# 46 CFR Ch. I (10-1-11 Edition)

# Pt. 150, App. II

- Oleum (0) is not compatible with Sulfuric acid (2) and 1,1,1-Trichloroethane (36).
- Phthalate based polyester polyol (0) is not compatible with group 2, 3, 5, 7 and 12.
- Polyglycerine, Sodium salts solution (20) is not compatible with Groups 1, 4, 11, 16, 17, 19, 21 and 22.
- Propylene, Propane, MAPP gas mixture (containing 12% or less MAPP gas) (30) is not compatible with Group 1 (Non-oxidizing mineral acids), Group 36 (Halogenated hydrocarbons), nitrogen dioxide, oxidizing materials, or molten sulfur.
- Sodium acetate, Glycol, Water mixture (1% or less Sodium hydroxide) (34) is not compatible with Group 12 (Isocyanates).
- Sodium chlorate solution (50% or less) (0) is not compatible with Groups 1-3, 5, 7, 8, 10, 12, 13, 17 and 20.
- Sodium dichromate solution (70% or less) (0) is not compatible with Groups 1-3, 5, 7, 8, 10, 12, 13, 17 and 20.
- Sodium dimethyl naphthalene sulfonate solution (34) is not compatible with Group 12, Formaldehyde and strong oxidizing agents.
- Sodium hydrogen sulfide, Sodium carbonate solution (0) is not compatible with Groups 6 (Ammonia) and 7 (Aliphatic amines).
- Sodium hydrosulfide (5) is not compatible with Groups 6 (Ammonia) and 7 (Aliphatic amines).
- Sodium hydrosulfide, Ammonium sulfide solution (5) is not compatible with Groups 6 (Ammonia) and 7 (Aliphatic amines).
- Sodium polyacrylate solution (43) is not compatible with Group 3, Nitric Acid.
- Sodium silicate solution (43) is not compatible with Group 3, Nitric Acid.
- Sodium sulfide, hydrosulfide solution (0) is not compatible with Groups 6 (Ammonia) and 7 (Aliphatic amines).
- Sodium thiocyanate (56% or less) (0) is not compatible with Groups 1-4.
- Sulfonated polyacrylate solution (43) is not compatible with Group 5 (Caustics).
- Sulfuric acid (2) is not compatible with Fish oil (34), or Oleum (0).
- Tall oil fatty acid (Resin acids less than 20%) (34) is not compatible with Group 5, Caustics.
- Tallow fatty acid (34) is not compatible with Group 5, Caustics.
- Tetraethylenepentamine (7) is not compatible with Carbon tetrachloride, Group 36, Halogenated hydrocarbons.
- 1,2,3-Trichloropropane (36) is not compatible with Diethylenetriamine, Ethylenediamine, Ethyleaneamine EA 1302, or Triethylenetetramine, all Group 7, Aliphatic amines.
- 1,1,1-Trichloroethane (36) is not compatible with Oleum (0).

- Trichloroethylene (36) is not compatible with Group 5, Caustics.
- Triethylenetetramine (7) is not compatible with Carbon tetrachloride, or 1,2,3-Trichloropropane, both Group 36, Halogenated hydrocarbons.
- Triethyl phosphite (34) is not compatible with Groups 1, and 4.
- Trimethyl phosphite (34) is not compatible with Groups 1 and 4.
- 1,3,5-Trioxane (41) is not compatible with Group 1 (non-oxidizing mineral acids) and Group 4 (Organic acids).
- [CGD 88-100, 54 FR 40012, Sept. 29, 1989 as amended by CGD 88-100, 55 FR 17277, Apr. 24, 1990; CDG 92-100, 59 FR 17026, Apr. 11, 1994; CGD 94-902, 60 FR 34043, June 29, 1995; CGD 95-900, 60 FR 34050, June 29, 1995; USCG 2000-7079, 65 FR 67182, Nov. 8, 20001

# APPENDIX II TO PART 150—EXPLANATION OF FIGURE 1

Definition of a hazardous reaction— As a first approximation, a mixture of two cargoes is considered hazardous when, under specified condition, the temperature rise of the mixture exceeds 25 °C or a gas is evolved. It is possible for the reaction of two cargoes to produce a product that is significantly more flammable or toxic than the original cargoes even though the reaction is non-hazardous from temperature or pressure considerations, although no examples of such a reaction are known at this time.

Chart format— There are different degrees of reactivity among the various cargoes. Many of them are relatively non-reactive: For example, aromatic hydrocarbons or paraffins. Others will form hazardous combinations with many groups: For example, the inorganic acids.

The cargo groups in the compatibility chart are separated into two categories: 1 through 22 are "Reactive Groups" through 43 are "Cargo Groups". Left unassigned and available for future expansion are groups 23 through 29 and those past 43. Reactive Groups contain products which are chemically the most reactive; dangerous combinations may result between members of different Reactive Groups and between members of Reactive Groups and Cargo Groups. Products assigned to Cargo Groups, however, are much less reactive; dangerous combinations involving these can be formed only with members of certain Reactive Groups. Cargo Groups do not react hazardously with one another.

