SUBCHAPTER F—AIR TRAFFIC AND GENERAL OPERATING RULES

PART 91—GENERAL OPERATING AND FLIGHT RULES

Special Federal Aviation Regulation No. 50–2
Special Federal Aviation Regulation No. 60
Special Federal Aviation Regulation No. 77
Special Federal Aviation Regulation No. 79
Special Federal Aviation Regulation No. 87
Special Federal Aviation Regulation No. 97
Special Federal Aviation Regulation No. 104
Special Federal Aviation Regulation No. 107
Special Federal Aviation Regulation No. 108

Subpart A—General

Sec.
91.1 Applicability.
91.3 Responsibility and authority of the pilot in command.
91.5 Pilot in command of aircraft requiring more than one required pilot.
91.7 Civil aircraft airworthiness.
91.9 Civil aircraft flight manual, marking, and placard requirements.
91.11 Prohibition on interference with crewmembers.
91.13 Careless or reckless operation.
91.15 Dropping objects.
91.17 Alcohol or drugs.
91.19 Carriage of narcotic drugs, marihuana, and depressant or stimulant drugs or substances.
91.21 Portable electronic devices.
91.23 Truth-in-leasing clause requirement in leases and conditional sales contracts.
91.25 Aviation Safety Reporting Program: Prohibition against use of reports for enforcement purposes.
91.27–91.99 [Reserved]

Subpart B—Flight Rules

General
91.101 Applicability.
91.103 Preflight action.
91.105 Flight crewmembers at stations.
91.107 Use of safety belts, shoulder harnesses, and child restraint systems.
91.109 Flight instruction; Simulated instrument flight and certain flight tests.
91.111 Operating near other aircraft.
91.113 Right-of-way rules: Except water operations.
91.115 Right-of-way rules: Water operations.
91.117 Aircraft speed.
91.119 Minimum safe altitudes: General.
91.121 Altimeter settings.
91.123 Compliance with ATC clearances and instructions.
91.125 ATC light signals.
91.126 Operating on or in the vicinity of an airport in Class G airspace.
91.127 Operating on or in the vicinity of an airport in Class E airspace.
91.129 Operations in Class D airspace.
91.130 Operations in Class C airspace.
91.131 Operations in Class B airspace.
91.133 Restricted and prohibited areas.
91.135 Operations in Class A airspace.
91.137 Temporary flight restrictions in the vicinity of disaster/hazard areas.
91.138 Temporary flight restrictions in national disaster areas in the State of Hawaii.
91.139 Emergency air traffic rules.
91.141 Flight restrictions in the proximity of the Presidential and other parties.
91.143 Flight limitation in the proximity of space flight operations.
91.144 Temporary restriction on flight operations during abnormally high barometric pressure conditions.
91.145 Management of aircraft operations in the vicinity of aerial demonstrations and major sporting events.
91.146 Passenger-carrying flights for the benefit of a charitable, nonprofit, or community event.
91.147 Passenger carrying flights for compensation or hire.
91.148–91.149 [Reserved]

Visual Flight Rules
91.151 Fuel requirements for flight in VFR conditions.
91.153 VFR flight plan: Information required.
91.155 Basic VFR weather minimums.
91.157 Special VFR weather minimums.
91.159 VFR cruising altitude or flight level.
91.161 Special awareness training required for pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME.
91.162–91.165 [Reserved]

Instrument Flight Rules
91.167 Fuel requirements for flight in IFR conditions.
91.169 IFR flight plan: Information required.
91.171 VOR equipment check for IFR operations.
Federal Aviation Administration, DOT

91.173 ATC clearance and flight plan required.
91.175 Takeoff and landing under IFR.
91.177 Minimum altitudes for IFR operations.
91.179 IFR cruising altitude or flight level.
91.180 Operations within airspace designated as Reduced Vertical Separation Minimum airspace.
91.181 Course to be flown.
91.183 IFR communications.
91.185 IFR operations: Two-way radio communications failure.
91.187 Operation under IFR in controlled airspace: Malfunction reports.
91.189 Category II and III operations: General operating rules.
91.191 Category II and Category III manual.
91.193 Certificate of authorization for certain Category II operations.
91.195–91.199 [Reserved]

Subpart C—Equipment, Instrument, and Certificate Requirements

91.201 [Reserved]
91.203 Civil aircraft: Certifications required.
91.205 Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and equipment requirements.
91.207 Emergency locator transmitters.
91.211 Supplemental oxygen.
91.213 Inoperative instruments and equipment.
91.215 ATC transponder and altitude reporting equipment and use.
91.217 Data correspondence between automatically reported pressure altitude data and the pilot’s altitude reference.
91.219 Altitude alerting system or device: Turbojet-powered civil airplanes.
91.221 Traffic alert and collision avoidance system equipment and use.
91.223 Terrain awareness and warning system.
91.225 Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment and use.
91.227 Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment performance requirements.
91.228–91.299 [Reserved]

Subpart D—Special Flight Operations

91.301 [Reserved]
91.303 Aerobatic flight.
91.305 Flight test areas.
91.307 Parachutes and parachuting.
91.309 Towing: Gliders and unpowered ultralight vehicles.
91.311 Towing: Other than under §91.309.
91.313 Restricted category civil aircraft: Operating limitations.
91.315 Limited category civil aircraft: Operating limitations.
91.317 Provisionally certified civil aircraft: Operating limitations.
91.319 Aircraft having experimental certificates: Operating limitations.
91.321 Carriage of candidates in elections.
91.323 Increased maximum certificated weights for certain airplanes operated in Alaska.
91.325 Primary category aircraft: Operating limitations.
91.326 [Reserved]
91.327 Aircraft having a special airworthiness certificate in the light-sport category: Operating limitations.
91.328–91.399 [Reserved]

Subpart E—Maintenance, Preventive Maintenance, and Alterations

91.401 Applicability.
91.403 General.
91.405 Maintenance required.
91.407 Operation after maintenance, preventive maintenance, rebuilding, or alteration.
91.409 Inspections.
91.410 [Reserved]
91.411 Altimeter system and altitude reporting equipment tests and inspections.
91.413 ATC transponder tests and inspections.
91.415 Changes to aircraft inspection programs.
91.417 Maintenance records.
91.419 Transfer of maintenance records.
91.421 Rebuilt engine maintenance records.
91.425–91.499 [Reserved]

Subpart F—Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft

91.501 Applicability.
91.503 Flying equipment and operating information.
91.505 Familiarity with operating limitations and emergency equipment.
91.507 Equipment requirements: Over-the-top or night VFR operations.
91.509 Survival equipment for overwater operations.
91.511 Communication and navigation equipment for overwater operations.
91.513 Emergency equipment.
91.515 Flight altitude rules.
91.517 Passenger information.
91.519 Passenger briefing.
91.521 Shoulder harness.
91.523 Carry-on baggage.
91.525 Carriage of cargo.
91.527 Operating in icing conditions.
91.529 Flight engineer requirements.
91.531 Second in command requirements.
91.533 Flight attendant requirements.
91.535 Stowage of food, beverage, and passenger service equipment during aircraft
movement on the surface, takeoff, and landing.

91.537–91.599 [Reserved]

Subpart G—Additional Equipment and Operating Requirements for Large and Transport Category Aircraft

91.601 Applicability.
91.603 Aural speed warning device.
91.605 Transport category civil airplane weight limitations.
91.607 Emergency exits for airplanes carrying passengers for hire.
91.609 Flight data recorders and cockpit voice recorders.
91.611 Authorization for ferry flight with one engine inoperative.
91.613 Materials for compartment interiors.
91.615–91.699 [Reserved]

Subpart H—Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United States; and Rules Governing Persons on Board Such Aircraft

91.701 Applicability.
91.702 Persons on board.
91.703 Operations of civil aircraft of U.S. registry outside of the United States.
91.707 Flights between Mexico or Canada and the United States.
91.709 Operations to Cuba.
91.711 Special rules for foreign civil aircraft.
91.713 Operation of civil aircraft of Cuban registry.
91.715 Special flight authorizations for foreign civil aircraft.
91.717–91.799 [Reserved]

Subpart I—Operating Noise Limits

91.801 Applicability: Relation to part 36.
91.803 Part 125 operators: Designation of applicable regulations.
91.805 Final compliance: Subsonic airplanes.
91.807–91.813 [Reserved]
91.815 Agricultural and fire fighting airplanes: Noise operating limitations.
91.817 Civil aircraft sonic boom.
91.819 Civil supersonic airplanes that do not comply with part 36.
91.821 Civil supersonic airplanes: Noise limits.
91.825–91.849 [Reserved]
91.851 Definitions.
91.853 Final compliance: Civil subsonic airplanes.
91.855 Entry and nonaddition rule.
Federal Aviation Administration, DOT

91.1043 [Reserved]
91.1045 Additional equipment requirements.
91.1047 Drug and alcohol misuse education program.
91.1049 Personnel.
91.1051 Pilot safety background check.
91.1053 Crewmember experience.
91.1055 Pilot operating limitations and pairing requirement.
91.1057 Flight, duty and rest time requirements; All crewmembers.
91.1059 Flight time limitations and rest requirements: One or two pilot crews.
91.1061 Augmented flight crews.
91.1062 Duty periods and rest requirements: Flight attendants.
91.1063 Testing and training: Applicability and terms used.
91.1065 Initial and recurrent pilot testing requirements.
91.1067 Initial and recurrent flight attendant crewmember testing requirements.
91.1069 Flight crew: Instrument proficiency check requirements.
91.1071 Crewmember: Tests and checks, grace provisions, training to accepted standards.
91.1073 Training program: General.
91.1075 Training program: Special rules.
91.1077 Training program and revision: Initial and final approval.
91.1079 Training program: Curriculum.
91.1081 Crewmember training requirements.
91.1083 Crewmember emergency training.
91.1085 Hazardous materials recognition training.
91.1087 Approval of aircraft simulators and other training device.
91.1089 Qualifications: Check pilots (aircraft) and check pilots (simulator).
91.1091 Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
91.1093 Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).
91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight instructors (simulator).
91.1097 Pilot and flight attendant crewmember training programs.
91.1099 Crewmember initial and recurrent training requirements.
91.1101 Pilots: Initial, transition, and upgrade ground training.
91.1103 Pilots: Initial, transition, upgrade, requalification, and differences flight training.
91.1105 Flight attendants: Initial and transition ground training.
91.1107 Recurrent training.
91.1109 Aircraft maintenance: Inspection program.
91.1111 Maintenance training.
91.1113 Maintenance recordkeeping.
91.1115 Inoperative instruments and equipment.

91.1411 Continuous airworthiness maintenance program use by fractional ownership program manager.
91.1413 CAMP: Responsibility for airworthiness.
91.1415 CAMP: Mechanical reliability reports.
91.1417 CAMP: Mechanical interruption summary report.
91.1423 CAMP: Maintenance organization.
91.1425 CAMP: Maintenance, preventive maintenance, and alteration programs.
91.1427 CAMP: Manual requirements.
91.1429 CAMP: Required inspection personnel.
91.1431 CAMP: Continuing analysis and surveillance.
91.1433 CAMP: Maintenance and preventive maintenance training program.
91.1435 CAMP: Certificate requirements.
91.1437 CAMP: Authority to perform and approve maintenance.
91.1439 CAMP: Maintenance recording requirements.
91.1441 CAMP: Transfer of maintenance records.
91.1443 CAMP: Airworthiness release or aircraft maintenance log entry.

Subpart L—Continued Airworthiness and Safety Improvements

91.1501 Purpose and definition.
91.1503 [Reserved]
91.1505 Repairs assessment for pressurized fuselages.
91.1507 Fuel tank system inspection program.

APPENDIX A TO PART 91—CATEGORY II OPERATIONS: MANUAL, INSTRUMENTS, EQUIPMENT, AND MAINTENANCE

APPENDIX B TO PART 91—AUTHORIZATIONS TO EXCEED MACH 1 (§ 91.817)

APPENDIX C TO PART 91—OPERATIONS IN THE NORTH ATLANTIC (NAT) MINIMUM NAVIGATION PERFORMANCE SPECIFICATIONS (MNPS) AIRSPACE

APPENDIX D TO PART 91—AIRPORTS/LOCATIONS: SPECIAL OPERATING RESTRICTIONS

APPENDIX E TO PART 91—AIRPLANE FLIGHT RECORDER SPECIFICATIONS

APPENDIX F TO PART 91—HELICOPTER FLIGHT RECORDER SPECIFICATIONS

APPENDIX G TO PART 91—OPERATIONS IN REDUCED VERTICAL SEPARATION MINIMUM (RVSM) AIRSPACE

SPECIAL FEDERAL AVIATION REGULATION
No. 50-2—SPECIAL FLIGHT RULES IN THE VICINITY OF THE GRAND CANYON NATIONAL PARK, AZ

Section 1. Applicability. This rule prescribes special operating rules for all persons operating aircraft in the following airspace, designated as the Grand Canyon National Park Special Flight Rules Area:

That airspace extending upward from the surface up to but not including 14,500 feet MSL within an area bounded by a line beginning at lat. 36º09’30” N., long. 114º03’00” W.; northeast to lat. 36º14’00” N., long. 113º09’50” W.; thence northeast along the boundary of the Grand Canyon National Park to lat. 36º24’47” N., long. 112º52’00” W.; to lat. 36º30’30” N., long. 112º36’15” W. to lat. 36º21’30” N., long. 112º00’00” W. to lat. 36º35’30” N., long. 111º53’10” W. to lat. 36º39’00” N., long. 111º49’45” W. to lat. 36º53’00” N., long. 111º33’00” W.; to lat. 36º19’00” N., long. 111º50’50” W.; to lat. 36º17’00” N., long. 111º42’00” W.; to lat. 35º59’30” N., long. 111º42’00” W.; to lat. 35º57’30” N., long. 112º03’55” W.; thence counterclockwise via the 5 statute mile radius of the Grand Canyon Airport airport reference point (lat. 35º37’00” N., long. 112º06’47” W.) to lat. 35º57’30” N., long. 112º14’00” W.; to lat. 35º57’30” N., long. 113º11’00” W. to lat. 35º42’30” N., long. 113º37’50” W. to lat. 35º38’30” N., long. 113º27’30” W.; thence counterclockwise via the 5 statute mile radius of the Peach Springs VORTAC to lat. 35º41’20” N., long. 113º36’00” W.; to lat. 35º55’30” N., long. 113º49’10” W.; to lat. 35º57’45” N., long. 113º45’20” W.; thence northeast along the park boundary to lat. 36º02’20” N., long. 113º50’15” W.; to lat. 36º00’10” N., long. 113º53’45” W. thence to the point of beginning.

Section 3. Aircraft operations: general. Except in an emergency; no person may operate an aircraft in the Special Flight Rules Area under VFR on or after September 22, 1988, or under IFR on or after April 6, 1989, unless the operation—(a) Is conducted in accordance with the following procedures;

NOTE: The following procedures do not relieve the pilot from see-and-avoid responsibility or compliance with FAR 91.119.

(1) Unless necessary to maintain a safe distance from other aircraft or terrain—

(1) Remain clear of the areas described in Section 4; and

(2) Remain at or above the following altitudes in each sector of the canyon:

Eastern section from Lees Ferry to North Canyon and north Canyon to Boundary Ridge; as prescribed in Section 5.

Boundary Ridge to Supai Point (Yumthueska Point): 10,000 feet MSL.

Western section from Diamond Creek to the Grant Wash Cliffs: 8,000 feet MSL.

(2) Proceed through the four flight corridors describe in Section 4 at the following altitudes unless otherwise authorized in writing by the Flight Standards District Office:

Northbound
11,500 or
13,500 feet MSL

Southbound
>10,500 or
>12,500 feet MSL

(b) Is authorized in writing by the Flight Standards District Office and is conducted in compliance with the conditions contained in that authorization. Normally authorization will be granted for operation in the areas described in Section 4 or below the altitudes listed in Section 5 only for operations of aircraft necessary for law enforcement, firefighting, emergency medical treatment evacuation of persons in the vicinity of the Park; for support of Park maintenance or activities; or for aerial access to and maintenance of other property located within the Special Flight Rules Area. Authorization may be issued on a continuing basis.

(c)(1) Prior to November 1, 1988, is conducted in accordance with a specific authorization to operate in that airspace incorporated in the operator’s part 135 operations specifications in accordance with the provisions of SFAR 50-1, notwithstanding the provisions of Sections 4 and 5; and

(2) On or after November 1, 1988, is conducted in accordance with a specific authorization to operate in that airspace incorporated in the operator’s operations specifications and approved by the Flight Standards District Office in accordance with the provisions of SFAR 50-2.

(d) Is a search and rescue mission directed by the U.S. Air Force Rescue Coordination Center.

(e) Is conducted within 3 nautical miles of Whitmore Airstrip, Pearce Ferry Airstrip, North Rim Airstrip, Cliff Dwellers Airstrip, or Marble Canyon Airstrip at an altitudes less than 3,000 feet above airport elevation, for the purpose of landing at or taking off from that facility. Or

(f) Is conducted under an IFR clearance and the pilot is acting in accordance with ATC instructions. An IFR flight plan may not be filed on a route or at an altitude that would require operation in an area described in Section 4.

Section 4. Flight-free zones. Except in an emergency or if otherwise necessary for safety of flight, or unless otherwise authorized by the Flight Standards District Office for a purpose listed in Section 3(b), no person may operate an aircraft in the Special Flight Rules Area within the following areas:

(a) Desert View Flight-Free Zone. Within an area bounded by a line beginning at Lat. 35º59’30” N., Long. 111º46’20” W. to 35º59’30” N., Long. 111º52’45” W.; to Lat. 36º04’50” N., Long.
Federal Aviation Administration, DOT

115°52'00" W. to Lat. 36°06'00" N., Long. 111°46'20" W. to the point of origin; but not including the airspace at and above 10,500 feet MSL within 1 mile of the western boundary of the zone. The area between the Desert View and Bright Angel Flight-Free Zones is designated the “Zuni Point Corridor.”

(b) Bright Angel Flight-Free Zone. Within an area bounded by a line beginning at Lat. 35°59'30" N., Long. 111°55'30" W. to Lat. 35°59'30" N., Long. 112°04'00" W.; thence counterclockwise via the 5 statute mile radius of the Grand Canyon Airport point (Lat. 35°57'00" N., Long. 112°08'47" W.); to Lat. 36°01'30" N., Long. 112°11'30" W.; to Lat. 36°06'15" N., Long. 112°12'50" W.; to Lat. 36°14'40" N., Long. 112°08'30" W.; to Lat. 36°14'40" N., Long. 111°57'30" W. to Lat. 36°12'30" N., Long. 111°53'50" W. to the point of origin; but not including the airspace at and above 10,500 feet MSL within 1 mile of the eastern boundary between the southern boundary and Lat. 36°04'50" N. or the airspace at and above 10,500 feet MSL within 2 miles of the northwest boundary. The area bounded by the Bright Angel and Shinumo Flight-Free Zones is designated the “Dragon Corridor.”

(c) Shinumo Flight-Free Zone. Within an area bounded by a line beginning at Lat. 36°04'00" N., Long. 112°16'40" W. northwest along the park boundary to a point at Lat. 36°12'47" N., Long. 112°30'53" W.; to Lat. 36°21'15" N., Long. 112°20'30" W. east along the park boundary to Lat. 36°21'15" N., Long. 112°13'55" W. to Lat. 36°14'40" N., Long. 112°11'25" W. to the point of origin. The area between the Thunder River/Toroweap and Shinumo Flight-Free Zones is designated the “Fossil Canyon Corridor.”

(d) Toroweap/Thunder River Flight-Free Zone. Within an area bounded by a line beginning at Lat. 36°22'45" N., Long. 112°20'35" W.; thence northwest along the boundary of the Grand Canyon National Park to Lat. 36°17'48" N., Long. 113°00'15" W.; to Lat. 36°15'00" N., Long. 113°07'10" W.; to Lat. 36°10'30" N., Long. 113°07'10" W. thence along the Colorado River to the confluence of Havasu Canyon (Lat. 36°18'40" N., Long. 112°45'42" W.); including that area within a 1.5 nautical mile radius of Toroweap Overlook (Lat. 36°12'45" N., Long. 113°07'30" W.); to the point of origin; but not including the following airspace designated as the “Tuckup Corridor”: at or above 10,500 feet MSL within 2 nautical miles either side of a line extending between Lat. 36°24'47" N., Long. 112°48'50" W. and Lat. 36°17'10" N., Long. 112°48'50" W. to the point of origin.

Section 9. Minimum flight altitudes. Except in an emergency or otherwise necessary for safety of flight, or unless otherwise authorized by the Flight Standards District Office for a purpose listed in Section 3(b), no person may operate an aircraft in the Special Flight Rules Area at an altitude lower than the following:

(a) Eastern section from Lees Ferry to North Canyon: 5,000 feet MSL.

(b) Eastern section from North Canyon to Boundary Ridge: 6,000 feet MSL.

(c) Boundary Ridge to Supai (Yumheteka) Point: 7,500 feet MSL.

(d) Supai Point to Diamond Creek: 6,500 feet MSL.

(e) Western section from Diamond Creek to the Grand Wash Cliffs: 5,000 feet MSL.

Note: [Removed]

SPECIAL FEDERAL AVIATION REGULATION NO. 60—AIR TRAFFIC CONTROL SYSTEM EMERGENCY OPERATION

1. Each person shall, before conducting any operation under the Federal Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that operation, including Notices to Airmen issued under §91.139 and, when activated, the provisions of the National Air Traffic Reduced Complement Operations Plan available for inspection at operating air traffic facilities and Regional air traffic division offices, and the General Aviation Reservation Program. No operator may change the designated airport of intended operation for any flight contained in the October 1, 1990, OAG.

2. Notwithstanding any provision of the Federal Aviation Regulations to the contrary, no person may operate an aircraft in the Air Traffic Control System:

a. Contrary to any restriction, prohibition, procedure or other action taken by the Director of the Office of Air Traffic Systems Management (Director) pursuant to paragraph 3 of this regulation and announced in a Notice to Airmen pursuant to §91.139 of the Federal Aviation Regulations.

b. When the National Air Traffic Reduced Complement Operations Plan is activated pursuant to paragraph 4 of this regulation, except in accordance with the pertinent provisions of the National Air Traffic Reduced Complement Operations Plan.

c. Prior to or in connection with the implementation of the RCOP, and as conditions warrant, the Director is authorized to:

a. Restrict, prohibit, or permit VFR and/or IFR operations at any airport, Class A airspace area, Class B airspace area, or other class of controlled airspace.

b. Give priority at any airport to flights that are of military necessity, or are medical emergency flights, Presidential flights, and...
flights transporting critical Government employees.

c. Implement, at any airport, traffic management procedures, that may include reduction of flight operations. Reduction of flight operations will be accomplished, to the extent practical, on a pro rata basis among and between air carrier, commercial operator, and general aviation operations. Flights cancelled under this SFAR at a high density traffic airport will be considered to have been operated for purposes of part 93 of the Federal Aviation Regulations.

4. The Director may activate the National Air Traffic Reduced Complement Operations Plan at any time he finds that it is necessary for the safety and efficiency of the National Airspace System. Upon activation of the RCOP and notwithstanding any provision of the FAR to the contrary, the Director is authorized to suspend or modify any airspace designation.

5. Notice of restrictions, prohibitions, procedures and other actions taken by the Director under this regulation with respect to the operation of the Air Traffic Control system will be announced in Notices to Airmen issued pursuant to §91.139 of the Federal Aviation Regulations.

6. The Director may delegate his authority under this regulation to the extent he considers necessary for the safety and efficient operation of the National Air Traffic Control System.

SPECIAL FEDERAL AVIATION REGULATION
No. 77—PROHIBITION AGAINST CERTAIN FLIGHTS WITHIN THE TERRITORY AND AIRSPACE OF IRAQ

1. Applicability. This rule applies to the following persons:
 (a) All U.S. air carriers or commercial operators;
 (b) All persons exercising the privileges of an airman certificate issued by the FAA except such persons operating U.S.-registered aircraft for a foreign air carrier; or
 (c) All operators of aircraft registered in the United States except where the operator of such aircraft is a foreign air carrier.

2. Flight prohibition. No person may conduct flight operations over or within the territory of Iraq except as provided in paragraphs 3 and 4 of this SFAR or except as follows:

 (a) Overflights of Iraq may be conducted above flight level (FL) 200 subject to the approval of, and in accordance with the conditions established by, the appropriate authorities of Iraq.

 (b) Flights departing from countries adjacent to Iraq whose climb performance will not permit operation above FL 200 prior to entering Iraqi airspace may operate at altitudes below FL 200 within Iraq to the extent necessary to permit a climb above FL 200, subject to the approval of, and in accordance with the conditions established by, the appropriate authorities of Iraq.

 (c) [Reserved]

3. Permitted operations. This SFAR does not prohibit persons described in paragraph 1 from conducting flight operations within the territory and airspace of Iraq when such operations are authorized either by another agency of the United States Government with the approval of the FAA or by an exemption issued by the Administrator.

4. Emergency situations. In an emergency that requires immediate decision and action for the safety of the flight, the pilot in command of an aircraft may deviate from this SFAR to the extent required by that emergency. Except for U.S. air carriers or commercial operators that are subject to the requirements of 14 CFR parts 119, 121, or 135, each person who deviates from this rule shall, within ten (10) days of the deviation, submit to the nearest FAA Flight Standards District Office a complete report of the operations of the aircraft involved in the deviation including a description of the deviation and the reasons therefore.

5. Expiration. This Special Federal Aviation Regulation will remain in effect until further notice.

SPECIAL FEDERAL AVIATION REGULATION
No. 79—PROHIBITION AGAINST CERTAIN FLIGHTS WITHIN THE FLIGHT INFORMATION REGION (FIR) OF THE DEMOCRATIC PEOPLE’S REPUBLIC OF KOREA (DPRK)

1. Applicability. This rule applies to the following persons:

 (a) All U.S. air carriers or commercial operators;

 (b) All persons exercising the privileges of an airman certificate issued by the FAA, except such persons operating U.S.-registered aircraft for a foreign air carrier.

 (c) All operators of aircraft registered in the United States except where the operator of such aircraft is a foreign air carrier.
Federal Aviation Administration, DOT

Pt. 91, SFAR No. 97

2. Flight Prohibition. Except as provided in paragraphs 3 and 4 of this SFAR, no person described in paragraph 1 may conduct flight operations through the Pyongyang FIR west of 122 degrees east longitude.

3. Permitted Operations. This SFAR does not prohibit persons described in paragraph 1 from conducting flight operations within the Pyongyang FIR west of 122 degrees east longitude where such operations are authorized either by exemption issued by the Administrator or by another agency of the United States Government with FAA approval.

4. Emergency situations. In an emergency that requires immediate decision and action for the safety of the flight, the pilot in command of an aircraft may deviate from this SFAR to the extent required by that emergency. Except for U.S. air carriers and commercial operators that are subject to the requirements of 14 CFR parts 121, 125, or 135, each person who deviates from this rule shall, within ten (10) days of the deviation, excluding Saturdays, Sundays, and Federal holidays, submit to the nearest FAA Flight Standards District Office a complete report of the operations of the aircraft involved in the deviation, including a description of the deviation and the reasons therefore.

5. Expiration. This Special Federal Aviation Regulation shall remain in effect until further notice.

SPECIAL FEDERAL AVIATION REGULATION NO. 97—SPECIAL OPERATING RULES FOR THE CONDUCT OF INSTRUMENT FLIGHT RULES (IFR) AREA NAVIGATION (RNAV) OPERATIONS USING GLOBAL POSITIONING SYSTEMS (GPS) IN ALASKA

Those persons identified in Section 1 may conduct IFR en route RNAV operations in the State of Alaska and its airspace on published air traffic routes using TSO C145a/C146a navigation systems as the only means of IFR navigation. Despite contrary provisions of parts 71, 91, 95, 121, 125, and 135 of this chapter, a person may operate aircraft in accordance with this SFAR if the following requirements are met.

Section 1. Purpose, use, and limitations

a. This SFAR permits TSO C145a/C146a GPS (RNAV) systems to be used for IFR en route operations in the United States airspace over and near Alaska (as set forth in paragraph c of this section) at Special Minimum En Route Altitudes (MEA) that are outside the operational service volume of ground-based navigation aids, if the aircraft operation also meets the requirements of sections 3 and 4 of this SFAR.

b. Certificate holders and part 91 operators may operate aircraft under this SFAR provided that they comply with the requirements of this SFAR.

c. Operations conducted under this SFAR are limited to United States Airspace within and near the State of Alaska as defined in the following area description:

From 62°00'00.000"N, Long. 141°00'00.000"W; to Lat. 59°47'54.11"N, Long. 135°26'33.34"W; to Lat. 56°00'41.11"N, Long. 130°00'07.80"W; to
Special MEA refers to the minimum en route IFR altitude on published routes that uses ground-based navigation aids and are depicted on the published Low Altitude and High Altitude En Route Charts using the color black.

Station referenced. Station referenced refers to radio navigational aids or fixes that are referenced by ground based navigation facilities such as VOR facilities.

Wide Area Augmentation System (WAAS). WAAS is an augmentation to GPS that calculates GPS integrity and correction data on the ground and uses geo-stationary satellites to broadcast GPS integrity and correction data to GPS/WAAS users and to provide ranging signals. It is a safety critical system consisting of a ground network of reference stations, integrity monitor data processing sites to assess current GPS performance, as well as a space segment that broadcasts that assessment to GNSS users to support en route through precision approach navigation. Users of the system include all aircraft applying the WAAS data and ranging signal.

Section 3. Operational Requirements

To operate an aircraft under this SFAR, the following requirements must be met:

a. Training and qualification for operations and maintenance personnel on required navigation equipment used under this SFAR.

b. Use authorized procedures for normal, abnormal, and emergency situations unique to these operations, including degraded navigation capabilities, and satellite system outages.

c. For certificate holders, training of flight crewmembers and other personnel authorized to exercise operational control on the use of those procedures specified in paragraph b of this section.

d. Part 129 operators must have approval from the State of the operator to conduct operations in accordance with this SFAR.

e. In order to operate under this SFAR, a certificate holder must be authorized in operations specifications.

Section 4. Equipment Requirements

a. The certificate holder must have properly installed, certificated, and functional dual required navigation systems as defined in section 2 of this SFAR for the en route operations covered under this SFAR.

b. When the aircraft is being operated under part 91, the aircraft must be equipped with at least one properly installed, certificated, and functional required navigation system as defined in section 2 of this SFAR for the en route operations covered under this SFAR.
SPECIAL FEDERAL AVIATION REGULATION
NO. 104—PROHIBITION AGAINST CERTAIN FLIGHTS BY SYRIAN AIR CARRIERS TO THE UNITED STATES

1. Applicability. This Special Federal Aviation Regulation (SFAR) No. 104 applies to any air carrier owned or controlled by Syria that is engaged in scheduled international air services.

2. Special flight restrictions. Except as provided in paragraphs 3 and 4 of this SFAR No. 104, no air carrier described in paragraph 1 may take off from or land in the territory of the United States.

3. Permitted operations. This SFAR does not prohibit overflights of the territory of the United States by any air carrier described in paragraph 1.

4. Emergency situations. In an emergency that requires immediate decision and action for the safety of the flight, the pilot in command of an aircraft of any air carrier described in paragraph 1 may deviate from this SFAR to the extent required by that emergency. Each person who deviates from this rule must, within 10 days of the deviation, excluding Saturdays, Sundays, and Federal holidays, submit to the nearest FAA Flight Standards District Office a complete report of the operations or the aircraft involved in the deviation, including a description of the deviation and the reasons therefor.

5. Duration. This SFAR No. 104 will remain in effect until further notice.

Special Federal Aviation Regulation (SFAR) No. 108—Mitsubishi MU–2B Series Special Training, Experience, and Operating Requirements

1. Applicability. After February 5, 2009, this Special Federal Aviation Regulation (SFAR) applies to all persons who operate the Mitsubishi MU–2B series airplane including those who act as pilot-in-command, as second-in-command, or other persons who manipulate the controls while under the supervision of a pilot-in-command. This SFAR also applies to those persons who provide pilot training for the Mitsubishi MU–2B series airplane. The requirements in this SFAR are in addition to the requirements of 14 CFR parts 61, 91, and 135 of this chapter.

2. Compliance and Eligibility. (a) Except as provided in paragraph (b) of this section, no
person may manipulate the controls, act as pilot-in-command, act as second-in-command, or provide pilot training for the Mitsubishi MU–2B series airplane unless that person meets the applicable requirements of this SFAR.

(b) A person, who does not meet the requirements of this SFAR, may manipulate the controls of the Mitsubishi MU–2B series airplane if a pilot-in-command meeting the applicable requirements of this SFAR is occupying the pilot station, and the flight is being conducted for one of the following reasons—

(1) The pilot-in-command is providing pilot training to the manipulator of the controls, and no passengers or cargo are carried on board the airplane;

(2) The pilot-in-command is conducting a maintenance test flight with a second pilot or certificated mechanic, and no passengers or cargo are carried on board the airplane; or

(3) The pilot-in-command is conducting simulated instrument flight and is using a safety pilot other than the pilot-in-command who manipulates the controls for the purposes of 14 CFR 91.109(b), and no passengers or cargo are carried on board the airplane.

(c) A person is required to complete Initial/transition training if that person has fewer than—

(1) 50 hours of documented flight time manipulating the controls while serving as pilot-in-command of a Mitsubishi MU–2B series airplane in the preceding 24 months; or

(2) 500 hours of documented flight time manipulating the controls while serving as pilot-in-command of a Mitsubishi MU–2B series airplane.

(d) A person is eligible to receive Requalification training in lieu of Initial/transition training if that person has at least—

(1) 50 hours of documented flight time manipulating the controls while serving as pilot-in-command of a Mitsubishi MU–2B series airplane in the preceding 24 months; or

(2) 500 hours of documented flight time manipulating the controls while serving as pilot-in-command of a Mitsubishi MU–2B series airplane.

(e) A person is required to complete Recurrent training within the preceding 12 months. Successful completion of Initial/transition or Requalification training within the preceding 12 months satisfies the requirement of Recurrent training. A person must successfully complete Initial/transition training or Requalification training before being eligible to receive Recurrent training.

(f) Successful completion of Initial/transition training or Requalification training is a one-time requirement. A person may elect to retake Initial/transition training or Requalification training in lieu of Recurrent training.

(g) A person is required to complete Differences training if that person operates more than one MU–2B model. Differences training between the K and M models of the MU–2B airplane, and the J and L models of the MU–2B airplane, may be accomplished with Level A training. All other Differences training must be accomplished with Level B training. Persons that are operating two models of the MU–2B airplane are required to receive 1.5 hours of Differences training. Persons that are operating three or more models of the MU–2B airplane are required to receive 3.0 hours of Differences training. An additional 1.5 hours of Differences training is required for each model added at a later date. Differences Training is not a recurring annual requirement. Once a person has received Differences training between the applicable different models, no additional Differences training between those models is required.

3. Required Pilot Training. (a) Except as provided in section 2 paragraph (b) of this SFAR, no person may manipulate the controls, act as pilot-in-command, or act as second-in-command of a Mitsubishi MU–2B series airplane for the purpose of flight unless—

(1) The applicable requirements for ground and flight training on Initial/transition, Requalification, Recurrent, and Differences training have been completed, as specified in this SFAR, including Appendices A through D of this SFAR; and

(2) That person’s logbook has been endorsed in accordance with paragraph (f) of this section.

(b) No person may manipulate the controls, act as pilot-in-command, or act as second-in-command, of a Mitsubishi MU–2B series airplane for the purpose of flight unless—

(1) That person satisfactorily completes, if applicable, annual Recurrent pilot training on the Special Emphasis Items, and all items listed in the Training Course Final Phase Check as specified in Appendix C of this SFAR; and

(2) That person’s logbook has been endorsed in accordance with paragraph (f) of this section.

(c) Satisfactory completion of the competency check required by 14 CFR 135.261 within the preceding 12 calendar months may not be substituted for the Mitsubishi MU–2B series airplane annual recurrent flight training of this section.

(d) Satisfactory completion of a Federal Aviation Administration sponsored pilot proficiency award program, as described in 14 CFR 61.56(e) may not be substituted for the Mitsubishi MU–2B series airplane annual recurrent flight training of this section.

(e) If a person complies with the requirements of paragraph (a) or (b) of this section in the calendar month before or the calendar month after the month in which compliance with these paragraphs are required, that person is considered to have accomplished the
Federal Aviation Administration, DOT

training requirement in the month the training is due.

(f) The endorsement required under paragraph (a) and (b) of this section must be made by—

(1) A certificated flight instructor meeting the qualifications of section 5 of this SFAR; or

(2) For persons operating the Mitsubishi MU–2B series airplane for a part 119 certificate holder within the last 12 calendar months, the 14 CFR part 119 certificate holder’s flight instructor if authorized by the FAA and if that flight instructor meets the requirements of section 5 of this SFAR.

(g) All training conducted for the Mitsubishi MU–2B series airplane must be completed in accordance with the applicable MU–2B series checklist listed in table 1 of this SFAR or an MU–2B series airplane checklist that has been accepted by the Federal Aviation Administration’s MU–2B Flight Standardization Board.

TABLE 1 TO SFAR 108—MU–2B SERIES AIRPLANE MANUFACTURER’S CHECKLISTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Type certificate</th>
<th>Cockpit checklist</th>
<th>Date the checklist was accepted by the FSB</th>
</tr>
</thead>
</table>

4. Aeronautical Experience. No person may act as pilot-in-command of a Mitsubishi MU–2B series airplane for the purpose of flight unless that person holds an airplane category and multi-engine land class rating, and has logged a minimum of 100 flight hours of pilot-in-command time in multi-engine airplanes.

5. Instruction, Checking and Evaluation. (a) Flight Instructor (Airplane). No flight instructor may provide flight training in the Mitsubishi MU–2B series airplane unless that flight instructor meets the requirements of this paragraph.

(1) Each flight instructor who provides flight training in the Mitsubishi MU–2B series airplane must meet the requirements of paragraphs (a) and (c) of section 3 of this SFAR before giving flight instruction in the Mitsubishi MU–2B series airplane.

(2) Each flight instructor who provides flight training in the Mitsubishi MU–2B series airplane must meet the currency requirements of paragraphs (a) and (c) of section 6 of this SFAR before giving flight instruction in the Mitsubishi MU–2B series airplane.

(3) Each flight instructor who provides flight training in the Mitsubishi MU–2B series airplane must have a minimum total pilot time of 2,000 pilot-in-command hours, 800 pilot-in-command hours in multi-engine airplanes.

(4) Each flight instructor who provides flight training in the Mitsubishi MU–2B series airplane must have—

(i) 300 pilot-in-command hours in the Mitsubishi MU–2B series airplane, 50 hours of which must have been within the preceding 12 months; or

(ii) 100 pilot-in-command hours in the Mitsubishi MU–2B series airplane, 25 hours of which must have been within the preceding 12 months, and 300 hours providing instruction in a FAA-approved Mitsubishi MU–2B simulator or FAA-approved Mitsubishi MU–2B flight training device, 25 hours of which must have been within the preceding 12 months.

(b) Flight Instructor (Simulator/Flight Training Device). No flight instructor may provide instruction for the Mitsubishi MU–2B series airplane unless that instructor meets the requirements of this paragraph.

(1) Each flight instructor who provides flight training for the Mitsubishi MU–2B series airplane must meet the pilot training and documentation requirements of section 3 of this SFAR before giving flight instruction for the Mitsubishi MU–2B series airplane.

(2) Each flight instructor who provides flight training for the Mitsubishi MU–2B series airplane must meet the currency requirements of paragraph (c) of section 6 of this SFAR before giving flight instruction for the Mitsubishi MU–2B series airplane.

(3) Each flight instructor who provides flight training for the Mitsubishi MU–2B series airplane must have—

(i) A minimum total pilot time of 2000 pilot-in-command hours and 800 pilot-in-command hours in multi-engine airplanes; and

(ii) Within the preceding 12 months, either 50 hours of Mitsubishi MU–2B series airplane pilot-in-command experience or 50 hours providing simulator or flight training device instruction for the Mitsubishi MU–2B.

(c) Checking and Evaluation. No person may provide checking or evaluation for the Mitsubishi MU–2B series airplane unless that person meets the requirements of this paragraph.

(1) For the purpose of checking, designated pilot examiners, training center evaluators, and check airmen must have completed the appropriate training in the Mitsubishi MU–2B series airplane.
2B series airplane in accordance with section 3 of this SFAR.

(2) For checking conducted in the Mitsubishi MU–2B series airplane, each designated pilot examiner and check airman must have 100 hours pilot-in-command flight time in the Mitsubishi MU–2B series airplane and maintain currency in accordance with section 6 of this SFAR.

(a) The takeoff and landing currency requirements of 14 CFR 61.57 must be maintained in the Mitsubishi MU–2B series airplane. Takeoff and landings in other multiengine airplanes do not meet the takeoff landing currency requirements for the Mitsubishi MU–2B series airplane. Takeoff and landings in either the short-body or long-body Mitsubishi MU–2B model airplane may be credited toward takeoff and landing currency for both Mitsubishi MU–2B model groups.

(b) Instrument experience obtained in other category and class of aircraft may be used to satisfy the instrument currency requirements of 14 CFR 61.57 for the Mitsubishi MU–2B series airplane.

(c) Satisfactory completion of a flight review to satisfy the requirements of 14 CFR 61.56 is valid for operation of a Mitsubishi MU–2B series airplane only if that flight review is conducted in a Mitsubishi MU–2B series airplane. The flight review for Mitsubishi MU–2B series airplanes must include the Special Emphasis Items, and all items listed in the Training Course Final Phase Check of Appendix C of this SFAR.

(d) A person who successfully completes the Initial/transition, Requalification, or Recurrent training requirements, as described in section 3 of this SFAR, also meets the requirements of 14 CFR 61.56 and need not accomplish a separate flight review provided that at least 1 hour of the flight training was conducted in the Mitsubishi MU–2B series airplane.

7. Operating Requirements.

(a) Except as provided in paragraph (b) of this section, no person may operate a Mitsubishi MU–2B airplane in single pilot operations unless that airplane has a functional autopilot when—

(1) Operating under day visual flight rule requirements; or

(2) Authorized under a FAA approved minimum equipment list for that airplane, operating under instrument flight conditions.

(b) A person may operate a Mitsubishi MU–2B airplane in single pilot operations without a functional autopilot when—

(1) Operating under day visual flight rule requirements; or

(2) Authorized under a FAA approved minimum equipment list for that airplane, operating under instrument flight in daytime visual meteorological conditions.

(c) No person may operate a Mitsubishi MU–2B series airplane unless a copy of the appropriate Mitsubishi Heavy Industries MU–2B Airplane Flight Manual is carried on board the airplane and is accessible during each flight at the pilot station.

(d) No person may operate a Mitsubishi MU–2B series airplane unless an MU–2B series airplane checklist, appropriate for the model being operated and accepted by the Federal Aviation Administration MU–2B Flight Standardization Board, is accessible for each flight at the pilot station and is used by the flight crewmembers when operating the airplane.

(e) No person may operate a Mitsubishi MU–2B series airplane contrary to the MU–2B training program in the Appendices of this SFAR.

(f) If there are any differences between the training and operating requirements of this SFAR and the MU–2B Airplane Flight Manual’s procedures sections (Normal, Abnormal, and Emergency) and the MU–2B airplane series checklist specified in section 3(g), table 1, the person operating the airplane must operate the airplane in accordance with the training specified in section 3(g), table 1.

8. Credit for Prior Training. Initial/transition or requalification training conducted between July 27, 2006, and April 7, 2008, using Mitsubishi Heavy Industries MU–2B Training Program, Part number YET 65301, Revision Original, dated July 27, 2006, or Revision 1, dated September 19, 2006, is considered to be compliant with this SFAR, if the student met the eligibility requirements for the applicable category of training and the student’s instructor met the experience requirements of this SFAR.

9. Incorporation by Reference. You must proceed in accordance with the Mitsubishi Heavy Industries MU–2B checklist, as listed in Table 1 of this SFAR which are incorporated by reference. The Director of the Federal Register approved this incorporation by reference in accordance with 5 U.S.C. section 552(a) and 1 CFR part 51. The Mitsubishi Heavy Industries MU–2B Checklists are distributed by Turbine Aircraft Services, Inc., 4550 Jimmy Doolittle Drive, Addison, Texas 75001, USA. You may obtain a copy from Turbine Aircraft Services Inc., 4550 Jimmy Doolittle Drive, Addison, Texas 75001, USA. You may inspect a copy at U.S. Department of Transportation, Docket Management Facility, Room W 12–140, West Building Ground Floor, 1200 New Jersey Ave., SE., Washington, DC 20590–0001, or at the National Archives and Records Administration at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

10. Expiration. This SFAR will remain in effect until further notice.

APPENDIX A TO SFAR 108—MU–2B GENERAL TRAINING REQUIREMENTS

(a) The Mitsubishi MU–2B Training Program consists of both ground and flight training. The minimum pilot training requirement hours are shown in Table 1 of this appendix for ground instruction and Table 2.
Federal Aviation Administration, DOT

of this appendix for flight instruction. An additional ground training requirement for Differences Training is shown in Table 3.

(b) The MU–2B is certificated by the Federal Aviation Administration (FAA) as a single pilot airplane. No training credit is given for second in command (SIC) training and no credit is given for right seat time under this program. Only the sole manipulator of the controls of the MU–2B airplane, Flight Training Device (FTD), or Level C or D simulator can receive training credit under this program.

(c) The training program references the applicable MU–2B airplane flight manual (AFM) in several sections. There may be differences between sequencing of procedures found in the AFM’s procedures sections and the checklists, procedures, and techniques found within this training program. The FAA’s Mitsubishi MU–2B SFAR requires that if there are any differences between the AFM’s procedures sections (Normal, Abnormal, and Emergency) and the training and operating requirements of the Mitsubishi MU–2B SFAR, the person operating the airplane must operate the airplane in accordance with the training specified in the SFAR and this MU–2B training program.

(d) Minimum Programmed Training Hours

TABLE 1 TO APPENDIX A OF SFAR 108

<table>
<thead>
<tr>
<th>Ground instruction</th>
<th>Initial/transition</th>
<th>Requalification</th>
<th>Recurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 hours</td>
<td>12 hours</td>
<td>8 hours.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 TO APPENDIX A OF SFAR 108

<table>
<thead>
<tr>
<th>Flight instruction</th>
<th>Initial/transition</th>
<th>Requalification</th>
<th>Recurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 hours with a minimum of 6 hours at Level E</td>
<td>8 hours Level C or Level E</td>
<td>4 hours at Level E or 6 hours at Level C</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 TO APPENDIX A OF SFAR 108

<table>
<thead>
<tr>
<th>Differences training</th>
<th>2 models currently</th>
<th>More than 2 models currently, Each additional model added</th>
<th>1.5 hours at Level A or B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 hours at Level A or B</td>
<td>1.5 hours at Level A or B</td>
</tr>
</tbody>
</table>

(e) Definitions of Levels of Training as Used in This Appendix

(1) LEVEL A Training—Training that is conducted through self instruction by the pilot.

(2) LEVEL B Training—Training that is conducted in the classroom environment with the aid of a qualified instructor who meets the requirements of this SFAR.

(3) LEVEL C Training—Training that is accomplished in an FAA-approved Level 5, 6, or 7 Flight Training Device (FTD). In addition to the basic FTD requirements, the FTD must be representative of the MU–2B cockpit controls and be specifically approved by the FAA for the MU–2B airplane.

(4) LEVEL E Training—Training that must be accomplished in the MU–2B airplane, Level C simulator, or Level D simulator.

APPENDIX B TO SFAR 108—MU–2B GROUND TRAINING CURRICULUM CONTENTS

All items in the ground training curriculum must be covered. The order of presentation is at the discretion of the instructor. The student must satisfactorily complete a written or oral exam given by the training provider based on this MU–2B Training Program.

I. Aircraft General

A. Introduction

B. Airplane (Structures/Aerodynamics/Engines) Overview

1. Fuselage

2. Wing

3. Empennage

4. Doors

5. Windshield and Windows

C. Airplane Systems

1. Electrical Power

2. Lighting

3. Fuel System

4. Powerplant

5. Environmental

6. Fire Protection

7. Ice and Rain Protection

8. Landing Gear and Brakes

9. Flight Controls and Trim

10. Pilot Static System/Flight Instruments

II. Electrical Power

A. General Description

B. DC Electrical System

1. DC Power Generation

2. DC Power Distribution

3. Battery System

4. External Power System
C. AC Electrical System
1. AC Power Generation
2. Controls and Indicators
3. AC Power Distribution
D. Limitations
1. General Limitations
2. Instrument Markings
III. Lighting
A. Exterior Lighting System
1. Navigation Lights
2. Anti-Collision Lights
3. Wing Inspection Lights
4. Taxi Lights
5. Landing Lights
6. Rotating Beacon
7. Operation
B. Interior Lighting System
1. Flight Compartment Lights
2. Passenger Compartment Lights
C. Emergency Lighting System
1. Cockpit Emergency Lighting
2. Aircraft Emergency Lighting
D. Procedures
1. Normal
2. Abnormal
3. Emergency
IV. Master Caution System
A. System Description and Operation
1. Master Caution Light and Reset Switch
2. Annunciator and Indicator Panels
3. Operation Lights
4. System Tests
B. Procedures
V. Fuel System
A. Fuel Storage
1. Refueling/Balancing
2. De-Fueling and Draining
3. Tank Vent System
B. Fuel Distribution
1. Fuel Transfer
2. Fuel Balancing
3. Boost Pump Operation
C. Fuel Indicating
1. Fuel Quantity
2. Low Fuel Warning
D. Fuel System Limitations
1. Approved Fuels
2. Fuel Anti-Icing Additives
3. Fuel Temperature Limitations
4. Fuel Transfer and Fuel Imbalance
5. Fuel Pumps
6. Refueling
7. Capacity
8. Unusable Fuel
VI. Powerplant
A. Engine Description
1. Major Sections
2. Cockpit Controls
3. Instrumentation
4. Operation
B. Engine Systems
1. Lubrication
2. Fuel
3. Ignition
4. Engine Starting
5. Anti-Ice
C. Propeller System
1. Ground Operations
2. In-Flight Operations
3. Synchronization
4. De-Ice
D. Ground Checks
1. Overspeed Governor
2. SRL and Delta P/P
3. NTS and Feather Valve
4. Supplementary NTS
E. In Flight Post Maintenance Checks
1. NTS In-Flight
2. Flight Idle Fuel Flow
F. Limitations
1. Powerplant
2. Engine Starting Conditions
3. Airstart Envelope
4. Engine Starting
5. Oil
6. Fuel
7. Starter/Generator
8. External Power
9. Instrument Markings (as applicable)
a. TPE331–10–511M
b. TPE331–5/6–252/251M
c. TPE331–1–151M
G. Engine Malfunctions and Failures
1. Propeller Coupling
2. Torque Sensor
3. Engine Overspeed
4. Fuel Control Spline
VII. Fire Protection
A. Introduction
B. Engine Fire Detection
1. System Description
2. Annunciator
C. Portable Fire Extinguishers
VIII. Pneumatics
A. System Description
B. System Operation
1. Air Sources
2. Limitations
C. Wing and Tail De-Ice
1. System Description
2. Controls
D. Entrance and Baggage Door Seal
1. Air Source
2. Operation
IX. Ice and Rain Protection
A. General Description
B. Wing De-Ice
1. System Description
2. Operation
3. Controls and Indications
C. Engine Anti-Ice
1. System Description
2. Operation
3. Controls and Indications
D. Window De-Icing
1. Controls
2. Operation
E. Tail De-Ice
1. Horizontal Stabilizer De-Ice
2. Vertical Stabilizer De-Ice
F. Pitot Static System Anti-Icing
1. Pitot Tube Heating
2. Static Port Heating
3. AOA Transmitter Heating
Federal Aviation Administration, DOT
Pt. 91, SFAR No. 108

G. Windshield De-Ice/Anti-Ice
1. System Description
2. Controls and Indications
H. Windshield Wiper
1. System Description
2. Control and Operation
I. Propeller De-Ice
1. System Description
2. Controls and Indications
J. Ice Detector
1. System Description
2. Controls and Indications
3. Operation
K. Limitations
1. Temperatures
2. Cycling

X. Air Conditioning
A. System Description and Operation
1. Refrigeration Unit (ACM)
2. Air Distribution
3. Ventilation
4. Temperature Control
5. Water Separator
B. Limitations

XI. Pressurization
A. General
B. Component Description
1. Cabin Pressure Controller
2. Altitude Pressure Regulator
3. Ram Air
4. Outflow Safety Valves
5. Air Filters
6. Manual Control Valve
7. Pneumatic System
8. Venturi
C. System Operation
1. Ground Operation
2. Takeoff Mode
3. In-Flight Operation
4. Landing Operation
D. Emergency Operation
1. High Altitude
2. Low Altitude
E. Limitations
1. Maximum Differential
2. Landing Limitations

XII. Landing Gear and Brakes
A. General Description
1. Landing Gear Doors
2. Controls and Indicators
3. Warning Systems
4. Emergency Extension
B. Nosewheel Steering
C. Landing Gear/Brakes/Tires
D. Limitations
1. Airspeed (with flaps)
2. Emergency Extension
3. Tire Speed
4. Brake Energy

XIII. Flight Controls
A. Primary Flight Controls (Elevator/Rudder/ Spoilers)
1. Description
2. Operations
B. Trim Systems
1. System Description
2. Roll Trim
3. Pitch Trim
4. Yaw Damper
5. Automatic Trim Disconnect
6. Trim-in-Motion Alert System
C. Secondary Flight Controls
1. System Description
2. Flaps
D. Limitations
1. Instrument Markings
2. Placards
E. Flight Characteristics
1. Control Systems
2. Stability and Stall Characteristics
3. Single Engine Operation
4. Maneuvering and Trim
5. Takeoff and Landing

XIV. Avionics
A. Pitot-Static System
1. System Description
2. Pilot’s System
3. Co-Pilot’s System
4. Alternate Static
B. Air Data Computer
C. Attitude Instrument Displays (EFIS and Standard)
1. EADI
2. Standard Attitude Gyro
D. AHRS
1. System Description
2. Controls and Indications
E. Navigation
1. Nav Systems Descriptions
2. Compass System Descriptions
3. Display Systems
4. Terrain Awareness System
5. Traffic Avoidance System
F. Communications
1. VHF Communications Systems
2. Audio Control
3. Standby Flight Instruments
G. Standby Flight Instruments
1. System Description
2. Controls and Indications
H. Automatic Flight Control System
1. System Description
2. Controls and Indications
3. Trim-in-Motion Alert System
4. Autopilot Automatic Disconnect
5. Aural Alert System

XV. Oxygen System
A. System Description
1. Crew Oxygen
2. Passenger Oxygen
3. Outlet Valves
4. Duration
5. Oxygen Cylinder Assembly
C. Passenger Oxygen
1. System Description
2. Duration
D. Limitations

XVI. Performance and Planning
A. Takeoff Performance Charts
1. Runway Requirements
2. Normal and with One Engine Inoperative
B. Climb Performance
1. Normal and with One Engine Inoperative
2. Obstacle Clearance
C. Cruise Performance
1. Power Charts
2. Maximum Practical Altitude
3. Cruise Speeds/Engine Health
4. Buffet Boundary
D. Landing Performance
1. Runway Requirements
 a. Dry Runway
 b. Wet Runway
 2. Go-Around
 a. One Engine Inoperative
 b. All Engines

XVII. Weight and Balance
A. Aircraft Loading Procedures
B. Limitations
1. Weight Limits
2. C.G. Limits
C. Plotter
1. Description
2. Use
D. Calculations
1. AFM Procedures
2. Examples

XVIII. General Subjects
A. Controlled Flight into Terrain Awareness
B. CRM/SPRM
1. Crew Resource Management
2. Single Pilot Resource Management
C. MU–2B Flight Standardization Board Report

APPENDIX C TO SFAR 108—MU–2B FINAL PHASE CHECK AND FLIGHT TRAINING REQUIREMENTS
(I) MU–2B Final Phase Check Requirements

(A) Completion of the MU–2B Training Program in this appendix requires successful completion of a final phase check taken in the MU–2B airplane or a Level C or D simulator for Initial/Transition training. The final phase check for Requalification or Recurrent Training may be taken in the MU–2B airplane, a Level C or D simulator, or in a Level 5, 6, or 7 FAA-approved MU–2B Flight Training Device (FTD). The final phase check must be conducted by a qualified flight instructor who meets the requirements of the MU–2B SFAR. Simultaneous training and checking is not allowed for Initial/Transition training.

(B) For pilots operating under 14 CFR part 135, checking must be done in accordance with applicable regulations. For the purpose of recurrent testing in 14 CFR 135.260(b), the MU–2B is considered a separate type of aircraft.

(C) The final phase check must be conducted using the standards contained in the FAA Commercial Pilot—Airplane Multi-Engine Land, and Instrument Rating—Airplane Practical Test Standards (PTS).

(D) The final phase check portion of the training is comprised of the following tasks for all airmen (instrument rated and non-instrument rated). An (*) indicates those maneuvers for Initial/Transition training which must be completed in the MU–2B airplane, or a Level C or D simulator.

1. Preflight Check.
2. Start and Taxi Procedures.
5. Rejected Takeoff.
7. * Approach to Stalls (3) (must include Accelerated Stalls).
8. * Maneuvering with One Engine Inoperative—Loss of Directional Control (V_{mc}).
9. Abnormal and Emergency Procedures—To include MU–2B operation in icing conditions without the autopilot or without trim-in-motion or automatic autopilot disconnect.
14. * Landing with Non-Standard Flap Configuration (0 or 5 degrees).
15. Postflight Procedures.

(E) The following additional tasks are required for those airmen who possess an instrument rating. An (*) indicates those maneuvers for Initial/Transition training which must be completed in the MU–2B airplane, or a Level C or D simulator.

1. Preflight Check.
2. Unusual Attitudes.
3. Abnormal and Emergency Procedures.
5. Area Arrival and Departure.
6. Holding.
7. Precision Approach (Two Engine).
8. * Non-Precision Approaches (2)—Must include a Non-Precision Approach with One Engine Inoperative.
9. Missed Approach from either Precision or Non-Precision Instrument Approach (Two Engine).
10. Landing from a Straight-In or Circling Approach.

(F) A form titled “Training Course Final Phase Check” has been included in this appendix for use in creating a training and final check record for the student and the training provider.
(II) MU–2B Required Flight Training Tasks

(A) General Flight Training Requirements: All flight training maneuvers must be consistent with this training program and the applicable MU–2B checklist accepted by the FAA. The maneuver profiles shown in Appendix D to this SFAR No. 108 are presented to show the required training scenarios. Profiles conducted in flight require planning and care on the part of both the instructor and student in order to provide the highest level of safety possible. The maneuver profiles shown in Appendix D to this SFAR No. 108 do not account for local geographic and flight conditions. The instructor and student must consider local conditions when performing these maneuvers in flight.

(B) Special Emphasis Items: Certain aspects of pilot knowledge, skills and abilities must be emphasized and evaluated during the training and checking process of the MU–2B Training Program.

1. Accelerated stall awareness and recovery procedures with emphasis on configuration management. Awareness of the margin to stall in all flight operations and configurations must be emphasized throughout training.
2. V_{mc} awareness and early recognition must be trained and checked. Minimum airspeeds for one engine inoperative must be emphasized in all configurations.
3. Airspeed management and recognition of airspeed deterioration below recommended speeds and recovery methods in this training program must be emphasized throughout training and checking.
4. Knowledge of icing conditions and encounters must be emphasized throughout training and checking including: Equipment requirements, certification standards, minimum airspeeds, and the use of the autopilot and other applicable AFM procedures.
5. Airplane performance characteristics with all engines operating and with one engine inoperative must be emphasized.

(C) MU–2B Flight Training Program Proficiency Standards.

1. Each pilot, regardless of the level of pilot certificate held, must be trained to and maintain the proficiency standards described below.

(a) General VFR/IFR.
1. Bank Angle—± 5 degrees of prescribed bank angle
2. Heading—± 10 degrees
3. Altitude—± 100 feet
4. Airspeed—± 10 knots

(b) Instrument Approach—Final Approach Segment.

Precision Approach
1. Heading—± 10 degrees
2. Altitude—± 100 feet
3. Airspeed—± 10 knots prior to final

(V) Glide Slope (GS)/Localizer Deviation—Within ¼ scale—not below GS

Non-Precision Approach

Straight In

(i) Initial Approach Altitude—± 100 feet
(ii) Heading—± 10 degrees
(iii) Altitude (MDA)—± 100, − 0 feet
(iv) Airspeed—± 10 knots
(v) Course Deviation Indicator—Within ¼ scale or ± 10 degrees on RMI

Circling Approach

(x) Maximum Bank—30 degrees
(xi) Heading—Within 10 degrees
(xii) Altitude—+100, − 0 feet
(xiii) Altitude—+100, − 0 feet
(xiv) Airspeed—Within 10 knots but not less than V_{ref}

(c) In all cases, a pilot must show complete mastery of the aircraft with the outcome of each maneuver or procedure never seriously in doubt.

(D) Maneuvers and Procedures. All flight training maneuvers and procedures must be conducted as they are applicable to the MU–2B and each type of operations involved.

Preflight

1. Preflight Inspection—The pilot must—
(a) Conduct an actual visual inspection of the exterior and interior of the airplane, locating each item and explaining briefly the purpose of inspecting it; and
(b) Demonstrate the use of the appropriate checklist, appropriate control system checks, starting procedures, radio and electronic equipment checks, and the selection of proper navigation and communications radio facilities and frequencies prior to flight.

2. Taxiing—this maneuver includes taxiing in compliance with instructions issued by the appropriate ATC facility or by the person conducting the check.

3. Pre-Takeoff Checks—The pilot must satisfactorily complete all pre-takeoff aircraft systems and powerplant checks before takeoff.

Takeoff and Departure

1. Normal—One normal takeoff, which for the purpose of this maneuver, begins when the airplane is taxied into position on the runway to be used.

2. Instrument Takeoff—Takeoff with simulated instrument conditions at or before reaching an altitude of 200 feet above the airport elevation and visibility of 1800 RVR.

3. Crosswind—One crosswind takeoff, if practical, under the existing meteorological, airport and traffic conditions.
(4) Powerplant Failure—One takeoff with a simulated failure of the most critical powerplant at a point after Vlof. In the MU-2B airplane, all simulated powerplant failures must only be initiated when the person conducting the training or checking determines that it is safe under the prevailing conditions. The instructor must assure that the power lever does not move beyond the flight idle gate.

(5) Rejected Takeoff—A rejected takeoff performed in an airplane during a normal takeoff run after reaching a reasonable speed determined by giving due consideration to aircraft characteristics, runway length, surface conditions, wind direction and velocity, brake heat energy, and any other pertinent factors that may adversely affect safety or the airplane.

(6) Area departure—Demonstrate adequate knowledge of departure procedures, establishing appropriate ATC communications and following clearances.

Flight Maneuvers and Procedures

(1) Steep bank turns—Each steep turn must involve a bank angle of 50 degrees with a heading change of at least 180 degrees but no more than 360 degrees.

(2) Approaches to stalls—Must be performed in each of the following configurations; takeoff, clean, and landing. One approach to a stall must be performed in either the takeoff, clean, or landing configuration while in a turn with a bank angle between 15 degrees and 30 degrees.

(3) Accelerated stalls—must be done in the flaps 20 and flaps 0 configurations.

(4) Recovery procedures must be initiated at the first indication of a stall.

Normal and Abnormal Procedures and Operations

(1) Runway trim.

(2) Normal and abnormal operations of the following systems:
 - Pressurization
 - Pneumatic
 - Air conditioning
 - Fuel
 - Electrical
 - Flight control
 - Anti-icing and de-icing
 - Autopilot
 - Stall warning devices, as applicable
 - Airborne radar and weather detection devices
 - Other systems, devices or aids available

(3) Electrical, flight control and flight instrument system malfunction or failure.

(4) Landing gear and flap system malfunction or failure.

(5) Failure of navigation or communications equipment.

Flight Emergency Procedures

(1) Powerplant failure.

(2) Powerplant, cabin, flight deck, wing and electrical fires.

(3) Smoke control.

(4) Fuel jettisoning, as applicable.

(5) Any other emergency procedures outlined in the appropriate AFM or FAA-accepted checklist.

Instrument Procedures

(1) Area departure.

(2) Use of navigation systems including adherence to assigned course and/or radial.

(3) Holding procedures.

(4) Aircraft approach category airspeeds.

(5) Approach procedures: Each instrument approach must be performed according to all procedures and limitations approved for that facility. An instrument approach procedure begins when the airplane is over the initial approach fix for the approach procedure being used and ends when the airplane touches down on the runway or when transition to missed approach configuration is completed.

 - ILS, ILS/DME, approach.
 - A manually controlled ILS with a powerplant inoperative; occurring before initiating the final approach course and continuing to full stop or through the missed approach procedure.
 - An ILS with the autopilot coupled.

 - Non-precision approaches.

 - NDB, NDB/DME approach, straight in or circle
 - VOR, VOR/DME, straight in or circle
 - LOC, LOC/DME, LOC backcourse
 - GPS approach (If the aircraft/FTD/flight simulator has a GPS installed, the applicant must demonstrate GPS approach proficiency.)
 - ASR approach.

 - Missed approach procedure: One missed approach procedure must be a complete approved missed approach procedure as published or as assigned by ATC.

 - From a precision approach.
 - From a non-precision approach.

 - With a simulated powerplant failure.

 - Circling approach.

 - The circling approach must be made to the authorized MDA and followed by a change in heading and the necessary maneuvering (by visual reference) to maintain a flight path that permits a normal landing on the runway.

 - The circling approach must be performed without excessive maneuvering and without exceeding the normal operating limits of the airplane and the angle of bank must not exceed 30°.

Landings and Approaches to Landings

(1) Airport orientation.
(2) Normal landings with stabilized approach.
(3) Crosswind landings.
(4) From a precision instrument approach.
(5) From a precision instrument approach with a powerplant inoperative.
(6) From a non-precision instrument approach.
(7) From a non-precision instrument approach with a powerplant inoperative.
(8) From a circling approach or VFR traffic pattern.
(9) Go Around/Rejected landings—a normal missed approach procedure or a visual go-around after the landing is rejected. The landing should be rejected at approximately 50 feet and approximately over the runway threshold.
(10) Zero flap landing.
 (a) Runway requirements.
 (b) Airspeeds.
APPENDIX D TO SFAR 108—MU–2B MANEUVER PROFILES

(A) The Maneuver Profiles are provided to develop pilot proficiency with the procedures and techniques contained within this MU–2B Flight Training Program.

(B) Though constructed for use in the airplane they may also be used in the Flight Training Device (FTD). When an FTD is
used, a maneuver may be performed at lower altitudes or carried to its completion. When training is conducted in the MU–2B airplane, all maneuvers must be performed in a manner sufficient to evaluate the performance of the student while never jeopardizing the safety of the flight.

(C) The maneuvers profiles are broken down into three sections by similar aircraft model groups. The three sections of this program are:

1. Marquise (-60), Solitaire (-40), N (-36A), P (-26A)—Figures A-1 through A-28
2. J (-35), K (-25), L (-36), M (-26)—Figures B-1 through B-28
3. B, D (-10), F (-20), G (-30)—Figures C-1 through C-28
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

NORMAL TAKE-OFF, 5° OR 20° FLAPS

<table>
<thead>
<tr>
<th>TAKE OFF SPEEDS</th>
<th>ROTATE</th>
<th>N. MARQ</th>
<th>P. SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS 5°</td>
<td>11.575 LBS.</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.000 LBS.</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.470 LBS.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.000 LBS.</td>
<td>101</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>9.000 LBS.</td>
<td>100</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>8.000 LBS.</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>FLAPS 20°</td>
<td>11.575 LBS.</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.000 LBS.</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.470 LBS.</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.000 LBS.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.000 LBS.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.000 LBS.</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

A/S 155KCAS MINIMUM

AFTER GEAR IS FULLY RETRACTED, IF FLAPS 20° RETRACT FLAPS TO 5° INCREASE PITCH TO APPROX. 10° 140KCAS, THEN FLAPS UP

COMPLETE AFTER T/O AND CLIMB CHECKLIST

ACCELERATE TO DESIRED CLIMB SPEED

NORMAL PITCH. APPROX 8° FLAPS 20°, APPROX 10-12° FLAPS 5°

POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP. IF 20° FLAPS 113 KTS MIN. IF 5° FLAPS 120 KTS (MARQ, N) 125 KTS (SOL, P)

VR – ROTATE 13° MAX NOSE UP PITCH

* NOTE: IF RUNWAY LENGTH OR OBSTACLE CLEARANCE IS CRITICAL, SET POWER TO EITHER TORQUE OR TEMP MAXIMUM, WHICHEVER OCCURS FIRST. RETARD POWER LEVERS AS REQUIRED TO MAINTAIN MAXIMUM ALLOWABLE TORQUE OR TEMP.

* TORQUE 90% OR 600° EST / 879° ITT, WHICHEVER OCCURS FIRST. BETA LIGHTS OUT. RELEASE BRAKES. RAM RISE WILL CAUSE TORQUE OR TEMP TO RISE TO MAXIMUM TAKEOFF POWER DURING TAKEOFF ROLL.
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

TAKE-OFF ENGINE FAILURE – FLAPS 5° OR 20°

<table>
<thead>
<tr>
<th>FLAP SETTING</th>
<th>VXSE(KCAS)</th>
<th>VySE(KCAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>140 / 135 *</td>
<td>150 / 150 *</td>
</tr>
<tr>
<td>5°</td>
<td>130 / 130 *</td>
<td>140 / 140 *</td>
</tr>
<tr>
<td>20°</td>
<td>125 / 125 *</td>
<td>135 / 130 *</td>
</tr>
</tbody>
</table>

*P, SOL

APPROX 300-400 FEET (OBSTRUCTION CLEARANCE). IF FLAPS 20° ADJUST PITCH TO ACCELERATE. 130KCAS, FLAPS TO 5°, PITCH APPROX. 10°

**PITCH TO MAINTAIN VXSE MINIMUM APPROX 8° PITCH. FLAPS 20°, APPROX 10-12° PITCH. FLAPS 5°, MAINTAIN DIRECTIONAL CONTROL WITH RUDDER AND MINIMUM SPOILER. FAILED ENGINE – CONDITION LEVER, EMERGENCY STOP, POWER LEVER, TAKE OFF **, TRIM AIRCRAFT

POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP. IF 20° FLAPS 113 KCAS MINIMUM. IF 5° FLAPS 120 KTS (MARQ, N) 125 KTS (SOL, P)

MAKE NORMAL T/O

CAUTION SIMULATED ENGINE FAILURE (NOT LESS THAN 200FT AGL)

**** IF SUFFICIENT RUNWAY REMAINS, OR UNABLE TO CLIMB: GEAR DOWN, REDUCE POWER TO LAND STRAIGHT AHEAD USING A/S APPROPRIATE FOR WEIGHT, 105K CAS MINIMUM (MARQ, N) 100KCAS MINIMUM (SOL, P)**
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

TAKE-OFF ENGINE FAILURE ON RUNWAY

CAUTION
SIMULATED ENGINE FAILURE OR MALFUNCTION IS TO BE GIVEN BY INSTRUCTOR AT NOT MORE THAN 50% OF ROTATE SPEED.

ENGINE FAILS OR MALFUNCTION OCCURS

POWER LEVERS TO GROUND IDLE, BRAKES AS NECESSARY. REVERSE THRUST AS REQUIRED. USE NOSE WHEEL STEERING, BRAKES, AND/OR REVERSE THRUST TO MAINTAIN DIRECTIONAL CONTROL.

POWER SET, BRAKES RELEASED

NOTIFY TOWER OF ABORT

CLEAR RUNWAY OR EVACUATE AIRCRAFT AS NECESSARY *

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

* IF EVACUATING AIRCRAFT, BOTH CONDITION LEVERS TO EMERGENCY STOP AND MASTER SWITCH TO EMERGENCY
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

TAKE-OFF ENGINE FAILURE - UNABLE TO CLimb

CLASSROOM DISCUSSION OR FTD USE ONLY

WARNING
DO NOT LET AIRSPEED DECELERATE BELOW SINGLE ENGINE AIRSPEED.
105KCAS (MARQUISE, N) 100KCAS (SOLITAIRE, P)

PILOT MAKES DECISION TO EITHER RETURN THE RUNWAY SURFACE OR TO FLY BEYOND AIRPORT BOUDARY TO SUITABLE LANDING AREA

ENGINE FAILS

POS RATE, NO RUNWAY REMAINING FOR LANDING. GEAR UP. IF 20° FLAPS 113 KCAS MIN. IF 5° FLAPS 120 KCAS (MARQ, N) 125 KCAS (SOL, P)

POWER SET, RELEASE BRAKES

ROTATE

IF RUNWAY REMAINSOR A LANDING CAN SAFELY BE MADE ON THE AIRPORT SURFACE, CHECK GEAR DOWN. FLAPS REMAIN IN TAKE-OFF POSITION, POWER ON OPERATING ENGINE AS REQUIRED TO LAND. LAND USING SINGLE ENGINE AIRSPEED, 105K CAS (MARQUISE, N) 100K CAS (SOLITAIRE, P)

PROPELLERS BETA, THEN REVERSE AS REQUIRED, BRAKES AS REQUIRED

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

STEEP TURNS

*CLEAR AREA, GEAR UP, FLAPS UP, A/S 180KCA, TRIM A/C

SET HEADING BUG TO ROLL OUT HEADING

START NORMAL TURN POWER AS REQUIRED, INCREASE APPROXIMATELY 10% TORQUE

50° BANK ESTABLISHED, PITCH UP APPROXIMATELY 2° TO 3° OR AS NECESSARY TO MAINTAIN ALTITUDE

*THIS MANEUVER SHOULD BE PERFORMED IN BOTH CLEAN AND LANDING CONFIGURATIONS (USE 130K FLAPS 20, GEAR DOWN, FOR LANDING CONFIGURATION)

**NOTE: TURNS WILL BE DONE THROUGH 360° AS WELL AS 180°

CHECK FOR A/S AND ALTITUDE TRENDS

REDUCE POWER TO MAINTAIN 180K

ROLL OUT ON HEADING ON ALT.

**START ROLL OUT 20° BEFORE ROLL OUT HEADING
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)
SLOW FLIGHT MANEUVERING
MINIMUM CONTROLLABLE AIRSPEED

SLOW FLIGHT MANEUVERING IS CONDUCTED AS FOLLOWS:
CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.
START WITH CLEAN CONFIGURATION AND CHANGE AIRCRAFT CONFIGURATION
FROM CLEAN TO FULL FLAP AND GEAR IN STAGES. USE A MAXIMUM OF 15° BANK
AND PERFORM HEADING CHANGES OF 90° LEFT AND RIGHT. CONSTANT ALTITUDE
IS REQUIRED THROUGHOUT. MAINTAIN 115 KCAS IN ALL CONFIGURATIONS.

**APPROXIMATE POWER SETTINGS ARE:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Torque (35%)</th>
<th>Per Engine</th>
<th>APPROX PITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAN</td>
<td></td>
<td></td>
<td>+12</td>
</tr>
<tr>
<td>5° FLAP</td>
<td></td>
<td></td>
<td>+8</td>
</tr>
<tr>
<td>5° FLAP & GEAR</td>
<td></td>
<td></td>
<td>+9</td>
</tr>
<tr>
<td>20° FLAP & GEAR</td>
<td></td>
<td></td>
<td>+4</td>
</tr>
<tr>
<td>40° FLAP & GEAR</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

**NOTE: POWER SETTINGS WILL VARY WITH AIRCRAFT WEIGHT AND ALTITUDE.

STALL SPEEDS (APPROXIMATE)
AT MAXIMUM GROSS TAKEOFF WEIGHT
N, MARQUISE / P, SOLITAIRE

<table>
<thead>
<tr>
<th>Angle of Bank</th>
<th>0°</th>
<th>15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS UP</td>
<td>106/106°</td>
<td>106/106°</td>
</tr>
<tr>
<td>5°</td>
<td>99°</td>
<td>100°/ 99°</td>
</tr>
<tr>
<td>20°</td>
<td>87°</td>
<td>88°/ 88°</td>
</tr>
<tr>
<td>40°</td>
<td>83°</td>
<td>79°</td>
</tr>
</tbody>
</table>

CAUTION STALL WARNING MAY ACTIVATE 4 TO 9 KCAS ABOVE STALL.

MINIMUM CONTROLLABLE AIRSPEED IS CONDUCTED AS FOLLOWS:
CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.
THE MANEUVER MAY BE DONE IN ANY COMBINATION OF GEAR OR FLAP
CONFIGURATIONS. IF BANK IS TO BE USED, IT SHOULD BE DONE AT BANK OF NOT
MORE THAN 15°. BEGIN THE MANEUVER BY CONFIGURING THE AIRCRAFT IN THE
DESIRED GEAR AND FLAP CONFIGURATION. SLOW THE AIRCRAFT UNTIL THE STALL
WARNING (STICK SHAKER) IS ACTIVATED AND ADD POWER TO MAINTAIN ALTITUDE
AND A SPEED JUST ABOVE AERODYNAMIC STALL. DO NOT ALLOW THE AIRCRAFT
TO REACH AERODYNAMIC STALL BUFFET.
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ONE ENGINE INOPERATIVE MANEUVERING LOSS OF DIRECTIONAL CONTROL

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF – SET ONE POWER LEVER TO ZERO THRUST TO SIMULATE FAILED ENGINE (VARIES BETWEEN 5% AND 17% TORQUE)

CAUTION
GEAR HORN MAY SOUND CONTINUOUSLY. IF INSTRUCTOR ELECTS TO DISABLE GEAR HORN WITH CIRCUIT BREAKER, THEN CIRCUIT BREAKER MUST BE RESET PRIOR TO LANDING

FLAPS 20°, GEAR UP, SET POWER ON SIMULATED OPERATIVE ENGINE FOR LEVEL FLIGHT A/S 125KCAS TRIMMED

APPLY TAKEOFF POWER ON SIMULATED OPERATIVE ENGINE WHILE INCREASING PITCH TO DECELERATE 1K PER SECOND

AT Vmc PLUS 15KCAS, ADD POWER TO SIMULATED OPERATIVE ENGINE AND RECOVER TO STRAIGHT AND LEVEL FLIGHT

A/S 125KCAS TRIMMED FOR STRAIGHT AND LEVEL FLIGHT

INSTRUCTOR CAUTION
ONE ENGINE LOSS OF DIRECTIONAL CONTROL IS BEST TRAINED AND ACCOMPLISHED USING EARLY RECOGNITION AND RECOVERY TECHNIQUES. SET POSITION AND Rudder TRAVEL SHOULD BE EMPHASIZED DURING THIS MANEUVER. RUDDER BLOCKING BY THE INSTRUCTOR IS ENCOURAGED TO PRODUCE LOSS OF DIRECTIONAL CONTROL AT APPROXIMATELY VMc PLUS 10KCAS, BECAUSE EARLY RECOGNITION AND RECOVERY IS THE PRIMARY OBJECTIVE OF THIS MANEUVER.

20° FLAPS (VMc 99KCAS MARQUISE, N – 93KCAS SOLITAIRE, P)
5° FLAPS (VMc 99KCAS MARQUISE, N – 100KCAS SOLITAIRE, P)
Vso 125KCAS

MIN ALT. 5,000 AGL

INSTRUCTOR BLOCKS RUDDER TO CAUSE LOSS OF DIRECTIONAL CONTROL AT VMc PLUS 10KCAS

WARNING
IF STALL WARNING ACTIVATES, REDUCE PITCH AND POWER ON SIMULATED OPERATIVE ENGINE, AND RECOVER
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

APPROACH TO STALL
TAKEOFF CONFIGURATION 15-30° BANK

CLEAR AREA, CONDITION LEVERS T/O AND LAND SYSC OFF -- A/S 120-130 KCAS TRIMMED AIRCRAFT

FLAPS 5° OR 20°, GEAR DOWN, 20% TORQUE

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER, LEVEL WINGS AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, POSITIVE RATE, GEAR UP, STALL WARNING MAY ACTIVATE AT 4 TO 9 KCAS ABOVE STALL.

A/S 140 KCAS, FLAPS UP, POWER AS REQUIRED

INITIATE 15-30° BANK IN LEVEL FLIGHT

MAINTAIN LEVEL FLIGHT, TRIM FOR 120 KCAS

CALL THE “STALL”

A/S 130 KCAS, FLAPS 5° INCREASE PITCH TO APPROX 10°

AS A/S INCREASES, CLimb TO ORIGINAL ALTITUDE

STALL SPEEDS (APPROXIMATE)
AT MAXIMUM GROSS TAKEOFF WEIGHT
N, MARQUISE / P, SOLITAIRE

<table>
<thead>
<tr>
<th>ANGLE OF BANK</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS UP</td>
<td>107/104°</td>
<td>109/108°</td>
<td>113/112°</td>
<td>120/119°</td>
<td>131/130°</td>
<td>148/146°</td>
</tr>
<tr>
<td>5°</td>
<td>99°/ 98°</td>
<td>102/101°</td>
<td>106/105°</td>
<td>113/112°</td>
<td>123/122°</td>
<td>138/138°</td>
</tr>
<tr>
<td>20°</td>
<td>87°/ 88°</td>
<td>89°/ 90°</td>
<td>93°/ 94°</td>
<td>98/100°</td>
<td>108/109°</td>
<td>122/123°</td>
</tr>
<tr>
<td>40°</td>
<td>82°/ 79°</td>
<td>84°/ 80°</td>
<td>87°/ 84°</td>
<td>92°/ 90°</td>
<td>101°/ 98°</td>
<td>113/110°</td>
</tr>
</tbody>
</table>

MIN. ALT.
5,000’ AGL
MU-2B MARQUIS (-60), SOLITAIRE (-40), N (-36A), P (-26A)

APPROACH TO STALL

GEAR DOWN – FULL FLAPS

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF – A/S 120 – 130KIAS TRIMMED

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, FLAPS 20°, POSITIVE RATE, GEAR UP, CLIMB TO ORIGINAL ALTITUDE. STALL WARNING MAY ACTIVATE AT 4 TO 9 K ABOVSTALL.

FLAPS 20°, GEAR DOWN, 20% TORQUE

A/S 120KIAS, FLAPS FULL

20% TORQUE, MAINTAIN LEVEL FLIGHT, TRIM FOR 120KIAS

CALL THE "STALL"

A/S 130KIAS, FLAPS 9° INCREASE PITCH TO APPROX. 10° AS AIRSPEED INCREASES CLIMB TO ORIGINAL ALTITUDE.

A/S 140KIAS, FLAPS UP

FLAPS SET

<table>
<thead>
<tr>
<th>FLAPS</th>
<th>UP</th>
<th>5</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR WT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>/85 *</td>
<td>/80 *</td>
<td>/72 *</td>
<td>/64 *</td>
</tr>
<tr>
<td>7,500</td>
<td>/88 *</td>
<td>/82 *</td>
<td>/74 *</td>
<td>/66 *</td>
</tr>
<tr>
<td>8,000</td>
<td>/91 *</td>
<td>/85 *</td>
<td>/76 *</td>
<td>/68 *</td>
</tr>
<tr>
<td>8,500</td>
<td>/93 *</td>
<td>/88 *</td>
<td>/79 *</td>
<td>/70 *</td>
</tr>
<tr>
<td>9,000</td>
<td>93/96 *</td>
<td>87/90 *</td>
<td>76/81 *</td>
<td>72/72 *</td>
</tr>
<tr>
<td>9,500</td>
<td>95/99 *</td>
<td>90/93 *</td>
<td>79/83 *</td>
<td>74/74 *</td>
</tr>
<tr>
<td>10,000</td>
<td>98/101 *</td>
<td>92/95 *</td>
<td>81/85 *</td>
<td>75/76 *</td>
</tr>
<tr>
<td>10,470</td>
<td>104 *</td>
<td>/98 *</td>
<td>/88 *</td>
<td>/78 *</td>
</tr>
<tr>
<td>10,500</td>
<td>107</td>
<td>94 /</td>
<td>83 /</td>
<td>77 /</td>
</tr>
<tr>
<td>11,000</td>
<td>103</td>
<td>96 /</td>
<td>85 /</td>
<td>79 /</td>
</tr>
<tr>
<td>11,575</td>
<td>106</td>
<td>99 /</td>
<td>87 /</td>
<td>81 /</td>
</tr>
</tbody>
</table>

MIN. ALT.
5,000 AGL
MU-2B MARQUISSE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ACCELERATED STALLS

CLEAR AREA, CONDITION LEVERS TO AND LAND, SYNC OFF

CLEAN, A/S 115KCAS A/C TRIMMED

INITIATE PROGRESSIVE BANK TOWARD A 60° BANK ANGLE, APPLY BACKPRESSURE TO MAINTAIN ALTITUDE

* THIS MANEUVER SHOULD ALSO BE ACCOMPLISHED IN THE LANDING CONFIGURATION WITH GEAR DOWN, FLAPS 20°, A/S 100KCAS TRIMMED

* 140KCAS FLAPS UP

* 125KCAS FLAPS TO 5°

* POSITIVE RATE, GEAR UP

ACCELERATE TO 140KCAS, POWER AS REQUIRED

CALL THE "STALL"

AS A/S INCREASES, CLIMB TO ORIGINAL ALTITUDE

ON STALL RECOGNITION (STICK SHAKER) SIMULTANEOUSLY APPLY MAX POWER, ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, AND ROLL WINGS LEVEL

STALL SPEEDS (APPROXIMATE)

AT MAXIMUM GROSS TAKEOFF WEIGHT
N, MARQUISSE / P, SOLITAIRE

<table>
<thead>
<tr>
<th>ANGLE OF BANK</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS UP</td>
<td>107/104°</td>
<td>109/108°</td>
<td>113/112°</td>
<td>120/119°</td>
<td>131/130°</td>
<td>148/146°</td>
</tr>
<tr>
<td>5°</td>
<td>99° / 98°</td>
<td>102/101°</td>
<td>106/105°</td>
<td>113/112°</td>
<td>123/122°</td>
<td>138/138°</td>
</tr>
<tr>
<td>20°</td>
<td>87° / 88°</td>
<td>89° / 90°</td>
<td>93° / 94°</td>
<td>98/100°</td>
<td>108/109°</td>
<td>122/123°</td>
</tr>
<tr>
<td>40°</td>
<td>82° / 79°</td>
<td>84° / 80°</td>
<td>87° / 84°</td>
<td>92° / 90°</td>
<td>101° / 98°</td>
<td>113/110°</td>
</tr>
</tbody>
</table>
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)
EMERGENCY DESCENT (LOW SPEED)

*CLEAR AREA, CRUISE CONFIGURATION START AT ASSIGNED ALTITUDE. A/S 150KIAS MIN.

POWER LEVERS FL H. CONDITION LEVERS T/O AND LAND SYNC OFF. FLAPS 5° AT 175KIAS, & GEAR DOWN (170KIAS SOL. P. 175KIAS MARQ. N) FLAPS 20° AT 155KIAS; FLAPS 40° AT 120KIAS

SIMULATE EXPLOSIVE DECOMPRESSION AT ASSIGNED ALTITUDE. OXYGEN MASKS ON. "DECLARE EMERGENCY"

ESTABLISH DESCENT IN A 30° BANK. 155KIAS MAX. INITIAL NOSE DOWN IS APPROX 20° UNTIL REACHING 155K. THEN NOSE UP TO MAINTAIN SPEED.

*WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL TO CLEAR TRAFFIC AT LOWER ALTITUDES

AFTER ESTABLISHING DESCENT, ROLL WINGS LEVEL, CONTINUE DESCENT ON STEADY HEADING OR AS REQUIRED BY ATC.

CHECK 1000' ABOVE LEVEL OFF ALTITUDE

500' ABOVE, START LEVEL OFF

COMPLETE EXERCISE AT ASSIGNED ALTITUDE. REDUCE TO 120KIAS AND CLEAN UP A/C. "DO NOT RAISE FLAPS UNTIL A/C IS BELOW 120KIAS.

