#### § 23.685

forces in §23.397(b), whichever are less; and

(2) For secondary controls, loads not less than those corresponding to the maximum pilot effort established under § 23.405.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969]

#### § 23.685 Control system details.

- (a) Each detail of each control system must be designed and installed to prevent jamming, chafing, and interference from cargo, passengers, loose objects, or the freezing of moisture.
- (b) There must be means in the cockpit to prevent the entry of foreign objects into places where they would jam the system.
- (c) There must be means to prevent the slapping of cables or tubes against other parts.
- (d) Each element of the flight control system must have design features, or must be distinctively and permanently marked, to minimize the possibility of incorrect assembly that could result in malfunctioning of the control system.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–17, 41 FR 55464, Dec. 20, 1976]

## §23.687 Spring devices.

The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter or unsafe flight characteristics.

# § 23.689 Cable systems.

- (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must meet approved specifications. In addition—
- (1) No cable smaller than 1/8 inch diameter may be used in primary control systems;
- (2) Each cable system must be designed so that there will be no hazardous change in cable tension throughout the range of travel under operating conditions and temperature variations; and
- (3) There must be means for visual inspection at each fairlead, pulley, terminal, and turnbuckle.

- (b) Each kind and size of pulley must correspond to the cable with which it is used. Each pulley must have closely fitted guards to prevent the cables from being misplaced or fouled, even when slack. Each pulley must lie in the plane passing through the cable so that the cable does not rub against the pulley flange.
- (c) Fairleads must be installed so that they do not cause a change in cable direction of more than three degrees.
- (d) Clevis pins subject to load or motion and retained only by cotter pins may not be used in the control system.
- (e) Turnbuckles must be attached to parts having angular motion in a manner that will positively prevent binding throughout the range of travel.
- (f) Tab control cables are not part of the primary control system and may be less than ½ inch diameter in airplanes that are safely controllable with the tabs in the most adverse positions.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969]

### §23.691 Artificial stall barrier system.

- If the function of an artificial stall barrier, for example, stick pusher, is used to show compliance with §23.201(c), the system must comply with the following:
- (a) With the system adjusted for operation, the plus and minus airspeeds at which downward pitching control will be provided must be established.
- (b) Considering the plus and minus airspeed tolerances established by paragraph (a) of this section, an airspeed must be selected for the activation of the downward pitching control that provides a safe margin above any airspeed at which any unsatisfactory stall characteristics occur.
- (c) In addition to the stall warning required §23.07, a warning that is clearly distinguishable to the pilot under all expected flight conditions without requiring the pilot's attention, must be provided for faults that would prevent the system from providing the required pitching motion.
- (d) Each system must be designed so that the artificial stall barrier can be quickly and positively disengaged by

the pilots to prevent unwanted downward pitching of the airplane by a quick release (emergency) control that meets the requirements of §23.1329(b).

- (e) A preflight check of the complete system must be established and the procedure for this check made available in the Airplane Flight Manual (AFM). Preflight checks that are critical to the safety of the airplane must be included in the limitations section of the AFM.
- (f) For those airplanes whose design includes an autopilot system:
- (1) A quick release (emergency) control installed in accordance with §23.1329(b) may be used to meet the requirements of paragraph (d), of this section, and
- (2) The pitch servo for that system may be used to provide the stall downward pitching motion.
- (g) In showing compliance with §23.1309, the system must be evaluated to determine the effect that any announced or unannounced failure may have on the continued safe flight and landing of the airplane or the ability of the crew to cope with any adverse conditions that may result from such failures. This evaluation must consider the hazards that would result from the airplane's flight characteristics if the system was not provided, and the hazard that may result from unwanted downward pitching motion, which could result from a failure at airspeeds above the selected stall speed.

[Doc. No. 27806, 61 FR 5165, Feb. 9, 1996]

#### § 23.693 Joints.

Control system joints (in push-pull systems) that are subject to angular motion, except those in ball and roller bearing systems, must have a special factor of safety of not less than 3.33 with respect to the ultimate bearing strength of the softest material used as a bearing. This factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded.

# §23.697 Wing flap controls.

(a) Each wing flap control must be designed so that, when the flap has been placed in any position upon which compliance with the performance requirements of this part is based, the

flap will not move from that position unless the control is adjusted or is moved by the automatic operation of a flap load limiting device.

- (b) The rate of movement of the flaps in response to the operation of the pilot's control or automatic device must give satisfactory flight and performance characteristics under steady or changing conditions of airspeed, engine power, and attitude.
- (c) If compliance with §23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted, the wing flap control lever settings corresponding to those positions must be positively located such that a definite change of direction of movement of the lever is necessary to select settings beyond those settings.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–49, 61 FR 5165, Feb. 9, 1996]

## § 23.699 Wing flap position indicator.

There must be a wing flap position indicator for—

- (a) Flap installations with only the retracted and fully extended position, unless—
- (1) A direct operating mechanism provides a sense of "feel" and position (such as when a mechanical linkage is employed); or
- (2) The flap position is readily determined without seriously detracting from other piloting duties under any flight condition, day or night; and
- (b) Flap installation with intermediate flap positions if—
- (1) Any flap position other than retracted or fully extended is used to show compliance with the performance requirements of this part; and
- (2) The flap installation does not meet the requirements of paragraph (a)(1) of this section.

# $\S 23.701$ Flap interconnection.

- (a) The main wing flaps and related movable surfaces as a system must—
- (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that is independent of the flap drive system; or by an approved equivalent means; or
- (2) Be designed so that the occurrence of any failure of the flap system that would result in an unsafe flight