§ 63.1566 What are my requirements for organic HAP emissions from catalytic reforming units?

(a) What emission limitations and work practice standards must I meet? You must:

(1) Meet each emission limitation in Table 15 of this subpart that applies to you. You can choose from the two options in paragraphs (a)(1)(i) through (ii) of this section:

(i) You can elect to vent emissions of total organic compounds (TOC) to a flare that meets the control device requirements in §63.11(b) (Option 1); or

(ii) You can elect to meet a TOC or nonmethane TOC percent reduction standard or concentration limit, whichever is less stringent (Option 2).

(2) Comply with each site-specific operating limit in Table 16 of this subpart that applies to you.

(3) Except as provided in paragraph (a)(4) of this section, the emission limitations in Tables 15 and 16 of this subpart apply to emissions from catalytic reforming unit process vents associated with initial catalyst depressuring and catalyst purging operations that occur prior to the coke burn-off cycle. The emission limitations in Tables 15 and 16 of this subpart do not apply to the coke burn-off, catalyst rejuvenation, reduction or activation vents, or to the control systems used for these vents.

(4) The emission limitations in Tables 15 and 16 of this subpart do not apply to emissions from process vents during depressuring and purging operations when the reactor vent pressure is 5 pounds per square inch gauge (psig) or less.

(5) Prepare an operation, maintenance, and monitoring plan according to the requirements in §63.1574(f) and operate at all times according to the procedures in the plan.

(b) How do I demonstrate initial compliance with the emission limitations and work practice standard? You must:

(1) Install, operate, and maintain a continuous monitoring system(s) according to the requirements in §63.1572 and Table 17 of this subpart.

(2) Conduct each performance test for a catalytic reforming unit according to the requirements in §63.1571 and under the conditions specified in Table 18 of this subpart.

(3) Establish each site-specific operating limit in Table 16 of this subpart that applies to you according to the procedures in Table 18 of this subpart.

(4) Use the procedures in paragraph (b)(4)(i) or (ii) of this section to determine initial compliance with the emission limitations:

(i) If you elect the percent reduction standard under Option 2, calculate the emission rate of nonmethane TOC using Equation 1 of this section (if you use Method 25) or Equation 2 of this section (if you use Method 25A or Methods 25A and 18), then calculate the mass emission reduction using Equation 3 of this section as follows:
E = K_1 M_c Q_s \quad \text{(Eq. 1)}

Where:
E = Emission rate of nonmethane TOC in the vent stream, kilograms-C per hour;
K_1 = Constant, 6.0 \times 10^{-5} \text{ (kilograms per milligram)(minutes per hour)};
M_c = Mass concentration of total gaseous nonmethane organic (as carbon) as measured and calculated using Method 25 in appendix A to part 60 of this chapter, mg/dscm; and
Q_s = Vent stream flow rate, dscm/min, at a temperature of 20 degrees Celsius (C).

E = K_5 (C_{TOC} - \frac{1}{6} C_{methane}) Q_s \quad \text{(Eq. 2)}

Where:
K_5 = Constant, 1.8 \times 10^{-4} \text{ (parts per million)}^{-1} \text{ (gram-mole per standard cubic meter)}^{-1} \text{ (gram-C per gram-mole-hexane)}^{-1} \text{ (kilogram per gram)}^{-1} \text{ (minutes per hour)},
C_{TOC} = Concentration of TOC on a dry basis in ppmv as hexane as measured by Method 25A in appendix A to part 60 of this chapter;
C_{methane} = Concentration of methane on a dry basis in ppmv as measured by Method 18 in appendix A to part 60 of this chapter.

% reduction = \frac{E_i - E_o}{E_i} \times 100\% \quad \text{(Eq. 3)}

Where:
E_i = Mass emission rate of TOC at control device inlet, kg/hr; and
E_o = Mass emission rate of TOC at control device outlet, kg/hr.

(ii) If you elect the 20 parts per million by volume (ppmv) concentration limit, correct the measured TOC concentration for oxygen (O_2) content in the gas stream using Equation 4 of this section as follows:

C_{NMTOC, 3\%O_2} = \left( C_{TOC} - \frac{1}{6} C_{methane} \right) \left( \frac{17.9\%}{20.9\% - \%O_2} \right) \quad \text{(Eq. 4)}

Where:
C_{NMTOC, 3\%O_2} = Concentration of nonmethane TOC on a dry basis in ppmv as hexane corrected to 3 percent oxygen.