A-12
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

UNUSUAL ATTITUDE RECOVERY (NOSE LOW)

UPON RECOGNITION OF A NOSE LOW UNUSUAL ATTITUDE, REDUCE POWER TO FLIGHT IDLE, ROLL TOWARD WINGS LEVEL IF IN A BANK, AND MAINTAIN NOSE LOW PITCH ATTITUDE WHILE LEVELING WINGS

CLEAR AREA

WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL THE CLEAR TRAFFIC BOTH ABOVE AND BELOW YOUR ALTITUDE

INSTRUCTOR NOTE
THE INSTRUCTOR SHOULD INITIATE THE UNUSUAL ATTITUDE AND USE POSITIVE CONTROL TO TRANSFER CONTROL TO THE STUDENT FOR RECOVERY

ONCE WINGS ARE LEVEL IN NOSE LOW ATTITUDE, COMMENCE A WINGS LEVEL PULL UP TO A LEVEL FLIGHT ATTITUDE.

CAUTION
DO NOT 'G' LOAD AIRCRAFT UNTIL WINGS ARE LEVEL TO PREVENT AN ACCELERATED STALL

ONCE LEVEL, ADD POWER TO MAINTAIN LEVEL FLIGHT
MU-2B MARQUIS (-60), SOLITAIRE (-40), N (-36A), P (-26A)
NORMAL LANDING (20° or 40° FLAPS)

POWER LEVERS RETARD TO GROUND IDLE, CHECK BOTH PROPS Beta, THEN REVERSE AS REQUIRED, BRAKING AS REQUIRED.

TOUCHDOWN, POWER LEVERS RETARD TO FLIGHT IDLE STOP.

THRESHOLD 20% TORQUE Vref

LANDING ASSURED, FLAPS 20° or 40°, A/S SLOWING TO Vref; CHECK SINK RATE 500-600 FPM

A/S 120KCAS MINIMUM DESCENT, 500-600 FPM (20-25% TORQUE)

STABILIZED APPROACH BY 500 FPM

A/S 150K MINIMUM (25-30% TORQUE)

COMPLETE DESCENT CHECKLIST

MAINTAIN TRACK PARALLEL TO RUNWAY

LANDING APPROACH SPEEDS - VREF

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>1.3 VS1</th>
<th>1.5 VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,500 LBS</td>
<td>FLAPS 20° / 96</td>
<td>/ 99</td>
</tr>
<tr>
<td>8,000 LBS</td>
<td>FLAPS 20° / 99</td>
<td>/ 99</td>
</tr>
<tr>
<td>8,500 LBS</td>
<td>FLAPS 20° / 99</td>
<td>/ 102</td>
</tr>
<tr>
<td>9,000 LBS</td>
<td>FLAPS 20° / 99</td>
<td>/ 105/106</td>
</tr>
<tr>
<td>9,500 LBS</td>
<td>FLAPS 20° / 102/108</td>
<td>/ 109/112</td>
</tr>
<tr>
<td>9,955 LBS</td>
<td>FLAPS 20° / 111/112</td>
<td>/ 115</td>
</tr>
<tr>
<td>10,000 LBS</td>
<td>FLAPS 20° / 111/112</td>
<td>/ 115</td>
</tr>
<tr>
<td>10,500 LBS</td>
<td>FLAPS 20° / 111/112</td>
<td>/ 115</td>
</tr>
<tr>
<td>11,025 LBS</td>
<td>FLAPS 20° / 111/112</td>
<td>/ 115</td>
</tr>
</tbody>
</table>

*/ Kts.

GEAR DOWN, A/S 145K MINIMUM, COMPLETE LANDING CHECKLIST

FLAPS 20°, A/S 120-130KCAS, 500 FPM SINK RATE (APPROX 25% TORQUE)
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

NO FLAP OR 5° FLAP LANDING

CAUTION
DO NOT SELECT REVERSE UNTIL BELOW 90K WITH NOSE WHEEL ON GROUND

CHECK BOTH PROPS BETTA. BRAKING AS REQUIRED. NOTE: BETTA MAY NOT BE AVAILABLE UNTIL BELOW 90KCAS

TOUCHDOWN – POWER LEVERS SLOWLY RETARD TO FLIGHT IDLE STOP

NOTE
LANDING DISTANCE WILL INCREASE APPROXIMATELY 30%

MAINTAIN TRACK PARALLEL TO RUNWAY

COMPLETE DESCENT AND APPROACH CHECKLISTS

A/S 150KCAS MINIMUM
(25-30% TORQUE)

NO FLAP VREF 1.25 VS1 (USE FOR FLAPS UP OR 5°)

<table>
<thead>
<tr>
<th>VS1</th>
<th>7.500</th>
<th>8,000</th>
<th>8,500</th>
<th>9,000</th>
<th>9,500</th>
<th>9.950</th>
<th>10,000</th>
<th>10,500</th>
<th>11,025</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>115°</td>
<td>115°</td>
<td>116°</td>
<td>116°</td>
<td>119°</td>
<td>120°</td>
<td>123°</td>
<td>127°</td>
<td>129°</td>
</tr>
<tr>
<td>5°</td>
<td>115°</td>
<td>115°</td>
<td>116°</td>
<td>116°</td>
<td>117°</td>
<td>120°</td>
<td>115°</td>
<td>115°</td>
<td>121°</td>
</tr>
</tbody>
</table>

A/S SLOWING TO NO FLAP VREF.
115KCAS MINIMUM

STABILIZED APPROACH BY 500°F

FLAPS 0° OR 5°, A/S 140KCAS MINIMUM. 500-600 FPM SINK RATE
(APPROX 26% TORQUE)

CHECK SINK RATE

COMPLETE LANDING CHECKLIST

A/S 140KCAS MINIMUM
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ONE ENGINE INOPERATIVE LANDING

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING Beta

OPERATING ENGINE
POWER LEVER GROUND IDLE, THEN PROP BETA, REVERSE AS REQUIRED. BRAKES AS REQUIRED.

TOUCHDOWN
OPERATING ENGINE POWER LEVER SLOWLY RETARD TO FLIGHT IDLE STOP

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

WARNING
DO NOT ATTEMPT A GO-AROUND WITH GEAR DOWN BELOW 400' AGL OR AFTER 20° FLAPS ARE SELECTED

COMPLETE DESCENT AND APPROACH CHECKLISTS AND REVIEW SINGLE ENGINE LANDING CHECKLIST

A/S 150KCAS
(140KCAS MIN MARQ, N)
(135KCAS MINIMUM SOL, P)
(APPROX 50-55% TORQUE)

MAINTAIN TRACK PARALLEL TO RUNWAY

THRESHOLD, 20%
TORQUE Vref 110KCAS MIN (MARQ, N) 105KCAS MIN (SOL, P)

CHECK SINK RATE
300-600 FPM

WHEN LANDING ASSURED, FLAPS 20°, A/S 125KCAS MIN, COMPLETE LANDING CHECKLIST, Rudder TRIM CENTERED, HOLD BALL IN CENTER WITH Rudder

FLAPS 5° A/S 140KCAS
(130KCAS MINIMUM)

N, MARQ, P, SOL

<table>
<thead>
<tr>
<th>FLAP SETTING</th>
<th>VXSe(KCAS)</th>
<th>VYse(KCAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>140 / 135*</td>
<td>150 / 150*</td>
</tr>
<tr>
<td>5°</td>
<td>130 / 130*</td>
<td>140 / 140*</td>
</tr>
<tr>
<td>20°</td>
<td>125 / 125*</td>
<td>135 / 130*</td>
</tr>
</tbody>
</table>

*P, SOL

CHECK GLIDE PATH, IF LANDING ASSURED, GEAR DOWN, (APPROX 40% TORQUE)
MU-2B MARQUESE (-60), SOLITAIRE (-40), N (-36A), P (-26A)
CROSSWIND LANDING

AIRCRAFT WILL BE FLOWN DOWN AN EXTENSION
OF THE RUNWAY CENTER LINE WITH DRIFT
CORRECTION ESTABLISHED SUFFICIENTLY IN
ADVANCE TO PERMIT CENTER LINE TO BE FLOWN
WITH ONLY MINOR COORDINATED CORRECTIONS

INCREASE Vef FOR CROSSWIND LANDING BY ONE-
HALF THE STEADY WIND SPEED PLUS ONE-HALF THE
GUST SPEED NOT TO EXCEED Vef PLUS 10 KIAS.

Prior to touchdown, the upwind wing is
lowered and smoothly modulated. Opposite
rudder is applied so that aircraft path
continues down runway centerline. The
aircraft should not be allowed to develop
any tendency to drift downwind.

**NOTE: RUDDERS CENTERED BEFORE NOSE
WHEEL TOUCHDOWN. SPOILERS INTO WIND AS
NECESSARY TO KEEP WINGS LEVEL

WIND

WIND
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ONE ENGINE INOPERATIVE ILS AND MISSED APPROACH

A/S 150KCAS (140KCAS MIN MARQ, N) (135KCAS MIN SOL, P)
APPROACH CHECKLIST, REVIEW APPROACH PLATE, RADIOS: TUNE & IDENTIFY, CHECK OM CROSSING ALTITUDE MARKER RECEIVER "ON"

A/S 140KCAS (130KCAS MIN), 50-60% TORQUE, FLAPS 5°
DESCEND 500 FPM

FLAPS 5°, 140KCAS (130KCAS MIN), 50-60% TORQUE

A/S 140KCAS (130KCAS MIN) 50-60% TORQUE, FLAPS 5°
CHECK GEAR DOWN
APPROACHING GLIDE SLOPE (ONE DOT BELOW G/S), A/S 140KCAS (130KCAS MIN)

LAGNINGS CHECK (50-55% TORQUE)

WHEN LANDING ASSURED, FLAPS 20°, SLOWING TO CROSS THRESHOLD AT 110KCAS (MARQUISE, N), 105KCAS (SOLITAIRE, P)

OPERATING ENGINE POWER LEVER GROUND IDLE, THEN PROP BETA, REVERSE AS REQUIRED, BRAKES AS REQUIRED.

MISSING APPROACH: CONTINUE WITH ENGINE OUT MISSED APPROACH PROFILE

WARNING
DO NOT ATTEMPT A GO-AROUND WITH GEAR DOWN BELOW 400’ AGL OR AFTER 20° FLAPS ARE SELECTED

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

TOUCHDOWN, OPERATING ENGINE POWER LEVER SLOWLY RETARD TO FLIGHT IDLE STOP
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)
ONE ENGINE INOPERATIVE MISSED APPROACH

COMMENCING MISSED APPROACH, SET MAX POWER, MAINTAIN DIRECTIONAL CONTROL, RUDDER AND SPOILER AS NECESSARY, PITCH TO MAINTAIN A/S 140KIAS, GEAR UP.

"IF TRANSITIONING FROM A DESCENT, MAINTAIN PITCH TO MAINTAIN 140KIAS, RAISE GEAR, THEN 10° PITCH. SOME ALTITUDE LOSS IS TO BE EXPECTED.

A/S 140KIAS, MINIMUM, FLAPS UP

APPROX 300'-400' (OBSTRUCTION CLEARANCE) ADJUST PITCH TO ACCELERATE

AFTER GEAR IS FULLY RETRACTED, PITCH 10°

A/S 150KIAS, COMPLETE AFTER TAKEOFF CHECKLIST

WARNING
UNDER CERTAIN COMBINATIONS OF WEIGHT, TEMPERATURE AND PRESSURE ALTITUDE, WITH LANDING GEAR DOWN AND FLAPS 20°, SINGLE ENGINE GO AROUND MAY NOT BE POSSIBLE AT ALTITUDES OF LESS THAN 400 FEET AGL.
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)
NON-PRECISION AND MISSED APPROACH

LANDING APPROACH SPEEDS – VREF

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>1.3 VS1</th>
<th>1.5 VS1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLAPS 20°</td>
<td>FLAPS 40°</td>
</tr>
<tr>
<td>7,500 LBS</td>
<td>96*</td>
<td>96*</td>
</tr>
<tr>
<td>8,000 LBS</td>
<td>96*</td>
<td>96*</td>
</tr>
<tr>
<td>8,500 LBS</td>
<td>99/102</td>
<td>105/106</td>
</tr>
<tr>
<td>9,000 LBS</td>
<td>100/105</td>
<td>108/109</td>
</tr>
<tr>
<td>9,500 LBS</td>
<td>102/108</td>
<td>111/112</td>
</tr>
<tr>
<td>9,955 LBS</td>
<td>111*</td>
<td>115*</td>
</tr>
<tr>
<td>10,000 LBS</td>
<td>105</td>
<td>114</td>
</tr>
<tr>
<td>10,500 LBS</td>
<td>108</td>
<td>116</td>
</tr>
<tr>
<td>11,025 LBS</td>
<td>110</td>
<td>119</td>
</tr>
</tbody>
</table>

A/S 150K (140K MIN). APPROACH CHECKLIST. REVIEW APPROACH PLATE. RADIOS TUNE & IDENTIFY. CHECK FIX CROSSING ALTITUDE.

FLAPS 20°, A/S 140KCAS MIN. 25-30% TORQUE.

A/S 140KCAS MIN. 20-25% TORQUE. DESCEND 500 FPM.

A/S 140KCAS MIN. 25-30% TORQUE.

GEAR DOWN. FLAPS 20°. APPROACHING FIX INBOUND. LANDING CHECKLIST COMPLETE A/S 120KCAS MIN.

A/S 120KCAS MIN. 25-30% TORQUE. 800-1000 FPM DESCENT.

A/S 120KCAS MIN. APPROX 30% TORQUE.

TOUCHDOWN. POWER LEVERS RETARD TO FLIGHT IDLE STOP. THEN POWER LEVERS RETARD TO GROUND IDLE. CHECK BOTH PROPS BETA. REVERSE AND BRAKES AS REQUIRED.

MISSING APPROACH. GO-AROUND, MAX POWER, PITCH TO 8° CONTINUE WITH TWO ENGINE MISSED APPROACH PROFILE.

MAP
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ONE ENGINE INOPERATIVE NON-PRECISION AND MISSED APPROACH

WARNING
DO NOT ATTEMPT A
WITH GEAR DOWN
GO-AROUND BELOW
400' AGL OR AFTER
20° FLAPS ARE
SELECTED

CAUTION
DO NOT USE SINGLE
ENGINE REVERSE
THRUST WITH THE
SIMULATED FAILED
ENGINE POWER LEVER
ABOVE FLIGHT IDLE.

A/150K/CAS (140K/CAS MIN MARQ, N)
(135K/CAS MIN 50L, P) APPROACH
CHECKLIST. REVIEW APPROACH PLATE.
RADIOS: TUNE & IDENTIFY. CHECK FIX
CROSSING ALTITUDE.

FLAPS 5°, 140K/CAS
(130K/CAS MIN) 50-60% TORQUE

A/140K/CAS (130K/CAS MIN) 50-60% TORQUE, FLAPS 5°. DESCEND 500 FPM

A/140K/CAS (130K/CAS MIN) 50-60% TORQUE, FLAPS 5°.

A/140K/CAS (130K/CAS MIN) 20-30% TORQUE, 800-1000 FPM DESCENT

WHEN LANDING ASSURED, GEAR DOWN, FLAPS 20°,
SLOWING TO CROSS THRESHOLD AT 110K (MARQUISE, N),
105K (SOLITAIRE, P). LANDING CHECKLIST COMPLETE
CAUTION
GEAR EXTENSION TIME IS APPROXIMATELY 15 SECONDS.
CONFIRM GEAR DOWN PRIOR TO LANDING.

MISSING APPROACH CONTINUE WITH ENGINE OUT
MISSING APPROACH PROFILE

MAD

MAP

TOUCHDOWN, OPERATING ENGINE POWER LEVER SLOWLY
RETARD TOFLIGHT IDLE STOP. POWER LEVER GROUND IDLE,
THEN PROP BETA. REVERSE AS REQUIRED. BRAKES AS
REQUIRED.
MU-2B MARQUISE (-60), SOLITAIRE (-40), N (-36A), P (-26A)

ONE ENGINE INOPERATIVE CIRCLING APPROACH AT WEATHER MINIMUMS

FROM APPROACH: FLAPS 5°, GEAR UP, A/S 140KCAS (130KCAS MIN.)

**NOTE: ENGINE OUT CIRCLING APPROACH SHOULD BE FLOWN
WITH 5° FLAPS AND GEAR UP. WHEN
LANDING ASSURED, GEAR DOWN,
FLAPS 20°, SLOWING TO
A/S 110KCAS (MARQUISE, N)
A/S 109KCAS (SOLITAIRE, P)

Threshold Flaps 20°, A/S 110KCAS (Marquise, N), A/S 109KCAS (Solitaire, P)

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA

A/S 140KCAS (130KCAS MIN.) APPROX 70% TORQUE, NOT BELOW CIRCLING MINIMUM DESCENT ALTITUDE

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

WARNING
DO NOT ATTEMPT A GO-AROUND WITH GEAR DOWN BELOW 400' AGL OR AFTER 20° FLAPS ARE SELECTED

CHECK FLAPS 5°, DO NOT DESCEND UNTIL WITHIN 30° OF RUNWAY CENTERLINE

CHECK DESCENT PROFILE, IF LANDING ASSURED, GEAR DOWN, CHECK SINK RATE 500-600 FPM

CHECK SINK RATE 500-600 FPM

LEADING ASSURED: FLAPS 20°, A/S 125KCAS MIN. COMPLETE LANDING CHECKLIST

MAX BANK 30°

AS REQUIRED TO MAINLAND CAT C OR D

touchdown, operating engine power lever slowly retard to flight idle stop, then operating engine power lever to ground idle. Check prop beta, reverse and brakes as required.

CAT C 121 - 140KCAS 1.7NM
CAT D 141 - 165KCAS 2.3NM
<table>
<thead>
<tr>
<th>FLAPS</th>
<th>TAKE OFF SPEEDS</th>
<th>ROTATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>M</td>
<td>108</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>100</td>
</tr>
</tbody>
</table>

This table contains take-off speeds for different flap settings. The table is not fully legible due to the quality of the image, but it appears to list speeds in knots for various weight categories.
MU-2B J (-35), K (-25), L (-36), M (-26)

TAKE-OFF ENGINE FAILURE – FLAPS 5° OR 20°

<table>
<thead>
<tr>
<th>FLAP SETTING</th>
<th>VXSE (KCAS)</th>
<th>VXSE (KCAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>140 / 130 *</td>
<td>150 / 150 *</td>
</tr>
<tr>
<td>5°</td>
<td>130 / 130 *</td>
<td>140 / 140 *</td>
</tr>
<tr>
<td>20°</td>
<td>125 / 125 *</td>
<td>135 / 130 *</td>
</tr>
</tbody>
</table>

*K, M

APPROX 500-400 FEET (OBSTRUCTION CLEARANCE). IF FLAPS 20° ADJUST PITCH TO ACCELERATE; 130 KCAS MIN. FLAPS TO 5° IF FLAPS 5° INSTALLED.

PITCH APPROX. 10°. IF FLAPS 5 NOT INSTALLED, FLAPS UP*, PITCH APPROX. 10° TO 13°.

A/S 150 KCAS, COMPLETE AFTER TAKE-OFF AND ENGINE OUT CHECKLIST.

PITCH TO MAINTAIN VXSE MINIMUM APPROX 8° PITCH; FLAPS 20°, APPROX 10-12° PITCH, FLAPS 5°. MAINTAIN DIRECTIONAL CONTROL WITH RUDDER AND MINIMUM SPOILER. FAILED ENGINE – CONDITION LEVER, EMERGENCY STOP; POWER LEVER, TAKE OFF **, TRIM AIRCRAFT.

POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP. IF 20° FLAPS 113 KCAS MIN. IF 5° FLAPS 120 KCAS (J, L), 125 KCAS (K, M).

MAKE NORMAL T/O

CAUTION SIMULATED ENGINE FAILURE (NOT LESS THAN 200 FT AGL).

** IF SUFICIENT RUNWAY REMAINS, OR UNABLE TO CLIMB: GEAR DOWN, REDUCE POWER TO LAND STRAIGHT AHEAD USING A/S APPROPRIATE FOR WEIGHT, 105 KCAS MINIMUM (J, L), 100 KCAS MINIMUM (K, M).

A/S 140 KCAS MIN (IF FLAPS 5° INSTALLED) FLAPS UP*.

**IF SR 10 NOT INSTALLED, MAXIMUM FLAP SPEED DURING RETRACTION IS 140 KCAS.

DURING RETRACTION, PITCH TO MAINTAIN 140 KCAS UNTIL FLAPS UP.

B-2
MU-2B J (-35), K (-25), L (-36), M (-26)
TAKE-OFF ENGINE FAILURE ON RUNWAY

CAUTION
SIMULATED ENGINE FAILURE OR MALFUNCTION IS TO BE GIVEN BY INSTRUCTOR AT NOT MORE THAN 90% OF ROTATE SPEEDS.

ENGINE FAILS OR MALFUNCTION OCCURS
POWER LEVERS TO GROUND IDLE, BRAKES AS NECESSARY, REVERSE THRUST AS REQUIRED. USE NOSE WHEEL STEERING, BRAKES, AND/OR REVERSE THRUST TO MAINTAIN DIRECTIONAL CONTROL.

POWER SET, BRAKES RELEASED

NOTIFY TOWER OF ABORT

CLEAR RUNWAY OR EVACUATE AIRCRAFT AS NECESSARY *

* IF EVACUATING AIRCRAFT, BOTH CONDITION LEVERS TO EMERGENCY STOP AND MASTER SWITCH TO EMERGENCY

DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.
MU-2B J (-35), K (-25), L (-36), M (-26)
TAKE-OFF ENGINE FAILURE - UNABLE TO CLimb
CLASSROOM DISCUSSION OR FTD USE ONLY

WARNING
DO NOT LET AIRSPEED DECELERATE BELOW SINGLE ENGINE AIRSPEED. 105KCAS (J, L) 100KCAS (K, M)

PILOT MAKES DECISION TO EITHER
RETURN THE RUNWAY SURFACE OR TO FLY BEYOND AIRPORT BOUNDARY TO SUITABLE LANDING AREA

ENGINE FAILS
POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP. IF 20° FLAPS 113 KCAS MIN. IF 5° FLAPS 120 KCAS (J, L) 125 KCAS (K, M)

PROPELLERS BETA, THEN REVERSE AS REQUIRED, BRAKES AS REQUIRED

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA

POWER SET, RELEASE BRAKES

IF RUNWAY REMAINS A LANDING CAN SAFELY BE MADE ON THE AIRPORT SURFACE, CHECK GEAR DOWN, FLAPS REMAIN IN TAKE-OFF POSITION, POWER ON OPERATING ENGINE AS REQUIRED TO LAND. LAND USING SINGLE ENGINE AIRSPEED, 105KCAS (J, L) 100KCAS (K, M)
MU-2B J (-35), K (-25), L (-36), M (-26)

STEEP TURNS

*CLEAR AREA, GEAR UP, FLAPS UP, A/S 100KIAS, TRIM A/C

SET HEADING BUG TO ROLL OUT HEADING

START NORMAL TURN POWER AS REQUIRED, INCREASE APPROXIMATELY 10% TORQUE

90° BANK ESTABLISHED, PITCH UP APPROXIMATELY 2° TO 3° OR AS NECESSARY TO MAINTAIN ALTITUDE.

**NOTE: TURNS WILL BE DONE THROUGH 360° AS WELL AS 180°

*THIS MANEUVER SHOULD BE PERFORMED IN BOTH CLEAN AND LANDING CONFIGURATIONS (USE 130K FLAPS 20, GEAR DOWN, FOR LANDING CONFIGURATION)

CHECK FOR A/S AND ALTITUDE TRENDS

REDUCE POWER TO MAINTAIN 180K

ROLL OUT ON HEADING ON ALT

**START ROLL OUT 20° BEFORE ROLL OUT HEADING
MU-2B J (-35), K (-25), L (-36), M (-26)

SLOW FLIGHT MANEUVERING

MINIMUM CONTROLLABLE AIRSPEED

SLOW FLIGHT MANEUVERING IS CONDUCTED AS FOLLOWS:

CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.

START WITH CLEAN CONFIGURATION AND CHANGE AIRCRAFT CONFIGURATION FROM CLEAN TO FULL FLAP AND GEAR IN STAGES. USE A MAXIMUM OF 15° BANK AND PERFORM HEADING CHANGES OF 90° LEFT AND RIGHT. CONSTANT ALTITUDE IS REQUIRED THROUGHOUT. MAINTAIN 115KIAS IN ALL CONFIGURATIONS.

**APPROXIMATE POWER SETTINGS ARE:

<table>
<thead>
<tr>
<th>CLEAN</th>
<th>5° FLAP</th>
<th>5° FLAP & GEAR</th>
<th>40° FLAP & GEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TORQUE</td>
<td>(35%) PER ENGINE</td>
<td>APPROX PITCH +12</td>
<td>APPROX PITCH +12</td>
</tr>
<tr>
<td>(32%) PER ENGINE</td>
<td>APPROX PITCH +8</td>
<td>APPROX PITCH +8</td>
<td></td>
</tr>
<tr>
<td>(44%) PER ENGINE</td>
<td>APPROX PITCH +9</td>
<td>APPROX PITCH +9</td>
<td></td>
</tr>
<tr>
<td>(42%) PER ENGINE</td>
<td>APPROX PITCH +4</td>
<td>APPROX PITCH +4</td>
<td></td>
</tr>
<tr>
<td>(54%) PER ENGINE</td>
<td>APPROX PITCH 0</td>
<td>APPROX PITCH 0</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE: POWER SETTINGS WILL VARY WITH AIRCRAFT WEIGHT AND ALTITUDE.

STALL SPEEDS (APPROXIMATE) AT MAXIMUM GROSS TAKEOFF WEIGHT

<table>
<thead>
<tr>
<th>J / L / K / M</th>
<th>J / L / K / M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGLE OF BANK</td>
<td>FLAPS</td>
</tr>
<tr>
<td>2°</td>
<td>10°</td>
</tr>
<tr>
<td>UP</td>
<td>104/106/108/110/112</td>
</tr>
<tr>
<td>5°</td>
<td>98/ 100/ 102/ 104/ 106</td>
</tr>
<tr>
<td>20°</td>
<td>85/ 87/ 89/ 91/ 93</td>
</tr>
<tr>
<td>40°</td>
<td>79/ 81/ 83/ 85/ 87</td>
</tr>
</tbody>
</table>

(See Flaps 9° / 15° CAS (J), 9° CAS (L), 10° CAS (M))

CAUTION:
STALL WARNING MAY ACTIVATE 4 TO 9 KTS ABOVE STALL

MINIMUM CONTROLLABLE AIRSPEED IS CONDUCTED AS FOLLOWS:

CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.

THE MANEUVER MAY BE DONE IN ANY COMBINATION OF GEAR OR FLAP CONFIGURATIONS. IF BANK IS TO BE USED, IT SHOULD BE DONE AT BANK OF NOT MORE THAN 10°. BEGIN THE MANEUVER BY CONFIGURING THE AIRCRAFT IN THE DESIRED GEAR AND FLAP CONFIGURATION. SLOW THE AIRCRAFT UNTIL THE STALL WARNING (STICK SHAKER) IS ACTIVATED AND ADD POWER TO MAINTAIN ALTITUDE AND A SPEED JUST ABOVE AERODYNAMIC STALL. DO NOT ALLOW THE AIRCRAFT TO REACH AERODYNAMIC STALL BUFFET.
MU-2B J (-35), K (-25), L (-36), M (-26)

ONE ENGINE INOPERATIVE MANEUVERING
LOSS OF DIRECTIONAL CONTROL

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF – SET ONE POWER LEVER TO ZERO THRUST TO SIMULATE FAILED ENGINE (VARIES BETWEEN 5% AND 17% TORQUE)

CAUTION
GEAR HORN MAY SOUND CONTINUOUSLY, IF INSTRUCTOR ELECTS TO DISABLE GEAR HORN WITH CIRCUIT BREAKER, THEN CIRCUIT BREAKER MUST BE RESET PRIOR TO LANDING

FLAPS 20°, GEAR UP, SET POWER ON SIMULATED OPERATIVE ENGINE FOR LEVEL FLIGHT A/S 125KCAS TRIMMED

APPLY TAKEOFF POWER ON SIMULATED OPERATIVE ENGINE WHILE INCREASING PITCH TO DECELERATE 1KCAS PER SECOND

AT Vmc PLUS 15KCAS, ADD POWER TO SIMULATED OPERATIVE ENGINE AND RECOVER TO STRAIGHT AND LEVEL FLIGHT

A/S 125KCAS TRIMMED FOR STRAIGHT AND LEVEL FLIGHT

WARNING
IF STALL WARNING ACTIVATES, REDUCE PITCH AND POWER ON SIMULATED OPERATIVE ENGINE, AND RECOVER

INSTRUCTOR CAUTION
ONE ENGINE LOSS OF DIRECTIONAL CONTROL IS BEST TRAINED AND ACCOMPLISHED USING EARLY RECOGNITION AND RECOVERY TECHNIQUES. SEAT POSITION AND RUDDER TRAVEL SHOULD BE EMPHASIZED DURING THIS MANEUVER. RUDDER BLOCKING BY THE INSTRUCTOR IS ENCOURAGED TO PRODUCE LOSS OF DIRECTIONAL CONTROL AT APPROXIMATELY Vmc PLUS 10KCAS, BECAUSE EARLY RECOGNITION AND RECOVERY IS THE PRIMARY OBJECTIVE OF THIS MANEUVER.

20° FLAPS (Vmc 90KCAS, J - 99KCAS, L - 93KCAS K, M)
5° FLAPS (Vmc 99KCAS J, L - 100KCAS K, M)
Vsae 125K

MIN. ALT. 5,000' AGL

INSTRUCTOR BLOCKS RUDDER TO CAUSE LOSS OF DIRECTIONAL CONTROL AT Vmc PLUS 10KCAS
MU-2B J (-35), K (-25), L (-36), M (-26)

APPROACH TO STALL CLEAN CONFIGURATION / WINGS LEVEL

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF – 120K/CAS-130K/CAS AIRCRAFT TRIMMED

20% TORQUE

MAINTAIN LEVEL FLIGHT

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER, LEVEL WINGS IF IN A BANK AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE. STALL WARNING MAY ACTIVATE AT 4 TO 9 K ABOVE STALL.

CALL THE "STALL"

TRIM FOR 120K/CAS

AS A/S INCREASES, CLimb TO ORIGINAL ALTITUDE

ACCELERATE TO 140K/CAS, POWER AS REQUIRED

MIN. ALT. 5,000' AGL

STALL SPEEDS

FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>FLAPS SET</th>
<th>0</th>
<th>5</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.WT.</td>
<td>K / M / J / L</td>
</tr>
<tr>
<td>7,000</td>
<td>85' / 85'/</td>
<td>80' / 80'/</td>
<td>72' / 72'/</td>
<td>64' / 64'/</td>
</tr>
<tr>
<td>7,500</td>
<td>88' / 88'/</td>
<td>83' / 83'/</td>
<td>74' / 75'/</td>
<td>67' / 66'/</td>
</tr>
<tr>
<td>8,000</td>
<td>91' / 91'/ 90'/</td>
<td>86' / 85'/ 84'/</td>
<td>77' / 77'/ 74'/</td>
<td>69' / 68'/ 69'</td>
</tr>
<tr>
<td>8,500</td>
<td>94' / 94'/ 93'/</td>
<td>89' / 88'/ 87'/</td>
<td>79' / 79'/ 77'/</td>
<td>71' / 70'/ 71'/</td>
</tr>
<tr>
<td>9,000</td>
<td>97' / 96'/ 95'/ 93'</td>
<td>91' / 91'/ 89'/ 88'</td>
<td>82' / 81'/ 79'/ 77'</td>
<td>73' / 72'/ 73'/ 72'</td>
</tr>
<tr>
<td>9,500</td>
<td>99' / 99'/ 98'/ 96'</td>
<td>93' / 93'/ 92'/ 90'</td>
<td>84' / 83'/ 81'/ 79'</td>
<td>75' / 74'/ 75'/ 74'</td>
</tr>
<tr>
<td>9,920</td>
<td>101'/</td>
<td>95'/</td>
<td>85'/</td>
<td>76'/</td>
</tr>
<tr>
<td>10,000</td>
<td>/102'/ 100'/ 98'</td>
<td>/96'/ 94'/ 92'</td>
<td>/86'/ 84'/ 81'</td>
<td>/76'/ 77'/ 76'</td>
</tr>
<tr>
<td>10,470</td>
<td>/104'/</td>
<td>/98'/</td>
<td>/88'/</td>
<td>/78'/</td>
</tr>
<tr>
<td>10,500</td>
<td>/103'/101'</td>
<td>/96'/ 94'</td>
<td>/85'/ 83'</td>
<td>/79'/ 77'</td>
</tr>
<tr>
<td>10,800</td>
<td>/104'/</td>
<td>/98'/</td>
<td>/86'/</td>
<td>/80'/ 78'</td>
</tr>
<tr>
<td>11,000</td>
<td>/103'</td>
<td>/97'</td>
<td>/85'</td>
<td>/79'</td>
</tr>
<tr>
<td>11,500</td>
<td>/106'</td>
<td>/99'</td>
<td>/87'</td>
<td>/81'</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

APPROACH TO STALL
TAKEOFF CONFIGURATION 15-30° BANK

CLEAR AREA, CONDITION LEVERS TO AND LAND SYNC OFF – A/S 120KCAS-130KCAS TRIMMED AIRCRAFT

FLAPS 5° OR 20°, GEAR DOWN, 20% TORQUE

INITIATE 30° BANK IN LEVEL FLIGHT

MAINTAIN LEVEL FLIGHT, TRIM FOR 120KCAS

AS A/S INCREASES, CLIMB TO ORIGINAL ALTITUDE

IF FLAPS 20° RETRACT FLAPS TO 5°, INCREASE PITCH TO APPROX. 10°, 130 KCAS (K, MOD SR10K, NOT MOD SR10), 140KCAS (J, L, M)

CALL THE "STALL"

A/S 150KCAS MINIMUM, FLAPS UP POWER AS REQUIRED

ON STALL RECOGNITION (STICK SHAKE), SIMULTANEOUSLY APPLY MAX POWER, LEVEL WINGS AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, POSITIVE RATE, GEAR UP, STALL WARNING MAY ACTIVATE AT 4 TO 9 K CAS ABOVE STALL.

MIN. ALT. 5,000′ AGL

STALL SPEEDS
FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>BANK ANGLE</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
</tr>
<tr>
<td>20°</td>
<td>87/ 88/ 86/ 88</td>
<td>89/ 90/ 88/ 90</td>
<td>92/ 94/ 92/ 94</td>
<td>98/100/ 97/100</td>
<td>108/109/107/109</td>
<td>122/123/120/123</td>
</tr>
<tr>
<td>40°</td>
<td>81/ 82/ 77/ 79</td>
<td>83/ 84/ 79/ 81</td>
<td>86/ 87/ 82/ 84</td>
<td>92/ 93/ 87/ 90</td>
<td>100/102/ 96/ 98</td>
<td>112/115/108/110</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

APPROACH TO STALL

GEAR DOWN – FULL FLAPS

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF – A/S 120KCAS – 130KCAS TRIMMED

FLAPS 20°, GEAR DOWN, 20% TORQUE

A/S 120KCAS, FLAPS FULL

20% TORQUE, MAINTAIN LEVEL FLIGHT, TRIM FOR 120KCAS

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, FLAPS 20°, POSITIVE RATE, GEAR UP, CLIMB TO ORIGINAL ALTITUDE. STALL WARNING MAY ACTIVATE AT 4 TO 9 K ABOVE STALL

A/S 150KCAS MINIMUM, FLAPS UP POWER AS REQUIRED

RETRACT FLAPS TO 5°, INCREASE PITCH TO APPROX. 10°, 130 KCAS (K, MOD SR10)(K, NOT MOD SR10), 140KCAS (J, L, M)

MIN. ALT. 5,000’ AGL

CALL THE “STALL”

STALL SPEEDS

FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>FLAPS SET</th>
<th>0</th>
<th>5</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.WT.</td>
<td>K/M/J/L</td>
<td>K/M/J/L</td>
<td>K/M/J/L</td>
<td>K/M/J/L</td>
</tr>
<tr>
<td>7,000</td>
<td>85/ 85/</td>
<td>80/ 80/</td>
<td>72/ 72/</td>
<td>64/ 64/</td>
</tr>
<tr>
<td>7,500</td>
<td>88 / 88/</td>
<td>83/ 83/</td>
<td>74/ 75/</td>
<td>67/ 66/</td>
</tr>
<tr>
<td>8,000</td>
<td>91/ 91/ 90/</td>
<td>86/ 85/ 84/</td>
<td>77/ 77/ 74/</td>
<td>69/ 68/ 69</td>
</tr>
<tr>
<td>8,500</td>
<td>94/ 94/ 93/</td>
<td>89/ 88/ 87/</td>
<td>79/ 79/ 77/</td>
<td>71/ 70/ 71/</td>
</tr>
<tr>
<td>9,000</td>
<td>97/ 96/ 95/ 93/</td>
<td>91/ 91/ 89/ 88/</td>
<td>82/ 81/ 79/ 77/</td>
<td>73/ 72/ 73/ 72</td>
</tr>
<tr>
<td>9,500</td>
<td>99/ 99/ 98/ 96/</td>
<td>93/ 93/ 92/ 90/</td>
<td>84/ 83/ 81/ 79/</td>
<td>75/ 74/ 75/ 74</td>
</tr>
<tr>
<td>9,920</td>
<td>101/</td>
<td>95/</td>
<td>85/</td>
<td>76/</td>
</tr>
<tr>
<td>10,000</td>
<td>102/100/ 98/</td>
<td>96/ 94/ 92/</td>
<td>86/ 84/ 81/</td>
<td>76/ 77/ 76</td>
</tr>
<tr>
<td>10,470</td>
<td>104/</td>
<td>98/</td>
<td>86/</td>
<td>78/</td>
</tr>
<tr>
<td>10,500</td>
<td>103/101/</td>
<td>96/ 94/</td>
<td>85/ 83/</td>
<td>79/ 77</td>
</tr>
<tr>
<td>10,800</td>
<td>104/</td>
<td>97/</td>
<td>86/</td>
<td>80/ 78</td>
</tr>
<tr>
<td>11,000</td>
<td>103/</td>
<td>97/</td>
<td>85/</td>
<td>79/</td>
</tr>
<tr>
<td>11,500</td>
<td>106/</td>
<td>99/</td>
<td>87/</td>
<td>81/</td>
</tr>
</tbody>
</table>
ACCELERATED STALLS

CLEAR AREA, CONDITION LEVERS TO AND LAND, SYNC OFF

CLEAN, A/S 115KCAS A/C Trimmed

INITIATE PROGRESSIVE BANK TOWARD A 60° BANK ANGLE, APPLY BACKPRESSURE TO MAINTAIN ALTITUDE

* THIS MANEUVER SHOULD ALSO BE ACCOMPLISHED IN THE LANDING CONFIGURATION WITH GEAR DOWN, FLAPS 20°, A/S 100KCAS Trimmed

* 140KCAS FLAPS UP

* 130KCAS FLAPS TO 5°

* POSITIVE RATE, GEAR UP

ACCELERATE TO 140KCAS, POWER AS REQUIRED

AS A/S INCREASES, CLIMB TO ORIGINAL ALTITUDE

CALL THE "STALL"

ON STALL RECOGNITION (STICK SHAKER) SIMULTANEOUSLY APPLY MAX POWER, ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, AND ROLL WINGS LEVEL

STALL SPEEDS
FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>BANK ANGLE</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
<td>J/L/K/M</td>
</tr>
<tr>
<td>20°</td>
<td>87/ 88/ 86/ 88</td>
<td>89/ 90/ 88/ 90</td>
<td>92 /94/ 92/ 94</td>
<td>98/100/ 97/100</td>
<td>108/109/107/109</td>
<td>122/123/120/123</td>
</tr>
<tr>
<td>40°</td>
<td>81/ 82/ 77/ 79</td>
<td>83/ 84/ 79/ 81</td>
<td>86/ 87/ 82/ 84</td>
<td>92/ 93/ 87/ 90</td>
<td>100/102/ 96/ 98</td>
<td>112/115/108/110</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

EMERGENCY DESCENT (LOW SPEED)

*CLEAR AREA, CRUISE CONFIGURATION START AT ASSIGNED ALTITUDE AS 150K MIN.

POWER LEVERS F/T, CONDITION LEVERS T/O AND LAND SYNCH OFF. GEAR AND FLAPS EXTEND AT SPEEDS BASED ON SCHEDULE FOR MODEL AND SR/10 COMPLIANCE UNTIL FULL FLAPS ARE DEPLOYED.

SIMULATE EXPLOSIVE DECOMPRESSION AT ASSIGNED ALTITUDE. OXYGEN MASKS ON. "DECLARE EMERGENCY".

ESTABLISH DESCENT IN A 30° BANK, NOSE DOWN. APPROXIMATELY 20° UNTIL, REACHING MAXIMUM FULL FLAP SPEED ALLOWED (Vfe), THEN RAISE NOSE TO MAINTAIN SPEED.

*WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL TO CLEAR TRAFFIC AT LOWER ALTITUDES.

AFTER ESTABLISHING DESCENT, ROLL WINGS LEVEL. CONTINUE DESCENT ON STEADY HEADING OR AS REQUIRED BY ATC.

CHECK 1000' ABOVE LEVEL OFF ALTITUDE.

COMPLETE EXERCISE AT ASSIGNED ALTITUDE. REDUCE TO 120K CAS AND CLEAN UP A/C. **DO NOT RAISE FLAPS UNTIL A/C IS BELOW MAXIMUM ALLOWABLE Vfe SPEED FOR FULL FLAPS.

GEAR/FLAP SPEEDS
FOR GEAR/FLAP SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.

500' ABOVE, START LEVEL OFF

644
<table>
<thead>
<tr>
<th>Gear</th>
<th>5(^\circ)</th>
<th>20(^\circ)</th>
<th>40(^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K, K+:</td>
<td>160KCAS</td>
<td>160KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>M, J, J+:</td>
<td>170KCAS</td>
<td>170KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>L:</td>
<td>175KCAS</td>
<td>175KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>Flaps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J: S/N 548 – 609 NOT MODIFIED BY S/R10</td>
<td>146KCAS</td>
<td>146KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>J+: S/N 548 – 609 MODIFIED BY S/R10 AND S/N 610 - 654</td>
<td>175KCAS</td>
<td>175KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>K: S/N 239 – 279 NOT MODIFIED BY S/R10</td>
<td>140KCAS</td>
<td>140KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>K+: S/N 239 – 279 MODIFIED BY S/R10 AND S/N 280 - 318</td>
<td>175KCAS</td>
<td>175KCAS</td>
<td>120KCAS</td>
</tr>
<tr>
<td>L / M</td>
<td>175KCAS</td>
<td>155KCAS</td>
<td>120KCAS</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

EMERGENCY DESCENT (HIGH SPEED)

*CLEAR AREA, CRUISE CONFIGURATION START AT ASSIGNED ALTITUDE. A/S 150K CAS MIN.

POWER LEVERS F/I, CONDITION LEVERS T/O AND LAND SYNC OFF.

SIMULATE EXPLOSIVE DECOMPRESSION AT ASSIGNED ALTITUDE. OXYGEN MASKS ON. DECLARE EMERGENCY

ESTABLISH DESCENT IN A 30° BANK, ACCELERATING TO VMO/(250K CAS). INITIAL 15-20° NOSE DOWN; REDUCING TO APPROX. 8° NOSE DOWN AS A/S APPROACHES VMO (250K CAS).

*WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL TO CLEAR TRAFFIC AT LOWER ALTITUDES.

AFTER ESTABLISHING DESCENT, KEEP WINGS LEVEL, CONTINUE DESCENT ON STEADY HEADING OR AS REQ'D BY ATC

CHECK 1000 FEET ABOVE LEVEL OFF ALTITUDE

700 FEET ABOVE, START LEVEL OFF

COMPLETE EXERCISE AT ASSIGNED ALTITUDE. REDUCE SPEED TO 200 KAS
MU-2B J (-35), K (-25), L (-36), M (-26)

UNUSUAL ATTITUDE RECOVERY (NOSE LOW)

UPON RECOGNITION OF A NOSE LOW UNUSUAL ATTITUDE, REDUCE POWER TO FLIGHT IDLE, ROLL TOWARD WINGS LEVEL IF IN A BANK, AND MAINTAIN NOSE LOW PITCH ATTITUDE WHILE LEVELING WINGS

ONCE WINGS ARE LEVEL IN NOSE LOW ATTITUDE, COMMENCE A WINGS LEVEL PULL UP TO A LEVEL FLIGHT ATTITUDE.

CAUTION
DO NOT LOAD AIRCRAFT UNTIL WINGS ARE LEVEL TO PREVENT AN ACCELERATED STALL.
IF AIRSPEED IS AT OR NEAR Vmo, DO NOT USE ABRUPT CONTROL MOVEMENTS DURING RECOVERY.

ONCE LEVEL, ADD POWER TO MAINTAIN LEVEL FLIGHT

"CLEAR AREA"

"WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL THE CLEAR TRAFFIC BOTH ABOVE AND BELOW YOUR ALTITUDE.

INSTRUCTOR NOTE
THE INSTRUCTOR SHOULD INITIATE THE UNUSUAL ATTITUDE AND USE POSITIVE CONTROL TO TRANSFER CONTROL TO THE STUDENT FOR RECOVERY
MU-2B J (-35), K (-25), L (-36), M (-28)
NORMAL LANDING (20°or 40° FLAPS)

PROPS Beta, then reverse as required, braking as required.

TOUCHDOWN, POWER LEVERS RETARD TO FLIGHT IDLE STOP.

THRESHOLD 20% TORQUE Vmf

LANDING ASSURED, FLAPS 20° to 40°, A/S SLOWING TO Vmf, CHECK SINK RATE 500-600 FPM

A/S 120 KCAS MINIMUM DESCENT, 500-600 FPM (20-25% TORQUE)

FLAPS 5°

STABILIZED APPROACH BY 500/900

FLAPS 20°, A/S 120-130 KCAS, 500 FPM SINK RATE (APPROX 25% TORQUE)

A/S 150 KCAS MINIMUM (25-30% TORQUE)

COMPLETE DESCENT CHECKLIST

MAINTAIN TRACK PARALLEL TO RUNWAY

LANDING APPROACH SPEEDS
FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>(K)</th>
<th>(L)</th>
<th>(J)</th>
<th>(M)</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>93</td>
<td>100</td>
<td>103</td>
<td>109</td>
<td>115</td>
</tr>
<tr>
<td>7,500</td>
<td>96</td>
<td>106</td>
<td>109</td>
<td>112</td>
<td>117</td>
</tr>
<tr>
<td>8,000</td>
<td>100</td>
<td>106</td>
<td>109</td>
<td>112</td>
<td>121</td>
</tr>
<tr>
<td>8,500</td>
<td>103</td>
<td>106</td>
<td>110</td>
<td>114</td>
<td>121</td>
</tr>
<tr>
<td>9,000</td>
<td>103</td>
<td>106</td>
<td>110</td>
<td>117</td>
<td>125</td>
</tr>
<tr>
<td>9,435</td>
<td>103</td>
<td>106</td>
<td>110</td>
<td>117</td>
<td>125</td>
</tr>
<tr>
<td>9,955</td>
<td>109</td>
<td>109</td>
<td>112</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>10,000</td>
<td>110</td>
<td>110</td>
<td>115</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>10,250</td>
<td>110</td>
<td>110</td>
<td>115</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>10,500</td>
<td>110</td>
<td>110</td>
<td>115</td>
<td>115</td>
<td>125</td>
</tr>
</tbody>
</table>

FLAPS 20°, (1.3 VS1) FLAPS 40°, (1.5 VS1)

LANDING APPROACH SPEEDS Ref.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>FLAPS UP</th>
<th>FLAPS 5°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>7,500</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>8,000</td>
<td>117</td>
<td>118</td>
</tr>
<tr>
<td>8,500</td>
<td>119</td>
<td>122</td>
</tr>
<tr>
<td>9,000</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>9,435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td>123</td>
<td>120</td>
</tr>
<tr>
<td>9,955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>125</td>
<td>123</td>
</tr>
<tr>
<td>10,260</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>10,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

CROSSWIND LANDING

AIRCRAFT WILL BE FLOWN DOWN AN EXTENSION OF THE RUNWAY CENTER LINE WITH DRIFT CORRECTION ESTABLISHED SUFFICIENTLY IN ADVANCE TO PERMIT CENTER LINE TO BE FLOWN WITH ONLY MINOR COORDINATED CORRECTIONS

INCREASE V_{ref} FOR CROSSWIND LANDING BY ONE-HALF THE STEADY WIND SPEED PLUS ONE-HALF THE GUST SPEED NOT TO EXCEED V_{ref} PLUS 10 KCAS.

PRIOR TO TOUCHDOWN, THE UPWIND WING IS LOWERED AND SMOOTHLY MODULATED. OPPOSITE RUDDER IS APPLIED SO THAT AIRCRAFT PATH CONTINUES DOWN RUNWAY CENTERLINE. THE AIRCRAFT SHOULD NOT BE ALLOWED TO DEVELOP ANY TENDENCY TO DRIFT DOWNWIND.

NOTE: RUDDERS CENTERED BEFORE NOSE WHEEL TOUCHDOWN. SPOILERS INTO WIND AS NECESSARY TO KEEP WINGS LEVEL.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>K</th>
<th>M</th>
<th>J</th>
<th>L</th>
<th>K</th>
<th>M</th>
<th>J</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>93</td>
<td>96</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td>96</td>
<td>100</td>
<td>93</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>100</td>
<td>103</td>
<td>96</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,500</td>
<td>103</td>
<td>106</td>
<td>100</td>
<td>99</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>105</td>
</tr>
<tr>
<td>9,000</td>
<td>106</td>
<td>109</td>
<td>103</td>
<td>99</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>108</td>
</tr>
<tr>
<td>9,435</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td></td>
<td>112</td>
<td>106</td>
<td>103</td>
<td>112</td>
<td>112</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>9,955</td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>115</td>
<td>105</td>
<td></td>
<td>115</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,260</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,500</td>
<td></td>
<td></td>
<td>110</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>11,000</td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>11,025</td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>119</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)
NON-PRECISION AND MISSED APPROACH

A/S 150K-140KCAS (J, L, M, K+130KCAS) (K) MINIMUM, APPROACH CHECKLIST, REVIEW APPROACH PLATE, RADIOS, TUNE & IDENTIFY, CHECK OM CROSSING ALTITUDE MARKER RECEIVER "ON"

FLAPS 5°, A/S 140KCAS MIN. 20-25% TORQUE, DESCEND 500 FPM

LANDING APPROACH SPEEDS
FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.

MISSING APPROACH: GO-AROUND, MAX POWER, PITCH UP TO 8°, CONTINUE WITH TWO ENGINE MISS APPROACH PROFILE

TOUCHDOWN: POWER LEVERS RETARD TO FLIGHT IDLE STOP, THEN PROPS BETA, REVERSE AS REQUIRED, BRAKES AS REQUIRED.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>FLAPS 20° (1.3 VS1)</th>
<th>FLAPS 40° (1.5 VS1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>7,000</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>7,500</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>8,000</td>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>8,500</td>
<td>103</td>
<td>106</td>
</tr>
<tr>
<td>9,000</td>
<td>106</td>
<td>109</td>
</tr>
<tr>
<td>9,435</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td>112</td>
<td>106</td>
</tr>
<tr>
<td>9,955</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>10,260</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>10,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)

ONE ENGINE INOPERATIVE NON-PRECISION AND MISSED APPROACH

WARNING
DO NOT ATTEMPT A WITH GEARS DOWN GO-AROUND BELOW 400' AGL OR AFTER 20º FLAPS ARE SELECTED

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

A/S 150 KCS (140 KCS MIN J, L) (135 KCS MIN K, M) APPROACH CHECKLIST REVIEW APPROACH PLATE. RADIO TUNE & IDENTIFY. CHECK FIX CROSSING ALTITUDE.

FLAPS 5º. 140 KCS (130 KCS MIN) 50-60% TORQUE.

MISSED APPROACH: CONTINUE WITH ENGINE OUT MISSED APPROACH PROFILE.

A/S 140 KCS (130 KCS MIN) 40-50% TORQUE, FLAPS 5º. DESCEND 500 FPM

A/S 140 KCS (130 KCS MIN) 50-60% TORQUE, FLAPS 5º.

A/S 144 KCS (130 KCS MIN) 20-30% TORQUE, 800-1000 FPM DESCENT

A/S 144 KCS (130 KCS MIN) 50-60% TORQUE

OPERATING ENGINE PROP FLIGHT IDLE, THEN PROP BETA. REVERSE AS REQUIRED. BRAKES AS REQUIRED.

WHEN LANDING ASSURED, GEARS DOWN, FLAPS 20º. SLOWING TO CROSS THRESHOLD AT 110 KCS (J, L), 105 KCS (K, M). LANDING CHECKLIST COMPLETE.

CAUTION
GEAR EXTENSION TIME IS APPROXIMATELY 17 SECONDS. CONFIRM GEARS DOWN PRIOR TO LANDING.
MU-2B J (-35), K (-25), L (-36), M (-26)
CIRCLING APPROACH AT WEATHER MINIMUMS

FROM APPROACH: GEAR DOWN, FLAPS 20\º, A/S 140K (130KCAS MIN)

A/S 140KCAS (130KCAS MIN.) APPROX 50\% TORQUE, NOT BELOW CIRCLING MINIMUM DESCENT ALTITUDE

TOUCHDOWN, RETARD POWER LEVERS TO GROUND IDLE STOP, THEN PROPS BETA, REVERSE AS REQUIRED. BRAKES AS REQUIRED.

THRESHOLD: 20\% TORQUE Vref

CHECK SINK RATE 500-600 FPM

FLAPS 20\º OR 40\º SLOWING TO Vref

MAX BANK 30\º

20-25\% TORQUE, A/S 120KCAS MIN, 500-600 FPM DESCENT

CHECK GEAR DOWN. FLAPS 20\º COMPLETE LANDING CHECKLIST

DO NOT DESCEND UNTIL WITHIN 30\º OF RUNWAY CENTERLINE

CAT C 121 - 140K 1.7NM
CAT D 141 - 165K 2.3NM
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>FLAPS 20° (1.3 VS1)</th>
<th>FLAPS 40° (1.5 VS1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>7,000</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>7,500</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>8,000</td>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>8,500</td>
<td>103</td>
<td>106</td>
</tr>
<tr>
<td>9,000</td>
<td>106</td>
<td>109</td>
</tr>
<tr>
<td>9,435</td>
<td>108</td>
<td>112</td>
</tr>
<tr>
<td>9,500</td>
<td>112</td>
<td>106</td>
</tr>
<tr>
<td>9,955</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>10,260</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>10,500</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>11,000</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>11,025</td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>
MU-2B J (-35), K (-25), L (-36), M (-26)
ONE ENGINE INOPERATIVE CIRCLING APPROACH AT WEATHER MINIMUMS

NOTE: ENGINE OUT CIRCLING APPROACH SHOULD BE FLOWN WITH 5° FLAPS AND GEAR UP. WHEN LANDING ASSURED, GEAR DOWN, FLAPS 20°, SLOWING TO A/S 110KCAS (J, L), A/S 105KCAS (K, M)

FROM APPROACH: FLAPS 5°, GEAR UP, A/S 140KCAS (130KCAS MIN.)
OPERATING ENGINE PROP FLIGHT IDLE, THEN PROP BETAS. REVERSE AS REQUIRED. BRAKES AS REQUIRED.

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA

A/S 140KCAS (130KCAS MIN.) APPROX 70% TORQUE, NOT BELOW CIRCLING MINIMUM DESCENT ALTITUDE

WARNING
DO NOT ATTEMPT A GO-AROUND WITH GEAR DOWN BELOW 400' AGL OR AFTER 20° FLAPS ARE SELECTED

CHECK FLAPS 5°; DO NOT DESCEND UNTIL WITHIN 30' OF RUNWAY CENTERLINE

CHECK DESCENT PROFILE. IF LANDING ASSURED, GEAR DOWN, CHECK SINK RATE 500-600 FPM

CHECK SINK RATE 500-600 FPM

LANDING ASSURED: FLAPS 20°, A/S 120KCAS MIN. COMPLETE LANDING CHECKLIST

MAX BANK 30°

AS REQUIRED TO MAINTAIN CAT C OR D

TOUCHDOWN

THRESHOLD FLAPS 20°, A/S 110KCAS (J, L), A/S 105KCAS (K, M)

CHECK Sink RATE 500-600 FPM

B-28
MU-2B B, D (-10), F (-20), G (-30)
NORMAL TAKE-OFF, 5° OR 20° FLAPS

TORQUE AND EGT LIMITS
TAKEOFF SPEEDS
FOR TORQUE AND EGT LIMITS
AND TAKEOFF SPEED CHARTS
SEE TABULAR CHARTS ON
REVERSE SIDED OF PROFILE.

AFTER GEAR IS FULLY RETRACTED, IF
FLAPS 20° RETRACT FLAPS TO 9°
INCREASE PITCH TO APPROX. 10°, 130
KCAS (F, MOD S/R10)/(140 KCAS (F, NOT
MOD S/R10), 130 KCAS (B, D), 140KCAS (G)

NORMAL PITCH,
APPROX 8°, FLAPS 20°,
APPROX 10-12°-FLAPS 9°

POS RATE, NO RUNWAY REMAINING
FOR LANDING, GEAR UP,
IF 20° FLAPS 113 KTS MIN. IF 5°
FLAPS 120 KCAS (G)/(125 KCAS (B, D, F)

VR - ROTATE 13°
MAX NOSE UP PITCH

A/S 140KCAS MINIMUM,
FLAPS UP

COMPLETE AFTER T/O
AND CLIMB CHECKLIST

ACCELERATE TO
DESIRED CLIMB SPEED

* NOTE: IF RUNWAY LENGTH OR
OBSTACLE CLEARANCE IS
CRITICAL, SET POWER TO
TORQUE/PSI OR TEMP
MAXIMUM, WHICHEVER
OCCURS FIRST. RETARD
POWER LEVERS AS REQUIRED
TO MAINTAIN MAXIMUM
ALLOWABLE TORQUE/PSI OR
TEMP.
Torque Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, D</td>
<td>64 PSI</td>
</tr>
<tr>
<td>F, G</td>
<td>60 PSI (STATIC)</td>
</tr>
<tr>
<td></td>
<td>64 PSI (RAM CONDITIONS 5 MINUTES)</td>
</tr>
</tbody>
</table>

EGT LIMITS DEPEND ON OUTSIDE AIR TEMPERATURE, CHECK EGT LIMITS PRIOR TO DEPARTURE.

Take Off Speeds

<table>
<thead>
<tr>
<th>FLAPS °</th>
<th>B</th>
<th>B+</th>
<th>D</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,800 LBS</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000 LBS</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,920 LBS</td>
<td>107</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500 LBS</td>
<td>111</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,350 LBS</td>
<td>110</td>
<td>110</td>
<td>106</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>9,000 LBS</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,930 LBS</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>104</td>
<td>100</td>
</tr>
<tr>
<td>8,000 LBS</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>7,500 LBS</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAPS 20°</th>
<th>B</th>
<th>B+</th>
<th>D</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,800 LBS</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000 LBS</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,920 LBS</td>
<td>101</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500 LBS</td>
<td>104</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,350 LBS</td>
<td>103</td>
<td>103</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9,000 LBS</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>8,930 LBS</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>8,000 LBS</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: NOT MODIFIED BY H/S/B 036 AND S/B 092
B+: MODIFIED BY S/B 036 AND S/B 092
MU-2B B, D (-10), F (-20), G (-30)

TAKE-OFF ENGINE FAILURE – FLAPS 5° OR 20°

CAUTION SIMULATED ENGINE FAILURE (NOT LESS THAN 200FT AGL)

MAKE NORMAL T/O

POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP. IF 20° FLAPS 115 KTS MIN. IF 5° FLAPS 120 KCS (G) 125 KCS (B, D, F)

IF SR 1° NOT INSTALLED, MAXIMUM FLAP SPEED DURING RETRACTION IS 140 KCS, DURING RETRACTION, PITCH TO MAINTAIN 140 KCS UNTIL FLAPS UP.

A/S 150 KCS MIN (IF FLAPS 5° INSTALLED) FLAPS UP*

A/S 140 KCS MIN (IF FLAPS 5° INSTALLED) FLAPS UP*

PITCH TO MAINTAIN VXSE MINIMUM APPROX 8° PITCH, FLAPS 20°, APPROX 10-12° PITCH, FLAPS 5° MAINTAIN DIRECTIONAL CONTROLL WITH RUDDER AND MINIMUM SPOILER, FAILED ENGINE CONDITION LEVER, EMERGENCY STOP, POWER LEVER, TAKE OFF **, TRIM AIRCRAFT

APPROX 300-400 FEET (OBSTRUCTION CLEARANCE), IF FLAPS 20° ADJUST PITCH TO ACCELERATE, 130 KCS MIN. FLAPS TO 9° IF FLAPS 5° INSTALLED, PITCH APPROX. 10° (IF FLAPS 5 NOT INSTALLED, FLAPS UP*, PITCH APPROX. 10° TO 13°)

A/S 150 KCS COMPLETE AFTER TAKE-OFF AND ENGINE OUT CHECKLIST

B, D / F / G

FLAP SETTING	VXSE (KCS)	VYSE (KCS)
UP | 130 / 135 / 140 | 135 / 150 / 155
5° | 115 / 120 / 130 | 120 / 140 / 140
20° | 100 / 125 / 125 | 105 / 130 / 135
MU-2B B, D (-10), F (-20), G (-30) TAKE-OFF ENGINE FAILURE ON RUNWAY

CAUTION
SIMULATED ENGINE FAILURE OR MALFUNCTION IS TO BE GIVEN BY INSTRUCTOR AT NOT MORE THAN 50% OF ROTATE SPEEDS.

- **ENGINE FAILS OR MALFUNCTION OCCURS**
 - POWER LEVERS TO GROUND IDLE, BRAKES AS NECESSARY, REVERSE THRUST AS REQUIRED, USE NOSE WHEEL STEERING, BRAKES, AND/OR REVERSE THRUST TO MAINTAIN DIRECTIONAL CONTROL.
- **POWER SET, BRAKES RELEASED**
- **CLEAR RUNWAY OR EVACUATE AIRCRAFT AS NECESSARY** *IF EVACUATING AIRCRAFT, BOTH CONDITION LEVERS TO EMERGENCY STOP AND MASTER SWITCH TO EMERGENCY*
- **NOTIFY TOWER OF ABORT**

* IF EVACUATING AIRCRAFT, BOTH CONDITION LEVERS TO EMERGENCY STOP AND MASTER SWITCH TO EMERGENCY
MU-2B B, D (-10), F (-20), G (-30)
TAKE-OFF ENGINE FAILURE - UNABLE TO CLimb
CLASSROOM DISCUSSION OR FTD USE ONLY

WARNING
DO NOT LET AIRSPEED DECELERATE BELOW SINGLE ENGINE AIRSPEED
105KCAS (G) 100KCAS (B, D, F)

PILOT MAKES DECISION TO EITHER RETURN THE RUNWAY SURFACE OR TO FLY BEYOND AIRPORT BOUDDARY TO SUITABLE LANDING AREA

ENGINE FAILS
POS RATE, NO RUNWAY REMAINING FOR LANDING, GEAR UP,
IF 20" FLAPS 113 KCAS MIN IF 5" FLAPS 120 KCAS (G) 125 KCAS (B, D, F)

IF RUNWAY REMAINS OR A LANDING CAN SAFELY BE MADE ON THE AIRPORT SURFACE, CHECK GEAR DOWN, FLAPS
REMAIN IN TAKE-OFF POSITION, POWER ON OPERATING ENGINE AS REQUIRED TO LAND.
LAND USING SINGLE ENGINE AIRSPEED, 105K CAS (G) 100K CAS (B, D, F)

ROTATE

POWER SET, RELEASE BRAKES

PROPellers BETA, THEN REVERSE AS REQUIRED, BRAKES AS REQUIRED

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA
SLOW FLIGHT MANEUVERING

MINIMUM CONTROLLABLE AIRSPEED

SLOW FLIGHT MANEUVERING IS CONDUCTED AS FOLLOWS:

CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.

START WITH CLEAN CONFIGURATION AND CHANGE AIRCRAFT CONFIGURATION FROM CLEAN TO FULL FLAP AND GEAR IN STAGES. USE A MAXIMUM OF 15° BANK AND PERFORM HEADING CHANGES OF 90° LEFT AND RIGHT. CONSTANT ALTITUDE IS REQUIRED THROUGHOUT.

MAINTAIN 115K IN ALL CONFIGURATIONS.

**APPROXIMATE POWER SETTINGS ARE:

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>FLAPS</th>
<th>B/B+ / D / F / G</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAN</td>
<td></td>
<td>APPROX PITCH +12</td>
</tr>
<tr>
<td>5° FLAP</td>
<td></td>
<td>APPROX PITCH +9</td>
</tr>
<tr>
<td>20° FLAP & GEAR</td>
<td></td>
<td>APPROX PITCH +4</td>
</tr>
<tr>
<td>40° FLAP & GEAR</td>
<td></td>
<td>APPROX PITCH 0</td>
</tr>
</tbody>
</table>

** NOTE: POWER SETTINGS WILL VARY WITH AIRCRAFT WEIGHT AND ALTITUDE.

STALL SPEEDS (APPROXIMATE)

AT MAXIMUM GROSS TAKEOFF WEIGHT

B, B+, D, F, G

ANGLE OF BANK

<table>
<thead>
<tr>
<th>B/B+ / D / F / G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
</tr>
<tr>
<td>15°</td>
</tr>
</tbody>
</table>

FLAPS

UP

95/ 98/ 98/ 98/102/104

98/ 99/ 99/104/106

5°

85/ 86/ 85/ 85/ 95

85/ 85/ 85/ 87/ 87/100

20°

80/ 81/ 81/ 85/ 85

81/ 83/ 83/ 87/ 88

40°

72/ 73/ 73/ 77/ 80

73/ 74/ 74/ 78/ 81

Vmc= 20° FLAPS (90Kicias G, 93Kicas F, 89Kicas D, 89/91Kicas B)

9° FLAPS (90Kicas G, 93Kicas F, 89Kicas D, 89/91Kicas B)

FOR B MODEL Vmc SPEED CONSULT SERIAL NUMBER APPROPRIATABILITY IN AFM

CAUTION

STALL WARNING MAY ACTIVATE 4 TO 9 KTS ABOVE STALL

MINIMUM CONTROLLABLE AIRSPEED IS CONDUCTED AS FOLLOWS:

CLEAR THE AREA PRIOR TO BEGINNING THE MANEUVER.

THE MANEUVER MAY BE DONE IN ANY COMBINATION OF GEAR OR FLAP CONFIGURATIONS. IF BANK IS TO BE USED, IT SHOULD BE DONE AT BANK OF NOT MORE THAN 10°. BEGIN THE MANEUVER BY CONFIGURING THE AIRCRAFT IN THE DESIRED GEAR AND FLAP CONFIGURATION. SLOW THE AIRCRAFT UNTIL THE STALL WARNING (STICK SHAKER) IS ACTIVATED AND ADD POWER TO MAINTAIN ALTITUDE AND A SPEED JUST ABOVE AERODYNAMIC STALL. DO NOT ALLOW THE AIRCRAFT TO REACH AERODYNAMIC STALL BUFFET.
MU-2B, D (-10), F (-20), G (-30)
ONE ENGINE INOPERATIVE MANEUVERING
LOSS OF DIRECTIONAL CONTROL

CLEAR AREA, CONDITION LEVERS T/O
AND LAND, SYNC OFF – SET ONE POWER
LEVER TO ZERO THRUST TO SIMULATE
FAILED ENGINE (VARIES BETWEEN 5%
AND 17% TORQUE OR 3 TO 11 PSI)

FLAPS 20°, GEAR UP, SET POWER
ON SIMULATED OPERATIVE
ENGINE FOR LEVEL FLIGHT
A/S 125KCAS TRIMMED

CAUTION
GEAR HORN MAY SOUND
CONTINUOUSLY, IF INSTRUCTOR
ELECTS TO DISABLE GEAR HORN
WITH CIRCUIT BREAKER, THEN
CIRCUIT BREAKER MUST BE
RESET PRIOR TO LANDING

WITH THE FIRST INDICATION OF LOSS OF DIRECTIONAL
CONTROL, REDUCE PITCH AND POWER ON SIMULATED
OPERATIVE ENGINE TO RECOVER

APPLY TAKEOFF
POWER ON SIMULATED
OPERATIVE ENGINE
WHILE INCREASING
PITCH TO DECELERATE
1KCAS PER SECOND

AT Vmc PLUS
10KCAS, ADD
POWER TO
SIMULATED
OPERATIVE ENGINE
AND RECOVER TO
STRAIGHT AND
LEVEL FLIGHT

A/S 125KCAS TRIMMED
FOR STRAIGHT AND
LEVEL FLIGHT

MIN ALT.
5,000' AGL

INSTRUCTOR CAUTION
ONE ENGINE LOSS OF DIRECTIONAL CONTROL IS BEST TRAINED AND
ACCOMPLISHED USING EARLY RECOGNITION AND RECOVERY
TECHNIQUES. SEAT POSITION AND RUDDER TRAVEL SHOULD BE
EMPHASIZED DURING THIS MANEUVER. RUDDER BLOCKING BY THE
INSTRUCTOR IS ENCOURAGED TO PRODUCE LOSS OF DIRECTIONAL
CONTROL AT APPROXIMATELY Vmc PLUS 10KCAS, BECAUSE EARLY
RECOGNITION AND RECOVERY IS THE PRIMARY OBJECTIVE OF THIS
MANEUVER.

Vmc:
20° FLAPS (90KCAS G, 83KCAS F, 89KCAS D, 89/91KCAS B)
0° FLAPS (99KCAS G, 100KCAS F, 97 KCAS D, 97/99KCAS B)

INSTRUCTOR BLOCKS RUDDER
TO CAUSE LOSS OF DIRECTIONAL
CONTROL AT Vmc
PLUS 10KCAS

WARNING
IF STALL WARNING
ACTIVATES, REDUCE
PITCH AND POWER ON
SIMULATED
OPERATIVE ENGINE,
AND RECOVER

Vnse 125K
MU-2B B, D (-10), F (-20), G (-30)

APPROACH TO STALL CLEAN CONFIGURATION / WINGS LEVEL

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF - 120KIAS-130KIAS AIRCRAFT TRIMMED

20% TORQUE OR 10 PSI

MAINTAIN LEVEL FLIGHT

TRIM FOR 120KIAS

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER, LEVEL WINGS IF IN A BANK AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE. STALL WARNING MAY ACTIVATE AT 4 TO 9 KIAS ABOVE STALL.

CALL THE "STALL"

AS A/S INCREASES, CLimb TO ORIGINAL ALTITUDE

ACCELERATE TO 140KIAS, POWER AS REQUIRED

MIN. ALT. 5,000' AGL

STALL SPEEDS
FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE
<table>
<thead>
<tr>
<th>FLAPS SET</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.B. D/F/G</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
<td>85/86</td>
</tr>
<tr>
<td>B.B. D/F/G</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
<td>76/78</td>
</tr>
<tr>
<td>B.B. D/F/G</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
<td>70/73</td>
</tr>
<tr>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14 CFR Ch. I (1–1–11 Edition)
MU-2B B, D (-10), F (-20), G (-30)

APPROACH TO STALL
TAKEOFF CONFIGURATION 15-30° BANK

CLEAR AREA, CONDITION LEVERS TO AND LAND SYNCH OFF – A/S 120KCAS-130KCAS TRIMMED AIRCRAFT

FLAPS 5° OR 20°, GEAR DOWN, 20% TORQUE OR 10 PSI

INITIATE 30° BANK IN LEVEL FLIGHT

MAINTAIN LEVEL FLIGHT, TRIM FOR 120KCAS

ON STALL RECOGNITION (STICK SHAKER), SIMULTANEOUSLY APPLY MAX POWER, LEVEL WINGS AND ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, POSITIVE RATE, GEAR UP, STALL WARNING MAY ACTIVATE AT 4 TO 9 K ABOVE STALL

A/S 140KCAS, MINIMUM FLAPS UP, POWER AS REQUIRED

AFTER GEAR IS FULLY RETRACTED, IF FLAPS 20° RETRACT FLAPS TO 5°, INCREASE PITCH TO APPROX 10°, 130 KCAS (F, MOD S/R10)(140 KCAS (F, NOT MOD S/R10), 130 KCAS (B, D), 140KCAS (G)

CALL THE "STALL"

MIN ALT 5,000’ AGL

STALL SPEEDS
FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
STALL SPEEDS (APPROXIMATE)
AT MAXIMUM GROSS TAKEOFF WEIGHT

<table>
<thead>
<tr>
<th>BANK ANGLE</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>72/74/77/81</td>
<td>74/75/79/82</td>
<td>77/79/82/86</td>
<td>82/83/87/91</td>
<td>90/91/95/100</td>
<td>102/103/108/113</td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)

APPROACH TO STALL

GEAR DOWN – FULL FLAPS

CLEAR AREA, CONDITION LEVERS
T/O AND LAND, SYNC OFF – A/S
120KCAS – 130KCAS TRIMMED

FLAPS 20°, GEAR DOWN,
20% TORQUE OR 10 PSI

A/S 120KCAS,
FLAPS FULL

20% TORQUE, MAINTAIN
LEVEL FLIGHT, TRIM FOR
120KCAS

AFTER GEAR IS FULLY
RETRACTED, IF FLAPS 20°
RETRACT FLAPS TO 0°,
INCREASE PITCH TO
APPROX. 10°, 130 KCAS (F,
MOD SR10), 140 KCAS (F, NOT
MOD SR10), 130 KCAS (B, D),
140KCAS (G)

CALL THE
"STALL"

STALL SPEEDS

FOR STALL SPEEDS SEE
TABULAR CHART ON
REVERSE SIDE OF PROFILE.

MIN. ALT.
5,000' AGL
<table>
<thead>
<tr>
<th>FLAPS SET</th>
<th>0</th>
<th>5</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR WT.</td>
<td>B/B+ D/ F/G</td>
<td>B/B+ D/ F/G</td>
<td>B/B+ D/ F/G</td>
<td>B/B+ D/ F/G</td>
</tr>
<tr>
<td>7,000</td>
<td>85/85/85</td>
<td>76/76/80</td>
<td>70/70/72</td>
<td>63/63/64</td>
</tr>
<tr>
<td>7,500</td>
<td>88/88/85</td>
<td>78/78/83</td>
<td>73/73/74</td>
<td>66/66/67</td>
</tr>
<tr>
<td>8,000</td>
<td>90/90/90</td>
<td>81/81/84</td>
<td>75/75/77</td>
<td>68/68/69</td>
</tr>
<tr>
<td>8,500</td>
<td>93/93/94</td>
<td>83/83/87</td>
<td>78/78/79</td>
<td>70/70/71</td>
</tr>
<tr>
<td>8,930</td>
<td>95/</td>
<td>85/</td>
<td>79/</td>
<td>72/</td>
</tr>
<tr>
<td>9,000</td>
<td>/95/97/</td>
<td>/86/81/</td>
<td>/80/81/</td>
<td>/72/73/</td>
</tr>
<tr>
<td>9,350</td>
<td>/97/</td>
<td>/87/</td>
<td>/81/</td>
<td>/73/</td>
</tr>
<tr>
<td>9,500</td>
<td>/99/98</td>
<td>93/92</td>
<td>/83/81</td>
<td>/75/75</td>
</tr>
<tr>
<td>9,920</td>
<td>/101/</td>
<td>95/</td>
<td>/85/</td>
<td>/76/</td>
</tr>
<tr>
<td>10,000</td>
<td>/101/</td>
<td>/94</td>
<td>/83</td>
<td>/77</td>
</tr>
<tr>
<td>10,500</td>
<td>/103/</td>
<td>/97</td>
<td>/85</td>
<td>/79</td>
</tr>
<tr>
<td>10,800</td>
<td>/105/</td>
<td>/98</td>
<td>/87</td>
<td>/81</td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)

ACCELERATED STALLS

CLEAR AREA, CONDITION LEVERS T/O AND LAND, SYNC OFF

CLEAN, A/S 115KCAS A/C TRIMMED

INITIATE PROGRESSIVE BANK TOWARD A 60° BANK ANGLE, APPLY BACKPRESSURE TO MAINTAIN ALTITUDE

* THIS MANEUVER SHOULD ALSO BE ACCOMPLISHED IN THE LANDING CONFIGURATION WITH GEAR DOWN, FLAPS 20°, A/S 100KCAS TRIMMED

* 140KCAS FLAPS UP

* 125KCAS FLAPS TO 5°

* POSITIVE RATE, GEAR UP

ACCELERATE TO 140KCAS, POWER AS REQUIRED

AS A/S INCREASES, CLIMB TO ORIGINAL ALTITUDE

CALL THE "STALL"

ON STALL RECOGNITION (STICK SHAKER) SIMULTANEOUSLY APPLY MAX POWER, ADJUST PITCH AS NECESSARY TO MINIMIZE LOSS OF ALTITUDE, AND ROLL WINGS LEVEL

STALL SPEEDS
FOR STALL SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>BANK ANGLE</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>72/74/77/81</td>
<td>74/75/79/82</td>
<td>77/79/82/86</td>
<td>82/83/87/91</td>
<td>90/91/95/100</td>
<td>102/103/108/113</td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)
EMERGENCY DESCENT (LOW SPEED)

*CLEAR AREA, CRUISE CONFIGURATION START AT ASSIGNED ALTITUDE. A/S 150KCAS MIN.

POWER LEVERS F1. CONDITION LEVERS T/O AND LAND SYNC OFF. GEAR AND FLAPS EXTEND AT SPEEDS BASED ON SCHEDULE FOR MODEL AND SIR10 COMPLIANCE UNTIL FULL FLAPS ARE DEPLOYED.

SIMULATE EXPLOSIVE DECOMPRESS AT ASSIGNED ALTITUDE. OXYGEN MASKS ON. "DECLARE EMERGENCY"

ESTABLISH DESCENT IN A 30° BANK, NOSE DOWN APPROXIMATELY 20° UNTIL REACHING MAXIMUM FULL FLAP SPEED ALLOWED (VNE). THEN RAISE NOSE TO MAINTAIN SPEED.

*WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL TO CLEAR TRAFFIC AT LOWER ALTITUDES

AFTER ESTABLISHING DESCENT, ROLL WINGS LEVEL. CONTINUE DESCENT ON STEADY HEADING OR AS REQUIRED BY ATC.

CHECK 1000' ABOVE LEVEL OFF ALTITUDE

COMPLETE EXERCISE AT ASSIGNED ALTITUDE. REDUCE TO 120KCAS AND CLEAN UP A/C. **DO NOT RAISE FLAPS UNTIL A/C IS BELOW MAXIMUM ALLOWABLE V6 SPEED FOR FULL FLAPS.

500' ABOVE, START LEVEL OFF

GEAR/FLAP SPEEDS
FOR GEAR/FLAP SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th></th>
<th>GEAR</th>
<th></th>
<th></th>
<th>FLAPS</th>
<th>5°</th>
<th>20°</th>
<th>40°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B, D, F, F+:</td>
<td>160KCAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G, G+:</td>
<td>170KCAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G: NOT MODIFIED BY S/R10</td>
<td></td>
<td></td>
<td></td>
<td>146KCAS</td>
<td>146KCAS</td>
<td>120KCAS</td>
<td></td>
</tr>
<tr>
<td>G+: MODIFIED BY S/R10 AND F: NOT MODIFIED BY S/R10</td>
<td></td>
<td></td>
<td></td>
<td>175KCAS</td>
<td>146KCAS</td>
<td>120KCAS</td>
<td></td>
</tr>
<tr>
<td>F+: MODIFIED BY S/R10 AND B, D, F</td>
<td></td>
<td></td>
<td></td>
<td>140KCAS</td>
<td>140KCAS</td>
<td>120KCAS</td>
<td></td>
</tr>
</tbody>
</table>
Clear Area, Cruise Configuration Start at Assigned Altitude.

- A/S 150KCAS min.
- While clearing the area, coordinate with air traffic control to clear traffic at lower altitudes.

Power Levers F/I. Condition Levers T/O and Land Sync Off.

Establish Descent in a 30° Bank, Accelerating to Vmo (250KCAS). Initial 15-20° nose down, reducing to approx. 8° nose down as A/S approaches Vmo (250KCAS).

Check 1000 Feet Above Level Off Altitude.

- After establishing descent, keep wings level, continue descent on steady heading or as req'd by A/C.

Complete Exercise at Assigned Altitude. Reduce Speed to 200KCAS.

700 Feet Above, Start Level Off.
MU-2B B, D (-10), F (-20), G (-30)

UNUSUAL ATTITUDE RECOVERY (NOSE HIGH)

ROLL TOWARD 60° BANK USING RUDDER AND SPOILER AND ALLOW NOSE TO FALL THROUGH THE HORIZON.

CAUTION
DO NOT G LOAD WINGS DURING BANKING MANEUVER TO PREVENT AN ACCELERATED STALL.

UPON RECOGNITION OF A NOSE HIGH UNUSUAL ATTITUDE, POWER TO TAKEOFF.

*CLEAR AREA

WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL TO CLEAR TRAFFIC BOTH ABOVE AND BELOW YOUR ALTITUDE.

INSTRUCTOR NOTE
THE INSTRUCTOR SHOULD INITIATE THE UNUSUAL ATTITUDE AND USE POSITIVE CONTROL TO TRANSFER CONTROL TO THE STUDENT FOR RECOVERY.

WHEN NOSE LOW, ROLL WINGS LEVEL, REDUCE POWER TO FLIGHT IDLE, AND COMMENCE A WINGS LEVEL PULL UP TO A LEVEL FLIGHT ATTITUDE.

ONCE LEVEL, ADD POWER TO MAINTAIN LEVEL FLIGHT.
MU-2B B, D (-10), F (-20), G (-30)

UNUSUAL ATTITUDE RECOVERY (NOSE LOW)

UPON RECOGNITION OF A NOSE LOW UNSUAL ATTITUDE, REDUCE POWER TO FLIGHT IDLE, ROLL TOWARD WINGS LEVEL IF IN A BANK, AND MAINTAIN NOSE LOW PITCH ATTITUDE WHILE LEVELING WINGS

CLEAR AREA

*WHILE CLEARING THE AREA, COORDINATE WITH AIR TRAFFIC CONTROL THE CLEAR TRAFFIC BOTH ABOVE AND BELOW YOUR ALTITUDE.

INSTRUCTOR NOTE
THE INSTRUCTOR SHOULD INITIATE THE UNSUAL ATTITUDE AND USE POSITIVE CONTROL TO TRANSFER CONTROL TO THE STUDENT FOR RECOVERY

ONCE WINGS ARE LEVEL IN NOSE LOW ATTITUDE, COMMENCE A WINGS LEVEL PULL UP TO A LEVEL FLIGHT ATTITUDE.

CAUTION
DO NOT G-LOAD AIRCRAFT UNTIL WINGS ARE LEVEL TO PREVENT AN ACCELERATED STALL.
IF AIRSPEED IS AT OR NEAR VNO, DO NOT USE ABRUPT CONTROL MOVEMENTS DURING RECOVERY.

ONCE LEVEL, ADD POWER TO MAINTAIN LEVEL FLIGHT
MU-2B B, D (-10), F (-20), G (-30)
NORMAL LANDING (20° or 40° FLAPS)

PROPS BETA. THEN REVERSE AS REQUIRED. BRAKING AS REQUIRED.

TOUCHDOWN. POWER LEVERS RETARD TO FLIGHT IDLE STOP.

THRESHOLD 20% TORQUE, 16 PSI Vref

LANDING ASSURED, FLAPS 20° or 40°. A/S SLOWING TO Vref.
CHECK SINK RATE 500-600 FPM

A/S 120KCAS MINIMUM DESCENT. 500-600 FPM
(20-25% TORQUE, 13-16 PSI)

FLAPS 5° A/S
(130 KCAS F, G)
(115 KCAS B, D)
MINIMUM 40-50% TORQUE, 25-32 PSI

FLAPS 20°. A/S 120-
130 KCAS. 500 FPM SINK RATE. (APPROX 25%
TORQUE, 16 PSI)

GEAR DOWN. COMPLETE LANDING CHECKLIST

STABILIZED APPROACH BY 500 fpm

A/S 150K MINIMUM
(25-30% TORQUE, 16-20 PSI)

COMPLETE DESCENT
CHECKLIST

MAINTAIN TRACK PARALLEL TO RUNWAY

LANDING APPROACH SPEEDS
FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>B</th>
<th>B+D</th>
<th>F</th>
<th>G</th>
<th>B</th>
<th>B+D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>92</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td>95</td>
<td>95</td>
<td>96</td>
<td>94</td>
<td>98</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>8,000</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>97</td>
<td>101</td>
<td>101</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>8,500</td>
<td>101</td>
<td>103</td>
<td>100</td>
<td>101</td>
<td>104</td>
<td>106</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>8,930</td>
<td>101</td>
<td>103</td>
<td></td>
<td></td>
<td>104</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td></td>
<td></td>
<td>106</td>
<td>103</td>
<td></td>
<td></td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>9,435</td>
<td></td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td></td>
<td></td>
<td>105</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td>108</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,260</td>
<td></td>
<td></td>
<td>109</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)

NO FLAP OR 5° FLAP LANDING

CAUTION
DO NOT SELECT REVERSE UNTIL BELOW 90K WITH NOSE WHEEL ON GROUND

CHECK BOTH PROPS BETA. BRAKING AS REQUIRED. NOTE: BETA MAY NOT BE AVAILABLE UNTIL BELOW 90K CAS

TOUCHDOWN - POWER LEVERS SLOWLY RETARD TO FLIGHT IDLE

THRESHOLD: 20% TORQUE, 12 PSI. NO FLAP VREF 110/115K CAS MINIMUM.

A/S SLOWING TO 0° OR 5° FLAP VREF 110/115K CAS MINIMUM (SEE CHART)

STABILIZED APPROACH BY 500 ft

CHECK SINK RATE

FLAPS 0° OR 5°: A/S 130K CAS MINIMUM. 500-600 FPM SINK RATE. (APPROX 26% TORQUE, 16 PSI)

A/S 150K CAS MINIMUM. (25-30% TORQUE, 16-20 PSI)

GEAR DOWN. COMPLETE LANDING CHECKLIST

COMPLETE DESCENT AND APPROACH CHECKLISTS

MAINTAIN TRACK PARALLEL TO RUNWAY

NOTE
LANDING DISTANCE WILL INCREASE APPROXIMATELY 30%

NO FLAP OR 5° FLAP LANDING APPROACH SPEEDS

FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>B</th>
<th>B+</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>B</th>
<th>B+</th>
<th>D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.500</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td></td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>8.000</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>8.490</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.500</td>
<td>117</td>
<td>117</td>
<td>118</td>
<td>117</td>
<td></td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>8.930</td>
<td>119</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.000</td>
<td></td>
<td></td>
<td>122</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.435</td>
<td></td>
<td></td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>123</td>
<td>115</td>
</tr>
<tr>
<td>10.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td>118</td>
</tr>
<tr>
<td>10.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
<td>120</td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)
ONE ENGINE INOPERATIVE LANDING

CAUTION
ANTICIPATE SWERVE TOWARD OPERATING ENGINE WHEN ENTERING BETA

OPERATING ENGINE PROP FLIGHT IDLE, THEN PROP BETA REVERSE AS REQUIRED.

BRakes AS REQUIRED.

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

WARNING
DO NOT ATTEMPT A GO-AROUND WITH GEAR DOWN BELOW 400' AGL OR AFTER 20° FLAPS ARE SELECTED

THRESHOLD: 20\% TORQUE, 13 PSI. VREF 110KIAS (g) 105KIAS (F) 100KIAS (B, D)

CHECK SINK RATE:
300-600 FPM

MAINTAIN TRACK PARALLEL TO RUNWAY

COMPLETE DESCENT AND APPROACH CHECKLISTS AND REVIEW SINGLE ENGINE LANDING CHECKLIST

A/S 150KIAS (140KIAS MIN G) (135KIAS MIN F) 130 MIN B, D (APPROX 70\% TORQUE, 32-38 PSI)

B, D / F / G

FLAP SETTING

VXSE(KIAS) VYSE(KIAS)

UP 130 / 135 / 140 135 / 150 / 150
5° 115 / 130 / 130 120 / 140 / 140
20° 100 / 125 / 125 105 / 130 / 135

CHECK SINK RATE:
500 - 600 FEET PER MINUTE

WHEN LANDING ASSURED, FLAPS 20° A/S 110KIAS (G), 105KIAS (F), 100KIAS (B, D) MIN. COMPLETE LANDING CHECKLIST, RUDDER TRIM CENTERED, HOLD BALL IN CENTER WITH RUDDER

STABILIZED APPROACH BY 500 FPM

CHECK GLIDE PATH, IF LANDING ASSURED, GEAR DOWN. (APPROX 40\% TORQUE, 28 PSI)
MU-2B B, D (-10), F (-20), G (-30)
CROSSWIND LANDING

AIRCRAFT WILL BE FLOWN DOWN AN EXTENSION OF THE RUNWAY CENTERLINE WITH DRIFT CORRECTION ESTABLISHED SUFFICIENTLY IN ADVANCE TO PERMIT CENTERLINE TO BE FLOWN WITH ONLY MINOR COORDINATED CORRECTIONS.

