§ 180.3 Tolerances for related pesticide chemicals.

(a) Pesticide chemicals that cause related pharmacological effects will be regarded, in the absence of evidence to the contrary, as having an additive deleterious action. (For example, many pesticide chemicals within each of the following groups have related pharmacological effects: Chlorinated organic pesticides, arsenic-containing chemicals, metallic dithiocarbamates, cholinesterase-inhibiting pesticides.)

(b) Tolerances established for such related pesticide chemicals may limit the amount of a common component (such as As₂O₃) that may be present, or may limit the amount of biological activity (such as cholinesterase inhibition) that may be present, or may limit the total amount of related pesticide chemicals (such as chlorinated organic pesticides) that may be present.

(c)(1) Where tolerances for inorganic bromide in or on the same raw agricultural commodity are set in two or more sections in this part (example: §§180.123 and 180.199), the overall quantity of inorganic bromide to be tolerated from use of the same pesticide in different modes of application or from two or more pesticide chemicals for which tolerances are established is the highest of the separate applicable tolerances. For example, where the bromide tolerance on asparagus from methyl bromide commodity fumigation is 100 parts per million (40 CFR 180.123) and on asparagus from methyl bromide soil treatment is 300 parts per million (40 CFR 180.199), the overall inorganic bromide tolerance for asparagus grown on methyl bromide-treated soil and also fumigated with methyl bromide after harvest is 300 parts per million.
(2) Where tolerances are established in terms of inorganic bromide residues only from use of organic bromide fumigants on raw agricultural commodities, such tolerances are sufficient to protect the public health, and no additional concurrent tolerances for the organic pesticide chemicals from such use are necessary. This conclusion is based on evidence of the dissipation of the organic pesticide or its conversion to inorganic bromide residues in the food when ready to eat.

(d)(1) Where tolerances are established for both calcium cyanide and hydrogen cyanide on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as hydrogen cyanide.

(2) Where tolerances are established for residues of both O,O-diethyl S-[2-(ethylthio)ethyl] phosphorodithioate and demeton (a mixture of O,O-diethyl O-(and S-) [2-(ethylthio)ethyl] phosphorothioates) on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as demeton.

(3) Where tolerances are established for both terpene polychlorinates (chlorinated mixture of camphene, pinene, and related terpenes, containing 65-66 percent chlorine) and toxaphene (chlorinated camphene containing 67-69 percent chlorine) on the same raw agricultural commodities, the total amount of such pesticides shall not yield more residue than that permitted by the larger of the two tolerances, calculated as toxaphene.

(4) Where a tolerance is established for more than one pesticide containing arsenic found in, or on a raw agricultural commodity, the total amount of such pesticide shall not exceed the highest established tolerance calculated as \(\text{As}_2\text{O}_3 \).

(5) Where tolerances are established for more than one member of the class of dithiocarbamates listed in paragraph (e)(3) of this section on the same raw agricultural commodity, the total residue of such pesticides shall not exceed that permitted by the highest tolerance established for any one member of the class, calculated as zinc ethylenebis(dithiocarbamate).

(6) Where tolerances are established for residues of both S,S,S-tributyl phosphorotrithioate and tributyl phosphorotrithioate in or on the same raw agricultural commodity, the total amount of such pesticides shall not yield more residue than that permitted by the higher of the two tolerances, calculated as S,S,S-tributyl phosphorotrithioate.

(7) Where tolerances are established for residues of O,S-dimethyl phosphoramidotioate, resulting from the use of acephate (O,S-dimethyl acetylphosphoramidose) and/or O,S-dimethylphosphoramidophosphate on the same agricultural commodity, the total amount of such residues shall not exceed that permitted by the higher of the two tolerances.

(8) Where a tolerance is established for more than one pesticide having the metabolites 1-(3,4-dichlorophenyl)-3-methyurea (DCPMU) and 3,4-dichlorophenylurea (DCPU) found in or on a raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for a pesticide having these metabolites.

(9) Where a tolerance is established for more than one pesticide having as metabolites compounds containing the benzimidazole moiety found in or on a raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for a pesticide having these metabolites.

(10) Where a tolerance is established for triclopyr, chloropryfos, and chlorpyrifos-methyl having the common metabolite 3,5,6-trichloro-2-pyridinol on the same raw agricultural commodity, the total amount of such residues shall not exceed the highest established tolerance for any of the pesticides having the metabolites.

(11) Where tolerances are established for more than one pesticide having the metabolite 3,5,6-trichloro-2-pyridinol found in or on the raw agricultural commodity, the total amount of such residues shall not exceed the highest
established tolerance for a pesticide having this metabolite.

