§ 60.103a Work practice standards.

(a) Each owner or operator that operates a flare that is subject to this subpart shall develop and implement a written flare management plan. The owner or operator of a newly constructed or reconstructed flare must develop and implement the flare management plan by no later than the date that flare becomes an affected flare subject to this subpart. The owner or operator of a modified flare must develop and implement the flare management plan by no later than 1 year after the flare becomes an affected flare subject to this subpart.

(h) The combustion in a flare of process upset gases or fuel gas that is released to the flare as a result of relief valve leakage or other emergency malfunctions is exempt from paragraph (g) of this section.

(i) In periods of fuel gas imbalance that are described in the flare management plan required in section 60.103(a), compliance with the emission limit in paragraph (g)(3) of this section is demonstrated by following the procedures and maintaining records described in the flare management plan to document the periods of excess fuel gas.

EFFECTIVE DATE NOTE: At 73 FR 78552, Dec. 22, 2008, in §60.102a, paragraph (g) was stayed from Feb. 24, 2009 until further notice.

§ 60.103a Work practice standards.

(a) Each owner or operator that operates a flare that is subject to this subpart shall develop and implement a written flare management plan. The owner or operator of a newly constructed or reconstructed flare must develop and implement the flare management plan by no later than the date that flare becomes an affected flare subject to this subpart. The owner or operator of a modified flare must develop and implement the flare management plan by no later than 1 year after the flare becomes an affected flare subject to this subpart. The plan must include:

(1) A diagram illustrating all connections to the flare;

(2) Methods for monitoring flow rate to the flare, including a detailed description of the manufacturer’s specifications, including but not limited to, make, model, type, range, precision, accuracy, calibration, maintenance, and quality assurance procedures for flare gas monitoring devices;

(3) Procedures to minimize discharges to the flare gas system during the planned start-up and shutdown of the refinery process units that are connected to the affected flare;

(4) Procedures to conduct a root cause analysis of any process upset or malfunction that causes a discharge to the flare in excess of 14,160 m³/day (500,000 scf/d);

(5) Procedures to reduce flaring in cases of fuel gas imbalance (i.e., excess fuel gas for the refinery’s energy needs); and

(6) Explanation of procedures to follow during times that the flare must exceed the limit in §60.102a(g)(3) (e.g., keep records of natural gas purchases to support assertion that the refinery is producing more fuel gas than needed to operate the processes).

(b) Each owner or operator that operates a fuel gas combustion device or sulfur recovery plant subject to this subpart shall conduct a root cause analysis of any emission limit exceedance or process start-up, shutdown, upset, or malfunction that causes a discharge to the atmosphere in excess of 227 kilograms per day (kg/day) (500 lb per day (lb/day)) of SO₂. For any root cause analysis performed, the owner or operator shall record the identification of the affected facility, the date and duration of the discharge, the results of the root cause analysis, and the action taken as a result of the root cause analysis.

(c) Each owner or operator of a delayed coking unit shall depressure to 5 lb per square inch gauge (psig) during reactor vessel depressuring and vent the exhaust gases to the fuel gas system for combustion in a fuel gas combustion device.

§ 60.104a Performance tests.

(a) The owner or operator shall conduct a performance test for each FCCU, FCU, sulfur recovery plant, and fuel gas combustion device to demonstrate initial compliance with each applicable emissions limit in §60.102a according to