INCREASE Vref FOR CROSSWIND LANDING BY ONE-HALF THE STEADY WIND SPEED PLUS ONE-HALF THE GUST SPEED NOT TO EXCEED Vref PLUS 10 KCAS.

PRIOR TO TOUCHDOWN, THE UPWIND WING IS LOWERED AND SMOOTHLY MODULATED. OPPOSITE RUDDER IS APPLIED SO THAT AIRCRAFT PATH CONTINUES DOWN RUNWAY CENTERLINE. THE AIRCRAFT SHOULD NOT BE ALLOWED TO DEVELOP ANY TENDENCY TO DRIFT DOWNWIND.

NOTE: RUDDERS CENTERED BEFORE NOSE WHEEL TOUCHDOWN. SPOILERS INTO WIND AS NECESSARY TO KEEP WINGS LEVEL.
MU-2B B, D (-10), F (-20), G (-30)

ILS AND MISSED APPROACH

LANDING APPROACH SPEEDS

FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.

AIS 150KCAS (140KCAS MIN) APPROACH CHECKLIST. REVIEW APPROACH PLATE, RADIOS; TUNE & IDENTIFY, CHECK OM CROSSING ALTITUDE MARKER RECEIVER "ON"

FLAPS 5° A/S (130KCAS F, G) (115KCAS B, D) MINIMUM 40-50% TORQUE, 25-32 PSI

20-25% TORQUE, 13-16 PSI. DESCEND 500 FPM

25-30% TORQUE, 16-20 PSI

MISSING APPROACH: CONTINUE WITH ENGINE OUT MISSED APPROACH PROFILE

REACHING GLIDESLOPE APPROX 25% TORQUE, 16 PSI.

WHEN LANDING ASSURED, FLAPS 20°, (OR 40° BELOW 120K)

THRESHOLD: 20% TORQUE, 13 PSI; WTH

TOUCHDOWN: POWER LEVERS RETARD TO FLIGHT IDLE STOP.

PROPS BETA. REVERSE AS REQUIRED. BRAKES AS REQUIRED.

GEAR DOWN, COMPLETE LANDING CHECKLIST.
MU-2B B, D (-10), F (-20), G (-30)

TWO ENGINE MISSED APPROACH

WHEN LANDING REJECTED, APPLY MAX POWER, PITCH UP AND SELECT FLAPS 20° IF 40° PREVIOUSLY SELECTED

AFTER GEAR IS FULLY RETRACTED, IF FLAPS 20° RETRACT FLAPS TO 9°, INCREASE PITCH TO APPROX. 10°, 130 KCAS (F, MOD OR 105), 140 KCAS (F, NOT MOD OR 105), 130 KCAS (B, D), 140 KCAS (G)

MISSED APPROACH GO-AROUND, MAX POWER, PITCH UP 8°

POSITIVE RATE OF CLIMB, GEAR UP, IF 20° FLAPS 113 KTS MIN. IF 9° FLAPS 120 KCAS (G), 125 KCAS (B, D, F)

COMPLETE AFTER TAKEOFF CHECKLIST

ACCELERATE TO DESIRED CLIMB SPEED

A/S 140KCAS, FLAPS UP

MAP
MU-2B B, D (-10), F (-20), G (-30)
ONE ENGINE INOPERATIVE ILS AND MISSED APPROACH

A/S 150KCAS
(140KCAS MIN G) (135KCAS MIN F)
130 MIN B, D (APPROX 70% TORQUE, 49 PSI) APPROACH CHECKLIST.
REVIEW APPROACH PLATE. RADIOS:
TUNE & IDENTIFY. CHECK OM CROSSING ALTITUDE MARKER RECEIVER "ON".

FLAPS 5° A/S
50-60% TORQUE, 32-40 PSI

40-50% TORQUE, 26-32 PSI
FLAPS 5°. DESCEND 500 FPM

CHECK GEAR DOWN
APPROACHING GLIDE SLOPE
(ONE DOT BELOW G/S)

Landing check
(50-55% TORQUE, 32-38 PSI)

When landing assured, flaps 20°. A/S 110KCAS (G), 109KCAS (F),
100KCAS (B, D) MIN. COMPLETE LANDING CHECKLIST, RUDDER
TRIM CENTERED, HOLD BALL IN CENTER WITH RUDDER.

Operating engine prop flight idle,
THEN PROP BETA, REVERSE AS REQUIRED. BRAKES AS REQUIRED.

Missed approach:
Continue with engine out
Missed approach profile

DH

Warning
Do not attempt a go-around with gear down below 400' AGL or after 20° Flaps are selected

Caution
Do not use single engine reverse thrust with the simulated failed engine power lever above flight idle.
MU-2B B, D (-10), F (-20), G (-30)
ONE ENGINE INOPERATIVE MISSED APPROACH

COMMENCING MISSED APPROACH, SET MAX POWER, MAINTAIN DIRECTIONAL CONTROL, Rudder and Spoiler as Necessary. Gear Up. Pitch to Maintain A/S 140KCAS.*

IF TRANSITIONING FROM A DESCENT, MAINTAIN PITCH TO MAINTAIN 140KC, RAISE GEAR, THEN 10° PITCH. SOME ALTITUDE LOSS IS TO BE EXPECTED.

A/S 150KCAS, COMPLETE AFTER TAKEOFF CHECKLIST

AIR 140KCAS: MINIMUM FLAPS UP

APPROX 300-400 FEET (OBSTRUCTION CLEARANCE). IF FLAPS 20° ADJUST PITCH TO ACCELERATE 130 KCAS (F, MOD S/R10); 140 KCAS (F, NOT MOD S/R10), 130 KCAS (B, D), 140 KCAS (G) FLAPS TO 5°, PITCH APPROX 10°

AFTER GEAR IS FULLY RETRACTED, PITCH 10°

WARNING
UNDER CERTAIN COMBINATIONS OF WEIGHT, TEMPERATURE AND PRESSURE ALTITUDE, WITH LANDING GEAR DOWN AND FLAPS 20°, SINGLE ENGINE GO AROUND MAY NOT BE POSSIBLE AT ALTITUDES OF LESS THAN 400 FEET AGL.
MU-2B B, D (-10), F (-20), G (-30)
NON-PRECISION AND MISSED APPROACH

A/S 150K (140K MIN) APPROACH CHECKLIST.
REVIEW APPROACH PLATE. RADIOS: TUNE & IDENTIFY. CHECK FIX CROSSING ALTITUDE

FLAPS 5° A/S
(130K CAS F, G)
(115K CAS B, D)
MINIMUM 40-50% TORQUE, 25-32 PSI

20-25% TORQUE, 13-16 PSI DESCEND 500 FPM

25-30% TORQUE, 16-20 PSI

A/S 120K MIN.

MISSED APPROACH: GO-AROUND. MAX POWER, ROTATE TO 8°. CONTINUE WITH TWO ENGINE MISSED APPROACH PROFILE

A/S 120K MIN. APPROX 50% TORQUE, 32 PSI

TOUCHDOWN: POWER LEVERS RETARD TO FLIGHT IDLE STOP. THEN PROPS BETA. REVERSE AS REQUIRED. BRAKES AS REQUIRED.

A/S 120K MIN, 25-30% TORQUE, 16-20 PSI 800-1000 FPM DESCENT

GEAR DOWN, FLAPS 20° APPROACHING FIX INBOUND. LANDING CHECKLIST COMPLETE A/S 120K MIN.

LANDING APPROACH SPEEDS
FOR LANDING APPROACH SPEEDS SEE TABULAR CHART ON REVERSE SIDE OF PROFILE.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>B</th>
<th>B+ D</th>
<th>F</th>
<th>G</th>
<th>B</th>
<th>B+ D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>92</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td>95</td>
<td>95</td>
<td>96</td>
<td>94</td>
<td>98</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>8,000</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>97</td>
<td>101</td>
<td>101</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>8,500</td>
<td>101</td>
<td>103</td>
<td>100</td>
<td></td>
<td>104</td>
<td>106</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>8,930</td>
<td>101</td>
<td>103</td>
<td></td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td></td>
<td></td>
<td>106</td>
<td>103</td>
<td></td>
<td>109</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>9,435</td>
<td></td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td></td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>10,260</td>
<td></td>
<td></td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td>117</td>
<td></td>
</tr>
</tbody>
</table>
MU-2B B, D (-10), F (-20), G (-30)

ONE ENGINE INOPERATIVE NON-PRECISION AND MISSED APPROACH

A/S 150KCAS (140KCAS MIN G) (135KCAS MIN F) (130 MIN B, D) (APPROX 70% TORQUE, 45 PSI) APPROACH
CHECKLIST. REVIEW APPROACH PLATE. RADIOS: TUNE & IDENTIFY. CHECK FIX CROSSING ALTITUDE.

FLAPS 5°, 50-60% TORQUE, 32-40 PSI

MISSED APPROACH CONTINUE WITH ENGINE OUT MISSED APPROACH PROFILE.

WARNING
DO NOT ATTEMPT A WITH GEAR DOWN GO-AROUND BELOW 400' AGL OR AFTER 20° FLAPS ARE SELECTED.

CAUTION
DO NOT USE SINGLE ENGINE REVERSE THRUST WITH THE SIMULATED FAILED ENGINE POWER LEVER ABOVE FLIGHT IDLE.

MISSING APPROACH CONTINUE WITH ENGINE OUT MISSED APPROACH PROFILE.

40-50% TORQUE, 26-32 PSI FLAPS 5° DESCEND 500 FPM

MAP

A/S140K (130K MIN) 20-30% TORQUE, 13-20 PSI 800-1000 FPM DESCENT

A/S140K (130K MIN) 50-60% TORQUE, 32-40 PSI

OPERATING ENGINE PROP FLIGHT IDLE, THEN PROP BETA REVERSE AS REQUIRED. BRAKES AS REQUIRED.

WHEN LANDING ASSURED, GEAR DOWN, FLAPS 20°, SLOWING TO CROSS THRESHOLD AT 110K (G), 105K (B, D, F). LANDING CHECKLIST COMPLETE CAUTION GEAR EXTENSION TIME IS APPROXIMATELY 15 SECONDS, CONFIRM GEAR DOWN PRIOR TO LANDING.
<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>FLAPS 20°</th>
<th>FLAPS 40°</th>
<th>FLAPS 40° (1.3 VS1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>92</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>7,500</td>
<td>95</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>8,000</td>
<td>98</td>
<td>94</td>
<td>B</td>
</tr>
<tr>
<td>8,500</td>
<td>101</td>
<td>93</td>
<td>B</td>
</tr>
<tr>
<td>9,000</td>
<td>103</td>
<td>96</td>
<td>B</td>
</tr>
<tr>
<td>9,500</td>
<td>103</td>
<td>99</td>
<td>B</td>
</tr>
<tr>
<td>10,000</td>
<td>105</td>
<td>101</td>
<td>B</td>
</tr>
<tr>
<td>10,500</td>
<td>105</td>
<td>102</td>
<td>B</td>
</tr>
<tr>
<td>11,000</td>
<td>107</td>
<td>103</td>
<td>B</td>
</tr>
<tr>
<td>11,500</td>
<td>109</td>
<td>103</td>
<td>B</td>
</tr>
<tr>
<td>12,000</td>
<td>112</td>
<td>103</td>
<td>B</td>
</tr>
<tr>
<td>12,500</td>
<td>115</td>
<td>103</td>
<td>B</td>
</tr>
<tr>
<td>13,000</td>
<td>117</td>
<td>103</td>
<td>B</td>
</tr>
</tbody>
</table>
Federal Aviation Administration, DOT

Pt. 91, SFAR No. 108

(D) Each MU–2B profile in its respective section follows the outline below.

(1) Normal Takeoff (5- and 20-degrees flaps).
(2) Takeoff Engine Failure (5- and 20-degrees flaps).
(3) Takeoff Engine Failure on Runway or Rejected Takeoff.
(4) Takeoff Engine Failure after Liftoff—Unable to Climb (Classroom or FTD only).
(5) Steep Turns.
(6) Slow Flight Maneuvers.
(7) One Engine Inoperative Maneuvering/Loss of Directional Control.
(8) Approach to Stall (clean configuration/wings level).
In Flight Maneuvering

(A) Maneuvers conducted at altitude such as stalls and steep turns must always be preceded by clearing turns and at least one crew member must continually clear the flying area during the maneuver. The instructor must emphasize the importance of clearing the area, even if the maneuvers are being done in an FTD or simulator. This will create the habit pattern in the pilot to clear the area before practicing maneuvers.

(B) During stalling maneuvers and upon recognition of the indication of a stall, the pilot must call the “stall” to the instructor and then proceed with the recovery. In addition, during training, the pilot must announce the completion of the stall recovery maneuver. Instructors must exercise caution when conducting stall maneuvers and be prepared to take the controls if the safe outcome of the maneuver is in doubt.

(C) During accelerated stall maneuvers, it is important that the instructor pay close attention to the position of the ball throughout the maneuver and recovery so as to maintain coordinated flight. Stall recognition and recovery is the completion criteria, and it is not necessary to continue the stall beyond the stick shaker to aerodynamic buffet.

(D) When demonstrating a loss of directional control with one engine inoperative, the engine failure must only be simulated. During the slowing of the aircraft to demonstrate loss of directional control, the instructor should use the rudder block method to allow the student to experience the loss of directional control associated with VMC, at a speed of approximately 10 knots above actual VMC.

Note: To accurately simulate single engine operations, zero thrust must be established. The zero thrust torque setting will vary greatly from model to model. It is important to establish zero thrust torque setting for your aircraft. This requires that the aircraft be flown on one engine to establish the zero thrust setting. This is accomplished by establishing single engine flight with one propeller feathered and noting the performance with the operating engine at maximum torque or temperature. It is suggested that two airspeeds be established for zero thrust power settings. They are 120 kts, flaps 20, gear up for takeoff and 140 knots, flaps 5, gear up for in-flight and approach maneuvering. Once performance has been established and recorded for each airspeed, restart the other engine and find the torque setting that duplicates the performance (climb or descent rate, airspeed) as was recorded with that propeller feathered. This torque setting will be zero thrust for the simulated inoperative engine. The student/pilot should note that the performance experienced with one engine operating at flight idle, may produce

(9) Approach to Stall (takeoff configuration/15- to 30-degrees bank).

(10) Approach to Stall (landing configuration/gear down/40-degrees flaps).

(11) Accelerated Stall (no flaps).

(12) Emergency Descent (low speed).

(13) Emergency Descent (high speed).

(14) Unusual Altitude Recovery (nose high).

(15) Unusual Altitude Recovery (nose low).

(17) Go Around/Rejected Landing.

(18) No Flap or 3-degrees flaps Landing.

(19) One Engine Inoperative Landing (5- and 20-degrees flaps).

(20) Crosswind Landing.

(21) ILS and Missed Approach.

(22) Two Engine Missed Approach.

(23) One Engine Inoperative ILS and Missed Approach.

(24) One Engine Inoperative Missed Approach.

(25) Non-Precision and Missed Approach.

(26) One Engine Inoperative Non-Precision and Missed Approach.

(27) Circling Approach at Weather Minimums.

(28) One Engine Inoperative Circling Approach at Weather Minimums.

Engine Performance

(A) The following should be considered in reference to power settings and airspeeds:

(1) Power settings shown in italics are provided as guidance only during training and are not referenced in the AFM. Power setting guidance is provided to show the approximate power setting that will produce the desired airspeed or flight condition. Actual power settings may be different from those stated and should be noted by the instructor and student for reference during other maneuvers. Power settings in the profiles are stated in torque or PSI and will vary with aircraft model, engine model, weight, and density altitude. Power settings are based on standard atmospheric conditions.

(2) Some pilots prefer to set power initially using fuel flow, because the fuel flow system is not field adjustable. Fuel flow settings refer to engine operations only. If fuel flow is used to set power for takeoff, check torque and temperature after setting fuel flow and adjust torque or temperature, whichever is limiting, for maximum takeoff power prior to liftoff.

(3) Improperly adjusted torque or improperly calibrated temperatures are a safety of flight issue and must be checked and corrected prior to conducting flight training.

(4) The pilot should refer to the performance section of the airplane flight manual to determine actual speeds required for his/her particular model and specific weight for any given operation.
Federal Aviation Administration, DOT

§ 91.1

greater performance than if the engine were stopped and the propeller feathered.

Pre-maneuver briefings for any maneuver that requires either an actual engine shutdown or a simulated engine failure must be undertaken when using an aircraft. In the case of an actual engine shutdown, a minimum altitude of 3,000 ft above ground level (agl) must be used and done in a position where a safe landing can be made at an airport in the event of difficulty.

Takeoff and Landing

(A) When using the profiles to establish the procedure for configuring the aircraft for takeoff or landing, it is important to understand that each task for the procedure, as noted on the procedure diagram, establishes the point at which each task should have been completed and not the exact point at which the task should be accomplished unless otherwise stated in the task box. Numbers which represent performance such as descent rates or other maneuvering information that is not contained in the aircraft flight manual are shown in italics.

(B) In all takeoff profiles the prompt for the gear to be retracted is “No Runway Remaining, Gear Up”. This should set the decision point for making a landback after an engine failure and should normally be reached at altitudes of less than 100 ft AGL. It is impractical to attempt a landback from above 100 ft AGL because it can require distances up to 10,000 ft from the beginning of the takeoff run to bring the aircraft to a stop. But, even on very long runways, landback will not be necessary above 100 ft AGL and above Vyse for the flap configurations, if the single engine climb capability found in the POM charts, with the gear up, is positive (250 fpm or better) and obstacles clearance is not an issue.

(C) The manufacturers FAA-accepted checklists and checklist in Appendix C to this SFAR No. 108 describe a procedure for the discontinuance of flight following an engine failure after takeoff and the realization that the aircraft cannot climb. The corresponding flight profile in this training program is “Takeoff Engine Failure, Unable to Climb”. This maneuver must not be attempted in the aircraft, but must be the subject of a classroom discussion or be demonstrated in the FTD.

(D) The focus of all landing procedures, whether two engine or engine out, is on a stabilized approach from an altitude of 500 feet. This will not be possible for all approach procedure maneuvering, especially during non-precision or circle to land approaches. Approach procedures for these two approaches should be stabilized from the point at which the pilot leaves the Minimum Descent Altitude for the landing.

(E) When performing one engine inoperative approaches, landings or missed approaches, the instructor must be prepared to add power to the simulated failed engine at the first sign of deteriorating airspeed or other situation that indicates the student’s inability to correctly perform the maneuver.

(F) While maneuvering in the pattern or during instrument approach procedures with one engine inoperative, a 30° bank angle must not be exceeded. This will become especially important when executing non-precision and circle to land approaches.

Emergency and Abnormal Procedures

(A) During training, either in the FTD or in the aircraft, the performance of emergency and abnormal procedures is critical to the completion of the training program. All emergency and abnormal procedures should be simulated when training in the MU-2B airplane.

(B) When presenting emergency scenarios to the student, the instructor must not introduce multiple emergencies concurrently.

Scenario Based Training (SBT)

SBT flight training creates an environment of realism. The SBT programs utilize a highly structured flight operation scenario to simulate the overall flight environment. The pilot is required to plan a routine, point-to-point flight and initiate the flight. During the conduct of the flight, “reality-based” abnormal or emergency events are introduced without warning. Because the pilot is constantly operating in the world of unknowns, this type of training also builds in the “startle factor”, and just as in the real-world, the consequences of the pilot's actions (decisions, judgment, airmanship, tactile skills, etc.) will continue to escalate and affect the outcome of the planned flight. Although flying skills are an integral part of this type of training, SBT enables the pilot to gain experience in dealing with unexpected events and more importantly further enhances the development of good judgment and decision-making.

(Doc. No. FAA-2006-24981, 73 FR 7051, Feb. 6, 2008)

Subpart A—General

SOURCE: Docket No. 18334, 54 FR 34292, Aug. 18, 1989, unless otherwise noted.

§ 91.1 Applicability.

(a) Except as provided in paragraphs (b) and (c) of this section and §§91.701 and 91.763, this part prescribes rules governing the operation of aircraft (other than moored balloons, kites, unmanned rockets, and unmanned free balloons, which are governed by part
101 of this chapter, and ultralight vehicles operated in accordance with part 103 of this chapter) within the United States, including the waters within 3 nautical miles of the U.S. coast.

(b) Each person operating an aircraft in the airspace overlying the waters between 3 and 12 nautical miles from the coast of the United States must comply with §§91.1 through 91.21; §§91.101 through 91.143; §§91.151 through 91.159; §§91.167 through 91.193; §§91.203; §§91.205; §§91.209 through 91.217; §§91.221, §§91.225; §§91.303 through 91.319; §§91.323 through 91.327; §§91.605; §§91.609; §§91.703 through 91.715; and §91.903.

(c) This part applies to each person on board an aircraft being operated under this part, unless otherwise specified.

(d) This part also establishes requirements for operators to take actions to support the continued airworthiness of each airplane.

§ 91.3 Responsibility and authority of the pilot in command.

(a) The pilot in command of an aircraft is directly responsible for, and is the final authority as to, the operation of that aircraft.

(b) In an in-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part to the extent required to meet that emergency.

(c) Each pilot in command who deviates from a rule under paragraph (b) of this section shall, upon the request of the Administrator, send a written report of that deviation to the Administrator.

(Approved by the Office of Management and Budget under control number 2120-0005)

§ 91.5 Pilot in command of aircraft requiring more than one required pilot.

No person may operate an aircraft that is type certificated for more than one required pilot flight crewmember unless the pilot in command meets the requirements of §61.58 of this chapter.

§ 91.7 Civil aircraft airworthiness.

(a) No person may operate a civil aircraft unless it is in an airworthy condition.

(b) The pilot in command of a civil aircraft is responsible for determining whether that aircraft is in condition for safe flight. The pilot in command shall discontinue the flight when unairworthy mechanical, electrical, or structural conditions occur.

§ 91.9 Civil aircraft flight manual, marking, and placard requirements.

(a) Except as provided in paragraph (d) of this section, no person may operate a civil aircraft without complying with the operating limitations specified in the approved Airplane or Rotorcraft Flight Manual, markings, and placards, or as otherwise prescribed by the certificating authority of the country of registry.

(b) No person may operate a U.S.-registered civil aircraft—

(1) For which an Airplane or Rotorcraft Flight Manual is required by §21.5 of this chapter unless there is available in the aircraft a current, approved Airplane or Rotorcraft Flight Manual or the manual provided for in §121.141(b); and

(2) For which an Airplane or Rotorcraft Flight Manual is not required by §21.5 of this chapter, unless there is available in the aircraft a current approved Airplane or Rotorcraft Flight Manual, approved manual material, markings, and placards, or any combination thereof.

(c) No person may operate a U.S.-registered civil aircraft unless that aircraft is identified in accordance with part 45 of this chapter.

(d) Any person taking off or landing a helicopter certificated under part 29 of this chapter at a heliport constructed over water may make such momentary flight as is necessary for takeoff or landing through the prohibited range of the limiting height-speed envelope established for the helicopter if that flight through the prohibited range takes place over water on which a safe ditching can be accomplished and if the helicopter is amphibious or
is equipped with floats or other emergency flotation gear adequate to accomplish a safe emergency ditching on open water.

§ 91.11 Prohibition on interference with crewmembers.
No person may assault, threaten, intimidate, or interfere with a crewmember in the performance of the crewmember’s duties aboard an aircraft being operated.

§ 91.13 Careless or reckless operation.
(a) Aircraft operations for the purpose of air navigation. No person may operate an aircraft in a careless or reckless manner so as to endanger the life or property of another.
(b) Aircraft operations other than for the purpose of air navigation. No person may operate an aircraft, other than for the purpose of air navigation, on any part of the surface of an airport used by aircraft for air commerce (including areas used by those aircraft for receiving or discharging persons or cargo), in a careless or reckless manner so as to endanger the life or property of another.

§ 91.15 Dropping objects.
No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in flight that creates a hazard to persons or property. However, this section does not prohibit the dropping of any object if reasonable precautions are taken to avoid injury or damage to persons or property.

§ 91.17 Alcohol or drugs.
(a) No person may act or attempt to act as a crewmember of a civil aircraft—
(1) Within 8 hours after the consumption of any alcoholic beverage;
(2) While under the influence of alcohol;
(3) While using any drug that affects the person’s faculties in any way contrary to safety; or
(4) While having an alcohol concentration of 0.04 or greater in a blood or breath specimen. Alcohol concentration means grams of alcohol per deciliter of blood or grams of alcohol per 210 liters of breath.
(b) Except in an emergency, no pilot of a civil aircraft may allow a person who appears to be intoxicated or who demonstrates by manner or physical indications that the individual is under the influence of drugs (except a medical patient under proper care) to be carried in that aircraft.

(c) A crewmember shall do the following:
(1) On request of a law enforcement officer, submit to a test to indicate the alcohol concentration in the blood or breath, when—
(i) The law enforcement officer is authorized under State or local law to conduct the test or to have the test conducted; and
(ii) The law enforcement officer is requesting submission to the test to investigate a suspected violation of State or local law governing the same or substantially similar conduct prohibited by paragraph (a)(1), (a)(2), or (a)(4) of this section.
(2) Whenever the FAA has a reasonable basis to believe that a person may have violated paragraph (a)(1), (a)(2), or (a)(4) of this section, on request of the FAA, that person must furnish to the FAA the results, or authorize any clinic, hospital, doctor, or other person to release to the FAA, the results of each test taken within 4 hours after acting or attempting to act as a crewmember that indicates an alcohol concentration in the blood or breath specimen.
(d) Whenever the Administrator has a reasonable basis to believe that a person may have violated paragraph (a)(3) of this section, that person shall, upon request by the Administrator, furnish the Administrator, or authorize any clinic, hospital, doctor, or other person to release to the Administrator, the results of each test taken within 4 hours after acting or attempting to act as a crewmember that indicates the presence of any drugs in the body.
(e) Any test information obtained by the Administrator under paragraph (c) or (d) of this section may be evaluated in determining a person’s qualifications for any airman certificate or possible violations of this chapter and may be used as evidence in any legal
§ 91.19 Carriage of narcotic drugs, marihuana, and depressant or stimulant drugs or substances.

(a) Except as provided in paragraph (b) of this section, no person may operate a civil aircraft within the United States with knowledge that narcotic drugs, marihuana, and depressant or stimulant drugs or substances as defined in Federal or State statutes are carried in the aircraft.

(b) Paragraph (a) of this section does not apply to any carriage of narcotic drugs, marihuana, and depressant or stimulant drugs or substances authorized by or under any Federal or State statute or by any Federal or State agency.

§ 91.21 Portable electronic devices.

(a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device on any of the following U.S.-registered civil aircraft:

(1) Aircraft operated by a holder of an air carrier operating certificate or an operating certificate; or

(2) Any other aircraft while it is operated under IFR.

(b) Paragraph (a) of this section does not apply to—

(1) Portable voice recorders;

(2) Hearing aids;

(3) Heart pacemakers;

(4) Electric shavers; or

(5) Any other portable electronic device that the operator of the aircraft has determined will not cause interference with the navigation or communication system of the aircraft on which it is to be used.

(c) In the case of an aircraft operated by a holder of an air carrier operating certificate or an operating certificate, the determination required by paragraph (b)(5) of this section shall be made by the operator of the aircraft on which the particular device is to be used.

§ 91.23 Truth-in-leasing clause requirement in leases and conditional sales contracts.

(a) Except as provided in paragraph (b) of this section, the parties to a lease or contract of conditional sale involving a U.S.-registered large civil aircraft and entered into after January 2, 1973, shall execute a written lease or contract and include therein a written truth-in-leasing clause as a concluding paragraph in large print, immediately preceding the space for the signature of the parties, which contains the following with respect to each such aircraft:

(1) Identification of the Federal Aviation Regulations under which the aircraft has been maintained and inspected during the 12 months preceding the execution of the lease or contract of conditional sale, and certification by the parties thereto regarding the aircraft’s status of compliance with applicable maintenance and inspection requirements in this part for the operation to be conducted under the lease or contract of conditional sale.

(2) The name and address (printed or typed) and the signature of the person responsible for operational control of the aircraft under the lease or contract of conditional sale, and certification that each person understands that person’s responsibilities for compliance with applicable Federal Aviation Regulations.

(3) A statement that an explanation of factors bearing on operational control and pertinent Federal Aviation Regulations can be obtained from the nearest FAA Flight Standards district office.

(b) The requirements of paragraph (a) of this section do not apply—

(1) To a lease or contract of conditional sale when—

(i) The party to whom the aircraft is furnished is a foreign air carrier or certificate holder under part 121, 125, 135, or 141 of this chapter, or

(ii) The party furnishing the aircraft is a foreign air carrier or a person operating under part 121, 125, or 141 of this chapter, or a person operating under...
§ 91.103 Preflight action.

Each pilot in command shall, before beginning a flight, become familiar with all available information concerning that flight. This information must include—

(a) For a flight under IFR or a flight not in the vicinity of an airport, weather reports and forecasts, fuel requirements, alternatives available if

(e) For the purpose of this section, a lease means any agreement by a person to furnish an aircraft to another person for compensation or hire, whether with or without flight crewmembers, other than an agreement for the sale of an aircraft and a contract of conditional sale under section 101 of the Federal Aviation Act of 1958. The person furnishing the aircraft is referred to as the lessor, and the person to whom it is furnished the lessee.

(Approved by the Office of Management and Budget under control number 2120–0005)

§ 91.105 Flight crewmembers at stations.

(a) During takeoff and landing, and while en route, each required flight crewmember shall—

(1) Be at the crewmember station unless the absence is necessary to perform duties in connection with the operation of the aircraft or in connection with physiological needs; and

(2) Keep the safety belt fastened while at the crewmember station.

(b) Each required flight crewmember of a U.S.-registered civil aircraft shall, during takeoff and landing, keep his or her shoulder harness fastened while at his or her assigned duty station. This paragraph does not apply if—

(1) The seat at the crewmember’s station is not equipped with a shoulder harness; or

(2) The crewmember would be unable to perform required duties with the shoulder harness fastened.

§ 91.107 Use of safety belts, shoulder harnesses, and child restraint systems.

(a) Unless otherwise authorized by the Administrator—

(1) No pilot may take off a U.S.-registered civil aircraft (except a free balloon that incorporates a basket or gondola, or an airship type certificated before November 2, 1987) unless the pilot in command of that aircraft ensures that each person on board is briefed on how to fasten and unfasten that person’s safety belt and, if installed, shoulder harness.

(2) No pilot may cause to be moved on the surface, take off, or land a U.S.-registered civil aircraft (except a free balloon that incorporates a basket or gondola, or an airship type certificated before November 2, 1987) unless the pilot in command of that aircraft ensures that each person on board has been notified to fasten his or her safety belt and, if installed, his or her shoulder harness.

(3) Except as provided in this paragraph, each person on board a U.S.-registered civil aircraft (except a free balloon that incorporates a basket or gondola or an airship type certificated before November 2, 1987) must occupy an approved seat or berth with a safety belt and, if installed, shoulder harness, properly secured about him or her during movement on the surface, takeoff, and landing. For seaplane and float equipped rotorcraft operations during movement on the surface, the person pushing off the seaplane or rotorcraft from the dock and the person mooring the seaplane or rotorcraft at the dock are excepted from the preceding seating and safety belt requirements. Notwithstanding the preceding requirements of this paragraph, a person may:

(i) Be held by an adult who is occupying an approved seat or berth, provided that the person being held has not reached his or her second birthday and does not occupy or use any restraining device;

(ii) Use the floor of the aircraft as a seat, provided that the person is on board for the purpose of engaging in sport parachuting; or

(iii) Notwithstanding any other requirement of this chapter, occupy an approved child restraint system furnished by the operator or one of the persons described in paragraph (a)(3)(iii)(A) of this section provided that:
Federal Aviation Administration, DOT

§ 91.109 Flight instruction; Simulated instrument flight and certain flight tests.

(a) No person may operate a civil aircraft (except a manned free balloon) that is being used for flight instruction unless that aircraft has fully functioning dual controls. However, instrument flight instruction may be given in a single-engine airplane equipped with a single, functioning throwover control wheel in place of fixed, dual controls of the elevator and ailerons when—

(1) The instructor has determined that the flight can be conducted safely; and

(b) Unless otherwise stated, this section does not apply to operations conducted under part 121, 125, or 135 of this chapter. Paragraph (a)(3) of this section does not apply to persons subject to §91.165.

§ 91.111 Operating near other aircraft.

(a) No person may operate an aircraft so close to another aircraft as to create a collision hazard.

(b) No person may operate an aircraft in formation flight except by arrangement with the pilot in command of each aircraft in the formation.

(c) No person may operate an aircraft, carrying passengers for hire, in formation flight.

§ 91.1113 Right-of-way rules: Except water operations.

(a) Inapplicability. This section does not apply to the operation of an aircraft on water.

(b) General. When weather conditions permit, regardless of whether an operation is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircraft. When a rule of this section gives another aircraft the right-of-way, the pilot shall give way to that aircraft and may not pass over, under, or ahead of it unless well clear.

(c) In distress. An aircraft in distress has the right-of-way over all other aircraft.

(d) Converging. When aircraft of the same category are converging at approximately the same altitude (except head-on, or nearly so), the aircraft to the other’s right has the right-of-way.

(3) An airship has the right-of-way over a powered parachute, weight-shift-control aircraft, airplane, or rotorcraft.

However, an aircraft towing or refueling other aircraft has the right-of-way over all other engine-driven aircraft.

(e) Approaching head-on. When aircraft are approaching each other head-on, or nearly so, each pilot of each aircraft shall alter course to the right.

(f) Overtaking. Each aircraft that is being overtaken has the right-of-way and each pilot of an overtaking aircraft shall alter course to the right to pass well clear.

(g) Landing. Aircraft, while on final approach to land or while landing, have the right-of-way over other aircraft in flight or operating on the surface, except that they shall not take advantage of this rule to force an aircraft off the runway surface which has already landed and is attempting to make way for an aircraft on final approach. When two or more aircraft are approaching

714
§ 91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

(1) A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

(2) A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

§ 91.121 Altimeter settings.

(a) Each person operating an aircraft shall maintain the cruising altitude or flight level of that aircraft, as the case may be, by reference to an altimeter that is set, when operating—

(1) Below 18,000 feet MSL, to—

(i) The current reported altimeter setting of a station along the route and within 100 nautical miles of the aircraft;

(ii) If there is no station within the area prescribed in paragraph (a)(1)(i) of this section, the current reported altimeter setting of an appropriate available station; or

(iii) In the case of an aircraft not equipped with a radio, the elevation of the departure airport or an appropriate altimeter setting available before departure; or

(2) At or above 18,000 feet MSL, to 29.92″ Hg.

(b) The lowest usable flight level is determined by the atmospheric pressure in the area of operation as shown in the following table:

<table>
<thead>
<tr>
<th>Current altimeter setting</th>
<th>Lowest usable flight level</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.92 (or higher)</td>
<td>180</td>
</tr>
<tr>
<td>29.91 through 29.42</td>
<td>185</td>
</tr>
<tr>
<td>29.41 through 28.92</td>
<td>190</td>
</tr>
<tr>
<td>28.91 through 28.42</td>
<td>195</td>
</tr>
<tr>
<td>28.41 through 27.92</td>
<td>200</td>
</tr>
<tr>
<td>27.91 through 27.42</td>
<td>205</td>
</tr>
<tr>
<td>27.41 through 26.92</td>
<td>210</td>
</tr>
</tbody>
</table>

(c) To convert minimum altitude prescribed under §§91.119 and 91.177 to the minimum flight level, the pilot shall take the flight level equivalent of the minimum altitude in feet and add the appropriate number of feet specified below, according to the current reported altimeter setting:

<table>
<thead>
<tr>
<th>Current altimeter setting</th>
<th>Adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.92 (or higher)</td>
<td>None</td>
</tr>
<tr>
<td>29.91 through 29.42</td>
<td>500</td>
</tr>
<tr>
<td>29.41 through 28.92</td>
<td>1,000</td>
</tr>
<tr>
<td>28.91 through 28.42</td>
<td>1,500</td>
</tr>
<tr>
<td>28.41 through 27.92</td>
<td>2,000</td>
</tr>
<tr>
<td>27.91 through 27.42</td>
<td>2,500</td>
</tr>
<tr>
<td>27.41 through 26.92</td>
<td>3,000</td>
</tr>
</tbody>
</table>

§ 91.123 Compliance with ATC clearances and instructions.

(a) When an ATC clearance has been obtained, no pilot in command may deviate from that clearance unless an amended clearance is obtained, or the deviation is in response to a traffic alert and collision avoidance system resolution advisory. However, except in Class A airspace, a pilot may cancel an IFR flight plan if the operation is being conducted in VFR weather conditions. When a pilot is uncertain of an ATC clearance, that pilot shall immediately request clarification from ATC.

(b) Except in an emergency, no person may operate an aircraft contrary to an ATC instruction in an area in which air traffic control is exercised.

(c) Each pilot in command who, in an emergency, or in response to a traffic alert and collision avoidance system resolution advisory, deviates from an ATC clearance or instruction shall notify ATC of that deviation as soon as possible.

(d) Each pilot in command who (though not deviating from a rule of this subpart) is given priority by ATC in an emergency, shall submit a detailed report of that emergency within 48 hours to the manager of that ATC facility, if requested by ATC.

(e) Unless otherwise authorized by ATC, no person operating an aircraft may operate that aircraft according to any clearance or instruction that has been issued to the pilot of another aircraft for radar air traffic control purposes.

(Approved by the Office of Management and Budget under control number 2120–0005)

§ 91.125 ATC light signals.

ATC light signals have the meaning shown in the following table:

<table>
<thead>
<tr>
<th>Color and type of signal</th>
<th>Meaning with respect to aircraft on the surface</th>
<th>Meaning with respect to aircraft in flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady green</td>
<td>Cleared for takeoff</td>
<td>Cleared to land</td>
</tr>
<tr>
<td></td>
<td>Cleared to taxi</td>
<td>Return for landing (to be followed by steady green at proper time)</td>
</tr>
<tr>
<td>Flashing green</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

716
§ 91.126 Operating on or in the vicinity of an airport in Class G airspace.

(a) General. Unless otherwise authorized or required, each person operating an aircraft on or in the vicinity of an airport in a Class G airspace area must comply with the requirements of this section.

(b) Direction of turns. When approaching to land at an airport without an operating control tower in Class G airspace—

(1) Each pilot of an airplane must make all turns of that airplane to the left unless the airport displays approved light signals or visual markings indicating that turns should be made to the right, in which case the pilot must make all turns to the right; and

(2) Each pilot of a helicopter or a powered parachute must avoid the flow of fixed-wing aircraft.

(c) Flap settings. Except when necessary for training or certification, the pilot in command of a civil turbojet-powered aircraft must use, as a final flap setting, the minimum certified landing flap setting set forth in the approved performance information in the Airplane Flight Manual for the applicable conditions. However, each pilot in command has the final authority and responsibility for the safe operation of the pilot’s airplane, and may use a different flap setting for that airplane if the pilot determines that it is necessary in the interest of safety.

(d) Communications with control towers. Unless otherwise authorized or required by ATC, no person may operate an aircraft to, from, through, or on an airport having an operational control tower unless two-way radio communications are maintained between that aircraft and the control tower. Communications must be established prior to 4 nautical miles from the airport, up to and including 2,500 feet AGL. However, if the aircraft radio fails in flight, the pilot in command may operate that aircraft and land if weather conditions are at or above basic VFR weather minimums, visual contact with the tower is maintained, and a clearance to land is received. If the aircraft radio fails while in flight under IFR, the pilot must comply with §91.185.

§ 91.127 Operating on or in the vicinity of an airport in Class E airspace.

(a) Unless otherwise required by part 93 of this chapter or unless otherwise authorized or required by the ATC facility having jurisdiction over the Class E airspace area, each person operating an aircraft on or in the vicinity of an airport in a Class E airspace area must comply with the requirements of §91.126.

(b) Departures. Each pilot of an aircraft must comply with any traffic patterns established for that airport in part 93 of this chapter.

(c) Communications with control towers. Unless otherwise authorized or required by ATC, no person may operate an aircraft to, from, through, or on an airport having an operational control tower unless two-way radio communications are maintained between that aircraft and the control tower. Communications must be established prior to 4 nautical miles from the airport, up to and including 2,500 feet AGL. However, if the aircraft radio fails in flight, the pilot in command may operate that aircraft and land if weather conditions are at or above basic VFR weather minimums, visual contact with the tower is maintained, and a clearance to land is received. If the aircraft radio fails while in flight under IFR, the pilot must comply with §91.185.

§ 91.129 Operations in Class D airspace.

(a) General. Unless otherwise authorized or required by the ATC facility having jurisdiction over the Class D airspace area, each person operating an

<table>
<thead>
<tr>
<th>Color and type of signal</th>
<th>Meaning with respect to aircraft on the surface</th>
<th>Meaning with respect to aircraft in flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady red</td>
<td>Stop</td>
<td>Give way to other aircraft and continue circling.</td>
</tr>
<tr>
<td>Flasing red</td>
<td>Taxi clear of runway in use</td>
<td>Airport unsafe—do not land.</td>
</tr>
<tr>
<td>Flashing white</td>
<td>Return to starting point on airport.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Alternating red and green</td>
<td>Exercise extreme caution.</td>
<td>Exercise extreme caution.</td>
</tr>
</tbody>
</table>
aircraft in Class D airspace must comply with the applicable provisions of this section. In addition, each person must comply with §§91.126 and 91.127. For the purpose of this section, the primary airport is the airport for which the Class D airspace area is designated. A satellite airport is any other airport within the Class D airspace area.

(b) Deviations. An operator may deviate from any provision of this section under the provisions of an ATC authorization issued by the ATC facility having jurisdiction over the airspace concerned. ATC may authorize a deviation on a continuing basis or for an individual flight, as appropriate.

(c) Communications. Each person operating an aircraft in Class D airspace must meet the following two-way radio communications requirements:

(1) Arrival or through flight. Each person must establish two-way radio communications with the ATC facility (including foreign ATC in the case of foreign airspace designated in the United States) providing air traffic services prior to entering that airspace and thereafter maintain those communications while within that airspace.

(2) Departing flight. Each person—

(i) From the primary airport or satellite airport with an operating control tower must establish and maintain two-way radio communications with the control tower, and thereafter as instructed by ATC while operating in the Class D airspace area; or

(ii) From a satellite airport without an operating control tower, must establish and maintain two-way radio communications with the ATC facility having jurisdiction over that area.

(d) Communications failure. Each person who operates an aircraft in a Class D airspace area must maintain two-way radio communications with the ATC facility having jurisdiction over that area.

(1) If the aircraft radio fails in flight under IFR, the pilot must comply with §91.185 of the part.

(2) If the aircraft radio fails in flight under VFR, the pilot in command may operate that aircraft and land if—

(i) Weather conditions are at or above basic VFR weather minimums; (ii) Visual contact with the tower is maintained; and (iii) A clearance to land is received.

(e) Minimum altitudes when operating to an airport in Class D airspace. (1) Unless required by the applicable distance-from-cloud criteria, each pilot operating a large or turbine-powered airplane must enter the traffic pattern at an altitude of at least 1,500 feet above the elevation of the airport and maintain at least 1,500 feet until further descent is required for a safe landing.

(2) Each pilot operating a large or turbine-powered airplane approaching to land on a runway served by an instrument approach procedure with vertical guidance, if the airplane is so equipped, must:

(i) Operate that airplane at an altitude at or above the glide path between the published final approach fix and the decision altitude (DA), or decision height (DH), as applicable; or

(ii) If compliance with the applicable distance-from-cloud criteria requires glide path interception closer in, operate that airplane at or above the glide path, between the point of interception of glide path and the DA or the DH.

(3) Each pilot operating an airplane approaching to land on a runway served by a visual approach slope indicator must maintain an altitude at or above the glide path until a lower altitude is necessary for a safe landing.

(4) Paragraphs (e)(2) and (e)(3) of this section do not prohibit normal bracketing maneuvers above or below the glide path that are conducted for the purpose of remaining on the glide path.

(f) Approaches. Except when conducting a circling approach under part 97 of this chapter or unless otherwise required by ATC, each pilot must—

(1) Circle the airport to the left, if operating an airplane; or

(2) Avoid the flow of fixed-wing aircraft, if operating a helicopter.

(g) Departures. No person may operate an aircraft departing from an airport except in compliance with the following:

(1) Each pilot must comply with any departure procedures established for that airport by the FAA.

(2) Unless otherwise required by the prescribed departure procedure for that
Federal Aviation Administration, DOT

§ 91.131 Operations in Class B airspace

(a) Operating rules. No person may operate an aircraft within a Class B airspace area except in compliance with § 91.129 and the following rules:

(1) The operator must receive an ATC clearance from the ATC facility having jurisdiction for that area before operating an aircraft in that area.

§ 91.130 Operations in Class C airspace.

(a) General. Unless otherwise authorized by ATC, each aircraft operation in Class C airspace must be conducted in compliance with this section and § 91.129. For the purpose of this section, the primary airport is the airport for which the Class C airspace area is designated. A satellite airport is any other airport within the Class C airspace area.

(b) Traffic patterns. No person may take off or land an aircraft at a satellite airport within a Class C airspace area except in compliance with FAA arrival and departure traffic patterns.

(c) Communications. Each person operating an aircraft in Class C airspace must meet the following two-way radio communications requirements:

(1) Arrival or through flight. Each person must establish two-way radio communications with the ATC facility (including foreign ATC in the case of foreign airspace designated in the United States) providing air traffic services prior to entering that airspace and thereafter maintain those communications while within that airspace.

(2) Departing flight. Each person—

(i) From the primary airport or satellite airport with an operating control tower must establish and maintain two-way radio communications with the control tower, and thereafter as instructed by ATC while operating in the Class C airspace area; or

(ii) From a satellite airport without an operating control tower, must establish and maintain two-way radio communications with the ATC facility having jurisdiction over the Class C airspace area as soon as practicable after departing.

(d) Equipment requirements. Unless otherwise authorized by the ATC having jurisdiction over the Class C airspace area, no person may operate an aircraft within a Class C airspace area designated for an airport unless that aircraft is equipped with the applicable equipment specified in § 91.215, and after January 1, 2020, § 91.225.

(e) Deviations. An operator may deviate from any provision of this section under the provisions of an ATC authorization issued by the ATC facility having jurisdiction over the airspace concerned. ATC may authorize a deviation on a continuing basis or for an individual flight, as appropriate.

§ 91.132 Operations in Class D airspace.

(a) General. Each aircraft operation in Class D airspace must be conducted in compliance with § 91.129 and the following rules:

(1) The operator must receive an ATC clearance from the ATC facility having jurisdiction for that area before operating an aircraft in that area.

(b) Traffic patterns. Each aircraft operation in Class D airspace must be conducted in compliance with FAA arrival and departure traffic patterns.

(c) Communications. Each person operating an aircraft in Class D airspace must meet the following two-way radio communications requirements:

(1) Arrival or through flight. Each person must establish two-way radio communications with the ATC facility (including foreign ATC in the case of foreign airspace designated in the United States) providing air traffic services prior to entering that airspace and thereafter maintain those communications while within that airspace.

(2) Departing flight. Each person—

(i) From the primary airport or satellite airport with an operating control tower must establish and maintain two-way radio communications with the control tower, and thereafter as instructed by ATC while operating in the Class D airspace area; or

(ii) From a satellite airport without an operating control tower, must establish and maintain two-way radio communications with the ATC facility having jurisdiction over the Class D airspace area as soon as practicable after departing.

(d) Equipment requirements. Unless otherwise authorized by the ATC having jurisdiction over the Class D airspace area, no person may operate an aircraft within a Class D airspace area designated for an airport unless that aircraft is equipped with the applicable equipment specified in § 91.215, and after January 1, 2020, § 91.225.

(e) Deviations. An operator may deviate from any provision of this section under the provisions of an ATC authorization issued by the ATC facility having jurisdiction over the airspace concerned. ATC may authorize a deviation on a continuing basis or for an individual flight, as appropriate.
(2) Unless otherwise authorized by ATC, each person operating a large turbine engine-powered airplane to or from a primary airport for which a Class B airspace area is designated must operate at or above the designated floors of the Class B airspace area while within the lateral limits of that area.

(3) Any person conducting pilot training operations at an airport within a Class B airspace area must comply with any procedures established by ATC for such operations in that area.

(b) Pilot requirements. (1) No person may take off or land a civil aircraft at an airport within a Class B airspace area or operate a civil aircraft within a Class B airspace area unless—

(i) The pilot in command holds at least a private pilot certificate;

(ii) The pilot in command holds a recreational pilot certificate and has met—

(A) The requirements of §61.101(d) of this chapter; or

(B) The requirements for a student pilot seeking a recreational pilot certificate in §61.94 of this chapter;

(iii) The pilot in command holds a sport pilot certificate and has met—

(A) The requirements of §61.325 of this chapter; or

(B) The requirements for a student pilot seeking a recreational pilot certificate in §61.94 of this chapter; or

(iv) The aircraft is operated by a student pilot who has met the requirements of §61.94 or §61.95 of this chapter, as applicable.

Notwithstanding the provisions of paragraphs (b)(1)(ii), (b)(1)(iii) and (b)(1)(iv) of this section, no person may take off or land a civil aircraft at those airports listed in section 4 of appendix D to this part unless the pilot in command holds at least a private pilot certificate.

(c) Communications and navigation equipment requirements. Unless otherwise authorized by ATC, no person may operate an aircraft within a Class B airspace area unless that aircraft is equipped with—

(1) For IFR operation. An operable VOR or TACAN receiver or an operable and suitable RNAV system; and

(2) For all operations. An operable two-way radio capable of communications with ATC on appropriate frequencies for that Class B airspace area.

(d) Other equipment requirements. No person may operate an aircraft in a Class B airspace area unless the aircraft is equipped with—

(1) The applicable operating transponder and automatic altitude reporting equipment specified in §91.215 (a), except as provided in §91.215 (e), and

(2) After January 1, 2020, the applicable Automatic Dependent Surveillance-Broadcast Out equipment specified in §91.225.

§ 91.133 Restricted and prohibited areas.

(a) No person may operate an aircraft within a restricted area (designated in part 73) contrary to the restrictions imposed, or within a prohibited area, unless that person has the permission of the using or controlling agency, as appropriate.

(b) Each person conducting, within a restricted area, an aircraft operation (approved by the using agency) that creates the same hazards as the operations for which the restricted area was designated may deviate from the rules of this subpart that are not compatible with the operation of the aircraft.

§ 91.135 Operations in Class A airspace.

Except as provided in paragraph (d) of this section, each person operating an aircraft in Class A airspace must conduct that operation under instrument flight rules (IFR) and in compliance with the following:

(a) Clearance. Operations may be conducted only under an ATC clearance received prior to entering the airspace.

(b) Communications. Unless otherwise authorized by ATC, each aircraft operating in Class A airspace must be equipped with a two-way radio capable of communicating with ATC on a frequency assigned by ATC. Each pilot must maintain two-way radio communications with ATC while operating in Class A airspace.
(c) **Equipment requirements.** Unless otherwise authorized by ATC, no person may operate an aircraft within Class A airspace unless that aircraft is equipped with the applicable equipment specified in §91.215, and after January 1, 2020, §91.225.

(d) **ATC authorizations.** An operator may deviate from any provision of this section under the provisions of an ATC authorization issued by the ATC facility having jurisdiction of the airspace concerned. In the case of an inoperative transponder, ATC may immediately approve an operation within a Class A airspace area allowing flight to continue, if desired, to the airport of ultimate destination, including any intermediate stops, or to proceed to a place where suitable repairs can be made, or both. Requests for deviation from any provision of this section must be submitted in writing, at least 4 days before the proposed operation. ATC may authorize a deviation on a continuing basis or for an individual flight.

§ 91.137 Temporary flight restrictions in the vicinity of disaster/hazard areas.

(a) The Administrator will issue a Notice to Airmen (NOTAM) designating an area within which temporary flight restrictions apply and specifying the hazard or condition requiring their imposition, whenever he determines it is necessary in order to—

1. Protect persons and property on the surface or in the air from a hazard associated with an incident on the surface;
2. Provide a safe environment for the operation of disaster relief aircraft; or
3. Prevent an unsafe congestion of sightseeing and other aircraft above an incident or event which may generate a high degree of public interest.

The Notice to Airmen will specify the hazard or condition that requires the imposition of temporary flight restrictions.

(b) When a NOTAM has been issued under paragraph (a)(1) of this section, no person may operate an aircraft within the designated area unless that aircraft is participating in the hazard relief activities and is being operated under the direction of the official in charge of on scene emergency response activities.

(c) When a NOTAM has been issued under paragraph (a)(2) of this section, no person may operate an aircraft within the designated area unless at least one of the following conditions are met:

1. The aircraft is participating in hazard relief activities and is being operated under the direction of the official in charge of on scene emergency response activities.
2. The aircraft is carrying law enforcement officials.
3. The aircraft is operating under the ATC approved IFR flight plan.
4. The operation is conducted directly to or from an airport within the area, or is necessitated by the impracticability of VFR flight above or around the area due to weather, or terrain; notification is given to the Flight Service Station (FSS) or ATC facility specified in the NOTAM to receive advisories concerning disaster relief aircraft operations; and the operation does not hamper or endanger relief activities and is not conducted for the purpose of observing the disaster.

(d) When a NOTAM has been issued under paragraph (a)(3) of this section, no person may operate an aircraft within the designated area unless at least one of the following conditions is met:

1. The operation is conducted directly to or from an airport within the area, or is necessitated by the impracticability of VFR flight above or around the area due to weather or terrain, and the operation is not conducted for the purpose of observing the incident or event.
§ 91.138 Temporary flight restrictions in national disaster areas in the State of Hawaii.

(a) When the Administrator has determined, pursuant to a request and justification provided by the Governor of the State of Hawaii, or the Governor's designee, that an inhabited area within a declared national disaster area in the State of Hawaii is in need of protection for humanitarian reasons, the Administrator will issue a Notice to Airmen (NOTAM) designating an area within which temporary flight restrictions apply. The Administrator will designate the extent and duration of the temporary flight restrictions necessary to provide for the protection of persons and property on the surface.

(b) When a NOTAM has been issued in accordance with this section, no person may operate an aircraft within the designated area unless at least one of the following conditions is met:

(1) That person has obtained authorization from the official in charge of associated emergency or disaster relief response activities, and is operating the aircraft under the conditions of that authorization.

(2) The aircraft is carrying law enforcement officials.

(3) The aircraft is carrying persons involved in an emergency or a legitimate scientific purpose.

(4) The aircraft is carrying properly accredited news persons, and that prior to entering the area, a flight plan is filed with the appropriate FAA or ATC facility specified in the NOTAM.

(e) Flight plans filed and notifications made with an FSS or ATC facility under this section shall include the following information:

(1) Aircraft identification, type and color.

(2) Radio communications frequencies to be used.

(3) Proposed times of entry of, and exit from, the designated area.

(4) Name of news media or organization and purpose of flight.

(5) Any other information requested by ATC.

§ 91.139 Emergency air traffic rules.

(a) This section prescribes a process for utilizing Notices to Airmen (NOTAMs) to advise of the issuance and operations under emergency air traffic rules and regulations and designates the official who is authorized to issue NOTAMs on behalf of the Administrator in certain matters under this section.

(b) Whenever the Administrator determines that an emergency condition exists, or will exist, relating to the FAA's ability to operate the air traffic control system and during which normal flight operations under this chapter cannot be conducted consistent with the required levels of safety and efficiency—

(1) The Administrator issues an immediately effective air traffic rule or regulation in response to that emergency condition; and

(2) The Administrator or the Associate Administrator for Air Traffic may utilize the NOTAM system to provide notification of the issuance of the rule or regulation.
Those NOTAMS communicate information concerning the rules and regulations that govern flight operations, the use of navigation facilities, and designation of that airspace in which the rules and regulations apply.

(c) When a NOTAM has been issued under this section, no person may operate an aircraft, or other device governed by the regulation concerned, within the designated airspace except in accordance with the authorizations, terms, and conditions prescribed in the regulation covered by the NOTAM.

§ 91.144 Temporary restriction on flight operations during abnormally high barometric pressure conditions.

(a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds or will exceed 31 inches of mercury, no person may operate an aircraft or initiate a flight contrary to the requirements established by the Administrator and published in a Notice to Airmen issued under this section.

(b) Waivers. The Administrator is authorized to waive any restriction issued under paragraph (a) of this section to permit emergency supply, transport, or medical services to be delivered to isolated communities, where the operation can be conducted with an acceptable level of safety.

§ 91.145 Management of aircraft operations in the vicinity of aerial demonstrations and major sporting events.

(a) The FAA will issue a Notice to Airmen (NOTAM) designating an area of airspace in which a temporary flight restriction applies when it determines that a temporary flight restriction is necessary to protect persons or property on the surface or in the air, to maintain air safety and efficiency, or to prevent the unsafe congestion of aircraft in the vicinity of an aerial demonstration or major sporting event. These demonstrations and events may include:

1. United States Naval Flight Demonstration Team (Blue Angels);
2. United States Air Force Air Demonstration Squadron (Thunderbirds);
3. United States Army Parachute Team (Golden Knights);
4. Summer/Winter Olympic Games;
5. Annual Tournament of Roses Football Game;
6. World Cup Soccer;
7. Major League Baseball All-Star Game;
8. World Series;
9. Kodak Albuquerque International Balloon Fiesta;
10. Sandia Classic Hang Gliding Competition;
11. Indianapolis 500 Mile Race;
12. Any other aerial demonstration or sporting event the FAA determines to need a temporary flight restriction in accordance with paragraph (b) of this section.

(b) In deciding whether a temporary flight restriction is necessary for an aerial demonstration or major sporting event not listed in paragraph (a) of this section, the FAA considers the following factors:

1. Area where the event will be held.
2. Effect flight restrictions will have on known aircraft operations.
3. Any existing ATC airspace traffic management restrictions.
4. Estimated duration of the event.
§ 91.146 Passenger-carrying flights for the benefit of a charitable, non-profit, or community event.

(a) Definitions. For purposes of this section, the following definitions apply:

Charitable event means an event that raises funds for the benefit of a charitable organization recognized by the Department of the Treasury whose donors may deduct contributions under section 170 of the Internal Revenue Code (26 U.S.C. Section 170).

Community event means an event that raises funds for the benefit of any local or community cause that is not a charitable event or non-profit event.

Non-profit event means an event that raises funds for the benefit of a non-profit organization recognized under State or Federal law, as long as one of the organization’s purposes is the promotion of aviation safety.

(b) Passenger carrying flights for the benefit of a charitable, non-profit, or community event identified in paragraph (c) of this section are not subject to the certification requirements of
§ 91.147 Passenger carrying flights for compensation or hire.

Each Operator conducting passenger-carrying flights for compensation or hire must meet the following requirements unless all flights are conducted under §91.146.

(a) For the purposes of this section and for drug and alcohol testing, Operator means any person conducting nonstop passenger-carrying flights in an airplane or helicopter for compensation or hire in accordance with §§119.1(e)(2), 135.1(a)(5), or 121.1(d), of this chapter that begin and end at the same airport and are conducted within a 25-statute mile radius of that airport.

(b) An Operator must comply with the safety provisions of part 136, subpart A of this chapter, and apply for and receive a Letter of Authorization.

(c) Each application for a Letter of Authorization must include the following information:

1. Name of Operator, agent, and any d/b/a (doing-business-as) under which that Operator does business;
2. Principal business address and mailing address;
3. Principal place of business (if different from business address);
4. Name of person responsible for management of the business;
5. Name of person responsible for aircraft maintenance;
6. Type of aircraft, registration number(s), and make/model/series; and
7. An Antidrug and Alcohol Misuse Prevention Program registration.

(d) The Operator must register and implement its drug and alcohol testing programs in accordance with part 120 of this chapter.

(e) The Operator must comply with the provisions of the Letter of Authorization received.

§§ 91.148–91.149 [Reserved]

VISUAL FLIGHT RULES

§ 91.151 Fuel requirements for flight in VFR conditions.

(a) No person may begin a flight in an airplane under VFR conditions unless (considering wind and forecast weather conditions) there is enough fuel to fly to the first point of intended landing and, assuming normal cruising speed—

1. During the day, to fly after that for at least 30 minutes; or
2. At night, to fly after that for at least 45 minutes.

(b) No person may begin a flight in a rotorcraft under VFR conditions unless (considering wind and forecast weather conditions) there is enough fuel to fly to the first point of intended landing and, assuming normal cruising speed, to fly after that for at least 20 minutes.

§ 91.153 VFR flight plan: Information required.

(a) Information required. Unless otherwise authorized by ATC, each person filing a VFR flight plan shall include in it the following information:

1. The aircraft identification number and, if necessary, its radio call sign.
2. The type of the aircraft or, in the case of a formation flight, the type of each aircraft and the number of aircraft in the formation.
3. The full name and address of the pilot in command or, in the case of a formation flight, the formation commander.
4. The point and proposed time of departure.
5. The proposed route, cruising altitude (or flight level), and true airspeed at that altitude.
6. The point of first intended landing and the estimated elapsed time until over that point.
7. The amount of fuel on board (in hours).
8. The number of persons in the aircraft, except where that information is otherwise readily available to the FAA.
9. Any other information the pilot in command or ATC believes is necessary for ATC purposes.

(b) Cancellation. When a flight plan has been activated, the pilot in command, upon canceling or completing the flight under the flight plan, shall notify an FAA Flight Service Station or ATC facility.

§ 91.155 Basic VFR weather minimums.

(a) Except as provided in paragraph (b) of this section and §91.157, no person may operate an aircraft under VFR when the flight visibility is less, or at a distance from clouds that is less, than that prescribed for the corresponding altitude and class of airspace in the following table:

<table>
<thead>
<tr>
<th>Airspace</th>
<th>Flight visibility</th>
<th>Distance from clouds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Class B</td>
<td>3 statute miles</td>
<td>Clear of Clouds.</td>
</tr>
<tr>
<td>Class C</td>
<td>3 statute miles</td>
<td>1,000 feet above, 2,000 feet horizontal.</td>
</tr>
</tbody>
</table>

Federal Aviation Administration, DOT

§ 91.157 Special VFR weather minimums.

(a) Except as provided in appendix D, section 3, of this part, special VFR operations may be conducted under the weather minimums and requirements of this section, instead of those contained in § 91.155, below 10,000 feet MSL within the airspace contained by the upward extension of the lateral boundaries of the controlled airspace designated to the surface for an airport—

(1) Unless ground visibility at that airport is at least 3 statute miles; or

(2) If ground visibility is not reported at that airport, unless flight visibility during landing or takeoff, or while operating in the traffic pattern is at least 3 statute miles.

(b) Class G Airspace. Notwithstanding the provisions of paragraph (a) of this section, the following operations may be conducted in Class G airspace below 1,200 feet above the surface:

(1) Helicopter. A helicopter may be operated clear of clouds if operated at a speed that allows the pilot adequate opportunity to see any air traffic or obstruction in time to avoid a collision.

(2) Airplane, powered parachute, or weight-shift-control aircraft. If the visibility is less than 3 statute miles but not less than 1 statute mile during night hours and you are operating in an airport traffic pattern within ½ mile of the runway, you may operate an airplane, powered parachute, or weight-shift-control aircraft clear of clouds.

(c) Except as provided in § 91.157, no person may operate an aircraft beneath the ceiling under VFR within the lateral boundaries of controlled airspace designated to the surface for an airport when the ceiling is less than 1,000 feet.

(d) Except as provided in § 91.157 of this part, no person may take off or land an aircraft, or enter the traffic pattern of an airport, under VFR, within the lateral boundaries of the surface areas of Class B, Class C, Class D, or Class E airspace designated for an airport—

(1) Unless ground visibility at that airport is at least 3 statute miles; or

(2) If ground visibility is not reported at that airport, unless flight visibility during landing or takeoff, or while operating in the traffic pattern is at least 3 statute miles.

(e) For the purpose of this section, an aircraft operating at the base altitude of a Class E airspace area is considered to be within the airspace directly below that area.

§ 91.159 VFR cruising altitude or flight level.

Except while holding in a holding pattern of 2 minutes or less, or while turning, each person operating an aircraft under VFR in level cruising flight more than 3,000 feet above the surface shall maintain the appropriate altitude or flight level prescribed below, unless otherwise authorized by ATC:

(a) When operating below 18,000 feet MSL and—

(1) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or

(2) On a magnetic course of 180 degrees through 359 degrees, any even thousand foot MSL altitude +500 feet (such as 4,500, 6,500, or 8,500).

(b) When operating above 18,000 feet MSL, maintain the altitude or flight level assigned by ATC.

§ 91.161 Special awareness training required for pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME.

(a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided under paragraph (e) of this section, no person may serve as a pilot in command or as second in command of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR, unless that pilot has completed Special Awareness Training and holds a certificate of training completion.

(b) Special Awareness Training. The Special Awareness Training consists of information to educate pilots about the procedures for flying in the Washington, DC area and, more generally, in other types of special use airspace. This free training is available on the FAA’s Web site. Upon completion of the training, each person will need to print out a copy of the certificate of training completion.

(c) Inspection of certificate of training completion. Each person who holds a certificate for completing the Special Awareness Training must present it for inspection upon request from:

(1) An authorized representative of the FAA;

(2) An authorized representative of the National Transportation Safety Board;

(3) Any Federal, State, or local law enforcement officer; or

(4) An authorized representative of the Transportation Security Administration.

(d) Emergency declared. The failure to complete the Special Awareness Training course on flying in and around the Washington, DC Metropolitan Area is not a violation of this section if an emergency is declared by the pilot, as described under §91.3(b), or there was a failure of two-way radio communications when operating under IFR as described under §91.185.

(e) Exceptions. The requirements of this section do not apply if the flight is being performed in an aircraft of an air ambulance operator certified to conduct part 135 operations under this
§ 91.167 Fuel requirements for flight in IFR conditions.

(a) No person may operate a civil aircraft in IFR conditions unless it carries enough fuel (considering weather reports and forecasts and weather conditions) to—

(1) Complete the flight to the first airport of intended landing;

(2) Except as provided in paragraph (b) of this section, fly from that airport to the alternate airport; and

(3) Fly after that for 45 minutes at normal cruising speed or, for helicopters, fly after that for 30 minutes at normal cruising speed.

(b) Paragraph (a)(2) of this section does not apply if:

(1) Part 97 of this chapter prescribes a standard instrument approach procedure to, or a special instrument approach procedure has been issued by the Administrator to the operator for, the first airport of intended landing; and

(2) Appropriate weather reports or weather forecasts, or a combination of them, indicate the following:

(i) For aircraft other than helicopters. For at least 1 hour before and for 1 hour after the estimated time of arrival, the ceiling will be at least 2,000 feet above the airport elevation and the visibility will be at least 3 statute miles.

(ii) For helicopters. At the estimated time of arrival and for 1 hour after the estimated time of arrival, the ceiling will be at least 1,000 feet above the airport elevation, or at least 400 feet above the lowest applicable approach minima, whichever is higher, and the visibility will be at least 2 statute miles.

(c) IFR alternate airport weather minima. Unless otherwise authorized by the Administrator, no person may include an alternate airport in an IFR flight plan unless appropriate weather reports or weather forecasts, or a combination of them, indicate that, at the estimated time of arrival at the alternate airport, the ceiling and visibility at that airport will be at or above the following weather minima:

(1) If an instrument approach procedure has been published in part 97 of this chapter, or a special instrument approach procedure has been issued by the Administrator to the operator, for that airport, the following minima:

(A) For aircraft other than helicopters: The alternate airport minima specified in that procedure, or if none are specified the following standard approach minima:

(A) For a precision approach procedure. Ceiling 600 feet and visibility 2 statute miles.
(B) **For a nonprecision approach procedure.** Ceiling 800 feet and visibility 2 statute miles.

(ii) **For helicopters:** Ceiling 200 feet above the minimum for the approach to be flown, and visibility at least 1 statute mile but never less than the minimum visibility for the approach to be flown, and

(2) If no instrument approach procedure has been published in part 97 of this chapter and no special instrument approach procedure has been issued by the Administrator to the operator, for the alternate airport, the ceiling and visibility minima are those allowing descent from the MEA, approach, and landing under basic VFR.

(d) **Cancellation.** When a flight plan has been activated, the pilot in command, upon canceling or completing the flight under the flight plan, shall notify an FAA Flight Service Station or ATC facility.

§ 91.171 VOR equipment check for IFR operations.

(a) No person may operate a civil aircraft under IFR using the VOR system of radio navigation unless the VOR equipment of that aircraft—

(1) Is maintained, checked, and inspected under an approved procedure; or

(2) Has been operationally checked within the preceding 30 days, and was found to be within the limits of the permissible indicated bearing error set forth in paragraph (b) or (c) of this section.

(b) Except as provided in paragraph (c) of this section, each person conducting a VOR check under paragraph (a)(2) of this section shall—

(1) Use, at the airport of intended departure, an FAA-operated or approved test signal or a test signal radiated by a certificated and appropriately rated radio repair station or, outside the United States, a test signal operated or approved by an appropriate authority to check the VOR equipment (the maximum permissible indicated bearing error is plus or minus 4 degrees); or

(2) Use, at the airport of intended departure, a point on the airport surface designated as a VOR system checkpoint by the Administrator, or, outside the United States, by an appropriate authority (the maximum permissible bearing error is plus or minus 4 degrees);

(3) If neither a test signal nor a designated checkpoint on the surface is available, use an airborne checkpoint designated by the Administrator or, outside the United States, by an appropriate authority (the maximum permissible bearing error is plus or minus 6 degrees); or

(4) If no check signal or point is available, while in flight—

(i) Select a VOR radial that lies along the centerline of an established VOR airway;

(ii) Select a prominent ground point along the selected radial preferably more than 20 nautical miles from the VOR ground facility and maneuver the aircraft directly over the point at a reasonably low altitude; and

(iii) Note the VOR bearing indicated by the receiver when over the ground point (the maximum permissible variation between the published radial and the indicated bearing is 6 degrees).

(c) If dual system VOR (units independent of each other except for the antenna) is installed in the aircraft, the person checking the equipment may check one system against the other in place of the check procedures specified in paragraph (b) of this section. Both systems shall be tuned to the same VOR ground facility and note the indicated bearings to that station. The maximum permissible variation between the two indicated bearings is 4 degrees.

(d) Each person making the VOR operational check, as specified in paragraph (b) or (c) of this section, shall enter the date, place, bearing error, and sign the aircraft log or other record. In addition, if a test signal radiated by a repair station, as specified in paragraph (b)(1) of this section, is used, an entry must be made in the aircraft log or other record by the repair station certificate holder or the certificate holder’s representative certifying.
§ 91.173 ATC clearance and flight plan required.

No person may operate an aircraft in controlled airspace under IFR unless that person has—

(a) Filed an IFR flight plan; and

(b) Received an appropriate ATC clearance.

§ 91.175 Takeoff and landing under IFR.

(a) Instrument approaches to civil airports. Unless otherwise authorized by the FAA, when it is necessary to use an instrument approach to a civil airport, each person operating an aircraft must use a standard instrument approach procedure prescribed in part 97 of this chapter for that airport. This paragraph does not apply to United States military aircraft.

(b) Authorized DA/DH or MDA. For the purpose of this section, when the approach procedure being used provides for and requires the use of a DA/DH or MDA, the authorized DA/DH or MDA is the highest of the following:

(1) The DA/DH or MDA prescribed by the approach procedure.

(2) The DA/DH or MDA prescribed for the pilot in command.

(3) The DA/DH or MDA appropriate for the aircraft equipment available and used during the approach.

(c) Operation below DA/DH or MDA. Except as provided in paragraph (l) of this section, where a DA/DH or MDA is applicable, no pilot may operate an aircraft, except a military aircraft of the United States, below the authorized MDA or continue an approach below the authorized DA/DH unless—

(1) The aircraft is continuously in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers, and for operations conducted under part 121 or part 135 unless that descent rate will allow touchdown to occur within the touchdown zone of the runway of intended landing; and

(2) The flight visibility is not less than the visibility prescribed in the standard instrument approach being used; and

(3) Except for a Category II or Category III approach where any necessary visual reference requirements are specified by the Administrator, at least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:

(i) The approach light system, except that the pilot may not descend below 100 feet above the touchdown zone elevation using the approach lights as a reference unless the red terminating bars or the red side row bars are also distinctly visible and identifiable.

(ii) The threshold.

(iii) The threshold markings.

(iv) The threshold lights.

(v) The runway end identifier lights.

(vi) The visual approach slope indicator.

(vii) The touchdown zone or touchdown zone markings.

(viii) The touchdown zone lights.

(ix) The runway or runway markings.

(x) The runway lights.

(d) Landing. No pilot operating an aircraft, except a military aircraft of the United States, may land that aircraft when—

(1) For operations conducted under paragraph (l) of this section, the requirements of (l)(4) of this section are not met; or

(2) For all other part 91 operations and parts 121, 125, 129, and 135 operations, the flight visibility is less than the visibility prescribed in the standard instrument approach procedure being used.

(e) Missed approach procedures. Each pilot operating an aircraft, except a military aircraft of the United States, shall immediately execute an appropriate missed approach procedure when either of the following conditions exist:

(1) Whenever operating an aircraft pursuant to paragraph (c) or (l) of this section and the requirements of that paragraph are not met at either of the following times:

(i) When the aircraft is being operated below MDA; or

(ii) Upon arrival at the missed approach point, including a DA/DH where a DA/DH is specified and its use is required, and at any time after that until touchdown.
§ 91.175

(2) Whenever an identifiable part of the airport is not distinctly visible to the pilot during a circling maneuver at or above MDA, unless the inability to see an identifiable part of the airport results only from a normal bank of the aircraft during the circling approach.

(f) Civil airport takeoff minimums. This paragraph applies to persons operating an aircraft under part 121, 125, 129, or 135 of this chapter.

(1) Unless otherwise authorized by the FAA, no pilot may takeoff from a civil airport under IFR unless the weather conditions at time of takeoff are at or above the weather minimums for IFR takeoff prescribed for that airport under part 97 of this chapter.

(2) If takeoff weather minimums are not prescribed under part 97 of this chapter for a particular airport, the following weather minimums apply to takeoffs under IFR:

(i) For aircraft, other than helicopters, having two engines or less—1 statute mile visibility.

(ii) For aircraft having more than two engines—1⁄2 statute mile visibility.

(iii) For helicopters—1⁄2 statute mile visibility.

(3) Except as provided in paragraph (f)(4) of this section, no pilot may takeoff under IFR from a civil airport having published obstacle departure procedures (ODPs) under part 97 of this chapter for the takeoff runway to be used, unless the pilot uses such ODPs or an alternative procedure or route assigned by air traffic control.

(4) Notwithstanding the requirements of paragraph (f)(3) of this section, no pilot may takeoff from an airport under IFR unless:

(i) For part 121 and part 135 operators, the pilot uses a takeoff obstacle clearance or avoidance procedure that ensures compliance with the applicable airplane performance operating limitations requirements under part 121, subpart I or part 135, subpart I for takeoff at that airport; or

(ii) For part 129 operators, the pilot uses a takeoff obstacle clearance or avoidance procedure that ensures compliance with the airplane performance operating limitations prescribed by the State of the operator for takeoff at that airport.

(g) Military airports. Unless otherwise prescribed by the Administrator, each person operating a civil aircraft under IFR into or out of a military airport shall comply with the instrument approach procedures and the takeoff and landing minimums prescribed by the military authority having jurisdiction of that airport.

(h) Comparable values of RVR and ground visibility. (1) Except for Category II or Category III minimums, if RVR minimums for takeoff or landing are prescribed in an instrument approach procedure, but RVR is not reported for the runway of intended operation, the RVR minimum shall be converted to ground visibility in accordance with the table in paragraph (h)(2) of this section and shall be the visibility minimum for takeoff or landing on that runway.

(2)

<table>
<thead>
<tr>
<th>RVR (feet)</th>
<th>Visibility (statute miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,600</td>
<td>1⁄4</td>
</tr>
<tr>
<td>2,400</td>
<td>1⁄2</td>
</tr>
<tr>
<td>3,200</td>
<td>3⁄4</td>
</tr>
<tr>
<td>4,000</td>
<td>7⁄8</td>
</tr>
<tr>
<td>4,500</td>
<td>1</td>
</tr>
<tr>
<td>5,000</td>
<td>1 1⁄4</td>
</tr>
<tr>
<td>6,000</td>
<td>1 1⁄4</td>
</tr>
</tbody>
</table>

(1) Operations on unpublished routes and use of radar in instrument approach procedures. When radar is approved at certain locations for ATC purposes, it may be used not only for surveillance and precision radar approaches, as applicable, but also may be used in conjunction with instrument approach procedures predicated on other types of radio navigational aids. Radar vectors may be authorized to provide course guidance through the segments of an approach to the final course or fix. When operating on an unpublished route or while being radar vectored, the pilot, when an approach clearance is received, shall, in addition to complying with §91.177, maintain the last altitude assigned to that pilot until the aircraft is established on a segment of a published route or instrument approach procedure unless a different altitude is assigned by ATC. After the aircraft is so established, published altitudes apply to descent within each succeeding route or approach segment.
Federal Aviation Administration, DOT

§ 91.175

unless a different altitude is assigned by ATC. Upon reaching the final approach course or fix, the pilot may either complete the instrument approach in accordance with a procedure approved for the facility or continue a surveillance or precision radar approach to a landing.

(j) Limitation on procedure turns. In the case of a radar vector to a final approach course or fix, a timed approach from a holding fix, or an approach for which the procedure specifies “no PT,” no pilot may make a procedure turn unless cleared to do so by ATC.

(k) ILS components. The basic components of an ILS are the localizer, glide slope, and outer marker, and, when installed for use with Category II or Category III instrument approach procedures, an inner marker. The following means may be used to substitute for the outer marker: Compass locator; precision approach radar (PAR) or airport surveillance radar (ASR); DME, VOR, or nondirectional beacon fixes authorized in the standard instrument approach procedure; or a suitable RNAV system in conjunction with a fix identified in the standard instrument approach procedure. Applicability of, and substitution for, the inner marker for a Category II or III approach is determined by the appropriate 14 CFR part 97 approach procedure, letter of authorization, or operations specifications issued to an operator.

(1) Approach to straight-in landing operations below DH, or MDA using an enhanced flight vision system (EFVS). For straight-in instrument approach procedures other than Category II or Category III, no pilot operating under this section or §§121.651, 125.381, and 135.225 of this chapter may operate an aircraft at any airport below the authorized MDA or continue an approach below the authorized DH and land unless—

(1) The aircraft is continuously in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers, and, for operations conducted under part 121 or part 135 of this chapter, the descent rate will allow touchdown to occur within the touchdown zone of the runway of intended landing;

(2) The pilot determines that the enhanced flight visibility observed by use of a certified enhanced flight vision system is not less than the visibility prescribed in the standard instrument approach procedure being used;

(3) The following visual references for the intended runway are distinctly visible and identifiable to the pilot using the enhanced flight vision system:

(i) The approach light system (if installed); or

(ii) The following visual references in both paragraphs (l)(3)(ii)(A) and (B) of this section:

(A) The runway threshold, identified by at least one of the following:

(1) The beginning of the runway landing surface;

(2) The threshold lights; or

(3) The runway end identifier lights.

(B) The touchdown zone, identified by at least one of the following:

(1) The runway touchdown zone landing surface;

(2) The touchdown zone lights;

(3) The touchdown zone markings; or

(4) The runway lights.

(4) At 100 feet above the touchdown zone elevation of the runway of intended landing and below that altitude, the flight visibility must be sufficient for the following to be distinctly visible and identifiable to the pilot without reliance on the enhanced flight vision system to continue to a landing:

(i) The lights or markings of the threshold; or

(ii) The lights or markings of the touchdown zone;

(iii) The lights or markings of the touchdown zone;

(iv) The lights or markings of the touchdown zone;

(v) The lights or markings of the touchdown zone;

(vi) The lights or markings of the touchdown zone;

(vii) The lights or markings of the touchdown zone;

(viii) The lights or markings of the touchdown zone;

(ix) The lights or markings of the touchdown zone;

(x) The lights or markings of the touchdown zone;

(xi) The lights or markings of the touchdown zone;

(xii) The lights or markings of the touchdown zone;

(xiii) The lights or markings of the touchdown zone;

(xiv) The lights or markings of the touchdown zone;

(xv) The lights or markings of the touchdown zone;

(xvi) The lights or markings of the touchdown zone;

(xvii) The lights or markings of the touchdown zone;

(xviii) The lights or markings of the touchdown zone;

(xix) The lights or markings of the touchdown zone;

(xx) The lights or markings of the touchdown zone;

(5) The pilot(s) is qualified to use an EFVS as follows—

(i) For parts 119 and 125 certificate holders, the applicable training, testing and qualification provisions of parts 119, 125, and 135 of this chapter;

(ii) For foreign persons, in accordance with the requirements of the civil aviation authority of the State of the operator; or

(iii) For persons conducting any other operation, in accordance with the applicable currency and proficiency requirements of part 61 of this chapter;

(6) For parts 119 and 125 certificate holders, and part 129 operations specifications holders, their operations
specifications authorize use of EFVS; and

(7) The aircraft is equipped with, and the pilot uses, an enhanced flight vision system, the display of which is suitable for maneuvering the aircraft and has either an FAA type design approval or, for a foreign-registered aircraft, the EFVS complies with all of the EFVS requirements of this chapter.

(m) For purposes of this section, “enhanced flight vision system” (EFVS) is an installed airborne system comprised of the following features and characteristics:

(1) An electronic means to provide a display of the forward external scene topography (the natural or manmade features of a place or region especially in a way to show their relative positions and elevation) through the use of imaging sensors, such as a forward-looking infrared, millimeter wave radiometry, millimeter wave radar, and low-light level image intensifying;

(2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed, vertical speed, aircraft attitude, heading, altitude, command guidance as appropriate for the approach to be flown, path deviation indications, and flight path vector; and flight path angle reference cue) are presented on a head-up display, or an equivalent display, so that they are clearly visible to the pilot flying in his or her normal position and line of vision and looking forward along the flight path, to include:

(i) The displayed EFVS imagery, attitude symbology, flight path vector, and flight path angle reference cue, and other cues, which are referenced to this imagery and external scene topography, must be presented so that they are aligned with and scaled to the external view; and

(ii) The flight path angle reference cue must be displayed with the pitch scale, selectable by the pilot to the desired descent angle for the approach, and suitable for monitoring the vertical flight path of the aircraft on approaches without vertical guidance; and

(iii) The displayed imagery and aircraft flight symbology do not adversely obscure the pilot’s outside view or field of view through the cockpit window;

(3) The EFVS includes the display element, sensors, computers and power supplies, indications, and controls. It may receive inputs from an airborne navigation system or flight guidance system; and

(4) The display characteristics and dynamics are suitable for manual control of the aircraft.

§ 91.177 Minimum altitudes for IFR operations.

(a) Operation of aircraft at minimum altitudes. Except when necessary for takeoff or landing, or unless otherwise authorized by the FAA, no person may operate an aircraft under IFR below—

(1) The applicable minimum altitudes prescribed in parts 95 and 97 of this chapter. However, if both a MEA and a MOCA are prescribed for a particular route or route segment, a person may operate an aircraft below the MEA down to, but not below, the MOCA, provided the applicable navigation signals are available. For aircraft using VOR for navigation, this applies only when the aircraft is within 22 nautical miles of that VOR (based on the reasonable estimate by the pilot operating the aircraft of that distance); or

(2) If no applicable minimum altitude is prescribed in parts 95 and 97 of this chapter, then—

(i) In the case of operations over an area designated as a mountainous area in part 95 of this chapter, an altitude of 2,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or

(ii) In any other case, an altitude of 1,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown.

(b) Climb. Climb to a higher minimum IFR altitude shall begin immediately after passing the point beyond which that minimum altitude applies, except that when ground obstructions intervene, the point beyond which that higher minimum altitude applies shall...
§ 91.179 IFR cruising altitude or flight level.

Unless otherwise authorized by ATC, the following rules apply—

(a) In controlled airspace. Each person operating an aircraft under IFR in level cruising flight in controlled airspace shall maintain the altitude or flight level assigned that aircraft by ATC. However, if the ATC clearance assigns “VFR conditions on-top,” that person shall maintain an altitude or flight level as prescribed by § 91.159.

(b) In uncontrolled airspace. Except while in a holding pattern of 2 minutes or less or while turning, each person operating an aircraft under IFR in level cruising flight in uncontrolled airspace shall maintain an appropriate altitude as follows:

(1) When operating below 18,000 feet MSL and—

(i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or

(ii) On a magnetic course of 180 degrees through 359 degrees, any even thousand foot MSL altitude (such as 2,000, 4,000, or 6,000).

(2) When operating at or above 18,000 feet MSL but below flight level 290, and—

(i) On a magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or

(ii) On a magnetic course of 180 degrees through 359 degrees, any even flight level (such as 180, 200, or 220).

(3) When operating at flight level 290 and above in non-RVSM airspace, and—

(i) On a magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or

(ii) On a magnetic course of 180 degrees through 359 degrees, any even flight level (such as 180, 200, or 220).

(4) When operating at flight level 290 and above in airspace designated as Reduced Vertical Separation Minimum (RVSM) airspace and—

(i) On a magnetic course of zero degrees through 179 degrees, any odd flight level, at 2,000-foot intervals beginning at and including flight level 290 (such as flight level 290, 310, 330, 350, 370, 390, 410); or

(ii) On a magnetic course of 180 degrees through 359 degrees, any even flight level, at 2,000-foot intervals beginning at and including flight level 300 (such as 300, 320, 340, 360, 380, 400).

§ 91.180 Operations within airspace designated as Reduced Vertical Separation Minimum airspace.

(a) Except as provided in paragraph (b) of this section, no person may operate a civil aircraft in airspace designated as Reduced Vertical Separation Minimum (RVSM) airspace unless:

(1) The operator and the operator’s aircraft comply with the minimum standards of appendix G of this part; and

(2) The operator is authorized by the Administrator or the country of registry to conduct such operations.

(b) The Administrator may authorize a deviation from the requirements of this section.

§ 91.181 Course to be flown.

Unless otherwise authorized by ATC, no person may operate an aircraft within controlled airspace under IFR except as follows:

(a) On an ATS route, along the centerline of that airway.

(b) On any other route, along the direct course between the navigational aids or fixes defining that route. However, this section does not prohibit maneuvering the aircraft to pass well clear of other air traffic or the maneuvering of the aircraft in VFR conditions to clear the intended flight path both before and during climb or descent.
§ 91.183 IFR communications.

Unless otherwise authorized by ATC, the pilot in command of each aircraft operated under IFR in controlled airspace must ensure that a continuous watch is maintained on the appropriate frequency and must report the following as soon as possible—

(a) The time and altitude of passing each designated reporting point, or the reporting points specified by ATC, except that while the aircraft is under radar control, only the passing of those reporting points specifically requested by ATC need be reported;
(b) Any unforecast weather conditions encountered; and
(c) Any other information relating to the safety of flight.

[Doc. No. 18334, 54 FR 34294, Aug. 18, 1989, as amended by Amdt. 91–296, 72 FR 31679, June 7, 2007]

§ 91.185 IFR operations: Two-way radio communications failure.

(a) General. Unless otherwise authorized by ATC, each pilot who has two-way radio communications failure when operating under IFR shall comply with the rules of this section.

(b) VFR conditions. If the failure occurs in VFR conditions, or if VFR conditions are encountered, each pilot shall continue the flight under VFR and land as soon as practicable.

(c) IFR conditions. If the failure occurs in IFR conditions, or if paragraph (b) of this section cannot be complied with, each pilot shall continue the flight according to the following:

(i) Route. (i) By the route assigned in the last ATC clearance received; (ii) If being radar vectored, by the direct route from the point of radio failure to the fix, route, or airway specified in the vector clearance; (iii) In the absence of an assigned route, by the route that ATC has advised may be expected in a further clearance; or (iv) In the absence of an assigned route or a route that ATC has advised may be expected in a further clearance, by the route filed in the flight plan.

