Environmental Protection Agency

Where:

 $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).

- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- $D = Density of CO_2$ at standard conditions (metric tons per standard cubic meter): 0.0018704.

§98.474

- $$\begin{split} C_{\rm CO2,p,r} &= {\rm Quarterly}\ {\rm CO}_2\ {\rm concentration}\ {\rm measurement}\ {\rm in}\ {\rm flow}\ {\rm for}\ {\rm flow}\ {\rm meter}\ {\rm r}\ {\rm in}\ {\rm quarter}\ {\rm p}\ ({\rm vol.}\ {\rm percent}\ {\rm CO}_2,\ {\rm expressed}\ {\rm as}\ {\rm a}\ {\rm decimal}\ {\rm fraction}). \end{split}$$
- p = Quarter of the year.
- r = Receiving flow meter.

(3) If you receive CO_2 through more than one flow meter, you must sum the mass of all CO_2 received in accordance with the procedure specified in Equation UU-3 of this section.

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$
 (Eq. UU-3)

Where:

Where:

- CO_2 = Total net annual mass of CO_2 received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation UU-1 or UU-2 for flow meter r.

r = Receiving flow meter.

(b) You must calculate and report the annual mass of CO_2 received in containers using the procedures specified in either paragraph (b)(1) or (b)(2) of this section.

(1) If you are measuring the mass of contents in a container under the provisions of 98.474(a)(2)(i), you must calculate the CO₂ received in containers using Equation UU–1 of this section.

Where:

- $\mathrm{CO}_{2T,r}$ = Annual mass of CO_2 received in containers r (metric tons).
- $$\begin{split} C_{CO2,p,r} &= Quarterly \ CO_2 \ concentration \ measurement \ of \ contents \ in \ containers \ r \ in \ quarter \ p \ (wt. \ percent \ CO_2, \ expressed \ as \ a \ decimal \ fraction). \end{split}$$
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- $S_{r,p}$ = Quarterly mass of contents in containers r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- p = Quarter of the year.

r = Containers.

(2) If you are measuring the volume of contents in a container under the provisions of \$98.474(a)(2)(ii), you must calculate the CO₂ received in containers using Equation UU-2 of this section.

- CO_{2T,r} = Annual mass of CO₂ received in containers r (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- $S_{r,p}$ = Quarterly mass of contents in containers r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- Q_{r,p} = Quarterly volume of contents in containers r in quarter p (standard cubic meters).
- D = Density of the CO_2 received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.
- p = Quarter of the year.
- r = Containers.

§98.474 Monitoring and QA/QC requirements.

(a) CO_2 received.

(1) You must determine the quarterly flow rate of CO_2 received by pipeline by following the most appropriate of the following procedures:

(i) You may measure flow rate at the receiving custody transfer meter prior to any subsequent processing operations at the facility and collect the flow rate quarterly.

(ii) If you took ownership of the CO_2 in a commercial transaction, you may use the quarterly flow rate data from the sales contract if it is a one-time transaction or from invoices or manifests if it is an ongoing commercial transaction with discrete shipments. (iii) If you inject CO_2 from a production process unit that is part of your facility, you may use the quarterly CO_2 flow rate that was measured at the equivalent of a custody transfer meter following procedures provided in subpart PP of this part. To be the equivalent of a custody transfer meter, a meter must measure the flow of CO_2 being transported to an injection well to the same degree of accuracy as a meter used for commercial transactions.

(2) You must determine the quarterly mass or volume of contents in all containers if you receive CO_2 in containers by the most appropriate of the following procedures:

(i) You may measure the mass of contents of containers summed quarterly using weigh bills, scales, or load cells.

(ii) You may determine the volume of the contents of containers summed quarterly.

(iii) If you took ownership of the CO_2 in a commercial transaction, you may use the quarterly mass or volume of contents from the sales contract if it is a one-time transaction or from invoices or manifests if it is an ongoing commercial transaction with discrete shipments.

(3) You must determine a quarterly concentration of the CO_2 received that is representative of all CO_2 received in that quarter by following the most appropriate of the following procedures:

(i) You may sample the CO_2 stream at least once per quarter at the point of receipt and measure its CO_2 concentration.

(ii) If you took ownership of the CO_2 in a commercial transaction for which the sales contract was contingent on CO_2 concentration, and if the supplier of the CO_2 sampled the CO_2 stream in a quarter and measured its concentration per the sales contract terms, you may use the CO_2 concentration data from the sales contract for that quarter.

(iii) If you inject CO_2 from a production process unit that is part of your facility, you may report the quarterly CO_2 concentration of the CO_2 stream supplied that was measured following procedures provided in subpart PP of this part as the quarterly CO_2 concentration of the CO_2 stream received.

