aldehyde. Vitamin A Wittig reagent and vitamin A aldehyde are reacted to- 
gether to form beta-carotene.

(b) The ingredient meets the speci-
fications of the Food Chemicals Codex, 3d Ed. (1981), p. 73, which is incor-
porated by reference. Copies are avail-
able from the National Academy Press, 2101 Constitution Ave. NW., 
Washington, DC 20418, or available for 
inspection at the National Archives 
and Records Administration (NARA).

For information on the availability of 
this material at NARA, call 202–741–
6030, or go to: http://www.archives.gov/
federal_register/
code_of_federal_regulations/
ibr_locations.html.

(c) In accordance with §184.1(b)(1), 
the ingredient is used in food with no 
limitation other than current good 
manufacturing practice. The affirma-
tion of this ingredient as generally rec-
ognized as safe (GRAS) as a direct 
human food ingredient is based upon 
the following current good manufac-
turing practice conditions of use: 
(1) The ingredient is used as a nutri-
ent supplement as defined in 
§170.3(o)(20) of this chapter.

(2) The ingredient is used in the fol-
lowing foods at levels not to exceed 
current good manufacturing practice: dairy product analogs as defined in 
§170.3(n)(10) of this chapter; fats and 
oils as defined in §170.3(n)(12) of this 
chapter; and processed fruits and fruit 
juices as defined in §170.3(n)(35) of this 
chapter. Beta-carotene may be used in 
infant formula as a source of vitamin A 
in accordance with section 412(g) of the 
Federal Food, Drug, and Cosmetic Act 
or with regulations promulgated under 
section 412(g) of the act.

(d) Prior sanctions for this ingredient 
different from the uses established in 
this section do not exist or have been 
waived.

[52 FR 25211, July 6, 1987]

§ 184.1250 Cellulase enzyme preparation 
derived from Trichoderma 
longibrachiatum.

(a) Cellulase enzyme preparation is 
derived from a nonpathogenic, 
nontoxicogenic strain of Trichoderma 
longibrachiatum (formerly T. reesei). The enzyme 
cellulase, catalyzes the 
endohydrolysis of 1,4-beta-glycosidic 
linkages in cellulose. It is obtained 
from the culture filtrate resulting from 
a pure culture fermentation process.

(b) The ingredient meets the general 
and additional requirements for en-
zyme preparations in the monograph 
specifications on enzyme preparations 
(1996), pp. 129 to 134, which is incor-
porated by reference in accordance 
with 5 U.S.C. 552(a) and 1 CFR part 51.

Copies are available from the National 
Academy Press, 2101 Constitution Ave. NW., 
Box 285, Washington, DC 20055 
(Internet http://www.nap.edu), or may 
be examined at the Center for Food 
Safety and Applied Nutrition’s Li-
brary, 5100 Paint Branch Pkwy., Col-
lege Park, MD 20740, or at the National 
Archives and Records Administration 
(NARA). For information on the avail-
ability of this material at NARA, call 
202–741–6030, or go to: 
http://www.archives.gov/federal_regis-
ter/code_of_federal_regulations/ibr_locations.html.

(c) In accordance with §184.1(b)(1), 
the ingredient is used in food with no 
limitation other than current good 
manufacturing practice. The affirma-
tion of this ingredient as generally rec-
ognized as safe (GRAS) as a direct 
human food ingredient is based upon 
the following current good manufac-
turing practice conditions of use: 
(1) The ingredient is used in food as 
an enzyme as defined in §170.3(o)(9) of 
this chapter for the breakdown of cel-
 lulose.

(2) The ingredient is used in food at 
levels not to exceed current good man-
ufacturing practice.

40 FR 28361, May 26, 1999)

§ 184.1257 Clove and its derivatives.

(a) Cloves are the dried unopened 
flower buds and calyx tubes, harvested 
before the flowers have opened, of the 
clove tree Eugenia caryophyllata 
Thunberg, native to tropical Asia. 
Their derivatives include essential oils 
(cloves, CAS Reg. No. 8000–34–8; buds; 
leaves, CAS Reg. No. 8015–97–2; stems, 
CAS Reg. No. 8015–98–3; and eugenol, 
CAS Reg. No. 97–53–0), oleoresins, and 
natural extractives obtained from 
clove buds, leaves, and stems.