have commenced construction prior to October 3, 1982 are exempt from paragraph (a) of this section.

- (f) Stationary gas turbines using water or steam injection for control of NO_X emissions are exempt from paragraph (a) when ice fog is deemed a traffic hazard by the owner or operator of the gas turbine.
- (g) Emergency gas turbines, military gas turbines for use in other than a garrison facility, military gas turbines installed for use as military training facilities, and fire fighting gas turbines are exempt from paragraph (a) of this section.
- (h) Stationary gas turbines engaged by manufacturers in research and development of equipment for both gas turbine emission control techniques and gas turbine efficiency improvements are exempt from paragraph (a) on a case-by-case basis as determined by the Administrator.
- (i) Exemptions from the requirements of paragraph (a) of this section will be granted on a case-by-case basis as determined by the Administrator in specific geographical areas where mandatory water restrictions are required by governmental agencies because of drought conditions. These exemptions will be allowed only while the mandatory water restrictions are in effect.
- (j) Stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour that commenced construction, modification, or reconstruction between the dates of October 3, 1977, and January 27, 1982, and were required in the September 10, 1979, FEDERAL REGISTER (44 FR 52792) to comply with paragraph (a)(1) of this section, except electric utility stationary gas turbines, are exempt from paragraph (a) of this section.
- (k) Stationary gas turbines with a heat input greater than or equal to 10.7 gigajoules per hour (10 million Btu/hour) when fired with natural gas are exempt from paragraph (a)(2) of this section when being fired with an emergency fuel.
- (1) Regenerative cycle gas turbines with a heat input less than or equal to 107.2 gigajoules per hour (100 million

Btu/hour) are exempt from paragraph (a) of this section.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41359, July 8, 2004]

§ 60.333 Standard for sulfur dioxide.

On and after the date on which the performance test required to be conducted by §60.8 is completed, every owner or operator subject to the provision of this subpart shall comply with one or the other of the following conditions:

- (a) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15 percent oxygen and on a dry basis.
- (b) No owner or operator subject to the provisions of this subpart shall burn in any stationary gas turbine any fuel which contains total sulfur in excess of 0.8 percent by weight (8000 ppmw).

[44 FR 52798, Sept. 10, 1979, as amended at 69 FR 41360, July 8, 2004]

§ 60.334 Monitoring of operations.

- (a) Except as provided in paragraph (b) of this section, the owner or operator of any stationary gas turbine subject to the provisions of this subpart and using water or steam injection to control NO_X emissions shall install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine.
- (b) The owner or operator of any stationary gas turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which uses water or steam injection to control NO_X emissions may, as an alternative to operating the continuous monitoring system described in paragraph (a) of this section, install, certify, maintain, operate, and quality-assure a continuous emission monitoring system (CEMS) consisting of NO_X and O₂ monitors. As an alternative, a CO2 monitor may be used to adjust the measured NOx concentrations to 15 percent O_2 by either

converting the CO_2 hourly averages to equivalent O_2 concentrations using Equation F-14a or F-14b in appendix F to part 75 of this chapter and making the adjustments to 15 percent O_2 , or by using the CO_2 readings directly to make the adjustments, as described in Method 20. If the option to use a CEMS is chosen, the CEMS shall be installed, certified, maintained and operated as follows:

- (1) Each CEMS must be installed and certified according to PS 2 and 3 (for diluent) of 40 CFR part 60, appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. Appendix F, Procedure 1 is not required. The relative accuracy test audit (RATA) of the NO $_{\rm X}$ and diluent monitors may be performed individually or on a combined basis, *i.e.*, the relative accuracy tests of the CEMS may be performed either:
- (i) On a ppm basis (for NO_X) and a percent O_2 basis for oxygen; or
- (ii) On a ppm at 15 percent O₂ basis;
- (iii) On a ppm basis (for NO_X) and a percent CO_2 basis (for a CO_2 monitor that uses the procedures in Method 20 to correct the NO_X data to 15 percent O_2).
- (2) As specified in §60.13(e)(2), during each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required to validate the hour.
- (3) For purposes of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in §60.13(h).
- (i) For each unit operating hour in which a valid hourly average, as described in paragraph (b)(2) of this section, is obtained for both NO_X and diluent, the data acquisition and handling system must calculate and record the hourly NO_X emissions in the units of

the applicable NO_X emission standard under $\S 60.332(a)$, *i.e.*, percent NO_X by volume, dry basis, corrected to 15 percent O_2 and International Organization for Standardization (ISO) standard conditions (if required as given in $\S 60.335(b)(1)$). For any hour in which the hourly average O_2 concentration exceeds 19.0 percent O_2 , a diluent cap value of 19.0 percent O_2 may be used in the emission calculations.