40 CFR Ch. I (7–1–11 Edition)

(4) You must assume that the CO_2 you receive meets the definition of a CO_2 stream unless you can trace it through written records to a source other than a CO_2 stream.

(b) Measurement devices.

(1) All flow meters must be operated continuously except as necessary for maintenance and calibration.

(2) You must calibrate all flow meters used to measure quantities reported in \$98.476 according to the calibration and accuracy requirements in \$98.3(i).

(3) You must operate all measurement devices according to one of the following. You may use an appropriate standard method published by a consensus-based standards organization if such a method exists or an industry standard practice. Consensus-based standards organizations include, but are not limited to, the following: ASTM International, the American National Standards Institute (ANSI), the American Gas Association (AGA), the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the North American Energy Standards Board (NAESB).

(4) You must ensure that any flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

(c) General.

(1) If you measure the concentration of any CO_2 quantity for reporting, you must measure according to one of the following. You may use an appropriate standard method published by a consensus-based standards organization if such a method exists or an industry standard practice.

(2) You must convert all measured volumes of CO_2 to the following standard industry temperature and pressure conditions for use in Equations UU-2 of this subpart: standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere.

(3) For 2011, you may follow the provisions of 98.3(d)(1) through (2) for best available monitoring methods rather than follow the monitoring requirements of this section. For purposes of this subpart, any reference to

Environmental Protection Agency

the year 2010 in 98.3(d)(1) through (2) shall mean 2011.

§98.475 Procedures for estimating missing data.

A complete record of all measured parameters used in the GHG quantities calculations is required.

(a) Whenever the monitoring procedures for all facilities that used flow meters covered under this subpart cannot be followed to measure flow, the following missing data procedures must be followed:

(1) Another calculation methodology listed in 98.474(a)(1) must be used if possible.

(2) If another method listed in §98.474(a)(1) cannot be used, a quarterly flow rate value that is missing must be estimated using a representative flow rate value from the nearest previous time period.

(b) Whenever the monitoring procedures of this subpart cannot be followed to measure quarterly quantity of CO_2 received in containers, the most appropriate of the following missing data procedures must be followed:

(1) Another calculation methodology listed in 98.474(a)(2) must be used if possible.

(2) If another method listed in §98.474(a)(2) cannot be used, a quarterly mass or volume that is missing must be estimated using a representative mass or volume from the nearest previous time period.

(c) Whenever the monitoring procedures cannot be followed to measure CO_2 concentration, the following missing data procedures must be followed:

(1) Another calculation methodology listed in §98.474(a)(3) must be used if possible.

(2) If another method listed in §98.474(a)(3) cannot be used, a quarterly concentration value that is missing must be estimated using a representative concentration value from the nearest previous time period.

§98.476 Data reporting requirements.

If you are subject to this part and report under this subpart, you are not required to report the information in \$98.3(c)(4) for this subpart. In addition to the information required by \$98.3(c)(1) through \$98.3(c)(3) and by

98.3(c)(5) through 98.3(c)(9), you must report the information listed in this section.

(a) If you receive CO_2 by pipeline, report the following for each receiving flow meter:

(1) The total net mass of CO_2 received (metric tons) annually.

(2) If a volumetric flow meter is used to receive CO_2 :

(i) The volumetric flow through a receiving flow meter at standard conditions (in standard cubic meters) in each quarter.

(ii) The volumetric flow through a receiving flow meter that is redelivered to another facility without being injected into your well (in standard cubic meters) in each quarter.

(iii) The CO_2 concentration in the flow (volume percent CO_2 expressed as a decimal fraction) in each quarter.

(3) If a mass flow meter is used to receive CO_2 :

(i) The mass flow through a receiving flow meter (in metric tons) in each quarter.

(ii) The mass flow through a receiving flow meter that is redelivered to another facility without being injected into your well (in metric tons) in each quarter.

(iii) The CO_2 concentration in the flow (weight percent CO_2 expressed as a decimal fraction) in each quarter.

(4) The standard or method used to calculate each value in paragraphs (a)(2) through (a)(3) of this section.

(5) The number of times in the reporting year for which substitute data procedures were used to calculate values reported in paragraphs (a)(2) through (a)(3) of this section.

(6) Whether the flow meter is mass or volumetric.

(b) If you receive CO_2 in containers, report:

(1) The mass (in metric tons) or volume at standard conditions (in standard cubic meters) of contents in containers in each quarter.

(2) The concentration of CO_2 of contents in containers (volume or weight percent CO_2 expressed as a decimal fraction) in each quarter.

(3) The mass (in metric tons) or volume (in standard cubic meters) of contents in containers that is redelivered