(b) Certification reports. (1) The requirements of §429.12 are applicable to refrigerated bottled or canned beverage vending machine; and
 (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information: The maximum average daily energy consumption in kilowatt hours per day (kWh/day), the refrigerated volume (V) in cubic feet (ft³) used to demonstrate compliance with standards set forth in §431.296, the ambient temperature in degrees Fahrenheit (°F), and the ambient relative humidity in percent (%) during the test.

§ 429.53 Walk-in coolers and walk-in freezers.
 (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to walk-in coolers and freezers; and
 (2) [Reserved]
 (b) Certification reports. (1) Except that §429.12(b)(6) applies to the certified component, the requirements of §429.12 are applicable to manufacturers of the components of walk-in coolers and freezers (WICFs) listed in paragraph (b)(2) of this section, and;
 (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information:
 (i) For WICF doors: The door type, R-value of the door insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In addition, for those WICFs with transparent reach-in doors and windows: The glass type of the doors and windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power draw of the antisweat heater in watts per square foot of door opening.
 (ii) For WICF panels: The R-value of the insulation (except for glazed portions of the doors or structural members)
 (iii) For WICF fan motors: The motor purpose (i.e., evaporator fan motor or condenser fan motor), the horsepower, and a declaration that the manufacturer has incorporated the applicable design requirements.

§ 429.54 Metal halide lamp ballasts and fixtures.
 (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to metal halide lamp ballasts; and
 (2) For each basic model of metal halide lamp ballast selected for testing, a sample of sufficient size, not less than four, shall be selected at random and tested to ensure that:
 (i) Any represented value of estimated energy efficiency calculated as the measured output power to the lamp divided by the measured input power to the ballast (P_{out}/P_{in}), of a basic model is less than or equal to the lower of:
 (A) The mean of the sample, where:
 \[
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]
 and, \(\bar{x} \) is the sample mean; n is the number of samples; and \(x_i \) is the \(i \)th sample;
 Or,
 (B) The lower 99-percent confidence limit (LCL) of the true mean divided by 0.99.
 \[
 LCL = \bar{x} - t_{0.99} \left(\frac{S}{\sqrt{n}} \right)
 \]
 (B) The lower 99-percent confidence limit (LCL) of the true mean divided by 0.99.
§ 429.70 Alternative methods for determining energy efficiency or energy use.

(a) General. A manufacturer of commercial HVAC and WH equipment, distribution transformers, and central air conditioners and heat pumps may not distribute any basic model of such equipment in commerce unless the manufacturer has determined the energy efficiency of the basic model, either from testing the basic model or from applying an alternative method for determining energy efficiency or energy use (AEDM) to the basic model, in accordance with the requirements of this section. In instances where a manufacturer has tested a basic model to validate the alternative method, the energy efficiency of that basic model must be determined and rated according to results from actual testing. In addition, a manufacturer may not knowingly use an AEDM to overrate the efficiency of a basic model. For each basic model of distribution transformer that has a configuration of windings that allows for more than one nominal rated voltage, the manufacturer must determine the basic model’s efficiency either at the voltage at which the highest losses occur or at each voltage at which the transformer is rated to operate.

(b) Testing. Testing for each covered product or covered equipment must be done in accordance with the sampling plan provisions established in §§ 429.14 through 429.54 and the testing procedures in parts 430 and 431.

(c) Alternative efficiency determination method (AEDM) for commercial HVAC and WH equipment—(1) Criteria an AEDM must satisfy. A manufacturer may not apply an AEDM to a basic model to determine its efficiency pursuant to this section unless:

(i) The AEDM is derived from a mathematical model that represents the energy consumption characteristics of the basic model;

(ii) The AEDM is based on engineering or statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data; and

(iii) The manufacturer has substantiated the AEDM, in accordance with paragraph (c)(2) of this section.

(2) Substantiation of an AEDM. Before using an AEDM, the manufacturer must substantiate and validate the AEDM as follows:

(i) A manufacturer must first apply the AEDM to three or more basic models that have been tested in accordance with §§ 431.173(b) and 431.175(a). The predicted efficiency calculated for each such basic model from application of the AEDM must be within five percent of the efficiency determined from testing that basic model, and the predicted efficiencies calculated for the tested basic models must, on average, be within one percent of the efficiencies determined from testing such basic models; and

(ii) Using the AEDM, the manufacturer must calculate the efficiency of three or more of its basic models. They must be the manufacturer’s highest-selling basic models to which the AEDM could apply and different models than those used to develop the AEDM (i.e., different models than those used in paragraph (c)(2)(i) of this section); and

(iii) The manufacturer must test each of these basic models in accordance with § 431.173(b), and either § 431.174(b) or 431.175(a), whichever is applicable; and

(iv) The predicted efficiency calculated for each such basic model from application of the AEDM must be within five percent of the efficiency determined from testing that basic model,