§ 60.3076 What equations must I use?

(a) **Percent oxygen.** Adjust all pollutant concentrations to 7 percent oxygen using Equation 1 of this section.

\[
C_{\text{adj}} = C_{\text{meas}} \times (\frac{20.9 - 7}{20.9 - 7 - O_2})
\]

Where:
- \(C_{\text{adj}}\) = pollutant concentration adjusted to 7 percent oxygen
- \(C_{\text{meas}}\) = pollutant concentration measured on a dry basis
- \((20.9-7)\) = 20.9 percent oxygen–7 percent oxygen (defined oxygen correction basis)
- \(20.9\) = oxygen concentration in air, percent
- \(O_2\) = oxygen concentration measured on a dry basis, percent

(b) **Capacity of a very small municipal waste combustion unit.** For very small municipal waste combustion units that can operate continuously for 24-hour periods, calculate the unit capacity based on 24 hours of operation at the maximum charge rate. To determine the maximum charge rate, use one of two methods:

1. For very small municipal waste combustion units with a design based on heat input capacity, calculate the maximum charging rate based on the maximum heat input capacity and one of two heating values:
 - (i) If your very small municipal waste combustion unit combusts refuse-derived fuel, use a heating value of 12,800 kilojoules per kilogram (5,500 British thermal units per pound).
 - (ii) If your very small municipal waste combustion unit combusts municipal solid waste, use a heating value of 10,500 kilojoules per kilogram (4,500 British thermal units per pound).

2. For very small municipal waste combustion units with a design not based on heat input capacity, use the maximum design charging rate.