Environmental Protection Agency

Parameter	Maximum level (mg/l)
Coliform Bacteria | 1/100 ml

[Comment: Turbidity is applicable only to surface water supplies.]

APPENDIX IV TO PART 265—TESTS FOR SIGNIFICANCE

As required in §265.93(b) the owner or operator must use the Student’s t-test to determine statistically significant changes in the concentration or value of an indicator parameter in periodic ground-water samples when compared to the initial background concentration or value of that indicator parameter. The comparison must consider individually each of the wells in the monitoring system. For three of the indicator parameters (specific conductance, total organic carbon, and total organic halogen) a single-tailed Student’s t-test must be used to test at the 0.01 level of significance for significant increases over background. The difference test for pH must be a two-tailed Student’s t-test at the overall 0.01 level of significance.

The student’s t-test involves calculation of the value of a t-statistic for each comparison of the mean (average) concentration or value (based on a minimum of four replicate measurements) of an indicator parameter with its initial background concentration or value. The calculated value of the t-statistic must then be compared to the value of the t-statistic found in a table for t-test of significance at the specified level of significance. A calculated value of t which exceeds the value of t found in the table indicates a statistically significant change in the concentration or value of the indicator parameter.

Formulas for calculation of the t-statistic and tables for t-test of significance can be found in most introductory statistics texts.

APPENDIX V TO PART 265—EXAMPLES OF POTENTIALLY INCOMPATIBLE WASTE

Many hazardous wastes, when mixed with other waste or materials at a hazardous waste facility, can produce effects which are harmful to human health and the environment, such as (1) heat or pressure, (2) fire or explosion, (3) violent reaction, (4) toxic dusts, mists, fumes, or gases, or (5) flammable fumes or gases.

Below are examples of potentially incompatible waste materials or components.

This list is not intended to be exhaustive. An owner or operator must, as the regulations require, adequately analyze his wastes so that he can avoid creating uncontrolled substances or reactions of the type listed below, whether they are listed below or not.

It is possible for potentially incompatible wastes to be mixed in a way that precludes a reaction (e.g., adding acid to water rather than water to acid) or that neutralizes them (e.g., a strong acid mixed with a strong base), or that controls substances produced (e.g., by generating flammable gases in a closed tank equipped so that ignition cannot occur, and burning the gases in an incinerator).

In the lists below, the mixing of a Group A material with a Group B material may have the potential consequence as noted.

Group 1–A Group 1–B
- Acetylene sludge Acid sludge
- Alkaline caustic liquids Acid and water
- Alkaline cleaner Battery acid
- Alkaline corrosive liquids Chemical cleaners
- Alkaline corrosive battery fluid Etching acid liquids or solvent
- Caustic wastewater Lime sludge and other corrosive alkalies
- Lime sludge Lime wastewater
- Lime sludge and other corrosive alkalies Lime wastewater
- Lime and water Spent caustic
- Spent sulfuric acid

Potential consequences: Heat generation; violent reaction.

Group 2–A Group 2–B
- Aluminum Any concentrated waste in Groups 1–A or 1–B
- Beryllium Calcium
- Calcium Lithium
- Magnesium Magnesium
- Potassium Potassium
- Sulfuric acid Zinc powder
- Metal hydrides Other reactive metals and metal hydrides

Potential consequences: Fire or explosion; generation of flammable hydrogen gas.

Group 3–A Group 3–B
- Alcohols Any concentrated waste in Groups 1–A or 1–B
- Water Calcium
- Calcium Lithium
- Metal hydrides Potassium
- SOCl2, SOCl2 PCl3, CH3SiCl3

773