(12) Where tolerances are established for residues of methomyl, resulting from the use of thiodicarb and/or methomyl on the same raw agricultural commodity, the total amount of methomyl shall not yield more residue than that permitted by the higher of the two tolerances.

(e) Except as noted in paragraphs (e)(1) and (2) of this section, where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity the tolerance for the total of such residues shall be the same as that for the chemical having the lowest numerical tolerance in this class, unless a higher tolerance level is specifically provided for the combined residues by a regulation in this part.

(1) Where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity and there are available methods that permit quantitative determination of each residue, the quantity of combined residues that are within the tolerance may be determined as follows:

(i) Determine the quantity of each residue present.

(ii) Divide the quantity of each residue by the tolerance that would apply if it occurred alone, and multiply by 100 to determine the percentage of the permitted amount of residue present.

(iii) Add the percentages so obtained for all residues present.

(iv) The sum of the percentages shall not exceed 100 percent.

(2) Where residues from two or more chemicals in the same class are present in or on a raw agricultural commodity and there are available methods that permit quantitative determinations of one or more, but not all, of the residues, the amounts of such residues as may be determinable shall be deducted from the total amount of residues present and the remainder shall have the same tolerance as that for the chemical having the lowest numerical tolerance in that class. The quantity of combined residues that are within the tolerance may be determined as follows:

(i) Determine the quantity of each determinable residue present.

(ii) Deduct the amounts of such residues from the total amount of residues present and consider the remainder to have the same tolerance as that for the chemical having the lowest numerical tolerance in that class.

(iii) Divide the quantity of each determinable residue by the tolerance that would apply if it occurred alone and the quantity of the remaining residue by the tolerance for the chemical having the lowest numerical tolerance in that class and multiply by 100 to determine the percentage of the permitted amount of residue present.

(iv) Add the percentages so obtained for all residues present.

(v) The sum of the percentages shall not exceed 100 percent.

(3) The following pesticides are members of the class of dithiocarbamates:

A mixture of 5.2 parts by weight of ammoniates of (ethylenebis(dithiocarbamato)]zinc with 1 part by weight ethylenebis(dithiocarbamic acid) bimolecular and trimolecular cyclic anhydrosulfides and disulfides.

2-Chloroallyl diethyldithiocarbamate.

Coordination product of zinc ion and maneb containing 20 percent manganese, 2.5 percent zinc, and 77.5 percent ethylenebisdithiocarbamate.

Ferbam.
Maneb.
Manganese dimethyldithiocarbamate.
Sodium dimethyldithiocarbamate.
Thiram.
Zineb.
Ziram.

(4) The following are members of the class of chlorinated organic pesticides:

Aldrin.
BHC (benzene hexachloride).
1,3-Bis(p-chlorophenyl)-2,2,2-trichloroethanol.
Chlorbenside (p-chlorobenzyl p-chlorophenyl sulfide).
Chlordane.
Chlorobenzilate (ethyl 4,4'-dichlorobenzilate).
Chlorphenoxycetic acid.
Chlorphenyl-2,4,5-trichlorophenyl sulfide.
DDD (TDE).
DDT.
1,1-Dichloro-2,2-bis(p-ethylphenyl) ethane.
2,6-Dichloro-4-nitroaniline.
2,4-Dichlorophenyl p-nitrophenyl ether.
Dieldrin.
Dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta[c]dipentalene.
§ 180.3

Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a, 6,9a-hexahydro-6,9-methano-2,4,3- benzodioxathiepin-3-oxide).

Endosulfan sulfate (6,7,8,9,10,10-hexachloro-1,5,5a,6,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3,3-dioxide).

Heptachlor (1,4,5,6,7,8-heptachlor-3a,4,7,7a-tetrahydro-4,7-methanoindene).

Heptachlor epoxide (1,4,5,6,7,8-heptachlor-2,3-epoxy-2,3,3a,4,7,7a-hexahydro-4,7-methanoindene).

Hexachlorophene (2,2′-methylenebis(3,4,6-trichlorophenol) and its monosodium salt. Isopropyl 4,4′-dichlorobenzilate.

Lindane.

Methoxychlor.

Oxam (p-chlorophenyl p-chlorobenzenesulfonate).

Oxam (sodium 2,4-dichloro-2,3,5,6-tetrachloronitrobenzene.

Oxam (toluene-4,4′-diisopropyl phosphorodithioate) (both calculated as O,O-diisopropyl phosphorodithioate).

Oxam (p-methylcarbamoylmethyl) phosphorodithioate).