(2) Altitude. At the highest of the following altitudes or flight levels for the route segment being flown:

(i) The altitude or flight level assigned in the last ATC clearance received;
(ii) The minimum altitude (converted, if appropriate, to minimum flight level as prescribed in §91.121(c)) for IFR operations; or
(iii) The altitude or flight level ATC has advised may be expected in a further clearance.

(3) Leave clearance limit. (i) When the clearance limit is a fix from which an approach begins, commence descent or descent and approach as close as possible to the expect-further-clearance time if one has been received, or if one has not been received, as close as possible to the estimated time of arrival as calculated from the filed or amended (with ATC) estimated time en route.

(ii) If the clearance limit is not a fix from which an approach begins, leave the clearance limit at the expect-further-clearance time if one has been received, or if none has been received, upon arrival over the clearance limit, and proceed to a fix from which an approach begins and commence descent or descent and approach as close as possible to the estimated time of arrival as calculated from the filed or amended (with ATC) estimated time en route.

§ 91.187 Operation under IFR in controlled airspace: Malfunction reports.

(a) The pilot in command of each aircraft operated in controlled airspace under IFR shall report as soon as practical to ATC any malfunctions of navigational, approach, or communication equipment occurring in flight.

(b) In each report required by paragraph (a) of this section, the pilot in command shall include the—

(1) Aircraft identification;
(2) Equipment affected;
(3) Degree to which the capability of the pilot to operate under IFR in the ATC system is impaired; and
(4) Nature and extent of assistance desired from ATC.
§ 91.189 Category II and III operations: General operating rules.

(a) No person may operate a civil aircraft in a Category II or III operation unless—

(1) The flight crew of the aircraft consists of a pilot in command and a second in command who hold the appropriate authorizations and ratings prescribed in § 61.3 of this chapter;

(2) Each flight crewmember has adequate knowledge of, and familiarity with, the aircraft and the procedures to be used; and

(3) The instrument panel in front of the pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control guidance system that is being used.

(b) Unless otherwise authorized by the Administrator, no person may operate a civil aircraft in a Category II or Category III operation unless each ground component required for that operation and the related airborne equipment is installed and operating.

(c) Authorized DA/DH. For the purpose of this section, when the approach procedure being used provides for and requires the use of a DA/DH, the authorized DA/DH is the highest of the following:

(1) The DA/DH prescribed by the approach procedure.

(2) The DA/DH prescribed for the pilot in command.

(3) The DA/DH for which the aircraft is equipped.

(d) Unless otherwise authorized by the Administrator, no pilot operating an aircraft in a Category II or Category III approach that provides and requires use of a DA/DH may continue the approach below the authorized decision height unless the following conditions are met:

(1) The aircraft is in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers, and where that descent rate will allow touchdown to occur within the touchdown zone of the runway of intended landing.

(2) At least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:

(i) The approach light system, except that the pilot may not descend below 100 feet above the touchdown zone elevation using the approach lights as a reference unless the red terminating bars or the red side row bars are also distinctly visible and identifiable.

(ii) The threshold.

(iii) The threshold markings.

(iv) The threshold lights.

(v) The touchdown zone or touchdown zone markings.

(vi) The touchdown zone lights.

(e) Unless otherwise authorized by the Administrator, each pilot operating an aircraft shall immediately execute an appropriate missed approach whenever, prior to touchdown, the requirements of paragraph (d) of this section are not met.

(f) No person operating an aircraft using a Category III approach without decision height may land that aircraft except in accordance with the provisions of the letter of authorization issued by the Administrator.

§ 91.191 Category II and Category III manual.

(a) Except as provided in paragraph (c) of this section, after August 4, 1997, no person may operate a U.S.-registered civil aircraft in a Category II or a Category III operation unless—

(1) There is available in the aircraft a current and approved Category II or Category III manual, as appropriate, for that aircraft;

(2) The operation is conducted in accordance with the procedures, instructions, and limitations in the appropriate manual; and
§ 91.193 Certificate of authorization for certain Category II operations.

The Administrator may issue a certificate of authorization authorizing deviations from the requirements of §§91.189, 91.191, and 91.205(f) for the operation of small aircraft identified as Category A aircraft in §97.3 of this chapter in Category II operations if the Administrator finds that the proposed operation can be safely conducted under the terms of the certificate. Such authorization does not permit operation of the aircraft carrying persons or property for compensation or hire.

§§ 91.195–91.199 [Reserved]

Subpart C—Equipment, Instrument, and Certificate Requirements

SOURCE: Docket No. 18334, 54 FR 34304, Aug. 18, 1989, unless otherwise noted.

§ 91.201 [Reserved]

§ 91.203 Civil aircraft: Certifications required.

(a) Except as provided in §91.715, no person may operate a civil aircraft unless it has within it the following:

(1) An appropriate and current airworthiness certificate. Each U.S. airworthiness certificate used to comply with this subparagraph (except a special flight permit, a copy of the applicable operations specifications issued under §21.197(c) of this chapter, appropriate sections of the air carrier manual required by parts 121 and 135 of this chapter containing that portion of the operations specifications issued under §21.197(c), or an authorization under §91.611) must have on it the registration number assigned to the aircraft under part 47 of this chapter. However, the airworthiness certificate need not have on it an assigned special identification number before 10 days after that number is first affixed to the aircraft. A revised airworthiness certificate having on it an assigned special identification number, that has been affixed to an aircraft, may only be obtained upon application to an FAA Flight Standards district office.

(b) No person may operate a civil aircraft unless the airworthiness certificate required by paragraph (a) of this section or a special flight authorization required by paragraph (a) of this section or a special flight authorization issued under §91.715 is displayed at the cabin or cockpit entrance so that it is legible to passengers or crew.

(c) No person may operate an aircraft with a fuel tank installed within the passenger compartment or a baggage compartment unless the installation was accomplished pursuant to part 43 of this chapter, and a copy of FAA Form 337 authorizing that installation is on board the aircraft.

(d) No person may operate a civil airplane (domestic or foreign) into or out of an airport in the United States unless it complies with the fuel venting and exhaust emissions requirements of part 34 of this chapter.
§ 91.205 Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and equipment requirements.

(a) General. Except as provided in paragraphs (c)(3) and (e) of this section, no person may operate a powered civil aircraft with a standard category U.S. airworthiness certificate in any operation described in paragraphs (b) through (f) of this section unless that aircraft contains the instruments and equipment specified in those paragraphs (or FAA-approved equivalents) for that type of operation, and those instruments and items of equipment are in operable condition.

(b) Visual-flight rules (day). For VFR flight during the day, the following instruments and equipment are required:

1. Airspeed indicator.
2. Altimeter.
4. Tachometer for each engine.
5. Oil pressure gauge for each engine using pressure system.
6. Temperature gauge for each liquid-cooled engine.
7. Oil temperature gauge for each air-cooled engine.
8. Manifold pressure gauge for each altitude engine.
9. Fuel gauge indicating the quantity of fuel in each tank.
10. Landing gear position indicator. If the aircraft has a retractable landing gear.
11. For small civil airplanes certified after March 11, 1996, in accordance with part 23 of this chapter, an approved aviation red or aviation white anticollision light system. In the event of failure of any light of the anticollision light system, operation of the aircraft may continue to a location where repairs or replacement can be made.
12. An approved emergency locator transmitter, if required by § 91.207.

(c) Visual flight rules (night). For VFR flight at night, the following instruments and equipment are required:

1. Instruments and equipment specified in paragraph (b) of this section.
2. Approved position lights.
3. An approved aviation red or aviation white anticollision light system on all U.S.-registered civil aircraft. Anticollision light systems initially installed after August 11, 1971, on aircraft for which a type certificate was issued areas which are intermittently under water.

13. An approved safety belt with an approved metal-to-metal latching device for each occupant 2 years of age or older.

14. For small civil airplanes manufactured after July 18, 1978, an approved shoulder harness for each front seat. The shoulder harness must be designed to protect the occupant from serious head injury when the occupant experiences the ultimate inertia forces specified in § 23.561(b)(2) of this chapter. Each shoulder harness installed at a flight crewmember station must permit the crewmember, when seated and with the safety belt and shoulder harness fastened, to perform all functions necessary for flight operations. For purposes of this paragraph—

(i) The date of manufacture of an airplane is the date the inspection acceptance records reflect that the airplane is complete and meets the FAA-approved type design data; and

(ii) A front seat is a seat located at a flight crewmember station or any seat located alongside such a seat.

15. An approved safety belt with an approved metal-to-metal latching device for each occupant 2 years of age or older.

16. An approved shoulder harness for each seat that meets the requirements of § 27.2 or § 29.2 of this chapter in effect on September 16, 1991.

17. For rotorcraft manufactured after September 16, 1992, a shoulder harness for each seat that meets the requirements of § 27.2 or § 29.2 of this chapter in effect on September 16, 1991.
or applied for before August 11, 1971, must at least meet the anticollision light standards of part 23, 25, 27, or 29 of this chapter, as applicable, that were in effect on August 10, 1971, except that the color may be either aviation red or aviation white. In the event of failure of any light of the anticollision light system, operations with the aircraft may be continued to a stop where repairs or replacement can be made.

(4) If the aircraft is operated for hire, one electric landing light.

(5) An adequate source of electrical energy for all installed electrical and radio equipment.

(6) One spare set of fuses, or three spare fuses of each kind required, that are accessible to the pilot in flight.

(d) Instrument flight rules. For IFR flight, the following instruments and equipment are required:

(1) Instruments and equipment specified in paragraph (b) of this section, and, for night flight, instruments and equipment specified in paragraph (c) of this section.

(2) Two-way radio communication and navigation equipment suitable for the route to be flown.

(3) Gyroscopic rate-of-turn indicator, except on the following aircraft:

(i) Airplanes with a third attitude instrument system usable through flight attitudes of 360 degrees of pitch and roll and installed in accordance with the instrument requirements prescribed in §121.305(j) of this chapter; and

(ii) Rotorcraft with a third attitude instrument system usable through flight attitudes of ±80 degrees of pitch and ±120 degrees of roll and installed in accordance with §29.1303(g) of this chapter.

(4) Slip-skid indicator.

(5) Sensitive altimeter adjustable for barometric pressure.

(6) A clock displaying hours, minutes, and seconds with a sweep-second pointer or digital presentation.

(7) Generator or alternator of adequate capacity.

(8) Gyroscopic pitch and bank indicator (artificial horizon).

(9) Gyroscopic direction indicator (directional gyro or equivalent).

(e) Flight at and above 24,000 feet MSL (FL 240). If VOR navigation equipment is required under paragraph (d)(2) of this section, no person may operate a U.S.-registered civil aircraft within the 50 states and the District of Columbia at or above FL 240 unless that aircraft is equipped with approved DME or a suitable RNAV system. When the DME or RNAV system required by this paragraph fails at and above FL 240, the pilot in command of the aircraft must notify ATC immediately, and then may continue operations at and above FL 240 to the next airport of intended landing where repairs or replacement of the equipment can be made.

(f) Category II operations. The requirements for Category II operations are the instruments and equipment specified in—

(1) Paragraph (d) of this section; and

(2) Appendix A to this part.

(g) Category III operations. The instruments and equipment required for Category III operations are specified in paragraph (d) of this section.

(h) Night vision goggle operations. For night vision goggle operations, the following instruments and equipment must be installed in the aircraft, functioning in a normal manner, and approved for use by the FAA:

(1) Instruments and equipment specified in paragraph (b) of this section, instruments and equipment specified in paragraph (c) of this section;

(2) Night vision goggles;

(3) Interior and exterior aircraft lighting system required for night vision goggle operations;

(4) Two-way radio communications system;

(5) Gyroscopic pitch and bank indicator (artificial horizon);

(6) Generator or alternator of adequate capacity for the required instruments and equipment; and

(7) Radar altimeter.
§ 91.207 Emergency locator transmitters.

(a) Except as provided in paragraphs (e) and (f) of this section, no person may operate a U.S.-registered civil airplane unless—

(1) There is attached to the airplane an approved automatic type emergency locator transmitter that is in operable condition for the following operations, except that after June 21, 1995, an emergency locator transmitter that meets the requirements of TSO-C91 may not be used for new installations:
 (i) Those operations governed by the supplemental air carrier and commercial operator rules of parts 121 and 125;
 (ii) Charter flights governed by the domestic and flag air carrier rules of part 121 of this chapter; and
 (iii) Operations governed by part 135 of this chapter; or

(2) For operations other than those specified in paragraph (a)(1) of this section, there must be attached to the airplane an approved personal type or an approved automatic type emergency locator transmitter that is in operable condition, except that after June 21, 1995, an emergency locator transmitter that meets the requirements of TSO-C91 may not be used for new installations.

(b) Each emergency locator transmitter required by paragraph (a) of this section must be inspected within 12 calendar months after the last inspection for—

(1) Proper installation; and
(2) Battery corrosion; and
(3) Operation of the controls and crash sensor; and
(4) The presence of a sufficient signal radiated from its antenna.

(e) Notwithstanding paragraph (a) of this section, a person may—

(1) Ferry a newly acquired airplane from the place where possession of it was taken to a place where the emergency locator transmitter is to be installed; and

(2) Ferry an airplane with an inoperative emergency locator transmitter from a place where repairs or replacements cannot be made to a place where they can be made.

No person other than required crewmembers may be carried aboard an airplane being ferried under paragraph (e) of this section.

(f) Paragraph (a) of this section does not apply to—

(1) Before January 1, 2004, turbojet-powered aircraft;
(2) Aircraft while engaged in scheduled flights by scheduled air carriers;
(3) Aircraft while engaged in training operations conducted entirely within a 50-nautical mile radius of the airport from which such local flight operations began;
(4) Aircraft while engaged in flight operations incident to design and testing;
(5) New aircraft while engaged in flight operations incident to their manufacture, preparation, and delivery;
(6) Aircraft while engaged in flight operations incident to the aerial application of chemicals and other substances for agricultural purposes;
(7) Aircraft certificated by the Administrator for research and development purposes;
(8) Aircraft while used for showing compliance with regulations, crew training, exhibition, air racing, or market surveys;
(9) Aircraft equipped to carry not more than one person.
(10) An aircraft during any period for which the transmitter has been temporarily removed for inspection, repair, modification, or replacement, subject to the following:
(i) No person may operate the aircraft unless the aircraft records contain an entry which includes the date of initial removal, the make, model, serial number, and reason for removing the transmitter, and a placard located in view of the pilot to show “ELT not installed.”
(ii) No person may operate the aircraft more than 90 days after the ELT is initially removed from the aircraft; and
(11) On and after January 1, 2004, aircraft with a maximum payload capacity of more than 18,000 pounds when used in air transportation.

§ 91.211 Supplemental oxygen.

(a) General. No person may operate a civil aircraft of U.S. registry—
(1) At cabin pressure altitudes above 12,500 feet (MSL) up to and including 14,000 feet (MSL) unless the required minimum flight crew is provided with and uses supplemental oxygen for that part of the flight at those altitudes that is of more than 30 minutes duration;
(2) At cabin pressure altitudes above 14,000 feet (MSL) unless the required minimum flight crew is provided with and uses supplemental oxygen during the entire flight time at those altitudes; and
(3) At cabin pressure altitudes above 15,000 feet (MSL) unless each occupant of the aircraft is provided with supplemental oxygen.

(b) Pressurized cabin aircraft. (1) No person may operate a civil aircraft of U.S. registry with a pressurized cabin—
(i) At flight altitudes above flight level 250 unless at least a 10-minute supply of supplemental oxygen, in addition to any oxygen required to satisfy paragraph (a) of this section, is available for each occupant of the aircraft for use in the event that a descent is necessitated by loss of cabin pressurization; and
(ii) At flight altitudes above flight level 350 unless one pilot at the controls of the airplane is wearing and using an oxygen mask that is secured.
§91.213 Inoperative instruments and equipment.

(a) Except as provided in paragraph (d) of this section, no person may take off an aircraft with inoperative instruments or equipment installed unless the following conditions are met:

(1) An approved Minimum Equipment List exists for that aircraft.

(2) The aircraft has within it a letter of authorization, issued by the FAA Flight Standards district office having jurisdiction over the area in which the operator is located, authorizing operation of the aircraft under the Minimum Equipment List. The letter of authorization may be obtained by written request of the airworthiness certificate holder. The Minimum Equipment List and the letter of authorization constitute a supplemental type certificate for the aircraft.

(3) The approved Minimum Equipment List must—

(i) Be prepared in accordance with the limitations specified in paragraph (b) of this section; and

(ii) Provide for the operation of the aircraft with the instruments and equipment in an inoperative condition.

(4) The aircraft records available to the pilot must include an entry describing the inoperative instruments and equipment.

(5) The aircraft is operated under all applicable conditions and limitations contained in the Minimum Equipment List and the letter authorizing the use of the list.

(b) The following instruments and equipment may not be included in a Minimum Equipment List:

(1) Instruments and equipment that are either specifically or otherwise required by the airworthiness requirements under which the aircraft is type certificated and which are essential for safe operations under all operating conditions.

(2) Instruments and equipment required by an airworthiness directive to be in operable condition unless the airworthiness directive provides otherwise.

(3) Instruments and equipment required for specific operations by this part.

(c) A person authorized to use an approved Minimum Equipment List issued for a specific aircraft under subpart K of this part, part 121, 125, or 135 of this chapter must use that Minimum Equipment List to comply with the requirements in this section.

(d) Except for operations conducted in accordance with paragraph (a) or (c) of this section, a person may take off an aircraft in operations conducted under this part with inoperative instruments and equipment without an approved Minimum Equipment List provided—

(1) The flight operation is conducted in a—

(i) Rotorcraft, non-turbine-powered airplane, glider, lighter-than-air aircraft, powered parachute, or weight-shift-control aircraft, for which a master minimum equipment list has not been developed; or

(ii) Small rotorcraft, nonturbine-powered small airplane, glider, or lighter-than-air aircraft for which a Master Minimum Equipment List has been developed; and

(2) The inoperative instruments and equipment are not—

(i) Part of the VFR-day type certification instruments and equipment prescribed in the applicable airworthiness regulations under which the aircraft was type certificated;

(ii) Indicated as required on the aircraft’s equipment list, or on the Kinds
§ 91.215 ATC transponder and altitude reporting equipment and use.

(a) All airspace: U.S.-registered civil aircraft. For operations not conducted under part 121 or 135 of this chapter, ATC transponder equipment installed must meet the performance and environmental requirements of any class of TSO-C74b (Mode A) or any class of TSO-C74c (Mode A with altitude reporting capability) as appropriate, or the appropriate class of TSO-C112 (Mode S).

(b) All airspace. Unless otherwise authorized or directed by ATC, no person may operate an aircraft in the airspace described in paragraphs (b)(1) through (b)(5) of this section, unless that aircraft is equipped with an operable coded radar beacon transponder having either Mode 3/A 4096 code capability, replying to Mode 3A interrogations with the code specified by ATC, or a Mode S capability, replying to Mode 3/A interrogations with the code specified by ATC and intermediate and Mode S interrogations in accordance with the applicable provisions specified in TSO C–112, and that aircraft is equipped with automatic pressure altitude reporting equipment having a Mode C capability that automatically replies to Mode C interrogations by transmitting pressure altitude information in 100-foot increments. This requirement applies—

1. All aircraft. In Class A, Class B, and Class C airspace areas;

2. All aircraft. In all airspace within 30 nautical miles of an airport listed in appendix D, section 1 of this part from the surface upward to 10,000 feet MSL;

3. Notwithstanding paragraph (b)(2) of this section, any aircraft which was not originally certificated with an engine-driven electrical system or which has not subsequently been certified with such a system installed, balloon or glider may conduct operations in the airspace within 30 nautical miles of an airport listed in appendix D, section 1 of this part provided such operations are conducted—

i. Outside any Class A, Class B, or Class C airspace area; and

ii. Below the altitude of the ceiling of a Class B or Class C airspace area designated for an airport or 10,000 feet MSL, whichever is lower; and

4. All aircraft in all airspace above the ceiling and within the lateral boundaries of a Class B or Class C airspace area upward to 10,000 feet MSL; and

5. All aircraft except any aircraft which was not originally certificated with an engine-driven electrical system or which has not subsequently been certified with such a system installed, balloon, or glider—

i. In all airspace of the 48 contiguous states and the District of Columbia at and above 10,000 feet MSL, excluding...
Federal Aviation Administration, DOT § 91.219

the airspace at and below 2,500 feet above the surface; and
(ii) In the airspace from the surface to 10,000 feet MSL within a 10-nautical-mile radius of any airport listed in appendix D, section 2 of this part, excluding the airspace below 1,200 feet outside of the lateral boundaries of the surface area of the airspace designated for that airport.

(c) Transponder-on operation. While in the airspace as specified in paragraph (b) of this section or in all controlled airspace, each person operating an aircraft equipped with an operable ATC transponder maintained in accordance with §91.413 of this part shall operate the transponder, including Mode C equipment if installed, and shall reply on the appropriate code or as assigned by ATC.

(d) ATC authorized deviations. Requests for ATC authorized deviations must be made to the ATC facility having jurisdiction over the concerned airspace within the time periods specified as follows:

(1) For operation of an aircraft with an operating transponder but without operating automatic pressure altitude reporting equipment having a Mode C capability, the request may be made at any time.

(2) For operation of an aircraft with an inoperative transponder to the airport of ultimate destination, including any intermediate stops, or to proceed to a place where suitable repairs can be made or both, the request may be made at any time.

(3) For operation of an aircraft that is not equipped with a transponder, the request must be made at least one hour before the proposed operation.

(Approved by the Office of Management and Budget under control number 2120–0005)

§ 91.219 Altitude alerting system or device: Turbojet-powered civil airplanes.

(a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is equipped with an approved altitude alerting system or device that is in operable condition and meets the requirements of paragraph (b) of this section.

(b) Each altitude alerting system or device required by paragraph (a) of this section must be able to—

(1) Alert the pilot—

(i) Upon approaching a preselected altitude in either ascent or descent, by a sequence of both aural and visual signals in sufficient time to establish level flight at that preselected altitude; or

(ii) Upon approaching a preselected altitude in either ascent or descent, by a sequence of visual signals in sufficient time to establish level flight at that preselected altitude, and when deviating above and below that

§ 91.217 Data correspondence between automatically reported pressure altitude data and the pilot’s altitude reference.

(a) No person may operate any automatic pressure altitude reporting equipment associated with a radar beacon transponder—

(1) When deactivation of that equipment is directed by ATC;

(2) Unless, as installed, that equipment was tested and calibrated to transmit altitude data corresponding within 125 feet (on a 95 percent probability basis) of the indicated or calibrated datum of the altimeter normally used to maintain flight altitude, with that altimeter referenced to 29.92 inches of mercury for altitudes from sea level to the maximum operating altitude of the aircraft; or

(3) Unless the altimeters and digitizers in that equipment meet the standards of TSO-C10b and TSO-C88, respectively.

(b) No person may operate any automatic pressure altitude reporting equipment associated with a radar beacon transponder or with ADS–B Out equipment unless the pressure altitude reported for ADS–B Out and Mode C/S is derived from the same source for aircraft equipped with both a transponder and ADS–B Out.

§ 91.221 Traffic alert and collision avoidance system equipment and use.

(a) All airspace: U.S.-registered civil aircraft. Any traffic alert and collision avoidance system installed in a U.S.-registered civil aircraft must be approved by the Administrator.

(b) Traffic alert and collision avoidance system, operation required. Each person operating an aircraft equipped with an operable traffic alert and collision avoidance system shall have that system on and operating.

§ 91.223 Terrain awareness and warning system.

(a) Airplanes manufactured after March 29, 2002. Except as provided in paragraph (d) of this section, no person may operate a turbine-powered U.S.-registered airplane configured with six or more passenger seats, excluding any pilot seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a minimum meets the requirements for Class B equipment in Technical Standard Order (TSO)–C151.

(b) Airplanes manufactured on or before March 29, 2002. Except as provided in paragraph (d) of this section, no person may operate a turbine-powered U.S.-registered airplane configured with six or more passenger seats, excluding any pilot seat, after March 29, 2005, unless that airplane is equipped with an approved terrain awareness and warning system that as a minimum meets the requirements for Class B equipment in Technical Standard Order (TSO)–C151.

(Approved by the Office of Management and Budget under control number 2120–0631)

(c) Airplane Flight Manual. The Airplane Flight Manual shall contain appropriate procedures for—

(1) Ferrying a newly acquired airplane from the place where possession of it was taken to a place where the altitude alerting system or device is to be installed.

(2) Continuing a flight as originally planned, if the altitude alerting system or device becomes inoperative after the airplane has taken off; however, the flight may not depart from a place where repair or replacement can be made.

(3) Ferrying an airplane with any inoperative altitude alerting system or device from a place where repairs or replacements cannot be made to a place where it can be made.

(4) Conducting an airworthiness flight test of the airplane.

(5) Ferrying an airplane to a place outside the United States for the purpose of registering it in a foreign country.

(6) Conducting a sales demonstration of the operation of the airplane.

(7) Training foreign flight crews in the operation of the airplane before ferrying it to a place outside the United States for the purpose of registering it in a foreign country.
Federal Aviation Administration, DOT § 91.225

(1) The use of the terrain awareness and warning system; and
(2) Proper flight crew reaction in response to the terrain awareness and warning system audio and visual warnings.

d) Exceptions. Paragraphs (a) and (b) of this section do not apply to—
(1) Parachuting operations when conducted entirely within a 50 nautical mile radius of the airport from which such local flight operations began.
(2) Firefighting operations.
(3) Flight operations when incident to the aerial application of chemicals and other substances.

[government document reference]

§ 91.225 Automatic Dependent Surveillance-Broadcast (ADS–B) Out equipment and use.

(a) After January 1, 2020, and unless otherwise authorized by ATC, no person may operate an aircraft in Class A airspace unless the aircraft has equipment installed that—
(1) Meets the requirements in TSO–C166b, Extended Squitter Automatic Dependent Surveillance-Broadcast (ADS–B) and Traffic Information Service-Broadcast (TIS–B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz); and
(2) Meets the requirements of § 91.227.
(b) After January 1, 2020, and unless otherwise authorized by ATC, no person may operate an aircraft below 18,000 feet MSL and in airspace described in paragraph (d) of this section unless the aircraft has equipment installed that—
(1) Meets the requirements in—
(i) TSO–C166b; or
(ii) TSO–C154c, Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS–B) Equipment Operating on the Frequency of 978 MHz;
(2) Meets the requirements of § 91.227.
(c) Operators with equipment installed with an approved deviation under § 21.609 of this chapter also are in compliance with this section.
(d) After January 1, 2020, and unless otherwise authorized by ATC, no person may operate an aircraft in the following airspace unless the aircraft has equipment installed that meets the requirements in paragraph (b) of this section:
(1) Class B and Class C airspace areas; and
(2) Except as provided for in paragraph (e) of this section, within 30 nautical miles of an airport listed in appendix D, section 1 to this part from the surface upward to 10,000 feet MSL.
(3) Above the ceiling and within the lateral boundaries of a Class B or Class C airspace area designated for an airport upward to 10,000 feet MSL; and
(4) Except as provided in paragraph (e) of this section, Class E airspace within the 48 contiguous states and the District of Columbia at and above 10,000 feet MSL, excluding the airspace at and below 2,500 feet above the surface; and
(5) Class E airspace at and above 3,000 feet MSL over the Gulf of Mexico from the coastline of the United States out to 12 nautical miles.
(e) The requirements of paragraph (b) of this section do not apply to any aircraft that was not originally certified with an electrical system, or that has not subsequently been certified with such a system installed, including balloons and gliders. These aircraft may conduct operations without ADS–B Out in the airspace specified in paragraphs (d)(2) and (d)(4) of this section. Operations authorized by this section must be conducted—
(1) Outside any Class B or Class C airspace area; and
(2) Below the altitude of the ceiling of a Class B or Class C airspace area designated for an airport, or 10,000 feet MSL, whichever is lower.
(f) Each person operating an aircraft equipped with ADS–B Out must operate this equipment in the transmit mode at all times.
(g) Requests for ATC authorized deviations from the requirements of this section must be made to the ATC facility having jurisdiction over the concerned airspace within the time periods specified as follows:
(1) For operation of an aircraft with an inoperative ADS–B Out, to the airport of ultimate destination, including any intermediate stops, or to proceed to a place where suitable repairs can be made or both, the request may be made at any time.

747
(2) For operation of an aircraft that is not equipped with ADS–B Out, the request must be made at least 1 hour before the proposed operation.

(h) The standards required in this section are incorporated by reference with the approval of the Director of the Office of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved materials are available for inspection at the FAA’s Office of Rule-making (ARM–1), 800 Independence Avenue, SW., Washington, DC 20590 (telephone 202–267–9677), or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. This material is also available from the sources indicated in paragraphs (h)(1) and (h)(2) of this section.

(1) Copies of Technical Standard Order (TSO)–C166b, Extended Squitter Automatic Dependent Surveillance-Broadcast (ADS–B) and Traffic Information Service-Broadcast (TIS–B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz) (December 2, 2009) and TSO–C154c, Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS–B) Equipment Operating on the Frequency of 978 MHz (December 2, 2009) may be obtained from the U.S. Department of Transportation, Subsequent Distribution Office, DOT Warehouse M30, Ardmore East Business Center, 3341 Q 75th Avenue, Landover, MD 20785; telephone (301) 322–5377. Copies of TSO –C166B and TSO–C154c are also available on the FAA’s Web site, at http://www.faa.gov/aircraft/air_cert/design_approvals/tso/. Select the link “Search Technical Standard Orders.”

EFFECTIVE DATE NOTE: At 75 FR 37712, June 30, 2010, §91.225(c) was amended by revising “§21.609” to read “§21.618,” effective Apr. 16, 2011.

§91.227 Automatic Dependent Surveillance-Broadcast (ADS–B) Out equipment performance requirements.

(a) Definitions. For the purposes of this section:

ADS–B Out is a function of an aircraft’s onboard avionics that periodically broadcasts the aircraft’s state vector (3-dimensional position and 3-dimensional velocity) and other required information as described in this section.

Navigation Accuracy Category for Position (NAC_P) specifies the accuracy of a reported aircraft’s position, as defined in TSO–C166b and TSO–C154c.

Navigation Accuracy Category for Velocity (NAC_V) specifies the accuracy of a reported aircraft’s velocity, as defined in TSO–C166b and TSO–C154c.

Navigation Integrity Category (NIC) specifies an integrity containment radius around an aircraft’s reported position, as defined in TSO–C166b and TSO–C154c.

Position Source refers to the equipment installed onboard an aircraft used to process and provide aircraft position (for example, latitude, longitude, and velocity) information.

Source Integrity Level (SIL) indicates the probability of the reported horizontal position exceeding the containment radius defined by the NIC on a per sample or per hour basis, as defined in TSO–C166b and TSO–C154c.

System Design Assurance (SDA) indicates the probability of an aircraft
malfunction causing false or misleading information to be transmitted, as defined in TSO-C166b and TSO-C154c.

Total latency is the total time between when the position is measured and when the position is transmitted by the aircraft.

Uncompensated latency is the time for which the aircraft does not compensate for latency.

(b) 1090 MHz ES and UAT Broadcast Links and Power Requirements—
(1) Aircraft operating in Class A airspace must have equipment installed that meets the antenna and power output requirements of Class A1, A1S, A2, A3, B1S, or B1 equipment as defined in TSO-C166b, Extended Squitter Automatic Dependent Surveillance-Broadcast (ADS-B) and Traffic Information Service-Broadcast (TIS–B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz).
(2) Aircraft operating in airspace designated for ADS–B Out, but outside of Class A airspace, must have equipment installed that meets the antenna and output power requirements of either:
 (i) Class A1, A1S, A2, A3, B1S, or B1 as defined in TSO-C166b; or
(3) ADS–B Out Performance Requirements for NAC P, NAC V, NIC, SDA, and SIL—
(1) For aircraft broadcasting ADS–B Out as required under § 91.225 (a) and (b)—
 (i) The aircraft’s NAC P must be less than 0.05 nautical miles;
 (ii) The aircraft’s NAC V must be less than 10 meters per second;
 (iii) The aircraft’s NIC must be less than 0.2 nautical miles;
 (iv) The aircraft’s SDA must be 2; and
 (v) The aircraft’s SIL must be 3.
(2) Changes in NAC P, NAC V, SDA, and SIL must be broadcast within 10 seconds.
(3) Changes in NIC must be broadcast within 12 seconds.
(4) Minimum Broadcast Message Element Set for ADS–B Out. Each aircraft must broadcast the following information, as defined in TSO-C166b or TSO-C154c. The pilot must enter information for message elements listed in paragraphs (d)(7) through (d)(10) of this section during the appropriate phase of flight.
(1) The length and width of the aircraft;
(2) An indication of the aircraft’s latitude and longitude;
(3) An indication of the aircraft’s barometric pressure altitude;
(4) An indication of the aircraft’s velocity;
(5) An indication if TCAS II or ACAS is installed and operating in a mode that can generate resolution advisory alerts;
(6) If an operable TCAS II or ACAS is installed, an indication if a resolution advisory is in effect;
(7) An indication of the Mode 3/A transponder code specified by ATC;
(8) An indication of the aircraft’s call sign that is submitted on the flight plan, or the aircraft’s registration number, except when the pilot has not filed a flight plan, has not requested ATC services, and is using a TSO-C154c self-assigned temporary 24-bit address;
(9) An indication if the flightcrew has identified an emergency, radio communication failure, or unlawful interference;
(10) An indication of the aircraft’s “IDENT” to ATC;
(11) An indication of the aircraft assigned ICAO 24-bit address, except when the pilot has not filed a flight plan, has not requested ATC services, and is using a TSO-C154c self-assigned temporary 24-bit address;
(12) An indication of the aircraft’s emitter category;
(13) An indication of whether an ADS–B In capability is installed;
(14) An indication of the aircraft’s geometric altitude;
(15) An indication of the Navigation Accuracy Category for Position (NAC P);
(16) An indication of the Navigation Accuracy Category for Velocity (NAC V);
(17) An indication of the Navigation Integrity Category (NIC);
(18) An indication of the System Design Assurance (SDA); and
§§ 91.228–91.299 14 CFR Ch. I (1–1–11 Edition)

(19) An indication of the Source Integrity Level (SIL).

(e) ADS–B Latency Requirements—

(1) The aircraft must transmit its geometric position no later than 2.0 seconds from the time of measurement of the position to the time of transmission.

(2) Within the 2.0 total latency allocation, a maximum of 0.6 seconds can be uncompensated latency. The aircraft must compensate for any latency above 0.6 seconds up to the maximum 2.0 seconds total by extrapolating the geometric position to the time of message transmission.

(3) The aircraft must transmit its position and velocity at least once per second while airborne or while moving on the airport surface.

(4) The aircraft must transmit its position at least once every 5 seconds while stationary on the airport surface.

(f) Equipment with an approved deviation. Operators with equipment installed with an approved deviation under §21.609 of this chapter also are in compliance with this section.

(g) Incorporation by Reference. The standards required in this section are incorporated by reference with the approval of the Director of the Office of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved materials are available for inspection at the FAA’s Office of Rulemaking (ARM–1), 800 Independence Avenue, SW., Washington, DC 20590; telephone (202) 267–9677. Copies of RTCA DO–260B and RTCA DO–282B are also available on RTCA Inc.’s Web site, at http://www.rtca.org/onlinereg/. Select the link “Search Technical Standard Orders.”

EFFECTIVE DATE NOTE: At 75 FR 37712, June 30, 2010, §91.227(f) was amended by revising “§21.609” to read “§21.618”, effective Apr. 16, 2011.

§§ 91.228–91.299 [Reserved]

Subpart D—Special Flight Operations

SOURCE: Docket No. 18334, 54 FR 34308, Aug. 18, 1989, unless otherwise noted.

§ 91.301 [Reserved]

§ 91.303 Aerobatic flight.

No person may operate an aircraft in aerobatic flight—
§ 91.309 Towing: Gliders and unpowered ultralight vehicles.

(a) No person may operate a civil aircraft towing a glider or unpowered ultralight vehicle unless—

(1) The pilot in command of the towing aircraft is qualified under §61.69 of this chapter;

(2) The towing aircraft is equipped with a tow-hitch of a kind, and installed in a manner, that is approved by the Administrator;

(3) The towline used has breaking strength not less than 80 percent of the maximum certificated operating weight of the glider or unpowered ultralight vehicle and not more than twice this operating weight. However, the towline used may have a breaking strength more than twice the maximum certificated operating weight of the glider or unpowered ultralight vehicle if—

(1) A safety link is installed at the point of attachment of the towline to—
§ 91.311 Towing: Other than under § 91.309.

No pilot of a civil aircraft may tow anything with that aircraft (other than under § 91.309) except in accordance with the terms of a certificate of waiver issued by the Administrator.

§ 91.313 Restricted category civil aircraft: Operating limitations.

(a) No person may operate a restricted category civil aircraft—

(1) For other than the special purpose for which it is certificated; or

(2) In an operation other than one necessary to accomplish the work activity directly associated with that special purpose.

(b) For the purpose of paragraph (a) of this section, operating a restricted category civil aircraft to provide flight crewmember training in a special purpose operation for which the aircraft is certificated is considered to be an operation for that special purpose.

(c) No person may operate a restricted category civil aircraft carrying persons or property for compensation or hire. For the purposes of this paragraph, a special purpose operation involving the carriage of persons or material necessary to accomplish that operation, such as crop dusting, seeding, spraying, and banner towing (including the carrying of required persons or material to the location of that operation), and operation for the purpose of providing flight crewmember training in a special purpose operation, are not considered to be the carriage of persons or property for compensation or hire.

(d) No person may be carried on a restricted category civil aircraft unless that person—

(1) Is a flight crewmember;

(2) Is a flight crewmember trainee;

(3) Performs an essential function in connection with a special purpose operation for which the aircraft is certificated; or

(4) Is necessary to accomplish the work activity directly associated with that special purpose.

(e) Except when operating in accordance with the terms and conditions of a certificate of waiver or special operating limitations issued by the Administrator, no person may operate a restricted category civil aircraft within the United States—

(1) Over a densely populated area;

(2) In a congested airway; or

(3) Near a busy airport where passenger transport operations are conducted.
(f) This section does not apply to nonpassenger-carrying civil rotorcraft external-load operations conducted under part 133 of this chapter.

(g) No person may operate a small restricted-category civil airplane manufactured after July 18, 1978, unless an approved shoulder harness is installed for each front seat. The shoulder harness must be designed to protect each occupant from serious head injury when the occupant experiences the ultimate inertia forces specified in §23.561(b)(2) of this chapter. The shoulder harness installation at each flight crewmember station must permit the crewmember, when seated and with the safety belt and shoulder harness fastened, to perform all functions necessary for flight operation. For purposes of this paragraph—

(1) The date of manufacture of an airplane is the date the inspection acceptance records reflect that the airplane is complete and meets the FAA-approved type design data; and

(2) A front seat is a seat located at a flight crewmember station or any seat located alongside such a seat.

§ 91.315 Limited category civil aircraft: Operating limitations.

No person may operate a limited category civil aircraft carrying persons or property for compensation or hire.

§ 91.317 Provisionally certificated civil aircraft: Operating limitations.

(a) No person may operate a provisionally certificated civil aircraft unless that person is eligible for a provisional airworthiness certificate under §21.213 of this chapter.

(b) No person may operate a provisionally certificated civil aircraft outside the United States unless that person has specific authority to do so from the Administrator and each foreign country involved.

(c) Unless otherwise authorized by the Director, Flight Standards Service, no person may operate a provisionally certificated civil aircraft in air transportation.

(d) Unless otherwise authorized by the Administrator, no person may operate a provisionally certificated civil aircraft except—

(1) In direct conjunction with the type or supplemental type certification of that aircraft;

(2) For training flight crews, including simulated air carrier operations;

(3) Demonstration flight by the manufacturer for prospective purchasers;

(4) Market surveys by the manufacturer;

(5) Flight checking of instruments, accessories, and equipment that do not affect the basic airworthiness of the aircraft; or

(6) Service testing of the aircraft.

(e) Each person operating a provisionally certificated civil aircraft shall operate within the prescribed limitations displayed in the aircraft or set forth in the provisional aircraft flight manual or other appropriate document. However, when operating in direct conjunction with the type or supplemental type certification of the aircraft, that person shall operate under the experimental aircraft limitations of §21.191 of this chapter and when flight testing, shall operate under the requirements of §91.303 of this part.

(f) Each person operating a provisionally certificated civil aircraft shall establish approved procedures for—

(1) The use and guidance of flight and ground personnel in operating under this section; and

(2) Operating in and out of airports where takeoffs or approaches over populated areas are necessary. No person may operate that aircraft except in compliance with the approved procedures.

(g) Each person operating a provisionally certificated civil aircraft shall ensure that each flight crewmember is properly certificated and has adequate knowledge of, and familiarity with, the aircraft and procedures to be used by that crewmember.

(h) Each person operating a provisionally certificated civil aircraft shall maintain it as required by applicable regulations and as may be specially prescribed by the Administrator.

(i) Whenever the manufacturer, or the Administrator, determines that a change in design, construction, or operation is necessary to ensure safe operation, no person may operate a provisionally certificated civil aircraft until
§ 91.319 Aircraft having experimental certificates: Operating limitations.

(a) No person may operate an aircraft that has an experimental certificate—

(1) For other than the purpose for which the certificate was issued; or

(2) Carrying persons or property for compensation or hire.

(b) No person may operate an aircraft that has an experimental certificate outside of an area assigned by the Administrator until it is shown that—

(1) The aircraft is controllable throughout its normal range of speeds and throughout all the maneuvers to be executed; and

(2) The aircraft has no hazardous operating characteristics or design features.

(c) Unless otherwise authorized by the Administrator in special operating limitations, no person may operate an aircraft that has an experimental certificate over a densely populated area or in a congested airway. The Administrator may issue special operating limitations for particular aircraft to permit takeoffs and landings to be conducted over a densely populated area or in a congested airway, in accordance with terms and conditions specified in the authorization in the interest of safety in air commerce.

(d) Each person operating an aircraft that has an experimental certificate shall—

(1) Advise each person carried of the experimental nature of the aircraft;

(2) Operate under VFR, day only, unless otherwise specifically authorized by the Administrator; and

(3) Notify the control tower of the experimental nature of the aircraft when operating the aircraft into or out of airports with operating control towers.

(e) No person may operate an aircraft that is issued an experimental certificate under §21.191(i) of this chapter for compensation or hire, except a person may operate an aircraft issued an experimental certificate under §21.191(i)(1) for compensation or hire to—

(1) Tow a glider that is a light-sport aircraft or unpowered ultralight vehicle in accordance with §91.309; or

(2) Conduct flight training in an aircraft which that person provides prior to January 31, 2010.

(f) No person may lease an aircraft that is issued an experimental certificate under §21.191(i) of this chapter, except in accordance with paragraph (e)(1) of this section.

(g) No person may operate an aircraft issued an experimental certificate under §21.191(i)(1) of this chapter to tow a glider that is a light-sport aircraft or unpowered ultralight vehicle for compensation or hire or to conduct flight training for compensation or hire in an aircraft which that person provides unless within the preceding 100 hours of time in service the aircraft has—

(1) Been inspected by a certificated repairman (light-sport aircraft) with a maintenance rating, an appropriately rated mechanic, or an appropriately rated repair station in accordance with inspection procedures developed by the aircraft manufacturer or a person acceptable to the FAA; or

(2) Received an inspection for the issuance of an airworthiness certificate in accordance with part 21 of this chapter.

(h) The FAA may issue deviation authority providing relief from the provisions of paragraph (a) of this section for the purpose of conducting flight...
323 Increased maximum certificated weights for certain airplanes operated in Alaska.

(a) Notwithstanding any other provision of the Federal Aviation Regulations, the Administrator will approve, as provided in this section, an increase in the maximum certificated weight of an airplane type certificated under Aeronautics Bulletin No. 7–A of the U.S. Department of Commerce dated January 1, 1931, as amended, or under the normal category of part 4a of the former Civil Air Regulations (14 CFR part 4a, 1964 ed.) if that airplane is operated in the State of Alaska by—

(1) A certificate holder conducting operations under part 121 or part 135 of this chapter; or

(2) The U.S. Department of Interior in conducting its game and fish law enforcement activities or its management, fire detection, and fire suppression activities concerning public lands.

(b) The maximum certificated weight approved under this section may not exceed—

(1) 12,500 pounds;

(2) 115 percent of the maximum weight listed in the FAA aircraft specifications;

(3) The weight at which the airplane meets the positive maneuvering load factor requirement for the normal category specified in §23.337 of this chapter; or

(4) The weight at which the airplane meets the climb performance requirements under which it was type certificated.

(c) In determining the maximum certificated weight, the Administrator considers the structural soundness of the airplane and the terrain to be traversed.

(d) The maximum certificated weight determined under this section is added to the airplane’s operation limitations and is identified as the maximum
§ 91.325 Primary category aircraft: Operating limitations.

(a) No person may operate a primary category aircraft carrying persons or property for compensation or hire.

(b) No person may operate a primary category aircraft that is maintained by the pilot-owner under an approved special inspection and maintenance program except—

(1) The pilot-owner; or

(2) A designee of the pilot-owner, provided that the pilot-owner does not receive compensation for the use of the aircraft.

§ 91.327 Aircraft having a special airworthiness certificate in the light-sport category: Operating limitations.

(a) No person may operate an aircraft that has a special airworthiness certificate in the light-sport category for compensation or hire except—

(1) To tow a glider or an unpowered ultralight vehicle in accordance with § 91.309 of this chapter; or

(2) To conduct flight training.

(b) No person may operate an aircraft that has a special airworthiness certificate in the light-sport category unless—

(1) The aircraft is maintained by a certificated repairman with a light-sport aircraft maintenance rating, an appropriately rated mechanic, or an appropriately rated repair station in accordance with the applicable provisions of part 43 of this chapter and maintenance and inspection procedures developed by the aircraft manufacturer or a person acceptable to the FAA;

(2) A condition inspection is performed once every 12 calendar months by a certificated repairman (light-sport aircraft) with a maintenance rating, an appropriately rated mechanic, or an appropriately rated repair station in accordance with inspection procedures developed by the aircraft manufacturer or a person acceptable to the FAA;

(3) The owner or operator complies with all applicable airworthiness directives;

(4) The owner or operator complies with each safety directive applicable to the aircraft that corrects an existing unsafe condition. In lieu of complying with a safety directive an owner or operator may—

(i) Correct the unsafe condition in a manner different from that specified in the safety directive provided the person issuing the directive concurs with the action; or

(ii) Obtain an FAA waiver from the provisions of the safety directive based on a conclusion that the safety directive was issued without adhering to the applicable consensus standard;

(5) Each alteration accomplished after the aircraft’s date of manufacture meets the applicable and current consensus standard and has been authorized by either the manufacturer or a person acceptable to the FAA;

(6) Each major alteration to an aircraft product produced under a consensus standard is authorized, performed and inspected in accordance with maintenance and inspection procedures developed by the manufacturer or a person acceptable to the FAA; and

(7) The owner or operator complies with the requirements for the recording of major repairs and major alterations performed on type-certificated products in accordance with § 43.9(d) of this chapter, and with the retention requirements in § 91.417.

(c) No person may operate an aircraft issued a special airworthiness certificate in the light-sport category to tow a glider or unpowered ultralight vehicle for compensation or hire or conduct flight training for compensation or hire in an aircraft which that persons provides unless within the preceding 100 hours of time in service the aircraft has—

(1) Been inspected by a certificated repairman with a light-sport aircraft maintenance rating, an appropriately rated mechanic, or an appropriately rated repair station in accordance with inspection procedures developed by the aircraft manufacturer or a person acceptable to the FAA;
Federal Aviation Administration, DOT

§ 91.405

(2) Received an inspection for the issuance of an airworthiness certificate in accordance with part 21 of this chapter.

d) Each person operating an aircraft issued a special airworthiness certificate in the light-sport category must operate the aircraft in accordance with the aircraft’s operating instructions, including any provisions for necessary operating equipment specified in the aircraft’s equipment list.

e) Each person operating an aircraft issued a special airworthiness certificate in the light-sport category must advise each person carried of the special nature of the aircraft and that the aircraft does not meet the airworthiness requirements for an aircraft issued a standard airworthiness certificate.

(f) The FAA may prescribe additional limitations that it considers necessary.

§§ 91.328–91.399 [Reserved]

Subpart E—Maintenance, Preventive Maintenance, and Alterations

SOURCE: Docket No. 18334, 54 FR 34311, Aug. 18, 1989, unless otherwise noted.

§ 91.401 Applicability.

(a) This subpart prescribes rules governing the maintenance, preventive maintenance, and alterations of U.S.-registered civil aircraft operating within or outside of the United States.

(b) Sections 91.405, 91.409, 91.411, 91.417, and 91.419 of this subpart do not apply to an aircraft maintained in accordance with a continuous airworthiness maintenance program as provided in part 121, 129, or §§ 91.1411 or 135.411(a)(2) of this chapter.

(c) Sections 91.405 and 91.409 of this part do not apply to an airplane inspected in accordance with part 125 of this chapter.

§ 91.403 General.

(a) The owner or operator of an aircraft is primarily responsible for maintaining that aircraft in an airworthy condition, including compliance with part 39 of this chapter.

(b) No person may perform maintenance, preventive maintenance, or alterations on an aircraft other than as prescribed in this subpart and other applicable regulations, including part 43 of this chapter.

(c) No person may operate an aircraft for which a manufacturer’s maintenance manual or instructions for continued airworthiness has been issued that contains an airworthiness limitations section unless the mandatory replacement times, inspection intervals, and related procedures specified in that section or alternative inspection intervals and related procedures set forth in an operations specification approved by the Administrator under part 121 or 135 of this chapter or in accordance with an inspection program approved under §91.409(e) have been complied with.

(d) A person must not alter an aircraft based on a supplemental type certificate unless the owner or operator of the aircraft is the holder of the supplemental type certificate, or has written permission from the holder.

§ 91.405 Maintenance required.

Each owner or operator of an aircraft—

(a) Shall have that aircraft inspected as prescribed in this subpart and shall between required inspections, except as provided in paragraph (c) of this section, have discrepancies repaired, replaced, removed, or
§ 91.407 Operation after maintenance, preventive maintenance, rebuilding, or alteration.

(a) No person may operate any aircraft that has undergone maintenance, preventive maintenance, rebuilding, or alteration unless—

(1) It has been approved for return to service by a person authorized under § 43.7 of this chapter; and

(2) The maintenance record entry required by § 43.9 or § 43.11, as applicable, of this chapter has been made.

(b) No person may carry any person (other than crewmembers) in an aircraft that has been maintained, rebuilt, or altered in a manner that may have appreciably changed its flight characteristics or substantially affected its operation in flight until an appropriately rated pilot with at least a private pilot certificate flies the aircraft, makes an operational check of the maintenance performed or alteration made, and logs the flight in the aircraft records.

(c) The aircraft does not have to be flown as required by paragraph (b) of this section if, prior to flight, ground tests, inspection, or both show conclusively that the maintenance, preventive maintenance, rebuilding, or alteration has not appreciably changed the flight characteristics or substantially affected the flight operation of the aircraft.

(Approved by the Office of Management and Budget under control number 2120–0005)

§ 91.409 Inspections.

(a) Except as provided in paragraph (c) of this section, no person may operate an aircraft unless, within the preceding 12 calendar months, it has had—

(1) An annual inspection in accordance with part 43 of this chapter and has been approved for return to service by a person authorized by § 43.7 of this chapter; or

(2) An inspection for the issuance of an airworthiness certificate in accordance with part 21 of this chapter.

No inspection performed under paragraph (b) of this section may be substituted for any inspection required by this paragraph unless it is performed by a person authorized to perform annual inspections and is entered as an “annual” inspection in the required maintenance records.

(b) Except as provided in paragraph (c) of this section, no person may operate an aircraft carrying any person (other than a crewmember) for hire, and no person may give flight instruction for hire in an aircraft which that person provides, unless within the preceding 100 hours of time in service the aircraft has received an annual or 100-hour inspection and been approved for return to service in accordance with part 43 of this chapter or has received an inspection for the issuance of an airworthiness certificate in accordance with part 21 of this chapter. The 100-hour limitation may be exceeded by not more than 10 hours while en route to reach a place where the inspection can be done. The excess time used to reach a place where the inspection can be done must be included in computing the next 100 hours of time in service.

(c) Paragraphs (a) and (b) of this section do not apply to—

(1) An aircraft that carries a special flight permit, a current experimental certificate, or a light-sport or provisional airworthiness certificate;

(2) An aircraft inspected in accordance with an approved aircraft inspection program under part 125 or 135 of this chapter and so identified by the registration number in the operations specifications of the certificate holder having the approved inspection program;

(3) An aircraft subject to the requirements of paragraph (d) or (e) of this section; or

(4) Turbine-powered rotorcraft when the operator elects to inspect that rotorcraft in accordance with paragraph (e) of this section.

(d) Progressive inspection. Each registered owner or operator of an aircraft desiring to use a progressive inspection program must submit a written request to the FAA Flight Standards district...
office having jurisdiction over the area in which the applicant is located, and shall provide—

(1) A certificated mechanic holding an inspection authorization, a certificated airframe repair station, or the manufacturer of the aircraft to supervise or conduct the progressive inspection;

(2) A current inspection procedures manual available and readily understandable to pilot and maintenance personnel containing, in detail—

(i) An explanation of the progressive inspection, including the continuity of inspection responsibility, the making of reports, and the keeping of records and technical reference material;

(ii) An inspection schedule, specifying the intervals in hours or days when routine and detailed inspections will be performed and including instructions for exceeding an inspection interval by not more than 10 hours while en route and for changing an inspection interval because of service experience;

(iii) Sample routine and detailed inspection forms and instructions for their use; and

(iv) Sample reports and records and instructions for their use;

(3) Enough housing and equipment for necessary disassembly and proper inspection of the aircraft; and

(4) Appropriate current technical information for the aircraft.

The frequency and detail of the progressive inspection shall provide for the complete inspection of the aircraft within each 12 calendar months and be consistent with the manufacturer’s recommendations, field service experience, and the kind of operation in which the aircraft is engaged. The progressive inspection schedule must ensure that the aircraft, at all times, will be airworthy and will conform to all applicable FAA aircraft specifications, type certificate data sheets, airworthiness directives, and other approved data. If the progressive inspection is discontinued, the owner or operator shall immediately notify the local FAA Flight Standards district office, in writing, of the discontinuance. After the discontinuance, the first annual inspection under §91.409(a)(1) is due within 12 calendar months after the last complete inspection of the aircraft under the progressive inspection. The 100-hour inspection under §91.409(b) is due within 100 hours after that complete inspection. A complete inspection of the aircraft, for the purpose of determining when the annual and 100-hour inspections are due, requires a detailed inspection of the aircraft and all its components in accordance with the progressive inspection. A routine inspection of the aircraft and a detailed inspection of several components is not considered to be a complete inspection.

(e) Large airplanes (to which part 125 is not applicable), turbojet multiengine airplanes, turbopropeller-powered multiengine airplanes, and turbine-powered rotorcraft. No person may operate a large airplane, turbojet multiengine airplane, turbopropeller-powered multiengine airplane, or turbine-powered rotorcraft unless the replacement times for life-limited parts specified in the aircraft specifications, type data sheets, or other documents approved by the Administrator are complied with and the airplane or turbine-powered rotorcraft, including the airframe, engines, propellers, rotors, appliances, survival equipment, and emergency equipment, is inspected in accordance with an inspection program selected under the provisions of paragraph (f) of this section, except that, the owner or operator of a turbine-powered rotorcraft may elect to use the inspection provisions of §91.409(a), (b), (c), or (d) in lieu of an inspection option of §91.409(f).

(f) Selection of inspection program under paragraph (e) of this section. The registered owner or operator of each airplane or turbine-powered rotorcraft described in paragraph (e) of this section must select, identify in the aircraft maintenance records, and use one of the following programs for the inspection of the aircraft:

(1) A continuous airworthiness inspection program that is part of a continuous airworthiness maintenance program currently in use by a person holding an air carrier operating certificate or an operating certificate issued under part 121 or 135 of this chapter and operating that make and model aircraft under part 121 of this chapter or operating that make and model under...
§ 91.410 part 135 of this chapter and maintaining it under §135.411(a)(2) of this chapter.

(2) An approved aircraft inspection program approved under §135.419 of this chapter and currently in use by a person holding an operating certificate issued under part 135 of this chapter.

(3) A current inspection program recommended by the manufacturer.

(4) Any other inspection program established by the registered owner or operator of that airplane or turbine-powered rotorcraft and approved by the Administrator under paragraph (g) of this section. However, the Administrator may require revision of this inspection program in accordance with the provisions of §91.413.

Each operator shall include in the selected program the name and address of the person responsible for scheduling the inspections required by the program and make a copy of that program available to the person performing inspections on the aircraft and, upon request, to the Administrator.

(g) Inspection program approved under paragraph (e) of this section. Each operator of an airplane or turbine-powered rotorcraft desiring to establish or change an approved inspection program under paragraph (f)(4) of this section must submit the program for approval to the local FAA Flight Standards district office having jurisdiction over the area in which the aircraft is based. The program must be in writing and include at least the following information:

(1) Instructions and procedures for the conduct of inspections for the particular make and model airplane or turbine-powered rotorcraft, including necessary tests and checks. The instructions and procedures must set forth in detail the parts and areas of the airframe, engines, propellers, rotors, and appliances, including survival and emergency equipment required to be inspected.

(2) A schedule for performing the inspections that must be performed under the program expressed in terms of the time in service, calendar time, number of system operations, or any combination of these.

(h) Changes from one inspection program to another. When an operator changes from one inspection program under paragraph (f) of this section to another, the time in service, calendar times, or cycles of operation accumulated under the previous program must be applied in determining inspection due times under the new program.

(Approved by the Office of Management and Budget under control number 2120–0005)

§ 91.410 [Reserved]

§ 91.411 Altimeter system and altitude reporting equipment tests and inspections.

(a) No person may operate an airplane, or helicopter, in controlled airspace under IFR unless—

(1) Within the preceding 24 calendar months, each static pressure system, each altimeter instrument, and each automatic pressure altitude reporting system has been tested and inspected and found to comply with appendices E and F of part 43 of this chapter;

(2) Except for the use of system drain and alternate static pressure valves, following any opening and closing of the static pressure system, that system has been tested and inspected and found to comply with paragraph (a), appendix E, of part 43 of this chapter; and

(3) Following installation or maintenance on the automatic pressure altitude reporting system of the ATC transponder where data correspondence error could be introduced, the integrated system has been tested, inspected, and found to comply with paragraph (c), appendix E, of part 43 of this chapter.

(b) The tests required by paragraph (a) of this section must be conducted by—

(1) The manufacturer of the airplane, or helicopter, on which the tests and inspections are to be performed;

(2) A certificated repair station properly equipped to perform those functions and holding—

(i) An instrument rating, Class I;

(ii) A limited instrument rating appropriate to the make and model of appliance to be tested;
Federal Aviation Administration, DOT

§ 91.417 Maintenance records.

(a) Except for work performed in accordance with §§ 91.411 and 91.413, each registered owner or operator shall keep the following records for the periods specified in paragraph (b) of this section:

(1) Records of the maintenance, preventive maintenance, and alteration and records of the 100-hour, annual, progressive, and other required or approved inspections, as appropriate, for each aircraft (including the airframe) and each engine, propeller, rotor, and appliance of an aircraft. The records must include—

(i) A description (or reference to data acceptable to the Administrator) of the work performed; and

(ii) The date of completion of the work performed; and

(b) Following any installation or maintenance on an ATC transponder where data correspondence error could be introduced, the integrated system has been tested, inspected, and found to comply with paragraph (c), appendix E, of part 43 of this chapter; and

(2) A holder of a continuous airworthiness maintenance program as provided in part 121 of this chapter; or

(3) The manufacturer of the aircraft on which the transponder to be tested is installed, if the transponder was installed by that manufacturer.

§ 91.415 Changes to aircraft inspection programs.

(a) Whenever the Administrator finds that revisions to an approved aircraft inspection program under § 91.409(f)(4) or § 91.1109 are necessary for the continued adequacy of the program, the owner or operator must, after notification by the Administrator, make any changes in the program found to be necessary by the Administrator.

(b) The owner or operator may petition the Administrator to reconsider the notice to make any changes in a program in accordance with paragraph (a) of this section.

(c) The petition must be filed with the Director, Flight Standards Service within 30 days after the certificate holder or fractional ownership program manager receives the notice.

(d) Except in the case of an emergency requiring immediate action in the interest of safety, the filing of the petition stays the notice pending a decision by the Administrator.

(iii) The signature, and certificate number of the person approving the aircraft for return to service.

(2) Records containing the following information:
 (i) The total time in service of the airframe, each engine, each propeller, and each rotor.
 (ii) The current status of life-limited parts of each airframe, engine, propeller, rotor, and appliance.
 (iii) The time since last overhaul of all items installed on the aircraft which are required to be overhauled on a specified time basis.
 (iv) The current inspection status of the aircraft, including the time since the last inspection required by the inspection program under which the aircraft and its appliances are maintained.
 (v) The current status of applicable airworthiness directives (AD) and safety directives including, for each, the method of compliance, the AD or safety directive number and revision date. If the AD or safety directive involves recurring action, the time and date when the next action is required.
 (vi) Copies of the forms prescribed by §43.9(a) of this chapter for each major alteration to the airframe and currently installed engines, rotors, propellers, and appliances.

(b) The owner or operator shall retain the following records for the periods prescribed:
 (1) The records specified in paragraph (a)(1) of this section shall be retained until the work is repeated or superseded by other work or for 1 year after the work is performed.
 (2) The records specified in paragraph (a)(2) of this section shall be retained and transferred with the aircraft at the time the aircraft is sold.
 (3) A list of defects furnished to a registered owner or operator under §43.11 of this chapter shall be retained until the defects are repaired and the aircraft is approved for return to service.
 (4) The current status of applicable airworthiness directives (AD) and safety directives including, for each, the method of compliance, the AD or safety directive number and revision date. If the AD or safety directive involves recurring action, the time and date when the next action is required.
 (5) Copies of the forms prescribed by §43.9(a) of this chapter for each major alteration to the airframe and currently installed engines, rotors, propellers, and appliances.

(c) The owner or operator shall present Form 337 described in paragraph (d) of this section for inspection upon request of any law enforcement officer.

(d) When a fuel tank is installed within the passenger compartment or a baggage compartment pursuant to part 43 of this chapter, a copy of FAA Form 337 shall be kept on board the modified aircraft by the owner or operator.

§91.419 Transfer of maintenance records.

Any owner or operator who sells a U.S.-registered aircraft shall transfer to the purchaser, at the time of sale, the following records of that aircraft, in plain language form or in coded form at the election of the purchaser, if the coded form provides for the preservation and retrieval of information in a manner acceptable to the Administrator:

(a) The records specified in §91.417(a)(2).
(b) The records specified in §91.417(a)(1) which are not included in the records covered by paragraph (a) of this section, except that the purchaser may permit the seller to keep physical custody of such records. However, custody of records by the seller does not relieve the purchaser of the responsibility under §91.417(c) to make the records available for inspection by the Administrator or any authorized representative of the National Transportation Safety Board (NTSB).

§91.421 Rebuilt engine maintenance records.

(a) The owner or operator may use a new maintenance record, without previous operating history, for an aircraft engine rebuilt by the manufacturer or by an agency approved by the manufacturer.
(b) Each manufacturer or agency that grants zero time to an engine rebuilt by it shall enter in the new record—
 (1) A signed statement of the date the engine was rebuilt;
(2) Each change made as required by airworthiness directives; and
(3) Each change made in compliance with manufacturer’s service bulletins, if the entry is specifically requested in that bulletin.

(c) For the purposes of this section, a rebuilt engine is a used engine that has been completely disassembled, inspected, repaired as necessary, reassembled, tested, and approved in the same manner and to the same tolerances and limits as a new engine with either new or used parts. However, all parts used in it must conform to the production drawing tolerances and limits for new parts or be of approved oversized or undersized dimensions for a new engine.

§§ 91.423–91.499 [Reserved]

Subpart F—Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft

Source: Doc. No. 18334, 54 FR 34314, Aug. 18, 1989, unless otherwise noted.

§ 91.501 Applicability.

(a) This subpart prescribes operating rules, in addition to those prescribed in other subparts of this part, governing the operation of large airplanes of U.S. registry, turbojet-powered multiengine civil airplanes of U.S. registry, and fractional ownership program aircraft of U.S. registry that are operating under subpart K of this part in operations not involving common carriage. The operating rules in this subpart do not apply to those aircraft when they are required to be operated under parts 121, 125, 129, 135, and 137 of this chapter. (Section 91.409 prescribes an inspection program for large and for turbine-powered (turbojet and turboprop) multiengine airplanes and turbine-powered rotorcraft of U.S. registry when they are operated under this part or part 129 or 137.)

(b) Operations that may be conducted under the rules in this subpart instead of those in parts 121, 129, 135, and 137 of this chapter when common carriage is not involved, include—

(1) Ferry or training flights;
(2) Aerial work operations such as aerial photography or survey, or pipeline patrol, but not including fire fighting operations;
(3) Flights for the demonstration of an airplane to prospective customers when no charge is made except for those specified in paragraph (d) of this section;
(4) Flights conducted by the operator of an airplane for his personal transportation, or the transportation of his guests when no charge, assessment, or fee is made for the transportation;
(5) Carriage of officials, employees, guests, and property of a company on an airplane operated by that company, or the parent or a subsidiary of the company or a subsidiary of the parent, when the carriage is within the scope of, and incidental to, the business of the company (other than transportation by air) and no charge, assessment or fee is made for the carriage in excess of the cost of owning, operating, and maintaining the airplane, except that no charge of any kind may be made for the carriage of a guest of a company, when the carriage is not within the scope of, and incidental to, the business of that company;
(6) The carriage of company officials, employees, and guests of the company on an airplane operated under a time sharing, interchange, or joint ownership agreement as defined in paragraph (c) of this section;
(7) The carriage of property (other than mail) on an airplane operated by a person in the furtherance of a business or employment (other than transportation by air) when the carriage is within the scope of, and incidental to, that business or employment and no charge, assessment, or fee is made for the carriage other than those specified in paragraph (d) of this section;
(8) The carriage on an airplane of an athletic team, sports group, choral group, or similar group having a common purpose or objective when there is no charge, assessment, or fee of any kind made by any person for that carriage; and
(9) The carriage of persons on an airplane operated by a person in the furtherance of a business other than transportation by air for the purpose of selling them land, goods, or property,
including franchises or distributorships, when the carriage is within the scope of, and incidental to, that business and no charge, assessment, or fee is made for that carriage.

(10) Any operation identified in paragraphs (b)(1) through (b)(9) of this section when conducted—
 (i) By a fractional ownership program manager, or
 (ii) By a fractional owner in a fractional ownership program aircraft operated under subpart K of this part, except that a flight under a joint ownership arrangement under paragraph (b)(6) of this section may not be conducted. For a flight under an interchange agreement under paragraph (b)(6) of this section, the exchange of equal time for the operation must be properly accounted for as part of the total hours associated with the fractional owner’s share of ownership.

(c) As used in this section—
 (1) A time sharing agreement means an arrangement whereby a person leases his airplane with flight crew to another person, and no charge is made for the flights conducted under that arrangement other than those specified in paragraph (d) of this section;
 (2) An interchange agreement means an arrangement whereby a person leases his airplane to another person in exchange for equal time, when needed, on the other person’s airplane, and no charge, assessment, or fee is made, except that a charge may be made not to exceed the difference between the cost of owning, operating, and maintaining the two airplanes;
 (3) A joint ownership agreement means an arrangement whereby one of the registered joint owners of an airplane employs and furnishes the flight crew for that airplane and each of the registered joint owners pays a share of the charge specified in the agreement.
 (d) The following may be charged, as expenses of a specific flight, for transportation as authorized by paragraphs (b)(3) and (7) and (c)(1) of this section:
 (1) Fuel, oil, lubricants, and other additives.
 (2) Travel expenses of the crew, including food, lodging, and ground transportation.
 (3) Hangar and tie-down costs away from the aircraft’s base of operation.
 (4) Insurance obtained for the specific flight.
 (5) Landing fees, airport taxes, and similar assessments.
 (6) Customs, foreign permit, and similar fees directly related to the flight.
 (7) In flight food and beverages.
 (8) Passenger ground transportation.
 (9) Flight planning and weather contract services.
 (10) An additional charge equal to 100 percent of the expenses listed in paragraph (d)(1) of this section.

§ 91.503 Flying equipment and operating information.

(a) The pilot in command of an airplane shall ensure that the following flying equipment and aeronautical charts and data, in current and appropriate form, are accessible for each flight at the pilot station of the airplane:
 (1) A flashlight having at least two size “D” cells, or the equivalent, that is in good working order.
 (2) A cockpit checklist containing the procedures required by paragraph (b) of this section.
 (3) Pertinent aeronautical charts.
 (4) For IFR, VFR over-the-top, or night operations, each pertinent navigational en route, terminal area, and approach and letdown chart.
 (5) In the case of multiengine airplanes, one-engine inoperative climb performance data.
 (b) Each cockpit checklist must contain the following procedures and shall be used by the flight crewmembers when operating the airplane:
 (1) Before starting engines.
 (2) Before takeoff.
 (3) Cruise.
 (4) Before landing.
 (5) After landing.
 (6) Stopping engines.
 (7) Emergencies.
 (c) Each emergency cockpit checklist procedure required by paragraph (b)(7) of this section must contain the following procedures, as appropriate:
 (1) Emergency operation of fuel, hydraulic, electrical, and mechanical systems.
§ 91.511 Communication and navigation equipment for overwater operations.

(a) Except as provided in paragraphs (c), (d), and (f) of this section, no person may take off an airplane for a flight over water more than 50 nautical miles from the nearest shore unless that airplane is equipped with a life preserver or an approved flotation means for each occupant of the airplane.

(b) Except as provided in paragraph (c) of this section, no person may take off an airplane for flight over water more than 30 minutes flying time or 100 nautical miles from the nearest shore, whichever is less, unless it has on board the following survival equipment:

(1) A life preserver, equipped with an approved survivor locator light, for each occupant of the airplane.

(2) Enough life rafts (each equipped with an approved survivor locator light) of a rated capacity and buoyancy to accommodate the occupants of the airplane.

(3) At least one pyrotechnic signaling device for each life raft.

(4) One self-buoyant, water-resistant, portable emergency radio signaling device that is capable of transmission on the appropriate emergency frequency or frequencies and not dependent upon the airplane power supply.

(5) A lifeline stored in accordance with § 25.1411(g) of this chapter.

(c) A fractional ownership program manager under subpart K of this part may apply for a deviation from paragraphs (b)(1) through (5) of this section for a particular over water operation or the Administrator may amend the management specifications to require the carriage of all or any specific items of the equipment listed in paragraphs (b)(1) through (5) of this section.

(d) The required life rafts, life preservers, and signaling devices must be installed in conspicuously marked locations and easily accessible in the event of a ditching without appreciable time for preparatory procedures.

(e) A survival kit, appropriately equipped for the route to be flown, must be attached to each required life raft.

(f) As used in this section, the term shore means that area of the land adjacent to the water that is above the high water mark and excludes land areas that are intermittently under water.

§ 91.513 Emergency equipment.

(a) No person may operate an airplane unless it is equipped with the emergency equipment listed in this section.

(b) Each item of equipment—

(1) Must be inspected in accordance with §91.409 to ensure its continued serviceability and immediate readiness for its intended purposes;

(2) Must be readily accessible to the crew;

(3) Must clearly indicate its method of operation; and

(4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection.

(c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the following:

(1) The type and quantity of extinguishing agent must be suitable for the kinds of fires likely to occur in the compartment where the extinguisher is intended to be used.

(2) At least one hand fire extinguisher must be provided and located on or near the flight deck in a place that is readily accessible to the flight crew.

(3) At least one hand fire extinguisher must be conveniently located...
in the passenger compartment of each airplane accommodating more than six but less than 31 passengers, and at least two hand fire extinguishers must be conveniently located in the passenger compartment of each airplane accommodating more than 30 passengers.

(4) Hand fire extinguishers must be installed and secured in such a manner that they will not interfere with the safe operation of the airplane or adversely affect the safety of the crew and passengers. They must be readily accessible and, unless the locations of the fire extinguishers are obvious, their stowage provisions must be properly identified.

(d) First aid kits for treatment of injuries likely to occur in flight or in minor accidents must be provided.

(e) Each airplane accommodating more than 19 passengers must be equipped with a crash axe.

(f) Each passenger-carrying airplane must have a portable battery-powered megaphone or megaphones readily accessible to the crewmembers assigned to direct emergency evacuation, installed as follows:

(1) One megaphone on each airplane with a seating capacity of more than 60 but less than 100 passengers, at the most rearward location in the passenger cabin where it would be readily accessible to a normal flight attendant seat. However, the Administrator may grant a deviation from the requirements of this subparagraph if the Administrator finds that a different location would be more useful for evacuation of persons during an emergency.

(2) On each airplane with a seating capacity of 100 or more passengers, one megaphone installed at the forward end and one installed at the most rearward location where it would be readily accessible to a normal flight attendant seat.

§ 91.519 Passenger briefing.

(a) Before each takeoff the pilot in command of an airplane carrying passengers shall ensure that all passengers have been orally briefed on—

(1) One thousand feet above the surface, or 1,000 feet from any mountain, hill, or other obstruction to flight, for day operations; and

(2) The altitudes prescribed in § 91.177, for night operations.

(b) This section does not apply—

(1) During takeoff or landing;

(2) When a different altitude is authorized by a waiver to this section under subpart J of this part; or

(3) When a flight is conducted under the special VFR weather minimums of § 91.157 with an appropriate clearance from ATC.

§ 91.517 Passenger information.

(a) Except as provided in paragraph (b) of this section, no person may operate an airplane carrying passengers unless it is equipped with signs that are visible to passengers and flight attendants to notify them when smoking is prohibited and when safety belts must be fastened. The signs must be so constructed that the crew can turn them on and off. They must be turned on during airplane movement on the surface, for each takeoff, for each landing, and when otherwise considered to be necessary by the pilot in command.

(b) The pilot in command of an airplane that is not required, in accordance with applicable aircraft and equipment requirements of this chapter, to be equipped as provided in paragraph (a) of this section shall ensure that the passengers are notified orally each time that it is necessary to fasten their safety belts and when smoking is prohibited.

(c) If passenger information signs are installed, no passenger or crewmember may smoke while any “no smoking” sign is lighted nor may any passenger or crewmember smoke in any lavatory.

(d) Each passenger required by § 91.107(a)(3) to occupy a seat or berth shall fasten his or her safety belt about him or her and keep it fastened while any “fasten seat belt” sign is lighted.

(e) Each passenger shall comply with instructions given him or her by crewmembers regarding compliance with paragraphs (b), (c), and (d) of this section.
§ 91.521 Shoulder harness.

(a) No person may operate a transport category airplane that was type certificated after January 1, 1958, unless it is equipped at each seat at a flight deck station with a combined safety belt and shoulder harness that meets the applicable requirements specified in §25.785 of this chapter, except that—

(1) Shoulder harnesses and combined safety belt and shoulder harnesses that were approved and installed before March 6, 1980, may continue to be used; and

(2) Safety belt and shoulder harness restraint systems may be designed to the inertia load factors established under the certification basis of the airplane.

(b) No person may operate a transport category airplane unless it is equipped at each required flight attendant seat in the passenger compartment with a combined safety belt and shoulder harness that meets the applicable requirements specified in §25.785 of this chapter, except that—

(1) Shoulder harnesses and combined safety belt and shoulder harnesses that were approved and installed before March 6, 1980, may continue to be used; and

(2) Safety belt and shoulder harness restraint systems may be designed to the inertia load factors established under the certification basis of the airplane.

§ 91.523 Carry-on baggage.

No pilot in command of an airplane having a seating capacity of more than 19 passengers may permit a passenger to stow baggage aboard that airplane except—

(a) In a suitable baggage or cargo storage compartment, or as provided in §91.525; or

(b) Under a passenger seat in such a way that it will not slide forward under crash impacts severe enough to induce the ultimate inertia forces specified in
§ 25.561(b)(3) of this chapter, or the requirements of the regulations under which the airplane was type certificated. Restraining devices must also limit sideward motion of under-seat baggage and be designed to withstand crash impacts severe enough to induce sideward forces specified in § 25.561(b)(3) of this chapter.

§ 91.525 Carriage of cargo.

(a) No pilot in command may permit cargo to be carried in any airplane unless—

(1) It is carried in an approved cargo rack, bin, or compartment installed in the airplane;

(2) It is secured by means approved by the Administrator; or

(3) It is carried in accordance with each of the following:

 (i) It is properly secured by a safety belt or other tiedown having enough strength to eliminate the possibility of shifting under all normally anticipated flight and ground conditions.

 (ii) It is packaged or covered to avoid possible injury to passengers.

 (iii) It does not impose any load on seats or on the floor structure that exceeds the load limitation for those components.

 (iv) It is not located in a position that restricts the access to or use of any required emergency or regular exit, or the use of the aisle between the crew and the passenger compartment.

 (v) It is not carried directly above seated passengers.

(b) When cargo is carried in cargo compartments that are designed to require the physical entry of a crewmember to extinguish any fire that may occur during flight, the cargo must be loaded so as to allow a crewmember to effectively reach all parts of the compartment with the contents of a hand fire extinguisher.

§ 91.527 Operating in icing conditions.

(a) No pilot may take off an airplane that has frost, ice, or snow adhering to any propeller, windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, or flight attitude instrument system.

(b) No pilot may fly under IFR into known or forecast light or moderate icing conditions, or under VFR into known light or moderate icing conditions, unless—

 (1) The aircraft has functioning deicing or anti-icing equipment protecting each rotor blade, propeller, windshield, wing, stabilizing or control surface, and each airspeed, altimeter, rate of climb, or flight attitude instrument system;

 (2) The airplane has ice protection provisions that meet section 34 of Special Federal Aviation Regulation No. 23; or

 (3) The airplane meets transport category airplane type certification provisions, including the requirements for certification for flight in icing conditions.

(c) Except for an airplane that has ice protection provisions that meet the requirements in section 34 of Special Federal Aviation Regulation No. 23, or those for transport category airplane type certification, no pilot may fly an airplane into known or forecast severe icing conditions.

(d) If current weather reports and briefing information relied upon by the pilot in command indicate that the forecast icing conditions that would otherwise prohibit the flight will not be encountered during the flight because of changed weather conditions since the forecast, the restrictions in paragraphs (b) and (c) of this section based on forecast conditions do not apply.

§ 91.529 Flight engineer requirements.

(a) No person may operate the following airplanes without a flight crewmember holding a current flight engineer certificate:

 (1) An airplane for which a type certificate was issued before January 2, 1964, having a maximum certificated takeoff weight of more than 80,000 pounds.
§ 91.531 Second in command requirements.

(a) Except as provided in paragraph (b) and (d) of this section, no person may operate the following airplanes without a pilot who is designated as second in command of that airplane:
 (1) A large airplane, except that a person may operate an airplane certificated under SFAR 41 without a pilot who is designated as second in command if that airplane is certificated for operation with one pilot.
 (2) A turbojet-powered multiengine airplane for which two pilots are required under the type certification requirements for that airplane.
 (3) A commuter category airplane, except that a person may operate a commuter category airplane notwithstanding paragraph (a)(1) of this section, that has a passenger seating configuration, excluding pilot seats, of nine or less without a pilot who is designated as second in command if that airplane is type certificated for operations with one pilot.

(b) The Administrator may issue a letter of authorization for the operation of an airplane without compliance with the requirements of paragraph (a) of this section if that airplane is designed for and type certificated with only one pilot station. The authorization contains any conditions that the Administrator finds necessary for safe operation.

(c) No person may designate a pilot to serve as second in command, nor may any pilot serve as second in command, of an airplane required under this section to have two pilots unless that pilot meets the qualifications for second in command prescribed in §61.55 of this chapter.

(d) No person may operate an aircraft under subpart K of this part without a pilot who is designated as second in command of that aircraft in accordance with §91.1049(d). The second in command must meet the experience requirements of §91.1053.

§ 91.533 Flight attendant requirements.

(a) No person may operate an airplane unless at least the following number of flight attendants are on board the airplane:
 (1) For airplanes having more than 19 but less than 51 passengers on board, one flight attendant.
 (2) For airplanes having more than 50 but less than 101 passengers on board, two flight attendants.
 (3) For airplanes having more than 100 passengers on board, two flight attendants plus one additional flight attendant for each unit (or part of a unit) of 50 passengers above 100.

(b) No person may serve as a flight attendant on an airplane when required by paragraph (a) of this section unless that person has demonstrated to the pilot in command familiarity with the necessary functions to be performed in an emergency or a situation requiring emergency evacuation and is capable of using the emergency equipment installed on that airplane.

§ 91.535 Stowage of food, beverage, and passenger service equipment during aircraft movement on the surface, takeoff, and landing.

(a) No operator may move an aircraft on the surface, take off, or land when any food, beverage, or tableware furnished by the operator is located at any passenger seat.

(b) No operator may move an aircraft on the surface, take off, or land unless each food and beverage tray and seat back tray table is secured in its stowed position.

(c) No operator may permit an aircraft to move on the surface, take off, or land unless each passenger serving cart is secured in its stowed position.
Federal Aviation Administration, DOT

§ 91.605

(d) No operator may permit an aircraft to move on the surface, take off, or land unless each movie screen that extends into the aisle is stowed.

(e) Each passenger shall comply with instructions given by a crewmember with regard to compliance with this section.

[Doc. No. 26142, 57 FR 42672, Sept. 15, 1992]

§§ 91.536–91.599 [Reserved]

Subpart G—Additional Equipment and Operating Requirements for Large and Transport Category Aircraft

SOURCE: Docket No. 18334, 54 FR 34318, Aug. 18, 1989, unless otherwise noted.

§ 91.601 Applicability.

This subpart applies to operation of large and transport category U.S.-registered civil aircraft.

§ 91.603 Aural speed warning device.

No person may operate a transport category airplane in air commerce unless that airplane is equipped with an aural speed warning device that complies with §25.1303(c)(1).

§ 91.605 Transport category civil airplane weight limitations.

(a) No person may take off any transport category airplane (other than a turbine-engine-powered airplane certificated after September 30, 1958) unless—

(1) The takeoff weight does not exceed the authorized maximum takeoff weight for the elevation of the airport of takeoff;

(2) The elevation of the airport of takeoff is within the altitude range for which maximum takeoff weights have been determined;

(3) Normal consumption of fuel and oil in flight to the airport of intended landing will leave a weight on arrival not in excess of the authorized maximum landing weight for the elevation of that airport; and

(4) The elevations of the airport of intended landing and of all specified alternate airports are within the altitude range for which the maximum landing weights have been determined.

(b) No person may operate a turbine-engine-powered transport category airplane certificated after September 30, 1958, contrary to the Airplane Flight Manual, or take off that airplane unless—

(1) The takeoff weight does not exceed the takeoff weight specified in the Airplane Flight Manual for the elevation of the airport and for the ambient temperature existing at the time of takeoff;

(2) Normal consumption of fuel and oil in flight to the airport of intended landing and to the alternate airports will leave a weight on arrival not in excess of the landing weight specified in the Airplane Flight Manual for the elevation of each of the airports involved and for the ambient temperatures expected at the time of landing;

(3) The takeoff weight does not exceed the weight shown in the Airplane Flight Manual to correspond with the minimum distances required for takeoff, considering the elevation of the airport, the runway to be used, the effective runway gradient, the ambient temperature and wind component at the time of takeoff, and, if operating limitations exist for the minimum distances required for takeoff from wet runways, the runway surface condition (dry or wet). Wet runway distances associated with grooved or porous friction course runways, if provided in the Airplane Flight Manual, may be used only for runways that are grooved or treated with a porous friction course (PFC) overlay, and that the operator determines are designed, constructed, and maintained in a manner acceptable to the Administrator.

(4) Where the takeoff distance includes a clearway, the clearway distance is not greater than one-half of—

(i) The takeoff run, in the case of airplanes certificated after September 30, 1958, and before August 30, 1959; or

(ii) The runway length, in the case of airplanes certificated after August 29, 1959.

(c) No person may take off a turbine-engine-powered transport category airplane certificated after August 29, 1959, unless, in addition to the requirements of paragraph (b) of this section—

(1) The accelerate-stop distance is no greater than the length of the runway...
plus the length of the stopway (if present); and
(2) The takeoff distance is no greater than the length of the runway plus the length of the clearway (if present); and
(3) The takeoff run is no greater than the length of the runway.

[Doc. No. 18334, 54 FR 34318, Aug. 18, 1989, as amended by Amdt. 91–256, 63 FR 8321, Feb. 18, 1998]

§ 91.607 Emergency exits for airplanes carrying passengers for hire.

(a) Notwithstanding any other provision of this chapter, no person may operate a large airplane (type certificated under the Civil Air Regulations effective before April 9, 1957) in passenger-carrying operations for hire, with more than the number of occupants—
(1) Allowed under Civil Air Regulations § 4b.362 (a), (b), and (c) as in effect on December 20, 1951; or
(2) Approved under Special Civil Air Regulations SR–387, SR–389, SR–389A, or SR–389B, or under this section as in effect.

However, an airplane type listed in the following table may be operated with up to the listed number of occupants (including crewmembers) and the corresponding number of exits (including emergency exits and doors) approved for the emergency exit of passengers or with an occupant-exit configuration approved under paragraph (b) or (c) of this section.

<table>
<thead>
<tr>
<th>Airplane type</th>
<th>Maximum number of occupants including all crewmembers</th>
<th>Corresponding number of exits authorized for passenger use</th>
</tr>
</thead>
<tbody>
<tr>
<td>B–307</td>
<td>61</td>
<td>4</td>
</tr>
<tr>
<td>B–377</td>
<td>96</td>
<td>9</td>
</tr>
<tr>
<td>C–46</td>
<td>67</td>
<td>4</td>
</tr>
<tr>
<td>CV–240</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>CV–340 and CV–440</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>DC–3</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>DC–3 (Super)</td>
<td>39</td>
<td>5</td>
</tr>
<tr>
<td>DC–4</td>
<td>86</td>
<td>5</td>
</tr>
<tr>
<td>DC–6</td>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>DC–6B</td>
<td>112</td>
<td>11</td>
</tr>
<tr>
<td>L–18</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>L–49, L–649, L–749</td>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>L–1049 series</td>
<td>96</td>
<td>9</td>
</tr>
<tr>
<td>M–202</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>M–404</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>Viscount 700 series</td>
<td>53</td>
<td>7</td>
</tr>
</tbody>
</table>

(b) Occupants in addition to those authorized under paragraph (a) of this section may be carried as follows:

(1) For each additional floor-level exit at least 24 inches wide by 48 inches high, with an unobstructed 20-inch-wide access aisleway between the exit and the main passenger aisle, 12 additional occupants.

(2) For each additional window exit located over a wing that meets the requirements of the airworthiness standards under which the airplane was type certificated or that is large enough to inscribe an ellipse 19×26 inches, eight additional occupants.

(3) For each additional window exit that is not located over a wing but that otherwise complies with paragraph (b)(2) of this section, five additional occupants.

(4) For each airplane having a ratio (as computed from the table in paragraph (a) of this section) of maximum number of occupants to number of exits greater than 14:1, and for each airplane that does not have at least one full-size, door-type exit in the side of the fuselage in the rear part of the cabin, the first additional exit must be a floor-level exit that complies with paragraph (b)(1) of this section and must be located in the rear part of the cabin on the opposite side of the fuselage from the main entrance door. However, no person may operate an airplane under this section carrying more than 115 occupants unless there is an exit on each side of the fuselage in the rear part of the cabin.

(c) No person may eliminate any approved exit except in accordance with the following:

(1) The previously authorized maximum number of occupants must be reduced by the same number of additional occupants authorized for that exit under this section.

(2) Exits must be eliminated in accordance with the following priority schedule: First, non-over-wing window exits; second, over-wing window exits; third, floor-level exits located in the forward part of the cabin; and fourth, floor-level exits located in the rear of the cabin.

(3) At least one exit must be retained on each side of the fuselage regardless of the number of occupants.

14 CFR Ch. I (1–1–11 Edition)
(4) No person may remove any exit that would result in a ratio of maximum number of occupants to approved exits greater than 14:1.

(d) This section does not relieve any person operating under part 121 of this chapter from complying with §121.291.