- (ii) A worst case ISO correction factor may be calculated and applied using historical ambient data. For the purpose of this calculation, substitute the maximum humidity of ambient air (Ho), minimum ambient temperature (T_a), and minimum combustor inlet absolute pressure (P_o) into the ISO correction equation.
- (iii) If the owner or operator has installed a NO_X CEMS to meet the requirements of part 75 of this chapter, and is continuing to meet the ongoing requirements of part 75 of this chapter, the CEMS may be used to meet the requirements of this section, except that the missing data substitution methodology provided for at 40 CFR part 75, subpart D, is not required for purposes of identifying excess emissions. Instead, periods of missing CEMS data are to be reported as monitor downtime in the excess emissions and monitoring performance report required in §60.7(c).
- (c) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which does not use steam or water injection to control NO_X emissions, the owner or operator may, but is not required to, for purposes of determining excess emissions, use a CEMS that meets the requirements of paragraph (b) of this section. Also, if the owner or operator has previously submitted and received EPA, State, or local permitting authority approval of a procedure for monitoring compliance with the applicable NO_X emission limit under §60.332, that approved procedure may continue to be used.
- (d) The owner or operator of any new turbine constructed after July 8, 2004, and which uses water or steam injection to control $NO_{\rm X}$ emissions may elect to use either the requirements in

paragraph (a) of this section for continuous water or steam to fuel ratio monitoring or may use a NO_X CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section.

- (e) The owner or operator of any new turbine that commences construction after July 8, 2004, and which does not use water or steam injection to control NO $_{\rm X}$ emissions, may, but is not required to, elect to use a NO $_{\rm X}$ CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section. Other acceptable monitoring approaches include periodic testing approved by EPA or the State or local permitting authority or continuous parameter monitoring as described in paragraph (f) of this section.
- (f) The owner or operator of a new turbine that commences construction after July 8, 2004, which does not use water or steam injection to control NO_X emissions may, but is not required to, perform continuous parameter monitoring as follows:
- (1) For a diffusion flame turbine without add-on selective catalytic reduction controls (SCR), the owner or operator shall define at least four parameters indicative of the unit's $NO_{\rm X}$ formation characteristics and shall monitor these parameters continuously.
- (2) For any lean premix stationary combustion turbine, the owner or operator shall continuously monitor the appropriate parameters to determine whether the unit is operating in low- NO_X mode.
- (3) For any turbine that uses SCR to reduce NO_X emissions, the owner or operator shall continuously monitor appropriate parameters to verify the proper operation of the emission controls.
- (4) For affected units that are also regulated under part 75 of this chapter, if the owner or operator elects to monitor NO_X emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19 of this chapter, the requirements of this paragraph (f) may be met by performing the parametric monitoring described in section

2.3 of appendix E or in $\S75.19(c)(1)(iv)(H)$ of this chapter.

- (g) The steam or water to fuel ratio or other parameters that are continuously monitored as described in paragraphs (a), (d) or (f) of this section shall be monitored during the performance test required under §60.8, to establish acceptable values and ranges. The owner or operator may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and other relevant information to define the acceptable parametric ranges more precisely. The owner or operator shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO_X emission controls. The plan shall include the parameter(s) monitored and the acceptable range(s) of the parameter(s) as well as the basis for designating the parameter(s) and acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer's recommendations and other relevant information shall be included in the monitoring plan. For affected units that are also subject to part 75 of this chapter and that use the low mass emissions methodology in §75.19 of this chapter or the NO_X emission measurement methodology in appendix E to part 75, the owner or operator may meet the requirements of this paragraph by developing and keeping onsite (or at a central location for unmanned facilities) a quality-assurance plan, as described in §75.19 (e)(5) or in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this chapter.
- (h) The owner or operator of any stationary gas turbine subject to the provisions of this subpart:
- (1) Shall monitor the total sulfur content of the fuel being fired in the turbine, except as provided in paragraph (h)(3) of this section. The sulfur content of the fuel must be determined using total sulfur methods described in §60.335(b)(10). Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than 0.4 weight percent (4000 ppmw), ASTM D4084-82, 94, D5504-01, D6228-98, or Gas Processors Association