Oxam (p-methylcarbamoylmethyl) phosphorodithioate).

Oxam (2-ethylthio)ethyl) phosphorothioates).

Oxam (2-oxo-2-oxo-4-oxo-1,2,3-benzotriazin-3-y1 methyl phosphonate).

4-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate.

4-Chloro-1-(2,4,5-dichlorophenyl) vinyl diethyl phosphate.

Coumaphos (O,O-diethyl O-3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl phosphorothioate).

Coumaphos oxygen analog (O,O-diethyl O-3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl phosphorothioate).

Coumaphos oxygen analog (O,O-diethyl O-3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl phosphorothioate).

Coumaphos oxygen analog (S-2-chloro-1-pthalimidomethyl) O-O-dihydrorophoridithioate).

Coumaphos oxygen analog (S-2-chloro-1-pthalimidomethyl) O-O-dihydrorophoridithioate).

Diafol (S-2-chloro-1-pthalimidomethyl) O-O-dihydrorophoridithioate).

Diafol oxygen analog (S-2-chloro-1-pthalimidomethyl) O-O-dihydrorophoridithioate).

Demeton (a mixture of O,O-diethyl O-(and S)-2-ethyhtioethyl) phosphorothioates).

Ethisolate (S-ethyl diethylthiocarbamate).

2,2-Dichlorovinyl dimethyl phosphate.

O,O-Diethyl O-(2-diethylamino-6-methyl-4-pyrimidinyl) phosphorothioate and its oxygen analog diethyl 2-diethylamino-6-methyl-4-pyrimidinyl phosphinate.

O,O-Diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate.

Diethyl 2-pyrazinyl phosphate.

O,O-Diethyl O-2-pyrazinyl phosphorothioate.

S-(O-O-Diisopropyl phosphoridithioate) of N-(2-mercaptoethyl) benzenesulfonamide.

S-(O-O-Diisopropyl phosphoridithioate) of N-(2-mercaptoethyl) benzenesulfonamide.

S-(Dimethylamino)-5,6-dimethyl-4-pyrimidinyl dimethylcarbonate and its metabolites.

5,6-dimethyl-2-(formylmethylamino)-4-pyrimidinyl dimethylcarbonate and 5,6-dimethyl-2-(methylamino)-4-pyrimidinyl dimethylcarbonate (both calculated as parent).

Dimethoate (O,O-dimethyl S-(N-methylcarbamoylmethyl) phosphoridithioate).

Dimethoate oxygen analog (O,O-dimethyl S-(N-methylcarbamoylmethyl) phosphoridithioate).

Dimethoate oxygen analog (O,O-diethyl S-(N-methylcarbamoylmethyl) phosphoridithioate).

O,O-Diethyl O-p-(dimethylsulfamoyl) phenyl phosphothioate.

O,O-Dimethyl O-p-(dimethylsulfamoyl) phenyl phosphorothioate.

3,5-Dimethyl-4-(methylthio) phenyl methyl carbamate.

O,O-Dimethyl S-(4-oxo-1,2,3-benzotriazin-3-(4H)-ylmethyl) phosphoridithioate.

Dimethyl phosphorothioate of 3-hydroxy-N,N-dimethyl-cis-crotonamide.

Dimethyl phosphorothioate of 3-hydroxy-N,N-dimethyl-cis-crotonamide.

Dimethyl phosphorothioate of α-methylbenzyl 3-hydroxy-cis-crotonate.

O,O-Dimethyl 2,2,2-trichloro-1-hydroxyethyl phosphate.

416

40 CFR Ch. 1 (7–1–11 Edition)
Environmental Protection Agency

§ 180.5 Exceptions.

The substances listed in this section are excepted from the definitions of “pesticide chemical” and “pesticide chemical residue” under FFDCA section 201(q)(3) and are therefore exempt from regulation under FFDCA section 402(a)(2)(B) and 408. These substances are subject to regulation by the Food and Drug Administration as food additives under FFDCA section 409.

(a) Inert ingredients in food packaging treated with a pesticide, when such inert ingredients are the components of the food packaging material (e.g., paper and paperboard, coatings, adhesives, and polymers).

(b) [Reserved]

§ 180.5 Zero tolerances.

A zero tolerance means that no amount of the pesticide chemical may remain on the raw agricultural commodity when it is offered for shipment. A zero tolerance for a pesticide chemical in or on a raw agricultural commodity may be established because, among other reasons:

(a) A safe level of the pesticide chemical in the diet of two different species of warm-blooded animals has not been reliably determined.