§91.609 Flight data recorders and cockpit voice recorders.

(a) No holder of an air carrier operating certificate or an operating certificate may conduct any operation under this part with an aircraft listed in the holder’s operations specifications or current list of aircraft used in air transportation unless that aircraft complies with any applicable flight recorder and cockpit voice recorder requirements of the part under which its certificate is issued except that the operator may—

(1) Ferry an aircraft with an inoperative flight recorder or cockpit voice recorder from a place where repair or replacement cannot be made to a place where they can be made;

(2) Continue a flight as originally planned, if the flight recorder or cockpit voice recorder becomes inoperative after the aircraft has taken off;

(3) Conduct an airworthiness flight test during which the flight recorder or cockpit voice recorder is turned off to test it or to test any communications or electrical equipment installed in the aircraft; or

(4) Ferry a newly acquired aircraft from a place where possession of it was taken to a place where the flight recorder or cockpit voice recorder is to be installed; or

(5) Operate an aircraft:

(i) For not more than 15 days while the flight recorder and/or cockpit voice recorder is inoperative and/or removed for repair provided that the aircraft maintenance records contain an entry that indicates the date of failure, and a placard is located in view of the pilot to show that the flight recorder or cockpit voice recorder is inoperative.

(ii) For not more than an additional 15 days, provided that the requirements in paragraph (b)(5)(i) are met and that a certificated pilot, or a certificated person authorized to return an aircraft to service under §43.7 of this chapter, certifies in the aircraft maintenance records that additional time is required to complete repairs or obtain a replacement unit.

(c)(1) No person may operate a U.S. civil registered, multiengine, turbine-powered airplane or rotorcraft having a passenger seating configuration, excluding any pilot seats of 10 or more that has been manufactured after October 11, 1991, unless it is equipped with one or more approved flight recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium, that are capable of recording the data specified in appendix E to this part, for an airplane, or appendix F to this part, for a rotorcraft, of this part within the range, accuracy, and recording interval specified, and that are capable of retaining no less than 8 hours of aircraft operation.

(c)(2) All airplanes subject to paragraph (c)(1) of this section that are manufactured before April 7, 2010, by April 7, 2012, must meet the requirements of §23.1459(a)(7) or §25.1459(a)(8) of this chapter, as applicable.

(c)(3) All airplanes and rotorcraft subject to paragraph (c)(1) of this section that are manufactured on or after April 7, 2010, must meet the flight data recorder requirements of §23.1459, §25.1459, §27.1459, or §29.1459 of this chapter.
§ 91.609 14 CFR Ch. I (1–1–11 Edition)

chapter, as applicable, and retain at least the last 25 hours of recorded information using a recorder that meets the standards of TSO–C124a, or later revision.

(d) Whenever a flight recorder, required by this section, is installed, it must be operated continuously from the instant the airplane begins the takeoff roll or the rotorcraft begins lift-off until the airplane has completed the landing roll or the rotorcraft has landed at its destination.

(e) Unless otherwise authorized by the Administrator, after October 11, 1991, no person may operate a U.S. civil registered multiengine, turbine-powered airplane or rotorcraft having a passenger seating configuration of six passengers or more and for which two pilots are required by type certification or operating rule unless it is equipped with an approved cockpit voice recorder that:

(1) Is installed in compliance with § 23.1457(a)(1) and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g); § 25.1457(a)(1) and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g); § 27.1457(a)(1) and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g); or § 29.1457(a)(1) and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g) of this chapter, as applicable; and

(2) Is operated continuously from the use of the checklist before the flight to completion of the final checklist at the end of the flight.

(f) In complying with this section, an approved cockpit voice recorder having an erasure feature may be used, so that at any time during the operation of the recorder, information recorded more than 15 minutes earlier may be erased or otherwise obliterated.

(g) In the event of an accident or occurrence requiring immediate notification to the National Transportation Safety Board under part 830 of its regulations that results in the termination of the flight, any operator who has installed approved flight recorders and approved cockpit voice recorders shall keep the recorded information for at least 60 days or, if requested by the Administrator or the Board, for a longer period. Information obtained from the record is used to assist in determining the cause of accidents or occurrences in connection with the investigation under part 830. The Administrator does not use the cockpit voice recorder record in any civil penalty or certificate action.

(h) All airplanes required by this section to have a cockpit voice recorder and a flight data recorder, that are manufactured before April 7, 2010, must by April 7, 2012, have a cockpit voice recorder that also—

(1) Meets the requirements of § 23.1457(d)(6) or § 25.1457(d)(6) of this chapter, as applicable; and

(2) If transport category, meets the requirements of § 25.1457(a)(3), (a)(4), and (a)(5) of this chapter.

(i) All airplanes or rotorcraft required by this section to have a cockpit voice recorder and flight data recorder, that are manufactured on or after April 7, 2010, must have a cockpit voice recorder installed that also—

(1) Is installed in accordance with the requirements of § 23.1457 (except for paragraphs (a)(6) and (d)(5)); § 25.1457 (except for paragraphs (a)(6) and (d)(5)); § 27.1457 (except for paragraphs (a)(6) and (d)(5)); or § 29.1457 (except for paragraphs (a)(6) and (d)(5)) of this chapter, as applicable; and

(2) Retains at least the last 2 hours of recorded information using a recorder that meets the standards of TSO–C124a, or later revision.

(3) For all airplanes or rotorcraft manufactured on or after April 6, 2012, also meets the requirements of § 23.1457(a)(6) and (d)(5); § 25.1457(a)(6) and (d)(5); § 27.1457(a)(6) and (d)(5); or § 29.1457(a)(6) and (d)(5) of this chapter, as applicable.

(j) All airplanes or rotorcraft required by this section to have a cockpit voice recorder and a flight data recorder, that install datalink communication equipment on or after April 6, 2012, must record all datalink messages as required by the certification rule applicable to the aircraft.

(k) An aircraft operated under this part under deviation authority from part 125 of this chapter must comply with all of the applicable flight data
§ 91.611 Authorization for ferry flight with one engine inoperative.

(a) General. The holder of an air carrier operating certificate or an operating certificate issued under part 125 may conduct a ferry flight of a four-engine airplane or a turbine-engine-powered airplane equipped with three engines, with one engine inoperative, to a base for the purpose of repairing that engine subject to the following:

1. The airplane model has been test flown and found satisfactory for safe flight in accordance with paragraph (b) or (c) of this section, as appropriate. However, each operator who before November 19, 1966, has shown that a model of airplane with an engine inoperative is satisfactory for safe flight by a test flight conducted in accordance with performance data contained in the applicable Airplane Flight Manual under paragraph (a)(2) of this section need not repeat the test flight for that model.

2. The approved Airplane Flight Manual contains the following performance data and the flight is conducted in accordance with that data:

 (i) Maximum weight.
 (ii) Center of gravity limits.
 (iii) Configuration of the inoperative propeller (if applicable).
 (iv) Runway length for takeoff (including temperature accountability).
 (v) Altitude range.
 (vi) Certificate limitations.
 (vii) Ranges of operational limits.
 (viii) Performance information.
 (ix) Operating procedures.

3. The operator has FAA approved procedures for the safe operation of the airplane, including specific requirements for—

 (i) Limiting the operating weight on any ferry flight to the minimum necessary for the flight plus the necessary reserve fuel load;
 (ii) A limitation that takeoffs must be made from dry runways unless, based on a showing of actual operating takeoff techniques on wet runways with one engine inoperative, takeoffs with full controllability from wet runways have been approved for the specific model aircraft and included in the Airplane Flight Manual;
 (iii) Operations from airports where the runways may require a takeoff or approach over populated areas; and
 (iv) Inspection procedures for determining the operating condition of the operative engines.

4. No person may take off an airplane under this section if—

 (i) The initial climb is over thickly populated areas; or
 (ii) Weather conditions at the takeoff or destination airport are less than those required for VFR flight.

5. Persons other than required flight crewmembers shall not be carried during the flight.

6. No person may use a flight crewmember for flight under this section unless that crewmember is thoroughly familiar with the operating procedures for one-engine inoperative ferry flight contained in the certificate holder's manual and the limitations and performance information in the Airplane Flight Manual.

(b) Flight tests: reciprocating-engine-powered airplanes. The airplane performance of a reciprocating-engine-powered airplane with one engine inoperative must be determined by flight test as follows:

1. A speed not less than 1.3 VS1 must be chosen at which the airplane may be controlled satisfactorily in a climb with the critical engine inoperative (with its propeller removed or in a configuration desired by the operator and with all other engines operating at the maximum power determined in paragraph (b)(3) of this section).

2. The distance required to accelerate to the speed listed in paragraph (b)(1) of this section and to climb to 50 feet must be determined with—

 (i) The landing gear extended;
 (ii) The critical engine inoperative and its propeller removed or in a configuration desired by the operator; and
(iii) The other engines operating at not more than maximum power established under paragraph (b)(3) of this section.

(3) The takeoff, flight and landing procedures, such as the approximate trim settings, method of power application, maximum power, and speed must be established.

(4) The performance must be determined at a maximum weight not greater than the weight that allows a rate of climb of at least 400 feet per minute in the en route configuration set forth in §25.67(d) of this chapter in effect on January 31, 1977, at an altitude of 5,000 feet.

(5) The performance must be determined using temperature accountability for the takeoff field length, computed in accordance with §25.61 of this chapter in effect on January 31, 1977.

(c) Flight tests: Turbine-engine-powered airplanes. The airplane performance of a turbine-engine-powered airplane with one engine inoperative must be determined by flight tests, including at least three takeoff tests, in accordance with the following:

(1) Takeoff speeds V_R and V_2, not less than the corresponding speeds under which the airplane was type certificated under §25.107 of this chapter, must be chosen at which the airplane may be controlled satisfactorily with the critical engine inoperative (with its propeller removed or in a configuration desired by the operator, if applicable) and with all other engines operating at not more than the power selected for type certification as set forth in §25.101 of this chapter.

(2) The minimum takeoff field length must be the horizontal distance required to accelerate and climb to the 35-foot height at V_2 speed (including any additional speed increment obtained in the tests) multiplied by 115 percent and determined with—

(i) The landing gear extended;

(ii) The critical engine inoperative and its propeller removed or in a configuration desired by the operator (if applicable); and

(iii) The other engine operating at not more than the power selected for type certification as set forth in §25.101 of this chapter.

(3) The takeoff, flight, and landing procedures such as the approximate trim setting, method of power application, maximum power, and speed must be established. The airplane must be satisfactorily controllable during the entire takeoff run when operated according to these procedures.

(4) The performance must be determined at a maximum weight not greater than the weight determined under §25.121(c) of this chapter but with—

(i) The actual steady gradient of the final takeoff climb requirement not less than 1.2 percent at the end of the takeoff path with two critical engines inoperative; and

(ii) The climb speed not less than the two-engine inoperative trim speed for the actual steady gradient of the final takeoff climb prescribed by paragraph (c)(4)(i) of this section.

(5) The airplane must be satisfactorily controllable in a climb with two critical engines inoperative. Climb performance may be shown by calculations based on, and equal in accuracy to, the results of testing.

(6) The performance must be determined using temperature accountability for takeoff distance and final takeoff climb computed in accordance with §25.101 of this chapter.

For the purpose of paragraphs (c)(4) and (5) of this section, two critical engines means two adjacent engines on one side of an airplane with four engines, and the center engine and one outboard engine on an airplane with three engines.

§ 91.613 Materials for compartment interiors.

(a) No person may operate an airplane that conforms to an amended or supplemental type certificate issued in accordance with SFAR No. 41 for a maximum certificated takeoff weight in excess of 12,500 pounds unless within 1 year after issuance of the initial airworthiness certificate under that SFAR the airplane meets the compartment interior requirements set forth in §25.853 (a), (b), (b–1), (b–2), and (b–3) of this chapter in effect on September 26, 1978.
Federal Aviation Administration, DOT

§ 91.703

(b) Thermal/acoustic insulation materials. For transport category airplanes type certificated after January 1, 1958:

(1) For airplanes manufactured before September 2, 2005, when thermal/acoustic insulation is installed in the fuselage as replacements after September 2, 2005, the insulation must meet the flame propagation requirements of §25.856 of this chapter, effective September 2, 2003, if it is:

(i) Of a blanket construction or

(ii) Installed around air ducting.

(2) For airplanes manufactured after September 2, 2005, thermal/acoustic insulation materials installed in the fuselage must meet the flame propagation requirements of §25.856 of this chapter, effective September 2, 2003.

§ 91.702 Persons on board.

Section 91.11 of this part (Prohibitions on interference with crewmembers) applies to each person on board an aircraft.

§ 91.703 Operations of civil aircraft of U.S. registry outside of the United States.

(a) Each person operating a civil aircraft of U.S. registry outside of the United States shall—

(1) When over the high seas, comply with annex 2 (Rules of the Air) to the Convention on International Civil Aviation and with §§91.117(c), 91.127, 91.129, and 91.131;

(2) When within a foreign country, comply with the regulations relating to the flight and maneuver of aircraft there in force;

(3) Except for §§91.117(a), 91.307(b), 91.309, 91.323, and 91.711, comply with this part so far as it is not inconsistent with applicable regulations of the foreign country where the aircraft is operated or annex 2 of the Convention on International Civil Aviation; and

(4) When operating within airspace designated as Minimum Navigation Performance Specifications (MNPS) airspace, comply with §91.705. When operating within airspace designated as Reduced Vertical Separation Minimum (RVSM) airspace, comply with §91.706.

(5) For aircraft subject to ICAO Annex 16, carry on board the aircraft documents that summarize the noise operating characteristics and certifications of the aircraft that demonstrate compliance with this part and part 36 of this chapter.

(b) Annex 2 to the Convention on International Civil Aviation, Ninth Edition—July 1990, with Amendments through Amendment 32 effective February 19, 1996, to which reference is made in this part, is incorporated into this part and made a part hereof as provided in 5 U.S.C. §552 and pursuant to 1 CFR part 51. Annex 2 (including a

777

(a) Except as provided in paragraph (b) of this section, no person may operate a civil aircraft of U.S. registry in airspace designated as Minimum Navigation Performance Specifications airspace unless—

(1) The aircraft has approved navigation performance capability that complies with the requirements of appendix C of this part; and

(2) The operator is authorized by the Administrator to perform such operations.

(b) The Administrator may authorize a deviation from the requirements of this section in accordance with Section 3 of appendix C to this part.

[Doc. No. 28870, 62 FR 17487, Apr. 9, 1997]

§ 91.706 Operations within airspace designated as Reduced Vertical Separation Minimum Airspace.

(a) Except as provided in paragraph (b) of this section, no person may operate a civil aircraft of U.S. registry in airspace designated as Reduced Vertical Separation Minimum (RVSM) airspace unless:

(1) The operator and the operator’s aircraft comply with the requirements of appendix G of this part; and

(2) The operator is authorized by the Administrator to conduct such operations.

(b) The Administrator may authorize a deviation from the requirements of this section in accordance with Section 5 of appendix G to this part.

[Doc. No. 28870, 62 FR 17487, Apr. 9, 1997]

§ 91.707 Flights between Mexico or Canada and the United States.

Unless otherwise authorized by ATC, no person may operate a civil aircraft between Mexico or Canada and the United States without filing an IFR or VFR flight plan, as appropriate.

§ 91.709 Operations to Cuba.

No person may operate a civil aircraft from the United States to Cuba unless—

(a) Departure is from an international airport of entry designated in §6.13 of the Air Commerce Regulations of the Bureau of Customs (19 CFR 6.13); and

(b) In the case of departure from any of the 48 contiguous States or the District of Columbia, the pilot in command of the aircraft has filed—

(1) A DVFR or IFR flight plan as prescribed in §99.11 or §99.13 of this chapter; and

(2) A written statement, within 1 hour before departure, with the Office of Immigration and Naturalization Service at the airport of departure, containing—

(i) All information in the flight plan;

(ii) The name of each occupant of the aircraft;

(iii) The number of occupants of the aircraft; and

(iv) A description of the cargo, if any.

This section does not apply to the operation of aircraft by a scheduled air carrier over routes authorized in operations specifications issued by the Administrator.

[Approved by the Office of Management and Budget under control number 2120–0005]
§91.711 Special rules for foreign civil aircraft.

(a) General. In addition to the other applicable regulations of this part, each person operating a foreign civil aircraft within the United States shall comply with this section.

(b) VFR. No person may conduct VFR operations which require two-way radio communications under this part unless at least one crewmember of that aircraft is able to conduct two-way radio communications in the English language and is on duty during that operation.

(c) IFR. No person may operate a foreign civil aircraft under IFR unless—

(1) That aircraft is equipped with—

(i) Radio equipment allowing two-way radio communication with ATC when it is operated in controlled airspace; and

(ii) Navigation equipment suitable for the route to be flown.

(2) Each person piloting the aircraft—

(i) Holds a current United States instrument rating or is authorized by his foreign airman certificate to pilot under IFR; and

(ii) Is thoroughly familiar with the United States en route, holding, and letdown procedures; and

(3) At least one crewmember of that aircraft is able to conduct two-way radiotelephone communications in the English language and that crewmember is on duty while the aircraft is approaching, operating within, or leaving the United States.

(d) Over water. Each person operating a foreign civil aircraft over water off the shores of the United States shall give flight notification or file a flight plan in accordance with the Supplementary Procedures for the ICAO region concerned.

(e) Flight at and above FL 240. If VOR navigation equipment is required under paragraph (c)(1)(i) of this section, no person may operate a foreign civil aircraft within the 50 States and the District of Columbia at or above FL 240 unless the aircraft is equipped with approved DME or a suitable RNAV system. When the DME or RNAV system required by this paragraph fails at and above FL 240, the pilot in command of the aircraft must notify ATC immediately and may then continue operations at and above FL 240 to the next airport of intended landing where repairs or replacement of the equipment can be made. A foreign civil aircraft may be operated within the 50 States and the District of Columbia at or above FL 240 without DME or an RNAV system when operated for the following purposes, and ATC is notified before each takeoff:

(1) Ferry flights to and from a place in the United States where repairs or alterations are to be made.

(2) Ferry flights to a new country of registry.

(3) Flight of a new aircraft of U.S. manufacture for the purpose of—

(i) Flight testing the aircraft;

(ii) Training foreign flight crews in the operation of the aircraft; or

(iii) Ferrying the aircraft for export delivery outside the United States.

(4) Ferry, demonstration, and test flight of an aircraft brought to the United States for the purpose of demonstration or testing the whole or any part thereof.

§91.713 Operation of civil aircraft of Cuban registry.

No person may operate a civil aircraft of Cuban registry except in controlled airspace and in accordance with air traffic clearance or air traffic control instructions that may require use of specific airways or routes and landings at specific airports.

§91.715 Special flight authorizations for foreign civil aircraft.

(a) Foreign civil aircraft may be operated without airworthiness certificates required under §91.203 if a special flight authorization for that operation is issued under this section. Application for a special flight authorization must be made to the Flight Standards Division Manager or Aircraft Certification Directorate Manager of the FAA region in which the applicant is located. However, in the case of an aircraft to be operated in
§§ 91.717–91.799 The Administrator may issue a special flight authorization for a foreign civil aircraft subject to any conditions and limitations that the Administrator considers necessary for safe operation in the U.S. airspace. No person may operate a foreign civil aircraft under a special flight authorization unless that operation also complies with part 375 of the Special Regulations of the Department of Transportation (14 CFR part 375).

(b) Unless otherwise specified, as used in this subpart "part 36" refers to 14 CFR part 36, including the noise levels under appendix C of that part, notwithstanding the provisions of that part excepting certain airplanes from the specified noise requirements. For purposes of this subpart, the various stages of noise levels, the terms used to describe airplanes with respect to those levels, and the terms "subsonic airplane" and "supersonic airplane" have the meanings specified under part 36 of this chapter. For purposes of this subpart, for subsonic airplanes operated in foreign air commerce in the United States, the Administrator may accept compliance with the noise requirements under annex 16 of the International Civil Aviation Organization when those requirements have been shown to be substantially compatible with, and achieve results equivalent to those achievable under, part 36 for that airplane. Determinations made under these provisions are subject to the limitations of §36.5 of this chapter as if those noise levels were part 36 noise levels.

(3) Sections 91.803, 91.819, and 91.821 apply to U.S.-registered civil supersonic airplanes having standard airworthiness certificates and to foreign-registered civil supersonic airplanes that, if registered in the United States, would be required by this chapter to have U.S. standard airworthiness certificates in order to conduct the operations intended for the airplane. Those sections apply to operations under this part and under parts 121, 123, 129, and 135 of this chapter.

Subpart I—Operating Noise Limits

SOURCE: Docket No. 18334, 54 FR 34321, Aug. 18, 1989, unless otherwise noted.

§ 91.801 Applicability: Relation to part 36.

(a) This subpart prescribes operating noise limits and related requirements that apply, as follows, to the operation of civil aircraft in the United States.

(b) This subpart applies to the operation of civil subsonic jet (turbojet) airplanes covered by this subpart. This section applies to operations to or from airports in the United States under this part and parts 121, 125, and 135, but not to those operating under part 129 of this chapter.

(c) Sections 91.851 through 91.877 of this subpart prescribe operating noise limits and related requirements that apply to any civil subsonic jet (turbojet) airplane (for which an airworthiness certificate other than an experimental certificate has been issued by the Administrator) with a maximum certificated takeoff weight of more than 75,000 pounds operating to or from airports in the United States under this part and parts 121, 125, and 135.
§ 91.817 Civil aircraft sonic boom.

(a) No person may operate a civil aircraft in the United States at a true flight Mach number greater than 1 except in compliance with conditions and limitations in an authorization to exceed Mach 1 issued to the operator under appendix B of this part.
§ 91.819 Civil supersonic airplanes that do not comply with part 36.

(a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with the Stage 2 noise limits of part 36 in effect on October 13, 1977, using applicable trade-off provisions, and that are operated in the United States, after July 31, 1978.

(b) Airport use. Except in an emergency, the following apply to each person who operates a civil supersonic airplane to or from an airport in the United States:

1. Regardless of whether a type design change approval is applied for under part 21 of this chapter, no person may land or take off an airplane covered by this section for which the type design is changed, after July 31, 1978, in a manner constituting an “acoustical change” under §21.93 unless the acoustical change requirements of part 36 are complied with.

2. No flight may be scheduled, or otherwise planned, for takeoff or landing after 10 p.m. and before 7 a.m. local time.

§ 91.821 Civil supersonic airplanes: Noise limits.

Except for Concorde airplanes having flight time before January 1, 1980, no person may operate in the United States, a civil supersonic airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using applicable trade-off provisions.

§§ 91.823–91.849 [Reserved]

§ 91.851 Definitions.

For the purposes of §§ 91.851 through 91.877 of this subpart:

Chapter 4 noise level means a noise level at or below the maximum noise level prescribed in Chapter 4, Paragraph 4.4, Maximum Noise Levels, of the International Civil Aviation Organization (ICAO) Annex 16, Volume I, Amendment 7, effective March 21, 2002. The Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 approved the incorporation by reference of this document, which can be obtained from the International Civil Aviation Organization (ICAO), Document Sales Unit, 999 University Street, Montreal, Quebec H3C 5H7, Canada. Also, you may obtain documents on the Internet at http://www.ICAO.int/eshop/index.cfm.

Contiguous United States means the area encompassed by the 48 contiguous United States and the District of Columbia.

Fleet means those civil subsonic jet (turbojet) airplanes with a maximum certificated weight of more than 75,000 pounds that are listed on an operator’s operations specifications as eligible for operation in the contiguous United States.

Import means a change in ownership of an airplane from a non-U.S. person to a U.S. person when the airplane is brought into the United States for operation.

Operations specifications means an enumeration of airplanes by type, model, series, and serial number operated by the operator or foreign air carrier on a given day, regardless of how
or whether such airplanes are formally listed or designated by the operator.

Owner means any person that has indicia of ownership sufficient to register the airplane in the United States pursuant to part 47 of this chapter.

New entrant means an air carrier or foreign air carrier that, on or before November 5, 1990, did not conduct operations under part 121 or 129 of this chapter using an airplane covered by this subpart to or from any airport in the contiguous United States, but that initiates such operation after that date.

Stage 2 noise levels mean the requirements for Stage 2 noise levels as defined in part 36 of this chapter in effect on November 5, 1990.

Stage 3 noise levels mean the requirements for Stage 3 noise levels as defined in part 36 of this chapter in effect on November 5, 1990.

Stage 4 noise level means a noise level at or below the Stage 4 noise limit prescribed in part 36 of this chapter.

Stage 2 airplane means a civil subsonic jet (turbojet) airplane with a maximum certificated weight of 75,000 pounds or more that complies with Stage 2 noise levels as defined in part 36 of this chapter.

Stage 3 airplane means a civil subsonic jet (turbojet) airplane with a maximum certificated weight of 75,000 pounds or more that complies with Stage 3 noise levels as defined in part 36 of this chapter.

Stage 4 airplane means an airplane that has been shown not to exceed the Stage 4 noise limit prescribed in part 36 of this chapter. A Stage 4 airplane complies with all of the noise operating rules of this part.

§ 91.855 Entry and nonaddition rule.

No person may operate any airplane subject to §91.801(c) of this subpart to or from an airport in the contiguous United States unless one or more of the following apply:

(a) The airplane complies with Stage 3 or Stage 4 noise levels.
(b) The airplane complies with Stage 2 noise levels and was owned by a U.S. person on and since November 5, 1990.
Stage 2 airplanes that meet these criteria and are leased to foreign airlines are also subject to the return provisions of paragraph (e) of this section.
(c) The airplane complies with Stage 2 noise levels, is owned by a non-U.S. person, and is the subject of a binding lease to a U.S. person effective before and on September 25, 1991. Any such airplane may be operated for the term of the lease in effect on that date, and any extensions thereof provided for in that lease.
(d) The airplane complies with Stage 2 noise levels and is operated by a foreign air carrier.
(e) The airplane complies with Stage 2 noise levels and is operated by a foreign operator other than for the purpose of foreign air commerce.
(f) The airplane complies with Stage 2 noise levels and—
 (1) On November 5, 1990, was owned by:
 (i) A corporation, trust, or partnership organized under the laws of the United States or any State (including individual States, territories, possessions, and the District of Columbia);
 (ii) An individual who is a citizen of the United States; or
 (iii) An entity owned or controlled by a corporation, trust, partnership, or individual described in paragraph (f)(1) (i) or (ii) of this section; and
 (2) Enters into the United States not later than 6 months after the expiration of a lease agreement (including any extensions thereof) between an owner described in paragraph (f)(1) of this section and a foreign airline.
(g) The airplane complies with Stage 2 noise levels and was purchased by the

§ 91.853 Final compliance: Civil subsonic airplanes.

Except as provided in §91.873, after December 31, 1999, no person shall operate to or from any airport in the contiguous United States any airplane subject to §91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3 or Stage 4 noise levels.

§ 91.857 Stage 2 operations outside of the 48 contiguous United States.

An operator of a Stage 2 airplane that is operating only between points outside the contiguous United States on or after November 5, 1990, must include in its operations specifications a statement that such airplane may not be used to provide air transportation to or from any airport in the contiguous United States.

§ 91.858 Special flight authorizations for non-revenue Stage 2 operations.

(a) After December 31, 1999, any operator of a Stage 2 airplane over 75,000 pounds may operate that airplane in non-revenue service in the contiguous United States only for the following purposes:

(1) Sell, lease, or scrap the airplane;

(2) Obtain modifications to meet Stage 3 noise levels;

(3) Obtain scheduled heavy maintenance or significant modifications;

(4) Deliver the airplane to a lessee or return it to a lessor;

(5) Park or store the airplane; and

(6) Prepare the airplane for any of the purposes listed in paragraph (a)(1) thru (a)(5) of this section.

(b) An operator of a Stage 2 airplane that needs to operate in the contiguous United States for any of the purposes listed above may apply to FAA’s Office of Environment and Energy for a special flight authorization. The applicant must file in advance. Applications are due 30 days in advance of the planned flight and must provide the information necessary for the FAA to determine that the planned flight is within the limits prescribed in the law.

§ 91.859 Modification to meet Stage 3 or Stage 4 noise levels.

For an airplane subject to § 91.801(c) of this subpart and otherwise prohibited from operation to or from an airport in the contiguous United States by § 91.855, any person may apply for a special flight authorization for that airplane to operate in the contiguous United States for the purpose of obtaining modifications to meet Stage 3 or Stage 4 noise levels.

§ 91.861 Base level.

(a) U.S. Operators. The base level of a U.S. operator is equal to the number of owned or leased Stage 2 airplanes subject to § 91.801(c) of this subpart that were listed on that operator’s operations specifications for operations to or from airports in the contiguous United States on any one day selected by the operator during the period January 1, 1990, through July 1, 1991, plus or minus adjustments made pursuant to paragraphs (a)(1) and (2).

(1) The base level of a U.S. operator shall be increased by a number equal to the total of the following—

(i) The number of Stage 2 airplanes returned to service in the United States pursuant to § 91.855(f); and

(ii) The number of Stage 2 airplanes purchased pursuant to § 91.855(g); and

(iii) Any U.S. operator base level acquired with a Stage 2 airplane transferred from another person under § 91.863.

(2) The base level of a U.S. operator shall be decreased by the amount of U.S. operator base level transferred with the corresponding number of Stage 2 airplanes to another person under § 91.863.

(b) Foreign air carriers. The base level of a foreign air carrier is equal to the number of owned or leased Stage 2 airplanes that were listed on that carrier’s U.S. operations specifications on any one day during the period January 1, 1990, through July 1, 1991, plus or minus any adjustments to the base levels made pursuant to paragraphs (b)(1) and (2).

(1) The base level of a foreign air carrier shall be increased by the amount...
§ 91.865 Phased compliance for operators with base level.

Except as provided in paragraph (a) of this section, each operator that operates an airplane under part 91, 121, 125, 129, or 135 of this chapter, regardless of the national registry of the airplane, shall comply with paragraph (b) or (d) of this section at each interim compliance date with regard to its subsonic airplane fleet covered by §91.801(c) of this subpart.

(a) This section does not apply to new entrants covered by §91.867 or to foreign operators not engaged in foreign air commerce.

(b) Each operator that chooses to comply with this paragraph pursuant to any interim compliance requirement shall reduce the number of Stage 2 airplanes it operates that are eligible for operation in the contiguous United States to a maximum of:

(1) After December 31, 1994, 75 percent of the base level held by the operator;
(2) After December 31, 1996, 50 percent of the base level held by the operator;
(3) After December 31, 1998, 25 percent of the base level held by the operator.

(c) Except as provided under §91.871, the number of Stage 2 airplanes that must be reduced at each compliance date contained in paragraph (b) of this section shall be determined by reference to the amount of base level held by the operator on that compliance date, as calculated under §91.861.

(d) Each operator that chooses to comply with this paragraph pursuant to any interim compliance requirement shall operate a fleet that consists of:

(1) After December 31, 1994, not less than 55 percent Stage 3 airplanes;
(2) After December 31, 1996, not less than 65 percent Stage 3 airplanes;
(3) After December 31, 1998, not less than 75 percent Stage 3 airplanes.

(e) Calculations resulting in fractions may be rounded to permit the continued operation of the next whole number of Stage 2 airplanes.

[Docket No. 26433, 56 FR 48659, Sept. 25, 1991]
§ 91.867 Phased compliance for new entrants.

(a) New entrant U.S. air carriers.
(1) A new entrant initiating operations under part 121 of this chapter on or before December 31, 1994, may initiate service without regard to the percentage of its fleet composed of Stage 3 airplanes.
(2) After December 31, 1994, at least 25 percent of the fleet of a new entrant must comply with Stage 3 noise levels.
(3) After December 31, 1996, at least 50 percent of the fleet of a new entrant must comply with Stage 3 noise levels.
(4) After December 31, 1998, at least 75 percent of the fleet of a new entrant must comply with Stage 3 noise levels.

(b) New entrant foreign air carriers.
(1) A new entrant foreign air carrier initiating part 129 operations on or before December 31, 1994, may initiate service without regard to the percentage of its fleet composed of Stage 3 airplanes.
(2) After December 31, 1994, at least 25 percent of the fleet on U.S. operations specifications of a new entrant foreign air carrier must comply with Stage 3 noise levels.
(3) After December 31, 1996, at least 50 percent of the fleet on U.S. operations specifications of a new entrant foreign air carrier must comply with Stage 3 noise levels.
(4) After December 31, 1998, at least 75 percent of the fleet on U.S. operations specifications of a new entrant foreign air carrier must comply with Stage 3 noise levels.

(c) Calculations resulting in fractions may be rounded to permit the continued operation of the next whole number of Stage 2 airplanes.

§ 91.869 Carry-forward compliance.

(a) Any operator that exceeds the requirements of paragraph (b) of §91.865 of this part on or before December 31, 1994, or on or before December 31, 1996, may claim a credit that may be applied at a subsequent interim compliance date.
(b) Any operator that eliminates or modifies more Stage 2 airplanes pursuant to §91.865(b) than required as of December 31, 1994, or December 31, 1996, may count the number of additional Stage 2 airplanes reduced as a credit toward—
(1) The number of Stage 2 airplanes it would otherwise be required to reduce following a subsequent interim compliance date specified in §91.865(b); or
(2) The number of Stage 3 airplanes it would otherwise be required to operate in its fleet following a subsequent interim compliance date to meet the percentage requirements specified in §91.865(d).

§ 91.871 Waivers from interim compliance requirements.

(a) Any U.S. operator or foreign air carrier subject to the requirements of §91.865 or 91.867 of this subpart may request a waiver from any individual compliance requirement.
(b) Applications must be filed with the Secretary of Transportation at least 120 days prior to the compliance date from which the waiver is requested.
(c) Applicants must show that a grant of waiver would be in the public interest, and must include in its application its plans and activities for modifying its fleet, including evidence of good faith efforts to comply with the requirements of §91.865 or §91.867. The application should contain all information the applicant considers relevant, including, as appropriate, the following:
(1) The applicant’s balance sheet and cash flow positions;
(2) The composition of the applicant’s current fleet; and
(3) The applicant’s delivery position with respect to new airplanes or noise-abatement equipment.
(d) Waivers will be granted only upon a showing by the applicant that compliance with the requirements of §91.865 or 91.867 at a particular interim compliance date is financially onerous, physically impossible, or technologically infeasible, or that it would have an adverse effect on competition or on service to small communities.
§ 91.875 Annual progress reports.

(a) Each operator subject to §91.865 or §91.867 of this chapter shall submit an annual report to the FAA, Office of Environment and Energy, on the progress it has made toward complying with the requirements of §91.853 of this part. Such reports shall include the following information:

(1) The name and address of the operator;

(2) The name, title, and telephone number of the person designated by the operator to be responsible for ensuring the accuracy of the information in the report;

(3) The operator’s progress during the reporting period toward compliance with the requirements of §91.853, §91.865 or §91.867. For airplanes on U.S. operations specifications, each operator shall identify the airplanes by type, model, series, and serial number.

(i) Each Stage 2 airplane added or removed from operation or U.S. operations specifications (grouped separately by those airplanes acquired with and without base level);

(ii) Each Stage 2 airplane modified to Stage 3 noise levels (identifying the manufacturer and model of noise abatement retrofit equipment);

(iii) Each Stage 3 airplane on U.S. operations specifications as of the last day of the reporting period; and

§ 91.873 Waivers from final compliance.

(a) A U.S. air carrier or a foreign air carrier may apply for a waiver from the prohibition contained in §91.853 of this part for its remaining Stage 2 airplanes, provided that, by July 1, 1999, at least 85 percent of the airplanes used by the carrier to provide service to or from an airport in the contiguous United States will comply with the Stage 3 noise levels.

(b) An application for the waiver described in paragraph (a) of this section must be filed with the Secretary of Transportation no later than January 1, 1999, or, in the case of a foreign air carrier, no later than April 20, 2000. Such application must include a plan with firm orders for replacing or modifying all airplanes to comply with Stage 3 noise levels at the earliest practicable time.

(c) To be eligible to apply for the waiver under this section, a new entrant U.S. air carrier must initiate service no later than January 1, 1999, and must comply fully with all provisions of this section.

(d) The Secretary may grant a waiver under this section if the Secretary finds that granting such waiver is in the public interest. In making such a finding, the Secretary shall include consideration of the effect of granting such waiver on competition in the air carrier industry and the effect on small community air service, and any other information submitted by the applicant that the Secretary considers relevant.

(e) The term of any waiver granted under this section shall be determined by the circumstances presented in the application, but in no case may the waiver permit the operation of any Stage 2 airplane covered by this subchapter in the contiguous United States after December 31, 2003.

(f) A summary of any request for a waiver under this section will be published in the FEDERAL REGISTER, and public comment will be invited. Unless the Secretary finds that circumstances require otherwise, the public comment period will be at least 14 days.

§ 91.877 Annual progress reports.

(a) Each operator subject to §91.865 or §91.867 of this chapter shall submit an annual report to the FAA, Office of Environment and Energy, on the progress it has made toward complying with the requirements of that section. Such reports shall be submitted no later than 45 days after the end of a calendar year. All progress reports must provide the information through the end of the calendar year, be certified by the operator as true and complete (under penalty of 18 U.S.C. 1001), and include the following information:

(1) The name and address of the operator;

(2) The name, title, and telephone number of the person designated by the operator to be responsible for ensuring the accuracy of the information in the report;

(3) The operator’s progress during the reporting period toward compliance with the requirements of §91.853, §91.865 or §91.867. For airplanes on U.S. operations specifications, each operator shall identify the airplanes by type, model, series, and serial number.

(i) Each Stage 2 airplane added or removed from operation or U.S. operations specifications (grouped separately by those airplanes acquired with and without base level);

(ii) Each Stage 2 airplane modified to Stage 3 noise levels (identifying the manufacturer and model of noise abatement retrofit equipment);

(iii) Each Stage 3 airplane on U.S. operations specifications as of the last day of the reporting period; and

§ 91.875 Annual progress reports.

(a) Each operator subject to §91.865 or §91.867 of this chapter shall submit an annual report to the FAA, Office of Environment and Energy, on the progress it has made toward complying with the requirements of that section. Such reports shall be submitted no later than 45 days after the end of a calendar year. All progress reports must provide the information through the end of the calendar year, be certified by the operator as true and complete (under penalty of 18 U.S.C. 1001), and include the following information:

(1) The name and address of the operator;

(2) The name, title, and telephone number of the person designated by the operator to be responsible for ensuring the accuracy of the information in the report;

(3) The operator’s progress during the reporting period toward compliance with the requirements of §91.853, §91.865 or §91.867. For airplanes on U.S. operations specifications, each operator shall identify the airplanes by type, model, series, and serial number.

(i) Each Stage 2 airplane added or removed from operation or U.S. operations specifications (grouped separately by those airplanes acquired with and without base level);

(ii) Each Stage 2 airplane modified to Stage 3 noise levels (identifying the manufacturer and model of noise abatement retrofit equipment);

(iii) Each Stage 3 airplane on U.S. operations specifications as of the last day of the reporting period; and

§ 91.877 Annual progress reports.

(a) Each operator subject to §91.865 or §91.867 of this chapter shall submit an annual report to the FAA, Office of Environment and Energy, on the progress it has made toward complying with the requirements of that section. Such reports shall be submitted no later than 45 days after the end of a calendar year. All progress reports must provide the information through the end of the calendar year, be certified by the operator as true and complete (under penalty of 18 U.S.C. 1001), and include the following information:

(1) The name and address of the operator;

(2) The name, title, and telephone number of the person designated by the operator to be responsible for ensuring the accuracy of the information in the report;

(3) The operator’s progress during the reporting period toward compliance with the requirements of §91.853, §91.865 or §91.867. For airplanes on U.S. operations specifications, each operator shall identify the airplanes by type, model, series, and serial number.

(i) Each Stage 2 airplane added or removed from operation or U.S. operations specifications (grouped separately by those airplanes acquired with and without base level);

(ii) Each Stage 2 airplane modified to Stage 3 noise levels (identifying the manufacturer and model of noise abatement retrofit equipment);

(iii) Each Stage 3 airplane on U.S. operations specifications as of the last day of the reporting period; and
§ 91.877 Annual reporting of Hawaiian operations.

(a) Each air carrier or foreign air carrier subject to § 91.865 or § 91.867 of this part that conducts operations between the contiguous United States and the State of Hawaii, between the State of Hawaii and any point outside of the contiguous United States, or between the islands of Hawaii in turnaround service, on or since November 5, 1990, shall include in its annual report the information described in paragraph (c) of this section.

(b) Each air carrier or foreign air carrier not subject to § 91.865 or § 91.867 of this part that conducts operations between the contiguous U.S. and the State of Hawaii, between the State of Hawaii and any point outside of the contiguous United States, or between the islands of Hawaii in turnaround service, on or since November 5, 1990, shall submit an annual report to the FAA, Office of Environment and Energy, on its compliance with the Hawaiian operations provisions of 49 U.S.C. 47528. Such reports shall be submitted no later than 45 days after the end of a calendar year. All progress reports must provide the information through the end of the calendar year, be certified by the operator as true and complete (under penalty of 18 U.S.C. 1001), and include the following information—

(iv) For each Stage 2 airplane transferred or acquired, the name and address of the recipient or transferor; and, if base level was transferred, the person to or from whom base level was transferred or acquired pursuant to Section 91.863 along with the effective date of each base level transaction, and the type of base level transferred or acquired.

(b) Each operator subject to § 91.865 or § 91.867 of this chapter shall submit an initial progress report covering the period from January 1, 1990, through December 31, 1991, and provide:

(1) For each operator subject to § 91.865:

(i) The date used to establish its base level pursuant to § 91.861(a); and

(ii) A list of those Stage 2 airplanes (by type, model, series and serial number) in its base level, including adjustments made pursuant to § 91.861 after the date its base level was established.

(2) For each U.S. operator:

(i) A plan to meet the compliance schedules in § 91.865 or § 91.867 and the final compliance date of § 91.853, including the schedule for delivery of replacement Stage 3 airplanes or the installation of noise abatement retrofit equipment; and

(ii) A separate list (by type, model, series, and serial number) of those airplanes included in the operator’s base level, pursuant to § 91.861(a)1(i) and (ii), under the categories “returned” or “purchased,” along with the date each was added to its operations specifications.

(c) Each operator subject to § 91.865 or § 91.867 of this chapter shall submit subsequent annual progress reports covering the calendar year preceding the report and including any changes in the information provided in paragraphs (a) and (b) of this section; including the use of any carry-forward credits pursuant to § 91.869.

(d) An operator may request, in any report, that specific planning data be considered proprietary.

(e) If an operator’s actions during any reporting period cause it to achieve compliance with § 91.853, the report should include a statement to that effect. Further progress reports are not required unless there is any change in the information reported pursuant to paragraph (a) of this section.

(f) For each U.S. operator subject to § 91.865, progress reports submitted for calendar years 1994, 1996, and 1998, shall also state how the operator achieved compliance with the requirements of that section, i.e.—

1. By reducing the number of Stage 2 airplanes in its fleet to no more than the maximum permitted percentage of its base level under § 91.865(b), or

2. By operating a fleet that consists of at least the minimum required percentage of Stage 3 airplanes under § 91.865(d).

(Approved by the Office of Management and Budget under control number 2120–0553)

(1) The name and address of the air carrier or foreign air carrier;
(2) The name, title, and telephone number of the person designated by the air carrier or foreign air carrier to be responsible for ensuring the accuracy of the information in the report; and
(3) The information specified in paragraph (c) of this section.

(c) The following information must be included in reports filed pursuant to this section—
(1) For operations conducted between the contiguous United States and the State of Hawaii—
(i) The number of Stage 2 airplanes used to conduct such operations as of November 5, 1990;
(ii) Any change to that number during the calendar year being reported, including the date of such change;
(2) For air carriers that conduct inter-island turnaround service in the State of Hawaii—
(i) The number of Stage 2 airplanes used to conduct such operations as of November 5, 1990;
(ii) Any change to that number during the calendar year being reported, including the date of such change;
(iii) For an air carrier that provided inter-island turnaround service within the state of Hawaii on November 5, 1990, the number reported under paragraph (c)(2)(i) of this section may include all Stage 2 airplanes with a maximum certificated takeoff weight of more than 75,000 pounds that were owned or leased by the air carrier on November 5, 1990, regardless of whether such airplanes were operated by that air carrier or foreign air carrier on that date.
(3) For operations conducted between the State of Hawaii and a point outside the contiguous United States—
(i) The number of Stage 2 airplanes used to conduct such operations as of November 5, 1990;
(ii) Any change to that number during the calendar year being reported, including the date of such change.
(d) Reports or amended reports for years predating this regulation are required to be filed concurrently with the next annual report.

Subpart J—Waivers

§ 91.901 [Reserved]

§ 91.903 Policy and procedures.

(a) The Administrator may issue a certificate of waiver authorizing the operation of aircraft in deviation from any rule listed in this subpart if the Administrator finds that the proposed operation can be safely conducted under the terms of that certificate of waiver.

(b) An application for a certificate of waiver under this part is made on a form and in a manner prescribed by the Administrator and may be submitted to any FAA office.

(c) A certificate of waiver is effective as specified in that certificate of waiver.

[Doc. No. 18334, 54 FR 34325, Aug. 18, 1989]

§ 91.905 List of rules subject to waivers.

Sec.
91.107 Use of safety belts.
91.111 Operating near other aircraft.
91.113 Right-of-way rules: Except water operations.
91.115 Right-of-way rules: Water operations.
91.117 Aircraft speed.
91.119 Minimum safe altitudes: General.
91.121 Altimeter settings.
91.123 Compliance with ATC clearances and instructions.
91.125 ATC light signals.
91.126 Operating on or in the vicinity of an airport in Class G airspace.
91.127 Operating on or in the vicinity of an airport in Class E airspace.
91.129 Operations in Class D airspace.
91.130 Operations in Class C airspace.
91.131 Operations in Class B airspace.
91.133 Restricted and prohibited areas.
91.135 Operations in Class A airspace.
91.137 Temporary flight restrictions.
91.141 Flight restrictions in the proximity of the Presidential and other parties.
91.143 Flight limitation in the proximity of space flight operations.
91.153 VFR flight plan: Information required.
91.155 Basic VFR weather minimums
91.157 Special VFR weather minimums.
91.159 VFR cruising altitude or flight level.
91.166 IFR flight plan: Information required.
91.173 ATC clearance and flight plan required.
91.175 Takeoff and landing under IFR.
Subpart K—Fractional Ownership Operations

§ 91.1001 Applicability.

(a) This subpart prescribes rules, in addition to those prescribed in other subparts of this part, that apply to fractional owners and fractional ownership program managers governing—

(1) The provision of program management services in a fractional ownership program;

(2) The operation of a fractional ownership program aircraft in a fractional ownership program; and

(3) The operation of a program aircraft included in a fractional ownership program managed by an affiliate of the manager of the program to which the owner belongs.

(b) As used in this part—

(1) Affiliate of a program manager means a manager that, directly, or indirectly, through one or more intermediaries, controls, is controlled by, or is under common control with, another program manager. The holding of at least forty percent (40 percent) of the equity and forty percent (40 percent) of the voting power of an entity will be presumed to constitute control for purposes of determining an affiliation under this subpart.

(2) A dry-lease aircraft exchange means an arrangement, documented by the written program agreements, under which the program aircraft are available, on an as needed basis without crew, to each fractional owner.

(3) A fractional owner or owner means an individual or entity that possesses a minimum fractional ownership interest in a program aircraft and that has entered into the applicable program agreements; provided, however, that in the case of the flight operations described in paragraph (b)(6)(ii) of this section, and solely for purposes of requirements pertaining to those flight operations, the fractional owner operating the aircraft will be deemed to be a fractional owner in the program managed by the affiliate.

(4) A fractional ownership interest means the ownership of an interest or holding of a multi-year leasehold interest and/or a multi-year leasehold interest that is convertible into an ownership interest in a program aircraft.

(5) A fractional ownership program or program means any system of aircraft ownership and exchange that consists of all of the following elements:

(i) The provision for fractional ownership program management services by a single fractional ownership program manager on behalf of the fractional owners.

(ii) Two or more airworthy aircraft.

(iii) One or more fractional owners per program aircraft, with at least one program aircraft having more than one owner.

(iv) Possession of at least a minimum fractional ownership interest in one or more program aircraft by each fractional owner.

(v) A dry-lease aircraft exchange arrangement among all of the fractional owners.

(vi) Multi-year program agreements covering the fractional ownership, fractional ownership program management services, and dry-lease aircraft exchange aspects of the program.

(6) A fractional ownership program aircraft or program aircraft means:
§ 91.1003 Management contract between owner and program manager.

Each owner must have a contract with the program manager that—

(a) Requires the program manager to ensure that the program conforms to

and other authorizations and approvals.

§ 91.1002 Compliance date.

No person that conducted flights before November 17, 2003 under a program that meets the definition of fractional ownership program in §91.1001 may conduct such flights after February 17, 2005 unless it has obtained management specifications under this subpart.

all applicable requirements of this chapter.

(b) Provides the owner the right to inspect and to audit, or have a designee of the owner inspect and audit, the records of the program manager pertaining to the operational safety of the program and those records required to show compliance with the management specifications and all applicable regulations. These records include, but are not limited to, the management specifications, authorizations, approvals, manuals, log books, and maintenance records maintained by the program manager.

(c) Designates the program manager as the owner’s agent to receive service of notices pertaining to the program that the FAA seeks to provide to owners and authorizes the FAA to send such notices to the program manager in its capacity as the agent of the owner for such service.

(d) Acknowledges the FAA’s right to contact the owner directly if the Administrator determines that direct contact is necessary.

§ 91.1005 Prohibitions and limitations.

(a) Except as provided in §91.321 or §91.501, no owner may carry persons or property for compensation or hire on a program flight.

(b) During the term of the multi-year program agreements under which a fractional owner has obtained a minimum fractional ownership interest in a program aircraft, the flight hours used during that term by the owner on program aircraft must not exceed the total hours associated with the fractional owner’s share of ownership.

(c) No person may sell or lease an aircraft interest in a fractional ownership program that is smaller than that prescribed in the definition of “minimum fractional ownership interest” in §91.1001(b)(10) unless flights associated with that interest are operated under part 121 or 135 of this chapter and are conducted by an air carrier or commercial operator certificated under part 119 of this chapter.

§ 91.1007 Flights conducted under part 121 or part 135 of this chapter.

(a) Except as provided in §91.501(b), when a nonprogram aircraft is used to substitute for a program flight, the flight must be operated in compliance with part 121 or part 135 of this chapter, as applicable.

(b) A program manager who holds a certificate under part 119 of this chapter may conduct a flight for the use of a fractional owner under part 121 or part 135 of this chapter if the aircraft is listed on that certificate holder’s operations specifications for part 121 or part 135, as applicable.

(c) The fractional owner must be informed when a flight is being conducted as a program flight or is being conducted under part 121 or part 135 of this chapter.

Operational Control

§ 91.1009 Clarification of operational control.

(a) An owner is in operational control of a program flight when the owner—

(1) Has the rights and is subject to the limitations set forth in §§91.1003 through 91.1013;

(2) Has directly contacted the owner directly if the Administrator determines that direct contact is necessary.

(3) The aircraft is carrying those passengers or property.

(b) An owner is not in operational control of a flight in the following circumstances:

(1) A program aircraft is used for a flight for administrative purposes such as demonstration, positioning, ferrying, maintenance, or crew training, and no passengers or property designated by such owner are being carried; or

(2) The aircraft being used for the flight is being operated under part 121 or 135 of this chapter.

§ 91.1011 Operational control responsibilities and delegation.

(a) Each owner in operational control of a program flight is ultimately responsible for safe operations and for complying with all applicable requirements of this chapter, including those related to airworthiness and operations in connection with the flight. Each owner may delegate some or all of the performance of the tasks associated with carrying out this responsibility to the program manager, and may rely on
§ 91.1013 Operational control briefing and acknowledgment.

(a) Upon the signing of an initial program management services contract, or a renewal or extension of a program management services contract, the program manager must brief the fractional owner on the owner’s operational control responsibilities, and the owner must review and sign an acknowledgment of these operational control responsibilities. The acknowledgment must be included with the program management services contract. The acknowledgment must define when a fractional owner is in operational control and the owner’s responsibilities and liabilities under the program. These include:

(1) Responsibility for compliance with the management specifications and all applicable regulations.

(2) Enforcement actions for any noncompliance.

(3) Liability risk in the event of a flight-related occurrence that causes personal injury or property damage.

(b) The fractional owner’s signature on the acknowledgment will serve as the owner’s affirmation that the owner has read, understands, and accepts the operational control responsibilities described in the acknowledgment.

(c) Each program manager must ensure that the fractional owner or owner’s representatives have access to the acknowledgments for such owner’s program aircraft. Each program manager must ensure that the FAA has access to the acknowledgments for all program aircraft.

§ 91.1014 Issuing or denying management specifications.

(a) A person applying to the Administrator for management specifications under this subpart must submit an application—

(1) In a form and manner prescribed by the Administrator; and

(2) Containing any information the Administrator requires the applicant to submit.

(b) Management specifications will be issued to the program manager on behalf of the fractional owners if, after investigation, the Administrator finds that the applicant:

(1) Meets the applicable requirements of this subpart; and

(2) Is properly and adequately equipped in accordance with the requirements of this chapter and is able to conduct safe operations under appropriate provisions of part 91 of this chapter and management specifications issued under this subpart.

(c) An application for management specifications will be denied if the Administrator finds that the applicant is not properly or adequately equipped or is not able to conduct safe operations under this part.

§ 91.1015 Management specifications.

(a) Each person conducting operations under this subpart or furnishing fractional ownership program management services to fractional owners must do so in accordance with management specifications issued by the Administrator to the fractional ownership program manager under this subpart. Management specifications must include:

(1) The current list of all fractional owners and types of aircraft, registration markings and serial numbers;

(2) The authorizations, limitations, and certain procedures under which these operations are to be conducted;

(3) Certain other procedures under which each class and size of aircraft is to be operated;
§ 91.1017 Amending program manager’s management specifications.

(a) The Administrator may amend any management specifications issued under this subpart if—

(1) The Administrator determines that safety and the public interest require the amendment of any management specifications; or

(2) The program manager applies for the amendment of any management specifications, and the Administrator determines that safety and the public interest allows the amendment.

(b) Except as provided in paragraph (e) of this section, when the Administrator initiates an amendment of a program manager’s management specifications, the following procedure applies:

(1) The Flight Standards District Office that issued the program manager’s management specifications will notify the program manager in writing of the proposed amendment.

(2) The Flight Standards District Office that issued the program manager’s management specifications will set a reasonable period (but not less than 7
Federal Aviation Administration, DOT § 91.1017

 days) within which the program manager may submit written information, views, and arguments on the amendment.

(3) After considering all material presented, the Flight Standards District Office that issued the program manager’s management specifications will notify the program manager of—

(i) The adoption of the proposed amendment,

(ii) The partial adoption of the proposed amendment, or

(iii) The withdrawal of the proposed amendment.

(4) If the Flight Standards District Office that issued the program manager’s management specifications issues an amendment of the management specifications, it becomes effective not less than 30 days after the program manager receives notice of it unless—

(i) The Flight Standards District Office that issued the program manager’s management specifications finds under paragraph (e) of this section that there is an emergency requiring immediate action with respect to safety; or

(ii) The program manager petitions for reconsideration of the amendment under paragraph (d) of this section.

(c) When the program manager applies for an amendment to its management specifications, the following procedure applies:

(1) The program manager must file an application to amend its management specifications—

(i) At least 90 days before the date proposed by the applicant for the amendment to become effective, unless a shorter time is approved, in cases such as mergers, acquisitions of operational assets that require an additional showing of safety (for example, proving tests or validation tests), and resumption of operations following a suspension of operations as a result of bankruptcy actions.

(ii) At least 15 days before the date proposed by the applicant for the amendment to become effective in all other cases.

(2) The application must be submitted to the Flight Standards District Office that issued the program manager’s management specifications in a form and manner prescribed by the Administrator.

(3) After considering all material presented, the Flight Standards District Office that issued the program manager’s management specifications will notify the program manager of—

(i) The adoption of the applied for amendment;

(ii) The partial adoption of the applied for amendment; or

(iii) The denial of the applied for amendment. The program manager may petition for reconsideration of a denial under paragraph (d) of this section.

(4) If the Flight Standards District Office that issued the program manager’s management specifications approves the amendment, following coordination with the program manager regarding its implementation, the amendment is effective on the date the Administrator approves it.

(d) When a program manager seeks reconsideration of a decision of the Flight Standards District Office that issued the program manager’s management specifications concerning the amendment of management specifications, the following procedure applies:

(1) The program manager must petition for reconsideration of that decision within 30 days of the date that the program manager receives a notice of denial of the amendment of its management specifications, or of the date it receives notice of an FAA-initiated amendment of its management specifications, whichever circumstance applies.

(2) The program manager must address its petition to the Director, Flight Standards Service.

(3) A petition for reconsideration, if filed within the 30-day period, suspends the effectiveness of any amendment issued by the Flight Standards District Office that issued the program manager’s management specifications unless that District Office has found, under paragraph (e) of this section, that an emergency exists requiring immediate action with respect to safety.

(4) If a petition for reconsideration is not filed within 30 days, the procedures of paragraph (c) of this section apply.
§ 91.1019 Conducting tests and inspections.

(a) At any time or place, the Administrator may conduct an inspection or test, other than an en route inspection, to determine whether a program manager under this subpart is complying with title 49 of the United States Code, applicable regulations, and the program manager’s management specifications.

(b) The program manager must—

(1) Make available to the Administrator at the program manager’s principal base of operations, or at a place approved by the Administrator, the program manager’s management specifications; and

(2) Allow the Administrator to make any test or inspection, other than an en route inspection, to determine compliance respecting any matter stated in paragraph (a) of this section.

(c) Each employee of, or person used by, the program manager who is responsible for maintaining the program manager’s records required by or necessary to demonstrate compliance with this subpart must make those records available to the Administrator.

(d) The Administrator may determine a program manager’s continued eligibility to hold its management specifications on any grounds listed in paragraph (a) of this section, or any other appropriate grounds.

(e) Failure by any program manager to make available to the Administrator upon request, the management specifications, or any required record, document, or report is grounds for suspension of all or any part of the program manager’s management specifications.

§ 91.1021 Internal safety reporting and incident/accident response.

(a) Each program manager must establish an internal anonymous safety reporting procedure that fosters an environment of safety without any potential for retribution for filing the report.

(b) Each program manager must establish procedures to respond to an aviation incident/accident.

§ 91.1023 Program operating manual requirements.

(a) Each program manager must prepare and keep current a program operating manual setting forth procedures and policies acceptable to the Administrator. The program manager’s management, flight, ground, and maintenance personnel must use this manual to conduct operations under this subpart. However, the Administrator may authorize a deviation from this paragraph if the Administrator finds that, because of the limited size of the operation, part of the manual is not necessary for guidance of management, flight, ground, or maintenance personnel.

(b) Each program manager must maintain at least one copy of the manual at its principal base of operations.

(c) No manual may be contrary to any applicable U.S. regulations, foreign regulations applicable to the program flights in foreign countries, or the program manager’s management specifications.

(d) The program manager must make a copy of the manual, or appropriate portions of the manual (and changes and additions), available to its maintenance and ground operations personnel and must furnish the manual to—

(1) Its crewmembers; and

(2) Representatives of the Administrator assigned to the program manager.
(e) Each employee of the program manager to whom a manual or appropriate portions of it are furnished under paragraph (d)(1) of this section must keep it up-to-date with the changes and additions furnished to them.

(f) Except as provided in paragraph (h) of this section, the appropriate parts of the manual must be carried on each aircraft when away from the principal operations base. The appropriate parts must be available for use by ground or flight personnel.

(g) For the purpose of complying with paragraph (d) of this section, a program manager may furnish the persons listed therein with all or part of its manual in printed form or other form, acceptable to the Administrator, that is retrievable in the English language. If the program manager furnishes all or part of the manual in other than printed form, it must ensure there is a compatible reading device available to those persons that provides a legible image of the maintenance information and instructions, or a system that is able to retrieve the maintenance information and instructions in the English language.

(h) If a program manager conducts aircraft inspections or maintenance at specified facilities where the approved aircraft inspection program is available, the program manager is not required to ensure that the approved aircraft inspection program is carried aboard the aircraft en route to those facilities.

(i) Program managers that are also certificated to operate under part 121 or 135 of this chapter may be authorized to use the operating manual required by those parts to meet the manual requirements of subpart K, provided:

(1) The policies and procedures are consistent for both operations, or

(2) When policies and procedures are different, the applicable policies and procedures are identified and used.

§ 91.1025 Program operating manual contents.

Each program operating manual must have the date of the last revision on each revised page. Unless otherwise authorized by the Administrator, the manual must include the following:

(a) Procedures for ensuring compliance with aircraft weight and balance limitations;

(b) Copies of the program manager’s management specifications or appropriate extracted information, including area of operations authorized, category and class of aircraft authorized, crew complements, and types of operations authorized;

(c) Procedures for complying with accident notification requirements;

(d) Procedures for ensuring that the pilot in command knows that required airworthiness inspections have been made and that the aircraft has been approved for return to service in compliance with applicable maintenance requirements;

(e) Procedures for reporting and recording mechanical irregularities that come to the attention of the pilot in command before, during, and after completion of a flight;

(f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain mechanical irregularities or defects have been deferred;

(g) Procedures to be followed by the pilot in command to obtain maintenance, preventive maintenance, and servicing of the aircraft at a place where previous arrangements have not been made by the program manager or owner, when the pilot is authorized to so act for the operator;

(h) Procedures under §91.213 for the release of, and continuation of flight if any item of equipment required for the particular type of operation becomes inoperative or unserviceable en route;

(i) Procedures for refueling aircraft, eliminating fuel contamination, protecting from fire (including electrostatic protection), and supervising and protecting passengers during refueling;

(j) Procedures to be followed by the pilot in command in the briefing under §91.1035.

(k) Procedures for ensuring compliance with emergency procedures, including a list of the functions assigned
each category of required crew-members in connection with an emergency and emergency evacuation duties;

(1) The approved aircraft inspection program, when applicable;

(m) Procedures for the evacuation of persons who may need the assistance of another person to move expeditiously to an exit if an emergency occurs;

(n) Procedures for performance planning that take into account take off, landing and en route conditions;

(o) An approved Destination Airport Analysis, when required by §91.1037(c), that includes the following elements, supported by aircraft performance data supplied by the aircraft manufacturer for the appropriate runway conditions—

1. Pilot qualifications and experience;
2. Aircraft performance data to include normal, abnormal and emergency procedures as supplied by the aircraft manufacturer;
3. Airport facilities and topography;
4. Runway conditions (including contamination);
5. Airport or area weather reporting;
6. Appropriate additional runway safety margins, if required;
7. Airplane inoperative equipment;
8. Environmental conditions; and
9. Other criteria that affect aircraft performance;

(p) A suitable system (which may include a coded or electronic system) that provides for preservation and retrieval of maintenance recordkeeping information required by §91.1113 in a manner acceptable to the Administrator that provides—

1. A description (or reference to date acceptable to the Administrator) of the work performed:
2. The name of the person performing the work if the work is performed by a person outside the organization of the program manager; and
3. The name or other positive identification of the individual approving the work.

(q) Flight locating and scheduling procedures; and

(r) Other procedures and policy instructions regarding program operations that are issued by the program manager or required by the Administrator.

§ 91.1027 Recordkeeping.

(a) Each program manager must keep at its principal base of operations or at other places approved by the Administrator, and must make available for inspection by the Administrator all of the following:

1. The program manager’s management specifications.
2. A current list of the aircraft used or available for use in operations under this subpart, the operations for which each is equipped (for example, MNPS, RNP5/10, RVSM.).
3. An individual record of each pilot used in operations under this subpart, including the following information:
 (i) The full name of the pilot.
 (ii) The pilot certificate (by type and number) and ratings that the pilot holds.
 (iii) The pilot’s aeronautical experience in sufficient detail to determine the pilot’s qualifications to pilot aircraft in operations under this subpart.
 (iv) The pilot’s current duties and the date of the pilot’s assignment to those duties.
 (v) The effective date and class of the medical certificate that the pilot holds.
 (vi) The date and result of each of the initial and recurrent competency tests and proficiency checks required by this subpart and the type of aircraft flown during that test or check.
 (vii) The pilot’s flight time in sufficient detail to determine compliance with the flight time limitations of this subpart.
 (viii) The pilot’s check pilot authorization, if any.
 (ix) Any action taken concerning the pilot’s release from employment for physical or professional disqualification; and
 (x) The date of the satisfactory completion of initial, transition, upgrade, and differences training and each recurrent training phase required by this subpart.
4. An individual record for each flight attendant used in operations under this subpart, including the following information:
Federal Aviation Administration, DOT § 91.1029

(i) The full name of the flight attendant, and
(ii) The date and result of training required by §91.1063, as applicable.

(5) A current list of all fractional owners and associated aircraft. This list or a reference to its location must be included in the management specifications and should be of sufficient detail to determine the minimum fractional ownership interest of each aircraft.

(b) Each program manager must keep each record required by paragraph (a)(2) of this section for at least 6 months, and must keep each record required by paragraphs (a)(3) and (a)(4) of this section for at least 12 months. When an employee is no longer employed or affiliated with the program manager or fractional owner, each record required by paragraphs (a)(3) and (a)(4) of this section must be retained for at least 12 months.

(c) Each program manager is responsible for the preparation and accuracy of a load manifest in duplicate containing information concerning the loading of the aircraft. The manifest must be prepared before each takeoff and must include—

(1) The number of passengers;
(2) The total weight of the loaded aircraft;
(3) The maximum allowable takeoff weight for that flight;
(4) The center of gravity limits;
(5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those cases, an entry must be made on the manifest indicating that the center of gravity is within limits according to a loading schedule or other approved method;
(6) The registration number of the aircraft or flight number;
(7) The origin and destination; and
(8) Identification of crewmembers and their crew position assignments.

(d) The pilot in command of the aircraft for which a load manifest must be prepared must carry a copy of the completed load manifest in the aircraft to its destination. The program manager must keep copies of completed load manifest for at least 30 days at its principal operations base, or at another location used by it and approved by the Administrator.

(e) Each program manager is responsible for providing a written document that states the name of the entity having operational control on that flight and the part of this chapter under which the flight is operated. The pilot in command of the aircraft must carry a copy of the document in the aircraft to its destination. The program manager must keep a copy of the document for at least 30 days at its principal operations base, or at another location used by it and approved by the Administrator.

(f) Records may be kept either in paper or other form acceptable to the Administrator.

(g) Program managers that are also certificated to operate under part 121 or 135 of this chapter may satisfy the recordkeeping requirements of this section and of §91.1113 with records maintained to fulfill equivalent obligations under part 121 or 135 of this chapter.

§ 91.1029 Flight scheduling and locating requirements.

(a) Each program manager must establish and use an adequate system to schedule and release program aircraft.

(b) Except as provided in paragraph (d) of this section, each program manager must have adequate procedures established for locating each flight, for which a flight plan is not filed, that—

(1) Provide the program manager with at least the information required to be included in a VFR flight plan;
(2) Provide for timely notification of an FAA facility or search and rescue facility, if an aircraft is overdue or missing; and
(3) Provide the program manager with the location, date, and estimated time for reestablishing radio or telephone communications, if the flight will operate in an area where communications cannot be maintained.

(c) Flight locating information must be retained at the program manager's principal base of operations, or at other places designated by the program manager.
§ 91.1031 Pilot in command or second in command: Designation required.

(a) Each program manager must designate—

(1) Pilot in command for each program flight; and

(2) Second in command for each program flight requiring two pilots.

(b) The pilot in command, as designated by the program manager, must remain the pilot in command at all times during that flight.

§ 91.1033 Operating information required.

(a) Each program manager must, for all program operations, provide the following materials, in current and appropriate form, accessible to the pilot at the pilot station, and the pilot must use them—

(1) A cockpit checklist;

(2) For multiengine aircraft or for aircraft with retractable landing gear, an emergency cockpit checklist containing the procedures required by paragraph (c) of this section, as appropriate;

(3) At least one set of pertinent aeronautical charts; and

(4) For IFR operations, at least one set of pertinent navigational en route, terminal area, and instrument approach procedure charts.

(b) Each cockpit checklist required by paragraph (a)(1) of this section must contain the following procedures:

(1) Before starting engines;

(2) Before takeoff;

(3) Cruise;

(4) Before landing;

(5) After landing; and

(6) Stopping engines.

(c) Each emergency cockpit checklist required by paragraph (a)(2) of this section must contain the following procedures, as appropriate:

(1) Emergency operation of fuel, hydraulic, electrical, and mechanical systems.

(2) Emergency operation of instruments and controls.

(3) Engine inoperative procedures.

(4) Any other emergency procedures necessary for safety.

§ 91.1035 Passenger awareness.

(a) Prior to each takeoff, the pilot in command of an aircraft carrying passengers on a program flight must ensure that all passengers have been orally briefed on—

(1) Smoking: Each passenger must be briefed on when, where, and under what conditions smoking is prohibited. This briefing must include a statement, as appropriate, that the regulations require passenger compliance with lighted passenger information signs and no smoking placards, prohibit smoking in lavatories, and require compliance with crewmember instructions with regard to these items;

(2) Use of safety belts, shoulder harnesses, and child restraint systems: Each passenger must be briefed on when, where, and under what conditions it is necessary to have his or her safety belt and, if installed, his or her shoulder harness fastened about him or her, and if a child is being transported, the appropriate use of child restraint systems, if available. This briefing must include a statement, as appropriate, that the regulations require passenger compliance with the lighted passenger information sign and/or crewmember instructions with regard to these items;

(3) The placement of seat backs in an upright position before takeoff and landing;

(4) Location and means for opening the passenger entry door and emergency exits;

(5) Location of survival equipment;

(6) Ditching procedures and the use of flotation equipment required under § 91.509 for a flight over water;

(7) The normal and emergency use of oxygen installed in the aircraft; and

(8) Location and operation of fire extinguishers.
§ 91.1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports.

(a) No program manager or any other person may permit a turbine engine powered large transport category airplane on a program flight to take off that airplane at a weight that (allowing for normal consumption of fuel and oil in flight) the weight of the airplane on arrival would exceed the landing weight in the Airplane Flight Manual for the elevation of the destination or alternate airport and the ambient temperature expected at the time of landing.

(b) Except as provided in paragraph (c) of this section, no program manager or any other person may permit a turbine engine powered large transport category airplane on a program flight to take off that airplane unless its weight on arrival, allowing for normal consumption of fuel and oil in flight (in accordance with the landing distance in the Airplane Flight Manual for the elevation of the destination airport and the wind conditions expected there at the time of landing), would allow a full stop landing at the intended destination airport within 80 percent of the effective length of each runway described below from a point 50 feet above the intersection of the obstruction clearance plane and the runway. For the purpose of determining the allowable landing weight at the destination airport, the following is assumed:

1. The airplane is landed on the most favorable runway and in the most favorable direction, in still air.
2. The airplane is landed on the most suitable runway considering the probable wind velocity and direction and the ground handling characteristics of that airplane, and considering other conditions such as landing aids and terrain.

(c) A program manager or other person flying a turbine engine powered large transport category airplane on a program flight may permit that airplane to take off at a weight in excess of that allowed by paragraph (b) of this section if all of the following conditions exist:

1. The operation is conducted in accordance with an approved Destination Airport Analysis in that person’s program operating manual that contains the elements listed in §91.1025(o).
2. The airplane’s weight on arrival, allowing for normal consumption of fuel and oil in flight (in accordance with the landing distance in the Airplane Flight Manual for the elevation of the destination airport and the wind conditions expected there at the time of landing), would allow a full stop landing at the intended destination airport within 80 percent of the effective length of each runway described below from a point 50 feet above the intersection of the obstruction clearance plane.
and the runway. For the purpose of determining the allowable landing weight at the destination airport, the following is assumed:

(i) The airplane is landed on the most favorable runway and in the most favorable direction, in still air.

(ii) The airplane is landed on the most suitable runway considering the probable wind velocity and direction and the ground handling characteristics of that airplane, and considering other conditions such as landing aids and terrain.

(3) The operation is authorized by management specifications.

(d) No program manager or other person may select an airport as an alternate airport for a turbine engine powered large transport category airplane unless (based on the assumptions in paragraph (b) of this section) that airplane, at the weight expected at the time of arrival, can be brought to a full stop landing within 80 percent of the effective length of the runway from a point 50 feet above the intersection of the obstruction clearance plane and the runway.

(e) Unless, based on a showing of actual operating landing techniques on wet runways, a shorter landing distance (but never less than that required by paragraph (b) or (c) of this section) has been approved for a specific type and model airplane unless (based on the assumptions in paragraph (b) of this section) that airplane, at the weight expected at the time of arrival, can be brought to a full stop landing within 80 percent of the effective length of the runway from a point 50 feet above the intersection of the obstruction clearance plane and the runway.

§ 91.1039 IFR takeoff, approach and landing minimums.

(a) No pilot on a program aircraft operating a program flight may begin an instrument approach procedure to an airport unless—

(1) Either that airport or the alternate airport has a weather reporting facility operated by the U.S. National Weather Service, a source approved by the U.S. National Weather Service, or a source approved by the Administrator; and

(2) The latest weather report issued by the weather reporting facility includes a current local altimeter setting for the destination airport. If no local altimeter setting is available at the destination airport, the pilot must obtain the current local altimeter setting from a source provided by the facility designated on the approach chart for the destination airport.

(b) For flight planning purposes, if the destination airport does not have a weather reporting facility described in paragraph (a)(1) of this section, the pilot must designate as an alternate an airport that has a weather reporting facility meeting that criteria.

(c) The MDA or Decision Altitude and visibility landing minimums prescribed in part 97 of this chapter or in the program manager’s management specifications are increased by 100 feet and 1/2 mile respectively, but not to exceed the ceiling and visibility minimums for that airport when used as an alternate airport, for each pilot in command of a turbine-powered aircraft who has not served at least 100 hours as pilot in command in that type of aircraft.

(d) No person may take off an aircraft under IFR from an airport where weather conditions are at or above takeoff minimums but are below authorized IFR landing minimums unless there is an alternate airport within one hour’s flying time (at normal cruising speed, in still air) of the airport of departure.

(e) Each pilot making an IFR takeoff or approach and landing at an airport must comply with applicable instrument approach procedures and take off and landing weather minimums prescribed by the authority having jurisdiction over the airport. In addition, no pilot may, at that airport take off when the visibility is less than 600 feet.

§ 91.1041 Aircraft proving and validation tests.

(a) No program manager may permit the operation of an aircraft, other than a turbojet aircraft, for which two pilots are required by the type certification
requirements of this chapter for operations under VFR, if it has not previously proved such an aircraft in operations under this part in at least 25 hours of proving tests acceptable to the Administrator including—
(1) Five hours of night time, if night flights are to be authorized;
(2) Five instrument approach procedures under simulated or actual conditions, if IFR flights are to be authorized; and
(3) Entry into a representative number of en route airports as determined by the Administrator.
(b) No program manager may permit the operation of a turbojet airplane if it has not previously proved a turbojet airplane in operations under this part in at least 25 hours of proving tests acceptable to the Administrator including—
(1) Five hours of night time, if night flights are to be authorized;
(2) Five instrument approach procedures under simulated or actual conditions, if IFR flights are to be authorized; and
(3) Entry into a representative number of en route airports as determined by the Administrator.
(c) No program manager may carry passengers in an aircraft during proving tests, except those needed to make the tests and those designated by the Administrator to observe the tests. However, pilot flight training may be conducted during the proving tests.
(d) Validation testing is required to determine that a program manager is capable of conducting operations safely and in compliance with applicable regulatory standards. Validation tests are required for the following authorizations:
(1) The addition of an aircraft for which two pilots are required for operations under VFR or a turbojet airplane, if that aircraft or an aircraft of the same make or similar design has not been previously proved or validated in operations under this part.
(2) Operations outside U.S. airspace.
(3) Class II navigation authorizations.
(4) Special performance or operational authorizations.
(e) Validation tests must be accomplished by test methods acceptable to the Administrator. Actual flights may not be required when an applicant can demonstrate competence and compliance with appropriate regulations without conducting a flight.
(f) Proving tests and validation tests may be conducted simultaneously when appropriate.
(g) The Administrator may authorize deviations from this section if the Administrator finds that special circumstances make full compliance with this section unnecessary.
§ 91.1043 [Reserved]
§ 91.1045 Additional equipment requirements.
No person may operate a program aircraft on a program flight unless the aircraft is equipped with the following—
(a) Airplanes having a passenger-seat configuration of more than 30 seats or a payload capacity of more than 7,500 pounds:
(1) A cockpit voice recorder as required by § 121.359 of this chapter as applicable to the aircraft specified in that section.
(2) A flight recorder as required by § 121.343 or § 121.344 of this chapter as applicable to the aircraft specified in that section.
(3) A terrain awareness and warning system as required by § 121.354 of this chapter as applicable to the aircraft specified in that section.
(4) A traffic alert and collision avoidance system as required by § 121.356 of this chapter as applicable to the aircraft specified in that section.
(5) Airborne weather radar as required by § 121.357 of this chapter, as applicable to the aircraft specified in that section.
(b) Airplanes having a passenger-seat configuration of 30 seats or fewer, excluding each crewmember, and a payload capacity of 7,500 pounds or less, and any rotorcraft (as applicable):
(1) A cockpit voice recorder as required by § 135.151 of this chapter as applicable to the aircraft specified in that section.
(2) A flight recorder as required by § 135.152 of this chapter as applicable to the aircraft specified in that section.
(3) A terrain awareness and warning system as required by § 135.154 of this chapter.
chapter as applicable to the aircraft specified in that section.

(4) A traffic alert and collision avoidance system as required by §135.180 of this chapter as applicable to the aircraft specified in that section.

(5) As applicable to the aircraft specified in that section, either:
 (i) Airborne thunderstorm detection equipment as required by §135.173 of this chapter; or
 (ii) Airborne weather radar as required by §135.175 of this chapter.

§ 91.1047 Drug and alcohol misuse education program.

(a) Each program manager must provide each direct employee performing flight crewmember, flight attendant, flight instructor, or aircraft maintenance duties with drug and alcohol misuse education.

(b) No program manager may use any contract employee to perform flight crewmember, flight attendant, flight instructor, or aircraft maintenance duties for the program manager unless that contract employee has been provided with drug and alcohol misuse education.

(c) Program managers must disclose to their owners and prospective owners the existence of a company drug and alcohol misuse testing program. If the program manager has implemented a company testing program, the program manager’s disclosure must include the following:
 (1) Information on the substances that they test for, for example, alcohol and a list of the drugs;
 (2) The categories of employees tested, the types of tests, for example, pre-employment, random, reasonable cause/suspicion, post accident, return to duty and follow-up; and
 (3) The degree to which the program manager’s company testing program is comparable to the federally mandated drug and alcohol testing program required under part 120 of this chapter regarding the information in paragraphs (c)(1) and (c)(2) of this section.

(d) If a program aircraft is operated on a program flight into an airport at which no maintenance personnel are available that are subject to the requirements of paragraphs (a) or (b) of this section and emergency maintenance is required, the program manager may use persons not meeting the requirements of paragraphs (a) or (b) of this section to provide such emergency maintenance under both of the following conditions:
 (1) The program manager must notify the Drug Abatement Program Division, AAM–800, 800 Independence Avenue, SW., Washington, DC 20591 in writing within 10 days after being provided emergency maintenance in accordance with this paragraph. The program manager must retain copies of all such written notifications for two years.
 (2) The aircraft must be reinspected by maintenance personnel who meet the requirements of paragraph (a) or (b) of this section when the aircraft is next at an airport where such maintenance personnel are available.

(e) For purposes of this section, emergency maintenance means maintenance that—
 (1) Is not scheduled, and
 (2) Is made necessary by an aircraft condition not discovered prior to the departure for that location.

(f) Notwithstanding paragraphs (a) and (b) of this section, drug and alcohol misuse education conducted under an FAA-approved drug and alcohol misuse prevention program may be used to satisfy these requirements.

§ 91.1049 Personnel.

(a) Each program manager and each fractional owner must use in program operations on program aircraft flight crews meeting §91.1053 criteria and qualified under the appropriate regulations. The program manager must provide oversight of those crews.

(b) Each program manager must employ (either directly or by contract) an adequate number of pilots per program aircraft. Flight crew staffing must be determined based on the following factors, at a minimum:
 (1) Number of program aircraft.
 (2) Program manager flight, duty, and rest time considerations, and in all cases within the limits set forth in §§91.1057 through 91.1061.
 (3) Vacations.
 (4) Operational efficiencies.
§ 91.1053 Crewmember experience.

(a) No program manager or owner may use any person, nor may any person serve, as a pilot in command or second in command of a program aircraft, or as a flight attendant on a program aircraft, in program operations under this subpart unless that person has met the applicable requirements of part 61 of this chapter and has the following experience and ratings:

(1) Total flight time for all pilots:
 (i) Pilot in command—A minimum of 1,500 hours.
 (ii) Second in command—A minimum of 500 hours.

(2) For multi-engine turbine-powered fixed-wing and powered-lift aircraft, the following FAA certification and ratings requirements:
 (i) Pilot in command—Airline transport pilot and applicable type ratings.
 (ii) Second in command—Commercial pilot and instrument ratings.
 (iii) Flight attendant (if required or used)—Appropriately trained personnel.

(3) For all other aircraft, the following FAA certification and rating requirements:
 (i) Pilot in command—Commercial pilot and instrument ratings.
 (ii) Second in command—Commercial pilot and instrument ratings.
 (iii) Flight attendant (if required or used)—Appropriately trained personnel.

(b) The Administrator may authorize deviations from paragraph (a)(1) of this section if the Flight Standards District Office that issued the program manager’s management specifications finds that the crewmember has comparable experience, and can effectively perform the functions associated with the position in accordance with the requirements of this chapter. Grants of deviation under this paragraph may be granted after consideration of the size and scope of the operation, the qualifications of the intended personnel and the circumstances set forth in §91.1055(b)(1) through (3). The Administrator may, at any time, terminate any

§ 91.1051 Pilot safety background check.

Within 90 days of an individual beginning service as a pilot, the program manager must request the following information:

(a) FAA records pertaining to—
 (1) Current pilot certificates and associated type ratings.
 (2) Current medical certificates.
 (3) Summaries of legal enforcement actions resulting in a finding by the Administrator of a violation.

(b) Records from all previous employers during the five years preceding the date of the employment application where the applicant worked as a pilot. If any of these firms are in bankruptcy, the records must be requested from the trustees in bankruptcy for those employees. If the previous employer is no longer in business, a documented good faith effort must be made to obtain the records. Records from previous employers must include, as applicable—
 (1) Crew member records.
 (2) Drug testing—collection, testing, and rehabilitation records pertaining to the individual.
 (3) Alcohol misuse prevention program records pertaining to the individual.

(4) The applicant’s individual record that includes certifications, ratings, aeronautical experience, effective date and class of the medical certificate.
§ 91.1055 Pilot operating limitations and pairing requirement.

(a) If the second in command of a fixed-wing program aircraft has fewer than 100 hours of flight time as second in command flying in the aircraft make and model and, if a type rating is required, in the type aircraft being flown, and the pilot in command is not an appropriately qualified check pilot, the pilot in command shall make all takeoffs and landings in any of the following situations:

(1) Landings at the destination airport when a Destination Airport Analysis is required by §91.1037(c); and

(2) In any of the following conditions:

(i) The prevailing visibility for the airport is at or below 3/4 mile.

(ii) The runway visual range for the runway to be used is at or below 4,000 feet.

(iii) The runway to be used has water, snow, slush, ice or similar contamination that may adversely affect aircraft performance.

(iv) The braking action on the runway to be used is reported to be less than “good.”

(v) The crosswind component for the runway to be used is in excess of 15 knots.

(vi) Windshear is reported in the vicinity of the airport.

(vii) Any other condition in which the pilot in command determines it to be prudent to exercise the pilot in command’s authority.

(b) No program manager may release a program flight under this subpart unless, for that aircraft make or model and, if a type rating is required, for that type aircraft, either the pilot in command or the second in command has at least 75 hours of flight time, either as pilot in command or second in command. The Administrator may, upon application by the program manager, authorize deviations from the requirements of this paragraph by an appropriate amendment to the management specifications in any of the following circumstances:

(1) A newly authorized program manager does not employ any pilots who meet the minimum requirements of this paragraph.

(2) An existing program manager adds to its fleet a new category and class aircraft not used before in its operation.

(3) An existing program manager establishes a new base to which it assigns pilots who will be required to become qualified on the aircraft operated from that base.

(c) No person may be assigned in the capacity of pilot in command in a program operation to more than two aircraft types that require a separate type rating.

§ 91.1057 Flight, duty and rest time requirements: All crewmembers.

(a) For purposes of this subpart—

Augmented flight crew means at least three pilots.

Calendar day means the period of elapsed time, using Coordinated Universal Time or local time that begins at midnight and ends 24 hours later at the next midnight.

Duty period means the period of elapsed time between reporting for an assignment involving flight time and release from that assignment by the program manager. All time between these two points is part of the duty period, even if flight time is interrupted by nonflight-related duties. The time is calculated using either Coordinated Universal Time or local time to reflect the total elapsed time.

Extension of flight time means an increase in the flight time because of circumstances beyond the control of the program manager or flight crewmember (such as adverse weather) that are not known at the time of departure and that prevent the flight crew from reaching the destination within the planned flight time.

Flight attendant means an individual, other than a flight crewmember, who is assigned by the program manager, in accordance with the required minimum crew complement under the program manager’s management specifications or in addition to that minimum complement, to duty in an aircraft during flight time and whose duties include but are not necessarily limited to cabin-safety-related responsibilities.
Multi-time zone flight means an easterly or westerly flight or multiple flights in one direction in the same duty period that results in a time zone difference of 5 or more hours and is conducted in a geographic area that is south of 60 degrees north latitude and north of 60 degrees south latitude.

Reserve status means that status in which a flight crewmember, by arrangement with the program manager: Holds himself or herself fit to fly to the extent that this is within the control of the flight crewmember; remains within a reasonable response time of the aircraft as agreed between the flight crewmember and the program manager; and maintains a ready means whereby the flight crewmember may be contacted by the program manager. Reserve status is not part of any duty period or rest period.

Rest period means a period of time required pursuant to this subpart that is free of all responsibility for work or duty prior to the commencement of, or following completion of, a duty period, and during which the flight crewmember or flight attendant cannot be required to receive contact from the program manager. A rest period does not include any time during which the program manager imposes on a flight crewmember or flight attendant any duty or restraint, including any actual work or present responsibility for work should the occasion arise.

Standby means that portion of a duty period during which a flight crewmember is subject to the control of the program manager and holds himself or herself in a condition of readiness to undertake a flight. Standby is not part of any rest period.

A program manager may assign a crewmember and a crewmember may accept an assignment for flight time only when the applicable requirements of this section and §§91.1059–91.1062 are met.

(c) No program manager may assign any crewmember to any duty during any required rest period.

(d) Time spent in transportation, not local in character, that a program manager requires of a crewmember and provides to transport the crewmember to an airport at which he or she is to serve on a flight as a crewmember, or from an airport at which he or she was relieved from duty to return to his or her home station, is not considered part of a rest period.

(e) A flight crewmember may continue a flight assignment if the flight to which he or she is assigned would normally terminate within the flight time limitations, but because of circumstances beyond the control of the program manager or flight crewmember (such as adverse weather conditions), is not at the time of departure expected to reach its destination within the planned flight time. The extension of flight time under this paragraph may not exceed the maximum time limits set forth in §91.1059.

(f) Each flight assignment must provide for at least 10 consecutive hours of rest during the 24-hour period that precedes the completion time of the assignment.

(g) The program manager must provide each crewmember at least 13 rest periods of at least 24 consecutive hours each in each calendar quarter.

(h) A flight crewmember may decline a flight assignment if, in the flight crewmember’s determination, to do so would not be consistent with the standard of safe operation required under this subpart, this part, and applicable provisions of this title.

(i) Any rest period required by this subpart may occur concurrently with any other rest period.

(j) If authorized by the Administrator, a program manager may use the applicable unscheduled flight time limitations, duty period limitations, and rest requirements of part 121 or part 135 of this chapter instead of the flight time limitations, duty period limitations, and rest requirements of this subpart.

§91.1059 Flight time limitations and rest requirements: One or two pilot crews.

(a) No program manager may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of a one- or two-pilot crew if that crewmember’s total flight time in all commercial flying will exceed—

(1) 500 hours in any calendar quarter;
§ 91.1061 Augmented flight crews.