Standard 2377–86 (all of which are incorporated by reference-see §60.17), which measure the major sulfur compounds may be used; and

- (2) Shall monitor the nitrogen content of the fuel combusted in the turbine, if the owner or operator claims an allowance for fuel bound nitrogen (i.e., if an F-value greater than zero is being or will be used by the owner or operator to calculate STD in §60.332). The nitrogen content of the fuel shall be determined using methods described in §60.335(b)(9) or an approved alternative.
- (3) Notwithstanding the provisions of paragraph (h)(1) of this section, the owner or operator may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in §60.331(u), regardless of whether an existing custom schedule approved by the administrator for subpart GG requires such monitoring. The owner or operator shall use one of the following sources of information to make the required demonstration:
- (i) The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20.0 grains/100 scf or less; or
- (ii) Representative fuel sampling data which show that the sulfur content of the gaseous fuel does not exceed 20 grains/100 scf. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.
- (4) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and for which a custom fuel monitoring schedule has previously been approved, the owner or operator may, without submitting a special petition to the Administrator, continue monitoring on this schedule.
- (i) The frequency of determining the sulfur and nitrogen content of the fuel shall be as follows:
- (1) Fuel oil. For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional

- sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank). If an emission allowance is being claimed for fuel-bound nitrogen, the nitrogen content of the oil shall be determined and recorded once per unit operating day.
- (2) Gaseous fuel. Any applicable nitrogen content value of the gaseous fuel shall be determined and recorded once per unit operating day. For owners and operators that elect not to demonstrate sulfur content using options in paragraph (h)(3) of this section, and for which the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel shall be determined and recorded once per unit operating day.
- (3) Custom schedules. Notwithstanding the requirements of paragraph (i)(2) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (i)(3)(i) and (i)(3)(ii) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.333.
- (i) The two custom sulfur monitoring schedules set forth in paragraphs (i)(3)(i)(A) through (D) and in paragraph (i)(3)(ii) of this section are acceptable, without prior Administrative approval:
- (A) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (i)(3)(i)(B), (C), or (D) of this section, as applicable.
- (B) If none of the 30 daily measurements of the fuel's total sulfur content exceeds 0.4 weight percent (4000 ppmw), subsequent sulfur content monitoring may be performed at 12 month intervals. If any of the samples taken at 12-

month intervals has a total sulfur content between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), follow the procedures in paragraph (i)(3)(i)(C) of this section. If any measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section.

- (C) If at least one of the 30 daily measurements of the fuel's total sulfur content is between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), but none exceeds 0.8 weight percent (8000 ppmw), then:
- (1) Collect and analyze a sample every 30 days for three months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(2) of this section.
- (2) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(3) of this section.
- (3) Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, continue to monitor at this frequency.
- (D) If a sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), immediately begin daily monitoring according to paragraph (i)(3)(i)(A) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than 0.8 weight percent (8000 ppmw), are obtained. At that point, the applicable procedures of paragraph (i)(3)(i)(B) or (C) of this section shall be followed.
- (ii) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:
- (A) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf $\,$

- (i.e., the maximum total sulfur content of natural gas as defined in §60.331(u)), no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.
- (B) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds 0.4 weight percent (4000 ppmw), then the minimum required sampling frequency shall be one sample at 12 month intervals.
- (C) If any sample result exceeds 0.4 weight percent sulfur (4000 ppmw), but none exceeds 0.8 weight percent sulfur (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(C) of this section.
- (D) If the sulfur content of any of the 720 hourly samples exceeds 0.8 weight percent (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(D) of this section
- (j) For each affected unit that elects to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content or fuel nitrogen content under this subpart, the owner or operator shall submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions shall be reported for all periods of unit operation, including startup, shutdown and malfunction. For the purpose of reports required under \$60.7(c), periods of excess emissions and monitor downtime that shall be reported are defined as follows:
- (1) Nitrogen oxides.
- (i) For turbines using water or steam to fuel ratio monitoring:
- (A) An excess emission shall be any unit operating hour for which the average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with \$60.332, as established during the performance test required in \$60.8. Any unit operating hour in which no water or steam is injected into the turbine shall also be considered an excess emission.
- (B) A period of monitor downtime shall be any unit operating hour in which water or steam is injected into

the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.

