relevant point of compliance at existing units, the down-gradient monitoring system may be installed at the closest practicable distance hydraulically down-gradient from the relevant point of compliance specified by the Director of an approved State under §258.40 that ensure detection of groundwater contamination in the uppermost aquifer.

(b) The Director of an approved State may approve a multiunit ground-water monitoring system instead of separate ground-water monitoring systems for each MSWLF unit when the facility has several units, provided the multiunit ground-water monitoring system meets the requirement of §258.51(a) and will be as protective of human health and the environment as individual monitoring systems for each MSWLF unit, based on the following factors:

(1) Number, spacing, and orientation of the MSWLF units;
(2) Hydrogeologic setting;
(3) Site history;
(4) Engineering design of the MSWLF units, and
(5) Type of waste accepted at the MSWLF units.

(c) Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well bore hole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing) above the sampling depth must be sealed to prevent contamination of samples and the ground water.

(1) The owner or operator must notify the State Director that the design, installation, development, and decommission of any monitoring wells, piezometers and other measurement, sampling, and analytical devices documentation has been placed in the operating record; and

(2) The monitoring wells, piezometers, and other measurement, sampling, and analytical devices must be operated and maintained so that they perform to design specifications throughout the life of the monitoring program.

(d) The number, spacing, and depths of monitoring systems shall be:

(1) Determined based upon site-specific technical information that must include thorough characterization of:

(i) Aquifer thickness, ground-water flow rate, ground-water flow direction including seasonal and temporal fluctuations in ground-water flow; and

(ii) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to: Thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

(2) Certified by a qualified groundwater scientist or approved by the Director of an approved State. Within 14 days of this certification, the owner or operator must notify the State Director that the certification has been placed in the operating record.

§ 258.52 [Reserved]

§ 258.53 Ground-water sampling and analysis requirements.

(a) The ground-water monitoring program must include consistent sampling and analysis procedures that are designed to ensure monitoring results that provide an accurate representation of ground-water quality at the background and downgradient wells installed in compliance with §258.51(a) of this part. The owner or operator must notify the State Director that the sampling and analysis program documentation has been placed in the operating record and the program must include procedures and techniques for:

(1) Sample collection;
(2) Sample preservation and shipment;
(3) Analytical procedures;
(4) Chain of custody control; and
(5) Quality assurance and quality control.

(b) The ground-water monitoring program must include sampling and analytical methods that are appropriate for ground-water sampling and that accurately measure hazardous constituents and other monitoring parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory analysis.

446
(c) The sampling procedures and frequency must be protective of human health and the environment.

(d) Ground-water elevations must be measured in each well immediately prior to purging, each time ground water is sampled. The owner or operator must determine the rate and direction of ground-water flow each time ground water is sampled. Ground-water elevations in wells which monitor the same waste management area must be measured within a period of time short enough to avoid temporal variations in ground-water flow which could preclude accurate determination of ground-water flow rate and direction.

(e) The owner or operator must establish background ground-water quality in a hydraulically upgradient or background well(s) for each of the monitoring parameters or constituents required in the particular ground-water monitoring program that applies to the MSWLF unit, as determined under §258.54(a) or §258.55(a) of this part. Background ground-water quality may be established at wells that are not located hydraulically upgradient from the MSWLF unit if it meets the requirements of §258.51(a)(1).

(f) The number of samples collected to establish ground-water quality data must be consistent with the appropriate statistical procedures determined pursuant to paragraph (g) of this section. The sampling procedures shall be those specified under §258.54(b) for detection monitoring, §258.55(b) and (d) for assessment monitoring, and §258.56(b) of corrective action.

(g) The owner or operator must specify in the operating record one of the following statistical methods to be used in evaluating ground-water monitoring data for each hazardous constituent. The statistical test chosen shall be conducted separately for each hazardous constituent in each well.

1. A parametric analysis of variance (ANOVA) followed by multiple comparisons procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well’s mean and the background mean levels for each constituent.

2. An analysis of variance (ANOVA) based on ranks followed by multiple comparisons procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well’s median and the background median levels for each constituent.

3. A tolerance or prediction interval procedure in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper tolerance or prediction limit.

4. A control chart approach that gives control limits for each constituent.

5. Another statistical test method that meets the performance standards of §258.53(h). The owner or operator must place a justification for this alternative in the operating record and notify the State Director of the use of this alternative test. The justification must demonstrate that the alternative method meets the performance standards of §258.53(h).

(h) Any statistical method chosen under §258.53(g) shall comply with the following performance standards, as appropriate:

1. The statistical method used to evaluate ground-water monitoring data shall be appropriate for the distribution of chemical parameters or hazardous constituents. If the distribution of the chemical parameters or hazardous constituents is shown by the owner or operator to be inappropriate for a normal theory test, then the data should be transformed or a distribution-free theory test should be used. If the distributions for the constituents differ, more than one statistical method may be needed.

2. If an individual well comparison procedure is used to compare an individual compliance well constituent concentration with background constituent concentrations or a ground-water protection standard, the test shall be done at a Type I error level no less than 0.01 for each testing period. If a multiple comparisons procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05; however, the Type I
error of no less than 0.01 for individual well comparisons must be maintained. This performance standard does not apply to tolerance intervals, prediction intervals, or control charts.

(3) If a control chart approach is used to evaluate ground-water monitoring data, the specific type of control chart and its associated parameter values shall be protective of human health and the environment. The parameters shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentration values for each constituent of concern.

(4) If a tolerance interval or a prediction interval is used to evaluate ground-water monitoring data, the levels of confidence and, for tolerance intervals, the percentage of the population that the interval must contain, shall be protective of human health and the environment. These parameters shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentration values for each constituent of concern.

(5) The statistical method shall account for data below the limit of detection with one or more statistical procedures that are protective of human health and the environment. Any practical quantitation limit (pql) that is used in the statistical method shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions that are available to the facility.

(6) If necessary, the statistical method shall include procedures to control or correct for seasonal and spatial variability as well as temporal correlation in the data.

(i) The owner or operator must determine whether or not there is a statistically significant increase over background values for each parameter or constituent required in the particular ground-water monitoring program that applies to the MSWLF unit, as determined under §§ 258.54(a) or 258.55(a) of this part.

(1) In determining whether a statistically significant increase has occurred, the owner or operator must compare the ground-water quality of each parameter or constituent at each monitoring well designated pursuant to §258.51(a)(2) to the background value of that constituent, according to the statistical procedures and performance standards specified under paragraphs (g) and (h) of this section.

(2) Within a reasonable period of time after completing sampling and analysis, the owner or operator must determine whether there has been a statistically significant increase over background at each monitoring well.

§ 258.54 Detection monitoring program.

(a) Detection monitoring is required at MSWLF units at all ground-water monitoring wells defined under §§ 258.51(a)(1) and (a)(2) of this part. At a minimum, a detection monitoring program must include the monitoring for the constituents listed in appendix I to this part.

(1) The Director of an approved State may delete any of the appendix I monitoring parameters for a MSWLF unit if it can be shown that the removed constituents are not reasonably expected to be in or derived from the waste contained in the unit.

(2) The Director of an approved State may establish an alternative list of inorganic indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1–15 in appendix I to this part), if the alternative parameters provide a reliable indication of inorganic releases from the MSWLF unit to the ground water. In determining alternative parameters, the Director shall consider the following factors:

(i) The types, quantities, and concentrations of constituents in wastes managed at the MSWLF unit;

(ii) The mobility, stability, and persistence of waste constituents or their reaction products in the unsaturated zone beneath the MSWLF unit;

(iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and

(iv) The concentration or values and coefficients of variation of monitoring