§ 23.1411 Safety Equipment

§ 23.1411 General.
(a) Required safety equipment to be used by the flight crew in an emergency, such as automatic liferaft releases, must be readily accessible.
(b) Stowage provisions for required safety equipment must be furnished and must—
 (1) Be arranged so that the equipment is directly accessible and its location is obvious; and
 (2) Protect the safety equipment from damage caused by being subjected to the inertia loads resulting from the ultimate static load factors specified in § 23.561(b)(3) of this part.

§ 23.1415 Ditching equipment.
(a) Emergency flotation and signaling equipment required by any operating rule in this chapter must be installed so that it is readily available to the crew and passengers.
(b) Each raft and each life preserver must be approved.
(c) Each raft released automatically or by the pilot must be attached to the airplane by a line to keep it alongside the airplane. This line must be weak enough to break before submerging the empty raft to which it is attached.
(d) Each signaling device required by any operating rule in this chapter, must be accessible, function satisfactorily, and must be free of any hazard in its operation.

§ 23.1416 Pneumatic de-icer boot system.
If certification with ice protection provisions is desired and a pneumatic de-icer boot system is installed—
(a) The system must meet the requirements specified in § 23.1419.
(b) The system and its components must be designed to perform their intended function under any normal system operating temperature or pressure, and
(c) Means to indicate to the flight crew that the pneumatic de-icer boot system is receiving adequate pressure and is functioning normally must be provided.

§ 23.1419 Ice protection.
If certification with ice protection provisions is desired, compliance with the requirements of this section and other applicable sections of this part must be shown:
(a) An analysis must be performed to establish, on the basis of the airplane’s operational needs, the adequacy of the ice protection system for the various components of the airplane. In addition, tests of the ice protection system must be conducted to demonstrate that the airplane is capable of operating safely in continuous maximum and intermittent maximum icing conditions, as described in appendix C of part 25 of this chapter. As used in this section, “Capable of operating safely” means that airplane performance, controllability, maneuverability, and stability must not be less than that required in part 23, subpart B.
(b) Except as provided by paragraph (c) of this section, in addition to the analysis and physical evaluation prescribed in paragraph (a) of this section, the effectiveness of the ice protection system and its components must be shown by flight tests of the airplane or its components in measured natural atmospheric icing conditions and by one or more of the following tests, as found necessary to determine the adequacy of the ice protection system—
 (1) Laboratory dry air or simulated icing tests, or a combination of both, of the components or models of the components.
 (2) Flight dry air tests of the ice protection system as a whole, or its individual components.
 (3) Flight test of the airplane or its components in measured simulated icing conditions.
(c) If certification with ice protection has been accomplished on prior type certificated airplanes whose designs include components that are thermodynamically and aerodynamically equivalent to those used on a new airplane design, certification of these equivalent components may be accomplished by reference to previously accomplished tests, required in
§ 23.1435 Hydraulic systems.

(a) Design. Each hydraulic system must be designed as follows:

(1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected in addition to hydraulic loads.

(2) A means to indicate the pressure in each hydraulic system which supplies two or more primary functions must be provided to the flight crew.

(3) There must be means to ensure that the pressure, including transient (surge) pressure, in any part of the system will not exceed the safe limit above design operating pressure and to prevent excessive pressure resulting from fluid volumetric changes in all lines which are likely to remain closed long enough for such changes to occur.

(4) The minimum design burst pressure must be 2.5 times the operating pressure.