(a) No program manager may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember’s total flight time in all commercial flying will exceed—

(1) 500 hours in any calendar quarter;
(2) 800 hours in any two consecutive calendar quarters;
(3) 1,400 hours in any calendar year.

(b) No program manager may assign any pilot to an augmented crew, unless the program manager ensures:

(1) Adequate sleeping facilities are installed on the aircraft for the pilots.
(2) No more than 8 hours of flight deck duty is accrued in any 24 consecutive hours.
(3) For a three-pilot crew, the crew must consist of at least the following:
 (i) A pilot in command (PIC) who meets the applicable flight crewmember requirements of this subpart and §61.57 of this chapter.
 (ii) A PIC qualified pilot who meets the applicable flight crewmember requirements of this subpart and §61.57(c) and (d) of this chapter.
 (iii) A second in command (SIC) who meets the SIC qualifications of this subpart. For flight under IFR, that person must also meet the recent instrument experience requirements of part 61 of this chapter.
(4) For a four-pilot crew, at least three pilots who meet the conditions of paragraph (b)(3) of this section, plus a fourth pilot who meets the SIC qualifications of this subpart. For flight under IFR, that person must also meet the recent instrument experience requirements of part 61 of this chapter.

(c) No program manager may assign any flight crewmember, and no flight crewmember may accept an assignment, if that crewmember’s flight time or duty period will exceed, or rest time will be less than—

<table>
<thead>
<tr>
<th></th>
<th>3-Pilot crew</th>
<th>4-Pilot crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Minimum Rest Immediately Before Duty</td>
<td>10 Hours</td>
<td>10 Hours</td>
</tr>
<tr>
<td>(2) Duty Period</td>
<td>Up to 16 Hours</td>
<td>Up to 16 Hours</td>
</tr>
<tr>
<td>(3) Flight Time</td>
<td>Up to 16 Hours</td>
<td>Up to 16 Hours</td>
</tr>
<tr>
<td>(4) Minimum After Duty Rest</td>
<td>12 Hours</td>
<td>18 Hours</td>
</tr>
<tr>
<td>(5) Minimum After Duty Rest Period for Multi-Time Zone Flights</td>
<td>18 hours</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
§ 91.1062 Duty periods and rest requirements: Flight attendants.

(a) Except as provided in paragraph (b) of this section, a program manager may assign a duty period to a flight attendant only when the assignment meets the applicable duty period limitations and rest requirements of this paragraph.

(1) Except as provided in paragraphs (a)(4), (a)(5), and (a)(6) of this section, no program manager may assign a flight attendant to a scheduled duty period of more than 14 hours.

(2) Except as provided in paragraph (a)(3) of this section, a flight attendant scheduled to a duty period of 14 hours or less as provided under paragraph (a)(1) of this section must be given a scheduled rest period of at least 9 consecutive hours. This rest period must occur between the completion of the scheduled duty period and the commencement of the subsequent duty period.

(3) The rest period required under paragraph (a)(2) of this section may be scheduled or reduced to 8 consecutive hours if the flight attendant is provided a subsequent rest period of at least 10 consecutive hours; this subsequent rest period must be scheduled to begin no later than 24 hours after the beginning of the reduced rest period and must occur between the completion of the scheduled duty period and the commencement of the subsequent duty period.

(4) A program manager may assign a flight attendant to a scheduled duty period of more than 14 hours, but no more than 16 hours, if the program manager has assigned to the flight or flights in that duty period at least one flight attendant in addition to the minimum flight attendant complement required for the flight or flights in that duty period under the program manager’s management specifications.

(5) A program manager may assign a flight attendant to a scheduled duty period of more than 16 hours, but no more than 18 hours, if the program manager has assigned to the flight or flights in that duty period at least two flight attendants in addition to the minimum flight attendant complement required for the flight or flights in that duty period under the program manager’s management specifications.

(6) A program manager may assign a flight attendant to a scheduled duty period of more than 18 hours, but no more than 20 hours, if the scheduled duty period includes one or more flights that land or take off outside the 48 contiguous states and the District of Columbia, and if the program manager has assigned to the flight or flights in that duty period at least three flight attendants in addition to the minimum flight attendant complement required for the flight or flights in that duty period under the program manager’s management specifications.

(b) Notwithstanding paragraph (a)(8) of this section, a flight attendant scheduled to a duty period of more than 14 hours but no more than 20 hours, as provided in paragraphs (a)(4), (a)(5), and (a)(6) of this section, must be given a scheduled rest period of at least 12 consecutive hours. This rest period must occur between the completion of the scheduled duty period and the commencement of the subsequent duty period.

(8) The rest period required under paragraph (a)(7) of this section may be scheduled or reduced to 10 consecutive hours if the flight attendant is provided a subsequent rest period of at least 14 consecutive hours; this subsequent rest period must be scheduled to begin no later than 24 hours after the beginning of the reduced rest period and must occur between the completion of the scheduled duty period and the commencement of the subsequent duty period.

(9) Notwithstanding paragraphs (a)(4), (a)(5), and (a)(6) of this section, if a program manager elects to reduce the rest period to 10 hours as authorized by paragraph (a)(8) of this section, the program manager may not schedule a flight attendant for a duty period of more than 14 hours during the 24-hour period commencing after the beginning of the reduced rest period.

(b) Notwithstanding paragraph (a) of this section, a program manager may apply the flight crewmember flight time and duty limitations and rest requirements of this part to flight attendants for all operations conducted
§ 91.1063 Testing and training: Applicability and terms used.

(a) Sections 91.1065 through 91.1107:
(1) Prescribe the tests and checks required for pilots and flight attendant crewmembers and for the approval of check pilots in operations under this subpart;
(2) Prescribe the requirements for establishing and maintaining an approved training program for crewmembers, check pilots and instructors, and other operations personnel employed or used by the program manager in program operations;
(3) Prescribe the requirements for the qualification, approval and use of aircraft simulators and flight training devices in the conduct of an approved training program; and
(4) Permit training center personnel authorized under part 142 of this chapter who meet the requirements of §91.1075 to conduct training, testing and checking under contract or other arrangement to those persons subject to the requirements of this subpart.

(b) If authorized by the Administrator, a program manager may comply with the applicable training and testing sections of subparts N and O of part 121 of this chapter instead of §§91.1065 through 91.1107, except for the operating experience requirements of §121.434 of this chapter.

(c) If authorized by the Administrator, a program manager may comply with the applicable training and testing sections of subparts G and H of part 135 of this chapter instead of §§91.1065 through 91.1107, except for the operating experience requirements of §135.244 of this chapter.

(d) For the purposes of this subpart, the following terms and definitions apply:
(1) Initial training. The training required for crewmembers who have not qualified and served in the same capacity on an aircraft.
(2) Transition training. The training required for crewmembers who have qualified and served in the same capacity on another aircraft.
(3) Upgrade training. The training required for crewmembers who have qualified and served as second in command on a particular aircraft type, before they serve as pilot in command on that aircraft.
(4) Differences training. The training required for crewmembers who have qualified and served as second in command on a particular aircraft type, when the Administrator finds differences training is necessary before a crewmember serves in the same capacity on a particular variation of that aircraft.
(5) Recurrent training. The training required for crewmembers to remain adequately trained and currently proficient for each aircraft crewmember position, and type of operation in which the crewmember serves.
(6) In flight. The maneuvers, procedures, or functions that will be conducted in the aircraft.
(7) Training center. An organization governed by the applicable requirements of part 142 of this chapter that conducts training, testing, and checking under contract or other arrangement to program managers subject to the requirements of this subpart.
(8) Requalification training. The training required for crewmembers previously trained and qualified, but who have become unqualified because of not having met within the required period any of the following:
(1) Recurrent crewmember training requirements of §91.1107.
(2) Instrument proficiency check requirements of §91.1069.
§ 91.1065 Initial and recurrent pilot testing requirements.

(a) No program manager or owner may use a pilot, nor may any person serve as a pilot, unless, since the beginning of the 12th month before that service, that pilot has passed either a written or oral test (or a combination), given by the Administrator or an authorized check pilot, on that pilot’s knowledge in the following areas—

1. The appropriate provisions of parts 61 and 91 of this chapter and the management specifications and the operating manual of the program manager;

2. For each type of aircraft to be flown by the pilot, the aircraft powerplant, major components and systems, major appliances, performance and operating limitations, standard and emergency operating procedures, and the contents of the accepted operating manual or equivalent, as applicable;

3. For each type of aircraft to be flown by the pilot, the method of determining compliance with weight and balance limitations for takeoff, landing and en route operations;

4. Navigation and use of air navigation aids appropriate to the operation or pilot authorization, including, when applicable, instrument approach facilities and procedures;

5. Air traffic control procedures, including IFR procedures when applicable;

6. Meteorology in general, including the principles of frontal systems, icing, fog, thunderstorms, and windshear, and, if appropriate for the operation of the program manager, high altitude weather;

7. Procedures for—

(i) Recognizing and avoiding severe weather situations;

(ii) Escaping from severe weather situations, in case of inadvertent encounters, including low-altitude windshear (except that rotorcraft aircraft pilots are not required to be tested on escaping from low-altitude windshear); and

(iii) Operating in or near thunderstorms (including best penetration altitudes), turbulent air (including clear air turbulence), icing, hail, and other potentially hazardous meteorological conditions; and

8. New equipment, procedures, or techniques, as appropriate.

(b) No program manager or owner may use a pilot, nor may any person serve as a pilot, in any aircraft unless, since the beginning of the 12th month before that service, that pilot has passed a competency check given by the Administrator or an authorized check pilot in that class of aircraft, if single-engine aircraft other than turbojet, or that type of aircraft, if rotorcraft, multiengine aircraft, or turbojet airplane, to determine the pilot’s competence in practical skills and techniques in that aircraft or class of aircraft. The extent of the competency check will be determined by the Administrator or authorized check pilot conducting the competency check. The competency check may include any of the maneuvers and procedures currently required for the original issuance of the particular pilot certificate required for the operations authorized and appropriate to the category, class and type of aircraft involved. For the purposes of this paragraph, type, as to an airplane, means any one of a group of airplanes determined by the Administrator to have a similar means of propulsion, the same manufacturer, and no significantly different handling or flight characteristics. For the purposes of this paragraph, type, as to a rotorcraft, means a basic make and model.

(c) The instrument proficiency check required by §91.1069 may be substituted for the competency check required by this section for the type of aircraft used in the check.

(d) For the purpose of this subpart, competent performance of a procedure or maneuver by a person to be used as a pilot requires that the pilot be the obvious master of the aircraft, with the successful outcome of the maneuver never in doubt.

(e) The Administrator or authorized check pilot certifies the competency of each pilot who passes the knowledge or flight check in the program manager’s pilot records.
§ 91.1067 Initial and recurrent flight attendant crewmember testing requirements.

No program manager or owner may use a flight attendant crewmember, nor may any person serve as a flight attendant crewmember unless, since the beginning of the 12th month before that service, the program manager has determined by appropriate initial and recurrent testing that the person is knowledgeable and competent in the following areas as appropriate to assigned duties and responsibilities:

(a) Authority of the pilot in command;
(b) Passenger handling, including procedures to be followed in handling deranged persons or other persons whose conduct might jeopardize safety;
(c) Crewmember assignments, functions, and responsibilities during ditching and evacuation of persons who may need the assistance of another person to move expeditiously to an exit in an emergency;
(d) Briefing of passengers;
(e) Location and operation of portable fire extinguishers and other items of emergency equipment;
(f) Proper use of cabin equipment and controls;
(g) Location and operation of passenger oxygen equipment;
(h) Location and operation of all normal and emergency exits, including evacuation slides and escape ropes; and
(i) Seating of persons who may need assistance of another person to move rapidly to an exit in an emergency as prescribed by the program manager’s operations manual.

§ 91.1069 Flight crew: Instrument proficiency check requirements.

(a) No program manager or owner may use a pilot, nor may any person serve, as a pilot in command of an aircraft under IFR unless, since the beginning of the 6th month before that service, that pilot has passed an instrument proficiency check under this section administered by the Administrator or an authorized check pilot.
(b) No program manager or owner may use a pilot, nor may any person serve, as a second command pilot of an aircraft under IFR unless, since the beginning of the 12th month before that service, that pilot has passed an instrument proficiency check under this section administered by the Administrator or an authorized check pilot.
(c) No pilot may use any type of precision instrument approach procedure under IFR unless, since the beginning of the 6th month before that use, the pilot satisfactorily demonstrated that type of approach procedure. No pilot may use any type of nonprecision approach procedure under IFR unless, since the beginning of the 6th month before that use, the pilot has satisfactorily demonstrated either that type of approach procedure or any other two different types of nonprecision approach procedures. The instrument approach procedure or procedures must include at least one straight-in approach, one circling approach, and one missed approach. Each type of approach procedure demonstrated must be conducted to published minimums for that procedure.
(d) The instrument proficiency checks required by paragraphs (a) and (b) of this section consists of either an oral or written equipment test (or a combination) and a flight check under simulated or actual IFR conditions. The equipment test includes questions on emergency procedures, engine operation, fuel and lubrication systems, power settings, stall speeds, best engine-out speed, propeller and supercharger operations, and hydraulic, mechanical, and electrical systems, as appropriate. The flight check includes navigation by instruments, recovery from simulated emergencies, and standard instrument approaches involving navigational facilities which that pilot is to be authorized to use.
(e) Each pilot taking the instrument proficiency check must show that standard of competence required by § 91.1065(d).
(1) The instrument proficiency check must:
(i) For a pilot in command of an aircraft requiring that the PIC hold an
airline transport pilot certificate, include the procedures and maneuvers for an airline transport pilot certificate in the particular type of aircraft, if appropriate; and

(ii) For a pilot in command of a rotorcraft or a second in command of any aircraft requiring that the SIC hold a commercial pilot certificate include the procedures and maneuvers for a commercial pilot certificate with an instrument rating and, if required, for the appropriate type rating.

(2) The instrument proficiency check must be given by an authorized check pilot or by the Administrator.

(f) If the pilot is assigned to pilot only one type of aircraft, that pilot must take the instrument proficiency check required by paragraph (a) of this section in that type of aircraft.

(g) If the pilot in command is assigned to pilot more than one type of aircraft, that pilot must take the instrument proficiency check required by paragraph (a) of this section in each type of aircraft to which that pilot is assigned, in rotation, but not more than one flight check during each period described in paragraph (a) of this section.

(h) If the pilot in command is assigned to pilot both single-engine and multiengine aircraft, that pilot must initially take the instrument proficiency check required by paragraph (a) of this section in a multiengine aircraft, and each succeeding check alternately in single-engine and multiengine aircraft, but not more than one flight check during each period described in paragraph (a) of this section.

(i) All or portions of a required flight check may be given in an aircraft simulator or other appropriate training device, if approved by the Administrator.

§ 91.1073 Training program: General.

(a) Each program manager must have a training program and must:

(1) Establish, obtain the appropriate initial and final approval of, and provide a training program that meets this subpart and that ensures that each crewmember, including each flight attendant if the program manager uses a flight attendant crewmember, flight instructor, check pilot, and each person assigned duties for the carriage and handling of hazardous materials (as defined in 49 CFR 171.8) is adequately trained to perform these assigned duties.

(2) Provide adequate ground and flight training facilities and properly qualified ground instructors for the training required by this subpart.

(3) Provide and keep current for each aircraft type used and, if applicable, the particular variations within the aircraft type, appropriate training material, examinations, forms, instructions, and procedures for use in conducting the training and checks required by this subpart.

(4) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart.
§ 91.1075 Training program: Special rules.

(b) Whenever a crewmember who is required to take recurrent training under this subpart complete(s) the training in the month before, or the month after, the month in which that training is required, the crewmember is considered to have completed it in the month in which it was required.

(c) Each instructor, supervisor, or check pilot who is responsible for a particular ground training subject, segment of flight training, course of training, flight check, or competence check under this subpart must certify as to the proficiency and knowledge of the crewmember, flight instructor, or check pilot concerned upon completion of that training or check. That certification must be made a part of the crewmember’s record. When the certification required by this paragraph is made by an entry in a computerized recordkeeping system, the certifying instructor, supervisor, or check pilot, must be identified with that entry. However, the signature of the certifying instructor, supervisor, or check pilot is not required for computerized entries.

(d) Training subjects that apply to more than one aircraft or crewmember position and that have been satisfactorily completed during previous training while employed by the program manager for another aircraft or another crewmember position, need not be repeated during subsequent training other than recurrent training.

(e) Aircraft simulators and other training devices may be used in the program manager’s training program if approved by the Administrator.

(f) Each program manager is responsible for establishing safe and efficient crew management practices for all phases of flight in program operations including crew resource management training for all crewmembers used in program operations.

(g) If an aircraft simulator has been approved by the Administrator for use in the program manager’s training program, the program manager must ensure that each pilot annually completes at least one flight training session in an approved simulator for at least one program aircraft. The training session may be the flight training portion of any of the pilot training or check requirements of this subpart, including the initial, transition, upgrade, requalification, differences, or recurrent training, or the accomplishment of a competency check or instrument proficiency check. If there is no approved simulator for that aircraft type in operation, then all flight training and checking must be accomplished in the aircraft.

§ 91.1077 Training program and revision: Initial and final approval.

(a) To obtain initial and final approval of a training program, or a revision to an approved training program,
each program manager must submit to the Administrator—

(1) An outline of the proposed or revised curriculum, that provides enough information for a preliminary evaluation of the proposed training program or revision; and

(2) Additional relevant information that may be requested by the Administrator.

(b) If the proposed training program or revision complies with this subpart, the Administrator grants initial approval in writing after which the program manager may conduct the training under that program. The Administrator then evaluates the effectiveness of the training program and advises the program manager of deficiencies, if any, that must be corrected.

(c) The Administrator grants final approval of the proposed training program or revision if the program manager shows that the training conducted under the initial approval in paragraph (b) of this section ensures that each person who successfully completes the training is adequately trained to perform that person’s assigned duties.

(d) Whenever the Administrator finds that revisions are necessary for the continued adequacy of a training program that has been granted final approval, the program manager must, after notification by the Administrator, make any changes in the program that are found necessary by the Administrator. Within 30 days after the program manager receives the notice, it may file a petition to reconsider the notice pending a decision by the Administrator. The filing of a petition to reconsider stays the notice pending a decision by the Administrator. However, if the Administrator finds that there is an emergency that requires immediate action in the interest of safety, the Administrator may, upon a statement of the reasons, require a change effective without stay.

§91.1079 Training program: Curriculum.

(a) Each program manager must prepare and keep current a written training program curriculum for each type of aircraft for each crewmember required for that type aircraft. The curriculum must include ground and flight training required by this subpart.

(b) Each training program curriculum must include the following:

(1) A list of principal ground training subjects, including emergency training subjects, that are provided.

(2) A list of all the training devices, mock-ups, systems trainers, procedures trainers, or other training aids that the program manager will use.

(3) Detailed descriptions or pictorial displays of the approved normal, abnormal, and emergency maneuvers, procedures and functions that will be performed during each flight training phase or flight check, indicating those maneuvers, procedures and functions that are to be performed during the inflight portions of flight training and flight checks.

§91.1081 Crewmember training requirements.

(a) Each program manager must include in its training program the following initial and transition ground training as appropriate to the particular assignment of the crewmember:

(1) Basic indoctrination ground training for newly hired crewmembers including instruction in at least the—

(i) Duties and responsibilities of crewmembers as applicable;

(ii) Appropriate provisions of this chapter;

(iii) Contents of the program manager’s management specifications (not required for flight attendants); and

(iv) Appropriate portions of the program manager’s operating manual.

(2) The initial and transition ground training in §§91.1101 and 91.1105, as applicable.

(b) Each training program must provide the initial and transition flight training in §91.1103, as applicable.

(c) Each training program must provide recurrent ground and flight training as provided in §91.1107.

(d) Upgrade training in §§91.1101 and 91.1103 for a particular type aircraft may be included in the training program for crewmembers who have qualified and served as second in command on that aircraft.

(e) In addition to initial, transition, upgrade and recurrent training, each
§ 91.1083 Crewmember training.

(a) Each training program must provide emergency training under this section for each aircraft type, model, and configuration, each crewmember, and each kind of operation conducted as appropriate for each crewmember and the program manager.

(b) Emergency training must provide the following:

(1) Instruction in emergency assignments and procedures, including coordination among crewmembers.

(2) Individual instruction in the location, function, and operation of emergency equipment including—

(i) Equipment used in ditching and evacuation;

(ii) First aid equipment and its proper use; and

(iii) Portable fire extinguishers, with emphasis on the type of extinguisher to be used on different classes of fires.

(3) Instruction in the handling of emergency situations including—

(i) Rapid decompression;

(ii) Fire in flight or on the surface and smoke control procedures with emphasis on electrical equipment and related circuit breakers found in cabin areas;

(iii) Ditching and evacuation;

(iv) Illness, injury, or other abnormal situations involving passengers or crewmembers; and

(v) Hijacking and other unusual situations.

(4) Review and discussion of previous aircraft accidents and incidents involving actual emergency situations.

(b) Each crewmember must perform at least the following emergency drills, using the proper emergency equipment and procedures, unless the Administrator finds that, for a particular drill, the crewmember can be adequately trained by demonstration:

(1) Ditching, if applicable.

(2) Emergency evacuation.

(3) Fire extinguishing and smoke control.

(4) Operation and use of emergency exits, including deployment and use of evacuation slides, if applicable.

(5) Use of crew and passenger oxygen.

(6) Removal of life rafts from the aircraft, inflation of the life rafts, use of lifelines, and boarding of passengers and crew, if applicable.

(7) Donning and inflation of life vests and the use of other individual flotation devices, if applicable.

(d) Crewmembers who serve in operations above 25,000 feet must receive instruction in the following:

(1) Respiration.

(2) Hypoxia.

(3) Duration of consciousness without supplemental oxygen at altitude.

(4) Gas expansion.

(5) Gas bubble formation.

(6) Physical phenomena and incidents of decompression.

§ 91.1085 Hazardous materials recognition training.

No program manager may use any person to perform, and no person may perform, any assigned duties and responsibilities for the handling or carriage of hazardous materials (as defined in 49 CFR 171.8), unless that person has received training in the recognition of hazardous materials.

§ 91.1087 Approval of aircraft simulators and other training devices.

(a) Training courses using aircraft simulators and other training devices may be included in the program manager’s training program if approved by the Administrator.

(b) Each aircraft simulator and other training device that is used in a training course or in checks required under this subpart must meet the following requirements:

(1) It must be specifically approved for—

(i) The program manager; and

(ii) The particular maneuver, procedure, or crewmember function involved.
(2) It must maintain the performance, functional, and other characteristics that are required for approval.

(3) Additionally, for aircraft simulators, it must be—

(i) Approved for the type aircraft and, if applicable, the particular variation within type for which the training or check is being conducted; and

(ii) Modified to conform with any modification to the aircraft being simulated that changes the performance, functional, or other characteristics required for approval.

(c) A particular aircraft simulator or other training device may be used by more than one program manager.

(d) In granting initial and final approval of training programs or revisions to them, the Administrator considers the training devices, methods, and procedures listed in the program manager’s curriculum under §91.1079.

§91.1089 Qualifications: Check pilots (aircraft) and check pilots (simulator).

(a) For the purposes of this section and §91.1093:

(1) A check pilot (aircraft) is a person who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight training device for a particular type aircraft.

(2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a particular type aircraft.

(3) Check pilots (aircraft) and check pilots (simulator) are those check pilots who perform the functions described in §91.1073(a)(4) and (c).

(b) No program manager may use a person, nor may any person serve as a check pilot (aircraft) in a training program established under this subpart unless, with respect to the aircraft type involved, that person meets the provisions of paragraph (b) of this section, or—

(1) Holds the applicable pilot certificates and ratings, except medical certificate, required to serve as a pilot in command in operations under this subpart;

(2) Has satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are required to serve as a pilot in command in operations under this subpart;

(3) Has satisfactorily completed the applicable training requirements of §91.1093;

(5) Holds at least a Class III medical certificate unless serving as a required crewmember, in which case holds a Class I or Class II medical certificate as appropriate; and

(6) Has been approved by the Administrator for the check pilot duties involved.

(c) No program manager may use a person, nor may any person serve as a check pilot (simulator) in a training program established under this subpart unless, with respect to the aircraft type involved, that person meets the provisions of paragraph (b) of this section, or—

(1) Holds the applicable pilot certificates and ratings, except medical certificate, required to serve as a pilot in command in operations under this subpart;

(2) Has satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are required to serve as a pilot in command in operations under this subpart;

(3) Has satisfactorily completed the applicable proficiency or competency checks that are required to serve as a pilot in command in operations under this subpart;

(4) Has satisfactorily completed the applicable training requirements of §91.1093;

(5) Has been approved by the Administrator for the check pilot (simulator) duties involved.

(d) Completion of the requirements in paragraphs (b)(2), (3), and (4) or (c)(2), (3), and (4) of this section, as applicable, must be entered in the individual’s training record maintained by the program manager.

(e) A check pilot who does not hold an appropriate medical certificate may function as a check pilot (simulator), but may not serve as a flightcrew member in operations under this subpart.

(f) A check pilot (simulator) must accomplish the following—
§ 91.1091 Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

(a) For the purposes of this section and §91.1095:

(1) A flight instructor (aircraft) is a person who is qualified to instruct in an aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category aircraft.

(2) A flight instructor (simulator) is a person who is qualified to instruct in a flight simulator, in a flight training device, or in both, for a particular type, class, or category aircraft.

(3) Flight instructors (aircraft) and flight instructors (simulator) are those instructors who perform the functions described in §91.1073(a)(4) and (c).

(b) No program manager may use a person, nor may any person serve as a flight instructor (aircraft) in a training program established under this subpart unless, with respect to the type, class, or category aircraft involved, that person—

(1) Holds the pilot certificates and ratings required to serve as a pilot in command in operations under this subpart or part 121 or 135 of this chapter;

(2) Has satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are required to serve as a pilot in command in operations under this subpart;

(3) Has satisfactorily completed the appropriate proficiency or competency checks that are required to serve as a pilot in command in operations under this subpart; and

(4) Has satisfactorily completed the applicable training requirements of §91.1095.

(d) Completion of the requirements in paragraphs (b)(2), (3), and (4) or (c)(2), (3), and (4) of this section, as applicable, must be entered in the individual’s training record maintained by the program manager.

(e) A pilot who does not hold a medical certificate may function as a flight instructor in an aircraft if functioning as a non-required crewmember, but may not serve as a flight crew member in operations under this subpart.

(f) A flight instructor (simulator) must accomplish the following—

(1) Fly at least two flight segments as a required crewmember for the type, class, or category aircraft involved within the 12-month period preceding the performance of any flight instructor duty in a flight simulator; or

(2) Satisfactorily complete an approved line-observation program within the period prescribed by that program and that must precede the performance of any check pilot duty in a flight simulator.

(2) Before performing any check pilot duty in a flight simulator, satisfactorily complete an approved line-observation program within the period prescribed by that program.

(g) The flight segments or line-observation program required in paragraph (f) of this section are considered to be completed in the month required if completed in the month before or the month after the month in which they are due.
(g) The flight segments or line-observation program required in paragraph (f) of this section are considered completed in the month required if completed in the month before, or in the month after, the month in which they are due.

§ 91.1093 Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

(a) No program manager may use a person nor may any person serve as a check pilot unless—
(1) That person has satisfactorily completed initial or transition check pilot training; and
(2) Within the preceding 24 months, that person satisfactorily conducts a proficiency or competency check under the observation of an FAA inspector or an aircrew designated examiner employed by the program manager. The observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight training device.

(b) The observation check required by paragraph (a)(2) of this section is considered to have been completed in the month required if completed in the month before or the month after the month in which it is due.

(c) The initial ground training for check pilots must include the following:
(1) Check pilot duties, functions, and responsibilities.
(2) The applicable provisions of the Code of Federal Regulations and the program manager's policies and procedures.
(3) The applicable methods, procedures, and techniques for conducting the required checks.
(4) Proper evaluation of student performance including the detection of—
(i) Improper and insufficient training; and
(ii) Personal characteristics of an applicant that could adversely affect safety.
(5) The corrective action in the case of unsatisfactory checks.
(6) The approved methods, procedures, and limitations for performing the required normal, abnormal, and emergency procedures in the aircraft.

(d) The transition ground training for a check pilot must include the approved methods, procedures, and limitations for performing the required normal, abnormal, and emergency procedures applicable to the aircraft to which the check pilot is in transition.

(e) The initial and transition flight training for a check pilot (aircraft) must include the following—
(1) The safety measures for emergency situations that are likely to develop during a check;
(2) The potential results of improper, untimely, or nonexecution of safety measures during a check;
(3) Training and practice in conducting flight checks from the left and right pilot seats in the required normal, abnormal, and emergency procedures to ensure competence to conduct the pilot flight checks required by this subpart; and
(4) The safety measures to be taken from either pilot seat for emergency situations that are likely to develop during checking.

(f) The requirements of paragraph (e) of this section may be accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate.

(g) The initial and transition flight training for a check pilot (simulator) must include the following:
(1) Training and practice in conducting flight checks in the required normal, abnormal, and emergency procedures to ensure competence to conduct the flight checks required by this subpart. This training and practice must be accomplished in a flight simulator or in a flight training device.
(2) Training in the operation of flight simulators, flight training devices, or both, to ensure competence to conduct the flight checks required by this subpart.

§ 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight instructors (simulator).

(a) No program manager may use a person nor may any person serve as a flight instructor unless—
(1) That person has satisfactorily completed initial or transition flight instructor training; and
§ 91.1097 Pilot and flight attendant crewmember training programs.

(a) Each program manager must establish and maintain an approved pilot training program, and each program manager who uses a flight attendant crewmember must establish and maintain an approved flight attendant training program, that is appropriate to the operations to which each pilot and flight attendant is to be assigned, and will ensure that they are adequately trained to meet the applicable knowledge and practical testing requirements of §§91.1065 through 91.1071.

(b) Each program manager required to have a training program by paragraph (a) of this section must include in that program ground and flight training curriculums for—

(1) Initial training;
Federal Aviation Administration, DOT § 91.1101

(2) Transition training;
(3) Upgrade training;
(4) Differences training;
(5) Recurrent training; and
(6) Requalification training.
(c) Each program manager must provide current and appropriate study materials for use by each required pilot and flight attendant.
(d) The program manager must furnish copies of the pilot and flight attendant crewmember training program, and all changes and additions, to the assigned representative of the Administrator. If the program manager uses training facilities of other persons, a copy of those training programs or appropriate portions used for those facilities must also be furnished. Curricula that follow FAA published curricula may be cited by reference in the copy of the training program furnished to the representative of the Administrator and need not be furnished with the program.

§ 91.1099 Crewmember initial and recurrent training requirements.

No program manager may use a person, nor may any person serve, as a crewmember in operations under this subpart unless that crewmember has completed the appropriate initial or recurrent training phase of the training program appropriate to the type of operation in which the crewmember is to serve since the beginning of the 12th month before that service.

§ 91.1101 Pilots: Initial, transition, and upgrade ground training.

Initial, transition, and upgrade ground training for pilots must include instruction in at least the following, as applicable to their duties:
(a) General subjects—
(1) The program manager’s flight locating procedures;
(2) Principles and methods for determining weight and balance, and runway limitations for takeoff and landing;
(3) Enough meteorology to ensure a practical knowledge of weather phenomena, including the principles of frontal systems, icing, fog, thunderstorms, windshear and, if appropriate, high altitude weather situations;
(4) Air traffic control systems, procedures, and phraseology;
(5) Navigation and the use of navigational aids, including instrument approach procedures;
(6) Normal and emergency communication procedures;
(7) Visual cues before and during descent below Decision Altitude or MDA; and
(8) Other instructions necessary to ensure the pilot’s competence.
(b) For each aircraft type—
(1) A general description;
(2) Performance characteristics;
(3) Engines and propellers;
(4) Major components;
(5) Major aircraft systems (that is, flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal, abnormal, and emergency operations, appropriate procedures and limitations;
(6) Knowledge and procedures for—
(i) Recognizing and avoiding severe weather situations;
(ii) Escaping from severe weather situations, in case of inadvertent encounters, including low-altitude windshear (except that rotorcraft pilots are not required to be trained in escaping from low-altitude windshear);
(iii) Operating in or near thunderstorms (including best penetration altitudes), turbulent air (including clear air turbulence), inflight icing, hail, and other potentially hazardous meteorological conditions; and
(iv) Operating airplanes during ground icing conditions, (that is, any time conditions are such that frost, ice, or snow may reasonably be expected to adhere to the aircraft), if the program manager expects to authorize takeoffs in ground icing conditions, including:
(A) The use of holdover times when using deicing/anti-icing fluids;
(B) Airplane deicing/anti-icing procedures, including inspection and check procedures and responsibilities;
(C) Communications;
(D) Airplane surface contamination (that is, adherence of frost, ice, or snow) and critical area identification, and knowledge of how contamination adversely affects airplane performance and flight characteristics;
§ 91.1103 Pilots: Initial, transition, upgrade, requalification, and differences flight training.

(a) Initial, transition, upgrade, requalification, and differences training for pilots must include flight and practice in each of the maneuvers and procedures contained in each of the curriculums that are a part of the approved training program.

(b) The maneuvers and procedures required by paragraph (a) of this section must be performed in flight, except to the extent that certain maneuvers and procedures may be performed in an aircraft simulator, or an appropriate training device, as allowed by this subpart.

(c) If the program manager's approved training program includes a course of training using an aircraft simulator or other training device, each pilot must successfully complete—

1. Training and practice in the simulator or training device in at least the maneuvers and procedures in this subpart that are capable of being performed in the aircraft simulator or training device; and
2. A flight check in the aircraft or a check in the simulator or training device to the level of proficiency of a pilot in command or second in command, as applicable, in at least the maneuvers and procedures that are capable of being performed in an aircraft simulator or training device.

§ 91.1105 Flight attendants: Initial and transition ground training.

Initial and transition ground training for flight attendants must include instruction in at least the following—

(a) General subjects—

1. The authority of the pilot in command; and
2. Passenger handling, including procedures to be followed in handling deranged persons or other persons whose conduct might jeopardize safety.

(b) For each aircraft type—

1. A general description of the aircraft emphasizing physical characteristics that may have a bearing on ditching, evacuation, and inflight emergency procedures and on other related duties; and
2. The use of both the public address system and the means of communicating with other flight crewmembers, including emergency means in the case of attempted hijacking or other unusual situations; and
3. Proper use of electrical galley equipment and the controls for cabin heat and ventilation.

§ 91.1107 Recurrent training.

(a) Each program manager must ensure that each crewmember receives recurrent training and is adequately trained and currently proficient for the type aircraft and crewmember position involved.

(b) Recurrent ground training for crewmembers must include at least the following:

1. A quiz or other review to determine the crewmember's knowledge of the aircraft and crewmember position involved.

2. Instruction as necessary in the subjects required for initial ground training by this subpart, as appropriate, including low-altitude windshear training and training on operating during ground icing conditions, as prescribed in §91.1097 and described in §91.1101, and emergency training.

(c) Recurrent flight training for pilots must include, at least, flight training in the maneuvers or procedures in this subpart, except that satisfactory completion of the check required by §91.1065 within the preceding 12 months may be substituted for recurrent flight training.
§ 91.1109 Aircraft maintenance: Inspection program.

Each program manager must establish an aircraft inspection program for each make and model program aircraft and ensure each aircraft is inspected in accordance with that inspection program.

(a) The inspection program must be in writing and include at least the following information:

(1) Instructions and procedures for the conduct of inspections for the particular make and model aircraft, including necessary tests and checks. The instructions and procedures must set forth in detail the parts and areas of the airframe, engines, propellers, rotors, and appliances, including survival and emergency equipment required to be inspected.

(2) A schedule for performing the inspections that must be accomplished under the inspection program expressed in terms of the time in service, calendar time, number of system operations, or any combination thereof.

(3) The name and address of the person responsible for scheduling the inspections required by the inspection program. A copy of the inspection program must be made available to the person performing inspections on the aircraft and, upon request, to the Administrator.

(b) Each person desiring to establish or change an approved inspection program under this section must submit the inspection program for approval to the Flight Standards District Office that issued the program manager’s management specifications. The inspection program must be derived from one of the following programs:

(1) An inspection program currently recommended by the manufacturer of the aircraft, aircraft engines, propellers, appliances, and survival and emergency equipment;

(2) An inspection program that is part of a continuous airworthiness maintenance program currently in use by a person holding an air carrier or operating certificate issued under part 119 of this chapter and operating that make and model aircraft under part 121 or 135 of this chapter;

(3) An aircraft inspection program approved under §135.419 of this chapter and currently in use under part 135 of this chapter by a person holding a certificate issued under part 119 of this chapter; or

(4) An airplane inspection program approved under §125.247 of this chapter and currently in use under part 125 of this chapter.

(5) An inspection program that is part of the program manager’s continuous airworthiness maintenance program under §§91.1411 through 91.1443.

(c) The Administrator may require revision of the inspection program approved under this section in accordance with the provisions of §91.415.

§ 91.1111 Maintenance training.

The program manager must ensure that all employees who are responsible for maintenance related to program aircraft undergo appropriate initial and annual recurrent training and are competent to perform those duties.

§ 91.1113 Maintenance recordkeeping.

Each fractional ownership program manager must keep (using the system specified in the manual required in §91.1025) the records specified in §91.417(a) for the periods specified in §91.417(b).

§ 91.1115 Inoperable instruments and equipment.

(a) No person may take off an aircraft with inoperable instruments or equipment installed unless the following conditions are met:

(1) An approved Minimum Equipment List exists for that aircraft.

(2) The program manager has been issued management specifications authorizing operations in accordance with an approved Minimum Equipment List. The flight crew must have direct access at all times prior to flight to all of the information contained in the approved Minimum Equipment List through printed or other means approved by the Administrator in the program manager's management specifications. An approved Minimum Equipment List, as authorized by the management specifications, constitutes an approved change to the type design without requiring recertification.
§ 91.1411 Continuous airworthiness maintenance program use by fractional ownership program manager.

Fractional ownership program aircraft may be maintained under a continuous airworthiness maintenance program (CAMP) under §§91.1413 through 91.1443. Any program manager who elects to maintain the program aircraft using a continuous airworthiness maintenance program must comply with §§91.1413 through 91.1443.

§ 91.1413 CAMP: Responsibility for airworthiness.

(a) For aircraft maintained in accordance with a Continuous Airworthiness Maintenance Program, each program manager is primarily responsible for the following:

1. Maintaining the airworthiness of the program aircraft, including airframes, aircraft engines, propellers, rotors, appliances, and parts.

2. Maintaining its aircraft in accordance with the requirements of this chapter.

3. Repairing defects that occur between regularly scheduled maintenance required under part 43 of this chapter.

(b) Each program manager who maintains program aircraft under a CAMP must—

1. Employ a Director of Maintenance or equivalent position. The Director of Maintenance must be a certificated mechanic with airframe and powerplant ratings who has responsibility for the maintenance program on all program aircraft maintained under a continuous airworthiness maintenance program. This person cannot also act as Chief Inspector.

2. Employ a Chief Inspector or equivalent position. The Chief Inspector must be a certificated mechanic with airframe and powerplant ratings who has overall responsibility for inspection aspects of the CAMP. This person cannot also act as Director of Maintenance.

3. Have the personnel to perform the maintenance of program aircraft, including airframes, aircraft engines, propellers, rotors, appliances, emergency equipment and parts, under its manual and this chapter; or make arrangements with another person for the performance of maintenance. However, the program manager must ensure that any maintenance, preventive maintenance, or alteration that is performed by another person is performed under the program manager's operating manual and this chapter.
§ 91.1415 CAMP: Mechanical reliability reports.

(a) Each program manager who maintains program aircraft under a CAMP must report the occurrence or detection of each failure, malfunction, or defect in an aircraft concerning—

(1) Fires during flight and whether the related fire-warning system functioned properly;
(2) Fires during flight not protected by related fire-warning system;
(3) False fire-warning during flight;
(4) An exhaust system that causes damage during flight to the engine, adjacent structure, equipment, or components;
(5) An aircraft component that causes accumulation or circulation of smoke, vapor, or toxic or noxious fumes in the crew compartment or passenger cabin during flight;
(6) Engine shutdown during flight because of flameout;
(7) Engine shutdown during flight when external damage to the engine or aircraft structure occurs;
(8) Engine shutdown during flight because of foreign object ingestion or icing;
(9) Shutdown of more than one engine during flight;
(10) A propeller feathering system or ability of the system to control overspeed during flight;
(11) A fuel or fuel-dumping system that affects fuel flow or causes hazardous leakage during flight;
(12) An unwanted landing gear extension or retraction or opening or closing of landing gear doors during flight;
(13) Brake system components that result in loss of brake actuating force when the aircraft is in motion on the ground;
(14) Aircraft structure that requires major repair;
(15) Cracks, permanent deformation, or corrosion of aircraft structures, if more than the maximum acceptable to the manufacturer or the FAA; and
(16) Aircraft components or systems that result in taking emergency actions during flight (except action to shut down an engine).

(b) For the purpose of this section, during flight means the period from the moment the aircraft leaves the surface of the earth on takeoff until it touches down on landing.

(c) In addition to the reports required by paragraph (a) of this section, each program manager must report any other failure, malfunction, or defect in an aircraft that occurs or is detected at any time if, in the manager’s opinion, the failure, malfunction, or defect has endangered or may endanger the safe operation of the aircraft.

(d) Each program manager must send each report required by this section, in writing, covering each 24-hour period beginning at 0900 hours local time of each day and ending at 0900 hours local time on the next day to the Flight Standards District Office that issued the program manager’s management specifications. Each report of occurrences during a 24-hour period must be mailed or transmitted to that office within the next 72 hours. However, a report that is due on Saturday or Sunday may be mailed or transmitted on the following Monday and one that is due on a holiday may be mailed or transmitted on the next workday. For aircraft operated in areas where mail is not collected, reports may be mailed or transmitted within 72 hours after the aircraft returns to a point where the mail is collected.

(e) The program manager must transmit the reports required by this section on a form and in a manner prescribed by the Administrator, and must include as much of the following as is available:

(1) The type and identification number of the aircraft.
(2) The name of the program manager.
(3) The date.
(4) The nature of the failure, malfunction, or defect.
(5) Identification of the part and system involved, including available information pertaining to type designation of the major component and time since last overhaul, if known.
(6) Apparent cause of the failure, malfunction or defect (for example, wear, crack, design deficiency, or personnel error).
(7) Other pertinent information necessary for more complete identification, determination of seriousness, or corrective action.
(f) A program manager that is also the holder of a type certificate (including a supplemental type certificate), a Parts Manufacturer Approval, or a Technical Standard Order Authorization, or that is the licensee of a type certificate need not report a failure, malfunction, or defect under this section if the failure, malfunction, or defect has been reported by it under §21.3 of this chapter or under the accident reporting provisions of part 830 of the regulations of the National Transportation Safety Board.

(g) No person may withhold a report required by this section even when not all information required by this section is available.

(h) When the program manager receives additional information, including information from the manufacturer or other agency, concerning a report required by this section, the program manager must expeditiously submit it as a supplement to the first report and reference the date and place of submission of the first report.

§ 91.1417 CAMP: Mechanical interruption summary report.

Each program manager who maintains program aircraft under a CAMP must mail or deliver, before the end of the 10th day of the following month, a summary report of the following occurrences in multiengine aircraft for the preceding month to the Flight Standards District Office that issued the management specifications:

(a) Each interruption to a flight, unscheduled change of aircraft en route, or unscheduled stop or diversion from a route, caused by known or suspected mechanical difficulties or malfunctions that are not required to be reported under §91.1415.

(b) The number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed. Propeller featherings for training, demonstration, or flight check purposes need not be reported.

§ 91.1423 CAMP: Maintenance organization.

(a) Each program manager who maintains program aircraft under a CAMP that has its personnel perform any of its maintenance (other than required inspections), preventive maintenance, or alterations, and each person with whom it arranges for the performance of that work, must have an organization adequate to perform the work.

(b) Each program manager who has personnel perform any inspections required by the program manager’s manual under §91.1427(b) (2) or (3), in this subpart referred to as required inspections, and each person with whom the program manager arranges for the performance of that work, must have an organization adequate to perform that work.

(c) Each person performing required inspections in addition to other maintenance, preventive maintenance, or alterations, must organize the performance of those functions so as to separate the required inspection functions from the other maintenance, preventive maintenance, or alteration functions. The separation must be below the level of administrative control at which overall responsibility for the required inspection functions and other maintenance, preventive maintenance, or alterations is exercised.

§ 91.1425 CAMP: Maintenance, preventive maintenance, and alteration programs.

Each program manager who maintains program aircraft under a CAMP must have an inspection program and a program covering other maintenance, preventive maintenance, or alterations that ensures that—

(a) Maintenance, preventive maintenance, or alterations performed by its personnel, or by other persons, are performed under the program manager’s manual;

(b) Competent personnel and adequate facilities and equipment are provided for the proper performance of maintenance, preventive maintenance, or alterations; and

(c) Each aircraft released to service is airworthy and has been properly maintained for operation under this part.

§ 91.1427 CAMP: Manual requirements.

(a) Each program manager who maintains program aircraft under a CAMP must put in the operating manual the
chart or description of the program manager's organization required by §91.1423 and a list of persons with whom it has arranged for the performance of any of its required inspections, and other maintenance, preventive maintenance, or alterations, including a general description of that work.

(b) Each program manager must put in the operating manual the programs required by §91.1425 that must be followed in performing maintenance, preventive maintenance, or alterations of that program manager's aircraft, including airframes, aircraft engines, propellers, rotors, appliances, emergency equipment, and parts, and must include at least the following:

1. The method of performing routine and nonroutine maintenance (other than required inspections), preventive maintenance, or alterations.
2. A designation of the items of maintenance and alteration that must be inspected (required inspections) including at least those that could result in a failure, malfunction, or defect endangering the safe operation of the aircraft, if not performed properly or if improper parts or materials are used.
3. The method of performing required inspections and a designation by occupational title of personnel authorized to perform each required inspection.
4. Procedures for the reinspection of work performed under previous required inspection findings (buy-back procedures).
5. Procedures, standards, and limits necessary for required inspections and acceptance or rejection of the items required to be inspected and for periodic inspection and calibration of precision tools, measuring devices, and test equipment.
6. Procedures to ensure that all required inspections are performed.
7. Instructions to prevent any person who performs any item of work from performing any required inspection of that work.
8. Instructions and procedures to prevent any decision of an inspector regarding any required inspection from being countermanded by persons other than supervisory personnel of the inspection unit, or a person at the level of administrative control that has overall responsibility for the management of both the required inspection functions and the other maintenance, preventive maintenance, or alterations functions.

9. Procedures to ensure that maintenance (including required inspections), preventive maintenance, or alterations that are not completed because of work interruptions are properly completed before the aircraft is released to service.

(c) Each program manager must put in the manual a suitable system (which may include an electronic or coded system) that provides for the retention of the following information—

1. A description (or reference to data acceptable to the Administrator) of the work performed;
2. The name of the person performing the work if the work is performed by a person outside the organization of the program manager; and
3. The name or other positive identification of the individual approving the work.

(d) For the purposes of this part, the program manager must prepare that part of its manual containing maintenance information and instructions, in whole or in part, in a format acceptable to the Administrator, that is retrievable in the English language.

§91.1429 CAMP: Required inspection personnel.

(a) No person who maintains an aircraft under a CAMP may use any person to perform required inspections unless the person performing the inspection is appropriately certificated, properly trained, qualified, and authorized to do so.

(b) No person may allow any person to perform a required inspection unless, at the time the work was performed, the person performing that inspection is under the supervision and control of the chief inspector.

(c) No person may perform a required inspection if that person performed the item of work required to be inspected.

(d) Each program manager must maintain, or must ensure that each person with whom it arranges to perform required inspections maintains, a current listing of persons who have been trained, qualified, and authorized...
§ 91.1431 CAMP: Continuing analysis and surveillance.

(a) Each program manager who maintains program aircraft under a CAMP must establish and maintain a system for the continuing analysis and surveillance of the performance and effectiveness of its inspection program and the program covering other maintenance, preventive maintenance, and alterations and for the correction of any deficiency in those programs, regardless of whether those programs are carried out by employees of the program manager or by another person.

(b) Whenever the Administrator finds that the programs described in paragraph (a) of this section does not contain adequate procedures and standards to meet this part, the program manager must, after notification by the Administrator, make changes in those programs requested by the Administrator.

(c) A program manager may petition the Administrator to reconsider the notice to make a change in a program. The petition must be filed with the Director, Flight Standards Service, within 30 days after the program manager receives the notice. Except in the case of an emergency requiring immediate action in the interest of safety, the filing of the petition stays the notice pending a decision by the Administrator.

§ 91.1433 CAMP: Maintenance and preventive maintenance training program.

Each program manager who maintains program aircraft under a CAMP or a person performing maintenance or preventive maintenance functions for it must have a training program to ensure that each person (including inspection personnel) who determines the adequacy of work done is fully informed about procedures and techniques and new equipment in use and is competent to perform that person’s duties.

§ 91.1435 CAMP: Certificate requirements.

(a) Except for maintenance, preventive maintenance, alterations, and required inspections performed by repair stations located outside the United States certificated under the provisions of part 145 of this chapter, each person who is directly in charge of maintenance, preventive maintenance, or alterations for a CAMP, and each person performing required inspections for a CAMP must hold an appropriate airman certificate.

(b) For the purpose of this section, a person “directly in charge” is each person assigned to a position in which that person is responsible for the work of a shop or station that performs maintenance, preventive maintenance, alterations, or other functions affecting airworthiness. A person who is directly in charge need not physically observe and direct each worker constantly but must be available for consultation and decision on matters requiring instruction or decision from higher authority than that of the person performing the work.

§ 91.1437 CAMP: Authority to perform and approve maintenance.

A program manager who maintains program aircraft under a CAMP may employ maintenance personnel, or make arrangements with other persons to perform maintenance and preventive maintenance as provided in its maintenance manual. Unless properly certificated, the program manager may not perform or approve maintenance for return to service.

§ 91.1439 CAMP: Maintenance recording requirements.

(a) Each program manager who maintains program aircraft under a CAMP must keep (using the system specified in the manual required in §91.1427) the following records for the periods specified in paragraph (b) of this section.
§ 91.1443 CAMP: Airworthiness release or aircraft maintenance log entry.

(a) No program aircraft maintained under a CAMP may be operated after maintenance, preventive maintenance, or alterations are performed unless qualified, certificated personnel employed by the program manager prepare, or cause the person with whom the program manager arranges for the performance of the maintenance, preventive maintenance, or alterations, to prepare—

(1) An airworthiness release; or

(2) An appropriate entry in the aircraft maintenance log.

(b) The airworthiness release or log entry required by paragraph (a) of this section must—

(1) Be prepared in accordance with the procedure in the program manager’s manual;

(2) Include a certification that—

(i) The work was performed in accordance with the requirements of the program manager’s manual;

(ii) All items required to be inspected were inspected by an authorized person
§ 91.1501 Purpose and definition.
(a) This subpart requires operators to support the continued airworthiness of each airplane. These requirements may include, but are not limited to, revising the inspection program, incorporating design changes, and incorporating revisions to Instructions for Continued Airworthiness.
(b) For purposes of this subpart, the “FAA Oversight Office” is the aircraft certification office or office of the Transport Airplane Directorate with oversight responsibility for the relevant type certificate or supplemental type certificate, as determined by the Administrator.

§ 91.1503 [Reserved]

§ 91.1505 Repairs assessment for pressurized fuselages.
(a) No person may operate an Airbus Model A300 (excluding the –600 series), British Aerospace Model BAC 1–11, Boeing Model, 707, 720, 727, 737 or 747, McDonnell Douglas Model DC–8, DC–9/MD–80 or DC–10, Fokker Model F28, or Lockheed Model L–1011 airplane beyond applicable flight cycle implementation time specified below, or May 25, 2001, whichever occurs later, unless repair assessment guidelines applicable to the fuselage pressure boundary (fuselage skin, door skin, and bulkhead webs) that have been approved by the FAA Aircraft Certification Office (ACO), or office of the Transport Airplane Directorate, having cognizance over the type certificate for the affected airplane are incorporated within its inspection program:

1. For the Airbus Model A300 (excluding the –600 series), the flight cycle implementation time is:
 (i) Model B2: 36,000 flights.
 (ii) Model B4–100 (including Model B4–2C): 30,000 flights above the window line, and 36,000 flights below the window line.
 (iii) Model B4–200: 25,500 flights above the window line, and 34,000 flights below the window line.
 (iv) Model B4–400: 22,800 flights above the window line, and 32,000 flights below the window line.
 (v) Model B4–800: 14,400 flights above the window line, and 20,000 flights below the window line.
 (vi) Model B4–1000: 12,000 flights above the window line, and 16,000 flights below the window line.

2. For all models of the British Aerospace BAC 1–11, the flight cycle implementation time is 60,000 flights.

3. For all models of the Boeing 707, the flight cycle implementation time is 15,000 flights.

4. For all models of the Boeing 720, the flight cycle implementation time is 23,000 flights.

5. For all models of the Boeing 727, the flight cycle implementation time is 45,000 flights.

6. For all models of the Boeing 737, the flight cycle implementation time is 60,000 flights.

7. For all models of the Boeing 747, the flight cycle implementation time is 15,000 flights.

8. For all models of the McDonnell Douglas DC–8, the flight cycle implementation time is 30,000 flights.

9. For all models of the McDonnell Douglas DC–9/MD–80, the flight cycle implementation time is 60,000 flights.

10. For all models of the McDonnell Douglas DC–10, the flight cycle implementation time is 30,000 flights.

11. For all models of the Lockheed L–1011, the flight cycle implementation time is 27,000 flights.
(12) For the Fokker F–28 Mark 1000, 2000, 3000, and 4000, the flight cycle implementation time is 60,000 flights.

(b) [Reserved]

§ 91.1507 Fuel tank system inspection program.

(a) Except as provided in paragraph (g) of this section, this section applies to transport category, turbine-powered airplanes with a type certificate issued after January 1, 1958, that, as a result of original type certification or later increase in capacity, have—

(1) A maximum type-certificated passenger capacity of 30 or more, or

(2) A maximum payload capacity of 7,500 pounds or more.

(b) For each airplane on which an auxiliary fuel tank is installed under a field approval, before June 16, 2008, the operator must submit to the FAA Oversight Office proposed maintenance instructions for the tank that meet the requirements of Special Federal Aviation Regulation No. 88 (SFAR 88) of this chapter.

(c) After December 16, 2008, before returning an airplane to service after any alterations for which fuel tank ICA are developed under SFAR 88, or under §25.1529 in effect on June 6, 2001, the operator must include in the inspection program for the airplane inspections and procedures for the fuel tank system based on those ICA.

(f) The fuel tank system inspection program changes identified in paragraphs (d) and (e) of this section and any later fuel tank system revisions must be submitted to the Flight Standards District Office (FSDO) responsible for review and approval.

(g) This section does not apply to the following airplane models:

(1) Bombardier CL–44
(2) Concorde
(3) deHavilland D.H. 106 Comet 4C
(4) VFW–Vereinigte Flugtechnische Werk VFW–614
(5) Illyushin Aviation IL 96T
(6) Bristol Aircraft Britannia 305
(7) Handley Page Herald Type 300
(8) Avions Marcel Dassault—Breguet Aviation Mercure 106C
(9) Airbus Caravelle
(10) Lockheed L–300

APPENDIX A TO PART 91—CATEGORY II OPERATIONS: MANUAL, INSTRUMENTS, EQUIPMENT, AND MAINTENANCE

1. Category II Manual

(a) Application for approval. An applicant for approval of a Category II manual or an amendment to an approved Category II manual must submit the proposed manual or amendment to the Flight Standards District Office having jurisdiction of the area in which the applicant is located. If the application requests an evaluation program, it must include the following:

(1) The location of the aircraft and the place where the demonstrations are to be conducted; and

(2) The date the demonstrations are to commence (at least 10 days after filing the application).

(b) Contents. Each Category II manual must contain:

(1) The registration number, make, and model of the aircraft to which it applies;

(2) A maintenance program as specified in section 4 of this appendix; and

(3) The procedures and instructions related to recognition of decision height, use of runway visual range information, approach monitoring, the decision region (the region between the middle marker and the decision height), the maximum permissible deviations of the basic ILS indicator within the decision region, a missed approach, use of
2. Required Instruments and Equipment

The instruments and equipment listed in this section must be installed in each aircraft operated in a Category II operation. This section does not require duplication of instruments and equipment required by §91.205 or any other provisions of this chapter.

(a) Group I. (1) Two localizer and glide slope receiving systems. Each system must provide a basic ILS display and each side of the instrument panel must have a basic ILS display. However, a single localizer antenna and a single glide slope antenna may be used.

(2) A communications system that does not affect the operation of at least one of the ILS systems.

(3) A marker beacon receiver that provides distinctive aural and visual indications of the outer and the middle markers.

(4) Two gyroscopic pitch and bank indicating systems.

(5) Two gyroscopic direction indicating systems.

(b) Two airspeed indicators.

(7) Two sensitive altimeters adjustable for barometric pressure, each having a placarded correction for altimeter scale error and for the wheel height of the aircraft. After June 28, 1979, two sensitive altimeters adjustable for barometric pressure, having markings at 20-foot intervals and each having a placarded correction for altimeter scale error and for the wheel height of the aircraft.

(8) Two vertical speed indicators.

(b) A flight control guidance system that consists of either an automatic approach coupler or a flight director system. A flight director system must display computed information as steering command in relation to an ILS localizer and, on the same instrument, either computed information as pitch command in relation to an ILS glide slope or basic ILS glide slope information. An automatic approach coupler must provide at least automatic steering in relation to an ILS localizer. The flight control guidance system may be operated from one of the receiving systems required by subparagraph (1) of this paragraph.

(10) For Category II operations with decision heights below 150 feet either a marker beacon receiver providing aural and visual indications of the inner marker or a radio altimeter.

(b) Group II. (1) Warning systems for immediate detection by the pilot of system faults in items (1), (4), (5), and (9) of Group I and, if installed for use in Category III operations, the radio altimeter and autothrottle system.

(2) Dual controls.

(3) An externally vented static pressure system with an alternate static pressure source.

(4) A windshield wiper or equivalent means of providing adequate cockpit visibility for a safe visual transition by either pilot to touchdown and rollout.

(5) A heat source for each airspeed system and a single glide slope antenna may be used.

(c) Flight control guidance system. All components of the flight control guidance system must be approved as installed by the evaluation program specified in paragraph (e) of this section if they have not been approved for Category III operations under applicable type or supplemental type certification procedures. In addition, subsequent changes to make, model, or design of the components must be approved under this paragraph. Related systems or devices, such as the autothrottle and computed missed approach guidance system, must be approved in the same manner if they are to be used for Category II operations.

(c) Radio altimeter. A radio altimeter must meet the performance criteria of this paragraph for original approval and after each subsequent alteration.

(1) It must display to the flight crew clearly and positively the wheel height of the main landing gear above the terrain.

832
Federal Aviation Administration, DOT

Pt. 91, App. A

(2) It must display wheel height above the terrain to an accuracy of plus or minus 5 feet or 5 percent, whichever is greater, under the following conditions:
(i) Pitch angles of zero to plus or minus 5 degrees about the mean approach attitude.
(ii) Roll angles of zero to 20 degrees in either direction.
(iii) Forward velocities from minimum approach speed up to 200 knots.
(iv) Sink rates from zero to 15 feet per second at altitudes from 100 to 200 feet.
(v) Over level ground, it must track the actual altitude of the aircraft without significant lag or oscillation.
(vi) With the aircraft at an altitude of 200 feet or less, any abrupt change in terrain representing no more than 10 percent of the aircraft’s altitude must not cause the altimeter to unlock, and indicator response to such changes must not exceed 0.1 seconds and, in addition, if the system unlocks for greater changes, it must reacquire the signal in less than 1 second.
(vii) Systems that contain a push-to-test feature must test the entire system (with or without an antenna) at a simulated altitude of less than 500 feet.
(viii) The system must provide to the flight crew a positive failure warning display any time there is a loss of power or an absence of ground return signals within the designed range of operating altitudes.

(3) Other instruments and equipment. All other instruments and items of equipment required by § 2 of this appendix must be capable of performing as necessary for Category II operations. Approval is also required after each subsequent alteration to these instruments and items of equipment.

(e) Evaluation program—(1) Application. Approval by evaluation is requested as a part of the application for approval of the Category II manual.
(2) Demonstrations. Unless otherwise authorized by the Administrator, the evaluation program for each aircraft requires the demonstrations specified in this paragraph. At least 50 ILS approaches must be flown with at least five approaches on each of three different ILS facilities and no more than one half of the total approaches on any one ILS facility. All approaches shall be flown under simulated instrument conditions to a 100-foot decision height and 90 percent of the total approaches made must be successful. A successful approach is one in which—
(i) At the 100-foot decision height, the indicated airspeed and heading are satisfactory for a normal flare and landing (speed must be plus or minus 5 knots of programmed airspeed, but may not be less than computed threshold speed if autothrottles are used);
(ii) The aircraft at the 100-foot decision height, is positioned so that the cockpit is within, and tracking so as to remain within, the lateral confines of the runway extended;
(3) A schedule that provides for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) within 12 calendar months after the date of the previous bench check.

(4) A schedule that provides for the performance of a test and inspection of each static pressure system in accordance with appendix E to part 43 of this chapter within 12 calendar months after the date of the previous test and inspection.

(5) The procedures for the performance of the periodic inspections and functional flight checks to determine the ability of each listed instrument and item of equipment specified in section 2(a) of this appendix to perform as approved for Category II operations including a procedure for recording functional flight checks.

(6) A procedure for assuring that the pilot is informed of all defects in listed instruments and items of equipment.

(b) A schedule that provides for the condition of each listed instrument and item of equipment upon which maintenance is performed is at least equal to its Category II approval condition before it is returned to service for Category II operations.

(7) A procedure for assuring that the condition of each listed instrument and item of equipment upon which maintenance is performed is at least equal to its Category II approval condition before it is returned to service for Category II operations.

(8) A procedure for an entry in the maintenance records required by § 43.9 of this chapter for Category II operations including a procedure for recording functional flight checks.

(a) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(b) The procedures for the performance of the periodic inspections and functional flight checks to determine the ability of each listed instrument and item of equipment specified in section 2(a) of this appendix to perform as approved for Category II operations including a procedure for recording functional flight checks.

(c) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(d) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(e) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(f) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(g) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(h) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(i) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

(j) The procedures for the performance of bench checks for each listed instrument and item of equipment that is specified in section 2(a) of this appendix, including a procedure for recording functional flight checks.

Section 2. Issuance

(a) For a flight in a designated test area, an authorization to exceed Mach 1 may be issued when the Administrator has taken the environmental protective actions specified in section 1(b) of this appendix. If the flight is necessary to show compliance with airworthiness requirements.

(b) The flight is necessary to determine the sonic boom characteristics of the airplane or to establish means of reducing or eliminating the effects of sonic boom.

(c) The flight is necessary to demonstrate the conditions and limitations under which speeds greater than a true flight Mach number of 1 will not cause a measurable sonic boom overpressure to reach the surface.

(d) An application is denied if the Administrator finds that such action is necessary to protect or enhance the environment.

Section 3. Extensions

(a) An applicant for an authorization to exceed Mach 1 must apply in a form and manner prescribed by the Administrator and must comply with this appendix.

(b) In addition, each application for an authorization to exceed Mach 1 covered by section 2(a) of this appendix must contain all information requested by the Administrator necessary to assist him in determining whether the designation of a particular test area or issuance of a particular authorization is a "major Federal action significantly affecting the quality of the human environment" within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.), and to assist him in complying with that act and with related Executive Orders, guidelines, and orders prior to such action.

(c) In addition, each application for an authorization to exceed Mach 1 covered by section 2(a) of this appendix must contain—

(1) Information showing that operation at a speed greater than Mach 1 is necessary to accomplish one or more of the purposes specified in section 2(a) of this appendix, including a showing that the purpose of the test cannot be safely or properly accomplished by overocean testing;

(2) A description of the test area proposed by the applicant, including an environmental analysis of that area meeting the requirements of paragraph (b) of this section; and

(3) Conditions and limitations that will ensure that no measurable sonic boom overpressure will reach the surface outside of the designated test area.

(d) An application is denied if the Administrator finds that such action is necessary to protect or enhance the environment.

Section 4. Certification

(a) After the completion of one maintenance cycle of 12 calendar months, a request to extend the period for checks, tests, and inspections is approved if it is shown that the performance of particular equipment justifies the requested extension.

be issued if the applicant shows conservatively under paragraph (a)(3) of this section that—

(1) The flight will not cause a measurable sonic boom overpressure to reach the surface when the aircraft is operated under conditions and limitations demonstrated under paragraph (a)(3) of this section; and

(2) Those conditions and limitations represent all foreseeable operating conditions.

Section 3. Duration

(a) An authorization to exceed Mach 1 is effective until it expires or is surrendered, or until it is suspended or terminated by the Administrator. Such an authorization may be amended or suspended by the Administrator at any time if the Administrator finds that such action is necessary to protect the environment. Within 30 days of notification of amendment, the holder of the authorization must request reconsideration or the amendment becomes final. Within 30 days of notification of suspension, the holder of the authorization must request reconsideration or the authorization is automatically terminated. If reconsideration is requested within the 30-day period, the amendment or suspension continues until the holder shows why the authorization should not be amended or terminated. Upon such showing, the Administrator may terminate or amend the authorization if the Administrator finds that such action is necessary to protect the environment, or he may reinstate the authorization without amendment if he finds that termination or amendment is not necessary to protect the environment.

(b) Findings and actions by the Administrator under this section do not affect any certificate issued under title VI of the Federal Aviation Act of 1958.

APPENDIX C TO PART 91—OPERATIONS IN THE NORTH ATLANTIC (NAT) MINIMUM NAVIGATION PERFORMANCE SPECIFICATIONS (MNPS) AIRSPACE

Section 1

NAT MNPS airspace is that volume of airspace between FL 285 and FL 420 extending between latitude 27 degrees north and the North Pole, bounded in the east by the eastern boundaries of control areas Santa Maria Oceanic, Shanwick Oceanic, and Reykjavik Oceanic and in the west by the western boundary of Reykjavik Oceanic Control Area, the western boundary of Gander Oceanic Control Area, and the western boundary of New York Oceanic Control Area, excluding the area west of 60 degrees west and south of 38 degrees 30 minutes north.

Section 2

The navigation performance capability required for aircraft to be operated in the airspace defined in section 1 of this appendix is as follows:

(a) The standard deviation of lateral track errors shall be less than 6.3 NM (11.7 Km). Standard deviation is a statistical measure of data about a mean value. The mean is zero nautical miles. The overall form of data is such that the plus and minus 1 standard deviation about the mean encompasses approximately 68 percent of the data and plus or minus 2 deviations encompasses approximately 95 percent.

(b) The proportion of the total flight time spent by aircraft 30 NM (55.6 Km) or more off the cleared track shall be less than 5.3×10^{-4} (less than 1 hour in 1,887 flight hours).

(c) The proportion of the total flight time spent by aircraft between 50 NM and 70 NM (92.6 Km and 129.6 Km) off the cleared track shall be less than 1.5×10^{-4} (less than 1 hour in 7,693 flight hours.)

Section 3

Air traffic control (ATC) may authorize an aircraft operator to deviate from the requirements of §91.705 for a specific flight if, at the time of flight plan filing for that flight, ATC determines that the aircraft may be provided appropriate separation and that the flight will not interfere with, or impose a burden upon, the operations of other aircraft which meet the requirements of §91.705.

APPENDIX D TO PART 91—AIRPORTS/LOCATIONS: SPECIAL OPERATING RESTRICTIONS

Section 1. Locations at which the requirements of §§91.215(b)(2) and 91.225(d)(2) apply. The requirements of §§91.215(b)(2) and 91.225(d)(2) apply below 10,000 feet MSL within a 30-nautical-mile radius of each location in the following list.

Atlanta, GA (The William B. Hartsfield Atlanta International Airport)
Baltimore, MD (Baltimore Washington International Airport)
Boston, MA (General Edward Lawrence Logan International Airport)
Chantilly, VA (Washington Dulles International Airport)
Charlotte, NC (Charlotte Douglas International Airport)
Chicago, IL (Chicago O’Hare International Airport)
Cleveland, OH (Cleveland Hopkins International Airport)
Covington, KY (Cincinnati Northern Kentucky International Airport)
Dallas, TX (Dallas/Fort Worth Regional Airport)
Denver, CO (Denver International Airport)
Detroit, MI (Metropolitan Wayne County Airport)
Honolulu, HI (Honolulu International Airport)
Houston, TX (George Bush Intercontinental Airport/Houston)
Kansas City, KS (Mid-Continent International Airport)
Las Vegas, NV (McCarran International Airport)
Los Angeles, CA (Los Angeles International Airport)
Memphis, TN (Memphis International Airport)
Newark, NJ (Newark International Airport)
New Orleans, LA (New Orleans International Airport-Moisant Field)
New York, NY (John F. Kennedy International Airport)
New York, NY (LaGuardia Airport)
Orlando, FL (Orlando International Airport)
Philadelphia, PA (Philadelphia International Airport)
Phoenix, AZ (Phoenix Sky Harbor International Airport)
St. Louis, MO (Lambert-St. Louis International Airport)
Salt Lake City, UT (Salt Lake City International Airport)
San Diego, CA (San Diego International Airport)
San Francisco, CA (San Francisco International Airport)
Seattle, WA (Seattle-Tacoma International Airport)
Tampa, FL (Tampa International Airport)
Washington, DC (Ronald Reagan Washington National Airport and Andrews Air Force Base, MD)

Section 2. Airports at which the requirements of §91.215(b)(ii) apply. [Reserved]

Section 3. Locations at which fixed-wing Special VFR operations are prohibited.
The Special VFR weather minimums of §91.157 do not apply to the following airports:
Atlanta, GA (The William B. Hartsfield Atlanta International Airport)
Baltimore, MD (Baltimore/Washington International Airport)
Boston, MA (General Edward Lawrence Logan International Airport)
Buffalo, NY (Greater Buffalo International Airport)
Chicago, IL (Chicago-O’Hare International Airport)
Cleveland, OH (Cleveland-Hopkins International Airport)
Columbus, OH (Port Columbus International Airport)
Covington, KY (Cincinnati Northern Kentucky International Airport)
Dallas, TX (Dallas/Fort Worth Regional Airport)
Dallas, TX (Love Field)
Denver, CO (Denver International Airport)
Detroit, MI (Metropolitan Wayne County Airport)
Honolulu, HI (Honolulu International Airport)
Houston, TX (George Bush Intercontinental Airport/Houston)
Indianapolis, IN (Indianapolis International Airport)
Los Angeles, CA (Los Angeles International Airport)
Louisville, KY (Standiford Field)
Memphis, TN (Memphis International Airport)
Miami, FL (Miami International Airport)
Minneapolis, MN (Minneapolis-St. Paul International Airport)
Newark, NJ (Newark International Airport)
New York, NY (John F. Kennedy International Airport)
New York, NY (LaGuardia Airport)
New Orleans, LA (New Orleans International Airport-Moisant Field)
Philadelphia, PA (Philadelphia International Airport)
Pittsburgh, PA (Greater Pittsburgh International Airport)
Portland, OR (Portland International Airport)
San Francisco, CA (San Francisco International Airport)
Seattle, WA (Seattle-Tacoma International Airport)
St. Louis, MO (Lambert-St. Louis International Airport)
Tampa, FL (Tampa International Airport)
Washington, DC (Ronald Reagan Washington National Airport and Andrews Air Force Base, MD)

Section 4. Locations at which solo student, sport, and recreational pilot activity is not permitted.
Pursuant to §91.131(b)(2), solo student, sport, and recreational pilot operations are not permitted at any of the following airports:
Atlanta, GA (The William B. Hartsfield Atlanta International Airport)
Boston, MA (General Edward Lawrence Logan International Airport)
Chicago, IL (Chicago-O’Hare International Airport)
Dallas, TX (Dallas/Fort Worth Regional Airport)
Los Angeles, CA (Los Angeles International Airport)
Miami, FL (Miami International Airport)
Newark, NJ (Newark International Airport)
New York, NY (John F. Kennedy International Airport)
APPENDIX E TO PART 91—AIRCRAFT FLIGHT RECORDER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Installed system minimum accuracy (to recovered data)</th>
<th>Sampling interval (per second)</th>
<th>Resolution read out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Time (From Recorded on Prior to Takeoff)</td>
<td>8 hr minimum</td>
<td>±0.125% per hour</td>
<td>1</td>
<td>1 sec.</td>
</tr>
<tr>
<td>Indicated Airspeed</td>
<td>Vs to VD (KIAS)</td>
<td>±5% or ±10 kts., whichever is greater. Resolution 2 kts. below 175 KIAS.</td>
<td>1</td>
<td>1% ³</td>
</tr>
<tr>
<td>Altitude</td>
<td>−1,000 ft. to max cert. alt. of A/C.</td>
<td>±100 to ±700 ft. (see Table 1, TSO C51-a).</td>
<td>11</td>
<td>25 to 150 ft.</td>
</tr>
<tr>
<td>Magnetic Heading</td>
<td>360°</td>
<td>±5°</td>
<td>1</td>
<td>1°</td>
</tr>
<tr>
<td>Vertical Acceleration</td>
<td>−3g to +6g</td>
<td>±0.2g in addition to ±0.3g maximum datum.</td>
<td>4 (or 1 per second where peaks, ref. to 1g are recorded).</td>
<td>0.03g.</td>
</tr>
<tr>
<td>Longitudinal Acceleration</td>
<td>±1.0g</td>
<td>±1.5% max. range excluding datum error of ±15%.</td>
<td>2</td>
<td>0.01g.</td>
</tr>
<tr>
<td>Pitch Attitude</td>
<td>100% of usable</td>
<td>±2°</td>
<td>1</td>
<td>0.8°</td>
</tr>
<tr>
<td>Roll Attitude</td>
<td>±60° or 100% of usable range, whichever is greater.</td>
<td>±2°</td>
<td>1</td>
<td>0.8°</td>
</tr>
<tr>
<td>Stabilizer Trim Position, or Pitch Control Position²</td>
<td>Full Range</td>
<td>±3% unless higher uniquely required.</td>
<td>1</td>
<td>1% ³</td>
</tr>
<tr>
<td>Engine Power, Each Engine</td>
<td>Full Range</td>
<td>±3% unless higher uniquely required.</td>
<td>1</td>
<td>1% ³</td>
</tr>
<tr>
<td>Fan or N₁ Speed or EPR or Cockpit Indications Used for Aircraft Certification OR.</td>
<td>Maximum Range</td>
<td>±5%</td>
<td>1 (prop Speed)</td>
<td>1% ³</td>
</tr>
<tr>
<td>Prop. speed and Torque (Sample Once/Sec as Close together as Practicable)</td>
<td></td>
<td></td>
<td>1 (torque)</td>
<td>1% ³</td>
</tr>
<tr>
<td>Altitude Rate</td>
<td>±8,000 fpm</td>
<td>±10%. Resolution 250 fpm below 12,000 ft. indicated.</td>
<td>1</td>
<td>250 fpm. below 12,000</td>
</tr>
<tr>
<td>Angle of Attack</td>
<td>−20° to 40° or 100% of usable range.</td>
<td>±2°</td>
<td>1</td>
<td>0.8° ²</td>
</tr>
<tr>
<td>Radio Transmitter Keying (Discrete), TE Flaps (Discrete or Analog), LE Flaps (Discrete or Analog)</td>
<td>On/Off</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EFFECTIVE DATE NOTE: By Amdt. 91–236, 59 FR 2918, Jan. 19, 1994, as corrected by Amdt. 91–237, 59 FR 6547, Feb. 11, 1994, appendix D to part 91 was amended in sections 1 and 3 in the Denver, CO entry by revising ''Stapleton'' to read ''Denver'' effective March 9, 1994. By Amdt. 91–238, 59 FR 10958, Mar. 9, 1994, the effective date was delayed to May 15, 1994. By Amdt. 91–241, 59 FR 24916, May 13, 1994, the effective date was suspended indefinitely.

VerDate Mar<15>2010 11:09 Mar 07, 2011 Jkt 223044 PO 00000 Frm 00847 Fmt 8010 Sfmt 8002 Y:\SGML\223044.XXX 223044wwoods2 on DSK1DXX6B1PROD with CFR
APPENDIX F TO PART 91—HELICOPTER FLIGHT RECORDER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Installed system 1 min. accuracy (to recovered data)</th>
<th>Sampling interval (per second)</th>
<th>Resolution 4 read out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust Reverser, Each Engine (Discrete).</td>
<td>Each discrete position (U, D, T/O, AAP) OR. Analog 0–100% range.</td>
<td>$\pm 3^2$</td>
<td>1</td>
<td>$1%^3$</td>
</tr>
<tr>
<td>Spoiler/Speedbrake (Discrete).</td>
<td>Slowed or full reverse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopilot Engaged (Discrete).</td>
<td>Stowed or out.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopilot Engaged or Disengaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 When data sources are aircraft instruments (except altimeters) of acceptable quality to fly the aircraft the recording system excluding these sensors (but including all other characteristics of the recording system) shall contribute no more than half of the values in this column.

2 If data from the altitude encoding altimeter (100 ft. resolution) is used, then either one of these parameters should also be recorded. If however, altitude is recorded at a minimum resolution of 25 feet, then these two parameters can be omitted.

3 Per cent of full range.

4 This column applies to aircraft manufactured after October 11, 1991.

5 For Pitch Control Position only, for all aircraft manufactured on or after April 6, 2012, the sampling interval (per second) is 8. Each input must be recorded at this rate. Alternately sampling inputs (interleaving) to meet this sampling interval is prohibited.

APPENDIX F TO PART 91—HELICOPTER FLIGHT RECORDER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Installed system 1 min. accuracy (to recovered data)</th>
<th>Sampling interval (per second)</th>
<th>Resolution 3 read out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Time (From Recorded on Prior to Takeoff).</td>
<td>4 hr minimum</td>
<td>$\pm 0.125%$ per hour</td>
<td>1</td>
<td>1 sec.</td>
</tr>
<tr>
<td>Indicated Airspeed</td>
<td>VM in to VD (KIAS) (min. airspeed signal attainable with installed pilot-static system).</td>
<td>$\pm 5%$ or ± 10 kts, whichever is greater.</td>
<td>1</td>
<td>1 kt.</td>
</tr>
<tr>
<td>Altitude</td>
<td>$1,000$ ft. to $20,000$ ft. pressure altitude.</td>
<td>± 100 to ± 700 ft. (see Table 1, TSO C51–a).</td>
<td>1</td>
<td>25 to 150 ft.</td>
</tr>
<tr>
<td>Magnetic Heading</td>
<td>360°</td>
<td>$\pm 5^\circ$</td>
<td>1</td>
<td>1°</td>
</tr>
<tr>
<td>Vertical Acceleration</td>
<td>$-3g$ to $+6g$</td>
<td>$\pm 0.2g$ in addition to $\pm 0.3g$ maximum datum.</td>
<td>4 (or 1 per second where peaks, ref. to $1g$ are recorded).</td>
<td>$0.05g$.</td>
</tr>
<tr>
<td>Longitudinal Acceleration</td>
<td>$\pm 1.0g$</td>
<td>$\pm 1.5%$ max. range excluding datum error of $\pm 5%$.</td>
<td>2</td>
<td>$0.03g$.</td>
</tr>
<tr>
<td>Pitch Attitude</td>
<td>$100%$ of usable range</td>
<td>$\pm 2^\circ$</td>
<td>1</td>
<td>0.8°.</td>
</tr>
<tr>
<td>Roll Attitude</td>
<td>± 60 or $100%$ of usable range, whichever is greater.</td>
<td>$\pm 2^\circ$</td>
<td>1</td>
<td>0.8°.</td>
</tr>
<tr>
<td>Altitude Rate</td>
<td>$\pm 8,000$ fpm</td>
<td>$\pm 10%$ Resolution 250 fpm below $12,000$ ft indicated.</td>
<td>1</td>
<td>250 fpm below $12,000$.</td>
</tr>
<tr>
<td>Engine Power, Each Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Engine</td>
<td>Maximum Range</td>
<td>$\pm 5%$</td>
<td>1</td>
<td>$1%2$.</td>
</tr>
<tr>
<td>Free or Power Turbine.</td>
<td>Maximum Range</td>
<td>$\pm 5%$</td>
<td>1</td>
<td>$1%2$.</td>
</tr>
<tr>
<td>Engine Torque</td>
<td>Maximum Range</td>
<td>$\pm 5%$</td>
<td>1</td>
<td>$1%2$.</td>
</tr>
<tr>
<td>Flight Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (Discrete).</td>
<td>High/Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary—if applicable (Discrete).</td>
<td>High/Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Transmitter Keying (Discrete).</td>
<td>On/Off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopilot Engaged (Discrete).</td>
<td>Engaged or Disengaged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS Status-Engaged (Discrete).</td>
<td>Engaged or Disengaged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS Fault Status (Discrete).</td>
<td>Fault/OK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

838
APPENDIX G TO PART 91—OPERATIONS IN REDUCED VERTICAL SEPARATION MINIMUM (RVSM) AIRSPACE

Section I. Definitions

Reduced Vertical Separation Minimum (RVSM) Airspace. Within RVSM airspace, air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight level (FL) 290 and FL 410 inclusive. RVSM airspace is special qualification airspace; the operator and the aircraft used by the operator must be approved by the Administrator. Air-traffic control notifies operators of RVSM by providing route planning information. Section 8 of this appendix identifies airspace where RVSM may be applied.

RVSM Group Aircraft. Aircraft within a group of aircraft, approved as a group by the Administrator, in which each of the aircraft satisfy each of the following:

(a) The aircraft have been manufactured to the same design, and have been approved under the same type certificate, amended type certificate, or supplemental type certificate.

(b) The static system of each aircraft is installed in a manner and position that is the same as those of the other aircraft in the group. The same static source error correction is incorporated in each aircraft of the group.

(c) The avionics units installed in each aircraft to meet the minimum RVSM equipment requirements of this appendix are:

(1) Manufactured to the same manufacturer specification and have the same part number; or

(2) Of a different manufacturer or part number, if the applicant demonstrates that the equipment provides equivalent system performance.

RVSM Nongroup Aircraft. An aircraft that is approved for RVSM operations as an individual aircraft.

RVSM Flight envelope. An RVSM flight envelope includes the range of Mach number, weight divided by atmospheric pressure ratio, and altitudes over which an aircraft is approved to be operated in cruising flight within RVSM airspace. RVSM flight envelopes are defined as follows:

(a) The full RVSM flight envelope is bounded as follows:

1. The altitude flight envelope extends from FL 290 upward to the lowest altitude of the following:

 (i) FL 410 (the RVSM altitude limit);

 (ii) The maximum certificated altitude for the aircraft; or

 (iii) The altitude limited by cruise thrust, buffet, or other flight limitations.

2. The airspeed flight envelope extends:

 (i) From the airspeed of the slats/flaps-up maximum endurance (holding) airspeed, or the maneuvering airspeed, whichever is lower;

 (ii) To the maximum operating airspeed (V_{mo}/M_{mo}), or airspeed limited by cruise thrust buffet, or other flight limitations, whichever is lower.

3. All permissible gross weights within the flight envelopes defined in paragraphs (1) and (2) of this definition.

(b) The basic RVSM flight envelope is the same as the full RVSM flight envelope except that the airspeed flight envelope extends:

 (1) From the airspeed of the slats/flaps-up maximum endurance (holding) airspeed, or the maneuver airspeed, whichever is lower;

 (2) To the upper Mach/airspeed boundary defined for the full RVSM flight envelope, or a specified lower value not less than the long-range cruise Mach number plus .04 Mach, unless further limited by available cruise thrust, buffet, or other flight limitations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Installed system 1 min-imum accuracy (to recovered data)</th>
<th>Sampling interval (per second)</th>
<th>Resolution 3 read out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collective</td>
<td>Full range</td>
<td>±3%</td>
<td>2</td>
<td>1%2</td>
</tr>
<tr>
<td>Pedal Position</td>
<td>Full range</td>
<td>±3%</td>
<td>2</td>
<td>1%2</td>
</tr>
<tr>
<td>Lat. Cyclic</td>
<td>Full range</td>
<td>±3%</td>
<td>2</td>
<td>1%2</td>
</tr>
<tr>
<td>Long. Cyclic</td>
<td>Full range</td>
<td>±3%</td>
<td>2</td>
<td>1%2</td>
</tr>
<tr>
<td>Controllable Stabilator Position</td>
<td>Full range</td>
<td>±3%</td>
<td>2</td>
<td>1%2</td>
</tr>
</tbody>
</table>

1. When data sources are aircraft instruments (except altimeters) of acceptable quality to fly the aircraft the recording system excluding these sensors (but including all other characteristics of the recording system) shall contribute no more than half of the values in this column.

2. Per cent of full range.

3. This column applies to aircraft manufactured after October 11, 1991.

4. For all aircraft manufactured on or after April 6, 2012, the sampling interval per second is 4.
Section 2. Aircraft Approval

(a) An operator may be authorized to conduct RVSM operations if the Administrator finds that its aircraft comply with this section.

(b) The applicant for authorization shall submit the appropriate data package for aircraft approval. The package must consist of at least the following:

(1) An identification of the RVSM aircraft group or the nongroup aircraft;

(2) A definition of the RVSM flight envelopes applicable to the subject aircraft;

(3) Documentation that establishes compliance with the applicable RVSM aircraft requirements of this section; and

(4) The conformity tests used to ensure that aircraft approved with the data package meet the RVSM aircraft requirements.

(c) Altitude-keeping equipment: All aircraft. To approve an aircraft group or a nongroup aircraft, the Administrator must find that the aircraft meets the following requirements:

(1) The aircraft must be equipped with two operational independent altitude measurement systems.

(2) The aircraft must be equipped with at least one automatic altitude control system that controls the aircraft altitude—

(i) Within a tolerance band of ±65 feet about an acquired altitude when the aircraft is operated in straight and level flight under nonturbulent, nongust conditions; or

(ii) Within a tolerance band of ±130 feet under nonturbulent, nongust conditions for aircraft for which application for type certification occurred on or before April 9, 1997, that are equipped with an automatic altitude control system with flight management/performance system inputs.

(3) The aircraft must be equipped with an altitude alert system that signals an alert when the altitude displayed to the flight crew deviates from the selected altitude by more than:

(i) ±300 feet for aircraft for which application for type certification was made on or before April 9, 1997, or

(ii) ±200 feet for aircraft for which application for type certification is made after April 9, 1997.

(4) Altimetry system error containment: Group aircraft for which application for type certification was made on or before April 9, 1997. To approve group aircraft for which application for type certification was made on or before April 9, 1997, the Administrator must find that the altimetry system error (ASE) is contained as follows:

(i) At the point in the basic RVSM flight envelope where mean ASE reaches its largest absolute value, the absolute value may not exceed 80 feet.

(ii) At the point in the basic RVSM flight envelope where mean ASE exceeds 245 feet, the Administrator must find that its aircraft to restrict the aircraft from operating in areas of the basic RVSM flight envelope where the absolute value of mean ASE exceeds 80 feet and/or the absolute value of mean ASE plus three standard deviations exceeds 245 feet.

(iii) Altimetry system error containment: Group aircraft for which application for type certification is made after April 9, 1997. To approve group aircraft for which application for type certification is made after April 9, 1997, the Administrator must find that the altimetry system error (ASE) is contained as follows:

(i) At the point in the basic RVSM flight envelope where mean ASE reaches its largest absolute value, the absolute value may not exceed 80 feet.

(ii) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 200 feet.

(iii) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 120 feet.

(iv) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 200 feet.

(v) The Administrator may establish an operating restriction on that applicant’s aircraft to restrict the aircraft from operating in areas of the full RVSM flight envelope where the absolute value of the mean ASE exceeds 120 feet and/or the absolute value of the mean ASE plus three standard deviations exceeds 245 feet.

(vi) Altimetry system error containment: Group aircraft for which application for type certification is made after April 9, 1997. To approve group aircraft for which application for type certification is made after April 9, 1997, the Administrator must find that the altimetry system error (ASE) is contained as follows:

(i) At the point in the basic RVSM flight envelope where mean ASE reaches its largest absolute value, the absolute value may not exceed 80 feet.