- (C) Each report shall include the average steam or water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity), gas turbine load, and (if applicable) the nitrogen content of the fuel during each excess emission. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).
- (ii) If the owner or operator elects to take an emission allowance for fuel bound nitrogen, then excess emissions and periods of monitor downtime are as described in paragraphs (j)(1)(ii)(A) and (B) of this section.
- (A) An excess emission shall be the period of time during which the fuel-bound nitrogen (N) is greater than the value measured during the performance test required in §60.8 and used to determine the allowance. The excess emission begins on the date and hour of the sample which shows that N is greater than the performance test value, and ends with the date and hour of a subsequent sample which shows a fuel nitrogen content less than or equal to the performance test value.
- (B) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour that a required sample is taken, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.
- (iii) For turbines using NO_X and diluent CEMS:
- (A) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NO_X concentration exceeds the applicable emission limit in $\S60.332(a)(1)$ or (2). For the purposes of this subpart, a "4-hour rolling average NO_X concentration" is the arithmetic average of the average NO_X concentration measured by the CEMS for a given hour (corrected to 15 percent O_2 and, if required under $\S60.335(b)(1)$, to ISO standard condi-

- tions) and the three unit operating hour average $NO_{\rm X}$ concentrations immediately preceding that unit operating hour.
- (B) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NO_X concentration or diluent (or both).
- (C) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period and (if the owner or operator has claimed an emission allowance for fuel bound nitrogen) the nitrogen content of the fuel during the period of excess emissions. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).
- (iv) For owners or operators that elect, under paragraph (f) of this section, to monitor combustion parameters or parameters that document proper operation of the NO_X emission controls:
- (A) An excess emission shall be a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.
- (B) A period of monitor downtime shall be a unit operating hour in which any of the required parametric data are either not recorded or are invalid.
- (2) Sulfur dioxide. If the owner or operator is required to monitor the sulfur content of the fuel under paragraph (h) of this section:
- (i) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit's storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the gas turbine exceeds 0.8 weight percent and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

- (ii) If the option to sample each delivery of fuel oil has been selected, the owner or operator shall immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit's storage tank) if the sulfur content of a delivery exceeds 0.8 weight percent. The owner or operator shall continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and shall evaluate excess emissions according to paragraph (j)(2)(i) of this section. When all of the fuel from the delivery has been burned, the owner or operator may resume using the as-delivered sampling option.
- (iii) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime shall include only unit operating hours, and ends on the date and hour of the next valid sample.
- (3) Ice fog. Each period during which an exemption provided in §60.332(f) is in effect shall be reported in writing to the Administrator quarterly. For each period the ambient conditions existing during the period, the date and time the air pollution control system was deactivated, and the date and time the air pollution control system was reactivated shall be reported. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.
- (4) Emergency fuel. Each period during which an exemption provided in §60.332(k) is in effect shall be included in the report required in §60.7(c). For each period, the type, reasons, and duration of the firing of the emergency fuel shall be reported.
- (5) All reports required under §60.7(c) shall be postmarked by the 30th day following the end of each 6-month period.
- [44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41360, July 8, 2004; 71 FR 9457, Feb. 24, 2006]

§ 60.335 Test methods and procedures.

- (a) The owner or operator shall conduct the performance tests required in §60.8, using either
 - (1) EPA Method 20,
- (2) ASTM D6522-00 (incorporated by reference, see §60.17), or
- (3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine $NO_{\rm X}$ and diluent concentration.
- (4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.
- (5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:
- (i) You may perform a stratification test for $NO_{\rm X}$ and diluent pursuant to
 - (A) [Reserved]
- (B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.
- (ii) Once the stratification sampling is completed, the owner or operator may use the following alternative sample point selection criteria for the performance test:
- (A) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O_2 , is within ± 10 percent of the mean normalized concentration for all traverse points, then you may use 3 points (located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The 3 points shall be located along the measurement line that exhibited the highest average normalized NO_X concentration during the stratification test; or
- (B) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O_2 , is within ± 5 percent of the mean normalized concentration for