Using the Compatibility Chart— The following procedure explains how the compatibility chart should be used to find compatibility information:

(1) Determine the group numbers of the two cargoes by referring to the alphabetical

### Coast Guard, DHS

listing of cargoes and the corresponding groups (Table I). Many cargoes are listed under their parent names; unless otherwise indicated, isomers or mixtures of isomers of a particular cargo are assigned to the same group. For example, to find the group number for Isobutyl Alcohol, look under the parent name Butyl Alcohol. Similarly, the group number for para-Xylene is found under the entry Xylene. If a cargo cannot be found in this listing, contact the Coast Guard for a group determination (see §150.140).

- (2) If both group numbers are between 30 and 43 inclusive, the products are compatible and the chart need not be used.
- (3) If both group numbers do not fall between 30 and 43 inclusive, locate one of the numbers on the left of the chart (Cargo Groups) and the other across the top (Reactive Groups). (Note that if a group number is between 30 and 43, it can only be found on the left side of the chart.) The box formed by the intersection of the column and row containing the two numbers will contain one of the following:
- (a) Blank—The two cargoes are compatible.
- (b) "X"—The two cargoes are not compatible.

(Note that reactivity may vary among the group members. Refer to Table I or Table II to find whether the products in question are referenced by a footnote which indicates that exceptions exist and are listed in Appendix I. Unless the combination is specifically mentioned in Appendix I, it is compatible.)

[CGD 75–59, 45 FR 70263, Oct. 23, 1980, as amended by CGD 83–047, 50 FR 33046, Aug. 16, 1985]

# EXAMPLES

| Combination               | Groups                                 | Compatible |
|---------------------------|----------------------------------------|------------|
| Butyraldehyde/Acetic Acid | 19/4<br>15/12<br>30/32<br>8/18<br>6/10 |            |

APPENDIX III TO PART 150—TESTING PROCEDURES FOR DETERMINING EX-CEPTIONS TO THE CHART

EXPERIMENTAL PROCEDURE FOR EVALUATING BINARY CHEMICAL REACTIVITY

General safety precautions—Chemical reactivity tests have, by their nature, serious potential for injuring the experimenter or destroying equipment. The experimenter should 1) have knowledge of the magnitude of the reactivity to be expected, 2) use adequate facilities and protective equipment to prevent injury from splatter of materials or release of fumes, and 3) start on a small scale

so that unexpected reactions can be safely contained. All tests should be performed in a well-ventilated laboratory hood provided with shields.

Testing chemicals other than liquids—The procedure outlined below was developed for chemicals which are liquids at ambient temperatures. If one or both chemicals are normally shipped at elevated temperatures, the same procedure may be followed except the chemicals are tested at their respective shipping temperatures and the oil bath in Step 3 is maintained at a level 25 °C above the higher temperature. This information is then indicated on the data sheet. If one of the chemicals is a gas at ambient temperatures, consult the Coast Guard for additional instructions before proceeding with the compatibility test.

#### Step 1

Objective—To determine if the test chemicals react violently and present a safety hazard in further tests.

Procedure—Place 0.5ml of one (A) of the test chemicals in a 25×150mm test tube. Clamp the test tube to a stand behind a safety shield (in a hood). Carefully add from a dropper 0.5ml of the other substance (B). Shake to induce mixing. If no immediate reaction occurs, retain the mixture for at least 10 minutes to check for a delayed reaction.

Results—If a violent reaction occurs, such as sputtering, boiling of reactants or release of fumes, record the results on the Data Sheet (appendix IV) and do not proceed to Step 2. If no reaction or a minor reaction occurs, proceed to Step 2.

#### Step~2

Objective—To determine the heat of reaction of two chemicals on mixing under specified conditions.

Procedure—These separate mixes of the proposed binary combination will be tested. These are 2 ml: 18 ml, 10 ml: 10 ml, and 18 ml: 2 ml, respectively, to result in a final mixture of about 20 ml in each case.

A reference-junctioned thermocouple is prepared by inserting two lengths of 20 gauge or finer iron-constantan or chromelalumel duplex thermocouple wire into glass capilary sheaths. The common wire of each probe is joined, while the other wire of each is connected to a strip-chart recorder. The thermocouple probe which produces a negative pen deflection upon warming is the reference junction and is placed in a test tube of water at ambient laboratory temperature. The other probe is placed near the bottom of a Dewar flask of about 300ml capacity, such that the thermocouple will be below the surface of the test mixture. The Dewar flask is equipped with a magnetic stirrer having a stirring bar coated with an inert material such as a flourinated hydrocarbon.