(ii) At the point in the basic RVSM flight envelope where mean ASE exceeds 245 feet, the Administrator must find that its aircraft to restrict the aircraft from operating in areas of the basic RVSM flight envelope where the absolute value of mean ASE exceeds 80 feet and/or the absolute value of mean ASE plus three standard deviations exceeds 245 feet.

(iii) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 200 feet.

(iv) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 120 feet.

(v) At the point in the full RVSM flight envelope where mean ASE plus three standard deviations reaches its largest absolute value, the absolute value may not exceed 200 feet.

(vi) Traffic Alert and Collision Avoidance System (TCAS) Compatibility With RVSM Operations: All aircraft. After March 31, 2002, unless otherwise authorized by the Administrator, if you operate an aircraft that is equipped with TCAS II in RVSM airspace, it must be a TCAS II that meets TSO C–119b (Version 7.0), or a later version.

(h) If the Administrator finds that the applicant's aircraft comply with this section,
the Administrator notifies the applicant in writing.

Section 3. Operator Authorization

(a) Authority for an operator to conduct flight in airspace where RVSM is applied is issued in operations specifications, a Letter of Authorization, or management specifications issued under subpart K of this part, as appropriate. To issue an RVSM authorization, the Administrator must find that the operator’s aircraft have been approved in accordance with Section 2 of this appendix and the operator complies with this section.

(b) An applicant for authorization to operate within RVSM airspace shall apply in a form and manner prescribed by the Administrator. The application must include the following:

(1) An approved RVSM maintenance program outlining procedures to maintain RVSM aircraft in accordance with the requirements of this appendix. Each program must contain the following:

(i) Periodic inspections, functional flight tests, and maintenance and inspection procedures, with acceptable maintenance practices, for ensuring continued compliance with the RVSM aircraft requirements.

(ii) A quality assurance program for ensuring continued accuracy and reliability of test equipment used for testing aircraft to determine compliance with the RVSM aircraft requirements.

(iii) Procedures for returning noncompliant aircraft to service.

(2) For an applicant who operates under part 121 or 135 of this chapter or under subpart K of this part, initial and recurring pilot training requirements.

(3) Policies and procedures: An applicant who has been approved for RVSM operations, or more.

(c) Validation and Demonstration. In a manner prescribed by the Administrator, the operator must provide evidence that:

(1) It is capable to operate and maintain each aircraft or aircraft group for which it applies for approval to operate in RVSM airspace; and

(2) Each pilot has an adequate knowledge of RVSM requirements, policies, and procedures.

Section 4. RVSM Operations

(a) Each person requesting a clearance to operate within RVSM airspace shall correctly annotate the flight plan filed with air traffic control with the status of the operator and aircraft with regard to RVSM approval. Each operator shall verify RVSM applicability for the flight planned route through the appropriate flight planning information sources.

(b) No person may show, on the flight plan filed with air traffic control, an aircraft or aircraft as approved for RVSM operations, or operate on a route in an area where RVSM approval is required, unless:

(1) The operator is authorized by the Administrator to perform such operations; and

(2) The aircraft has been approved and complies with the requirements of Section 2 of this appendix.

Section 5. Deviation Authority Approval

The Administrator may authorize an aircraft operator to deviate from the requirements of §91.180 or §91.706 for a specific flight in RVSM airspace if that operator has not been approved in accordance with section 3 of this appendix if:

(a) The operator submits a request in a time and manner acceptable to the Administrator; and

(b) At the time of filing the flight plan for that flight, ATC determines that the aircraft may be provided appropriate separation and that the flight will not interfere with, or impose a burden on, the operations of operators who have been approved for RVSM operations in accordance with Section 3 of this appendix.

Section 6. Reporting Altitude-Keeping Errors

Each operator shall report to the Administrator each event in which the operator’s aircraft has exhibited the following altitude-keeping performance:

(a) Total vertical error of 300 feet or more;

(b) Altimetry system error of 245 feet or more; or

(c) Assigned altitude deviation of 300 feet or more.

Section 7. Removal or Amendment of Authority

The Administrator may amend operations specifications or management specifications issued under subpart K of this part to revoke or restrict an RVSM authorization, or may revoke or restrict an RVSM letter of authorization, if the Administrator determines that the operator is not complying, or is unable to comply, with this appendix or subpart H of this part. Examples of reasons for amendment, revocation, or restriction include, but are not limited to, an operator’s:

(a) Committing one or more altitude-keeping errors in RVSM airspace;

(b) Failing to make an effective and timely response to identify and correct an altitude-keeping error; or

(c) Failing to report an altitude-keeping error.

Section 8. Airspace Designation

(a) RVSM in the North Atlantic. (1) RVSM may be applied in the NAT in the following
APPENDIX TO PART 93—SPECIAL AIR TRAFFIC
RULES

PART 93—SPECIAL AIR TRAFFIC RULES

§ 93.30 Assignment provisions for domestic and U.S./Canada transborder service.

§ 93.31 Minimum usage requirement.

§ 93.32 Administrative provisions.

§ 93.33 [Reserved]

Subpart B—Congestion and Delay Reduction at Chicago O’Hare International Airport

§ 93.21 Applicability.

§ 93.22 Definitions.

§ 93.23 Arrival Authorizations.

§ 93.24 [Reserved]

§ 93.25 Initial assignment of Arrival Authorizations to U.S. and Canadian air carriers for domestic and U.S.-Canada transborder service.

§ 93.26 Reversion and withdrawal of Arrival Authorizations.

§ 93.27 Sale and lease of Arrival Authorizations.

§ 93.28 One-for-one trade of Arrival Authorizations.

§ 93.29 International Arrival Authorizations.

§ 93.30 Assignment provisions for domestic and U.S.-Canada transborder service.

§ 93.31 Minimum usage requirement.

§ 93.32 Administrative provisions.

§ 93.33 [Reserved]

Subpart C [Reserved]

Subpart D—Anchorage, Alaska, Terminal Area

§ 93.51 Applicability.

§ 93.52 Description of area.

§ 93.53 Subdivision of Terminal Area.

§ 93.54 General rules: All segments.

§ 93.55 General rules: International segment.

§ 93.56 General rules: Lake Hood segment.

§ 93.57 General rules: Bryant segment.

§ 93.58 General rules: Seward Highway segment.

§ 93.59 Special requirements, Lake Campbell and Sixmile Lake Airports.

Subpart E—Flight Restrictions in the Vicinity of Niagara Falls, New York

§ 93.61 General operating procedures.
Federal Aviation Administration, DOT

Subpart G—Special Flight Rules in the Vicinity of Los Angeles International Airport

93.91 Applicability.
93.93 Description of area.
93.95 General operating procedures.
93.97 Operations in the SFRA.

Subparts H–I [Reserved]

Subpart J—Lorain County Regional Airport Traffic Rule

93.117 Applicability.
93.119 Aircraft operations.

Subpart K—High Density Traffic Airports

93.121 Applicability.
93.123 High density traffic airports.
93.125 Arrival or departure reservation.
93.129 Additional operations.
93.130 Suspension of allocations.
93.133 Exceptions.

Subpart L [Reserved]

Subpart M—Ketchikan International Airport Traffic Rule

93.151 Applicability.
93.152 Description of area.
93.153 Communications.
93.155 Aircraft operations.

Subpart N [Reserved]

Subpart O—Special Flight Rules in the Vicinity of Luke AFB, AZ

93.175 Applicability.
93.176 Description of area.
93.177 Operations in the Special Air Traffic Rule Area.

Subparts P–R [Reserved]

Subpart S—Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports

93.211 Applicability.
93.213 Definitions and general provisions.
93.215 Initial allocation of slots.
93.217 Allocation of slots for international operations and applicable limitations.
93.218 Slots for transborder service to and from Canada.
93.219 Allocation of slots for essential air service operations and applicable limitations.
93.221 Transfer of slots.
93.223 Slot withdrawal.
93.224 Return of slots.
93.225 Lottery of available slots.
93.226 Allocation of slots in low-demand periods.

93.227 Slot use and loss.

93.251 Applicability.
93.253 Nonstop operations.

Subpart U—Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ

93.301 Applicability.
93.303 Definitions.
93.305 Flight-free zones and flight corridors.
93.307 Minimum flight altitudes.
93.309 General operating procedures.
93.311 Minimum terrain clearance.
93.313 Communications.
93.315 Requirements for commercial Special Flight Rule Area operations.
93.316 [Reserved]
93.317 Commercial Special Flight Rules Area operation curfew.
93.319 Commercial air tour limitations.
93.321 Transfer and termination of allocations.
93.323 Flight plans.
93.325 Quarterly reporting.

APPENDIX TO SUBPART U—SPECIAL FLIGHT RULES IN THE VICINITY OF THE GRAND CANYON NATIONAL PARK, AZ

APPENDIX A TO SUBPART U OF PART 93—GCPN QUIET AIRCRAFT TECHNOLOGY DESIGNATION

Subpart V—Washington, DC Metropolitan Area Special Flight Rules Area

93.331 Purpose and applicability of this subpart.
93.333 Failure to comply with this subpart.
93.335 Definitions.
93.337 Requirements for operating in the DC SFRA.
93.339 Requirements for operating in the DC SFRA, including the DC FRZ.
93.341 Aircraft operations in the DC FRZ.
93.343 Requirements for aircraft operations to or from College Park Airport, Potomac Airfield, or Washington Executive/ Hyde Field Airport.
93.345 VFR outbound procedures for fringe airports.

Subpart W—New York Class B Airspace Hudson River and East River Exclusion Special Flight Rules Area

93.350 Definitions.
93.351 General requirements for operating in the East River and/or Hudson River Exclusions.
93.352 Hudson River Exclusion specific operating procedures.
93.353 East River Exclusion specific operating procedures.
§ 93.1

Authority: 49 U.S.C. 106(g), 40103, 40106, 40109, 40113, 44502, 44514, 44701, 44719, 46301.

Special Federal Aviation Regulation No. 60

Editorial Note: For the text of SFAR No. 60, see part 91 of this chapter.

Subpart A—General

§ 93.1

Applicability.

This part prescribes special air traffic rules for operating aircraft in certain areas described in this part, unless otherwise authorized by air traffic control.

Subpart B—Congestion and Delay Reduction at Chicago O’Hare International Airport

Source: Doc. No. FAA–2005–20704, 71 FR 51400, Aug. 29, 2006, unless otherwise noted.

§ 93.21

Applicability.

(a) This subpart prescribes the air traffic rules for the arrival of aircraft used for scheduled service, other than helicopters, at Chicago’s O’Hare International Airport (O’Hare).

(b) This subpart also prescribes procedures for the assignment, transfer, sale, lease, and withdrawal of Arrival Authorizations issued by the FAA for scheduled operations by U.S. and foreign air carriers at O’Hare.

(c) The provisions of this subpart apply to O’Hare during the hours of 7 a.m. through 8:59 p.m. Central Time, Monday through Friday, and 12 p.m. through 8:59 p.m. Central Time on Sunday. No person shall operate any scheduled arrival into O’Hare during such hours without first obtaining an Arrival Authorization in accordance with this subpart.

(d) Carriers that have Common Ownership shall be considered to be a single U.S. air carrier or foreign air carrier for purposes of this rule.

(e) The provisions of this subpart are applicable beginning October 29, 2006, and terminate at 9 p.m. on October 31, 2008.

§ 93.22

Definitions.

For the purposes of this subpart, the following definitions apply:

Arrival Authorization is the operational authority assigned by the FAA to a U.S. or foreign air carrier to conduct one scheduled arrival operation on a specific day of the week during a specific 30-minute period at O’Hare.

Carrier is a U.S. air carrier, Canadian air carrier or foreign air carrier with authority to conduct scheduled service at O’Hare under Parts 121, 129, 135 of the Chapter and the appropriate economic authority for scheduled service under Title 49 of the United States Code.

Common Ownership with respect to two or more carriers means having in common at least 50 percent beneficial ownership or control by the same entity or entities.

Incumbent is any U.S. or Canadian air carrier that is not a New Entrant or Limited Incumbent.

International Arrival Authorization is the operational authority assigned by the FAA to a Carrier to conduct one scheduled arrival operation at O’Hare from a foreign point or a continuation of a flight that began at a foreign point, except for arrivals at O’Hare from Canada by U.S. and Canadian air carriers.

Limited Incumbent is any U.S. or Canadian air carrier that holds or operates, on its own behalf, 8 or fewer Arrival Authorizations provided that it has not sold or otherwise transferred Arrival Authorizations, other than one-for-one transfers permitted in this subpart. Any Limited Incumbent that sells or otherwise transfers an Arrival Authorization shall thereafter be treated as an Incumbent for purposes of this rule.

New Entrant is any U.S. or Canadian air carrier that does not hold or operate, and has never held or operated any Arrival Authorization at O’Hare, on its own behalf.

Preferred Lottery is a lottery conducted by the FAA to assign Arrival Authorizations, with initial preference for New Entrants and Limited Incumbents.

Scheduled Arrival is the arrival segment of any operation regularly conducted by a carrier between O’Hare and
§ 93.23 Arrival Authorizations.

(a) Except as otherwise established by the FAA under paragraph (d) of this section and §93.29 of this subpart, the number of Arrival Authorizations shall be limited to:

(1) 88 per hour between the hours of 7 a.m. and 7:59 p.m. Monday through Friday and 12 p.m. and 7:59 p.m. Sunday.

(i) Not to exceed 50 during each half-hour beginning at 7 a.m. and ending at 7:59 p.m.

(ii) Not to exceed 88 within any two consecutive 30-minute periods.

(2) 98 between 8 p.m. and 8:59 p.m. Monday through Friday and Sunday, not to exceed 50 between 8 p.m. and 8:29 p.m. and 50 between 8:30 p.m and 8:59 p.m.

(b) An Arrival Authorization is a temporary operating privilege subject to FAA control. Only Carriers may hold Arrival Authorizations. Arrival Authorizations may not be bought, sold, leased, or otherwise transferred to another Carrier, except as provided in §§93.27 and 93.28 of this subpart.

(c) Beginning six months from the effective date of this rule and on each six-month anniversary thereafter, the FAA shall conduct a review of existing capacity at O'Hare, to determine whether to increase the number of Arrival Authorizations. The FAA will consider the following factors:

(1) The number of delays;

(2) The length of delays;

(3) Weather conditions;

(4) On-time arrivals and departures;

(5) The number of actual arrival operations;

(6) Runway utilization and capacity plans; and

(7) Other factors relating to the efficient management of the national air space system.

(d) Notwithstanding paragraph (a), the Administrator may increase the number of Arrival Authorizations based on the review conducted in paragraph (c) of this section.

§ 93.24 [Reserved]

§ 93.25 Initial assignment of Arrival Authorizations to U.S. and Canadian air carriers for domestic and U.S./Canada transborder service.

(a) The FAA shall assign to each U.S. and Canadian air carrier, conducting scheduled service at O'Hare, as of the effective date of this rule, Arrival Authorizations for each scheduled arrival that it published for either domestic or U.S./Canada transborder service for any day during the 7-day period of November 1 through 7, 2004, as evidenced by the FAA’s records, not to exceed the peak-day limits for each carrier established under the August 18, 2004, “Order Limiting Scheduled Operations at O'Hare International Airport.” A carrier’s total assignment under this paragraph shall be reduced accordingly by:

(i) any international Arrival Authorizations assigned under §93.29 (a), and

(ii) if the carrier transferred or traded for consideration any arrival authorizations to another carrier under the October 2006 order amending the August 18, 2004 order and the transferee carrier meets the conditions of paragraph (b) of this section, the number of such traded or transferred authorizations.

(b) The FAA shall assign an Arrival Authorization to each U.S. and Canadian air carrier that did not publish a scheduled domestic or U.S./Canada transborder arrival during the period of time referenced in paragraph (a) of this section for arrivals for which the carrier:

(1) Was entitled to under the August 18, 2004, “Order Limiting Scheduled Operations at O'Hare International Airport,” as amended, and is conducting scheduled service at O'Hare as of the effective date of this rule; or

(2) Has initiated scheduled service or received FAA approval of a trade or
§ 93.26 Reversion and withdrawal of Arrival Authorizations.

(a) A U.S. or Canadian air carrier’s Arrival Authorizations assigned under §§93.25 or 93.27 revert automatically to the FAA 30 days after the Carrier has ceased all operations at O’Hare for any reason other than a strike.

(b) The FAA may withdraw or temporarily suspend Arrival Authorizations at any time as a result of reduced airport capacity or to fulfill operational needs. Whenever Arrival Authorizations must be withdrawn, they will be withdrawn in the required 30-minute Arrival Authorization time periods in accordance with the priority list established under §93.32 of this subpart.

(c) Any Arrival Authorization that is withdrawn or temporarily suspended under paragraph (b) will, if reassigned, be reassigned to the Carrier from which it was taken, provided that the Carrier continues to conduct scheduled operations at O’Hare.

(d) The FAA shall not withdraw or temporarily suspend under paragraph (b) any Arrival Authorizations if the result would be to reduce a Carrier’s total number of Arrival Authorizations below eight.

(e) Except as otherwise provided in paragraph (a) of this section, the FAA will notify the affected Carrier before withdrawing or temporarily suspending any Arrival Authorization and specify the date by which operations under the authorizations must cease. The FAA will provide at least 45 days’ notice unless otherwise required by operational needs.

§ 93.27 Sale and lease of Arrival Authorizations.

(a) No U.S. or Canadian air carriers may sell or lease its Arrival Authorizations at O’Hare except in accordance with the procedures in this section and in the manner prescribed by the FAA. Carriers may not buy, sell, lease or otherwise transfer control of Arrival Authorizations assigned under §93.29.

(b) Only monetary consideration may be provided in any transaction conducted under this section.

(c) New Entrants and Limited Incumbents may not sell, lease, or otherwise transfer control of any Arrival Authorizations assigned through a Preferred Lottery within 12 months of such assignment, except to another New Entrant or Limited Incumbent. One-for-one trades to other Carriers under §93.28 are permitted.

(d) A U.S. or Canadian air carrier seeking to sell or lease an Arrival Authorization must provide the following information in writing to the FAA:

1. Arrival Authorization number and time;
2. Frequency;
3. Planned effective date(s) of transfer;
4. Minimum reserve price, if established by the offering carrier;
5. Other pertinent information, if applicable; and
6. Carrier’s authorized representative.

(e) The FAA will post a notice of the available Arrival Authorization and
specific information concerning the proposed sale or lease transaction on the FAA Web site at http://www.fly.faa.gov. The Web site will include information regarding registration to be advised of posted transactions, and other relevant information pertaining to this section. The FAA will post the notice within two business days after receipt of all required information from the U.S. or Canadian air carrier offering the Arrival Authorization for sale or lease. The notice will provide ten business days for bids to be received and will specify a bid closing date and time. Only U.S. and Canadian air carriers may bid on Arrival Authorizations. Information identifying the Carrier providing the Arrival Authorization for sale or lease will not be posted or released by the FAA until after the FAA has approved the transfer.

(f) All bids must be sent to the FAA electronically, via the FAA Web site, by the closing date and time, and no extensions of time will be granted. Late bids will not be considered. All bids will be held confidential, with each bidder certifying in a form acceptable to the FAA that its bid has not been disclosed to any person not its agent.

(g) The FAA will forward the highest qualifying bid to the selling or leasing U.S. or Canadian air carrier without identifying the bidder. The selling or leasing Carrier will have up to three business days to accept or reject the bid. The selling or leasing Carrier must notify the FAA via the Web site or in writing of its acceptance no later than 5 p.m. Eastern Time on the third business day. If the selling or leasing Carrier does not notify the FAA of its acceptance within the allotted time, the transaction will terminate.

(h) Upon acceptance, the FAA will notify the U.S. or Canadian air carrier, who submitted the highest bid, and request that the buyer/lessee and the seller/lessor submit to the FAA the information (such as Arrival Authorization number, frequency and effective date(s) of transfer) required to transfer the Arrival Authorization.

(i) Each U.S. or Canadian air carrier must provide the FAA evidence of its consent and each Carrier must certify that only monetary consideration will be or has been exchanged.

(j) The FAA will approve requested transfers of Arrival Authorizations that comply with these regulations. The recipient U.S. or Canadian air carrier of the transfer may not use the Arrival Authorization until the conditions in paragraph (i) of this section have been met and the FAA has approved the transfer.

(k) The FAA will keep a record of all bids received and of each Arrival Authorization transfer, including the identity of both Carriers and the winning bid price, all of which will be made available to the public.

(l) U.S. or Canadian air carriers may request the FAA post notice that it is seeking to lease or purchase an Arrival Authorization at O'Hare. The Carrier may submit information in writing or via the FAA's Web site. This information may include the effective date, number or timing of Arrival Authorizations sought, whether a Carrier is seeking to purchase or lease, maximum price offered, or other pertinent information. The FAA may edit any submissions, or choose not to post certain information, in order to ensure the integrity of the solicitation process. Information identifying the Carrier seeking an Arrival Authorization for sale or lease will not be posted or released by the FAA. The FAA will post such requests within two business days of receipt for a period of at least 30 days. Any resulting offers to sell or lease Arrival Authorizations shall be conducted in accordance with this subsection.

(m) A U.S. or Canadian air carrier may transfer an Arrival Authorization to another U.S. or Canadian air carrier that conducts operations at O'Hare solely under the transferring Carrier's marketing control, including the entire inventory of the flight. Each Carrier must provide written evidence of its consent to the transfer. The FAA will approve requested transfers that comply with these regulations. The FAA Vice President, System Operations Services, is the final decision-maker for determinations under this subsection. The recipient Carrier of the transfer may not use the Arrival Authorization until the FAA has provided written confirmation. A record of each
Arrival Authorization will be kept on file by the FAA and made available to the public on request.

§ 93.28 One-for-one trade of Arrival Authorizations.

(a) Except as otherwise provided in this subpart, any Carrier may exchange an Arrival Authorization it has been assigned with another Carrier on a one-for-one basis for the purpose of conducting that operation in a different half-hour time period.

(b) Written evidence of each Carrier’s consent to the transfer must be provided to the FAA.

(c) The FAA will approve requested transfers of Arrival Authorizations that comply with these regulations. The recipient Carrier of the transfer may not use the Arrival Authorization until written confirmation has been received from the FAA.

(d) A U.S. or Canadian air carrier assigned Arrival Authorizations under § 93.29 may trade on a one-for-one basis within its own base of Arrival Authorizations subject to FAA approval, provided that the purpose is to operate the arrival flight from a foreign point outside Canada in a different half-hour time period than assigned. The FAA must confirm the transfer prior to operation.

(e) A record of each Arrival Authorization exchange will be kept on file by the FAA and made available to the public upon request.

(f) Carriers participating in a one-for-one transfer must certify to the FAA that no other consideration will be or has been provided for the exchange.

§ 93.29 International Arrival Authorizations.

(a) Except as otherwise provided in paragraph (d) of this section, the FAA shall make an initial assignment of Arrival Authorizations to U.S. and Canadian carriers arriving from a foreign point, excluding Canada, or any other foreign carrier arriving from a foreign point or the continuation of a flight that begins at a foreign point for the winter and summer scheduling seasons as follows. This section does not apply to arrivals at O’Hare from Canada by U.S. or Canadian air carriers.

(1) Winter Scheduling Season. Upon request, the FAA shall assign to each Carrier that published a scheduled arrival during the Winter 2006 Scheduling Season, as evidenced by the FAA’s records, a corresponding Arrival Authorization for the Winter 2007 Scheduling Season.

(2) Summer Scheduling Season. Upon request, the FAA shall assign to each Carrier that published a scheduled arrival for the Summer 2006 Scheduling Season, as evidenced by the FAA’s records, a corresponding Arrival Authorization for the Summer 2007 Scheduling Season.

(3) Arrival Authorizations will be assigned to the Carrier that actually operated the flight regardless of any codeshare or marketing arrangement unless the flight was predominately marketed, by contract, under the control of another Carrier. If the flight was under the marketing control of another Carrier or the entire inventory was under the control of another Carrier, the FAA shall assign the Arrival Authorization to that Carrier.

(4) The FAA Vice President, System Operations Services, is the final decision-maker for determinations under this subsection.

(b) Notwithstanding the limit on Arrival Authorization in § 93.23(a), any U.S. or Canadian air carrier arriving at O’Hare from a foreign point, excluding Canada, shall be assigned an Arrival Authorization under this section for that flight.

(c) Notwithstanding the limit on Arrival Authorizations in § 93.23(a), any non-Canadian, foreign air carrier conducting scheduled service and arriving at O’Hare shall be assigned an Arrival Authorization under this section for that flight.

(d) The Department of Transportation reserves the right to withhold the assignment of an Arrival Authorization to any foreign air carrier of a country that does not provide equivalent rights of access to its airports for U.S. air carriers, as determined by the Secretary of Transportation.

(e) For each scheduling season, Carriers must request Arrival Authorizations under this section in accordance with the procedures announced by the
Federal Aviation Administration, DOT

§ 93.30

FAA in the Federal Register. A Carrier may request to operate more flights from foreign points than the number for which it received Arrival Authorizations under §93.29(a) or to operate historic arrivals in a different half-hour than initially assigned for the previous corresponding scheduling season. The Arrival Authorizations will be assigned at the time requested unless:

(1) An Arrival Authorization is available within one hour of the requested time, in which case, the unassigned Arrival Authorization will be used to satisfy the request; or

(2) Operational efficiencies support assignment within one hour of the requested period. The FAA Vice President, System Operations Services, is the final decision-maker for determinations under this subsection.

(f) Each request for Arrival Authorizations under this section shall specify the complete flight information including the carrier identifier, flight number, complete flight itinerary, frequency, scheduled arrival time, aircraft and service type, effective dates and whether the Arrival Authorization is for a new or historic flight.

(g) Arrival Authorizations assigned under this section cannot be bought, sold, leased or transferred under §93.27 but subject to FAA approval may be traded on a one-for-one basis under §93.28 to meet the Carrier’s operational needs.

(h) Arrival Authorizations assigned under this section are not subject to minimum usage requirements of §93.31 of this subpart but will revert to the FAA if not used for 15 consecutive days. Arrival Authorizations assigned under this section may only be used for a flight arriving from a foreign point or for non-Canadian, foreign air carriers, the continuation of a flight that begins at a foreign point.

§ 93.30 Assignment provisions for domestic and U.S./Canada transborder service.

(a) Whenever the FAA has determined that sufficient Arrival Authorizations are available, they will be assigned by lottery. U.S. and Canadian air carriers must hold appropriate economic authority for scheduled service under Title 49 of the U.S.C. and FAA operating authority under parts 121, 129, or 135 of this chapter to select Arrival Authorizations in a lottery.

(b) Arrival Authorizations not assigned under §93.25, or returned to the FAA under §§93.26(a) or 93.31 for reallocation shall be assigned by a Preferred Lottery.

(c) Any Arrival Authorization available as the result of an increase above 90 in the hourly limits specified in §93.23(a) of this part from 88 Arrival Authorizations to 89 or 90 shall be assigned by a Preferred Lottery.

(d) Any Arrival Authorizations available as the result of an increase above 90 in the hourly limits specified in §93.23(a) of this subpart shall be assigned by lottery that is open to all U.S. and Canadian air carriers eligible to participate.

(e) The FAA will publish a notice in the Federal Register announcing the lottery dates and any special procedures for the lotteries.

(f) Any U.S. or Canadian air carrier seeking to participate in any lottery must notify the FAA in writing, and such notification must be received by the FAA 15 days prior to the lottery date. The U.S. or Canadian air carrier must specify if it is requesting to participate in a lottery as a New Entrant or Limited Incumbent. The U.S. or Canadian air carrier must also disclose in its notification whether it has Common Ownership with any other Carrier and, if so, identify such Carrier.

(g) A random lottery shall be held to determine the order in which participating Carriers shall select an Arrival Authorization.

(h) In any Preferred Lottery, each New Entrant and Limited Incumbent will have the opportunity to select Arrival Authorizations, if available as provided in paragraph (i) of this section, until it holds a total of eight Arrival Authorizations. Arrival Authorizations remaining after all New Entrants and Limited Incumbents have been accommodated may be assigned to any other Carrier participating in the lottery. Arrival Authorizations remaining after all New Entrants and
Limited Incumbents have been accommodated may be assigned to any U.S. or Canadian air carrier participating in the lottery for a minimum of 12 months, and then until the next lottery, when such Arrival Authorizations would again be available on a preferred basis to New Entrants and Limited Incumbents.

(i) At the lottery, each Carrier must make its selection within 5 minutes after being called or it shall lose its turn. If Arrival Authorizations still remain after each Carrier has had an opportunity to select Arrival Authorizations, the assignment sequence will be repeated in the same order. A Carrier may select one Arrival Authorization during each sequence, except that New Entrants may select two Arrival Authorizations, if available, in the first sequence of a Preferred Lottery.

(j) If there are available Arrival Authorizations for a temporary period, for example, Arrival Authorizations pending assignment in a lottery or international arrivals that are temporarily returned, the FAA may assign these Authorizations on a non-permanent, first-come, first-served basis.

§ 93.31 Minimum usage requirement.

(a) Except as provided in §93.29 and paragraphs (b) and (c) of this section, any Arrival Authorizations not used at least 80 percent of the time over a two-month period shall be withdrawn by the FAA.

(b) Paragraph (a) of this section does not apply to Arrival Authorizations obtained under §93.30 or bought under §93.27 during the first 90 days after assignment.

(c) Paragraph (a) of this section does not apply to Arrival Authorizations of U.S. or Canadian air carrier forced by a strike to cease operations using those Arrival Authorizations.

(d) Every U.S. and Canadian air carrier holding Arrival Authorizations shall forward in writing to the FAA Slot Administration Office in a format specified by the FAA a list of all Arrival Authorizations held by the Carrier along with a listing of the Arrival Authorizations actually operated for each day of the 2-month reporting period beginning January 1 and every 2 months thereafter. The report shall identify for each assigned Arrival Authorization the withdrawal priority number and half-hour period, the flight number, 3-letter identifier of the operating Carrier used for air traffic control communications, scheduled time of operation, origin airport, and whether a scheduled arrival was actually operated by the Carrier on a specified day. The report shall identify any Common Ownership or control of, by, or with any other carrier. A senior official of the Carrier shall sign the report.

(e) The Administrator may waive the requirements of paragraph (a) of this section in the event of a highly unusual and unpredictable condition which is beyond the control of the Carrier and which exists for a period of 5 consecutive days or more. Examples of conditions that could justify waiver under this paragraph are weather conditions that result in the restricted operation of an airport for an extended period of time or the grounding of any aircraft type.

(f) The FAA will treat as used any Arrival Authorization held by a carrier on Thanksgiving Day, the Friday following Thanksgiving Day, and the period from December 24 through the first Sunday in January.

§ 93.32 Administrative provisions.

(a) The FAA will assign, by random lottery, withdrawal priority numbers for the recall priority of Arrival Authorizations at O'Hare. The lowest numbered Arrival Authorization will be the last withdrawn. Newly created Arrival Authorizations will be assigned a priority withdrawal number and that number will be higher than any other Arrival Authorization withdrawal number previously assigned. Each Arrival Authorization will be assigned a designation consisting of the applicable withdrawal priority number, and the 30-minute time period for the Arrival Authorization. The designation will also indicate, as appropriate, if the Arrival Authorization is daily or for certain days of the week only; and is a summer or winter Arrival Authorization.

(b) All transactions regarding Arrival Authorizations under this subpart
must be in a written or electronic format approved by the FAA.

§ 93.33 [Reserved]

Subpart C [Reserved]

Subpart D—Anchorage, Alaska, Terminal Area

SOURCE: Docket No. 29029, 64 FR 14976, Mar. 29, 1999, unless otherwise noted.

§ 93.51 Applicability.

This subpart prescribes special air traffic rules for aircraft operating in the Anchorage, Alaska, Terminal Area.

§ 93.53 Description of area.

The Anchorage, Alaska, Terminal Area is designated as that airspace extending upward from the surface to the upper limit of each of the segments described in § 93.55. It is bounded by a line beginning at Point MacKenzie, extending westerly along the bank of Knik Arm to a point intersecting the 350° bearing from the Anchorage International ATCT; thence north to intercept the 5.2-mile arc centered on the geographical center of Anchorage, Alaska, ATCT; thence counterclockwise along that arc to its intersection with a line bearing 180° from the intersection of the new Seward Highway and International Airport Road; thence due north to O’Malley Road; thence east along O’Malley Road to its intersection with Lake Otis Parkway; thence northerly along Lake Otis Parkway to its intersection with Abbott Road; thence east along Abbott Road to its intersection with Abbott Loop Road; thence north to its intersection with Tudor Road; thence easterly along Tudor Road to its intersection with Muldoon Road; thence northerly along Muldoon Road to the intersection of the Glenn Highway; thence north and east along the Glenn Highway to Ski Bowl Road; thence southeast along the Ski Bowl Road to a point one-half mile south of the Glenn Highway; thence north and east one-half mile south of and parallel to the Glenn Highway to its intersection with a line one-half mile east of and parallel to the Bryant Airport Runway 16/34 extended centerline; thence northeast along a line one-half mile east of and parallel to Bryant Airport Runway 16/34 extended centerline to lat. 61°17′13″N., long. 149°37′35″W.; thence west along lat. 61°17′13″N., to long. 149°43′08″W.; thence north along long. 149°43′08″W., to lat. 61°17′30″N.; thence to lat. 61°17′58″N., long 149°44′08″W.; thence to lat. 61°19′10″N., long. 149°46′44″W.; thence north along long. 149°46′44″W., to intercept the 4.7-mile radius arc centered on Elmendorf Air Force Base (AFB), Alaska; thence counterclockwise along the 4.7-mile radius arc to its intersection with the west bank of Knik Arm; thence southerly along the west bank of Knik Arm to the point of beginning.

[Doc. No. 29029, 64 FR 14976, Mar. 29, 1999; Amdt. 93–77, 64 FR 17439, Apr. 9, 1999]

§ 93.55 Subdivision of Terminal Area.

The Anchorage, Alaska, Terminal Area is subdivided as follows:

(a) International segment. That area from the surface to and including 4,100 feet MSL, within a 5.2-mile radius of the Anchorage International ATCT, excluding that airspace east of the 350° bearing from the Anchorage International ATCT and north of the 090° bearing from the Anchorage International ATCT and east of a line bearing 180° and 360° from the intersection of the new Seward Highway and International Airport Road and the airspace extending upward from the surface to but not including 600 feet MSL, south of lat. 61°08′28″N.

(b) Merrill segment. That area from the surface to and including 2,500 feet MSL, within a line beginning at Point Nome; thence direct to the mouth of Ship Creek; thence direct to the intersection of the Glenn Highway and Muldoon Road; thence south along Muldoon Road to Tudor Road; thence west along Tudor Road to the new Seward Highway; thence direct to West Anchorage High School; thence direct to Point MacKenzie; thence via the north bank of Knik Arm to the point of beginning.

(c) Lake Hood segment. That area from the surface to and including 2,500 feet MSL, within a line beginning at Point
§ 93.57 General rules: All segments.

(a) Each person operating an aircraft to, from, or on an airport within the Anchorage, Alaska, Terminal Area shall operate that aircraft according to the rules set forth in this section and §§93.59, 93.61, 93.63, 93.65, 93.67, or 93.68 as applicable, unless otherwise authorized or required by ATC.

(b) Each person operating an airplane within the Anchorage, Alaska Terminal Area shall conform to the flow of traffic depicted on the appropriate aeronautical charts.

(c) Each person operating a helicopter shall operate it in a manner so as to avoid the flow of airplanes.

(d) Except as provided in §93.65 (d) and (e), and §93.67(b), each person operating an aircraft in the Anchorage, Alaska, Terminal Area shall operate that aircraft only within the designated segment containing the arrival or departure airport.

(e) Except as provided in §§93.63(d) and 93.67(b), each person operating an aircraft in the Anchorage, Alaska, Terminal Area shall maintain two-way radio communications with the ATCT serving the segment containing the arrival or departure airport.
Federal Aviation Administration, DOT

§ 93.59 General rules: International segment.

(a) No person may operate an aircraft at an altitude between 1,200 feet MSL and 2,000 feet MSL in that portion of this segment lying north of the midchannel of Knik Arm.

(b) Each person operating an airplane at a speed of more than 105 knots within this segment (except that part described in paragraph (a) of this section) shall operate that airplane at an altitude of at least 1,600 feet MSL until maneuvering for a safe landing requires further descent.

(c) Each person operating an airplane at a speed of 105 knots or less within this segment (except that part described in paragraph (a) of this section) shall operate that airplane at an altitude of at least 900 feet MSL until maneuvering for a safe landing requires further descent.

§ 93.61 General rules: Lake Hood segment.

(a) No person may operate an aircraft at an altitude between 1,200 feet MSL and 2,000 feet MSL in that portion of this segment lying north of the midchannel of Knik Arm.

(b) Each person operating an airplane within this segment (except that part described in paragraph (a) of this section) shall operate that airplane at an altitude of at least 600 feet MSL until maneuvering for a safe landing requires further descent.

§ 93.63 General rules: Merrill segment.

(a) No person may operate an aircraft at an altitude between 600 feet MSL and 2,000 feet MSL in that portion of this segment lying north of the midchannel of Knik Arm.

(b) Each person operating an airplane at a speed of more than 105 knots within this segment (except for that part described in paragraph (a) of this section) shall operate that airplane at an altitude of at least 1,200 feet MSL until maneuvering for a safe landing requires further descent.

(c) Each person operating an airplane at a speed of 105 knots or less within this segment (except for that part described in paragraph (a) of this section) shall operate that airplane at an altitude of at least 900 feet MSL until maneuvering for a safe landing requires further descent.

(d) Whenever the Merrill ATCT is not operating, each person operating an aircraft either in that portion of the Merrill segment north of midchannel of Knik Arm, or in the Seward Highway segment at or below 1200 feet MSL, shall contact Anchorage Approach Control for wake turbulence and other advisories. Aircraft operating within the remainder of the segment should self-announce intentions on the Merrill Field CTAF.

§ 93.65 General rules: Elmendorf segment.

(a) Each person operating a turbine-powered aircraft within this segment shall operate that aircraft at an altitude of at least 1,700 feet MSL until maneuvering for a safe landing requires further descent.

(b) Each person operating an airplane (other than turbine-powered aircraft) at a speed of more than 105 knots or less within this segment shall operate that airplane at an altitude of at least 1,200 feet MSL until maneuvering for a safe landing requires further descent.

(c) Each person operating an airplane (other than turbine-powered aircraft) at a speed of 105 knots or less within the segment shall operate that airplane at an altitude of at least 800 feet MSL until maneuvering for a safe landing requires further descent.

(d) A person landing or departing from Elmendorf AFB, may operate that aircraft at an altitude between 1,500 feet MSL and 1,700 feet MSL within that portion of the International and Lake Hood segments lying north of the midchannel of Knik Arm.

(e) A person landing or departing from Elmendorf AFB, may operate that aircraft at an altitude between 900 feet MSL and 1,700 feet MSL within that portion of the Merrill segment lying north of the midchannel of Knik Arm.

(f) A person operating in VFR conditions, at or below 600 feet MSL, north of a line beginning at the intersection of Farrell Road and the long, 149°43'08"W.; thence west along Farrell Road to the east end of Sixmile Lake; thence west along a line bearing on the middle of Lake Lorraine to the northwest bank of Knik Arm; is not required...
§ 93.67 General rules: Bryant segment.

(a) Each person operating an airplane to or from the Bryant Airport shall conform to the flow of traffic shown on the appropriate aeronautical charts, and while in the traffic pattern, shall operate that airplane at an altitude of at least 1,000 feet MSL until maneuvering for a safe landing requires further descent.

(b) Each person operating an aircraft within the Bryant segment should self-announce intentions on the Bryant Airport CTAF.

§ 93.68 General rules: Seward Highway segment.

(a) Each person operating an airplane in the Seward Highway segment shall operate that airplane at an altitude of at least 1,000 feet MSL unless maneuvering for a safe landing requires further descent.

(b) Each person operating an aircraft at or below 1,200 feet MSL that will transition to or from the Lake Hood or Merrill segment shall contact the appropriate ATCT prior to entering the Seward Highway segment. All other persons operating an airplane at or below 1,200 feet MSL in this segment shall contact Anchorage Approach Control.

(c) At all times, each person operating an aircraft above 1,200 MSL shall contact Anchorage Approach Control prior to entering the Seward Highway segment.

§ 93.69 Special requirements, Lake Campbell and Sixmile Lake Airports.

Each person operating an aircraft to or from Lake Campbell or Sixmile Lake Airport shall conform to the flow of traffic for the Lake operations that are depicted on the appropriate aeronautical charts.

Subpart E—Flight Restrictions in the Vicinity of Niagara Falls, New York

§ 93.71 General operating procedures.

(a) Flight restrictions are in effect below 3,500 feet MSL in the airspace above Niagara Falls, New York, west of a line from latitude 43°06′33″ N., longitude 79°03′30″ W. (the Whirlpool Rapids Bridge) to latitude 43°04′47″ N., longitude 79°02′44″ W. (the Niagara River Inlet) to latitude 43°04′29″ N., longitude 79°03′30″ W. (the International Control Dam) to the United States/Canadian Border and thence along the border to the point of origin.

(b) No flight is authorized below 3,500 feet MSL in the area described in paragraph (a) of this section, except for aircraft operations conducted directly to or from an airport/heliport within the area, aircraft operating on an ATC-approved IFR flight plan, aircraft operating the Scenic Falls Route pursuant to approval of Transport Canada, aircraft carrying law enforcement officials, or aircraft carrying properly accredited news representatives for which a flight plan has been filed with Buffalo NY (BUF) Automated Flight Service Station (AFSS).

(c) Check with Transport Canada for flight restrictions in Canadian airspace. Commercial air tour operations approved by Transport Canada will be conducting a north/south orbit of the Niagara Falls area below 3,500 feet MSL over the Niagara River.

(d) The minimum altitude for VFR flight over the Scenic Falls area is 3,500 feet MSL.

(e) Comply with the following procedures when conducting flight over the area described in paragraph (a) of this section:

1. Fly a clockwise pattern;
2. Do not proceed north of the Rainbow Bridge;
3. Prior to joining the pattern, broadcast flight intentions on frequency 122.05 Mhz, giving altitude and position, and monitor the frequency while in the pattern;
4. Use the Niagara Falls airport altimeter setting. Contact Niagara Falls Airport Traffic Control Tower to obtain the current altimeter setting, to facilitate the exchange of traffic
Federal Aviation Administration, DOT

The Valparaiso, Florida, Terminal Area is designated as follows:

(a) North-South Corridor. The North-South Corridor includes the airspace extending upward from the surface up to, but not including, 18,000 feet MSL, bounded by a line beginning at:

Latitude 30°25′01″ N., Longitude 86°38′12″ W.; to
Latitude 30°29′02″ N., Longitude 86°38′02″ W.; to point of beginning.

(b) East-West Corridor—The East-West Corridor is divided into three sections to accommodate the different altitudes as portions of the corridor underlie restricted areas R–2915C, R–2919B, and R–2914B.

(1) The west section would include that airspace extending upward from the surface to but not including 8,500 feet MSL, bounded by a line beginning at: Latitude 30°22′47″ N., Longitude 86°51′30″ W.; then along the shoreline to Latitude 30°23′46″ N., Longitude 86°38′15″ W.; to Latitude 30°20′51″ N., Longitude 86°38′50″ W.; then 3 NM from and parallel to the shoreline to Latitude 30°19′31″ N., Longitude 86°51′30″ W.; to the beginning.

(2) The center section would include that airspace extending upward from the surface to but not including 18,000 feet MSL, bounded by a line beginning at:

Latitude 30°25′01″ N., Longitude 86°38′12″ W.; to
Latitude 30°25′01″ N., Longitude 86°25′00″ W.; to
Latitude 30°25′01″ N., Longitude 86°22′36″ W.; to
Latitude 30°19′46″ N., Longitude 86°23′45″ W.; then 3 NM from and parallel to the shoreline to Latitude 30°20′51″ N., Longitude 86°38′50″ W.; to Latitude 30°23′46″ N., Longitude 86°38′15″ W.; to the beginning.

(3) The east section would include that airspace extending upward from the surface to but not including 8,500 feet MSL, bounded by a line beginning at:

Latitude 30°25′01″ N., Longitude 86°22′26″ W.; to
Latitude 30°22′01″ N., Longitude 86°08′00″ W.; to
Latitude 30°19′16″ N., Longitude 85°56′00″ W.; to
Latitude 30°11′31″ N., Longitude 85°56′00″ W.; then 3 NM from and parallel to the shoreline to Latitude 30°19′46″ N., Longitude 86°23′45″ W.; to the beginning.

§ 93.83 Aircraft operations.

(a) North-South Corridor. Unless otherwise authorized by ATC (including the Eglin Radar Control Facility), no person may operate an aircraft in flight within the North-South Corridor designated in § 93.81(b)(1) unless—

(1) Before operating within the corridor, that person obtains a clearance from the Eglin Radar Control Facility or an appropriate FAA ATC facility; and

(2) That person maintains two-way radio communication with the Eglin Radar Control Facility or an appropriate FAA ATC facility while within the corridor.

(b) East-West Corridor. Unless otherwise authorized by ATC (including the Eglin Radar Control Facility), no person may operate an aircraft in flight within the East-West Corridor designated in § 93.81(b)(2) unless—

(1) Before operating within the corridor, that person establishes two-way radio communications with Eglin Radar Control Facility or an appropriate FAA ATC facility and receives an ATC advisory concerning operations being conducted therein; and

(2) That person maintains two-way radio communications with the Eglin Radar Control Facility or an appropriate FAA ATC facility while within the corridor.

[Amdt. 93–70, 59 FR 46155, Sept. 6, 1994]

Subpart G—Special Flight Rules in the Vicinity of Los Angeles International Airport

§ 93.91 Applicability.

This subpart prescribes special air traffic rules for aircraft conducting VFR operations in the Los Angeles, California Special Flight Rules Area.

§ 93.93 Description of area.

The Los Angeles Special Flight Rules Area is designated as that part of Area A of the Los Angeles Class B airspace area at 3,500 feet above mean sea level (MSL) and at 4,500 feet MSL, beginning at Ballona Creek/Pacific Ocean (lat. 33°57′42″ N, long. 118°27′23″ W), then eastbound along Manchester Blvd. to the intersection of Manchester/405 Freeway (lat. 33°57′42″ N, long. 118°22′10″ W), then southbound along the 405 Freeway to the intersection of the 405 Freeway/Imperial Highway (lat. 33°55′51″ N, long. 118°22′06″ W), then westbound along Imperial Highway to the intersection of Imperial Highway/Pacific Ocean (lat. 33°55′51″ N, long. 118°26′05″ W), then northbound along the shoreline to the point of beginning.

§ 93.95 General operating procedures.

Unless otherwise authorized by the Administrator, no person may operate an aircraft in the airspace described in § 93.93 unless the operation is conducted in accordance with the following procedures:

(a) The flight must be conducted under VFR and only when operation may be conducted in compliance with § 91.155(a) of this chapter.

(b) The aircraft must be equipped as specified in § 91.215(b) of this chapter, replying on code 1201 prior to entering and while operating in this area.

(c) The pilot shall have a current Los Angeles Terminal Area Chart in the aircraft.

(d) The pilot shall operate on the Santa Monica very high frequency omni-directional radio range (VOR) 132° radial.

(e) Aircraft navigating in a south-easterly direction shall be in level flight at 3,500 feet MSL.

(f) Aircraft navigating in a north-westerly direction shall be in level flight at 4,500 feet MSL.

(g) Indicated airspeed shall not exceed 140 knots.

(h) Anti-collision lights and aircraft position/navigation lights shall be on. Use of landing lights is recommended.

(i) Turbojet aircraft are prohibited from VFR operations in this area.

§ 93.97 Operations in the SFRA.

Notwithstanding the provisions of § 91.131(a) of this chapter, an air traffic control authorization is not required in the Los Angeles Special Flight Rules Area for operations in compliance with § 93.95. All other provisions of § 91.131 of this chapter apply to operations in the Los Angeles Special Flight Rules Area.
§ 93.117 Applicability.

This subpart prescribes a special air traffic rule for aircraft operating at the Lorain County Regional Airport, Lorain County, Ohio.

§ 93.119 Aircraft operations.

Each person piloting an airplane landing at the Lorain County Regional Airport shall enter the traffic pattern north of the airport and shall execute a right traffic pattern for a landing to the southwest or a left traffic pattern for a landing to the northeast. Each person taking off from the airport shall execute a departure turn to the north as soon as practicable after takeoff.

[Doc. No. 8669, 33 FR 11749, Aug. 20, 1968]

Subpart K—High Density Traffic Airports

§ 93.121 Applicability.

This subpart designates high density traffic airports and prescribes air traffic rules for operating aircraft, other than helicopters, to or from those airports.

§ 93.123 High density traffic airports.

(a) Each of the following airports is designated as a high density traffic airport and, except as provided in §93.129 and paragraph (b) of this section, or unless otherwise authorized by ATC, is limited to the hourly number of allocated IFR operations (takeoffs and landings) that may be reserved for the specified classes of users for that airport:

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>Class of user</th>
<th>LaGuardia 4</th>
<th>Newark</th>
<th>O'Hare 2</th>
<th>Ronald Reagan National 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR OPERATIONS PER HOUR</td>
<td>Air carriers</td>
<td>48</td>
<td>40</td>
<td>120</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Commuters</td>
<td>14</td>
<td>10</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Operations at O'Hare International Airport shall not—
 (a) Except as provided in paragraph (c) of the note, exceed
 62 for air carriers and 13 for commuters and 5 for
 “other” during any 30-minute period beginning at 6:45 a.m. and
 continuing every 30 minutes thereafter.
 (b) Except as provided in paragraph (c) of the note, exceed
 more than 120 for air carriers, 25 for commuters, and 10 for
 “other” in any two consecutive 30-minute periods.
 (c) For the hours beginning at 6:45 a.m., 7:45 a.m., 11:45 a.m., 7:45 p.m. and 8:45 p.m., the hourly limitations shall be 105 for air carriers, 40 for commuters and 10 for “other;” and the 30-minute limitations shall be 55 for air carriers, 20 for commuters and 5 for “other” in any two consecutive 30-minute periods.

2 Operations at O'Hare begin at 6:45 a.m. and continue in 30-minute increments until 9:15 p.m.

3 Operations at O'Hare International Airport shall not—
 (a) Except as provided in paragraph (c) of the note, exceed
 120 for air carriers, and 25 for commuters, and 10 for
 “other” during any 30-minute period.
 (b) Except as provided in paragraph (c) of the note, exceed
 255 for air carriers, 55 for commuters, and 10 for “other” in any two consecutive 30-minute periods.

4 Operations at LaGuardia Airport shall not—
 (a) Exceed 26 for air carriers, 7 for commuters and 3 for
 “other” during any 30-minute period.
 (b) Except 40 for air carriers, 14 for commuters, and 6 for
 “other” in any two consecutive 30-minute periods.

5 Pursuant to bilateral agreement, 14 slots at LaGuardia and 24 slots at O'Hare are allocated to the Canadian carriers. These slots are excluded from the hourly quotas set forth in §93.123 above.

(b) The following exceptions apply to the allocations of reservations prescribed in paragraph (a) of this section.

1. The allocations of reservations among the several classes of users do not apply from 12 midnight to 6 a.m. local time, but the total hourly limitation remains applicable.

2. [Reserved]

3. The allocation of IFR reservations per hour for air carriers except commuters at Washington National Airport does not include charter flights, or other nonscheduled flights of scheduled or supplemental air carriers. These flights may be conducted without regard to the limitation of IFR reservations per hour.

4. The allocation of IFR reservations for air carriers except commuters at
Arrival or departure reservation.

Except between 12 Midnight and 6 a.m. local time, no person may operate an aircraft to or from an airport designated as a high density traffic airport unless he has received, for that operation, an arrival or departure reservation from ATC.

Additional operations.

(a) IFR. The operator of an aircraft may take off or land the aircraft under IFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high density airport and he obtains a departure or arrival reservation, as appropriate, from ATC. The reservation is granted by ATC whenever the aircraft may be accommodated without significant additional delay to the operations allocated for the airport for which the reservations is requested.

(b) VFR. The operator of an aircraft may take off and land the aircraft under VFR at a designated high density traffic airport without regard to the maximum number of operations allocated for that airport if the operation is not a scheduled operation to or from a high density airport and he obtains a departure or arrival reservation, as appropriate, from ATC. The reservation is granted by ATC whenever the aircraft may be accommodated without significant additional delay to the operations allocated for the airport for which the reservations is requested.
§ 93.153 Subpart M—Ketchikan International Airport Traffic Rule

SOURCE: Docket No. 14687, 41 FR 14879, Apr. 8, 1976, unless otherwise noted.

§ 93.151 Applicability.

This subpart prescribes a special air traffic rule for aircraft conducting VFR operations in the vicinity of the Ketchikan International Airport or Ketchikan Harbor, Alaska.

§ 93.152 Description of area.

Within that airspace below 3,000 feet MSL within the lateral boundary of the surface area of the Ketchikan Class E airspace regardless of whether that airspace is in effect.

§ 93.153 Communications.

(a) When the Ketchikan Flight Service Station is in operation, no person may operate an aircraft within the airspace specified in §93.151, or taxi onto the runway at Ketchikan International Airport, unless that person has established two-way radio communications with the Ketchikan Flight Service Station for the purpose of receiving traffic advisories and continues to monitor the advisory frequency at all times while operating within the specified airspace.

(b) When the Ketchikan Flight Service Station is not in operation, no person may operate an aircraft within the airspace specified in §93.151, or taxi onto the runway at Ketchikan International Airport, unless that person continuously monitors and communicates, as appropriate, on the designated common traffic advisory frequency as follows:

(1) For inbound flights. Announces position and intentions when no less than 10 miles from Ketchikan International Airport, and monitors the designated frequency until clear of the movement area on the airport or Ketchikan Harbor.

(2) For departing flights. Announces position and intentions prior to taxiing onto the active runway on the airport.
§ 93.155 Aircraft operations.

(a) When an advisory is received from the Ketchikan Flight Service Station stating that an aircraft is on final approach to the Ketchikan International Airport, maintain runway heading until reaching an altitude of 900 feet MSL.

Subpart N [Reserved]

Subpart O—Special Flight Rules in the Vicinity of Luke AFB, AZ

SOURCE: 74 FR 69278, Dec. 31, 2009, unless otherwise noted.

§ 93.175 Applicability.

This subpart prescribes a Special Air Traffic Rule for aircraft conducting VFR operations in the vicinity of Luke Air Force Base, AZ.

§ 93.176 Description of area.

The Luke Air Force Base, Arizona Terminal Area is designated during official daylight hours Monday through Friday while Luke pilot flight training is underway, as broadcast on the local Automatic Terminal Information Service (ATIS), and other times by Notice to Airmen (NOTAM), as follows:

(a) East Sector:

(1) South section includes airspace extending from 3,000 feet MSL to the base of the overlying Phoenix Class B airspace bounded by a line beginning at: Lat. 33°27′56″ N; Long. 112°28′37″ W; to Lat. 33°22′32″ N; Long. 112°37′14″ W; to Lat. 33°25′39″ N; Long. 112°37′29″ W; to Lat. 33°31′55″ N; Long. 112°30′32″ W; to Lat. 33°38′00″ N; Long. 112°28′41″ W; to point of beginning.

(2) South section lower includes airspace extending from 2,100 feet MSL to the base of the overlying Phoenix Class B airspace, excluding the Luke Class D airspace area bounded by a line beginning at: Lat. 33°28′00″ N; Long. 112°28′41″ W; to Lat. 33°23′56″ N; Long. 112°28′37″ W; to Lat. 33°27′53″ N; Long. 112°24′12″ W; to point of beginning.

(3) Center section includes airspace extending from surface to the base of the overlying Phoenix Class B airspace, excluding the Luke Class D airspace area bounded by a line beginning at: Lat. 33°42′22″ N; Long. 112°19′16″ W; to Lat. 33°38′40″ N; Long. 112°14′03″ W; to Lat. 33°27′53″ N; Long. 112°24′12″ W; to Lat. 33°28′00″ N; Long. 112°28′41″ W; to Lat. 33°31′55″ N; Long. 112°30′32″ W; to point of beginning.

(4) The north section includes that airspace extending upward from 3,000 feet MSL to 4,000 feet MSL, bounded by a line beginning at: Lat. 33°42′22″ N; Long. 112°19′16″ W; to Lat. 33°46′58″ N; Long. 112°26′41″ W; to Lat. 33°44′48″ N; Long. 112°10′59″ W; to Lat. 33°38′40″ N; Long. 112°14′03″ W; to point of beginning.

(b) West Sector:

(1) The north section includes that airspace extending upward from 3,000 feet MSL to 6,000 feet MSL, bounded by a line beginning at: Lat. 33°39′27″ N; to
§ 93.177 Operations in the Special Air Traffic Rule Area.

(a) Unless otherwise authorized by Air Traffic Control (ATC), no person may operate an aircraft in flight within the Luke Terminal Area designated in §93.176 unless—

(1) Before operating within the Luke Terminal area, that person establishes radio contact with the Luke RAPCON; and

(2) That person maintains two-way radio communication with the Luke RAPCON or an appropriate ATC facility while within the designated area.

(b) Requests for deviation from the provisions of this section apply only to aircraft not equipped with an operational radio. The request must be submitted at least 24 hours before the proposed operation to Luke RAPCON.

§ 93.213 Definitions and general provisions.

(a) For purposes of this subpart—

(1) New entrant carrier means a commuter operator or air carrier which does not hold a slot at a particular airport and has never sold or given up a slot at that airport after December 16, 1985.

(2) Slot means the operational authority to conduct one IFR landing or take-off operation each day during a specific hour or 30 minute period at one of the High Density Traffic Airports, as specified in subpart K of this part.

(3) Summer season means the period of time from the first Sunday in April until the last Sunday in October.

(4) Winter season means the period of time from the last Sunday in October until the first Sunday in April.

(5) Limited incumbent carrier means an air carrier or commuter operator that holds or operates fewer than 12 air carrier or commuter slots, in any combination, at a particular airport, not including international slots, Essential Air Service Program slots, or slots between the hours of 2200 and 0659 at Washington National Airport or LaGuardia Airport. However, for the purposes of this paragraph (a)(5), the carrier is considered to hold the number of slots at that airport that the carrier has, since December 16, 1985:

(i) Returned to the FAA;

(ii) Had recalled by the FAA under §93.227(a); or

(iii) Transferred to another party other than by trade for one or more slots at the same airport.

(b) The definitions specified in subpart K of this part also apply to this subpart.

(c) For purposes of this subpart, if an air carrier, commuter operator, or other person has more than a 50-percent ownership or control of one or more other air carriers, commuter operators, or other persons, they shall be considered to be a single air carrier, commuter operator, or person. In addition, if a single company has more than a 50-percent ownership or control of two or more air carriers and/or commuter operators or any combination thereof, those air carriers and/or commuter operators shall be considered to be a single operator. A single operator may be considered to be both an air carrier and/
§ 93.215 Initial allocation of slots.

(a) Each air carrier and commuter operator holding a permanent slot on December 16, 1985, as evidenced by the records of the air carrier and commuter operator scheduling committees, shall be allocated those slots subject to withdrawal under the provisions of this subpart. The Chief Counsel of the FAA shall be the final decisionmaker for initial allocation determinations.

(b) Any permanent slot whose use on December 16, 1985 is divided among different operators, by day of the week, or otherwise, as evidenced by records of the scheduling committees, shall be allocated in conformity with those records. The Chief Counsel of the FAA shall be the final decisionmaker for these determinations.

(c) A carrier may permanently designate a slot it holds at Kennedy International Airport as a seasonal slot, to be held by the carrier only during the corresponding season in future years, if it notifies the FAA (at the address specified in §93.225(e)), in writing, the preceding winter seasons or by October 15 of the preceding year for summer seasons.

(d) Within 30 days after December 16, 1985 each U.S. air carrier and commuter operator must notify the office specified in §93.221(a)(1) in writing of those days on which the slots will not be used.

(e) Any slot not held by an operator on December 16, 1985 shall be allocated in accordance with the provisions of §§93.217, 93.219 or 93.225 of this subpart.

§ 93.217 Allocation of slots for international operations and applicable limitations.

(a) Any air carrier of commuter operator having the authority to conduct international operations shall be provided slots for those operations, excluding transborder service solely between HDR airports and Canada, subject to the following conditions and the other provisions of this section:

1. The slot may be used only for a flight segment in which either the takeoff or landing is at a foreign point or, for foreign operators, the flight segment is a continuation of a flight that begins or ends at a foreign point. Slots may be obtained and used under this section only for operations at Kennedy and O'Hare airports unless otherwise required by bilateral agreement and only for scheduled service unless the requesting carrier qualifies for the slot on the basis of historic seasonal operations, under §93.217(a)(5).

2. Slots used for an operation described in paragraph (a)(1) of this section shall be allocated in conformity with the provisions of §§93.217, 93.219 or 93.225 of this subpart.

3. A slot not held by an operator on December 16, 1985 shall be allocated in accordance with the provisions of §§93.217, 93.219 or 93.225 of this subpart.

4. Each air carrier or commuter operator having a slot that is used for operations described in paragraph (a)(1) of this section shall be notified of the slot on the basis of historic seasonal operations, under §93.217(a)(5).

5. Except as provided in paragraph (a)(10) of this section, at Kennedy and O'Hare Airports, a slot shall be allocated, upon request, for seasonal international operations, including charter operations, if the Chief Counsel of the FAA determines that the slot has been permanently allocated to and used by the requesting carrier in the same hour and for the same time period during the corresponding season of the preceding year. Requests for such slots must be submitted to the office specified in §93.221(a)(1), by the deadline published in a FEDERAL REGISTER notice for each season. For operations...
during the 1986 summer season, requests under this paragraph must have been submitted to the FAA on or before February 1, 1986. Each carrier requesting a slot under this paragraph must submit its entire international schedule at the relevant airport for the particular season, noting which requests are in addition to or changes from the previous year.

(6) Except as provided in paragraph (a)(10) of this section, additional slots shall be allocated at O'Hare Airport for international scheduled air carrier and commuter operations (beyond those slots allocated under §§93.215 and 93.217(a)(5) if a request is submitted to the office specified in §93.221(a)(1) and filed by the deadline published in a FEDERAL REGISTER notice for each season. These slots will be allocated at the time requested unless a slot is available within one hour of the requested time, in which case the unallocated slots will be used to satisfy the request.

(7) If required by bilateral agreement, additional slots shall be allocated at LaGuardia Airport for international scheduled passenger operations within the hour requested.

(8) To the extent vacant slots are available, additional slots during the high density hours shall be allocated at Kennedy Airport for new international scheduled air carrier and commuter operations (beyond those operations for which slots have been allocated under §§93.215 and 93.217(a)(5)), if a request is submitted to the office specified in §93.221(a)(1) by the deadline published in a FEDERAL REGISTER notice for each season. In addition, slots may be withdrawn from domestic operations for operations at Kennedy Airport under this paragraph if required by international obligations.

(9) In determining the hour in which a slot request under §§93.217(a)(6) and 93.217(a)(8) will be granted, the following will be taken into consideration, among other things:

(i) The availability of vacant slot times;

(ii) International obligations;

(iii) Airport terminal capacity, including facilities and personnel of the U.S. Customs Service and the U.S. Immigration and Naturalization Service;

(iv) The extent and regularity of intended use of a slot; and

(v) Schedule constraints of carriers requesting slots.

(10) At O'Hare Airport, a slot will not be allocated under this section to a carrier holding or operating 100 or more permanent slots on the previous May 15 for a winter season or October 15 for a summer season unless:

(i) Allocation of the slot does not result in a total allocation to that carrier under this section that exceeds the number of slots allocated to and scheduled by that carrier under this section on February 23, 1990, and as reduced by the number of slots reclassified under §93.218, and does not exceed by more than 2 the number of slots allocated to and scheduled by that carrier during any half hour of that day, or

(ii) Notwithstanding the number of slots allocated under paragraph (a)(10)(i) of this section, a slot is available for allocation without withdrawal of a permanent slot from any carrier.

(b) If a slot allocated under §93.215 was scheduled for an operation described in paragraph (a)(1) of this section on December 16, 1985, its use shall be subject to the requirements of paragraphs (a)(1) through (a)(4) of this section. The requirements also apply to slots used for international operations at LaGuardia Airport.

(c) If a slot is offered to a carrier in other than the hour requested, the carrier shall have 14 days after the date of the offer to accept the newly offered slot. Acceptance must be in writing and sent to the office specified in §93.221(a)(1) and must repeat the certified statements required by paragraph (e) of this section.

(d) The Office of the Secretary of Transportation reserves the right not to apply the provisions of this section, concerning the allocation of slots, to any foreign air carrier or commuter operator of a country that provides slots to U.S. air carriers and commuter operators on a basis more restrictive than provided by this subpart. Decisions not to apply the provisions of this section will be made by the Office of the Secretary of Transportation.

(e) Each request for slots under this section shall state the airport, days of
§ 93.218 Slots for transborder service to and from Canada.

(a) Except as otherwise provided in this subpart, international slots identified by U.S. carriers for international operations in December 1985 and the equivalent number of international slots held as of February 24, 1998, will be domestic slots. The Chief Counsel of the FAA shall be the final decision-maker for these determinations.

(b) Canadian carriers shall have a guaranteed base level of slots of 42 slots at LaGuardia, 36 slots at O’Hare for the Summer season, and 32 slots at O’Hare in the Winter season.

(c) Any modification to the slot base by the Government of Canada or the Canadian carriers that results in a decrease of the guaranteed base in paragraph (b) of this section shall permanently modify the base number of slots.

§ 93.219 Allocation of slots for essential air service operations and applicable limitations.

Whenever the Office of the Secretary of Transportation determines that slots are needed for operations to or from a High Density Traffic Airport under the Department of Transportation’s Essential Air Service (EAS) Program, those slots shall be provided to the designated air carrier or commuter operator subject to the following limitations:

(a) Slots obtained under this section may not be bought, sold, leased or otherwise transferred, except that such slots may be traded for other slots on a one-for-one basis at the same airport.

(b) Any slot obtained under this section must be returned to the FAA if it will not be used for EAS purposes for more than a 2-week period. A slot returned under this paragraph may be reallocated to the operator which returned it upon request to the FAA office specified in §93.221(a)(1) if that slot has not been reallocated to an operator to provide substitute essential air service.

(c) Slots shall be allocated for EAS purposes in a time period within 90 minutes of the time period requested.

(d) The Department will not honor requests for slots for EAS purposes to a point if the requesting carrier has previously traded away or sold slots it had used or obtained for use in providing essential air service to that point.

(e) Slots obtained under Civil Aeronautics Board Order No. 84–11–40 shall be considered to have been obtained under this section.

§ 93.221 Transfer of slots.

(a) Except as otherwise provided in this subpart, effective April 1, 1986, slots may be bought, sold or leased for any consideration and any time period and they may be traded in any combination for slots at the same airport or any other high density traffic airport. Transfers, including leases, shall comply with the following conditions:

(1) Requests for confirmation must be submitted in writing to Slot Administration Office, AGC–230, Office of the Chief Counsel, Federal Aviation Administration, 800 Independence Ave., SW., Washington, DC 20591, in a format to be prescribed by the Administrator. Requests will provide the names of the transferor and recipient; business address and telephone number of the persons representing the transferor and recipient; whether the slot is to be used for an arrival or departure; the date the slot was acquired by the transferor; the section of this subpart under which the slot was allocated to the transferor; whether the slot has been used
by the transferor for international or essential air service operations; and whether the slot will be used by the recipient for international or essential air service operations. After withdrawal priorities have been established under §93.223 of this part, the requests must include the slot designations of the transferred slots as described in §93.223(b)(5).

(2) The slot transferred must come from the transferor's then-current FAA-approved base.

(3) Written evidence of each transferor's consent to the transfer must be provided to the FAA.

(4) The recipient of a transferred slot may not use the slot until written confirmation has been received from the FAA.

(5)(i) Until a slot obtained by a new entrant or limited incumbent carrier in a lottery held under §93.225 after June 1, 1991, has been used by the carrier that obtained it for a continuous 24-month period after the lottery in accordance with §93.227(a), that slot may be transferred only by trade for one or more slots at the same airport or to other new entrant or limited incumbent carriers under §93.221(a)(5)(iii). This transfer restriction shall apply to the same extent to any slot or slots acquired by trading the slot obtained in a lottery. To remove the transfer restriction, documentation of 24 months' continuous use must be submitted to the FAA Office of the Chief Counsel.

(ii) Failure to use a slot acquired by trading a slot obtained in a lottery for a continuous 24-month period after the lottery, shall void all trades involving the lottery slot, which shall be returned to the FAA. All use of the lottery slot shall be counted toward fulfilling the minimum use requirements under §93.227(a) applicable to the slot or slots for which the lottery slot was traded, including subsequent trades.

(iii) Slots obtained by new entrant or limited incumbent carriers in a lottery may be sold, leased, or otherwise transferred to another entrant or limited incumbent carrier after a minimum of 60 days of use by the obtaining carrier. The transfer restrictions of §93.221(a)(5)(i) shall continue to apply to the slot until documentation of 24 months' continuous use has been submitted and the transfer restriction removed.

(6) The Office of the Secretary of Transportation must determine that the transfer will not be injurious to the essential air service program.

(b) A record of each slot transfer shall be kept on file by the office specified in paragraph (a)(1) of this section and will be made available to the public upon request.

(c) Any person may buy or sell slots and any air carrier or commuter may use them. Notwithstanding §93.123, air carrier slots may be used with aircraft of the kind described in §93.123(c)(1) or (c)(2) but commuter slots may only be used with aircraft of the kind described in §93.0123(c)(2).

(d) Air carriers and commuter operators considered to be a single operator under the provisions of §93.213(c) of this subpart but operating under separate names shall report transfers of slots between them.

(e) Notwithstanding §93.123(c)(2) of this part, a commuter slot at O'Hare International Airport may be used with an aircraft described in §93.123(c)(1) of this part on the following conditions:

(1) Air carrier aircraft that may be operated under this paragraph are limited to aircraft:

(i) Having an actual seating configuration of 110 or fewer passengers; and

(ii) Having a maximum certificated takeoff weight of less than 126,000 pounds.

(2) No more than 50 percent of the total number of commuter slots held by a slot holder at O'Hare International Airport may be used with aircraft described in paragraph (e)(1) of this section.

(3) An air carrier or commuter operator planning to operate an aircraft described in paragraph (e)(1) of this section in a commuter slot shall notify ATC at least 75 days in advance of the planned start date. The notice shall include the slot number, proposed time of operation, aircraft type, aircraft series, actual aircraft seating configuration, and planned start date. ATC will approve or disapprove the proposed operation no later than 45 days prior to the planned start date. If an operator does not initiate operation of a commuter slot...
§ 93.223 Slot withdrawal.

(a) Slots do not represent a property right but represent an operating privilege subject to absolute FAA control. Slots may be withdrawn at any time to fulfill the Department’s operational needs, such as providing slots for international or essential air service operations or eliminating slots. Before withdrawing any slots under this section to provide them for international operations, essential air service or other operational needs, those slots returned under §93.224 of this part and those recalled by the agency under §93.227 will be allocated.

(b) Separate slot pools shall be established for air carriers and commuter operators at each airport. The FAA shall assign, by random lottery, withdrawal priority numbers for the recall priority of slots at each airport. Each additional permanent slot, if any, will be assigned the next higher number for air carrier or commuter slots, as appropriate, at each airport. Each slot shall be assigned a designation consisting of the applicable withdrawal priority number; the airport code; a code indicating whether the slot is an air carrier or commuter operator slot; and the time period of the slot. The designation shall also indicate, where applicable, if the slot is daily or for certain days of the week only; is limited to arrivals or departures; is allocated for international operations or for EAS purposes; and, at Kennedy International Airport, is a summer or winter slot.

(c) Whenever slots must be withdrawn, they will be withdrawn in accordance with the priority list established under paragraph (b) of this section, except:

(1) Slots obtained in a lottery held pursuant to §93.225 of this part shall be subject to withdrawal pursuant to paragraph (i) of that section, and

(2) Slots necessary for international and essential air service operations shall be exempt from withdrawal for use for other international or essential air service operations.

(3) Except as provided in §93.227(a), the FAA shall not withdraw slots held at an airport by an air carrier or commuter operator holding and operating 12 or fewer slots at that airport (excluding slots used for operations described in §93.212(a)(1)), if withdrawal would reduce the number of slots held below the number of slots operated.

(4) No slot comprising the guaranteed base of slots, as defined in section 93.318(b), shall be withdrawn for use for international operations or for new entrants.

(d) The following withdrawal priority rule shall be used to permit application of the one-for-one trade provisions for international and essential air service slots and the slot withdrawal provisions where the slots are needed for other than international or essential air service operations. If an operator has more than one slot in a specific time period in which it also has a slot being used for international or essential air service operations, the international and essential air service slots will be considered to be those with the lowest withdrawal priority.

(e) The operator(s) using each slot to be withdrawn shall be notified by the FAA of the withdrawal and shall cease operations using that slot on the date indicated in the notice. Generally, the FAA will provide at least 30 days after notification for the operator to cease operations unless exigencies require a shorter time period.

(f) For 24 months following a lottery held after June 1, 1991, a slot acquired...
in that lottery shall be withdrawn by
the FAA upon the sale, merger, or ac-
quision of more than 50 percent own-
nership or control of the carrier using
that slot or one acquired by trade of
that slot, if the resulting total of slots
held or operated at the airport by the
surviving entity would exceed 12 slots.

(Doc. No. 24105, 50 FR 52195, Dec. 20, 1985, as
amended by Amdt. 93–32, 51 FR 21718, June
13, 1986; Amdt. 93–57, 54 FR 34906, Aug. 22,
1989; Amdt. 93–65, 57 FR 37314, Aug. 18, 1992;
Amdt. 93–78, 64 FR 53565, Oct. 1, 1999)

§ 93.224 Return of slots.

(a) Whenever a slot is required to be
returned under this subpart, the holder
must notify the office specified in
§ 93.221(a)(1) in writing of the date after
which the slot will not be used.

(b) Slots may be voluntarily returned
for use by other operators by notifying
the office specified in § 93.221(a)(1) in
writing.

§ 93.225 Lottery of available slots.

(a) Whenever the FAA determines
that sufficient slots have become avail-
able for distribution for purposes other
than international or essential air
service operations, but generally not
more than twice a year, they shall be
allocated in accordance with the provi-
sions of this section.

(b) A random lottery shall be held to
determine the order of slot selection.

(c) Slot allocation lotteries shall be
held on an airport-by-airport basis
with separate lotteries for air carrier
and commuter operator slots. The slots
to be allocated in each lottery will be
each unallocated slot not necessary for
international or Essential Air Service
Program operations, including any slot
created by an increase in the operating
limits set forth in §93.123(a).

(d) The FAA shall publish a notice in
the FEDERAL REGISTER announcing any
lottery dates. The notice may include
special procedures to be in effect for
the lotteries.

(e) Participation in a lottery is open
to each U.S. air carrier or commuter
operator operating at the airport and
providing scheduled passenger service
at the airport, as well as where pro-
voked for by bilateral agreement. Any
U.S. carrier or foreign air carrier
where provided for by bilateral agree-
ment, that is not operating scheduled
service at the airport and has not
failed to operate slots obtained in the
previous lottery, or slots traded for
those obtained by lottery, but wishes
to initiate scheduled passenger service
at the airport, shall be included in the
lottery if that operator notifies, in
writing, the Slot Administration Of-
Fice, AGC–230, Office of the Chief Coun-
sel, Federal Aviation Administration,
800 Independence Avenue, SW., Wash-
ington, DC 20591. The notification must
be received 15 days prior to the lottery
date and state whether there is any
common ownership or control of, by, or
with any other air carrier or commuter
operator as defined in §93.213(c). New
entrant and limited incumbent carriers
will be permitted to complete their se-
lections before participation by other
incumbent carriers is initiated.

(f) At the lottery, each operator must
make its selection within 5 minutes
after being called or it shall lose its
turn. If capacity still remains after
each operator has had an opportunity
to select slots, the allocation sequence
will be repeated in the same order. An
operator may select any two slots
available at the airport during each se-
quency, except that new entrant car-
rriers may select four slots, if available,
in the first sequence.

(g) To select slots during a slot lot-
tery session, a carrier must have ap-
propriate economic authority for
scheduled passenger service under Title
IV of the Federal Aviation Act of 1958,
as amended (49 U.S.C. App. 1371 et seq.),
and must hold FAA operating author-
ity under part 121 or part 135 of this
chapter as appropriate for the slots the
operator seeks to select.

(h) During the first selection se-
quence, 25 percent of the slots available
but no less than two slots shall be re-
served for selection by new entrant
 carriers. If new entrant carriers do not
select all of the slots set aside for new
entrant carriers, limited incumbent
carriers may select the remaining
slots. If every participating new
entrant carrier and limited incumbent
carrier has ceased selection of avail-
able slots or has obtained 12 slots at
that airport, other incumbent carriers
may participate in selecting the re-
main ing slots; however, slots selected
§ 93.226 Allocation of slots in low-demand periods.

(a) If there are available slots in the following time periods and there are no pending requests for international or EAS operations at these times, FAA will allocate slots upon request on a first-come, first-served basis, as set forth in this section:

(1) Any period for which a slot is available less than 5 days per week.
(2) Any time period for which a slot is available for less than a full season.
(3) For LaGuardia and Washington National Airports:
 (i) 6:00 a.m.–6:59 a.m.
 (ii) 10:00 p.m.–midnight.
(b) Slots will be allocated only to operators with the economic and operating authority and aircraft required to use the slots.
(c) Requests for allocations under this section shall be submitted in writing to the address listed in §93.221(a)(1) and shall identify the request as made under this section.
(d) The FAA may deny requests made under this section after a determination that all remaining slots in a particular category should be distributed by lottery.
(e) Slots may be allocated on a seasonal or temporary basis under this provision.

[Doc. No. 24105, 51 FR 21718, June 13, 1986]

§ 93.227 Slot use and loss.

(a) Except as provided in paragraphs (b), (c), (d), (g), and (l) of this section, any slot not utilized 80 percent of the time over a 2-month period shall be recalled by the FAA.
(b) Paragraph (a) of this section does not apply to slots obtained under §93.225 of this part during:
 (1) The first 90 days after they are allocated to a new entrant carrier; or
 (2) The first 60 days after they are allocated to a limited incumbent or other incumbent carrier.
(c) Paragraph (a) of this section does not apply to slots of an operator forced by a strike to cease operations using those slots.
(d) In the case of a carrier that files for protection under the Federal bankruptcy laws and has not received a Notice of Withdrawal from the FAA for the subject slot or slots, paragraph (a) of this section does not apply:
 (1) During a period after the initial petition in bankruptcy, to any slot held or operated by that carrier, for:
 (i) 60 days after the carrier files the initial petition in bankruptcy; and
 (ii) 30 days after the carrier, in anticipation of transferring slots, submits information to a Federal government agency in connection with a statutory antitrust, economic impact, or similar review of the transfer, provided that the information is submitted more than 30 days after filing the initial petition in bankruptcy, and provided further that any slot to be transferred has not become subject to withdrawal under any other provision of this §93.227; and
 (2) During a period after a carrier ceases operations at an airport, to any slot held or operated by that carrier at that airport, for:
 (i) 30 days after the carrier ceases operations at that airport, provided that the slot has not become subject to withdrawal under any other provision of this §93.227; and
 (ii) 30 days after the parties to a proposed transfer of any such slot comply with requests for additional information by a Federal government agency in connection with an antitrust, economic impact, or similar investigation of the transfer, provided that—
 (A) The original notice of the transfer is filed with the Federal agency within 30 days after the carrier ceases operation at the airport;
(B) The request for additional information is made within 10 days of the filing of the notice by the carrier;
(C) The carrier submits the additional information to the Federal agency within 15 days of the request by such agency; and
(D) Any slot to be transferred has not become subject to withdrawal under any other provision of this §93.227.

(e) Persons having slots withdrawn pursuant to paragraph (a) of this section must cease all use of those slots upon receipt of notice from the FAA.

(f) Persons holding slots but not using them pursuant to the provisions of paragraphs (b), (c) and (d) may lease those slots for use by others. A slot obtained in a lottery may not be leased after the expiration of the applicable time period specified in paragraph (b) of this section unless it has been operated for a 2-month period at least 65 percent of the time by the operator which obtained it in the lottery.

(g) This section does not apply to slots used for the operations described in §93.217(a)(1) except that a U.S. air carrier or commuter operator required to file a report under paragraph (i) of this section shall include all slots operated at the airport, including slots described in §93.217(a)(1).

(h) Within 30 days after an operator files for protection under the Federal bankruptcy laws, the FAA shall recall any slots of that operator, if—(1) the slots were formerly used for essential air service and (2) the Office of the Secretary of Transportation determines those slots are required to provide substitute essential air service to or from the same points.

(i) Every air carrier and commuter operator or other person holding a slot at a high density airport shall, within 14 days after the last day of the 2-month period beginning January 1, 1986, and every 2 months thereafter, forward, in writing, to the address identified in §93.221(a)(1), a list of all slots held by the air carrier, commuter operator or other person along with a listing of which air carrier or commuter operator actually operated the slot for each day of the 2-month period. The report shall identify the flight number on which the slot was used and the equipment used, and shall identify the flight as an arrival or departure. The report shall identify any common ownership or control of, by, or with any other carrier as defined in §93.213(c) of this subpart. The report shall be signed by a senior official of the air carrier or commuter operator. If the slot is held by an “other person,” the report must be signed by an official representative.

(j) The Chief Counsel of the FAA may waive the requirements of paragraph (a) of this section in the event of a highly unusual and unpredictable condition which is beyond the control of the slot-holder and which exists for a period of 9 or more days. Examples of conditions which could justify waiver under this paragraph are weather conditions which result in the restricted operation of an airport for an extended period of time or the grounding of an aircraft type.

(k) The Chief Counsel of the FAA may, upon request, grant a waiver from the requirements of paragraph (a) of this section for a slot used for the domestic segment of an intercontinental all-cargo flight. To qualify for a waiver, a carrier must operate the slot a substantial percentage of the time and must return the slot to the FAA in advance for the time periods it will not be used.

(l) The FAA will treat as used any slot held by a carrier at a High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period from December 24 through the first Saturday in January.

§ 93.251 Applicability.

This subpart prescribes rules applicable to the operation of aircraft to or from Ronald Reagan Washington National Airport.
§ 93.253 Nonstop operations.

No person may operate an aircraft nonstop in air transportation between Ronald Reagan Washington National Airport and another airport that is more than 1,250 miles away from Ronald Reagan Washington National Airport.

Subpart U—Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ

SOURCE: Doc. No. 28537, 61 FR 69330, Dec. 31, 1996, unless otherwise noted.

§ 93.301 Applicability.

This subpart prescribes special operating rules for all persons operating aircraft in the following airspace, designated as the Grand Canyon National Park Special Flight Rules Area: That airspace extending from the surface up to but not including 18,000 feet MSL within an area bounded by a line beginning at Lat. 35°55′12″ N., Long. 112°04′05″ W.; east to Lat. 35°55′30″ N., Long. 111°45′00″ W.; to Lat. 35°56′02″ N., Long. 111°36′03″ W.; north to Lat. 36°15′30″ N., Long. 111°36′06″ W.; to Lat. 36°24′49″ N., Long. 111°47′45″ W.; to Lat. 36°52′23″ N., Long. 111°33′10″ W.; west-northwest to Lat. 36°53′37″ N., Long. 111°38′29″ W.; southwest to Lat. 36°35′02″ N., Long. 111°53′28″ W.; to Lat. 36°21′30″ N., Long. 112°00′03″ W.; west-northwest to Lat. 36°30′30″ N., Long. 112°35′59″ W.; southwest to Lat. 36°24′46″ N., Long. 112°51′10″ W.; thence west along the boundary of Grand Canyon National Park (GCNP) to Lat. 36°14′08″ N., Long. 113°10′07″ W.; west-southwest to Lat. 36°09′30″ N., Long. 114°03′03″ W.; southeast to Lat. 36°05′11″ N., Long. 113°58′46″ W.; thence south along the boundary of GCNP to Lat. 35°58′23″ N., Long. 113°54′14″ W.; north to Lat. 36°00′10″ N., Long. 113°53′48″ W.; northeast to Lat. 36°02′14″ N., Long. 113°56′16″ W.; to Lat. 36°02′17″ N., Long. 113°53′48″ W.; northeast to Lat. 36°02′14″ N., Long. 113°56′16″ W.; to Lat. 36°02′17″ N., Long. 113°49′11″ W.; southeast to Lat. 36°01′22″ N., Long. 113°48′21″ W.; to Lat. 35°59′15″ N., Long. 113°47′13″ W.; to Lat. 35°57′51″ N., Long. 113°46′01″ W.; to Lat. 35°57′45″ N., Long. 113°46′23″ W.; southwest to Lat. 35°54′48″ N., Long. 113°50′24″ W.; southeast to Lat. 35°41′01″ N., Long. 113°35′27″ W.; thence clockwise via the 4.2-nautical mile radius of the Peach Springs VORTAC to Lat. 36°38′53″ N., Long. 113°27′49″ W.; northeast to Lat. 35°42′58″ N., Long. 113°10′57″ W.; north to Lat. 35°57′51″ N., Long. 113°11′06″ W.; east to Lat. 35°57′44″ N., Long. 112°14′04″ W.; thence clockwise via the 4.3-nautical mile radius of the Grand Canyon National Park Airport reference point (Lat. 35°57′08″ N., Long. 112°08′49″ W.) to the point of origin.

[Doc. No. 5926, 65 FR 17742, Apr. 4, 2000]

§ 93.303 Definitions.

For the purposes of this subpart:

Allocation means authorization to conduct a commercial air tour in the Grand Canyon National Park (GCNP) Special Flight Rules Area (SFRA).

Commercial air tour means any flight conducted for compensation or hire in a powered aircraft where a purpose of the flight is sightseeing. If the operator of a flight asserts that the flight is not a commercial air tour, factors that can be considered by the Administrator in making a determination of whether the flight is a commercial air tour include, but are not limited to:

(1) Whether there was a holding out to the public of willingness to conduct a sightseeing flight for compensation or hire;

(2) Whether a narrative was provided that referred to areas or points of interest on the surface;

(3) The area of operation;

(4) The frequency of flights;

(5) The route of flight;

(6) The inclusion of sightseeing flights as part of any travel arrangement package; or

(7) Whether the flight in question would or would not have been canceled based on poor visibility of the surface.

Commercial Special Flight Rules Area Operation means any portion of any flight within the Grand Canyon National Park Special Flight Rules Area that is conducted by a certificate holder that has operations specifications authorizing flights within the Grand Canyon National Park Special Flight Rules Area. This term does not include operations conducted under an FAA Form 7711-1, Certificate of Waiver or
Authorization. The types of flights covered by this definition are set forth in the “Las Vegas Flight Standards District Office Grand Canyon National Park Special Flight Rules Area Procedures Manual” which is available from the Las Vegas Flight Standards District Office.

Flight Standards District Office means the FAA Flight Standards District Office with jurisdiction for the geographical area containing the Grand Canyon.

GCNP quiet aircraft technology designation means an aircraft that is subject to §93.301 and has been shown to comply with the noise limit specified in appendix A of this part.

Number of passenger seats means the number of passenger seats for which an individual aircraft is configured.

Park means Grand Canyon National Park.

Special Flight Rules Area means the Grand Canyon National Park Special Flight Rules Area.

§93.305 Flight-free zones and flight corridors.

Except in an emergency or if otherwise necessary for safety of flight, or unless otherwise authorized by the Flight Standards District Office for a purpose listed in 93.309, no person may operate an aircraft in the Special Flight Rules Area within the following flight-free zones:

(a) Desert View Flight-free Zone. That airspace extending from the surface up to but not including 14,500 feet MSL within an area bounded by a line beginning at Lat. 35°59′58″ N., Long. 111°52′47″ W.; thence east to Lat. 36°00′00″ N., Long. 111°51′04″ W.; thence north to 36°00′24″ N., Long. 111°51′04″ W.; thence east to 36°00′24″ N., Long. 111°45′44″ W.; thence north along the GCNP boundary to Lat. 36°14′05″ N., Long. 111°48′34″ W.; thence southwest to Lat. 36°12′36″ N., Long. 111°51′14″ W.; to the point of origin; but not including the airspace at and above 10,500 feet MSL within 1 nautical mile of the western boundary of the zone. The corridor to the west between the Desert View and Bright Angel Flight-free Zones, is designated the “Zuni Point Corridor.” This corridor is 2 nautical miles wide for commercial air tour flights and 4 nautical miles wide for transient and general aviation operations.

