## **Environmental Protection Agency**

tested shall follow procedures detailed in 40 CFR 86.130-96 and 86.131-96.

[59 FR 7813, Feb. 16, 1994, as amended at 71 FR 74567, Dec. 15, 2005]

## § 80.51 Vehicle test procedures.

The test sequence applicable when augmenting the emission models through vehicle testing is as follows:

- (a) Prepare vehicles per §80.50.
- (b) Initial preconditioning per §80.52(a)(1). Vehicles shall be refueled randomly with the fuels required in §80.49 when testing to augment the complex emission model.
- (c) Exhaust emissions tests, dynamometer procedure per 40 CFR 86.137-90 with:
- (1) Exhaust Benzene and 1,3-Butadiene emissions measured per §80.55; and
- (2) Formaldehyde and Acetelaldehyde emissions measured per §80.56.

# §80.52 Vehicle preconditioning.

- (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in accordance with the "General vehicle handling requirements" per 40 CFR 86.132-96, up to and including the completion of the hot start exhaust test.
- (b) The preconditioning procedure prescribed at 40 CFR 86.132-96 shall be observed for preconditioning vehicles between tests using the same fuel.

# $\S\S 80.53-80.54$ [Reserved]

#### §80.55 Measurement methods for benzene and 1,3-butadiene.

- (a) Sampling for benzene and 1,3-butadiene must be accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR 86.109.
- (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for benzene and 1,3-butadiene in bag samples for the baseline fuel are 4.0 ppm and 0.30 ppm respectively. At least three standards ranging from at minimum 50% to 150% of these expected values must be used to calibrate the detector. An additional standard of at most 0.01 ppm must also be measured to determine the required limit of quantification as described in paragraph (d) of this section.

- (c) The sample injection size used in the chromatograph must be sufficient to be above the laboratory determined limit of quantification (LOQ) as defined in paragraph (d) of this section for at least one of the bag samples. A control chart of the measurements of the standards used to determine the response, repeatability, and limit of quantitation of the instrumental method for 1,3-butadiene and benzene must be reported.
- (d) As in all types of sampling and analysis procedures, good laboratory practices must be used. See. Lawrence. Principals of Environmental Analysis, 55 Analytical Chemistry 14, at 2210-2218 (1983) (copies may be obtained from the publisher, American Chemical Society, 1155 16th Street NW., Washington, DC 20036). Reporting reproducibility control charts and limits of detection measurements are integral procedures to assess the validity of the chosen analytical method. The repeatability of the test method must be determined by measuring a standard periodically during testing and recording the measured values on a control chart. The control chart shows the error between the measured standard and the prepared standard concentration for the periodic testing. The error between the measured standard and the actual standard indicates the uncertainty in the analysis. The limit of detection (LOD) is determined by repeatedly measuring a blank and a standard prepared at a concentration near an assumed value of the limit of detection. If the average concentration minus the average of the blanks is greater than three standard deviations of these measurements, then the limit of detection is at least as low as the prepared standard. The limit of quantitation (LOQ) is defined as ten times the standard deviation of these measurements. This quantity defines the amount of sample required to be measured for a valid analysis.
- (e) Other sampling and analytical techniques will be allowed if they can be proven to have equal specificity and equal or better limits of quantitation. Data from alternative methods that can be demonstrated to have equivalent or superior limits of detection,