened and endangered species as well as critical habitats are maintained by some individual States and by the U.S. Fish and Wildlife Service of the Department of the Interior (codified annually at 50 CFR 17.11). The Department of Commerce has authority over some threatened and endangered marine mammals, fish and reptiles.

(b) Possible loss of values: The major potential impacts on threatened or endangered species from the discharge of dredged or fill material include:

(1) Covering or otherwise directly killing species;

(2) The impairment or destruction of habitat to which these species are limited. Elements of the aquatic habitat which are particularly crucial to the continued survival of some threatened or endangered species include adequate