(b) Bright Angel Flight-free Zone. That airspace extending from the surface up to but not including 14,500 feet MSL within an area bounded by a line beginning at Lat. 35°58′39″ N., Long. 111°55′43″ W.; north to Lat. 36°12′41″ N., Long. 111°53′34″ W.; northwest to Lat. 36°18′18″ N., Long. 111°58′15″ W.; thence west along the GCNP boundary to Lat. 36°20′11″ N., Long. 112°06′25″ W.; southwest to Lat. 36°09′31″ N., Long. 112°11′15″ W.; to Lat. 36°04′16″ N., Long. 112°17′20″ W.; thence southeast along the GCNP boundary to Lat. 36°01′54″ N., Long. 112°11′24″ W.; thence clockwise via the 4.3-nautical mile radius of the Grand Canyon National Park Airport reference point (Lat. 35°57′08″ N., Long. 112°08′49″ W.) to Lat. 35°59′37″ N., Long. 112°04′29″ W.; thence east along the GCNP boundary to the point of origin; but not including the airspace at and above 10,500 feet MSL within 1 nautical mile of the eastern boundary or the airspace at and above 10,500 feet MSL within 2 nautical miles of the northwestern boundary. The corridor to the east, between this flight-free zone and the Desert View Flight-free Zone, is designated the “Zuni Point Corridor.” The corridor to the west, between the Bright Angel and Toroweap/Shinumo Flight-free Zones, is designated the “Dragon Corridor.” This corridor is 2 nautical miles wide for commercial air tour flights and 4 nautical miles wide for transient and general aviation operations. The Bright Angel Flight-free Zone does not include the following airspace designated as the Bright Angel Corridor: That airspace one-half nautical mile on either side of a line extending from Lat. 36°14′57″ N., Long. 112°08′45″ W. and Lat. 36°15′01″ N., Long. 111°55′39″ W.

(c) Toroweap/Shinumo Flight-free Zone. That airspace extending from the surface up to but not including 14,500 feet MSL within an area bounded by a line beginning at Lat. 36°05′44″ N., Long. 112°19′27″ W.; north-northeast to Lat. 36°10′49″ N., Long. 112°13′19″ W.; to Lat. 36°21′02″ N., Long. 112°08′47″ W.; thence west and south along the GCNP boundary to Lat. 36°10′58″ N., Long. 113°08′35″.
§ 93.307 Minimum flight altitudes.

Except in an emergency, or if otherwise necessary for safety of flight, or unless otherwise authorized by the Flight Standards District Office for a purpose listed in 93.309, no person may operate an aircraft in the Special Flight Rules Area at an altitude lower than the following:

(a) Minimum sector altitudes—

(1) Commercial air tours—

(i) Marble Canyon Sector. Lees Ferry to Boundary Ridge: 6,000 feet MSL.

(ii) Supai Sector. Boundary Ridge to Supai Point: 7,500 feet MSL.

(iii) Diamond Creek Sector. Supai Point to Diamond Creek: 6,500 feet MSL.

(iv) Pearce Ferry Sector. Diamond Creek to the Grand Wash Cliffs: 5,000 feet MSL.

(b) Minimum corridor altitudes—

(1) Marble Canyon Sector. Lees Ferry to Boundary Ridge: 8,000 feet MSL.

(ii) Supai Sector. Boundary Ridge to Supai Point: 10,000 feet MSL.

(iii) Diamond Creek Sector. Supai Point to Diamond Creek: 9,000 feet MSL.

(iv) Pearce Ferry Sector. Diamond Creek to the Grand Wash Cliffs: 8,000 feet MSL.

(2) Transient and general aviation operations—

(i) Marble Canyon Sector. Lees Ferry to Boundary Ridge: 8,000 feet MSL.

(ii) Supai Sector. Boundary Ridge to Supai Point: 10,000 feet MSL.

(iii) Diamond Creek Sector. Supai Point to Diamond Creek: 9,000 feet MSL.

(iv) Pearce Ferry Sector. Diamond Creek to the Grand Wash Cliffs: 8,000 feet MSL.

§ 93.309 General operating procedures.

Except in an emergency, no person may operate an aircraft in the Special Flight Rules Area unless the operation is conducted in accordance with the following procedures. (Note: The following procedures do not relieve the pilot from see-and-avoid responsibility or compliance with the minimum safe altitude requirements specified in § 91.119 of this chapter.)

(a) Unless necessary to maintain a safe distance from other aircraft or terrain, remain clear of the flight-free zones described in § 93.305;

(b) Unless necessary to maintain a safe distance from other aircraft or terrain, proceed through the Zuni Point, Dragon, Tuckup, and Fossil Canyon Flight Corridors described in § 93.305 at 8,000 feet MSL.

§ 93.319 Commercial air tour limitations.

(a) Unless excepted under paragraph (f) or (g) of this section, no certificate holder certificated in accordance with part 119 for part 121 or 135 operations may conduct more commercial air tours in the Grand Canyon National Park in any calendar year than the number of allocations specified on the
§ 93.321 Transfer and termination of allocations.

(a) Allocations are not a property interest; they are an operating privilege subject to absolute FAA control.

(b) Allocations are subject to the following conditions:

(1) The Administrator will re-authorize and re-distribute allocations no earlier than two years from the effective date of this rule.

(2) Allocations that are held by the FAA at the time of reallocation may be distributed among remaining certificate holders, proportionate to the size of each certificate holder’s allocation.

(3) The aggregate SFRA allocations will not exceed the number of operations reported to the FAA for the base year beginning on May 1, 1997 and ending on April 30, 1998, except as adjusted to incorporate operations occurring for the base year of April 1, 2000 and ending on March 31, 2001, that operate at or above 14,500 feet MSL and below 18,000 feet MSL and operations in the area affected by the eastward shift of the SFRA bounded by longitude line 111 degrees 42 minutes east to longitude line 111 degrees 36 minutes east.

(4) Allocations may be transferred among Part 135 or Part 121 certificate holders, subject to all of the following:

(i) Such transactions are subject to all other applicable requirements of this chapter.

(ii) Allocations authorizing commercial air tours outside the Dragon and Zuni Point corridor.
Zuni Point corridors may not be transferred into the Dragon and Zuni Point corridors. Allocations authorizing commercial air tours within the Dragon and Zuni Point corridors may be transferred outside of the Dragon and Zuni Point corridors.

(iii) A certificate holder must notify in writing the Las Vegas Flight Standards District Office within 10 calendar days of a transfer of allocations. This notification must identify the parties involved, the type of transfer (permanent or temporary) and the number of allocations transferred. Permanent transfers are not effective until the Flight Standards District Office reissues the operations specifications reflecting the transfer. Temporary transfers are effective upon notification.

(5) An allocation will revert to the FAA upon voluntary cessation of commercial air tours within the SFRA for any consecutive 180-day period unless the certificate holder notifies the FSDO in writing, prior to the expiration of the 180-day time period, of the following: the reason why the certificate holder has not conducted any commercial air tours during the consecutive 180-day period; and the date the certificate holder intends on resuming commercial air tours operations. The FSDO will notify the certificate holder of any extension to the consecutive 180-days. A certificate holder may be granted one extension.

§ 93.325 Quarterly reporting.

(a) Each certificate holder must submit in writing, within 30 days of the end of each calendar quarter, the total number of commercial SFRA operations conducted for that quarter. Quarterly reports must be filed with the Las Vegas Flight Standards District Office.

(b) Each quarterly report must contain the following information:

(1) Make and model of aircraft;
(2) Identification number (registration number) for each aircraft;
(3) Departure airport for each segment flown;
(4) Departure date and actual Universal Coordinated Time, as applicable for each segment flown;
(5) Type of operation; and
(6) Route(s) flown.

(iv) Aviation safety.

[65 FR 17733, Apr. 4, 2000]

§ 93.323 Flight plans.

Each certificate holder conducting a commercial SFRA operation must file a visual flight rules (VFR) flight plan in accordance with §91.153. This section does not apply to operations conducted in accordance with §93.309(g). The flight plan must be on file with a FAA Flight Service Station prior to each flight. Each VFR flight plan must identify the purpose of the flight in the “remarks” section according to one of the types set forth in the “Las Vegas Flight Standards District Office Grand Canyon National Park Special Flight Rules Area Procedures Manual” which is available from the Las Vegas Flight Standards District Office.

§ 93.325 Quarterly reporting.

(a) Each certificate holder must submit in writing, within 30 days of the end of each calendar quarter, the total number of commercial SFRA operations conducted for that quarter. Quarterly reports must be filed with the Las Vegas Flight Standards District Office.

(b) Each quarterly report must contain the following information:

(1) Make and model of aircraft;
(2) Identification number (registration number) for each aircraft;
(3) Departure airport for each segment flown;
(4) Departure date and actual Universal Coordinated Time, as applicable for each segment flown;
(5) Type of operation; and
(6) Route(s) flown.

[65 FR 17733, Apr. 4, 2000]
APPENDIX A TO SUBPART U OF PART 93—GCNP QUIET AIRCRAFT TECHNOLOGY DESIGNATION

This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to §93.301 determined during the noise certification process as prescribed under part 36 of this chapter. Where no certificated noise level is available, the Administrator may approve an alternative measurement procedure.

Aircraft Noise Limit for GCNP Quiet Aircraft Technology Designation

876
A. For helicopters with a flyover noise level obtained in accordance with the measurement procedures prescribed in Appendix H of 14 CFR part 36, the limit is 88 dB for helicopters having a seating configuration of two or fewer passenger seats, increasing at 3 dB per doubling of the number of passenger seats for helicopters having a seating configuration of three or more passenger seats. The noise limit for helicopters with three or more passenger seats can be calculated by the formula:

$$EL_{NL}(H) = 88 + 10 \log(\# \text{ PAX seats} / 2) \text{ dB}$$

B. For helicopters with a flyover noise level obtained in accordance with the measurement procedures prescribed in Appendix J of 14 CFR part 36, the limit is 77 dB for helicopters having a seating configuration of two or fewer passenger seats, increasing at 3 dB per doubling of the number of passenger seats for helicopters having a seating configuration of three or more passenger seats. The noise limit for helicopters with three or more passenger seats can be calculated by the formula:

$$EL_{NL}(H) = 77 + 10 \log(\# \text{ PAX seats} / 2) \text{ dB}$$

C. For propeller-driven airplanes with a measured flyover noise level obtained in accordance with the measurement procedures prescribed in Appendix F of 14 CFR part 36 without the performance correction defined in Sec. P35.201(c), the limit is 69 dB for airplanes having a seating configuration of two or fewer passenger seats, increasing at 3 dB per doubling of the number of passenger seats for airplanes having a seating configuration of three or more passenger seats. The noise limit for propeller-driven airplanes with three or more passenger seats can be calculated by the formula:

$$SEL(J) = 71 + 10 \log(\# \text{ PAX seats} / 2) \text{ dB}$$

D. In the event that a flyover noise level is not available in accordance with Appendix F of 14 CFR part 36, the noise limit for propeller-driven airplanes with a takeoff noise level obtained in accordance with the measurement procedures prescribed in Appendix G is 74 dB or 77 dB, depending on 14 CFR part 36 amendment level, for airplanes having a seating configuration of two or fewer passenger seats, increasing at 3 dB per doubling of the number of passenger seats for airplanes having a seating configuration of three or more passenger seats. The noise limit for propeller-driven airplanes with three or more passenger seats can be calculated by the formula:

$$L_{A} \max(G) = 74 + 10 \log(\# \text{ PAX seats} / 2) \text{ dB for certifications obtained under 14 CFR part 36, Amendment 21 or earlier;}$$
$$L_{A} \max(G) = 77 + 10 \log(\# \text{ PAX seats} / 2) \text{ dB for certifications obtained under 14 CFR part 36, Amendment 22 or later.}$$

Federal Aviation Administration, DOT

§ 93.335

Subpart V—Washington, DC Metropolitan Area Special Flight Rules Area

§ 93.331 Purpose and applicability of this subpart.

This subpart prescribes special air traffic rules for aircraft operating in the Washington, DC Metropolitan Area. Because identification and control of aircraft is required for reasons of national security, the areas described in this subpart constitute national defense airspace. The purpose of establishing this area is to facilitate the tracking of, and communication with, aircraft to deter persons who would use an aircraft as a weapon, or as a means of delivering weapons, to conduct an attack on persons, property, or buildings in the area. This subpart applies to pilots conducting any type of flight operations in the airspace designated as the Washington, DC Metropolitan Area Special Flight Rules Area (DC SFRA) (as defined in §93.335), which includes the airspace designated as the Washington, DC Metropolitan Area Flight Restricted Zone (DC FRZ) (as defined in §93.335).

§ 93.333 Failure to comply with this subpart.

(a) Any violation. The FAA may take civil enforcement action against a pilot for violations, whether inadvertent or intentional, including imposition of civil penalties and suspension or revocation of airmen’s certificates.

(b) Knowing or willful violations. The DC FRZ and DC SFRA were established for reasons of national security under the provisions of 49 U.S.C. 40103(b)(2). Areas established by the FAA under that authority constitute "national defense airspace" as that term is used in 49 U.S.C. 46307. In addition to being subject to the provisions of paragraph (a) of this section, persons who knowingly or willfully violate national defense airspace established pursuant to 49 U.S.C. 40103(b)(3) may be subject to criminal prosecution.

§ 93.335 Definitions.

For purposes of this subpart—
DC FRZ flight plan is a flight plan filed for the sole purpose of complying with the requirements for VFR operations into, out of, and through the DC FRZ. This flight plan is separate and distinct from a standard VFR flight plan, and does not include search and rescue services.

DC SFRA flight plan is a flight plan filed for the sole purpose of complying with the requirements for VFR operations into, out of, and through the DC SFRA. This flight plan is separate and distinct from a standard VFR flight plan, and does not include search and rescue services.

Fringe airports are the following airports located near the outer boundary of the Washington, DC Metropolitan Area Special Flight Rules Area: Barnes (MD47), Flying M Farms (MD77), Mountain Road (MD48), Robinson (MD14), and Skyview (51VA).

Washington, DC Metropolitan Area Flight Restricted Zone (DC FRZ) is an area bounded by a line beginning at the Washington VOR/DME (DCA) 311° radial at 15 nautical miles (NM) (Lat. 38°59'31" N., Long. 077°18'30" W.); then clockwise along the DCA 15 nautical mile arc to the DCA 002° radial at 15 NM (Lat. 39°06'28" N., Long. 077°04'32" W.); then southeast via a line drawn to the DCA 049° radial at 14 NM (Lat. 39°02'18" N., Long. 076°50'38" W.); thence south via a line drawn to the DCA 064° radial at 13 NM (Lat. 38°59'01" N., Long. 076°48'32" W.); thence clockwise along the 13 NM arc to the DCA 276° radial at 13 NM (Lat. 38°50'33" N., Long. 077°18'46" W.); thence north to the point of beginning; excluding the airspace within a one nautical mile radius of the Freeway Airport, W00, Mitchellville, MD from the surface up to but not including flight level (FL) 180. The DC FRZ is within and part of the Washington, DC Metropolitan Area SFRA.

Washington, DC Metropolitan Area Special Flight Rules Area (DC SFRA) is an area of airspace over the surface of the earth where the ready identification, location, and control of aircraft is required in the interests of national security. Specifically, the DC SFRA is that airspace, from the surface to, but not including, FL 180, within a 30-mile radius of Lat. 38°51'34" N., Long. 077°02'11" W., or the DCA VOR/DME.

The DC SFRA includes the DC FRZ.

§ 93.337 Requirements for operating in the DC SFRA.

A pilot conducting any type of flight operation in the DC SFRA must comply with the restrictions listed in this subpart and all special instructions issued by the FAA in the interest of national security. Those special instructions may be issued in any manner the FAA considers appropriate, including a NOTAM. Additionally, a pilot must comply with all of the applicable requirements of this chapter.

§ 93.339 Requirements for operating in the DC SFRA, including the DC FRZ.

(a) Except as provided in paragraphs (b) and (c) of this section and in §93.345, or unless authorized by Air Traffic Control, no pilot may operate an aircraft, including an ultralight vehicle or any civil aircraft or public aircraft, in the DC SFRA, including the DC FRZ, unless—

(1) The aircraft is equipped with an operable two-way radio capable of communicating with Air Traffic Control on appropriate radio frequencies;

(2) Before operating an aircraft in the DC SFRA, including the DC FRZ, the pilot establishes two-way radio communications with the appropriate Air Traffic Control facility and maintains such communications while operating the aircraft in the DC SFRA, including the DC FRZ;

(3) The aircraft is equipped with an operating automatic altitude reporting transponder;

(4) Before operating an aircraft in the DC SFRA, including the DC FRZ, the pilot obtains and transmits a discrete transponder code from Air Traffic Control, and the aircraft’s transponder continues to transmit the assigned code while operating within the DC SFRA;

(5) For VFR operations, the pilot must file and activate a DC FRZ or DC SFRA flight plan by obtaining a discrete transponder code. The flight plan is closed upon landing at an airport.
within the DC SFRA or when the aircraft exits the DC SFRA;
(6) Before operating the aircraft into, out of, or through the Washington, DC Tri-Area Class B Airspace Area, the pilot receives a specific Air Traffic Control clearance to operate in the Class B airspace area; and
(7) Before operating the aircraft into, out of, or through Class D airspace area that is within the DC SFRA, the pilot complies with §91.129 of this chapter.

(b) Paragraph (a)(5) of this section does not apply to operators of Department of Defense aircraft, law enforcement operations, or lifeguard or air ambulance operations under an FAA/TSA airspace authorization, if the flight crew is in contact with Air Traffic Control and is transmitting an Air Traffic Control-assigned discrete transponder code.

(c) When operating an aircraft in the VFR traffic pattern at an airport within the DC SFRA (but not within the DC FRZ) that does not have an airport traffic control tower, a pilot must—
(1) File a DC SFRA flight plan for traffic pattern work;
(2) Communicate traffic pattern position via the published Common Traffic Advisory Frequency (CTAF);
(3) Monitor VHF frequency 121.5 or UHF frequency 243.0, if the aircraft is suitably equipped;
(4) Obtain and transmit the Air Traffic Control-assigned discrete transponder code; and
(5) When exiting the VFR traffic pattern, comply with paragraphs (a)(1) through (a)(7) of this section.

d) When operating an aircraft in the VFR traffic pattern at an airport within the DC SFRA (but not within the DC FRZ) that has an operating airport traffic control tower, a pilot must—
(1) Before departure or before entering the traffic pattern, request to remain in the traffic pattern;
(2) Remain in two-way radio communications with the tower. If the aircraft is suitably equipped, the pilot must also monitor VHF frequency 121.5 or UHF frequency 243.0;
(3) Continuously operate the aircraft transponder on code 1234 unless Air Traffic Control assigns a different code; and
(4) Before exiting the traffic pattern, comply with paragraphs (a)(1) through (a)(7) of this section.

(e) Pilots must transmit the assigned transponder code. No pilot may use transponder code 1200 while in the DC SFRA.

§93.341 Aircraft operations in the DC FRZ.

(a) Except as provided in paragraph (b) of this section, no pilot may conduct any flight operation under part 91, 101, 103, 105, 125, 133, 135, or 137 of this chapter in the DC FRZ, unless the specific flight is operating under an FAA/TSA authorization.

(b) Department of Defense (DOD) operations, law enforcement operations, and lifeguard or air ambulance operations under an FAA/TSA airspace authorization are excepted from the prohibition in paragraph (a) of this section if the pilot is in contact with Air Traffic Control and operates the aircraft transponder on an Air Traffic Control-assigned beacon code.

c) The following aircraft operations are permitted in the DC FRZ:
(1) Aircraft operations under the DCA Access Standard Security Program (DASSP) (49 CFR part 1562) with a Transportation Security Administration (TSA) flight authorization.
(2) Law enforcement and other U.S. Federal aircraft operations with prior FAA approval.
(3) Foreign-operated military and state aircraft operations with a State Department-authorized diplomatic clearance, with State Department notification to the FAA and TSA.
(4) Federal, State, Federal DOD contract, local government agency aircraft operations and part 121, 129 or 135 air carrier flights with TSA-approved full aircraft operator standard security programs/procedures, if operating with DOD permission and notification to the FAA and the National Capital Regional Coordination Center (NCRCC). These flights may land and depart Andrews Air Force Base, MD, with prior permission, if required.
(5) Aircraft operations maintaining radio contact with Air Traffic Control and continuously transmitting an Air Traffic Control-assigned discrete transponder code. The pilot must monitor
§ 93.343 Requirements for aircraft operations to or from College Park Airport, Potomac Airfield, or Washington Executive/Hyde Field Airport.

(a) A pilot may not operate an aircraft to or from College Park Airport, MD, Potomac Airfield, MD, or Washington Executive/Hyde Field Airport, MD unless—

(1) The aircraft and its crew and passengers comply with security rules issued by the TSA in 49 CFR part 1562, subpart A;

(2) Before departing, the pilot files an IFR or DC FRZ or DC SFRA flight plan with the Washington Hub Flight Service Station (FSS) for each departure and arrival from/to College Park, Potomac Airfield, and Washington Executive/Hyde Field airports, whether or not the aircraft makes an intermediate stop;

(3) When filing a flight plan with the Washington Hub FSS, the pilot identifies himself or herself by providing the assigned pilot identification code. The Washington Hub FSS will accept the flight plan only after verifying the code; and

(4) The pilot complies with the applicable IFR or VFR egress procedures in paragraph (b), (c) or (d) of this section.

(b) If using IFR procedures, a pilot must—

(1) Obtain an Air Traffic Control clearance from the Potomac TRACON; and

(2) Comply with Air Traffic Control departure instructions from Washington Executive/Hyde Field, Potomac Airport, or College Park Airport. The pilot must then proceed on the Air

Traffic Control-assigned course and remain clear of the DC FRZ.

(c) If using VFR egress procedures, a pilot must—

(1) Depart as instructed by Air Traffic Control and expect a heading directly out of the DC FRZ until the pilot establishes two-way radio communications with Potomac Approach; and

(2) Operate as assigned by Air Traffic Control until clear of the DC FRZ, the DC SFRA, and the Class B or Class D airspace area.

(d) If using VFR ingress procedures, the aircraft must remain outside the DC SFRA until the pilot establishes communications with Air Traffic Control and receives authorization for the aircraft to enter the DC SFRA.

(e) VFR arrivals:

(1) If landing at College Park Airport a pilot may receive routing via the vicinity of Freeway Airport; or

(2) If landing at Washington Executive/Hyde Field or Potomac Airport, the pilot may receive routing via the vicinity of Maryland Airport or the Nottingham VORTAC.

§ 93.345 VFR outbound procedures for fringe airports.

(a) A pilot may depart from a fringe airport as defined in §93.335 without filing a flight plan or communicating with Air Traffic Control, unless requested, provided:

(1) The aircraft’s transponder transmits code 1205;

(2) The pilot exits the DC SFRA by the most direct route before proceeding on course; and

(3) The pilot monitors VHF frequency 121.5 or UHF frequency 243.0.

(b) No pilot may operate an aircraft arriving at a fringe airport or transit the DC SFRA unless that pilot complies with the DC SFRA operating procedures in this subpart.

Subpart W—New York Class B Airspace Hudson River and East River Exclusion Special Flight Rules Area

SOURCE: 74 FR 59910, Nov. 19, 2009, unless otherwise noted.
§ 93.350 Definitions.

For the purposes of this subpart only the following definitions apply:

(a) Local operation. Any aircraft within the Hudson River Exclusion that is conducting an operation other than as described in paragraph (b) of this section. Local operations include but are not limited to operations for sightseeing, electronic news gathering, and law enforcement.

(b) Transient operation. Aircraft transiting the entire length of the Hudson River Class B Exclusion, as defined in paragraph (d) of this section, from one end to the other.

(c) New York Class B airspace East River Exclusion is that airspace below 1,500 feet MSL between the east and west banks of, and overlying, the East River, beginning at lat. 40°38′39″N., long. 74°02′03″W., thence north along a line drawn direct to the southwestern tip of Governors Island, thence north along a line direct to the southwest tip of Manhattan Island, thence north along the west bank of the East River to the LGA VOR/DME 6-mile arc, thence counterclockwise along the 6-mile arc to the east bank of the East River, thence south along the east bank of the East River to the point of beginning at lat. 40°38′39″N., long. 74°02′03″W.; and that airspace 1,100 feet MSL and below between the east and west banks of, and overlying the East River, from the LGA VOR/DME 6-mile arc to the north tip of Roosevelt Island.

(d) New York Class B airspace Hudson River Exclusion is that area from the surface up to but not including the overlying floor of the New York Class B airspace area, between the east and west banks of, and overlying, the Hudson River within the area beginning north of LaGuardia Airport on the west bank of the Hudson River at lat. 40°57′45″N., long. 73°54′48″W., thence south along the west bank of the Hudson River to intersect the Colts Neck VOR/DME 012° radial, thence southwest along the Colts Neck 012° radial to the Hudson River shoreline, thence south along the shoreline to the Verrazano-Narrows Bridge, thence east along the Bridge to the east bank of the Hudson River, thence north along the east bank of the Hudson River to lat. 40°38′39″N., long. 74°02′03″W., thence north along a line drawn direct to the southwesternmost point of Governors Island, thence north along a line drawn direct to the southwest tip of Manhattan Island, thence north along the east bank of the Hudson River to the LGA VOR/DME 11-mile arc, north of LaGuardia Airport, thence counterclockwise along the 11-mile arc to lat. 40°57′54″N., long. 73°54′23″W., thence to the point of beginning.

§ 93.351 General requirements for operating in the East River and/or Hudson River Exclusions.

Pilots must adhere to the following requirements:

(a) Maintain an indicated airspeed not to exceed 140 knots.

(b) Anti-collision lights and aircraft position/navigation lights shall be on, if equipped. Use of landing lights is recommended.

(c) Self announce position on the appropriate radio frequency for the East River or Hudson River as depicted on the New York VFR Terminal Area Chart (TAC) and/or New York Helicopter Route Chart.

(d) Have a current New York TAC chart and/or New York Helicopter Route Chart in the aircraft and be familiar with the information contained therein.

§ 93.352 Hudson River Exclusion specific operating procedures.

In addition to the requirements in §93.351, the following procedures apply:

(a) Pilots must self announce, at the charted mandatory reporting points, the following information: aircraft type, current position, direction of flight, and altitude.

(b) Pilots must fly along the west shoreline of the Hudson River when southbound, and along the east shoreline of the Hudson River when northbound, while remaining within the boundaries of the Hudson River Exclusion as defined in §93.350(d).

(c) Aircraft transiting the area within the Hudson River Exclusion in accordance with §93.350(b) must transit the Hudson River Exclusion at or above an altitude of 1,000 feet MSL up to, but not including, the floor of the overlying Class B airspace.
§ 93.353 East River Exclusion specific operating procedures.

No person may operate an airplane in the East River Exclusion extending from the southwestern tip of Governors Island to the north tip of Roosevelt Island except:

(a) Seaplanes landing on or taking off from the river; or
(b) Airplanes authorized by ATC. Pilots must contact LaGuardia Airport Traffic Control Tower prior to Governors Island for authorization.

PART 95—IFR ALTITUDES

SPECIAL FEDERAL AVIATION REGULATION No. 97 [NOTE]

Subpart A—General
Sec.
95.1 Applicability.
95.3 Symbols.

Subpart B—Designated Mountainous Areas
95.11 General.
95.13 Eastern United States Mountainous Area.
95.15 Western United States Mountainous Area.
95.17 Alaska Mountainous Area.
95.19 Hawaii Mountainous Area.
95.21 Puerto Rico Mountainous Area.

Subpart C—En Route IFR Altitudes Over Particular Routes and Intersections
95.31 General.

Subpart D—Changeover Points
95.8001 General.

Authority: 49 U.S.C. 106(g), 40103, 40113, and 14 CFR 11.49(b)(2).

SPECIAL FEDERAL AVIATION REGULATION No. 97

Editorial Note: For the text of SFAR No. 97, see part 91 of this chapter.

Subpart A—General

§ 95.1 Applicability.

(a) This part prescribes altitudes governing the operation of aircraft under IFR on ATS routes, or other direct routes for which an MEA is designated in this part. In addition, it designates mountainous areas and changeover points.
(b) The MAA is the highest altitude on an ATS route, or other direct route for which an MEA is designated, at which adequate reception of VOR signals is assured.
(c) The MCA applies to the operation of an aircraft proceeding to a higher minimum en route altitude when crossing specified fixes.
(d) The MEA is the minimum en route IFR altitude on an ATS route, ATS route segment, or other direct route. The MEA applies to the entire width of the ATS route, ATS route segment, or other direct route between fixes defining that route. Unless otherwise specified, an MEA prescribed for an off airway route or route segment applies to the airspace 4 nautical miles on each side of a direct course between the navigation fixes defining that route or route segment.
(e) The MOCA assures obstruction clearance on an ATS route, ATS route segment, or other direct route, and adequate reception of VOR navigation signals within 22 nautical miles of a VOR station used to define the route.
(f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the intersection can be determined using the ground-based navigation aids.
(g) The changeover point (COP) applies to operation of an aircraft along a Federal airway, jet route, or other direct route; for which an MEA is designated in this part. It is the point for transfer of the airborne navigation reference from the ground-based navigation aid behind the aircraft to the next appropriate ground-based navigation aid to ensure continuous reception of signals.

§ 95.3 Symbols.

For the purposes of this part—
(a) COP means changeover point.
(b) L means compass locator;
(c) LF/MF means low frequency, medium frequency;
(d) LFR means low frequency radio range;
Federal Aviation Administration, DOT

§ 95.13 Subpart B—Designated Mountainous Areas

§ 95.11 General.

The areas described in this subpart are designated mountainous areas.

[Doc. No. 1580, 28 FR 6718, June 29, 1963]

§ 95.13 Eastern United States Mountainous Area.

All of the following area excluding those portions specified in the exceptions.

(a) Area.
Beginning at latitude 47°10' N., longitude 67°55' W.; thence west and south along the Canadian Border to latitude 45°00' N., longitude 74°15' W.; thence to latitude 44°20' N., longitude 75°30' W.; thence to latitude 43°05' N., longitude 75°30' W.; thence to latitude 42°37' N., longitude 77°30' W.; thence to latitude 42°32' N., longitude 78°42' W.; thence to
Federal Aviation Administration, DOT

§ 95.17

Beginning at latitude 42°26′ N., longitude 78°13′ W.; thence to latitude 42°03′ N., longitude 80°00′ W.; thence to latitude 40°50′ N., longitude 80°00′ W.; thence to latitude 40°26′ N., longitude 79°54′ W.; thence to latitude 39°25′ N., longitude 81°46′ W.; thence to latitude 36°00′ N., longitude 86°00′ W.; thence to latitude 33°37′ N., longitude 86°43′ W.; thence to latitude 32°30′ N., longitude 86°25′ W.; thence to latitude 31°22′ N., longitude 85°00′ W.; thence to latitude 30°35′ N., longitude 79°20′ W.; thence to latitude 40°11′ N., longitude 76°24′ W.; thence to latitude 41°24′ N., longitude 74°30′ W.; thence to latitude 41°43′ N., longitude 72°40′ W.; thence to latitude 42°13′ N., longitude 72°44′ W.; thence to latitude 43°12′ N., longitude 71°30′ W.; thence to latitude 43°46′ N., longitude 70°30′ W.; thence to latitude 45°00′ N., longitude 69°30′ W.; thence to latitude 47°10′ N., longitude 67°55′ W.; point of beginning.

(b) Exceptions. The area bounded by the following coordinates:

Beginning at latitude 45°00′ N., longitude 73°26′ W.; thence to latitude 44°32′ N., longitude 73°04′ W.; thence to latitude 42°51′ N., longitude 73°41′ W.; thence to latitude 41°38′ N., longitude 73°46′ W.; thence to latitude 41°16′ N., longitude 73°50′ W.; thence to latitude 41°17′ N., longitude 74°00′ W.; thence to latitude 41°25′ N., longitude 73°58′ W.; thence to latitude 42°04′ N., longitude 73°41′ W.; thence to latitude 42°13′ N., longitude 74°01′ W.; thence to latitude 41°37′ N., longitude 73°50′ W.; thence to latitude 42°41′ N., longitude 73°55′ W.; thence to latitude 43°02′ N., longitude 73°15′ W.; thence to latitude 43°17′ N., longitude 75°21′ W.; thence to latitude 43°50′ N., longitude 74°43′ W.; thence to latitude 42°32′ N., longitude 73°33′ W.; thence to latitude 44°30′ N., longitude 73°18′ W.; thence to latitude 44°00′ N., longitude 73°39′ W.; thence to latitude 45°00′ N., longitude 73°26′ W., point of beginning.

§ 95.15 Western United States Mountainous Area.

All of the following area excluding those portions specified in the exceptions:

(a) Area. The State of Alaska.

(b) Exceptions.

(1) Beginning at latitude 64°54′ N., longitude 147°00′ W.; thence to latitude 64°50′ N., longitude 151°22′ W.; thence to latitude 63°50′ N., longitude 152°50′ W.; thence to latitude 63°30′ N., longitude 152°30′ W.; thence to latitude 63°30′ N., longitude 151°30′ W.; thence to latitude 64°05′ N., longitude 150°30′ W.; thence to latitude 64°20′ N., longitude 149°00′ W.; thence to latitude 64°07′ N., longitude 146°30′ W.; thence to latitude 63°53′ N., longitude 146°00′ W.; thence to latitude 63°57′ N., longitude 145°00′ W.; thence to latitude 33°17′ N., longitude 104°27′ W.; thence to latitude 32°17′ N., longitude 104°14′ W.; thence to latitude 29°48′ N., longitude 102°00′ W.

(b) Exceptions.

(1) Beginning at latitude 35°25′ N., longitude 119°09′ W.; thence to latitude 35°29′ N., longitude 119°36′ W.; thence to latitude 36°49′ N., longitude 119°37′ W.; thence to latitude 38°30′ N., longitude 121°24′ W.; thence to latitude 39°30′ N., longitude 121°32′ W.; thence to latitude 40°08′ N., longitude 122°08′ W.; thence to latitude 40°06′ N., longitude 122°20′ W.; thence to latitude 39°05′ N., longitude 122°12′ W.; thence to latitude 38°01′ N., longitude 121°54′ W.; thence to latitude 37°57′ N., longitude 121°12′ W.; thence to latitude 37°00′ N., longitude 120°58′ W.; thence to latitude 36°14′ N., longitude 120°11′ W., point of beginning.

(2) Beginning at latitude 49°00′ N., longitude 122°21′ W.; thence to latitude 48°34′ N., longitude 122°21′ W.; thence to latitude 48°08′ N., longitude 122°00′ W.; thence to latitude 47°12′ N., longitude 122°00′ W.; thence to latitude 46°59′ N., longitude 122°13′ W.; thence to latitude 46°52′ N., longitude 122°15′ W.; thence to latitude 46°50′ N., longitude 122°20′ W.; thence to latitude 46°35′ N., longitude 122°48′ W.; thence to latitude 46°35′ N., longitude 123°17′ W.; thence to latitude 47°15′ N., longitude 123°17′ W.; thence to latitude 47°41′ N., longitude 122°48′ W.; thence to latitude 48°03′ N., longitude 122°48′ W.; thence to latitude 48°17′ N., longitude 123°15′ W.; thence North and East along the United States and Canada Boundary to latitude 49°00′ N., longitude 122°21′ W., point of beginning.

64°09' N, longitude 145°16' W; thence to latitude 64°12' N, longitude 146°00' W; thence to latitude 64°25' N, longitude 146°37' W; thence to latitude 64°54' N, longitude 147°00' W, point of beginning.

(2) Anchorage—Homer Area. Beginning at latitude 61°50' N, longitude 151°12' W; thence to latitude 61°24' N, longitude 150°28' W; thence to latitude 61°08' N, longitude 151°47' W; thence to latitude 59°49' N, longitude 152°40' W; thence to latitude 59°25' N, longitude 153°10' W; thence to latitude 59°00' N, longitude 153°10' W; thence to latitude 59°33' N, longitude 151°28' W; thence to latitude 60°31' N, longitude 150°43' W; thence to latitude 61°13' N, longitude 149°39' W; thence to latitude 61°37' N, longitude 149°15' W; thence to latitude 61°44' N, longitude 149°48' W; thence to latitude 62°23' N, longitude 149°54' W; thence to latitude 62°23' N, longitude 150°14' W; thence to latitude 61°50' N, longitude 151°12' W, point of beginning.

(3) King Salmon—Port Heiden Area. Beginning at latitude 58°49' N, longitude 159°30' W; thence to latitude 59°40' N, longitude 157°00' W; thence to latitude 59°40' N, longitude 155°30' W; thence to latitude 59°50' N, longitude 154°50' W; thence to latitude 59°35' N, longitude 154°40' W; thence to latitude 58°57' N, longitude 156°05' W; thence to latitude 58°00' N, longitude 156°20' W; thence to latitude 57°00' N, longitude 158°20' W; thence to latitude 56°43' N, longitude 158°39' W; thence to latitude 56°27' N, longitude 158°00' W; thence along the shoreline to latitude 58°49' N, longitude 159°30' W, point of beginning.

(4) Bethel—Aniak Area. Beginning at latitude 63°28' N, longitude 161°30' W; thence to latitude 62°40' N, longitude 163°05' W; thence to latitude 62°05' N, longitude 162°38' W; thence to latitude 61°51' N, longitude 160°43' W; thence to latitude 62°55' N, longitude 160°30' W; thence to latitude 63°00' N, longitude 158°00' W; thence to latitude 61°45' N, longitude 159°30' W; thence to latitude 61°34' N, longitude 159°15' W; thence to latitude 61°07' N, longitude 160°20' W; thence to latitude 60°25' N, longitude 160°40' W; thence to latitude 59°30' N, longitude 161°49' W; thence along the shoreline to latitude 63°28' N, longitude 161°30' W; point of beginning; and Nunivak Island.

(5) North Slope Area. Beginning at a point where latitude 69°30' N intersects the northwest coast of Alaska and eastward along the 69°30' parallel to latitude 69°30' N, longitude 156°00' W; thence to latitude 69°10' N, longitude 153°00' W; thence eastward along the 69°10' N parallel to latitude 69°10' N, longitude 149°00' W; thence to latitude 69°50' N, longitude 146°00' W; thence eastward along the 69°50' N parallel to latitude 69°50' N, longitude 145°00' W; thence to latitude 69°35' N, longitude 141°00' W; thence northward along the 141°00' W Meridian to a point where the 141°00' W Meridian intersects the northeast coastline of Alaska; thence westward along the northern coastline of Alaska to the intersection of latitude 69°30' N; point of beginning.

(6) Fort Yukon Area. Beginning at latitude 67°20' N, longitude 144°00' W; thence to latitude 66°00' N, longitude 143°00' W; thence to latitude 66°05' N, longitude 143°00' W; thence to latitude 66°45' N, longitude 148°00' W; thence to latitude 67°00' N, longitude 147°00' W; thence to latitude 67°20' N, longitude 144°00' W; point of beginning.

(7) The islands of Saint Paul and Saint George, together known as the Pribilof Islands, in the Bering Sea.
§ 95.19 Hawaii Mountainous Area.

The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui, and Hawaii.
§ 95.21 Puerto Rico Mountainous Area.

The area bounded by the following coordinates:

Beginning at latitude 18°22' N., longitude 66°58' W., thence to latitude 18°19' N., longitude 66°06' W.; thence to latitude 18°20' N., longitude 65°50' W.; thence to latitude 18°20' N., longitude 65°22' W.; thence to latitude 18°03' N., longitude 65°52' W.; thence to latitude 18°02' N., longitude 65°51' W.; thence to latitude 17°56' N., longitude 65°53' W.; thence to latitude 18°05' N., longitude 66°57' W.; thence to latitude 18°11' N., longitude 67°07' W.; thence to latitude 18°22' N., longitude 66°58' W.; the point of beginning.
§ 95.31 General.

This subpart prescribes IFR altitudes for flights along particular routes or route segments and over additional intersections not listed as a part of a route or route segment.

(Doc. No. 1580, 28 FR 6719, June 29, 1963)

Subpart D—Changeover Points

EDITORIAL NOTE: The prescribed COP’s for Federal airways, jet routes, area navigation routes, or other direct routes for which an MEA is designated in this part are not carried in the Code of Federal Regulations. For Federal Register citations affecting these routes, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 95.8001 General.

This subpart prescribes COP’s for Federal airways, jet routes, area navigation routes, or other direct routes for which an MEA is designated in this part. Unless otherwise specified the COP is midway between the navigation facilities or way points for straight route segments, or at the intersection of radials or courses forming a dogleg in the case of dogleg route segments.

(Doc. No. 15690, 35 FR 16160, Sept. 18, 1970)

PART 97—STANDARD INSTRUMENT PROCEDURES

Subpart A—General

Sec.
97.1 Applicability.
97.3 Symbols and terms used in procedures.
97.5 Bearings, courses, tracks, headings, radials, miles.

§ 97.1 Applicability.

(a) This part prescribes standard instrument approach procedures to civil airports in the United States and the weather minimums that apply to landings under IFR at those airports.

(b) This part also prescribes obstacle departure procedures (ODPs) for certain civil airports in the United States and the weather minimums that apply to takeoffs under IFR at civil airports in the United States.

§ 97.3 Symbols and terms used in procedures.

As used in the standard instrument procedures prescribed in this part—

Aircraft approach category means a grouping of aircraft based on a speed of VREF, if specified, or if VREF is not specified, 1.3 Vso, at the maximum certificated landing weight. VREF, Vso, and the maximum certificated landing weight are those values as established for the aircraft by the certification authority of the country of registry. The categories are as follows—

(1) Category A: Speed less than 91 knots.

(2) Category B: Speed 91 knots or more but less than 121 knots.

(3) Category C: Speed 121 knots or more but less than 141 knots.

(4) Category D: Speed 141 knots or more but less than 166 knots.

(5) Category E: Speed 166 knots or more.

Approach procedure segments for which altitudes (minimum altitudes, unless otherwise specified) and paths are prescribed in procedures, are as follows—
(1) Initial approach is the segment between the initial approach fix and the intermediate fix or the point where the aircraft is established on the intermediate course or final approach course.

(2) Initial approach altitude is the altitude (or altitudes, in high altitude procedure) prescribed for the initial approach segment of an instrument approach.

(3) Intermediate approach is the segment between the intermediate fix or point and the final approach fix.

(4) Final approach is the segment between the final approach fix or point and the runway, airport, or missed approach point.

(5) Missed approach is the segment between the missed approach point, or point of arrival at decision altitude or decision height (DA/DH), and the missed approach fix at the prescribed altitude.

Ceiling means the minimum ceiling, expressed in feet above the airport elevation, required for takeoff or required for designating an airport as an alternate airport.

Copter procedures means helicopter procedures, with applicable minimums as prescribed in §97.35. Helicopters may also use other procedures prescribed in subpart C of this part and may use the Category A minimum descent altitude (MDA), or decision altitude or decision height (DA/DH), and the missed approach fix at the prescribed altitude.

Hold in lieu of PT means a holding pattern established under applicable FAA criteria, and used in lieu of a procedure turn to execute a course reversal.

FAF means final approach fix.

HAA means height above airport and is expressed in feet.

HAL means height above landing and is the height of the DA/MDA above a designated helicopter landing area elevation used for helicopter instrument approach procedures and is expressed in feet.

HAS means height above the surface and is the height of the DA/MDA above the highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter instrument approach procedures and is expressed in feet above ground level (AGL).

HAT means height above touchdown.

HCH means helipoint crossing height and is the computed height of the vertical guidance path above the helipoint elevation at the helipoint expressed in feet.

Helipoint means the aiming point for the final approach course. It is normally the center point of the touchdown and lift-off area (TLOF).

HCO means helicopter operating clear of the missed approach point (DA/DH).

Hold in lieu of PT means a holding pattern established under applicable FAA criteria, and used in lieu of a procedure turn to execute a course reversal.

MAP means missed approach point.

More than 65 knots means an aircraft that has a stalling speed of more than 65 knots (as established in an approved flight manual) at maximum certificated landing weight with full flaps, landing gear extended, and power off.

MSA means minimum safe altitude, expressed in feet above mean sea level, depicted on an approach chart that provides at least 1,000 feet of obstacle clearance for emergency use within a certain distance from the specified navigation facility or fix.

NA means not authorized.

NOPT means no procedure turn required. Altitude prescribed applies only if procedure turn is not executed.

Procedure turn means the maneuver prescribed when it is necessary to reverse direction to establish the aircraft on an intermediate or final approach course. The outbound course, direction of turn, distance within which the turn must be completed, and minimum altitude are specified in the procedure. However, the point at which the turn may be begun, and the type and rate of turn, is left to the discretion of the pilot.

RA means radio altimeter setting height.

RVV means runway visibility value.

SIAP means standard instrument approach procedure.

65 knots or less means an aircraft that has a stalling speed of 65 knots or less (as established in an approved flight
§ 97.5

manual) at maximum certificated landing weight with full flaps, landing gear extended, and power off.

T means nonstandard takeoff minimums or specified departure routes/ procedures or both.

TDZ means touchdown zone.

Visibility minimum means the minimum visibility specified for approach, landing, or takeoff, expressed in statute miles, or in feet where RVR is reported.

§ 97.5 Bearings, courses, tracks, headings, radials, miles.

(a) All bearings, courses, tracks, headings, and radials in this part are magnetic, unless otherwise designated.

(b) RVR values are stated in feet. Other visibility values are stated in statute miles. All other mileages are stated in nautical miles.

Subpart B—Procedures

EDITORIAL NOTE: The procedures set forth in this subpart were formerly carried as §§609.100 through 609.500 of this title and were transferred to part 97 as §§97.11 through 97.19, respectively, but are not carried in the Code of Federal Regulations. For FEDERAL REGISTER citations affecting these procedures, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 97.10 [Reserved]

Subpart C—TERPS Procedures

SOURCE: Docket No. 8130, 32 FR 13912, Oct. 6, 1967, unless otherwise noted.

EDITORIAL NOTE: The procedures for §§97.21 through 97.35, respectively, are not carried in the Code of Federal Regulations. For FEDERAL REGISTER citations affecting these procedures, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 97.20 General.

(a) This subpart prescribes standard instrument approach procedures and takeoff minimums and obstacle departure procedures (ODPs) based on the criteria contained in FAA Order 8260.3, U.S. Standard for Terminal Instrument Procedures (TERPs), and other related Orders in the 8260 series that also address instrument procedure design criteria.

(b) Standard instrument approach procedures and associated supporting data adopted by the FAA are documented on FAA Forms 8260–3, 8260–4, 8260–5. Takeoff minimums and obstacle departure procedures (ODPs) are documented on FAA Form 8260–15A. These forms are incorporated by reference. The Director of the Federal Register approved this incorporation by reference pursuant to 5 U.S.C. 552(a) and 1 CFR part 51. The standard instrument approach procedures and takeoff minimums and obstacle departure procedures (ODPs) are available for examination at the FAA’s Rules Docket (AGC–200) and at the National Flight Data Center, 800 Independence Avenue, SW., Washington, DC 20590, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(c) Standard instrument approach procedures and takeoff minimums and obstacle departure procedures (ODPs) are depicted on aeronautical charts published by the FAA National Aeronautical Charting Office. These charts are available for purchase from the FAA’s National Aeronautical Charting Office, Distribution Division, 6305 Ivy Lane, Suite 400, Greenbelt, MD 20770.

PART 99—SECURITY CONTROL OF AIR TRAFFIC

Subpart A—General

Sec.
99.1 Applicability.
99.3 Definitions.
99.5 Emergency situations.
99.7 Special security instructions.
99.9 Radio requirements.
99.11 ADIZ flight plan requirements.
99.12 [Reserved]
§ 99.13 Transponder-on requirements.
99.15 Position reports.
99.17 Deviation from flight plans and ATC clearances and instructions.
99.19–99.31 [Reserved]

Subpart B—Designated Air Defense Identification Zones

99.41 General.
99.43 Contiguous U.S. ADIZ.
99.45 Alaska ADIZ.
99.47 Guam ADIZ.
99.49 Hawaii ADIZ.

AUTHORITY: 49 U.S.C. 106(g), 40101, 40103, 40106, 40113, 40120, 44502, 44721.

SOURCE: Docket No. 25113, 53 FR 18217, May 20, 1988, unless otherwise noted.

§ 99.3 Definitions.

Aeronautical facility means, for the purposes of this subpart, a communications facility where flight plans or position reports are normally filed during flight operations.

Air defense identification zone (ADIZ) means an area of airspace over land or water in which the ready identification, location, and control of all aircraft (except for Department of Defense and law enforcement aircraft) is required in the interest of national security.

Defense area means any airspace of the contiguous United States that is not an ADIZ in which the control of aircraft is required for reasons of national security.

Defense visual flight rules (DVFR) means, for the purposes of this subpart, a flight within an ADIZ conducted by any aircraft (except for Department of Defense and law enforcement aircraft) in accordance with visual flight rules in part 91 of this title.

§ 99.5 Emergency situations.

In an emergency that requires immediate decision and action for the safety of the flight, the pilot in command of an aircraft may deviate from the rules in this part to the extent required by that emergency. He shall report the reasons for the deviation to the communications facility where flight plans or position reports are normally filed (referred to in this part as “an appropriate aeronautical facility”) as soon as possible.
§ 99.7 Special security instructions.

Each person operating an aircraft in an ADIZ or Defense Area must, in addition to the applicable rules of this part, comply with special security instructions issued by the Administrator in the interest of national security, pursuant to agreement between the FAA and the Department of Defense, or between the FAA and a U.S. Federal security or intelligence agency.

[69 FR 16756, Mar. 30, 2004]

§ 99.9 Radio requirements.

(a) A person who operates a civil aircraft into an ADIZ must have a functioning two-way radio, and the pilot must maintain a continuous listening watch on the appropriate aeronautical facility’s frequency.

(b) No person may operate an aircraft into, within, or whose departure point is within an ADIZ unless—

(1) The person files a DVFR flight plan containing the time and point of ADIZ penetration, and

(2) The aircraft departs within five minutes of the estimated departure time contained in the flight plan.

(c) If the pilot operating an aircraft under DVFR in an ADIZ cannot maintain two-way radio communications, the pilot may proceed, in accordance with original DVFR flight plan, or land as soon as practicable. The pilot must report the radio failure to an appropriate aeronautical facility as soon as possible.

(d) If a pilot operating an aircraft under IFR in an ADIZ cannot maintain two-way radio communications, the pilot must proceed in accordance with § 91.185 of this chapter.

§ 99.12 [Reserved]

§ 99.13 Transponder-on requirements.

(a) Aircraft transponder-on operation. Each person operating an aircraft into or out of the United States into, within, or across an ADIZ designated in subpart B of this part, if that aircraft is equipped with an operable radar beacon transponder, shall operate the transponder, including altitude encoding equipment if installed, and shall reply on the appropriate code or as assigned by ATC.

(b) ATC transponder equipment and use. Effective September 7, 1990, unless otherwise authorized by ATC, no person may operate a civil aircraft into or out of the United States into, within, or across the contiguous U.S. ADIZ designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder.

(c) ATC transponder and altitude reporting equipment and use. Effective December 30, 1990, unless otherwise authorized by ATC, no person may operate a civil aircraft into or out of the United States into, within, or across

14 CFR Ch. I (1–1–11 Edition)
§ 99.43 Contiguous U.S. ADIZ.

The area bounded by a line from 43°15′N, 65°55′W; 44°21′N, 67°16′W; 43°10′N, 69°40′W; 41°05′N, 69°40′W; 40°32′N, 72°15′W; 39°55′N; 73°00′W; 39°38′N; 73°00′W; 39°36′N; 73°40′W; 37°00′N; 75°30′W; 36°10′N; 75°10′W; 35°10′N; 75°10′W; 32°00′N; 80°30′W; 30°30′N; 81°00′W; 26°40′N; 79°40′W; 25°00′N; 80°05′W; 24°25′N; 81°15′W; 24°20′N; 81°45′W; 24°30′N; 82°06′W; 24°41′N; 82°06′W; 24°43′N; 82°00′N; 25°00′N; 81°30′W; 25°10′N; 81°23′W; 25°35′N; 81°30′W; 25°15′N; 82°20′W; 27°50′N; 83°05′W; 28°55′N; 83°30′W; 29°42′N; 84°00′W; 29°20′N; 85°00′W; 30°00′N; 87°10′W; 30°00′N; 88°30′W; 28°45′N; 88°55′W; 28°45′N; 90°00′W; 29°25′N; 94°00′W; 28°20′N; 96°00′W; 27°30′N; 97°00′W; 26°00′N; 97°00′W; 25°50′N; 97°07′W; westward along the U.S./Mexico border to 32°32′03″N, 117°07′25″W; 32°30′N; 117°25′W;
§ 99.45 Alaska ADIZ.

The area is bounded by a line from 54°00′N; 136°00′W; 56°37′N; 144°00′W; 57°00′N; 145°00′W; 53°00′N; 158°00′W; 50°00′N; 169°00′W; 50°00′N; 180°00′W; 50°00′N; 170°00′E; 53°00′N; 170°00′E; 60°00′N; 180°00′; 65°00′N; 169°00′W; then along 169°00′W; to 75°00′N; 169°00′W; then along the 75°00′N; parallel to 75°00′N, 141°00′W; 69°50′N; 141°00′W; 71°18′N; 156°44′W; 68°40′N; 157°10′W; 67°00′N; 165°00′W; 65°40′N; 168°15′W; 63°45′N; 165°30′W; 61°20′N; 166°40′W; 59°00′N; 163°00′W; then south along 163°00′W to 54°00′N, 163°00′W; 56°30′N; 154°00′W; 59°20′N; 146°00′W; 59°30′N; 140°00′W; 57°00′N; 136°00′W, 54°35′N, 133°00′W; to point of beginning.

§ 99.47 Guam ADIZ.

(a) Inner boundary. From a point 13°52′07″ N, 143°59′16″ E, counterclockwise along the 50-nautical-mile radius arc of the NIMITZ VORTAC (located at 13°27′11″ N, 144°43′51″ E); to a point 13°02′08″ N, 145°28′17″ W, then to a point 14°49′07″ N, 146°13′58″ E; counterclockwise along the 35-nautical-mile radius arc of the SAIPAN NDB (located at 15°06′46″ N, 145°42′42″ E); to a point 15°24′21″ N, 145°11′21″ E; then to the point of origin.

(b) Outer boundary. The area bounded by a circle with a radius of 250 NM centered at latitude 13°32′41″ N, longitude 144°50′30″ E.

§ 99.49 Hawaii ADIZ.

(a) Outer boundary. The area included in the irregular octagonal figure formed by a line connecting 26°30′ N, 156°00′ W, 26°30′ N, 161°00′ W, 24°00′ N, 164°00′ W, 20°00′ N, 164°00′ W, 17°00′ N, 160°00′ W; 17°00′ N, 156°00′ W; 20°00′ N, 153°00′ W; 22°00′ N, 153°00′ W; to point of beginning.

(b) Inner boundary. The inner boundary to follow a line connecting 22°30′ N, 157°00′ W; 22°30′ N, 160°00′ W; 22°00′ N, 161°00′ W; 21°00′ N, 161°00′ W; 20°00′ N, 160°00′ W; 20°00′ N, 156°30′ W; 21°00′ N, 155°30′ W; to point of beginning.

PART 101—MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS

Subpart A—General

Sec. 101.1 Applicability. 101.3 Waivers. 101.5 Notice requirements. 101.7 Hazardous operations.

Subpart B—Moored Balloons and Kites

101.11 Applicability. 101.13 Operating limitations. 101.15 Notice requirements. 101.17 Lighting and marking requirements. 101.19 Rapid deflation device.

Subpart C—Amateur Rockets

Subpart D—Unmanned Free Balloons

101.31 Applicability. 101.33 Operating limitations. 101.35 Equipment and marking requirements. 101.37 Notice requirements. 101.39 Balloon position reports.
Subpart A—General

§ 101.1 Applicability.
(a) This part prescribes rules governing the operation in the United States, of the following:
(1) Except as provided for in §101.7, any balloon that is moored to the surface of the earth or an object thereon and that has a diameter of more than 6 feet or a gas capacity of more than 115 cubic feet.
(2) Except as provided for in §101.7, any kite that weighs more than 5 pounds and is intended to be flown at the end of a rope or cable.
(3) Any amateur rocket except aerial firework displays.
(4) Except as provided for in §101.7, any unmanned free balloon that—
(i) Carries a payload package that weighs more than four pounds and has a weight/size ratio of more than three ounces per square inch on any surface of the package, determined by dividing the total weight in ounces of the payload package by the area in square inches of its smallest surface;
(ii) Carries a payload package that weighs more than six pounds;
(iii) Carries a payload, of two or more packages, that weighs more than 12 pounds; or
(iv) Uses a rope or other device for suspension of the payload that requires an impact force of more than 50 pounds to separate the suspended payload from the balloon.
(b) For the purposes of this part, a gyroglider attached to a vehicle on the surface of the earth is considered to be a kite.

§ 101.3 Operating limitations.
(a) Except as provided in paragraph (b) of this section, no person may operate a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area unless he has permission from the using or controlling agency, as appropriate.

(b) Paragraph (a) of this section does not apply to the operation of a balloon

Subpart B—Moored Balloons and Kites

SOURCE: Docket No. 1580, 28 FR 6722, June 29, 1963, unless otherwise noted.

§ 101.11 Applicability.
This subpart applies to the operation of moored balloons and kites. However, a person operating a moored balloon or kite within a restricted area must comply only with §101.19 and with additional limitations imposed by the using or controlling agency, as appropriate.

§ 101.13 Operating limitations.
(a) No person may operate any moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area unless he has permission from the using or controlling agency, as appropriate.
(b) Paragraph (a) of this section does not apply to the operation of a balloon
or kite below the top of any structure and within 250 feet of it, if that shielded operation does not obscure any lighting on the structure.

§ 101.15 Notice requirements.

No person may operate an unshielded moored balloon or kite more than 150 feet above the surface of the earth unless, at least 24 hours before beginning the operation, he gives the following information to the FAA ATC facility that is nearest to the place of intended operation:

(a) The names and addresses of the owners and operators.
(b) The size of the balloon or the size and weight of the kite.
(c) The location of the operation.
(d) The height above the surface of the earth at which the balloon or kite is to be operated.
(e) The date, time, and duration of the operation.

§ 101.17 Lighting and marking requirements.

(a) No person may operate a moored balloon or kite, between sunset and sunrise unless the balloon or kite, and its mooring lines, are lighted so as to give a visual warning equal to that required for obstructions to air navigation in the FAA publication “Obstruction Marking and Lighting”.
(b) No person may operate a moored balloon or kite between sunrise and sunset unless its mooring lines have colored pennants or streamers attached at not more than 50 foot intervals beginning at 150 feet above the surface of the earth and visible for at least one mile.

(Sec. 6(c), Department of Transportation Act (49 U.S.C. 1655(c)))

§ 101.19 Rapid deflation device.

No person may operate a moored balloon unless it has a device that will automatically and rapidly deflate the balloon if it escapes from its moorings. If the device does not function properly, the operator shall immediately notify the nearest ATC facility of the location and time of the escape and the estimated flight path of the balloon.

Subpart C—Amateur Rockets

§ 101.21 Applicability.

(a) This subpart applies to operating unmanned rockets. However, a person operating an unmanned rocket within a restricted area must comply with §101.25(b)(7)(ii) and with any additional limitations imposed by the using or controlling agency.
(b) A person operating an unmanned rocket other than an amateur rocket as defined in §1.1 of this chapter must comply with 14 CFR Chapter III.

§ 101.22 Definitions.

The following definitions apply to this subpart:

(a) Class 1—Model Rocket means an amateur rocket that:
(1) Uses no more than 125 grams (4.4 ounces) of propellant;
(2) Uses a slow-burning propellant;
(3) Is made of paper, wood, or breakable plastic;
(4) Contains no substantial metal parts; and
(5) Weighs no more than 1,500 grams (53 ounces), including the propellant.

(b) Class 2—High-Power Rocket means an amateur rocket other than a model rocket that is propelled by a motor or motors having a combined total impulse of 40,960 Newton-seconds (9,208 pound-seconds) or less.

(c) Class 3—Advanced High-Power Rocket means an amateur rocket other than a model rocket or high-power rocket.

§ 101.23 General operating limitations.

(a) You must operate an amateur rocket in such a manner that it:
(1) Is launched on a suborbital trajectory;
(2) When launched, must not cross into the territory of a foreign country unless an agreement is in place between the United States and the country of concern;
(3) Is unmanned; and
(4) Does not create a hazard to persons, property, or other aircraft.
§ 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

When operating Class 2-High Power Rockets or Class 3-Advanced High Power Rockets, you must comply with the General Operating Limitations of §101.23. In addition, you must not operate Class 2-High Power Rockets or Class 3-Advanced High Power Rockets—

(a) At any altitude where clouds or obscuring phenomena of more than five-tenths coverage prevails;
(b) At any altitude where the horizontal visibility is less than five miles;
(c) Into any cloud;
(d) Between sunset and sunrise without prior authorization from the FAA;
(e) Within 9.26 kilometers (5 nautical miles) of any airport boundary without prior authorization from the FAA;
(f) In controlled airspace without prior authorization from the FAA;
(g) Unless you observe the greater of the following separation distances from any person or property that is not associated with the operations:
 (1) Not less than one-quarter the maximum expected altitude;
 (2) 457 meters (1,500 ft.);
(h) Unless a person at least eighteen years old is present, is charged with ensuring the safety of the operation, and has final approval authority for initiating high-power rocket flight; and
(i) Unless reasonable precautions are provided to report and control a fire caused by rocket activities.

§ 101.27 ATC notification for all launches.

No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA ATC facility nearest to the place of intended operation no less than 24 hours before and no more than three days before beginning the operation:

(a) The name and address of the operator; except when there are multiple participants at a single event, the name and address of the person so designated as the event launch coordinator, whose duties include coordination of the required launch data estimates and coordinating the launch event;
(b) Date and time the activity will begin;
(c) Radius of the affected area on the ground in nautical miles;
(d) Location of the center of the affected area in latitude and longitude coordinates;
(e) Highest affected altitude;
(f) Duration of the activity;
(g) Any other pertinent information requested by the ATC facility.

§ 101.29 Information requirements.

(a) Class 2—High-Power Rockets. When a Class 2—High-Power Rocket requires a certificate of waiver or authorization, the person planning the operation must provide the information below on each type of rocket to the FAA at least 45 days before the proposed operation. The FAA may request additional information if necessary to ensure the proposed operations can be safely conducted. The information shall include for each type of Class 2 rocket expected to be flown:
 (1) Estimated number of rockets,
 (2) Type of propulsion (liquid or solid), fuel(s) and oxidizer(s),
 (3) Description of the launcher(s) planned to be used, including any airborne platform(s),
 (4) Description of recovery system,
 (5) Highest altitude, above ground level, expected to be reached,
 (6) Launch site latitude, longitude, and elevation, and
 (7) Any additional safety procedures that will be followed.

(b) Class 3—Advanced High-Power Rockets. When a Class 3—Advanced High-Power Rocket requires a certificate of waiver or authorization the person planning the operation must provide the information below for each:

[74 FR 31843, July 6, 2009]
§ 101.31 Applicability.

This subpart applies to the operation of unmanned free balloons. However, a person operating an unmanned free balloon within a restricted area must comply only with §101.33 (d) and (e) and with any additional limitations that are imposed by the using or controlling agency, as appropriate.

§ 101.33 Operating limitations.

No person may operate an unmanned free balloon—
(a) Unless otherwise authorized by ATC, below 2,000 feet above the surface within the lateral boundaries of the surface areas of Class B, Class C, Class D, or Class E airspace designated for an airport;
(b) At any altitude where there are clouds or obscuring phenomena of more than five-tenths coverage;
(c) At any altitude below 60,000 feet standard pressure altitude where the horizontal visibility is less than five miles;
(d) During the first 1,000 feet of ascent, over a congested area of a city, town, or settlement or an open-air assembly of persons not associated with the operation; or
(e) In such a manner that impact of the balloon, or part thereof including its payload, with the surface creates a hazard to persons or property not associated with the operation.

§ 101.35 Equipment and marking requirements.

(a) No person may operate an unmanned free balloon unless—
(1) It is equipped with at least two payload cut-down systems or devices that operate independently of each other;
(2) At least two methods, systems, devices, or combinations thereof, that function independently of each other, are employed for terminating the flight of the balloon envelope; and
(3) The balloon envelope is equipped with a radar reflective device(s) or material that will present an echo to surface radar operating in the 200 MHz to 2700 MHz frequency range.

The operator shall activate the appropriate devices required by paragraphs (a) (1) and (2) of this section when weather conditions are less than those prescribed for operation under this subpart, or if a malfunction or any other reason makes the further operation hazardous to other air traffic or to persons and property on the surface.

(b) No person may operate an unmanned free balloon below 60,000 feet standard pressure altitude between sunset and sunrise (as corrected to the altitude of operation) unless the balloon and its attachments and payload, whether or not they become separated during the operation, are equipped with lights that are visible for at least 5
§ 101.37 Notice requirements.

(a) Prelaunch notice: Except as provided in paragraph (b) of this section, no person may operate an unmanned free balloon unless, within 6 to 24 hours before beginning the operation, he gives the following information to the nearest FAA ATC facility that is nearest to the place of intended operation:

1. The balloon identification.
2. The estimated date and time of launching, amended as necessary to remain within plus or minus 30 minutes.
3. The location of the launching site.
4. The cruising altitude.
5. The forecast trajectory and estimated time to cruising altitude or 60,000 feet standard pressure altitude, whichever is lower.
6. The length and diameter of the balloon, length of the suspension device, weight of the payload, and length of the trailing antenna.
7. The duration of flight.
8. The forecast time and location of impact with the surface of the earth.

(b) For solar or cosmic disturbance investigations involving a critical time element, the information in paragraph (a) of this section shall be given within 30 minutes to 24 hours before beginning the operation.

(c) Cancellation notice: If the operation is canceled, the person who intended to conduct the operation shall immediately notify the nearest FAA ATC facility.

(d) Launch notice: Each person operating an unmanned free balloon shall notify the nearest FAA or military ATC facility of the launch time immediately after the balloon is launched.

§ 101.39 Balloon position reports.

(a) Each person operating an unmanned free balloon shall:

1. Unless ATC requires otherwise, monitor the course of the balloon and record its position at least every two hours; and
2. Forward any balloon position reports requested by ATC.

(b) One hour before beginning descent, each person operating an unmanned free balloon shall forward to the nearest FAA ATC facility the following information regarding the balloon:

1. The current geographical position.
2. The altitude.
3. The forecast time of penetration of 60,000 feet standard pressure altitude (if applicable).
4. The forecast trajectory for the balance of the flight.
5. The forecast time and location of impact with the surface of the earth.

(c) If a balloon position report is not recorded for any two-hour period of flight, the person operating an unmanned free balloon shall immediately notify the nearest FAA ATC facility. The notice shall include the last recorded position and any revision of the forecast trajectory. The nearest FAA ATC facility shall be notified immediately when tracking of the balloon is re-established.

(d) Each person operating an unmanned free balloon shall notify the nearest FAA ATC facility when the operation is ended.
§ 103.1 Applicability.

This part prescribes rules governing the operation of ultralight vehicles in the United States. For the purposes of this part, an ultralight vehicle is a vehicle that:

(a) Is used or intended to be used for manned operation in the air by a single occupant;
(b) Is used or intended to be used for recreation or sport purposes only;
(c) Does not have any U.S. or foreign airworthiness certificate; and
(d) If unpowered, weighs less than 155 pounds; or
(e) If powered:
 (1) Weighs less than 254 pounds empty weight, excluding floats and safety devices which are intended for deployment in a potentially catastrophic situation;
 (2) Has a fuel capacity not exceeding 5 U.S. gallons;
 (3) Is not capable of more than 55 knots calibrated airspeed at full power in level flight; and
 (4) Has a power-off stall speed which does not exceed 24 knots calibrated airspeed.

§ 103.3 Inspection requirements.

(a) Any person operating an ultralight vehicle under this part shall, upon request, allow the Administrator, or his designee, to inspect the vehicle to determine the applicability of this part.

(b) The pilot or operator of an ultralight vehicle must, upon request of the Administrator, furnish satisfactory evidence that the vehicle is subject only to the provisions of this part.

§ 103.5 Waivers.

No person may conduct operations that require a deviation from this part except under a written waiver issued by the Administrator.

§ 103.7 Certification and registration.

(a) Notwithstanding any other section pertaining to certification of aircraft or their parts or equipment, ultralight vehicles and their component parts and equipment are not required to meet the airworthiness certification standards specified for aircraft or to have certificates of airworthiness.

(b) Notwithstanding any other section pertaining to airman certification, operators of ultralight vehicles are not required to meet any aeronautical knowledge, age, or experience requirements to operate those vehicles or to have airman or medical certificates.

(c) Notwithstanding any other section pertaining to registration and marking of aircraft, ultralight vehicles are not required to be registered or to bear markings of any type.

Subpart B—Operating Rules

§ 103.9 Hazardous operations.

(a) No person may operate any ultralight vehicle in a manner that creates a hazard to other persons or property.

(b) No person may allow an object to be dropped from an ultralight vehicle if such action creates a hazard to other persons or property.

§ 103.11 Daylight operations.

(a) No person may operate an ultralight vehicle except between the hours of sunrise and sunset.

(b) Notwithstanding paragraph (a) of this section, ultralight vehicles may be operated during the twilight periods 30 minutes before official sunrise and 30 minutes after official sunset or, in Alaska, during the period of civil twilight as defined in the Air Almanac, if:
§ 103.23 Flight visibility and cloud clearance requirements.

(b) A Flight Standards Certificate of Waiver or Authorization issued for the demonstration or event.

§ 103.21 Visual reference with the surface.

No person may operate an ultralight vehicle except by visual reference with the surface.

§ 103.23 Flight visibility and cloud clearance requirements.

No person may operate an ultralight vehicle when the flight visibility or distance from clouds is less than that in the table found below. All operations in Class A, Class B, Class C, and Class D airspace or Class E airspace designated for an airport must receive prior ATC authorization as required in § 103.17 of this part.

<table>
<thead>
<tr>
<th>Airspace</th>
<th>Flight visibility</th>
<th>Distance from clouds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Not applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Class B</td>
<td>3 statute miles</td>
<td>Clear of Clouds</td>
</tr>
<tr>
<td>Class C</td>
<td>3 statute miles</td>
<td>500 feet below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 feet above</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,000 feet horizontal</td>
</tr>
<tr>
<td>Class D</td>
<td>3 statute miles</td>
<td>500 feet below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 feet above</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,000 feet horizontal</td>
</tr>
<tr>
<td>Class E:</td>
<td>3 statute miles</td>
<td>500 feet below</td>
</tr>
<tr>
<td>Less than 10,000 ft MSL</td>
<td></td>
<td>1,000 feet above</td>
</tr>
<tr>
<td></td>
<td>5 statute miles</td>
<td>2,000 feet horizontal</td>
</tr>
<tr>
<td>At or above 10,000 ft MSL</td>
<td></td>
<td>1 statute mile</td>
</tr>
<tr>
<td>Class G:</td>
<td>1 statute mile</td>
<td>Clear of Clouds</td>
</tr>
<tr>
<td>1,200 feet or less above the surface (regardless of MSL altitude)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 1,200 feet above the surface but less than 10,000 feet MSL</td>
<td></td>
<td>500 feet below</td>
</tr>
<tr>
<td>More than 1,200 feet above the surface and at or above 10,000 feet MSL</td>
<td></td>
<td>1,000 feet above</td>
</tr>
</tbody>
</table>

[Amend. 103–17, 56 FR 65662, Dec. 17, 1991]
PART 105—PARACHUTE OPERATIONS

Subpart A—General

Sec.
105.1 Applicability.
105.3 Definitions.
105.5 General.
105.7 Use of alcohol and drugs.
105.9 Inspections.

Subpart B—Operating Rules

105.13 Radio equipment and use requirements.
105.15 Information required and notice of cancellation or postponement of a parachute operation.
105.17 Flight visibility and clearance from cloud requirements.
105.19 Parachute operations between sunset and sunrise.
105.21 Parachute operations over or into a congested area or an open-air assembly of persons.
105.23 Parachute operations over or onto airports.
105.25 Parachute operations in designated airspace.

Subpart C—Parachute Equipment and Packing

105.41 Applicability.
105.43 Use of single-harness, dual-parachute systems.
105.45 Use of tandem parachute systems.
105.47 Use of static lines.
105.49 Foreign parachutists and equipment.

SOURCE: Doc. No. FAA–1999–5483, 66 FR 23553, May 9, 2001, unless otherwise noted.

§ 105.1 Applicability.

(a) Except as provided in paragraphs (b) and (c) of this section, this part prescribes rules governing parachute operations conducted in the United States.

(b) This part does not apply to a parachute operation conducted—

(1) Over or within a restricted area when that area is under the control of an Armed Force.

(2) During military operations in uncontrolled airspace.

§ 105.3 Definitions.

For the purposes of this part—

Approved parachute means a parachute manufactured under a type certificate or a Technical Standard Order (C–23 series), or a personnel-carrying U.S. military parachute (other than a high altitude, high speed, or ejection type) identified by a Navy Air Facility, an Army Air Field, and Air Force-Navy drawing number, an Army Air Field order number, or any other military designation or specification number.

Automatic Activation Device means a self-contained mechanical or electro-mechanical device that is attached to the interior of the reserve parachute container, which automatically initiates parachute deployment of the reserve parachute at a pre-set altitude, time, percentage of terminal velocity, or combination thereof.

Direct Supervision means that a certificated rigger personally observes a non-certificated person packing a main parachute to the extent necessary to ensure that it is being done properly, and takes responsibility for that packing.

Drop Zone means any pre-determined area upon which parachutists or objects land after making an intentional parachute jump or drop. The center-point target of a drop zone is expressed in nautical miles from the nearest VOR facility when 30 nautical miles or less; or from the nearest airport, town, or city depicted on the appropriate Coast and Geodetic Survey World Aeronautical Chart or Sectional Aeronautical Chart, when the nearest VOR facility is more than 30 nautical miles from the drop zone.

Foreign parachutist means a parachutist who is neither a U.S. citizen or a resident alien and is participating in parachute operations within the United States.
States using parachute equipment not manufactured in the United States.

Freefall means the portion of a parachute jump or drop between aircraft exit and parachute deployment in which the parachute is activated manually by the parachutist at the parachutist’s discretion or automatically, or, in the case of an object, is activated automatically.

Main parachute means a parachute worn as the primary parachute used or intended to be used in conjunction with a reserve parachute.

Object means any item other than a person that descends to the surface from an aircraft in flight when a parachute is used or intended to be used during all or part of the descent.

Parachute drop means the descent of an object to the surface from an aircraft in flight when a parachute is used or intended to be used during all or part of that descent.

Parachute jump means a parachute operation that involves the descent of one or more persons to the surface from an aircraft in flight when an aircraft is used or intended to be used during all or part of that descent.

Parachute operation means the performance of all activity for the purpose of, or in support of, a parachute jump or a parachute drop. This parachute operation can involve, but is not limited to, the following persons: parachutist, parachutist in command and passenger in tandem parachute operations, drop zone or owner or operator, jump master, certificated parachute rigger, or pilot.

Parachutist means a person who intends to exit an aircraft while in flight using a single-harness, dual parachute system to descend to the surface.

Parachutist in command means the person responsible for the operation and safety of a tandem parachute operation.

Passenger parachutist means a person who boards an aircraft, acting as other than the parachutist in command of a tandem parachute operation, with the intent of exiting the aircraft while in-flight using the forward harness of a dual harness tandem parachute system to descend to the surface.

Pilot chute means a small parachute used to initiate and/or accelerate deployment of a main or reserve parachute.

Ram-air parachute means a parachute with a canopy consisting of an upper and lower surface that is inflated by ram air entering through specially designed openings in the front of the canopy to form a gliding airfoil.

Reserve parachute means an approved parachute worn for emergency use to be activated only upon failure of the main parachute or in any other emergency where use of the main parachute is impractical or use of the main parachute would increase risk.

Single-harness, dual parachute system: means the combination of a main parachute, approved reserve parachute, and approved single person harness and dual-parachute container. This parachute system may have an operational automatic activation device installed.

Tandem parachute operation: means a parachute operation in which more than one person simultaneously uses the same tandem parachute system while descending to the surface from an aircraft in flight.

Tandem parachute system: means the combination of a main parachute, approved reserve parachute, and approved harness and dual parachute container, and a separate approved forward harness for a passenger parachutist. This parachute system must have an operational automatic activation device installed.

§ 105.5 General.

No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from an aircraft, if that operation creates a hazard to air traffic or to persons or property on the surface.

§ 105.7 Use of alcohol and drugs.

No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft, if that person is or appears to be under the influence of—

(a) Alcohol, or

(b) Any drug that affects that person’s faculties in any way contrary to safety.
§ 105.9 Inspections.

The Administrator may inspect any parachute operation to which this part applies (including inspections at the site where the parachute operation is being conducted) to determine compliance with the regulations of this part.

Subpart B—Operating Rules

§ 105.13 Radio equipment and use requirements.

(a) Except when otherwise authorized by air traffic control—

(1) No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft, in or into controlled airspace unless, during that flight—

(i) The aircraft is equipped with a functioning two-way radio communication system appropriate to the air traffic control facilities being used; and

(ii) Radio communications have been established between the aircraft and the air traffic control facility having jurisdiction over the affected airspace of the first intended exit altitude at least 5 minutes before the parachute operation begins. The pilot in command must establish radio communications to receive information regarding air traffic activity in the vicinity of the parachute operation.

(2) The pilot in command of an aircraft used for any parachute operation in or into controlled airspace must, during each flight—

(i) Continuously monitor the appropriate frequency of the aircraft’s radio communications system from the time radio communications are first established between the aircraft and air traffic control, until the pilot advises air traffic control that the parachute operation has ended for that flight.

(ii) Advise air traffic control when the last parachutist or object leaves the aircraft.

(b) Parachute operations must be aborted if, prior to receipt of a required air traffic control authorization, or during any parachute operation in or into controlled airspace, the required radio communications system is or becomes inoperative.

§ 105.15 Information required and notice of cancellation or postponement of a parachute operation.

(a) Each person requesting an authorization under §§ 105.21(b) and 105.25(a)(2) of this part and each person submitting a notification under § 105.25(a)(3) of this part must provide the following information (on an individual or group basis):

(1) The date and time the parachute operation will begin.

(2) The radius of the drop zone around the target expressed in nautical miles.

(3) The location of the center of the drop zone in relation to—

(i) The nearest VOR facility in terms of the VOR radial on which it is located and its distance in nautical miles from the VOR facility when that facility is 30 nautical miles or less from the drop zone target; or

(ii) The nearest airport, town, or city depicted on the appropriate Coast and Geodetic Survey World Aeronautical Chart or Sectional Aeronautical Chart, when the nearest VOR facility is more than 30 nautical miles from the drop zone target.

(4) Each altitude above mean sea level at which the aircraft will be operated when parachutists or objects exist the aircraft.

(5) The duration of the intended parachute operation.

(6) The name, address, and telephone number of the person who requests the authorization or gives notice of the parachute operation.

(7) The registration number of the aircraft to be used.

(b) Each holder of a certificate of authorization issued under §§ 105.21(b) and 105.25(b) of this part must present that certificate for inspection upon the request of the Administrator or any Federal, State, or local official.

(c) Each person requesting an authorization under §§ 105.21(b) and 105.25(a)(2) of this part and each person submitting a notice under § 105.25(a)(3) of this part must promptly notify the air traffic control facility having jurisdiction...
over the affected airspace if the proposed or scheduled parachute operation is canceled or postponed.

§ 105.17 Flight visibility and clearance from cloud requirements.

No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft—
(a) Into or through a cloud, or
(b) When the flight visibility or the distance from any cloud is less than that prescribed in the following table:

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Flight visibility (statute miles)</th>
<th>Distance from clouds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,200 feet or less above the surface regardless of the MSL altitude.</td>
<td>3 500 feet below, 1,000 feet above, 2,000 feet horizontal.</td>
<td></td>
</tr>
<tr>
<td>More than 1,200 feet above the surface but less than 10,000 feet MSL.</td>
<td>3 500 feet below, 1,000 feet above, 2,000 feet horizontal.</td>
<td></td>
</tr>
<tr>
<td>More than 1,200 feet above the surface and at or above 10,000 feet MSL.</td>
<td>5 1,000 feet below, 1,000 feet above, 1 mile horizontal.</td>
<td></td>
</tr>
</tbody>
</table>

§ 105.19 Parachute operations between sunset and sunrise.

(a) No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a person to conduct a parachute operation from an aircraft between sunset and sunrise, unless the person or object descending from the aircraft displays a light that is visible for at least 3 statute miles.
(b) The light required by paragraph (a) of this section must be displayed from the time that the person or object is under a properly functioning open parachute until that person or object reaches the surface.

§ 105.21 Parachute operations over or into a congested area or an open-air assembly of persons.

(a) No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft, over or into a congested area of a city, town, or settlement, or an open-air assembly of persons unless a certificate of authorization for that parachute operation has been issued under this section. However, a parachutist may drift over a congested area or an open-air assembly of persons with a fully deployed and properly functioning parachute if that parachutist is at a sufficient altitude to avoid creating a hazard to persons or property on the surface.
(b) An application for a certificate of authorization issued under this section must—
(1) Be made in the form and manner prescribed by the Administrator, and
(2) Contain the information required in §105.15(a) of this part.
(c) Each holder of, and each person named as a participant in a certificate of authorization issued under this section must comply with all requirements contained in the certificate of authorization.
(d) Each holder of a certificate of authorization issued under this section must present that certificate for inspection upon the request of the Administrator, or any Federal, State, or local official.

§ 105.23 Parachute operations over or onto airports.

No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft, over or onto any airport unless—
(a) For airports with an operating control tower:
(1) Prior approval has been obtained from the management of the airport to conduct parachute operations over or on that airport.
(2) Two-way radio communications are maintained between the pilot of the aircraft involved in the parachute operation and the control tower of the airport over or onto which the parachute operation is being conducted.
(b) For airports without an operating control tower, prior approval has been obtained from the management of the airport to conduct parachute operations over or on that airport.
(c) A parachutist may drift over that airport with a fully deployed and properly functioning parachute if the parachutist is at least 2,000 feet above that
airport's traffic pattern, and avoids creating a hazard to air traffic or to persons and property on the ground.

§ 105.25 Parachute operations in designated airspace.

(a) No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft—

(1) Over or within a restricted area or prohibited area unless the controlling agency of the area concerned has authorized that parachute operation;

(2) Within or into a Class A, B, C, D airspace area without, or in violation of the requirements of, an air traffic control authorization issued under this section;

(3) Except as provided in paragraph (c) and (d) of this section, within or into Class E or G airspace area unless the air traffic control facility having jurisdiction over the airspace at the first intended exit altitude is notified of the parachute operation no earlier than 24 hours before or no later than 1 hour before the parachute operation begins.

(b) Each request for a parachute operation authorization or notification required under this section must be submitted to the air traffic control facility having jurisdiction over the airspace at the first intended exit altitude and must include the information prescribed by §105.15(a) of this part.

(c) For the purposes of paragraph (a)(3) of this section, air traffic control facilities may accept a written notification from an organization that conducts parachute operations and lists the scheduled series of parachute operations to be conducted over a stated period of time not longer than 12 calendar months. The notification must contain the information prescribed by §105.15(a) of this part, identify the responsible persons associated with that parachute operation, and be submitted at least 15 days, but not more than 30 days, before the parachute operation begins. The FAA may revoke the acceptance of the notification for any failure of the organization conducting the parachute operations to comply with its requirements.

(d) Paragraph (a)(3) of this section does not apply to a parachute operation conducted by a member of an Armed Force within a restricted area that extends upward from the surface when that area is under the control of an Armed Force.

Subpart C—Parachute Equipment and Packing

§ 105.41 Applicability.

This subpart prescribed rules governing parachute equipment used in civil parachute operations.

§ 105.43 Use of single-harness, dual-parachute systems.

No person may conduct a parachute operation using a single-harness, dual-parachute system, and no pilot in command of an aircraft may allow any person to conduct a parachute operation from that aircraft using a single-harness, dual-parachute system, unless that system has at least one main parachute, one approved reserve parachute, and one approved single person harness and container that are packed as follows:

(a) The main parachute must have been packed within 180 days before the date of its use by a certificated parachute rigger, the person making the next jump with that parachute, or a non-certificated person under the direct supervision of a certificated parachute rigger.

(b) The reserve parachute must have been packed by a certificated parachute rigger—

(1) Within 180 days before the date of its use, if its canopy, shroud, and harness are composed exclusively of nylon, rayon, or similar synthetic fiber or material that is substantially resistant to damage from mold, mildew, and other fungi, and other rotting agents propagated in a moist environment; or

(2) Within 60 days before the date of its use, if it is composed of any amount of silk, pongee, or other natural fiber, or material not specified in paragraph (b)(1) of this section.
§ 105.45 Use of tandem parachute systems.

(a) No person may conduct a parachute operation using a tandem parachute system, and no pilot in command of an aircraft may allow any person to conduct a parachute operation from that aircraft using a tandem parachute system, unless—

(1) One of the parachutists using the tandem parachute system is the parachutist in command, and meets the following requirements:

(i) Has a minimum of 3 years of experience in parachuting, and must provide documentation that the parachutist—

(ii) Has completed a minimum of 500 freefall parachute jumps using a ram-air parachute, and

(iii) Holds a master parachute license issued by an organization recognized by the FAA, and

(iv) Has successfully completed a tandem instructor course given by the manufacturer of the tandem parachute system used in the parachute operation or a course acceptable to the Administrator.

(v) Has been certified by the appropriate parachute manufacturer or tandem course provider as being properly trained on the use of the specific tandem parachute system to be used.

(2) The person acting as parachutist in command:

(i) Has briefed the passenger parachutist before boarding the aircraft. The briefing must include the procedures to be used in case of an emergency with the aircraft or after exiting the aircraft, while preparing to exit and exiting the aircraft, freefall, operating the parachute after freefall, landing approach, and landing.

(ii) Uses the harness position prescribed by the manufacturer of the tandem parachute equipment.

(b) No person may make a parachute jump with a tandem parachute system unless—

(1) The main parachute has been packed by a certificated parachute rigger, the parachutist in command making the next jump with that parachute, or a person under the direct supervision of a certificated parachute rigger.

(2) The reserve parachute has been packed by a certificated parachute rigger in accordance with §105.43(b) of this part.

(3) The tandem parachute system contains an operational automatic activation device for the reserve parachute, approved by the manufacturer of that tandem parachute system. The device must—

(i) Have been maintained in accordance with manufacturer instructions, and

(ii) Be armed during each tandem parachute operation.

(4) The passenger parachutist is provided with a manual main parachute activation device and instructed on the use of that device, if required by the owner/operator.

(5) The main parachute is equipped with a single-point release system.

§ 105.47 Use of static lines.

(a) Except as provided in paragraph (c) of this section, no person may conduct a parachute operation using a static line attached to the aircraft and the main parachute unless an assist device, described and attached as follows, is used to aid the pilot chute in performing its function, or, if no pilot chute is used, to aid in the direct deployment of the main parachute canopy. The assist device must—

(1) Be long enough to allow the main parachute container to open before a load is placed on the device.

(2) Have a static load strength of—

(i) At least 28 pounds but not more than 160 pounds if it is used to aid the pilot chute in performing its function; or

(ii) At least 56 pounds but not more than 320 pounds if it is used to aid in
§ 105.49 Foreign parachutists and equipment.

(a) No person may conduct a parachute operation, and no pilot in command of an aircraft may allow a parachute operation to be conducted from that aircraft with an unapproved foreign parachute system unless—

(1) The parachute system is worn by a foreign parachutist who is the owner of that system.

(2) The parachute system is of a single-harness dual parachute type.

(3) The parachute system meets the civil aviation authority requirements of the foreign parachutist’s country.

(4) All foreign non-approved parachutes deployed by a foreign parachutist during a parachute operation conducted under this section shall be packed as follows—

(i) The main parachute must be packed by the foreign parachutist making the next parachute jump with that parachute, a certificated parachute rigger, or any other person acceptable to the Administrator.

(ii) The reserve parachute must be packed in accordance with the foreign parachutist’s civil aviation authority requirements, by a certificated parachute rigger, or any other person acceptable to the Administrator.

PARTS 106–109 [RESERVED]