(5) You are not required to do a TOC performance test if:
(i) You elect to vent emissions to a flare as provided in paragraph (a)(1)(i) of this section (Option 1); or
(ii) You elect the TOC percent reduction or concentration limit in paragraph (a)(1)(ii) of this section (Option 2), and you use a boiler or process heater with a design heat input capacity of 44 MW or greater or a boiler or process heater in which all vent streams are introduced into the flame zone.

(6) Demonstrate initial compliance with each emission limitation that applies to you according to Table 19 of this subpart.

(7) Demonstrate initial compliance with the work practice standard in paragraph (a)(5) of this section by submitting the operation, maintenance, and monitoring plan to your permitting authority as part of your Notification of Compliance Status.

(8) Submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.1574.

(c) How do I demonstrate continuous compliance with the emission limitations and work practice standards? You must:
(1) Demonstrate continuous compliance with each emission limitation in
§ 63.1567 What are my requirements for inorganic HAP emissions from catalytic reforming units?

(a) What emission limitations and work practice standards must I meet? You must:
(1) Meet each emission limitation in Table 22 to this subpart that applies to you. If you operate a catalytic reforming unit in which different reactors in the catalytic reforming unit are regenerated in separate regeneration systems, then these emission limitations apply to each separate regeneration system. These emission limitations apply to emissions from catalytic reforming unit process vents associated with coke burn-off and catalyst rejuvenation operations during coke burn-off and catalyst regeneration. You can choose from the two options in paragraphs (a)(1)(i) through (ii) of this section:
   (i) You can elect to meet a percent reduction standard for hydrogen chloride (HCl) emissions (Option 1); or
   (ii) You can elect to meet an HCl concentration limit (Option 2).
(2) Meet each site-specific operating limit in Table 23 of this subpart that applies to you. These operating limits apply during coke burn-off and catalyst rejuvenation.
(3) Prepare an operation, maintenance, and monitoring plan according to the requirements in §63.1574(f) and operate at all times according to the procedures in the plan.

(b) How do I demonstrate initial compliance with the emission limitations and work practice standard? You must:
(1) Install, operate, and maintain a continuous monitoring system(s) according to the requirements in §63.1572 and Table 24 of this subpart.
(2) Conduct each performance test for a catalytic reforming unit according to the requirements in §63.1571 and the conditions specified in Table 25 of this subpart.
(3) Establish each site-specific operating limit in Table 23 of this subpart that applies to you according to the procedures in Table 25 of this subpart.
(4) Use the equations in paragraphs (b)(4)(i) through (iv) of this section to determine initial compliance with the emission limitations.
   (i) Correct the measured HCl concentration for oxygen (O₂) content in the gas stream using Equation 1 of this section as follows:

   \[ C_{\text{HCl,3\%O₂}} = \left( \frac{17.9\%}{20.9\% - \%O₂} \right) C_{\text{HCl}} \quad (\text{Eq. 1}) \]

   Where:
   \( C_{\text{HCl,3\%O₂}} \) = Concentration of HCl on a dry basis in ppmv corrected to 3 percent oxygen or 1 ppmv, whichever is greater.
   \( C_{\text{HCl}} \) = Concentration of HCl on a dry basis in ppmv, as measured by Method 26A in 40 CFR part 60, appendix A; and
   \%O₂ = Oxygen concentration in percent by volume (dry basis).

   (i) If you elect the percent reduction standard, calculate the emission rate of HCl using Equation 2 of this section;

   \[ E_{\text{HCl}} = K_s C_{\text{HCl}} Q_s \quad (\text{Eq. 2}) \]

   Where:
   \( E_{\text{HCl}} \) = Emission rate of HCl in the vent stream, grams per hour;
   \( K_s \) = Constant, 0.091 (parts per million)⁻¹ (grams HCl per standard cubic meter) (minutes per hour), where the standard

   (ii) If you elect the percent reduction standard, calculate the emission rate of HCl using Equation 2 of this section;