inch) thick aluminum foil to a thickness of 0.10 millimeter (0.004 inch) after thermal curing at 427 °C (800 °F) for 10 minutes. If a primer is used, the total thickness of the primer plus topcoat shall equal 0.10 millimeter (0.004 inch) after heat curing.

(3) The extracted surfaces shall meet the following extractability limits:

(i) Total extractives not to exceed 3.1 milligrams per square decimeter (0.2 milligram per square inch).

(ii) Fluoride extractives calculated as fluorine not to exceed 0.46 milligram per square decimeter (0.03 milligram per square inch).

(f) Conditions of use. Perfluorocarbon resins identified in paragraph (a)(2) of this section are limited to use as coatings or components of coatings for articles intended for repeated food-contact use.

§ 177.1555 Polyarylate resins.

Polyarylate resins (CAS Reg. No. 51706–10–6) may be safely used as articles or components of articles intended for use in contact with food in accordance with the following prescribed conditions:

(a) Identity. Polyarylate resins (1, 3-benzenedicarboxylic acid, diphenyl ester, polymer with diphenyl 1,4-benzenedicarboxylate and 4,4′-(1-methylethyldilide), bis(phenol)) are formed by melt polycondensation of bisphenol-A with diphenylisophthalate and diphenylterephthalate.

(b) Specifications. (1) The finished copolymers shall contain from 70 to 80 weight percent of polymer units derived from diphenylisophthalate and 20 to 30 weight percent of polymer units derived from diphenylterephthalate.

(2) Polyarylate resins shall have a minimum weight average molecular weight of 20,000.

(3) Polyarylate resins may be identified by their characteristic infrared spectra.

(c) Extractive limitations. The finished polyarylate resins in sheet form at least 0.5 millimeter (0.020 inch) thick, when extracted with water at 121 °C (250 °F) for 2 hours, shall yield total nonvolatile extractives not to exceed 2.33 micrograms per square centimeter (15 micrograms per square inch) of the exposed resin surface.

(d) Limitations. Polyarylate resin articles may be used in contact with all foods except beverages containing more than 8 volume percent ethanol under conditions of use A through H, described in table 2 of §176.170(c) of this chapter.

[52 FR 35540, Sept. 22, 1987]

§ 177.1556 Polyaryletherketone resins.

The poly(oxy-1,4-phenylene-carbonyl-1,4-phenyleneoxy-1,4-phenylene-carbonyl-1,4-phenylene) resins (CAS Reg. No. 55088–54–5 and CAS Reg. No. 60015–05–6 and commonly referred to as polyaryletherketone resins) identified in paragraph (a) of this section may be safely used as articles or components of articles intended for repeated use in contact with food, subject to the provisions of this section.

(a) Identity. Polyaryletherketone resins consist of basic resins produced by reacting 4,4′-diphenol benzophenone and terephthaloyl dichloride in such a way that the finished resins have a minimum weight average molecular weight of 20,000 grams per mole, as determined by light scattering measurements in sulfuric acid at room temperature.

(b) Optional adjuvant substances. The basic polyaryletherketone resins identified in paragraph (a) of this section may contain optional adjuvant substances required in the production of such basic resins. These adjuvants may include substances used in accordance with §174.5 of this chapter and the following:

(1) Benzoyl chloride, poly(tetrafluoroethylene).

(2) [Reserved]

(c) Extractive limitations. The finished food-contact article yields net total extractives in each extracting solvent not to exceed 0.052 milligram per square inch (corresponding to 0.008 milligram per square centimeter) of food-contact surface, when extracted at reflux temperature for 2 hours with the following solvents: Distilled water, 50 percent (by volume) ethyl alcohol in
§ 177.1560 Polyarylsulfone resins.

Polyarylsulfone resins (CAS Reg. No. 79293–56–4) may be safely used as articles or components of articles intended for use in contact with food, at temperatures up to and including normal baking temperatures, in accordance with the following prescribed conditions:

(a) Identity. Polyarylsulfone resins are copolymers containing not more than 25 percent of oxy-p-phenylene-oxy-p-phenylenesulfonyl-p-phenylene polymer units and not less than 75 percent of oxy-p-phenylenesulfonyl-p-phenylene-oxy-p-phenylenesulfonyl-p-phenylene polymer units. The copolymers have a minimum reduced viscosity of 0.40 deciliter per gram in 1-methyl-2-pyrrolidinone in accordance with ASTM method D2857–70 (Re-approved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is incorporated by reference. Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(b) Optional adjuvant substances. The basic polyarylsulfone resins identified in paragraph (a) of this section may contain optional adjuvant substances required in the production of such basic copolymers. These optional adjuvant substances may include substances permitted for such use by regulations in parts 170 through 179 of this chapter, substances generally recognized as safe in food, substances used in accordance with a prior sanction of approval, and substances named in this paragraph and further identified as required:

<table>
<thead>
<tr>
<th>Substances</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfolane</td>
<td>Not to exceed 0.15 percent as residual solvent in the finished basic resin.</td>
</tr>
</tbody>
</table>

(c) Extractive limitations. The finished polyarylsulfone resin when extracted for 2 hours with the following solvents at the specified temperatures yields total extractives in each extracting solvent not to exceed 0.008 milligram per square centimeter of food-contact surface:
- Distilled water at 121 °C (250 °F), 50 percent (by volume) ethyl alcohol in distilled water at 71.1 °C (160 °F), 3 percent acetic acid in distilled water at 100 °C (212 °F), and n-heptane at 65.6 °C (150 °F).

NOTE: In testing the finished polyarylsulfone resin use a separate test sample for each required extracting solvent.

[50 FR 31046, July 24, 1985]

§ 177.1570 Poly-1-butene resins and butene/ethylene copolymers.

The poly-1-butene resins and butene/ethylene copolymers identified in this section may be safely used as articles or components of articles intended for use in contact with food subject to the provisions of this section.

(a) Identity. Poly-1-butene resins are produced by the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by the catalytic polymerization of 1-butene liquid monomer in the presence of small amounts of ethylene monomer so as to yield no higher than a 6-weight percent concentration of polymer units derived from ethylene in the copolymer.

(b) Specifications and limitations. Poly-1-butene resins and butene/ethylene copolymers shall conform to the specifications prescribed in paragraph (a) of this section, and shall meet the extractability limits prescribed in paragraph (b)(2) of this section.

1. Specifications—(1) Infrared identification. Poly-1-butene resins and butene/ethylene copolymers can be identified by their characteristic infrared spectra.

 (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have